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Abstract. We present a generic approach for the sensitivity analysis of solutions to parameter-
ized finite-dimensional optimization problems. We study differentiability and continuity properties
of quasi-solutions (stationary points or stationary point-multiplier pairs), as well as their existence
and uniqueness, and the issue of when quasi-solutions are actually optimal solutions. Our approach
is founded on a few general rules that can all be viewed as generalizations of the classical inverse
mapping theorem, and sensitivity analyses of particular optimization models can be made by com-
puting certain generalized derivatives in order to translate the general rules into the terminology of
the particular model. The useful application of this approach hinges on an inverse mapping theorem
that allows us to compute derivatives of solution mappings without computing solutions, which is
crucial since numerical solutions to sensitive problems are fundamentally unreliable. We illustrate
how this process works for parameterized nonlinear programs, but the generality of the rules on which
our approach is based means that a similar sensitivity analysis is possible for practically any finite-
dimensional optimization problem. Our approach is distinguished not only by its broad applicability
but by its separate treatment of different issues that are frequently treated in tandem. In particular,
meaningful generalized derivatives can be computed and continuity properties can be established
even in cases of multiple or no quasi-solutions (or optimal solutions) for some parameters. This
approach has not only produced unprecedented and computable conditions for traditional properties
in well-studied situations, but has also characterized interesting new properties that might otherwise
have remained unexplored.
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1. Introduction. Even the most basic parameterized optimization problems can
exhibit poor solution behavior; there can be more than one solution for some parame-
ters, or no solutions for some parameters, or the solutions can be sensitive to perturba-
tions of the parameter. These same difficulties persist for quasi-solutions (stationary
points or stationary point-multiplier pairs) both in the case when quasi-solutions and
optimal solutions coincide, and in the case when they do not. To illustrate this, we
consider the minimization over x ∈ R of three different parameterized objective func-
tions: (A) x2/2 − wx, (B) x3/3 − wx, and (C) x4/4 − wx. The stationary point
mappings associated with each of these three problems are plotted against the pa-
rameter w ∈ R in Figure 1.1. The mapping in (A) behaves about as well as can be
hoped; there exists a unique stationary point for each parameter, and the dependence
of the stationary points on the parameters is linear. On the other hand, the mapping
in (B) is very poorly behaved; there are either two stationary points or none for all
parameters but w = 0, and moreover the vertical slope at zero indicates that very
small perturbations from w = 0 cause dramatic changes in the stationary points. Fi-
nally, the mapping in (C) has mixed behavior; there exist unique stationary points for
all parameters, however, there is again the sensitivity indicated by the vertical slope
at zero. Notice also that the optimal solutions coincide with the stationary points in
both cases (A) and (C), but not in (B), where the optimal solution mapping consists
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Fig. 1.1. Simple stationary point mappings.

Fig. 1.2. Derivatives of stationary point mappings.

of only the upper branch of the square-root.

Simple examples like the three above are unusual among optimization problems
generally, since the optimal solutions above can be calculated explicitly. It is more
typical that numerical methods are used to identify solutions, and this fact provides
motivation for the kind of sensitivity analysis that we present in this paper. In sen-
sitive problems, small perturbations of parameters produce relatively large changes
in solutions, so numerically computed solutions are fundamentally unreliable. It fol-
lows that any broadly useful sensitivity analysis of solutions should rest on tests that
are independent of the computation of solutions. For the approach outlined in this
paper, this paradox is handled by a kind of inverse mapping theorem that relates
derivatives of the quasi-solution mapping to derivatives of the original data. For the
simple examples above, the inverse mapping theorem gives a generalized derivative
of the stationary point mapping at w = 0, as the inverse mapping associated with
the second derivative in x of the objective function at (x,w) = (0, 0). The second
derivatives above are easy to compute and the inverse mapping theorem in these cases
gives the generalized derivatives of the stationary point mappings displayed in Figure
1.2. In all of these cases, the graph of the generalized derivative is the tangent line
to the stationary point mapping at w = 0, and any other reasonable generalized first
derivative would be expected to produce the same thing for these examples.

The Fermat rule of differential calculus (the gradient is zero at a stationary point)
is a very familiar example of a general rule which can be applied in different particular
situations to obtain results about optimality, and it served to unify centuries of work
on particular optimization problems. This kind of result is extraordinary in optimiza-
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tion, the more typical generalization being an extension from some well-understood
model. Our approach in this paper relies on general principles from variational anal-
ysis that are very much in the spirit of the Fermat rule. In fact, all of the general
principles we use are different kinds of generalizations of the classical inverse mapping
theorem.

Classical inverse mapping theorem. For a single-valued C1 mapping x :
R
d → R

n and any points w̄ ∈ R
d and x̄ := x(w̄) the following are equivalent:

(i) w′ = 0 is the only vector in R
d for which the Jacobian image ∇x(w̄) ·w′ equals

zero.

(ii) There exists a neighborhood W of w̄ ∈ R
d and a neighborhood X of x̄ ∈ R

n

such that the restriction of x to W is a bijection onto X with C1 inverse w : X → R
d,

and moreover the Jacobians satisfy

∇w(x̄) = (∇x(w̄))−1
.(1.1)

We already alluded to one version of a generalization of this result, where an
analogue to the identity (1.1) is obtained in a much less restrictive setting. The other
generalizations that we use in this paper all characterize weaker properties than (ii)
using generalized versions of (i).

We focus first on the most abstract and general objects, so that the specific
applications become a second-stage matter of translating the abstract results into
the language of the particular optimization problem at hand. We sometimes need to
impose additional structure when we translate our results into verifiable conditions
involving familiar terms of particular models, but these compromises are made after
the fundamental rules have already been established, so their consequences and degree
of necessity can be clarified. In this paper, we do not attempt to minimize the
compromises we make to translate the general results, but instead we adopt reasonably
standard assumptions so that the reader can see how the entire process works in
a familiar setting. Of course, our approach is amenable to any desired refinement
of the assumptions (e.g., reduced differentiability conditions on the original data)
since it is based on completely general characterizations. Moreover, even under the
standard assumptions, some of the sufficient conditions generated by our approach
are unprecedented (even in cases of well-studied models like nonlinear programs),
and our approach has identified interesting new properties that might otherwise have
remained unexplored. We do not attempt to give a complete survey of the general
principles underlying the sensitivity analysis of solutions, but rather we focus on a few
principles and sensitivity properties that provide a basis for a reasonably complete
sensitivity analysis.

One important aspect of our approach is that the general principles on which it is
based are characterizations of certain desirable sensitivity properties. It follows that
anyone who seeks derivative conditions for these sensitivity properties in connection
with a particular optimization model must essentially reprove the general principles in
their special case. Thus, anyone desiring to carry out such a sensitivity analysis need
not create a new strategy from the ground up, and would be well served to translate
the general principles for their particular case. In fact, one of the goals of this paper
is to encourage others to work with the general principles presented here in order to
carry out sensitivity analyses in more cases of interest.

To develop our general results, we study the variational properties of multifunc-
tions (set-valued mappings) S : R

d →→ R
n, and then specialize these results to the cases
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where S represents stationary points or stationary point-multiplier pairs associated
with the parameterized optimization problem

min{f(x,w)} over all x ∈ R
n,(1.2)

where f is a proper (so it is not identically equal to ∞ and nowhere equal to −∞)
extended real-valued function of x ∈ R

n and the parameter w ∈ R
d. This is a com-

pletely generic finite-dimensional model which even includes constrained optimization
problems since constraints can be incorporated through penalties into the objective
function f . For instance, nonlinear programs like

min{g0(x,w)} over all x ∈ C(w) :=
{
x

∣∣∣∣ gi(x,w) ≤ 0 for i = 1, . . . , s,
gi(x,w) = 0 for i = s+ 1, . . . ,m

}
(1.3)

fit this model when the objective f is defined by

f(x,w) =

{
g0(x,w) if x ∈ C(w),
∞ otherwise.

(1.4)

Throughout the paper, we illustrate how our approach applies to the analysis of the
parametric sensitivity of general nonlinear programs.

As we already saw in the three simple examples at the beginning of this section,
different issues are involved in solution sensitivity, including existence and unique-
ness of solutions, as well as their continuity and differentiability properties. Another
important issue is whether or not all stationary points are optimal solutions (every
optimal solution is of course a stationary point, since the latter are defined by nec-
essary conditions for optimality). Much of the sensitivity analysis carried out so far
has followed the traditional hierarchy that has existence and uniqueness as the initial
properties to be established (or assumed), followed by continuity properties, which
in turn are followed by differentiability properties. In our approach, this hierarchy
is inverted since these various properties depend on one another in new ways. For
instance, the differentiability property that we use provides important sensitivity in-
formation even without uniqueness or existence for some parameters. Interestingly,
existence and uniqueness properties cannot be characterized via first derivative ob-
jects in the absence of stability; this phenomenon is illustrated by the fact that the
derivatives of the stationary point mappings above in cases (B) and (C) are the same
even though the existence/uniqueness properties of the corresponding stationary point
mappings are different. The unorthodox organization of the paper reflects the new
hierarchy demanded by this situation; we begin with a discussion of differentiability
properties, then move to continuity properties, and finally to questions of existence
and uniqueness.

Sensitivity analysis has a long history, and many important contributions have
been made over the years, both via the approach espoused here as well as by other
approaches. The references at the end of this paper give some of the names of the
major contributors; however, the purpose of this paper is not to provide a complete
survey of the results in this area. Nor is its primary purpose to add particular results
to the vast accumulation, but instead to frame certain kinds of sensitivity analyses
generally in terms of a few basic principles that have been identified through this
approach. One point of this paper then is that all analyses of certain sensitivity
properties have at their core some general principle of variation. This means that any
past or future attempt to characterize certain continuity or differentiability properties
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of solutions in terms of derivatives of the original data of the problem must essentially
involve the same general principles. It follows that translating these general principles
to obtain particular results of interest is perhaps the most direct path to these results;
and in any case it is an approach to results for new problems that has a head start,
since it rests on already established general principles of variation.

Nonlinear programs have been studied so extensively that many of their important
sensitivity properties have been well-understood long before this paper. In light of
this extensive history as well as the fact that nonlinear programs are not the main
focus of this paper, it is not feasible to give here an exhaustive description of past work
in this area. When results presented here are apparently genuinely new, we do give
some indication of that, but the default understanding in the applications sections is
that similar results likely have been obtained before by other means. Nor are most
aspects of the basic approach presented here new to this paper, and we try to indicate
particular contributions along these lines where appropriate. Of particular note, the
continuity and differentiability properties used here have been studied previously, and
we refer the interested reader to [52] and [3] for a more complete treatment of these and
related properties and their calculus. We also try to give some credit where it is due in
the concluding section of the paper, where we describe some related solution sensitivity
results obtained through the same basic approach, and compare our results to some
obtained by fundamentally different approaches to solution sensitivity analysis.

2. Differentiability. One differentiability property frequently sought in con-
nection with the sensitivity analysis of solutions is called B-differentiability: A single-
valued mapping f : R

d → R
n is B-differentiable at x̄ ∈ R

d if it is directionally differen-
tiable at x̄ and the mapping x �→ f(x̄)+Df(x̄)(x− x̄) is a first-order approximation of
f near x̄. The differentiability property that we will use can be viewed as a direct gen-
eralization to multifunctions of B-differentiability for locally Lipschitz single-valued
mappings, and it provides important sensitivity information even in the case of a
true multifunction when the B-differentiability is not appropriate. This is important
because there are many situations where there exist multiple or no solutions to a pa-
rameterized optimization problem. In addition, the property we use gives meaningful
sensitivity information for single-valued mappings that are not B-differentiable.

We wish to study the differential properties of solutions associated with optimiza-
tion problems (1.2), without making a priori assumptions about existence or unique-
ness. This leads us naturally to generalized derivatives of multifunctions S : R

d →→ R
n,

since, for example, we can define a multifunction by

S(w) := {x|x gives an optimal solution to (1.2) with parameter w}.
The primary generalized derivative that we use here is the outer graphical derivative
of S at w̄ for x̄ denoted DS(w̄|x̄) : Rd →→ R

n and defined as follows:

DS(w̄|x̄)(w′) =
{
x′
∣∣∣∣ ∃w′

ν → w′, τν ↓0 with (x̃ν − x̄)/τν → x′

for some x̃ν ∈ S(w̄ + τνw
′
ν)

}
.

The outer graphical derivative gets its name from the fact that it is the outer graphical
limit as t ↓0 of the sequence of difference quotient multifunctions defined for t > 0 by

w′ �→ S(w̄ + tw′)− x̄
t

.

The outer graphical limit of a sequence of multifunctions {Gt} is the multifunction
whose graph equals the set of all points obtained as limits of points in the sets gphGtn
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for some sequence tn ↓0. The outer graphical derivative always exists, though it may
have empty values for some points.

A property called protodifferentiability at w̄ for x̄ occurs when every element
(w′, x′) in the graph of the outer graphical derivative DS(x̄, w̄) can actually be ob-
tained as a limit

(w′, x′) = lim
t ↓ 0

(w(t), x(t))− (w̄, x̄)
t

(2.1)

for some selection mapping t �→ (
w(t), x(t)

)
: [0, ε]→ gphS with ε > 0. The concept

of protodifferentiability is a generalization of B-differentiability [49] for single-valued
mappings: A (single-valued) continuous mapping S : R

d → R
n is B-differentiable at

w̄ if the difference quotient mappings

w �→ S(w̄ + tw)− S(w̄)
t

for t > 0

converge pointwise as t ↓0 to a continuous (B-derivative) mapping H : R
d → R

n and
do so uniformly on bounded sets.

Proposition 2.0.1 (see Proposition 2.2 of [27] and Proposition 3.5 of [29]). Let
O be an open neighborhood of a point w̄ ∈ R

d and consider a continuous single-valued
mapping S : O → R

n. Then S is B-differentiable at w̄ for x̄ = S(w̄) if and only if S
is protodifferentiable at w̄ with DS(w̄|x̄) single-valued.

When S happens to be Lipschitz continuous around w̄, then S is B-differentiable
at w̄ if and only if S is protodifferentiable at w̄ (and the single-valuedness of DS(w̄|x̄)
is automatic under either of these equivalent conditions).

In either of these situations, the outer graphical derivative DS(w̄|x̄) is the same
as the B-derivative, and one has the local expansion

S(w̄ + tw) = S(w̄) + tDS(w̄|x̄)(w) + o(t|w|) for t > 0.

Remark. Since local Lipschitz continuity of solution mappings is traditionally
established or assumed before studying differentiability properties, our approach us-
ing the outer graphical derivative and the concept of protodifferentiability covers at
least as much ground as the traditional approaches to B-differentiability. However,
the outer graphical derivative provides important sensitivity information even when
S is genuinely set-valued, so our approach covers new ground too. From an analytical
point of view, the image of the outer graphical derivative DS(w̄|x̄)(w′) contains all the
cluster points of sequences considered in the (uniform) limit defining the B-derivative.
The situation when a single-valued mapping S fails to be B-differentiable at w̄ thus
corresponds to the case of the image set DS(w̄|x̄)(w′) containing either multiple or no
points. So the outer graphical derivative captures exactly the kind of derivative infor-
mation that is usually desired, but which is often unnecessarily lost when attention
is restricted to more traditional notions of differentiability. Protodifferentiability also
signals an interesting geometric property where the graph of the multifunction is the
image under an invertible nonlinear transformation of the graph of a B-differentiable
single-valued mapping (see [29] for more details on this).

The following inverse mapping theorems for outer graphical derivatives form the
theoretical basis for many of the computations in what follows.

Theorem 2.1 (see Theorem 4.1 of [26] and Theorem 3.1 of [23]). For any
multifunction M : R

n × R
d →→ R

n and any triple of points (v̄, w̄, x̄) satisfying v̄ ∈
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M(x̄, w̄), consider the partial inverse multifunction S : R
n × R

d →→ R
n defined by

S(v, w) := {x|v ∈M(x,w)}(2.2)

and its restriction S0 : R
d →→ R

n defined by S0(w) := S(0, w). The outer graphical
derivative of S at (v̄, w̄) for x̄ satisfies

DS(v̄, w̄|x̄)(v′, w′) = {x′|v′ ∈ DM(x̄, w̄|v̄)(x′, w′)},(2.3)

and the outer graphical derivative of S0 at w̄ for x̄ satisfies

DS0(w̄|x̄)(w′) ⊆ {x′|0 ∈ DM(x̄, w̄|0)(x′, w′)}.

If the multifunction M is protodifferentiable at (x̄, w̄) for v̄ ∈ M(x̄, w̄), then the
partial inverse multifunction S is protodifferentiable at (v̄, w̄) for x̄.

Remark. The explicit presence of the parameter v in the partial inverse multifunc-
tion S is essential for obtaining either the identity (2.3) or the protodifferentiability
result. In the case when the mappingM satisfies the conditions of the classical inverse
mapping theorem, Theorem 2.1 essentially reproduces the classical result (though ob-
viously without the classical differentiability conclusions).

2.1. Differentiability of stationary points. A necessary condition for opti-
mality in (1.2) that generalizes the Fermat rule is the inclusion 0 ∈ ∂xf(x,w) in terms
of the partial subgradient multifunction ∂xf : R

n+d →→ R
n (see [52, Theorem 10.1]).

Recall from [52] that a vector v ∈ R
n is an element of the image set ∂xf(x,w) if and

only if there exist sequences vn → v and xn → x such that f(xn, w) → f(x,w), and
for each fixed x′

f(x′, w) ≥ f(xn, w) + 〈vn, x′ − xn〉+ o(|x′ − xn|).

Using the necessary condition for optimality 0 ∈ ∂xf(x,w) as a basis, the set of
stationary points associated with (1.2) for with the parameter w ∈ R

d is the image
set of the stationary point multifunction defined by

SP (w) := {x|0 ∈ ∂xf(x,w)}.(2.4)

Notice that this multifunction is of the type S0 covered by Theorem 2.1, so we know
that its outer graphical derivative satisfies the estimate

D
(
SP

)
(w̄|x̄)(w′) ⊆ {x′|0 ∈ D(

∂xf
)
(x̄, w̄|0)(x′, w′)}(2.5)

in terms of the outer graphical derivative of the partial subgradient mapping. Ac-
cording to Theorem 2.1, if the partial subgradient multifunction is protodifferentiable,
then the stationary point multifunction associated with a slightly modified problem
is protodifferentiable too, and, moreover, in this case, the inclusion corresponding to
(2.5) is an equality. The necessary modification involves a new parameter v ∈ R

n

which serves to tilt the graph of the objective function:

min{f(x,w)− 〈v, x〉} over x ∈ R
n.(2.6)

Note that the new tilt parameter is precisely the kind of parameterization we saw for
the simple examples considered in the introduction (though there we used the general
parameter label w since there were no other parameters).
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Corollary 2.1.1. If the multifunction ∂xf is protodifferentiable at (x̄, w̄) for
v̄ ∈ ∂xf(x̄, w̄), then the stationary point multifunction associated with the problem
(2.6)

SPtilt(v, w) := {x|v ∈ ∂xf(x,w)}(2.7)

is protodifferentiable at (v̄, w̄) for x̄ and the identity holds that

D
(
SPtilt

)
(v̄, w̄|x̄)(v′, w′) = {x′|v′ ∈ D(

∂xf
)
(x̄, w̄|v̄)(x′, w′)}.

Notice that Corollary 2.1.1 does not say anything directly about the protodif-
ferentiability of the stationary point multifunction (2.4) associated with the original
“untilted” optimization problem. However, indirect information about the differen-
tial properties of SP is available from the protodifferentiability of SPtilt recorded in
Corollary 2.1.1, and it can be extracted from D

(
SPtilt

)
according to the particular

situation. In traditional situations when SPtilt is B-differentiable, this procedure is
trivial and the B-differentiability of SP follows immediately.

Proposition 2.1.1. If the stationary point multifunction SPtilt (2.7) is (single-
valued) continuous near (0, w̄), the partial subgradient multifunction ∂xf is protodif-
ferentiable at (x̄, w̄) for 0 ∈ ∂xf(x̄, w̄) and the outer graphical derivative mapping

D
(
SPtilt

)
(0, w̄|x̄)(v′, w′) = {x′|v′ ∈ D(

∂xf
)
(x̄, w̄|0)(x′, w′)}(2.8)

is single-valued, then SPtilt is actually B-differentiable at (0, w̄) with B-derivative
given by (2.8).

If SPtilt is Lipschitz continuous near (0, w̄), then the same result holds without
the assumption about the single-valuedness of (2.8) (which single-valuedness is in this
event assured by the B-differentiability).

Moreover, in either of these situations, the stationary point mapping SP (2.4)
associated with the untilted problem is also B-differentiable at w̄ with B-derivative
given by

D
(
SP

)
(w̄|x̄)(w′) = {x′|0 ∈ D(

∂xf
)
(x̄, w̄|0)(x′, w′)}.

Proof. This follows from Proposition 2.0.1 and Corollary 2.1.1 since SP (w) is the
same as SPtilt(0, w), so the joint B-differentiability of SPtilt implies B-differentiability
of the stationary point mapping SP .

Remark. In the classical case when f is a twice differentiable function of x alone,
both results in this section say that the stationary point mapping associated with the
tilted minimization of f is protodifferentiable, and that its protoderivative is given by
the inverse mapping associated with the Hessian ∇2f .

2.2. Differentiability in the case of fully amenable functions. According
to Corollary 2.1.1 and Proposition 2.1.1, the protodifferentiability of the partial sub-
gradient multifunction ∂xf is the key to establishing differentiability properties for
stationary point multifunctions. One particularly important class of composite func-
tions in optimization has been shown to have protodifferentiable partial subgradient
multifunctions.

Definition. A proper extended real-valued function g on R
m is called piecewise

linear-quadratic if its effective domain dom g := {y ∈ R
m|g(y) < ∞} can be repre-

sented as the union of finitely many polyhedral sets, relative to each of which g(y) is
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given by an expression of the form 〈y,Ay〉/2+ 〈a, y〉+α for some scalar α ∈ R, vector
a ∈ R

m, and symmetric matrix A ∈ R
m×m.

A proper extended real-valued function f on R
n+d is called amenable in x at x̄ with

compatible parameterization in w at w̄ if f(x̄, w̄) is finite and on some neighborhood
X ×W ⊆ R

n+d of (x̄, w̄) there is a representation f(x,w) = g
(
G(x,w)

)
in which G is

a C1 mapping from X×W into R
m, while g is a proper, lower semicontinuous, convex

function on R
m, such that the following constraint qualification is fulfilled:

0 ∈ int
(
dom g − [

G(x̄, w̄) +∇xG(x̄, w̄)Rn
])
.(2.9)

If in addition such a representation exists with G not just C1 but C2 and with g
piecewise linear-quadratic, then f is said to be fully amenable in x at x̄ with compatible
parameterization in w at w̄.

The class of fully amenable functions covers many of the functions commonly
involved in finite-dimensional optimization (see [52]), including maxima of finitely
many C2 functions, as well as the essential objective associated with a nonlinear pro-
gram (1.4) under the Mangasarian–Fromovitz constraint qualification. In [28], fully
amenable functions with compatible parameterization were shown to have protodif-
ferentiable partial subgradient multifunctions.

Proposition 2.2.1 (see Theorem 1.1 of [28]). If f is fully amenable in x at x̄ with
compatible parameterization in w at w̄, then for all (x,w) ∈ R

n+d sufficiently close
to (x̄, w̄) the partial subgradient multifunction ∂xf is protodifferentiable at (x,w) for
v ∈ ∂xf(x,w). Moreover, in this case, the image sets of the outer graphical derivative
D
(
∂xf

)
(x,w|v) can be computed by taking the union over all u ∈ R

d satisfying (v, u) ∈
∂f(x,w) (for the full subgradient multifunction) of the projections onto R

n of the
image sets for the outer graphical derivatives D

(
∂f

)
(x,w|v, u).

Remark. In [43], this result was extended to a more general class of amenable
functions where the function g is allowed to have C2 pieces in place of quadratic ones.

According to Proposition 2.2.1 fully amenable functions have protodifferentiable
partial subgradient mappings, so the results of the previous section apply to give
sensitivity information about the stationary points associated with the minimization
of fully amenable functions. In the following section, we explore this further for one
important particular case of fully amenable minimization.

2.3. Differentiability of stationary points for nonlinear programs. In
[41] and [42], chain rules for the outer graphical derivatives of the full subgradient
multifunction are worked out, and these can be combined with Proposition 2.2.1 to
obtain more specific formulas for the outer graphical derivatives of the partial subgra-
dient multifunction in particular cases that fit the model covered by Proposition 2.2.1.
For example, this process was carried out in [27] for the case of the nonlinear program
(1.3) with C2 functions gi for i = 0, . . . ,m, and we will outline these results here under
the same assumptions. The formulas obtained in [27] involved the polyhedral cone
Q(x,w) ⊂ R

n+d defined by

Q(x,w) :=

{
(x′, w′) :

〈∇gi(x,w), (x′, w′)〉 ≤ 0 for i ∈ [1, s] with gi(x,w) = 0,
〈∇gi(x,w), (x′, w′)〉 = 0 for i ∈ [s+ 1,m]

}
,

(2.10)
the mapping

G(x,w) :=
(
g1(x,w), . . . , gm(x,w)

)
,(2.11)
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the set

K := {z ∈ R
m|zi ≤ 0 for i = 1, . . . , s and zi = 0 for i = s+ 1, . . . ,m} ,(2.12)

its associated convex normal cone mapping NK : R
m →→ R

m, which is empty-valued
at z �∈ K and is defined at z ∈ K by

NK(z) = {y ∈ R
m|〈y, k − z〉 ≤ 0 for all k ∈ K} ,(2.13)

and the usual Lagrangian mapping L : R
n × R

m × R
d defined by

L(x, y, w) := g0(x,w) + y1g1(x,w) + · · ·+ ymgm(x,w).

To state the result from [27] we also need certain sets of multiplier vectors, first the
bounded, polyhedral set

Y (x,w, v, u) :=
{
y = (y1, . . . , ym) ∈ NK

(
G(x,w)

)
: ∇(x,w)L(x, y, w) = (v, u)

}
(2.14)

and its face

Ymax(x,w, v, u;x
′, w′) = argmax

y∈Y (x,w,v,u)

〈
(x′, w′),∇2

(x,w)(x,w)L(x, y, w) · (x′, w′)
〉

(2.15)

and then the polyhedral cone

Y ′(x,w;x′, w′) =

{
y′ = (y′1, . . . , y

′
m) ∈ NK

(
G(x,w)

)
:

y′i = 0 for i with
〈
∇gi(x,w), (x′, w′)

〉
�= 0

}
.

(2.16)
Remark. Notice that in the case when the constraint functions are affine, the face

(2.15) is the entire set of multipliers Y (x,w, v, u).
Another special case is when the parameterization w = (w1, w2) includes the

“canonical” parameter w2 ∈ R
m which perturbs the constraint functions as follows:

gi(x,w1)+
[
w2

]
i
. In this case, the multiplier set Y (x,w, v, u) for u = (u1, u2) is empty

unless u2 is in the normal cone NK
(
G(x,w)

)
and u1 = ∇w1g0(x,w1)−u2 ·∇w1G(x,w),

in which case Y (x,w, v, u) reduces to the singleton {u2}. It follows that in this case
the face Ymax(x,w, v, u;x

′, w′) is the same as the set Y (x,w, v, u) regardless of the
choice of x′ and w′. However, the set Ymax(x,w, v, u;x

′, w′) is frequently a proper
subset of the set of all multipliers as in the case of the following example.

Example program. Consider the minimization problem

min{g0(x1, x2, w) := (x1)
2 − x1 + (x2)

2} over all x ∈ C(w),
where the constraint set is defined as follows:

C(w) := {x ∈ R
2 : g1(x1, x2, w) := x1−x2

2+w
2 ≤ 0 and g2(x1, x2, w) := x1−w2 ≤ 0}.

For the base values x = (0, 0), w = 0, and v = (0, 0), the set of Lagrange
multipliers is empty unless u = 0 in which case it consists of the y ∈ R

2
+ satisfying

y1 + y2 = 1, and the Hessian ∇2
(x,w)(x,w)L ((0, 0), y, 0) is the matrix

 2 0 0
0 2(1− y1) 0
0 0 2(y1 − y2)


 .
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Fig. 2.1. Constraint set for example program.

It follows that the inner product defining the face Ymax ((0, 0), 0, (0, 0), 0;x
′, w′) re-

duces to 2(x′1)
2 + 2(1− y1)(x′2)2 + 2(y1 − y2)(w′)2 which is maximized at the unique

multiplier pair (1, 0) for any choice of x′ = (x′1, x
′
2) and w

′ with x′2 = 0 and w
′ �= 0 or

x′2 ≤ w′ �= 0; thus in these cases, the face Ymax ((0, 0), 0, (0, 0), 0;x
′, w′) contains only

the pair (1, 0). On the other hand, if w′ = 0 and x′2 �= 0 or 0 �= x′2 > w′, then the
face Ymax ((0, 0), 0, (0, 0), 0;x

′, w′) consists solely of the multiplier pair (0, 1). Finally,
if both w′ = 0 and x′2 = 0, then the face Ymax ((0, 0), 0, (0, 0), 0;x

′, w′) is the entire
set of multipliers.

Proposition 2.3.1 (see Theorem 3.2 of [27]). For the nonlinear program (1.3)
and its associated essential objective function f (1.4), if the Mangasarian–Fromovitz
constraint qualification holds at (x̄, w̄),

� ∃y = (y1, . . . , ym) ∈ NK
(
G(x̄, w̄)

)
with(2.17)

y1∇xg1(x̄, w̄) + · · ·+ ym∇xgm(x̄, w̄) = 0, except y = 0,

then for all pairs (x,w) sufficiently close to (x̄, w̄) and all v ∈ ∂xf(x,w), the partial
subgradient multifunction for the essential objective function (1.4) is protodifferen-
tiable at (x,w) for v and its outer graphical derivative can be computed as follows: For
(x′, w′) /∈ Q(x,w), the set D

(
∂xf

)
(x,w|v)(x′, w′) is empty. But for (x′, w′) ∈ Q(x,w),

the outer graphical derivative image set D
(
∂xf

)
(x,w|v)(x′, w′) consists of all vectors

∇2
x(x,w)L(x, y, w)(x

′, w′) +
m∑
i=1

y′i∇xgi(x,w)− y′0
(
v −∇xg0(x,w)

)

generated by y′ ∈ Y ′(x,w;x′, w′) and y′0 ∈ R along with choices of y for which
there exists u ∈ R

d with 〈(v, u), (x′, w′)〉 = 〈∇g0(x,w), (x′, w′)〉 such that y is an
element of Ymax(x,w, v, u;x

′, w′). (If no such choice of y is possible, then again
D
(
∂xf

)
(x,w|v)(x′, w′) is empty.)

The characterization in Proposition 2.3.1 of the outer graphical derivative can be
combined with the results in Corollary 2.1.1 and Proposition 2.1.1 to obtain the follow-
ing formulas for the outer graphical derivatives of the stationary point multifunctions
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associated with the nonlinear program (1.3):

SP (w) :=
{
x|∃y ∈ NK

(
G(x,w)

)
with 0 = ∇xL(x, y, w)

}
(2.18)

and

SPtilt(v, w) :=
{
x|∃y ∈ NK

(
G(x,w)

)
with v = ∇xL(x, y, w)

}
.(2.19)

Proposition 2.3.2 (see Theorem 3.1 of [27]). For the nonlinear program (1.3)
and its associated stationary point multifunctions SP (2.18) and SPtilt (2.19), if
the Mangasarian–Fromovitz constraint qualification (2.17) holds at (x̄, w̄) with x̄ ∈
SP (w̄), then SPtilt is protodifferentiable at (0, w̄) for x̄ and the image set of the
outer graphical derivative D

(
SPtilt

)
(0, w̄|x̄)(v′, w′) is equal to the set of x′ such that

(x′, w′) ∈ Q(x̄, w̄) and there exist y′ ∈ Y ′(x̄, w̄;x′, w′), y′0 ∈ R, ū ∈ R
d with 〈ū, w′〉 =

〈∇g0(x̄, w̄), (x′, w′)〉, and ȳ ∈ Ymax(x̄, w̄, 0, ū;x
′, w′) which together satisfy

v′ = ∇2
x(x,w)L(x̄, ȳ, w̄) · (x′, w′) + y′0∇xg0(x̄, w̄) +

m∑
i=1

y′i∇xgi(x̄, w̄).(2.20)

Moreover, the image set of the outer graphical derivative D
(
SP

)
(w̄|x̄)(w′) is in-

cluded in the set D
(
SPtilt

)
(0, w̄|x̄)(0, w′) from above.

Proof. This follows from Corollary 2.1.1 and the inclusion (2.5) using the formula
for the outer graphical derivative of ∂xf given in Proposition 2.3.1.

Example program revisited. For the example program given at the beginning of
this section and for x̄ = (0, 0) and w̄ = 0, both constraints are active and their
gradients in x are both equal to (1, 0) so the Mangasarian–Fromovitz constraint qual-
ification is satisfied, and Proposition 2.3.2 applies. In this case, the cone Q(x̄, w̄) is
the set of triples (x′1, x

′
2, w

′) with x′1 ≤ 0, and Ymax(x̄, w̄, 0, ū;x
′, w′) is empty unless

ū = 0. When ū = 0, the condition

〈ū, w′〉 = 〈∇g0(x̄, w̄), (x′, w′)〉

reduces to x′1 = 0, which implies that Y
′(x̄, w̄;x′, w′) = R

2
+. The identity (2.20) then

reduces to

v′1 = −y′0 + y′1 + y′2,(2.21)

v′2 = 2(1− ȳ1)x′2
for some choices of ȳ ∈ Ymax(x̄, w̄, 0, ū;x

′, w′), y′0 ∈ R, and y′ ∈ R
2
+. No matter what

v′1 ∈ R is, the first identity can be satisfied by choosing y′0 = −v′1 and y′1 = y′2 = 0. The
form of the outer graphical derivative D

(
SPtilt

)
(0, w̄|x̄)(v′, w′) thus depends entirely

on the values of v′2 and w
′. We already have established that this outer graphical

derivative has zero first component x′1 = 0, and it remains to compute the possible
second components x′2 in this situation.

If v′2 = 0, then the second identity in (2.21) is satisfied only when ȳ1 = 1 or when
x′2 = 0. From our earlier analysis of the face Ymax(x̄, w̄, 0, ū;x

′, w′), we know that
ȳ1 = 1 only when x

′
2 = 0 or x

′
2 ≤ w′ �= 0.

If v′2 �= 0, then the second identity in (2.21) is satisfied only when ȳ1 �= 1 in which
case x′2 = v′2/2(1 − ȳ1). From our earlier analysis of the face Ymax(x̄, w̄, 0, ū;x

′, w′),
it is clear that ȳ1 = 0 is the only feasible option, in which case x

′
2 = v′2/2. This only
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occurs, however, if w′ = 0 or v′2 > 2w′. It follows that the outer graphical derivative
for the tilted stationary point mapping associated with this example satisfies

D
(
SPtilt

)
(0, w̄|x̄)(v′1, v′2, w′) =



{0} × ({0} ∪ (−∞, w′]) if w′ �= 0 and v′2 = 0,
{0} × {v′2/2} if w′ = 0 or 0 �= v′2 > 2w

′,
∅ otherwise.

Moreover, the outer graphical derivative for the untilted stationary point mapping
associated with this example satisfies

D
(
SP

)
(w̄|x̄)(w′) ⊆

{ {0} × ({0} ∪ (−∞, w′]) if w′ �= 0,
{0} × {0} if w′ = 0.

Notice that the derivative formulas for this example were computed without first
computing the stationary points, so sensitivity information about stationary points is
available without the stationary points themselves.

The next result is just the translation of Proposition 2.1.1 using the formula in
Proposition 2.3.1.

Proposition 2.3.3 (see Theorem 3.3 of [27]). If in addition to the assumptions
of Proposition 2.3.2, the stationary point multifunction SPtilt is (single-valued) con-
tinuous near (0, w̄), then it is B-differentiable at (0, w̄) if for every pair (v′, w′) there
is only one point x′ for which (x′, w′) ∈ Q(x̄, w̄) and there exist y′ ∈ Y ′(x̄, w̄;x′, w′),
y′0 ∈ R, ū ∈ R

d with 〈ū, w′〉 = 〈∇g0(x̄, w̄), (x′, w′)〉, and ȳ ∈ Ymax(x̄, w̄, 0, ū;x
′, w′)

which together satisfy (2.20).

If SPtilt is Lipschitz continuous near (0, w̄), then it is automatically B-differentiable
without any assumptions about uniqueness of solutions to (2.20) (which uniqueness is
in this event assured by the B-differentiability).

Moreover, under either of these assumptions on SPtilt, the stationary point map-
ping SP (2.18) is B-differentiable at w̄ with B-derivative D

(
SP

)
(w̄|SP (w̄))(w′) equal

to the (unique) point x′ for which (x′, w′) ∈ Q(x̄, w̄) and for which there exist y′ ∈
Y ′(x̄, w̄;x′, w′), y′0 ∈ R, ū ∈ R

d with 〈ū, w′〉 = 〈∇g0(x̄, w̄), (x′, w′)〉, and ȳ and element
of Ymax(x̄, w̄, 0, ū;x

′, w′) which together satisfy

0 = ∇2
x(x,w)L(x̄, ȳ, w̄) · (x′, w′) + y′0∇xg0(x̄, w̄) +

m∑
i=1

y′i∇xgi(x̄, w̄).

2.4. Differentiability of Karush–Kuhn–Tucker pairs. In this section, we
return to the study of general tilted optimization problems (2.6) but now where the
objective function f takes the special form of a sum of a C1 function g0 and an
amenable function g

(
G(x,w)+ v2

)
perturbed inside the composition by v2 ∈ R

m (see
section 2.2 for the definition of amenability):

min{g0(x,w) + g
(
G(x,w) + v2

)− 〈v1, x〉} over x ∈ R
n.(2.22)

This optimization problem is a generalization of a canonically perturbed (by v1 and
v2) nonlinear program since that model is covered by the mapping G (2.11) and the
function g equal to the “indicator function” δK associated with the set K (2.12):

g(z) = δK(z) :=

{
0 if z ∈ K,
∞ otherwise.
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Of course, we lose nothing by explicitly including canonical perturbations, since sen-
sitivity information for the unperturbed problem

min{g0(x,w) + g
(
G(x,w)

)} over x ∈ R
n(2.23)

can be recovered from the canonically perturbed model with (v1, v2) = (0, 0).
We can define a generalized Lagrangian function on R

n+m+d by

L(x, y, w) := g0(x,w) + 〈y,G(x,w)〉,

as well as the generalized Karush–Kuhn–Tucker (KKT) pairs associated with param-
eters (v, w) = (v1, v2, w) ∈ R

n+m × R
d, which are the pairs (x, y) ∈ R

n+m satisfying

∇xL(x, y, w)− v1 = 0 and
G(x,w) + v2 ∈

(
∂g

)−1
(y),

where
(
∂g

)−1
(y) denotes the set of vectors z ∈ R

m for which y ∈ ∂g(z). Under
the constraint qualification (2.9) stipulated by amenability, stationary points x for
the problem (2.22) for parameters (v, w) close to (0, w̄) can always be paired with a
multiplier vector y ∈ R

m so that the pair (x, y) is a KKT pair for (v, w) (see [52,
Exercise 10.26]). To study these stationary point-multiplier pairs, we define the KKT
pair multifunction whose value at (v, w) is the set of KKT pairs for (v, w)

KKT (v, w) :=
{
(x, y)|v ∈

(
∇xL(x, y, w),−G(x,w)

)
+
(
{0}n × (

∂g
)−1

(y)
)}

.

(2.24)
From this formulation, the role of the canonical perturbations is clear; since the
parameter v appears explicitly, the KKT pair multifunction belongs to the class of
multifunctions S covered by our basic Theorem 2.1. According to Theorem 2.1 then,
the protodifferentiability of the KKT pair multifunction is assured under the proto-
differentiability of the multifunction

M(x, y, w) :=
(
∇xL(x, y, w),−G(x,w)

)
+
(
{0}n × (

∂g
)−1

(y)
)
.(2.25)

Proposition 2.4.1. If the mapping ∇xL is B-differentiable at (x̄, ȳ, w̄) and the
subgradient multifunction ∂g is protodifferentiable at z̄ := v̄2+G(x̄, w̄) for ȳ ∈ ∂g(z̄),
then the KKT pair multifunction (2.24) is protodifferentiable at (v̄, w̄) for (x̄, ȳ) and
the image set of its outer graphical derivative D

(
KKT

)
(v̄, w̄|x̄, ȳ)(v′1, v′2, w′) is given

by {
(x′, y′)

∣∣∣∣∣
v′1 = D (∇xL) (x̄, ȳ, w̄|∇xL(x̄, ȳ, w̄)) (x′, y′, w′)
v′2 +∇G(x̄, w̄) · (x′, w′) ∈ D

((
∂g

)−1
) (
ȳ|z̄)(y′)

}
.(2.26)

Moreover, the image set at w′ ∈ R
d of the outer graphical derivative at w̄ for

(x̄, ȳ) of the KKT pair multifunction w �→ KKT (0, w) associated with the unperturbed
problem (2.23) is contained in the set{

(x′, y′)

∣∣∣∣∣
0 = D (∇xL) (x̄, ȳ, w̄|∇xL(x̄, ȳ, w̄)) (x′, y′, w′)
∇G(x̄, w̄) · (x′, w′) ∈ D

((
∂g

)−1
) (
ȳ|G(x̄, w̄))(y′)

}
.(2.27)
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Proof. This follows from Theorem 2.1 since according to [26, Propositions 2.2 and
3.4], the protodifferentiability of M (2.25) is ensured by the assumptions. To show
the formula (2.26) for the outer graphical derivative, we define the multifunction

M2(x, y, w) := −G(x,w) +
(
∂g

)−1
(y)

so that the outer graphical derivative DM(x̄, ȳ, w̄|v̄)(x′, y′, w′) is the set(
D (∇xL) (x̄, ȳ, w̄|∇xL(x̄, ȳ, w̄)) (x′, y′, w′), DM2(x̄, ȳ, w̄|v̄2)(x′, y′, w′)

)
(2.28)

and the outer graphical derivative of M2 is given by

DM2(x̄, ȳ, w̄|v̄)(x′, y′, w′) = −∇G(x̄, w̄) · (x′, w′) +D
((
∂g

)−1
)
(ȳ|z̄)(y′).(2.29)

The formula for the outer graphical derivative then follows directly from Theorem
2.1.

Remark. Proposition 2.4.1 is quite broad since many optimization problems sat-
isfy its assumptions: The mapping ∇xL is B-differentiable under very mild additional
assumptions on the function g0 and the mapping G, and there are many known proto-
differentiable subgradient multifunctions associated with convex functions g, including
all cases when g is piecewise linear-quadratic.

A result similar to Proposition 2.4.1 but covering a slightly different model was
obtained in [51], where the formula for the outer graphical derivative was given in
terms of the solutions to an auxiliary optimization problem.

Following the approach outlined in section 2.1, we can study the B-differentiability
of KKT pairs associated with the unperturbed and untilted problem (where v = 0)
from the outer graphical derivative formula in Proposition 2.4.1.

Proposition 2.4.2. Under the assumptions of Proposition 2.4.1 with v̄ = 0, if
either the KKT pair multifunction (2.24) is Lipschitz continuous near (0, w̄) or it is
(single-valued) continuous near (0, w̄) and the outer graphical derivative D

(
KKT

)
at (0, w̄) for (x̄, ȳ) is single-valued, then the KKT pair multifunction (2.24) is B-
differentiable at (0, w̄).

Moreover, under either of these conditions, the KKT pair mapping w �→ KKT (0, w)
associated with the optimization problem (2.23) is B-differentiable at w̄ with B-derivative
evaluated at w′ ∈ R

d equal to the unique pair (x′, y′) ∈ R
n+m in the set (2.27).

2.5. Differentiability of KKT pairs for nonlinear programs. In this sec-
tion, we move again to our most specific level by translating the results in section 2.4
into the case of nonlinear programs with canonical perturbations v1 and v2

min{g0(x,w)− 〈v1, x〉+ δK
(
G(x,w) + v2

)},(2.30)

where the set K given by (2.12) and C2 functions gi for i = 0, . . . ,m define the
mapping G given by (2.11). The Lagrangian function associated with this program
is automatically C2, so the key to accessing the differentiability results in section
2.4 is the protodifferentiability of the subgradient multifunction associated with the
indicator function g(z) = δK(z). The subgradient multifunction associated with δK
is just the convex normal cone mapping NK : R

m →→ R
m (2.13), which according to

Proposition (2.2.1) is protodifferentiable under the Mangasarian–Fromovitz constraint
qualification (2.17). Moreover, at any z̄ ∈ K and for ȳ ∈ NK(z̄) the outer graphical
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derivative of NK is empty-valued at z′ ∈ R
m unless z′ ∈ Z(z̄, ȳ), where

Z(z̄, ȳ) :=


z′ ∈ R

m

∣∣∣∣∣∣
z′i ≤ 0 for i ∈ [1, s] with z̄i = 0 and ȳi = 0
z′i = 0 for i ∈ [1, s] with z̄i = 0 and ȳi > 0
z′i = 0 for i ∈ [s+ 1,m]


 ,

in which case it satisfies

D (NK) (z̄|ȳ)(z′) =

y′ ∈ R

m

∣∣∣∣∣∣
y′i ≥ 0 for i ∈ [1, s] with z̄i = 0, ȳi = 0, and z′i = 0
y′i = 0 for i ∈ [1, s] with z̄i = 0, ȳi = 0, and z′i < 0
y′i = 0 for i ∈ [1, s] with z̄i < 0


 .

(2.31)
The next result follows from these facts and uses the following sets of indices:

I1 := {i ∈ [s+ 1,m] and i ∈ [1, s] with ȳi > 0 = gi(x̄, w̄)},
I2 := {i ∈ [1, s] with ȳi = 0 = gi(x̄, w̄)},(2.32)

I3 := {i ∈ [1, s] with ȳi = 0 > gi(x̄, w̄)}.
Proposition 2.5.1. For the canonically perturbed nonlinear program (2.30) and

its associated KKT pair multifunction

KKT (v, w) :=
{
(x, y)|v ∈

(
∇xL(x, y, w),−G(x,w)

)
+
(
{0}n × (

NK
)−1

(y)
)}

,

(2.33)
if the Mangasarian–Fromovitz constraint qualification (2.17) holds at (x̄, w̄) with (x̄, ȳ) ∈
KKT (0, w̄), then the KKT pair multifunction is protodifferentiable at (0, w̄) for (x̄, ȳ) ∈
KKT (0, w̄), and the image set of outer graphical derivative

D
(
KKT

)
(0, w̄|x̄, ȳ)(v′1, v′2, w′)

is the set of pairs (x′, y′) ∈ R
n+m that satisfy

v′1 = ∇2
x(x,y,w)L(x̄, ȳ, w̄) · (x′, y′, w′),

y′i ≥ 0 for i ∈ [1, s] with ȳi = 0,

y′i = 0 for i ∈ I3,
〈∇gi(x̄, w̄), (x′, w′)〉+

[
v′2
]
i
≤ 0 for i ∈ I2 with y′i = 0,(2.34)

〈∇gi(x̄, w̄), (x′, w′)〉+
[
v′2
]
i
= 0 for i ∈ I2 with y′i > 0,

〈∇gi(x̄, w̄), (x′, w′)〉+
[
v′2
]
i
= 0 for i ∈ I1.

Moreover, the image set at w′ ∈ R
d of the outer graphical derivative at w̄ for (x̄, ȳ)

of the KKT pair multifunction w �→ KKT (0, w) associated with the nonlinear program
(1.3) without canonical perturbations is contained in the set of pairs (x′, y′) ∈ R

n+m

that satisfy the same six conditions (2.34) but with v′1 = 0 and v′2 = 0.
Proof. According to the preceding discussion, the protodifferentiability of the

KKT pair mapping follows from Proposition 2.4.1, as do the formulas for the outer
graphical derivatives once we develop a formula for the outer graphical derivative of
the inverse of the normal cone multifunction NK . Since the outer graphical derivative
of any multifunction S is defined in terms of the graph of S, the outer graphical
derivative of the inverse multifunction S−1 is just the inverse of the outer graphical
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derivative of S. It follows from the formula (2.31) for the outer graphical derivative

of NK then that the outer graphical derivative of
(
Nk

)−1
at ȳ for G(x̄, w̄) is empty-

valued at y′ ∈ R
m unless y′ satisfies y′i ≥ 0 for i ∈ [1, s] with ȳi = 0 and y′i = 0 for

i ∈ I3, in which case the image set of the outer graphical derivative is equal to
z′ ∈ R

m

∣∣∣∣∣∣
z′i ≤ 0 for i ∈ I2 with y′i = 0
z′i = 0 for i ∈ I2 with y′i > 0
z′i = 0 for i ∈ I1


 .(2.35)

The formula claimed then follows from Proposition 2.4.1 after substituting z′ = v′ +
∇G(x̄, w̄) · (x′, w′).

Example program revisited. We consider again the example program from section
2.3, but this time with canonical perturbations included.

min{(x1)
2 − x1 + (x2)

2 − [v1]1x1 − [v1]2x2} over all x ∈ C(w, v2),

where the constraint set is defined as follows:

C(w, v2) := {x ∈ R
2 : x1 − x2

2 + w2 + [v2]1 ≤ 0 and x1 − w2 + [v2]2 ≤ 0}.

The functions g0, g1, and g2 and the Lagrangian are the same as in section 2.3, and
we use the same base points x̄ = (0, 0) and w̄ = 0. There are a variety of ȳ which
can be paired with x̄ to form a KKT pair in this case; namely, any ȳ ∈ R

2
+ satisfying

ȳ1 + ȳ2 = 1. The matrix ∇2
x(x,y,w)L(x̄, ȳ, x̄) is given by[

2 0 1 1 0
0 2(1− ȳ1) 0 0 0

]

and the index set I3 is always empty for our choice of (x̄, w̄). If we choose ȳ = (1, 0), the
other index sets satisfy I1 = {1} and I2 = {2}, and the six conditions in Proposition
2.5.1 become

[v′1]1 = 2x
′
1 + y′1 + y′2,

[v′1]2 = 0,
y′2 ≥ 0,
x′1 + [v

′
2]2 ≤ 0 if y′2 = 0,

x′1 + [v
′
2]2 = 0 if y

′
2 > 0,

x′1 + [v
′
2]1 = 0.

Thus Proposition 2.5.1 says that the outer graphical derivative

D
(
KKT

)
(0, w̄|x̄, ȳ)(v′1, v′2, w′)

for ȳ = (1, 0) is empty unless [v′1]2 = 0 and [v′2]2 ≤ [v′2]1, in which case it equals the
set {

(x′, y′) ∈ R
2 × R

2 | x′1 = −[v′2]1, y′ = ([v′1]1 + 2[v
′
2]1, 0)

}
if [v′2]2 < [v

′
2]1, but instead equals the set{

(x′, y′) ∈ R
2 × R

2 | x′1 = −[v′2]1, y′2 ≥ 0, y′1 = [v
′
1]1 + 2[v

′
2]1 − y′2

}
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in the case that [v′2]2 = [v
′
2]1.

If we consider instead the multiplier ȳ = (0, 1), the index sets satisfy I1 = {2}
and I2 = {1}, and the same set of conditions work out as

[v′1]1 = 2x
′
1 + y′1 + y′2,

[v′1]2 = 2x
′
2,

y′1 ≥ 0,
x′1 + [v

′
2]1 ≤ 0 if y′1 = 0,

x′1 + [v
′
2]1 = 0 if y

′
1 > 0,

x′1 + [v
′
2]2 = 0.

Thus Proposition 2.5.1 says that the outer graphical derivative

D
(
KKT

)
(0, w̄|x̄, ȳ)(v′1, v′2, w′)

for ȳ = (0, 1) equals the set{
(x′, y′) ∈ R

2 × R
2 | x′ = (−[v′2]2, [v′1]2/2) , y′ = (0, [v′1]1 + 2[v

′
2]2)

}
if [v′2]1 < [v

′
2]2 but instead equals the set{

(x′, y′) ∈ R
2 × R

2 | x′ = (−[v′2]2, [v′1]2/2) , y′1 ≥ 0, y′2 = [v
′
1]1 + 2[v

′
2]2 − y′1

}
in the case that [v′2]1 = [v

′
2]2 and is empty if [v

′
2]1 > [v

′
2]2.

For any other choice of multiplier ȳ, the index set I2 is empty and I1 = {1, 2}, so
the conditions work out as

[v′1]1 = 2x
′
1 + y′1 + y′2,

[v′1]2 = 2(1− ȳ1)x′2,
x′1 + [v

′
2]1 = 0,

x′1 + [v
′
2]2 = 0.

Thus Proposition 2.5.1 says that the outer graphical derivative

D
(
KKT

)
(0, w̄|x̄, ȳ)(v′1, v′2, w′)

in this case is empty unless [v′2]1 = [v
′
2]2, in which case it equals the set{

(x′, y′) ∈ R
2 × R

2 | x′ = (−[v′2]1, [v′1]2/ (2(1− ȳ1))) , y′1 = [v′1]1 + 2[v′2]1 − y′2, y′2 ∈ R
}
.

The result in Proposition 2.5.1 for the case without the canonical perturbations is
simpler for this example, and implies that the outer graphical derivative at w̄ for (x̄, ȳ)
of the KKT pair multifunction w �→ KKT (0, w) for the different possible choices of
ȳ is contained in the sets

{(x′, y′) ∈ R
2 × R

2 | x′1 = 0, y′1 ≤ 0, y′2 = −y′1} when ȳ = (1, 0),
{(x′, y′) ∈ R

2 × R
2 | x′1 = 0, x′2 = 0, y′1 ≥ 0, y′2 = −y′1} when ȳ = (0, 1),

{(x′, y′) ∈ R
2 × R

2 | x′1 = 0, x′2 = 0, y′1 ∈ R, y′2 = −y′1} for other ȳ.
Notice again that the derivative formulas for this example were computed without

first computing the KKT pairs, so sensitivity information is available without the KKT
pairs themselves.
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Finally, we apply Proposition 2.4.2 to the canonically perturbed nonlinear pro-
gram (2.30) to get the following sufficient conditions for B-differentiability of KKT
pairs associated with the nonlinear program without the canonical perturbations.

Proposition 2.5.2. Under the Mangasarian–Fromovitz constraint qualifica-
tion (2.17), if either the KKT pair multifunction (2.33) is Lipschitz continuous near
(0, w̄) or it is (single-valued) continuous near (0, w̄) and its outer graphical
derivative D

(
KKT

)
(0, w̄|x̄, ȳ) is single-valued, then the KKT pair multifunction is B-

differentiable at (0, w̄).
Moreover, the KKT pair multifunction w �→ KKT (0, w) associated with the non-

linear program (1.3) is B-differentiable at w̄ with B-derivative evaluated at w′ ∈ R
d

equal to the unique pair (x′, y′) ∈ R
n+m satisfying the six conditions (2.34) with

v′1 = v′2 = 0.

3. Continuity. The continuity property on which we focus is a slightly restricted
form of local Lipschitz continuity called “calmness.” A function x(w) on R

d is calm
at w̄ if there is a constant L > 0 such that for all w near w̄, the function satisfies
|x(w) − x(w̄)| ≤ L|w − w̄|. Notice that this is the same as the usual local Lipschitz
continuity except that the base point w̄ is always one of the points of comparison. A
multifunction S : R

d →→ R
n is said to have calm selections near (w̄, x̄) if there exist

neighborhoods W ⊆ R
d of w̄ and X ⊆ R

n of x̄ together with a constant L > 0 such
that any local selection x(w) ∈ S(w) ∩X for w ∈W satisfies

|x(w)− x̄| ≤ L|w − w̄|.(3.1)

Calmness is an important property to study when analyzing solutions to parameter-
ized optimization problems since it gives a Lipschitz bound on the distance between
perturbed and unperturbed solutions. The term “calmness” was used by Clarke [6]
to describe an optimization problem whose optimal value function obeyed a Lipschitz
bound with a fixed base point as in (3.1), and our use of this terminology was inspired
by the earlier notion. Note also that property we are calling local selection calmness
has been widely studied under various labels. In [23] it was called “local upper Lips-
chitz continuity,” in [7] it was called “upper Lipschitz continuity at a point,” and in [4]
it was called “semistability” in the context of variational inequalities. Finally, in [40],
[39], and [12] the term “stability” was used to indicate when certain multifunctions
associated with nonlinear equations satisfied condition (ii) and at the same time had
nonempty local image sets S(w) ∩X.

The results in this section are based on the following generalization of the classical
inverse mapping theorem that gives a characterization of the calmness of selections in
terms of the outer graphical derivative.

Theorem 3.1 (see Proposition 4.1 of [23]). For any multifunction S : R
d →→ R

n

and any pair (w̄, x̄) ∈ gphS, the following are equivalent:
(i) The outer graphical derivative image set DS(w̄|x̄)(0) equals the trivial set {0}.
(ii) S has calm selections near (w̄, x̄).
Remark. Note that the implication (i) ⇒ (ii) was shown first in [13, Proposition

2.1]. Theorem 3.1 has the advantage over the classical inverse mapping theorem
that the outer graphical derivative exists for all multifunctions. This means that
we can rule in or out useful Lipschitz bounds in practically any situation we might
encounter simply by computing the outer graphical derivative in the nonsingularity
condition (i) above. This is very important in terms of sensitivity analysis of quasi-
solutions to optimization problems, since verifying calmness directly demands that
quasi-solutions are reliably known (which is not typical if the problems are sensitive),
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whereas the nonsingularity condition (i) demands only that we be able to compute a
generalized derivative (which we can do as in the preceding chapter). Moreover, since
the nonsingularity condition (i) characterizes the local selection calmness property
(ii), any other sufficient condition for local selection calmness must essentially also
involve the nonsingularity condition (i), so it makes sense to focus our attention on
(i).

Example program revisited. In section 2.3, we computed outer graphical deriva-
tive estimates for stationary point mappings associated with both tilted and untilted
versions of a parameterized nonlinear program. We can use these estimates to apply
Theorem 3.1 to deduce whether those stationary point mappings have calm selections.
From the formulas worked out in section 2.3, it is clear that the outer graphical deriva-
tive of the tilted stationary point mapping D (SPtilt) (0, w̄|x̄)(0, 0, 0) equals the trivial
set {0}×{0}, so Theorem 3.1 guarantees calm selections near (0, w̄, x̄). Likewise, the
estimate for the outer graphical derivative of the untilted stationary point mapping
ensures that D (SP ) (w̄|x̄)(0) is contained in the trivial set {0} × {0}, and since the
trivial set is included in the image of any outer graphical derivative evaluated at 0, we
can again apply Theorem 3.1 to deduce that the untilted stationary point mapping
has calm selections near (w̄, x̄). Of course, the untilted stationary point mapping is
a restriction of the tilted stationary point mapping, so calm selections for the former
are expected in the presence of calm selections for the latter.

In general, it is not necessary to compute the full outer graphical derivative map-
ping in order to decide whether a certain mapping has calm selections, since only the
image at 0 is required by Theorem 3.1. In the following sections, we use the general
formulas for outer graphical derivatives computed in the previous sections to translate
Theorem 3.1 in some cases of particularly important mappings S. As in the previous
chapter then, we use a fundamental general result (in this case Theorem 3.1) as the
starting point for progressively more specific results. Along the way, layers of compli-
cation are added and restrictions are made as we pass from the general Theorem 3.1
to the language of the particular applications.

3.1. Continuity of stationary points. According to the estimate (2.5) for the
outer graphical derivative of the stationary point mapping, the following sufficient
condition for the local selection calmness property is immediate from Theorem 3.1.

Proposition 3.1.1. For the stationary point multifunction SP (2.4) and any
pair (x̄, w̄) ∈ R

n+d with 0 ∈ ∂xf(x̄, w̄), if x′ = 0 is the only vector in R
n satisfying

0 ∈ D(
∂xf

)
(x̄, w̄|0)(x′, 0),

then SP has calm selections near (w̄, x̄).
The gap between the sufficient condition in Proposition 3.1.1 and the local se-

lection calmness property for the stationary point mapping SP is evident from the
following proposition characterizing this same property for SPtilt (2.7).

Proposition 3.1.2. For the stationary point multifunction SPtilt (2.7) and any
pair (x̄, w̄) ∈ R

n+d with 0 ∈ ∂xf(x̄, w̄), the following are equivalent:
(i) x′ = 0 is the only vector in R

n satisfying 0 ∈ D(
∂xf

)
(x̄, w̄|0)(x′, 0).

(ii) SPtilt has calm selections near (0, w̄, x̄).
Proof. This follows directly from Theorem 3.1 and the remark following Theorem

2.1.
Remark. According to Proposition 3.1.2, the sufficient condition in Proposition

3.1.1 for local selection calmness for the stationary point mapping SP is equivalent
to the local selection calmness of the tilted stationary point mapping SPtilt. Thus
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the gap between the sufficient condition (i) and the local selection calmness property
for SP is filled precisely by the stationary point mappings SP that have calm local
selections even though SPtilt does not. An easy example that belongs in this category
involves the unconstrained minimization of the smooth function f(x,w) = x4/4. The
lone stationary point for this function (for all parameters w) is x = 0, but as we saw in
the introduction, the stationary point for the tilted minimization min{x4/4− v ·x} is
x = v1/3. In this case, the stationary point multifunction SP (w) = 0 is trivially calm
at 0 while the mapping SPtilt(v, w) = v1/3 is not. Notice that the outer graphical
derivative in this case satisfies D

(
∂xf

)
(0, w̄|0) = ∇2

x(x,w)f(0) = (0, 0), so condition

(i) above is certainly not satisfied.

3.2. Continuity of stationary points for nonlinear programs. In the case
of the nonlinear program (1.3), the results in the preceding section can be translated
into more familiar terms using the formulas for the outer graphical derivative of ∂xf
from Proposition 2.3.1.

Proposition 3.2.1 (see Theorem 5.1 of [24]). For the nonlinear program (1.3)
and its associated stationary point multifunction SP (2.18), if the Mangasarian–
Fromovitz constraint qualification (2.17) holds at (x̄, w̄) with x̄ ∈ SP (w̄), then SP
has calm selections near (w̄, x̄) if the condition holds that

(i) x′ = 0 is the only vector satisfying (x′, 0) ∈ Q(x̄, w̄) (2.10), ∇xg0(x̄, w̄) ·x′ = 0,
and

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄) + y′0∇xg0(x̄, w̄)(3.2)

for some y′ ∈ Y ′(x̄, w̄;x′, 0) (2.16) and y′0 ∈ R along with a vector ȳ for which there
exists ū ∈ R

d such that ȳ ∈ Ymax(x̄, w̄, 0, ū;x
′, 0) (2.15).

Moreover, condition (i) is equivalent to the stationary point multifunction SPtilt
(2.19) having calm selections near (0, w̄, x̄).

Remark. Notice that condition (i) is equivalent to x′ = 0 being the only vector
in R

n that is a stationary point (i.e., satisfies the KKT conditions) for any of the
auxiliary problems with constraint system (x′, 0) ∈ Q(x̄, w̄) with ∇xg0(x̄, w̄) · x′ = 0
and with objective functions x′ �→ 〈x′,∇2

xxL(x̄, ȳ, w̄) ·x′〉, where ȳ is any vector in the
set Ymax(x̄, w̄, 0, ū;x

′, 0) defined by any ū ∈ R
d.

In the special case where the canonical constraint perturbation w2 ∈ R
m is present

gi(x,w1)+[w2]i, any Lagrange multiplier ȳ (so ȳ ∈ NK
(
G(x,w)

)
with ∇xL(x, y, w) =

0) can be realized as an element of Ymax(x̄, w̄, 0, ū;x
′, 0) for some ū ∈ R

d, so the
condition in Proposition 3.2.1 is equivalent to x′ = 0 being the only vector in R

n that
is a stationary point for any of the auxiliary problems with constraint system (x′, 0) ∈
Q(x̄, w̄) with ∇xg0(x̄, w̄) ·x′ = 0 and with objective functions x′ �→ 〈x′,∇2

xxL(x̄, ȳ, w̄) ·
x′〉 where ȳ is any Lagrange multiplier. A flawed version of this result was stated in
[10, Theorem 3.1] and a correct version was subsequently proved in [15] where the
authors translated Theorem 3.1 for “generalized Kojima-functions” whose zeroes can
be identified, for instance, with the stationary points of the nonlinear program (1.3).

If we take the product of x′ with each side of (3.2), we can derive an even more
familiar form of sufficient condition.

Proposition 3.2.2 (see Corollary 5.2 of [24]). Condition (i) from Proposition
3.2.1 holds if the condition

max
y∈Y (x̄,w̄,0,ū)

〈x′,∇2
xxL(x̄, y, w̄) · x′〉 > 0
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holds for all ū ∈ R
d such that Y (x̄, w̄, 0, ū) �= ∅ (2.14) and all nonzero x′ satisfying

(x′, 0) ∈ Q(x̄, w̄) (2.10) and ∇xg0(x̄, w̄) · x′ = 0.
Remark. Notice that there is a larger gap between the condition in Proposi-

tion 3.2.2 and the local selection calmness property for SP than the one associated
with condition (i) of Proposition 3.2.1. In particular, the condition in Proposition
3.2.2 demands the positive-definiteness of ∇xxL(x̄, y, w̄) while condition (i) also holds
if ∇xxL(x̄, y, w̄) is negative-definite. Assuming a positive-definite ∇xxL(x̄, y, w̄) of
course also addresses the issue of the stationary points being optimal solutions to the
original minimization problem, which is one reason why conditions like the one in
Proposition 3.2.2 are more typical in the literature. However, our approach yields
a condition (i) that is closer to characterizing the desired property of local selec-
tion calmness, and so our approach more closely captures the essence of the stability
property in which we are interested.

Example program revisited. At the beginning of section 3, we showed that the
nonlinear program first introduced in section 2.3 has calm local selections from its
stationary point mappings. We will show now that this example program, moreover,
satisfies the conditions of Proposition 3.2.2 for the base point x̄ = (0, 0) and the base
parameter w̄ = 0. In this case, the Hessian matrix ∇xxL(x̄, y, w̄) is just[

2 0
0 2(1− y1)

]

and the set Y (x̄, w̄, 0, ū) is only nonempty when ū = 0, in which case it equals the
set of y ∈ R

2
+ with y1 + y2 = 1. The cone Q(x̄, w̄) is just R− × R

2 and the condition
∇xg0(x̄, w̄) · x′ = 0 is satisfied only by x′ = (x′1, x

′
2) with x′1 = 0. It follows that

the inner product in Proposition 3.2.2 reduces to 2(1− y1)(x′2)2 which is maximized
over Y (x̄, w̄, 0, ū) when y1 = 0, with maximum value 2(x′2)

2. This maximum value
is clearly nonzero as long as x′2 is nonzero, so the condition in Proposition 3.2.2 is
satisfied.

It is interesting to note that the Hessian of the Lagrangian for this example is not
positive definite for all multipliers in Y (x̄, w̄, 0, ū) (when y = (1, 0) the Hessian matrix
is only positive semidefinite), so this program does not satisfy many of the standard
second-order sufficient conditions for stability available prior to Proposition 3.2.2.

3.3. Continuity of KKT pairs. We return to the optimization model with
canonical perturbations v = (v1, v2)

min{g0(x,w) + g
(
G(x,w) + v2

)− 〈v1, x〉} over x ∈ R
n

from section 2.4, but now with an eye toward studying the continuity of its KKT
pairs. As in the preceding two sections, Theorem 3.1 is the basis for the results here.

Proposition 3.3.1. If the mapping ∇xL is B-differentiable at (x̄, ȳ, w̄) and the
subgradient multifunction ∂g is protodifferentiable at G(x̄, w̄) for ȳ ∈ ∂g

(
G(x̄, w̄)

)
,

then for the KKT pair multifunction (2.24), the following are equivalent:
(i) The pair (x′, y′) = (0, 0) is the only solution to the conditions

0 = D (∇xL) (x̄, ȳ, w̄|∇xL(x̄, ȳ, w̄))(x′) +
m∑
i=1

y′i∇xgi(x̄, w̄)

∇xG(x̄, w̄) · x′ ∈ D
((
∂g

)−1
) (
ȳ|G(x̄, w̄))(y′).(3.3)

(ii) KKT has calm selections near (0, w̄, x̄, ȳ).
Proof. This follows directly from Theorem 3.1 and Proposition 2.4.1.
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3.4. Continuity of KKT pairs for nonlinear programs. For nonlinear pro-
grams with canonical perturbations (2.30), the results of section 3.3 can be translated
into even more specific terms. Again we use the index sets (2.32).

Proposition 3.4.1. For the canonically perturbed nonlinear program (2.30) and
its associated KKT pair multifunction (2.33), if the Mangasarian–Fromovitz constraint
qualification (2.17) holds at (x̄, w̄) with (x̄, ȳ) ∈ KKT (0, w̄), then the following are
equivalent:

(i) The pair (x′, y′) = (0, 0) is the only solution to the conditions

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄),

y′i ≥ 0 for i ∈ [1, s] with ȳi = 0,

y′i = 0 for i ∈ I3,
〈∇xgi(x̄, w̄), x′〉 ≤ 0 for i ∈ I2 with y′i = 0,
〈∇xgi(x̄, w̄), x′〉 = 0 for i ∈ I2 with y′i > 0,
〈∇xgi(x̄, w̄), x′〉 = 0 for i ∈ I1.

(ii) KKT has calm selections near (0, w̄, x̄, ȳ).
Proof. This follows directly from Proposition 3.3.1 and the formula (2.35) for the

outer graphical derivative of the inverse of NK .
The continuity property (ii) characterized in Proposition 3.4.1 is of course stronger

than the property (ii) characterized in Proposition 3.2.1, since condition (ii) here stip-
ulates joint calmness with respect to both stationary points and multipliers, whereas
(ii) of Proposition 3.2.1 deals exclusively with stationary points. However, it is not as
obvious that condition (i) of Proposition 3.2.1 is implied by (i) of Proposition 3.4.1
(which it must be if these characterizations are consistent), so we briefly show this
fact here.

Proof of Proposition 3.4.1 (i)⇒ Proposition 3.2.1 (i). Suppose x′ satisfies (x′, 0) ∈
Q(x̄, w̄),∇xg0(x̄, w̄) · x′ = 0, and

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄) + y′0∇xg0(x̄, w̄)

as in Proposition 3.2.1 (i) for some y′ ∈ Y ′(x̄, w̄;x′, 0) and y′0 ∈ R along with a
vector ȳ for which there exists ū such that ȳ ∈ Ymax(x̄, w̄, 0, ū;x

′, 0). According to
Proposition 3.4.1, under (i) (which is equivalent to (ii)) there is only one multiplier ȳ
such that (x̄, ȳ) ∈ KKT (0, w̄), so this is the only vector for which there exists ū such
that ȳ ∈ Ymax(x̄, w̄, 0, ū;x

′, 0). The conditions from Proposition 3.2.1 (i) then become

〈∇xgi(x̄, w̄), x′〉 ≤ 0 for i ∈ I1 ∪ I2,
〈∇xgi(x̄, w̄), x′〉 = 0 for i ∈ [s+ 1,m] ∪ {0},

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄) + y′0∇xg0(x̄, w̄)

for some y′0 ∈ R and some y′ ∈ NK
(
G(x̄, w̄)

)
satisfying y′i∇xgi(x̄, w̄) · x′ = 0 for

i ∈ [1,m]. If we define ỹ′ := y′ − y0′ ȳ and use the fact that

0 = ∇xg0(x̄, w̄) +
m∑
i=1

ȳi∇xgi(x̄, w̄),
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we conclude that ỹ′ satisfies

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

ỹ′i∇xgi(x̄, w̄).(3.4)

Since both ȳ and y′ are in the set NK
(
G(x̄, w̄)

)
, we know that ỹ′ also satisfies

ỹ′i = 0 for i ∈ I3.(3.5)

Finally, since ỹ′i = y′i if ȳi = 0, we also know that ỹ
′ satisfies

ỹ′i ≥ 0 for i ∈ [1, s] with ȳi = 0(3.6)

and

〈∇xgi(x̄, w̄), x′〉 = 0 for i ∈ I2 with ỹ′i > 0.(3.7)

The conditions (3.4)–(3.7) show that the pair (x′, ỹ′) satisfies the system in condition
(i) of Proposition 3.4.1. It follows from this condition that x′ must equal zero, so
condition (i) of Proposition 3.2.1 is verified.

It follows directly from Proposition 3.4.1 that its condition (i) is sufficient to
ensure the local selection calmness property for the KKT pairs associated with the
nonlinear program (1.3) without the canonical perturbations.

Proposition 3.4.2. For the KKT pair multifunction (2.33), if the Mangasarian–
Fromovitz constraint qualification (2.17) holds at (x̄, w̄) with (x̄, ȳ) ∈ KKT (0, w̄),
then either of the equivalent conditions in Proposition 3.4.1 is enough to ensure the
existence of neighborhoods X × Y ⊆ R

n+m of (x̄, ȳ) and W ⊆ R
d of w̄ as well as a

constant L > 0 such that any local selection
(
x(w), y(w)

) ∈ KKT (0, w)∩ (X × Y ) of
KKT pairs for the nonlinear program (1.3) for w ∈W satisfies the estimate

|(x(w), y(w))− (x̄, ȳ)| ≤ L|w − w̄|.

Example program revisited. In section 2.5, we added canonical perturbations to
our example program and computed the outer graphical derivatives of the associated
KKT pair multifunction at the different possible multipliers associated with x̄ =
(0, 0). The conditions in Proposition 3.4.1 are of course just the result of evaluating
these outer graphical derivatives at zero, so they too work out differently for the
different possible multipliers ȳ: When ȳ = (1, 0), the conditions in Proposition 3.4.1
are satisfied by any element of the set{

(x′, y′) ∈ R
2 × R

2| x′1 = 0, y′2 ≥ 0, y′1 = −y′2
}
,

but when ȳ = (0, 1), the conditions in Proposition 3.4.1 are satisfied by any element
of the set {

(x′, y′) ∈ R
2 × R

2| x′ = (0, 0), y′1 ≥ 0, y′2 = −y′1
}
,

and when ȳ is any other multiplier, the conditions in Proposition 3.4.1 are satisfied
by any element of the set{

(x′, y′) ∈ R
2 × R

2| x′ = (0, 0), y′1 = −y′2
}
.
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Since none of these sets is trivial, it follows from Proposition 3.4.1 that the KKT pair
multifunction does not have calm selections near (0, w̄, x̄, ȳ) at any of the possible
KKT pairs (x̄, ȳ) associated with the base point x̄ = (0, 0) and the base parameter
w̄ = 0. Notice that we cannot deduce anything from Proposition 3.4.2 about the
calmness of selections from the KKT pair multifunction w �→ KKT (0, w) for the
program without the canonical perturbations, since we know only that a sufficient
condition for this property is violated.

It is interesting to note that this example program did have calm selections from
its associated stationary point mappings where multipliers were not involved directly,
so this example highlights the gap between Propositions 3.2.1 and 3.4.1.

4. Existence and uniqueness. In contrast to our experience with continu-
ity and differentiability properties, it has proven to be more difficult to characterize
the properties of existence and uniqueness in terms of simple, verifiable conditions
on generalized derivatives. In the introduction, we already discussed why it is not
possible to use derivatives to characterize existence and uniqueness properties with-
out involving stability properties at the same time. To discuss such combinations
of properties, we introduce some additional generalized derivative concepts. One
of these is the coderivative developed by Mordukhovich [31]. For a multifunction
S : R

d →→ R
n, the coderivative of S at w̄ for an element x̄ ∈ S(w̄) is the multifunc-

tion D∗S(w̄|x̄) : R
n →→ R

d whose graph is obtained by the following transformation
of the set NgphS(w̄, x̄) of normals to gphS := {(w, x) : x ∈ S(w)} at (w̄, x̄) (this
normal cone NgphS(w̄, x̄) is equal to the subgradient of the indicator function δgphS

associated with the set gphS; see [31] or [52]):

w′ ∈ D∗S(w̄|x̄)(x′)⇔ (w′,−x′) ∈ NgphS(w̄, x̄).

In the case of a single-valued mapping x : R
d → R

n that is C1 near w̄, the coderivative
coincides with the adjoint of the Jacobian ∇x(w̄)∗. A calculus for the coderivative
was developed by Mordukhovich in [37], and, moreover, the coderivative can be used
to characterize a generalized Lipschitz property for multifunctions whose graphs are
locally closed sets near a base point. A set K is locally closed at c if K ∩ C is closed
for some closed neighborhood C of c (see [52]).

Theorem 4.1 (see Theorem 5.4 of [32]).1For any multifunction S : R
d →→ R

n and
any pair (w̄, x̄) satisfying x̄ ∈ S(w̄), if the set gphS is locally closed at (w̄, x̄), then
the following are equivalent:

(i) The coderivative image set D∗S(w̄|x̄)(0) equals the trivial set {0}.
(ii) There exist neighborhoods X ⊆ R

n of x̄ and W ⊆ R
d of w̄ together with a

constant L > 0 such that

S(w) ∩X ⊆ S(w′) + L|w − w′|B for all w,w′ ∈W,(4.1)

where B denotes the unit ball in R
n.

Remark. The continuity property in condition (ii) was originally called “pseudo
Lipschitz continuity” in [1], and has also been referred to as the “Aubin property”
[52] and “Aubin continuity” [21]. In [2], a sufficient condition for condition (ii) was
given in terms of outer graphical derivatives, and Theorem 4.1 can be viewed as
a kind of dual version of this result. Note that the existence of a local selection

1The first complete proof of this result appeared in [33], where there is also a thorough discussion
of equivalent criteria and particular special cases.
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x(w) ∈ S(w) for w ∈ W is guaranteed under this condition, and that in the case
when S is actually a single-valued mapping x : R

d → R
n, condition (ii) is the same

as local Lipschitz continuity. The continuity property (ii) has been much studied for
general multifunctions as well as for certain special cases. One example of the latter
can be found in [8] where the multifunction S represents the solutions to certain
parameterized generalized equations.

For a nice survey of coderivatives, their calculus, and applications, see [52] (for
finite-dimensional spaces only) and [38] (for more general spaces).

To study uniqueness, yet another generalized derivative has proven to be useful.
For any multifunction S : R

d →→ R
n and any pair (w̄, x̄) satisfying x̄ ∈ S(w̄), the strict

derivative D∗S(w̄|x̄) : Rd →→ R
n of S at w̄ for x̄ is defined for any w′ ∈ R

d by

D∗S(w̄|x̄)(w′) =
{
x′
∣∣∣∣ ∃wν → w̄, xν ∈ S(wν), xν → x̄, w′

ν → w′, τν ↓0 with
(x̃ν − xν)/τν → x′ for some x̃ν ∈ S(wν + τνw

′
ν)

}
.

This derivative was used first in [53], but only for Lipschitz functions f . It was con-
sequently called “Thibault’s limit set” in [17], where it was used to prove an inverse
function theorem for Lipschitz functions. The next theorem is a generalization of [17,
Theorem 1.1] (use S = f−1 below), and it shows that a nonsingular strict deriva-
tive characterizes the uniqueness of local selections in tandem with their Lipschitz
continuity.

Theorem 4.2 (see Theorem 1.3 of [19]). For any multifunction S : R
d →→ R

n

and any pair (w̄, x̄) satisfying x̄ ∈ S(w̄), the following are equivalent:
(i) The strict derivative image set D∗S(w̄|x̄)(0) equals the trivial set {0}.
(ii) There exist neighborhoods X ⊆ R

n of x̄ and W ⊆ R
d of w̄ and a constant

L > 0 such that there is at most one element x(w) in the local image set S(w) ∩ X
for w ∈W and it satisfies

|x(w)− x(w′)| ≤ L|w − w′| for w,w′ ∈W.

Remark. Notice that the gap between the nonsingularity condition (i) and the
uniqueness property is identified precisely by the additional property of Lipschitz
continuity in condition (ii) of Theorem 4.2.

For one important class of multifunctions, the existence of a Lipschitz local selec-
tion is also guaranteed by the nonsingularity condition (i) on the strict derivative. This
class is studied in [21], where it is defined to consist of all multifunctions S : R

n → R
n

whose graph near a base pair (w̄, x̄) ∈ gphS is the same set as A gphF for some
Lipschitz continuous mapping F : R

n → R
n and a matrix A ∈ R

2n×2n of the form[
0 A2

A3 A4

]

for invertible n × n matrices A2 and A3. The graph of such a multifunction is said
to be a kernel inverting Lipschitzian manifold near (w̄, x̄). For example, the graph of
the inverse of any Lipschitzian mapping F is a kernel inverting Lipschitzian manifold
under the matrix defined by A2 = A3 = I and A4 = 0. In particular, when this
matrix is applied to the graph of the function F (x) = 0, the result is the graph of the
multifunction F−1 which looks exactly like the derivative mapping (B) displayed in
the introduction.

Proposition 4.0.3 (see Theorem 2.1 of [21]). For any multifunction S : R
n →

R
n having gphS a kernel inverting Lipschitzian manifold near (w̄, x̄) ∈ gphS, the

following are equivalent:
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(i) The strict derivative image set D∗S(w̄|x̄)(0) equals the trivial set {0}.
(ii) There exist neighborhoods X ⊆ R

n of x̄ and W ⊆ R
d of w̄ such that there

exists a unique element x(w) in S(w) ∩ X for w ∈ W , and in addition there is a
constant L > 0 such that x(w) is Lipschitz continuous with modulus L on W .

Thus, for multifunctions satisfying the assumptions of Proposition 4.0.3, the non-
singularity condition on the strict derivative (i) guarantees not only the Lipschitz
continuity and uniqueness of local selections (as in Theorem 4.2) but even guaran-
tees their existence. We have already seen that for any Lipschitzian mapping, the
multifunction F−1 is covered by Proposition 4.0.3, and we will see in a later section
that Proposition 4.0.3 also covers KKT pair multifunctions. More generally, Propo-
sition 4.0.3 applies to any solution mapping associated with a monotone generalized
equation 0 ∈ F (x,w) + Q(x) for a monotone multifunction Q : R

n →→ R
n. The Lip-

schitz continuity (as in (ii) above) of this important particular solution mapping is
also characterized by a coderivative nonsingularity condition [35].

As in the case of the outer graphical derivative, there are calculus rules for
coderivatives and strict derivatives that help us apply the results in this section.

Theorem 4.3 (see Corollary 4.4 of [37] and Exercise 10.43 of [52]). For any
multifunction M : R

n ×R
d →→ R

n and any triple (x̄, v̄, w̄) satisfying v̄ ∈M(x̄, w̄), the
following identities hold for the inverse multifunction S(v, w) := {x|v ∈M(x,w)}:

D∗S(v̄, w̄|x̄)(x′) = {(v′, w′)|(−x′, w′) ∈ D∗M(x̄, w̄|v̄)(−v′)},
D∗S(v̄, w̄|x̄)(v′, w′) = {x′|v′ ∈ D∗M(x̄, w̄|v̄)(x′, w′)}.

For any multifunction M : R
d →→ R

n, any mapping F : R
d → R

n, and any points
w̄, x̄0 ∈M(w̄), and x̄ := x̄0 +F (w̄), if F is C1 near w̄, then the sum M +F satisfies

D∗(M + F
)
(w̄|x̄)(x) = D∗M(w̄|x̄0)(x) +∇F (w̄)∗ · x,

D∗
(
M + F

)
(w̄|x̄)(w) = D∗M(w̄|x̄0)(w) +∇F (w̄) · w.

Proof. Both of the first identities follow easily from the fact that the graph of S is
a permutation of the arguments of the graph ofM . The third identity was established
in [37, Corollary 4.4], and the last follows from [52, Exercise 10.43].

4.1. Existence and uniqueness of stationary points. In this section, we
apply the results in the preceding section to the stationary point mapping to obtain the
following sufficient conditions for the existence and uniqueness of stationary points.

Proposition 4.1.1. For the stationary point multifunction SPtilt (2.7) and any
pair (x̄, w̄) ∈ R

n+d satisfying 0 ∈ ∂xf(x̄, w̄) we have
(Existence.) If the set gphSPtilt is locally closed at

(
(0, w̄), x̄

)
and (v′, w′) = 0 is

the only vector in R
n+d satisfying

(0, w′) ∈ D∗(∂xf)(x̄, w̄|0)(−v′),
then there exist neighborhoods X ⊆ R

n of x̄, W ⊆ R
d of w̄, and V ⊆ R

n of 0 such that
the stationary point sets SPtilt(v, w) ∩X are nonempty for all pairs (v, w) ∈ V ×W .

(Uniqueness.) If x′ = 0 is the only vector in R
n satisfying

0 ∈ D∗
(
∂xf

)
(x̄, w̄|0)(x′, 0),

then there exist neighborhoods X ⊆ R
n of x̄, W ⊆ R

d of w̄, and V ⊆ R
n of 0 such

that for all pairs (v, w) ∈ V ×W , there is at most one stationary point in the set
SPtilt(v, w) ∩X.
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Proof. This follows immediately from Theorems 4.1, 4.2, and 4.3.

Remark. Notice that the conditions in Proposition 4.1.1 are also sufficient condi-
tions for the existence and uniqueness of stationary points associated with the untilted
problem (1.2), since these points are represented by the mapping SP (2.4) which sat-
isfies SP (w) = SPtilt(0, w).

Recall from Theorem 4.2 that the gap created by the sufficient condition in Propo-
sition 4.1.1 for the uniqueness of stationary points contains exactly the stationary
point mappings that violate the Lipschitz continuity property.

When paired with the assumption that there exists a unique locally optimal so-
lution to the unperturbed problem

min{f(x, w̄)} over all x ∈ R
n,

the sufficient condition for uniqueness from Proposition 4.1.1 actually characterizes
a much stronger property where, in particular, the stationary points are optimal
solutions.

Proposition 4.1.2 (see Theorem 5.2 of [19]). For a lower semicontinuous func-
tion f : R

n+d → R ∪ {∞} and a pair (x̄, w̄) ∈ R
n+w satisfying 0 ∈ ∂xf(x̄, w̄) as well

as the constraint qualification

(y, 0) ∈ ∂∞f(w̄, x̄)⇒ y = 0,

in terms of the set ∂∞f(w̄, x̄) of horizon subgradients of f at (w̄, x̄), the following are
equivalent:

(i) The pair of conditions hold that

(a) There exists a neighborhood X ⊆ R
n of x̄ such that x̄ is the only solution

to the unperturbed problem

min{f(x, w̄)} over all x ∈ X;

(b) 0 ∈ D∗
(
∂xf

)
(x̄, w̄|0)(x′, 0) only for x′ = 0,

(ii) There exist neighborhoods X ⊆ R
n of x̄, V ⊆ R

n of 0, and W ⊆ R
d of w̄ such

that for every parameter pair (v, w) ∈ V ×W , there is exactly one optimal solution
x(v, w) to

min{f(x,w)− 〈v, x〉} over all x ∈ X

and, moreover, this function x(v, w) is Lipschitz continuous on V ×W . In addition,
the optimal solution x(v, w) is also the unique stationary point x(v, w) = SPtilt(v, w)∩
X for (v, w) ∈ V ×W .

Remark. Insight into condition (i)(b) of Proposition 4.1.2 can be gained by consid-
ering the case when f is twice continuously differentiable. In this situation, condition
(i)(b) reduces to the demand that the kernel of the Hessian ∇2

xxf(x̄, w̄) be trivial. It
follows that the pair of conditions (i)(a) and (i)(b) in Proposition 4.1.2 is equivalent
in this case to the positive-definiteness of the Hessian ∇2

xxf(x̄, w̄).

The constraint qualification used in Proposition 4.1.2 is a generalization of the
constraint qualification (2.9) used in the definition of fully amenable functions with
compatible parameterization (see [25]), so this proposition certainly covers those func-
tions. We will see some similar characterizations in the next section, but they all cover
smaller classes of functions than does Proposition 4.1.2.
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4.2. Existence and uniqueness in the case of fully amenable functions.
The calculus for the coderivative and the strict derivative is less developed than that
for the outer graphical derivative, so it is at present more difficult to apply the re-
sults in section 4.1 directly to some particular cases, including the stationary point
multifunction associated with a nonlinear program. Fortunately, for this important
particular case and others, there is an alternative characterization of the existence
and uniqueness of stationary points in terms of the outer graphical derivative at x
for v ∈ ∂xf(x,w) of the multifunction x �→ ∂xf(x,w). The generalized derivative
that results from this construction maps points in R

n to sets in R
n and is denoted by

Dxxf(x,w|v). If we “strengthen” this derivative by taking the outer graphical limit
as x → x̄, w → w̄, and v → v̄ of the sequence of multifunctions Dxxf(x,w|v), we
obtain the strong partial outer graphical derivative of f at x̄ for v̄ ∈ ∂xf(x̄, w̄), which
we denote by D̃2

xxf(x̄, w̄|v̄). Both Dxxf(x̄, w̄|v̄) and its strengthening D̃2
xxf(x̄, w̄|v̄)

are generalizations of the Hessian mapping x′ �→ ∇xxf(x̄, w̄) · x′.
Proposition 4.2.1 (see Proposition 3.4 of [20]). If f is fully amenable in x at

x̄ with compatible parameterization in w at w̄ and if 0 ∈ ∂xf(x̄, w̄), then the following
are equivalent:

(i) The pair of conditions holds that
(a) There exist neighborhoods X ⊆ R

n of x̄, V ⊆ R
n of 0, and W ⊆ R

d of
w̄ such that for every parameter pair (v, w) ∈ V ×W , there is exactly one stationary
point x(v, w) in the set SPtilt(v, w) ∩X;

(b) There is a constant L > 0 such that for any fixed w ∈ W , the (single-
valued) mapping v �→ SPtilt(v, w) ∩ X is monotone and Lipschitz continuous with
modulus L on V .

(ii) The strong partial outer graphical derivative of f at x̄ for 0 is positive-definite
in the sense that

v′ ∈ D̃2
xxf(x̄, w̄|0)(x′)⇒ 〈v′, x′〉 > 0 unless x′ = 0.

Moreover, under either of these equivalent conditions and for any parameter pair
(v, w) ∈ V ×W , the unique stationary point x(v, w) in the set SPtilt(v, w)∩X is also
the unique optimal solution to

min{f(x,w)− 〈v, x〉} over all x ∈ X.

Remark. Notice that just as we have seen previously, even though Proposition
4.2.1 involves the tilted stationary point mapping SPtilt (2.7), its condition (ii) is
automatically a sufficient condition for existence and uniqueness of the stationary
points associated with the untilted problem (1.2), since these points are represented
by the mapping SP (2.4) which satisfies SP (w) = SPtilt(0, w). Moreover, the gap
between the sufficient condition (ii) and the existence and uniqueness of stationary
points is identified by Proposition 4.2.1 via the properties given in condition (i).

Notice finally that Proposition 4.2.1 also identifies conditions which guarantee
that stationary points are locally optimal solutions.

If we combine Propositions 4.2.1 and 3.1.2, we get the following stability result
for optimal solutions.

Corollary 4.2.1 (see Theorem 1.1 of [20]). If f is fully amenable in x at x̄
with compatible parameterization in w at w̄ and if 0 ∈ ∂xf(x̄, w̄), then under the
second-order conditions (ii) of Proposition 4.2.1 and (i) of Proposition 3.1.2, there
exist neighborhoods X ⊆ R

n of x̄ and W ∈ R
d of w̄ such that for each parameter
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w ∈W , there exists a unique solution x(w) to

min{f(x,w)} over all x ∈ X,

and this solution function x(w) is calm in the sense of (3.1). Moreover, x(w) is also
the unique stationary point in the set SP (w) ∩X.

Remark. We have stated both Proposition 4.2.1 and Corollary 4.2.1 in terms of
the fully amenable essential objective functions we studied in section 2.2; however,
they were developed in [20] for an even broader class of objective functions (though one
not as broad as those covered by Proposition 4.1.2). A similar result was developed in
[25] where second-order coderivative conditions were used instead, and the stronger
property of Lipschitz continuity was obtained.

4.3. Existence and uniqueness of solutions to nonlinear programs. In
the case of the nonlinear program (1.3), the results in the preceding section can be
translated into more familiar terms using the formula for the outer graphical derivative
of ∂xf from Proposition 2.3.1.

Proposition 4.3.1 (see Theorem 4.2 of [20]). For the nonlinear program (1.3)
and its associated stationary point multifunction SP (2.18), suppose the Mangasarian–
Fromovitz constraint qualification (2.17) holds at (x̄, w̄) with x̄ ∈ SP (w̄), and the
second-order condition holds that:

(i) For any sequences x → x̄, w → w̄, and v → 0 with x ∈ C(w), and any
convergent sequence of points x′ ∈ ∩i∈[1,m] with gi(x,w)=0∇xgi(x,w)⊥ with nonzero

limit x̄′, together with any corresponding convergent sequence of multipliers y which
each maximizes the value 〈x′∇2

xxL(x, y, w) · x′〉 over all choices of multipliers y ∈
NK

(
G(x,w)

)
with ∇xL(x, y, w) = v, the Hessian at the limit multiplier ȳ satisfies

〈x̄′,∇2
xxL(x̄, ȳ, w̄)x̄

′〉 > 0.
Then there exist neighborhoods X ⊆ R

n of x̄ and W ⊆ R
d of w̄ such that for every

parameter w ∈W , there is exactly one stationary point in the set SP (w) ∩X, and it
is, moreover, the unique solution to the problem

min{g0(x,w)} over all x ∈ C(w) ∩X.

Moreover, condition (i) above is equivalent to the pair of conditions (i)(a) and
(i)(b) from Proposition 4.2.1 applied to the associated stationary point mapping SPtilt
(2.19).

If in addition the second-order condition (i) of Proposition 3.2.1 holds, then the
function x(w) is calm in the sense of (3.1).

Remark. Together, the second-order conditions (i) in Propositions 4.3.1 and 3.2.1
actually characterize a slightly stronger stability property than calmness (see [20]), so
the gap between these conditions and the calmness property is known. Moreover, it
is shown in [20] that the second-order conditions in Propositions 4.3.1 and 3.2.1 are
both weaker than the general strong second-order condition (from [11]):

For every multiplier y ∈ Y (x̄, w̄, 0, u) for some u ∈ R
d, the Hessian

∇2
xxL(x̄, ȳ, w̄) is positive-definite on the subspace of vectors perpen-

dicular to every ∇xgi(x̄, w̄) with i ∈ I1 (2.32).
This general strong second-order condition when paired with the Mangasarian–Fromovitz
constraint qualification has been known for some time (via [48] and [16]) to imply the
calmness property, and the fact that the conditions in Proposition 4.3.1 are weaker
than the general strong second-order condition means that this proposition is an im-
provement on this previous sufficient condition for calmness.
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Example program revisited. We return once more to the nonlinear program intro-
duced in section 2.3, but this time to see how the condition (i) in Proposition 4.3.1
works out for this example. Notice that in this case, the final inner product whose
positivity needs to be verified satisfies

〈x̄′,∇2
xxL(x̄, ȳ, w̄)x̄

′〉 = 2(x̄′1)2 + 2(1− ȳ1)(x̄′2)2,(4.2)

and that ȳ1 ∈ [0, 1]. We consider only nonzero limit points x̄′, and notice that in
the case when x̄′1 �= 0, the inner product (4.2) is positive no matter what the choice
of multiplier since ȳ1 ∈ [0, 1]. On the other hand, if x̄′1 = 0, then x̄′ being nonzero
implies that x̄′2 �= 0, which means that we can assume x′2 �= 0 for the whole sequence
of x′ → x̄′. In this case, since the inner product to be maximized by the multiplier y
is given by

〈x′,∇2
xxL(x, y, w)x

′〉 = 2(x′1)2 + 2(1− y1)(x′2)2

we can conclude that y1 = 0 for each multiplier in the sequence, so the limit multiplier
ȳ satisfies ȳ1 = 0. It follows that in this case too, the inner product (4.2) is positive, so
this example program satisfies the conditions of Proposition 4.3.1, and as a result has
exactly one stationary point (and this stationary point also happens to be a locally
optimal solution) for all values of w near w̄ = 0.

It is interesting to note that the general strong second-order condition does not
hold for this example program (for the multiplier ȳ = (1, 0), the Hessian ∇2

xxL(x̄, ȳ, w̄)
is only positive semidefinite on the appropriate subspace), so this optimization prob-
lem falls in the gap between that sufficient condition and the stability properties
promised by Proposition 4.3.1.

Remark. Of course it would be nice if the condition (i) from Proposition 4.3.1
could be refined in such a way as to depend only on information at the base point like
the general strong second-order condition and not on the limits of nearby parameter
values. In particular, such a refinement would likely make condition (i) less daunting
to verify in many situations. However, such refinements are generally not possible
without creating a gap and sacrificing the characterization. This fact can be seen by
considering two different parameterizations of any well-behaved unperturbed problem:
One parameterization is trivial, with each perturbed problem being the same as the
unperturbed model, and the other parameterization is anything that creates a lack of
the kind of stability covered by Proposition 4.3.1. For instance, consider the objective
function g0(x1, x2) := x2

1/2 with parameterized constraint set

C(w) := {(x1, x2) ∈ R
2 : g1(x,w) := x2 − w2k ≤ 0 and g2(x,w) := −x2 − w2k ≤ 0}

for any positive integer k. For the unperturbed problem with w̄ = 0, the constraint
set reduces to C(0) = {(x1, x2) ∈ R

2 : x2 = 0}, and the minimization of g0 over C(0)
has a unique solution at x̄ = (0, 0). Of course the trivially parameterized problem
also has this property, so it exhibits the kind of stability covered by Proposition
4.3.1, and it even satisfies the general strong second-order condition. However, the
minimization of g0 over C(w) for w �= 0 has multiple solutions, so it fails to be
stable at w̄ in the sense of Proposition 4.3.1. In this case, only the derivatives of
order 2k with respect to w of g1 and g2 evaluated at the base point (x̄, w̄) distinguish
the two different parameterizations. Since k is any positive integer, no test using
only derivatives evaluated at the base point will be able to distinguish the stability
discrepancies illustrated in this example.
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4.4. Existence and uniqueness of KKT pairs. We again consider the KKT
pairs associated with the optimization model from section 2.4

min{g0(x,w) + g
(
G(x,w) + v2

)− 〈v1, x〉} over x ∈ R
n.

Unlike the multifunctions studied in the preceding two sections, the particular struc-
ture of the KKT pair multifunction allows us to directly apply the fundamental char-
acterizations in terms of the coderivative and strict derivative from section 4. In fact,
for the KKT pair multifunction, the different characterizations from section 4 are
both equivalent to each other and to the existence of a unique local selection that is
Lipschitz continuous.

Proposition 4.4.1. If the mapping ∇xL is C1 at (x̄, ȳ, w̄) and (x̄, ȳ) ∈ KKT (0, w̄)
for the KKT pair multifunction (2.24), then the following are equivalent:

(i) The pair (v′, w′) = (0, 0) is the only solution in R
n+m+d to the system

∇xxL(x̄, ȳ, w̄)∗ · v′1 = ∇xG(x̄, w̄)∗ · v′2,
∇xyL(x̄, ȳ, w̄)∗ · v′1 ∈ D∗

((
∂g

)−1
)(
ȳ|G(x̄, w̄))(−v′2),

w′ +∇xwL(x̄, ȳ, w̄)∗ · v′1 = ∇wG(x̄, w̄)∗ · v′2.

(ii) The pair (x′, y′) = (0, 0) is the only solution in R
n+m to the system

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄),

∇xG(x̄, w̄) · x′ ∈ D∗
((
∂g

)−1
)(
ȳ|G(x̄, w̄))(y′).

(iii) There exist neighborhoods X × Y of (x̄, ȳ) ∈ R
n+m and V × W of (0, w̄)

in R
n+d such that for all pairs (v, w) ∈ V × W , there is exactly one KKT pair(

x(v, w), y(v, w)
)

in the set KKT (v, w) ∩ (X × Y ), and, moreover, this KKT pair
function is Lipschitz continuous on V ×W .

Moreover, under any of these equivalent conditions, if the subgradient multifunc-
tion ∂g is protodifferentiable at G(x̄, w̄) for ȳ ∈ ∂g

(
G(x̄, w̄)

)
, then the KKT pair(

x(v, w), y(v, w)
)

is B-differentiable at (0, w̄).
Proof. The equivalence between (i) and (iii) follows from Theorem 4.1 and [9,

Theorem 3] since the coderivative image set D∗(KKT )(0, w̄|x̄, ȳ)(x′, y′) consists of
all pairs (v′, w′) ∈ R

n+d that satisfy the system

−x′ = −∇xxL(x̄, ȳ, w̄)∗ · v′1 +∇xG(x̄, w̄)∗ · v′2,
−y′ ∈ −∇xyL(x̄, ȳ, w̄)∗ · v′1 +D∗

((
∂g

)−1
)(
ȳ|G(x̄, w̄))(−v′2),

w′ = −∇xwL(x̄, ȳ, w̄)∗ · v′1 +∇wG(x̄, w̄)∗ · v′2.

To prove the equivalence between (ii) and (iii), we use a certain linearization
LKKT : R

n →→ R
n+m of the KKT pair multifunction:

LKKT (v) :=
{
(x, y) : v ∈ H(x̄, ȳ, w̄) +∇xyH(x̄, ȳ, w̄) ·

(
(x, y)− (x̄, ȳ))+N(x, y)

}
,

where the mapping H : R
n+m+d → R

n+m is defined by

H(x, y, w) :=
(
∇xL(x, y, w),−G(x,w)

)
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and the multifunction N : R
n+m →→ R

n+m is defined by

N(x, y) :=
(
{0}n × (

∂g
)−1

(y)
)
.

Notice that the multifunction LKKT is the same as the KKT pair multifunction except
that the former uses a linearization of H instead of H itself. Moreover, the graph
of LKKT is a kernel inverting Lipschitzian manifold (see [21]) so it is covered by our
Proposition 4.0.3. In [21, Theorem 4.1] and [9, Propositions 1 and 2] it was shown
that property (iii) above for the KKT pair multifunction is equivalent to the same
property for the linearization LKKT , and in [21, Theorem 4.1] it was shown that
the nonsingularity condition (ii) is equivalent to the same condition applied to the
linearization multifunction LKKT . This means that the characterization recorded in
Proposition 4.0.3 also holds for the KKT pair multifunction, so the result here follows
from the calculus rules in Theorem 4.3, which allow us to deduce that the strict
derivative image set D∗

(
KKT

)
(0, w̄|x̄, ȳ)(v′, w′) consists of all pairs (x′, y′) ∈ R

n+m

that satisfy the system

v′1 = ∇x(x,y,w)L(x̄, ȳ, w̄) · (x′, y′, w′),

v′2 ∈ −∇G(x̄, w̄) · (x′, w′) +D∗
((
∂g

)−1
)(
ȳ|G(x̄, w̄))(y′).

The B-differentiability follows immediately from Proposition 2.4.2.
Remark. Notice the similarity between condition (ii) here and condition (i) from

Proposition 3.3.1 characterizing the calmness of local KKT pair selections: The only
difference is that the generalized derivative used in Proposition 3.3.1 is the outer
graphical derivative. This reflects the fact that these arose from similar nonsingularity
conditions which were derived in terms of the different generalized derivatives.

4.5. Existence and uniqueness of KKT pairs for nonlinear programs.
For nonlinear programs with canonical perturbations (2.30), the results of the preced-
ing section can be translated into even more specific terms by working out formulas
for either the coderivative or strict derivative of the inverse of the normal cone mul-
tifunction NK (2.13). We again use the sets of indices (2.32).

Proposition 4.5.1. For the canonically perturbed nonlinear program (2.30) and
its associated KKT pair multifunction (2.33), if the Mangasarian–Fromovitz constraint
qualification (2.17) holds at (x̄, w̄) with (x̄, ȳ) ∈ KKT (0, w̄), then the following are
equivalent:

(i) The pair of conditions hold that
(a) The vectors ∇xgi(x̄, w̄) for i ∈ I1 ∪ I2 are linearly independent;
(b) For each partition of {1, . . . ,m} into index sets I ′1, I

′
2, I

′
3 with I1 ⊆ I ′1 ⊆

I1 ∪ I2 and I3 ⊆ I ′3 ⊆ I3 ∪ I2, the cone K(I ′1, I
′
2) ⊆ R

n consisting of all vectors x′

satisfying

〈∇xgi(x̄, w̄), x′〉
{
= 0 for i ∈ I ′1,
≤ 0 for i ∈ I ′2,

should be such that

x′ ∈ K(I ′1, I ′2) and ∇2
xxL(x̄, ȳ, w̄) · x′ ∈ K(I ′1, I ′2)∗ ⇒ x′ = 0.

(ii) The pair (x′, y′) = (0, 0) is the only solution in R
n+m to the system

0 = ∇2
xxL(x̄, ȳ, w̄) · x′ +

m∑
i=1

y′i∇xgi(x̄, w̄),
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〈∇xgi(x̄, w̄), x′〉 = 0 for i ∈ I1,
y′i 〈∇xgi(x̄, w̄), x′〉 ≥ 0 for i ∈ I2,
y′i = 0 for i ∈ I3.

(iii) There exist neighborhoods X × Y of (x̄, ȳ) ∈ R
n+m and V × W of (0, w̄)

in R
n+d such that for all pairs (v, w) ∈ V × W , there is exactly one KKT pair(

x(v, w), y(v, w)
)

in the set KKT (v, w) ∩ (X × Y ), and, moreover, this KKT pair
function is Lipschitz continuous on V ×W .

Moreover, under any of these equivalent conditions, the KKT pair
(
x(v, w), y(v, w)

)
is B-differentiable at (0, w̄).

Proof. The equivalence between (i) and (iii) was established in [9, Theorem 5],
where it was essentially shown that condition (i) above is equivalent to condition (i)
from our Proposition 4.4.1. The equivalence between (ii) and (iii) follows directly
from our Proposition 4.4.1 since the strict derivative of the inverse of NK has z′ ∈
D∗((NK)−1)(ȳ|G(x̄, w̄))(y′) if and only if

y′i = 0 for i ∈ I1,
y′i z

′
i ≥ 0 for i ∈ I2,
z′i = 0 for i ∈ I3,

(see [23]) and since the assumption that (x̄, ȳ) is a KKT pair for (0, w̄) implies that
for i ∈ [1, s], gi(x̄, w̄) ≤ 0 and ȳ satisfies ȳi gi(x̄, w̄) = 0 with ȳi ≥ 0.

Notice that the assumed satisfaction of the Mangasarian–Fromovitz constraint
qualification is guaranteed by the linear independence condition (i)(a). It is an easy
exercise to show that any pair satisfying the system in condition (i) of Proposition
3.4.1 also satisfies the system in condition (ii) above. This is consistent with the fact
that condition (i) of Proposition 3.4.1 characterizes the calmness of local selections
of KKT pairs, which is a weaker property than (iii) of Proposition 4.5.1. Notice that
Proposition 4.5.1 does not address the issue of the primal component of the KKT pair
being a locally optimal solution. For this, we need a positive-definiteness assumption.

Proposition 4.5.2 (see Theorem 6 of [9]). Under the assumptions of Proposition
4.5.1, the following are equivalent:

(i) There exist neighborhoods X×Y of (x̄, ȳ) ∈ R
n+m and V ×W of (0, w̄) in R

n+d

such that for all pairs (v, w) ∈ V ×W , there is exactly one KKT pair
(
x(v, w), y(v, w)

)
in the set KKT (v, w) ∩ (X × Y ), this KKT pair function is Lipschitz continuous on
V ×W , and, moreover, x(v, w) is a locally optimal solution to the canonically perturbed
nonlinear program (2.30).

(ii) The constraint gradients ∇xgi(x̄, w̄) for i ∈ I1 ∪ I2 are linearly indepen-
dent and the strong second-order sufficient condition for local optimality holds that
∇2
xxL(x̄, ȳ, w̄) is positive-definite on the subspace of vectors perpendicular to all con-

straint gradients ∇xgi(x̄, w̄) for i ∈ I1.
Moreover, under either of these equivalent conditions, the KKT pair (x(v, w), y(v, w))

is B-differentiable at (0, w̄).
Remark. Notice that under the linear independence assumption in (ii), there is

only one multiplier ȳ which can be paired with x̄ as a KKT pair for the parameters
(0, w̄) (which condition is equivalent to the strict Mangasarian–Fromovitz constraint
qualification). Under these circumstances, the strong second-order sufficient condi-
tion here is equivalent to Robinson’s general strong second-order condition (see section
4.3), so condition (ii) of Proposition 4.5.2 is stronger than the assumptions in Propo-
sition 4.3.1. This is consistent with the fact that the properties identified in condition
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(i) of Proposition 4.5.2 are stronger than the calmness of the unique local stationary
point selection guaranteed by Proposition 4.3.1 (recall that under the Mangasarian–
Fromovitz constraint qualification, each of the stationary points associated with the
nonlinear program (1.4) can be paired with a multiplier to form a KKT pair).

5. Conclusions and related work. Each of the main three sections in the
body of this paper follow the same basic pattern: The most general principles are
established first (e.g., Theorems 2.1, 3.1, 4.1, and 4.2), and the rest of the work
is computing the appropriate generalized derivatives in order to translate the gen-
eral principles into verifiable conditions in the language of a particular optimization
model (e.g., nonlinear programming). The results for stationary points and stationary
point-multiplier pairs mirror each other because they are based on the same general
principles; however, they are different too because the generalized derivatives work
out differently in each of these situations. One common trick used in the sections
involving stationary points is to characterize the sensitivity properties of the tilted
version of the optimization problem (2.6) first and then to translate these character-
izations into sufficient conditions for the untilted case. A similar approach is used
in sections involving KKT stationary point-multiplier pairs, where the presence of
canonical perturbations is exploited. We can always recover results about the un-
tilted (or uncanonically perturbed) model by setting the new parameters equal to
zero, and, moreover, the gap created by the resulting sufficient condition is precisely
identified in terms of the augmented model.

Others who have used outer graphical derivatives to obtain results about the
calmness of local selections include Qiu and Magnanti [44], [18], and Klatte and
Kummer [15]. A good survey of sensitivity results in nonlinear programming obtained
via this and similar methods can be found in [10], and a survey of other results in
nonlinear programming obtained by these and more traditional approaches can be
found in [11]. There has also been some interest recently in sensitivity results for
nonlinear programs under relaxed differentiability assumptions (see [14], for example).
Of course the generality of our approach means that our results could be applied
in such cases by computing the appropriate generalized derivatives under the new
assumptions.

A slightly different but complementary approach to studying the sensitivity prop-
erties of inverse multifunctions is based on the work of Robinson [46] and [47]. In-
stead of using the outer graphical derivative, this work relies on a different kind of
linearization of the inverse multifunction (we actually use this linearization in our
proof of Proposition 4.4.1). For many important cases of interest (including the KKT
pair multifunction), the local single-valuedness and Lipschitz continuity of the lin-
earization implies the same properties for the original inverse multifunction. The
focus of this approach then is on establishing conditions under which the linearization
is locally single-valued and Lipschitz continuous, a property which Robinson called
“strong regularity.” This approach has also yielded B-differentiability results for cer-
tain inverse multifunctions when they are single-valued [50], as well as results about
when stationary points for optimization problems are optimal solutions.

In Theorem 4.1, we recorded Mordukhovich’s characterization of “Aubin conti-
nuity” in terms of coderivatives [32, Theorem 5.4], but since our focus in the present
paper is on the continuity property of selection calmness, we did not exploit this
fundamental characterization more. Coderivatives and the characterization [32, The-
orem 5.4] have been used effectively to develop conditions guaranteeing Lipschitzian
properties of optimal solutions, stationary points, and related objects (see, for exam-
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ple, [32], [34], [35], [36], [38], [52], and [25]). Many of these results depend on the
coderivative calculus developed in [37].

A good example of a fundamentally different approach to sensitivity analysis
is surveyed in [5], where quite different sensitivity properties are studied. These
authors start from a generalized nonlinear program, and give sufficient conditions
for directional differentiability and calmness of nearly optimal solutions along fixed
parameter directions.

One very satisfying aspect of our approach is that even when applied to the
well-studied case of nonlinear programming, our fundamental rules have generated
new conditions for previously sought conditions. For example, Propositions 3.2.1
and 3.2.2 provide unprecedented conditions guaranteeing the calmness of local sta-
tionary point selections. Proposition 4.3.1 is also unprecedented, and improves the
combined results of [48] and [16] giving the existence, uniqueness, and calmness of
local solutions. Related results giving true Lipschitz continuity include a theorem
of Robinson’s [47] which stated that the linear independence of the gradients of all
the binding constraints, together with the general strong second-order condition, were
enough to ensure the existence, uniqueness, and Lipschitz continuity of locally optimal
solutions. A long-standing question in this area (posed formally by Robinson in [48])
is whether a weaker constraint qualification can replace linear independence and still
ensure this kind of solution stability. One answer to this question was provided in Liu
[30] and Ralph and Dempe [45] where a “constant rank condition” combined with the
Mangasarian–Fromovitz constraint qualification and the general strong second-order
condition were shown to ensure the existence, uniqueness, and Lipschitz continuity of
locally optimal solutions to the nonlinear program (1.3). Proposition 4.3.1 shows that
the Mangasarian–Fromovitz constraint qualification together with a pair of weaker
second-order conditions suffice to ensure the slightly weaker stability property of calm-
ness. However, Robinson [48] provided an example to show that the assumptions in
Proposition 4.3.1 are not enough to ensure the local Lipschitz continuity of locally
optimal solutions to (1.3).

Finally, the success of our approach is not limited to the nonlinear programs
on which we have focused our attention here. As another example, the same basic
approach has been applied successfully to carry out a reasonably complete sensitivity
analysis of solutions to parameterized nonlinear complementarity problems [22].

Acknowledgments. The author is grateful to Asen Dontchev and Boris Mor-
dukhovich for their comments during the preparation of this paper.
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Abstract. It is well known that the heat equation ut−∆u = fχω in (0, T )×Ω with homogeneous
Dirichlet boundary conditions is null exactly controllable for any T > 0 and any open nonempty
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1. Introduction and main result. Let us consider the following controlled
heat equation: 


ut −∆u = fχω in Q,
u = 0 on Σ,
u(0) = u0 in Ω.

(1.1)

In (1.1), Q
�
= (0, T )×Ω and Σ

�
= (0, T )×Γ, where T > 0 and Ω is a bounded domain

of R
n with C∞ boundary Γ

�
= ∂Ω, u = u(t, x) is the state, f = f(t, x) is the control,

and χω denotes the characteristic function of the open nonempty subset ω of Ω where
the control is supported.

It is well known (see [4] and [6]) that (1.1) is null exactly controllable for any given
T > 0 and any nonempty open subset ω of Ω; i.e., for any given u0 ∈ L2(Ω), one can
find a control f ∈ L2((0, T )×ω) such that the weak solution u(·) ∈ C([0, T ];L2(Ω))∩
C((0, T ];H1

0 (Ω)) of (1.1) satisfies

u(T ) = 0.(1.2)

The corresponding f is called a null-control for (1.1) with initial state u0.
In this note we will show that the above property of (1.1) may be obtained as a

singular limit of the exact controllability properties of the following damped, singularly
perturbed wave equation with a changing controller ωε:


εuε,tt −∆uε + uε,t = fεχωε in Q,
uε = 0 on Σ,
uε(0) = u0, uε,t(0) = u1 in Ω.

(1.3)

In (1.3), ε > 0 is a small parameter (which is devoted to tend to zero), (uε, uε,t) =(
uε(t, x), uε,t(t, x)

)
is the state, fε = fε(t, x) is the control, and ωε is an open nonempty
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subset of Ω where the control is supported. The exact controllability of (1.3) is
formulated as follows: For any given (u0, u1), (v0, v1) ∈ H1

0 (Ω)×L2(Ω), one can find
a control fε ∈ L2((0, T )× ωε) such that the weak solution uε(·) ∈ C([0, T ];H1

0 (Ω)) ∩
C1([0, T ];L2(Ω)) of (1.3) satisfies

uε(T ) = v0, uε,t(T ) = v1.(1.4)

If the final state (v0, v1) is (0, 0), the corresponding fε is called a null-control of (1.3)
with initial state (u0, u1). We refer the reader to [7], [3], [11], and the references
therein for an extensive study of the theory of exact controllability.

In the case ωε ≡ ω, i.e., the controller of system (1.3) is fixed, [9] considered the
above singular pertubation problem under the following geometric control condition: 1

ω = Ω ∩ Oδ(Γ(x0)),(1.5)

where δ > 0 is a constant, Γ(x0) = {x ∈ Γ | (x−x0) ·ν(x) > 0}, x0 ∈ R
n, ν(x) denotes

the outward unit normal to Ω at x ∈ Γ, and · denotes the scalar product in R
n. More

precisely, [9] proved the following result.
Theorem A. Let T > 0 and Ω be a bounded domain of R

n of class C∞. Let
ωε ≡ ω with ω being given by (1.5). Then, there exists an ε0 = ε0(T,Ω, ω) > 0 such
that for any 0 < ε < ε0, system (1.3) is uniformly exactly controllable in time T .
Furthermore, for any fixed (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the null-controls fε of (1.3)
may be chosen such that

fε → f in L2((0, T )× ω) as ε→ 0,(1.6)

f being a null-control for the limit heat equation (1.1) with initial datum u0.
Very recently, [10] generalized Theorem A by considering a more general geometric

control condition introduced in [8]. It is also expected that Theorem A still holds
under the sharp geometric control condition of [1] on ω although this is as of now an
open problem.

However, we note that for the fixed controller case, according to the result in [1],
some geometric conditions are needed on ω, the so-called geometric optics condition,
to guarantee the exact controllability of (1.3). Therefore one may not expect the
result of Theorem A to hold for any open nonempty subset ω of Ω.

In this note, we will allow the controller ωε of (1.3) to change as ε tends to zero.
More precisely, for any given open nonempty subset ω of Ω, we suitably select a family
of controllers ωε such that (1.3) with this controller is exactly controllable and

lim
ε→0

ωε \ ω = ∅.

Then, we can obtain the null exact controllability of (1.1) by considering the singular
limit of the exact controllability properties of (1.3) with these controllers ωε.

This is precisely the main result of this note.
Theorem B. Let T > 0 and Ω be a bounded domain of R

n with C∞ boundary Γ.
Let ω be any given open nonempty subset of Ω and ωε = ω ∪ (Ω ∩ Oε(Γ)). Then, for
any (u0, u1) ∈ H1

0 (Ω)×L2(Ω) fixed, one can choose the null-controls fε of (1.3) such
that

fεχωε → fχω in L2(Q) as ε→ 0,(1.7)

1 For any M ⊆ R
n and η > 0, we put Oη(M) = {y ∈ R

n | |y − x| < η for some x ∈M}.
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where f is a null-control for (1.1) with initial datum u0. Furthermore, it holds that

uε → u strongly in L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)),

uε,t → ut strongly in L2(Q),
(1.8)

where uε and u are the corresponding solutions of (1.3) and (1.1), respectively.
Remark 1.1. Of course, one can select the controllers ωε of (1.3) in a different

way. For example, we may take ωε = ω ∪ (Ω ∩ Oε(Γ(x0))
)
, where x0 is a given point

in R
n.
Remark 1.2. As noted in [9], Theorem B provides the null-control of the limit

heat equation only when u0 ∈ H1
0 (Ω). However, due to the regularizing effect of the

heat equation, as soon as we let the heat equation evolve freely (without control)
during an arbitrarily short time interval, even if the initial datum lies in L2(Ω), the
solution enters H1

0 (Ω), and then the result above applies.
The proof of Theorem B follows the main steps developed in [9]. When doing this

we need the following observability estimate for the solutions of the adjoint system:


εϕtt −∆ϕ− ϕt = 0 in Q,
ϕ = 0 on Σ,
ϕ(T ) = ϕ0, ϕt(T ) = ϕ1 in Ω.

(1.9)

Theorem C. Let Ω be a bounded domain of R
n with C2 boundary Γ. Then for

any T > 0 there exist two positive constants ε2 = ε2(T,Ω) and C = C(T,Ω) such that

|ϕ0|2L2(Ω) + ε|ϕ1|2H−1(Ω) ≤ CeC/
√
ε

∫ T

0

∫
Ω∩Oε(Γ)

ϕ2dxdt(1.10)

for all 0 < ε < ε2 and every solution of (1.9).
The rest of this paper is organized as follows. In section 2, we reduce the proof

of Theorem B to the explicit observability estimate (1.10) (in Theorem C). In sec-
tion 3, we give the proof of Theorem C, which is performed using global Carleman
inequalities.

2. Proof of Theorem B. This section is devoted to proving Theorem B. Sim-
ilar to [9], we will reduce our problem to the sharp observability estimate on the
eigenfunctions of the Laplacian in [6] and the explicit observability estimate in our
Theorem C. For the reader’s convenience, we will give the outline of the proof.

Step 1. Some notations.
First of all, we introduce the spectrum of the Laplacian{ −∆ek = µkek in Ω,

ek = 0 on Γ.
(2.1)

We know that (2.1) admits an increasing sequence of positive eigenvalues of finite
multiplicity

0 < µ1 < µ2 ≤ · · · ≤ µk ≤ · · ·
tending to infinity. The eigenfunctions {ek}k≥1 may be chosen to constitute an or-
thonormal basis of L2(Ω).

Next, let us re-endow the Hilbert space H = H1
0 (Ω)× L2(Ω) with the norm

|(u, v)|2H1
0 (Ω)×L2(Ω) = |u|2H1

0 (Ω) + ε|v|2L2(Ω).(2.2)
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We shall denote the norm (2.2) as | · |Hε to make explicit its dependence on ε. The
space H endowed with this norm will be denoted by Hε.

Finally, let us introduce the following subspaces of the space Hε:

Hε
p = {U = (u, v) ∈ Hε : u, v ∈ span 1≤k≤k(ε)(ek)}, where k(ε) is such that

1

4µk(ε)+1
< ε ≤ 1

4µk(ε)
;

Hε
h = {U = (u, v) ∈ Hε : u, v ∈ span k≥k(ε)+1(ek)}, where k(ε) is as above.

Given (u, v) ∈ Hε we denote its orthogonal projections over Hε
p by πεp(u, v).

Step 2. Some preliminaries.
First of all, we need the following theorem, which concerns the uniform bounded-

ness of the controls of the parabolic component of solutions of (1.3), which is proved
in [9] by means of the estimate of [6].

Theorem 2.1. Let Ω be a bounded domain of R
n of class C∞. Let ω be any open

nonempty subset of Ω. Then, there exist two positive constants ε3 = ε3(T,Ω, ω) and
C = C(T,Ω, ω) such that for all 0 < ε < ε3 and (u0, u1) ∈ Hε, there exists a control
fε ∈ L2((0, T )× ω) such that the solution uε of


εuε,tt −∆uε + uε,t = fεχω in Q,
uε = 0 on Σ,
uε(0) = u0, uε,t(0) = u1 in Ω

(2.3)

satisfies

πεp(uε(T ), uε,t(T )) = 0(2.4)

and

|fε|L2((0,T )×ω) ≤ C|(u0, u1)|Hε ∀ (u0, u1) ∈ Hε.(2.5)

Next, let us recall the following known result (see [9]), which is devoted to
analyzing the dissipativity of (1.3) over the solutions whose parabolic component
vanishes.

Theorem 2.2. Let uε be a solution of (1.3) with fε ≡ 0 with initial data (u0, u1) ∈
Hε
h. Then (uε(t), uε,t(t)) ∈ Hε

h for all t ≥ 0 and

|(uε(t), uε,t(t))|Hε ≤ 23/2e−
t
4ε |(u0, u1)|Hε .(2.6)

Finally, by means of Theorem C (see section 3 for its proof), similar to the proof
of Proposition 5.1 in [9], one gets the following result.

Theorem 2.3. Let Ω be a bounded domain of R
n of class C2. Then, there exists

a positive constant C = C(T,Ω) such that for all 0 < ε < ε2 (recall Theorem C for
ε2) and (u0, u1) ∈ Hε, there exists a control fε ∈ L2((0, T )× (Ω ∩ Oε(Γ))) such that
the solution uε of 


εuε,tt −∆uε + uε,t = fεχΩ∩Oε(Γ) in Q,
uε = 0 on Σ,
uε(0) = u0, uε,t(0) = u1 in Ω

(2.7)
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satisfies

uε(T ) = uε,t(T ) = 0(2.8)

and

|fε|L2((0,T )×(Ω∩Oε(Γ))) ≤ CeC/
√
ε|(u0, u1)|Hε ∀ (u0, u1) ∈ Hε.(2.9)

Step 3. Description of the control strategy.
Let us describe our control strategy. Given T > 0, denote (recall Theorem 2.1

and Theorem 2.3 for ε3 and ε2, respectively)

ε1 = ε1(T,Ω, ω)
�
= min(ε2(T/3,Ω), ε3(T/3,Ω, ω)).(2.10)

We divide the time interval [0, T ] in three subintervals [0, T ] = I1 ∪ I2 ∪ I3 with
I1 = [0, T/3], I2 = [T/3, 2T/3], and I3 = [2T/3, T ]. Given an initial datum (u0, u1) ∈
H1

0 (Ω)× L2(Ω) to be controlled, we proceed as follows.
• First step. In the first time interval I1 we control the parabolic component

of the solutions. By Theorem 2.1, for any ε ∈ (0, ε1) we can build a control f1,ε ∈
L2((0, T/3)× ω) such that the solution of


εuε,tt −∆uε + uε,t = f1,εχω in (0, T/3)× Ω,
uε = 0 on (0, T/3)× Γ,
uε(0) = u0, uε,t(0) = u1 in Ω

(2.11)

satisfies

πεp(uε(T/3), uε,t(T/3)) = 0(2.12)

and

|f1,ε|L2(ω×(0,T/3)) ≤ C|(u0, u1)|Hε ∀ (u0, u1) ∈ Hε, ∀ 0 < ε < ε1(2.13)

for some constant C = C(T,Ω, ω) > 0.
In view of the uniform bound (2.13) of the control, by classical energy estimates,

we have

|(uε(T/3), uε,t(T/3))|Hε ≤ C|(u0, u1)|Hε ∀ (u0, u1) ∈ Hε, ∀ 0 < ε < ε1.(2.14)

• Second step. In the time interval I2 we let the equation evolve freely; i.e., we
solve


εuε,tt −∆uε + uε,t = 0 in (T/3, 2T/3)× Ω,
uε = 0 on (T/3, 2T/3)× Γ,

uε(T/3) = v0
ε

�
= uε(T/3), uε,t(T/3) = v1

ε
�
= uε,t(T/3) in Ω.

(2.15)
By Theorem 2.2, we see that

πεp(uε(t), uε,t(t)) = 0 ∀ T/3 ≤ t ≤ 2T/3(2.16)

and

|(uε(t), uε,t(t))|Hε ≤ Ce−
(t−T/3)

4ε |(v0
ε , v

1
ε)|Hε ∀ T/3 ≤ t ≤ 2T/3, ∀ 0 < ε < ε1

(2.17)
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for some generic constant C > 0. Thus, according to (2.14), we get

|(uε(2T/3), uε,t(2T/3))|Hε ≤ Ce
−T
12ε |(u0, u1)|Hε ∀ 0 < ε < ε1.(2.18)

• Third step. In this last step we control the whole solution to zero. By Theorem
2.3, for any ε ∈ (0, ε1), one can find a control f2,ε ∈ L2((2T/3, T )× (Ω∩Oε(Γ))) such
that the solution of


εuε,tt −∆uε + uε,t = f2,εχΩ∩Oε(Γ) in (2T/3, T )× Ω,
uε = 0 on (2T/3, T )× Γ,

uε(2T/3) = w0
ε

�
= uε(2T/3), uε,t(2T/3) = w1

ε
�
= uε,t(2T/3) in Ω

(2.19)
satisfies

uε(T ) ≡ uε,t(T ) ≡ 0(2.20)

and

|f2,ε|L2(ω×(2T/3,T )) ≤ CeC/
√
ε|(w0

ε , w
1
ε)|Hε ∀ 0 < ε < ε1(2.21)

for some constant C = C(T,Ω) > 0.
Combining (2.18) and (2.21), we get

|f2,ε|L2((2T/3,T )×(Ω∩Oε(Γ))) ≤ CeC/
√
εe

−T
12ε |(u0, u1)|Hε ∀ 0 < ε < ε1(2.22)

for all initial data (u0, u1) ∈ Hε.
This shows that the control

fε =




f1,ε, 0 ≤ t ≤ T/3,
0, T/3 ≤ t ≤ 2T/3,
f2,ε, 2T/3 ≤ t ≤ T,

(2.23)

is such that the null controllability condition (2.20) holds and, according to (2.13)
and (2.22),

|fεχωε |L2(Q) ≤ C|(u0, u1)|Hε .(2.24)

Thus we get the uniformly exact controllability of system (1.3).
Step 4. Completion of the proof.
Now, by means of the uniform estimate (2.24), proceeding exactly as section 7

in [9], one gets (1.7). Also, similar to Appendix D in [9] (with numerous but small
changes), it is easy to obtain (1.8). Thus, the proof of Theorem B is completed.

3. Proof of Theorem C. We now prove Theorem C.
We first observe that by the change of the time variable t → τ = (T − t)/

√
ε,

system (1.9) becomes


ϕττ −∆ϕ+ 1√
ε
ϕτ = 0 in (0, T̂ )× Ω,

ϕ = 0 on (0, T̂ )× Γ,
ϕ(0) = ϕ0, ϕτ (0) = −

√
εϕ1 in Ω,

(3.1)

where T̂ = T√
ε
. To simplify the notation we rewrite it as


wtt −∆w + kwt = 0 in Q,
w = 0 on Σ,
w(0) = w0, wt(0) = w1 in Ω.

(3.2)
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It is sufficient to derive the following estimate.
Theorem 3.1. Let t0 ∈ (2diamΩ,∞) be given. Then there is a positive constant

C = C(t0,Ω) such that

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ Cδ−6eCk
∫ T

0

∫
Ω∩Oδ(Γ)

w2dxdt

∀ k > 0, T ≥ t0, δ > 0, and (w0, w1) ∈ L2(Ω)×H−1(Ω),

(3.3)

where w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) is the weak solution of (3.2).
In order to prove Theorem 3.1, we need some preliminaries.
In what follows, we use the notations

fi = fi(x)
�
=

∂f(x)

∂xi
, i = 1, 2, . . . , n;

∑
i

�
=

n∑
i=1

;
∑
i,j

�
=

n∑
i,j=1

.

(On the other hand, xi is always the ith coordinate of the point x.)
The following three lemmas can be found, for example, in [9] and [10].
Lemma 3.2. Let λ > 0, α ∈ (0, 1), and k ∈ R be constant. Let x0 ∈ R

n, T > 0,
and 


φ(t, s, x) = 1

2

[|x− x0|2 − α(t− T/2)2 − α(s− T/2)2
]
,

& = λφ,
Ψ = (n− 1 + α)λ.

(3.4)

Let z = z(t, s, x) ∈ C2(R2+n). Denote

v
�
= θz with θ = e�.(3.5)

Then

θ2|ztt + zss −∆z + k(zt + zs)|2
≥
[
(k − 2&t)(v

2
t − v2

s +
∑
j v2

j ) + 2(k − 2&s)vtvs

+4
∑
j(&jvtvj) + 2Ψvtv + (k − 2&t)(A+Ψ)v2

]
t

+
[
(k − 2&s)(v

2
s − v2

t +
∑
j v2

j ) + 2(k − 2&t)vtvs

+4
∑
j(&jvsvj) + 2Ψvsv + (k − 2&s)(A+Ψ)v2

]
s

−2∑j

[
2
∑
i(&ivivj)− &j

∑
i v

2
i + (k − 2&t)vtvj + (k − 2&s)vsvj

+Ψvjv + &j(v
2
t + v2

s)− (A+Ψ)&jv
2
]
j

+2(1− α)λ
(
v2
t + v2

s +
∑
j v2

j

)
+Bv2,

(3.6)

where

A = λ2
[
α2(t− T/2)2 + α2(s− T/2)2 − |x− x0|2

]
+αλk(t+ s− T ) + (1 + α)λ

(3.7)

and

B = 2(3 + α)λ3|x− x0|2 − 2α2λ3(1 + 3α)
[
(t− T/2)2 + (s− T/2)2

]
−2αλk2 − 2αλ2k(1 + 3α)(t+ s− T )− [n2 + 4αn+ 1 + 2α + 5α2

]
λ2.

(3.8)
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Lemma 3.3. Let 0 ≤ S1 < S2 < T2 < T1 ≤ T and k ∈ R be given. Then there is
a constant C > 0, which is independent of k, such that∫ T2

S2

|wt(t, ·)|2H−1(Ω)dt ≤ C(1 + k2)

∫ T1

S1

|w(t, ·)|2L2(Ω)dt,(3.9)

where w(·) is the weak solution of system (3.2).
Lemma 3.4. For any k ∈ R, it holds that

E(t) ≤ E(s)e2|k|T ∀ t, s ∈ [0, T ],(3.10)

where

E(t)
�
=

1

2

(
|wt(t, ·)|2H−1(Ω) + |w(t, ·)|2L2(Ω)

)
,(3.11)

with w(·) being the weak solution of system (3.2).
The following lemma can be found, for example, in [2].
Lemma 3.5. If X is an open nonempty subset in R

n and K is a compact subset
of X, then one can find ξ ∈ C∞

0 (X) with 0 ≤ ξ ≤ 1 so that ξ = 1 on a neighborhood
of K. And it holds that

sup
x∈X
|∂βξ(x)| ≤ Cβδ

−|β|,(3.12)

where β = (β1, . . . , βn) is a multi-index with nonnegative integer components and
|β| = β1 + · · ·+ βn, δ = dist(K, ∂X)/4 and Cβ depends only on β and n.

Now, let us prove Theorem 3.1.
Proof of Theorem 3.1. We divide the proof into several steps.
Step 1. Selection of pseudoconvex function.
First of all, we see easily that it suffices to prove Theorem 3.1 under the condition

T = t0.

The main idea of our proof is to use the pointwise estimate (3.6) in Lemma 3.2. For
this purpose, we need to choose some suitable pseudoconvex function φ, that is, to
choose x0 and α.

By T > 2diamΩ, one can find a point x0 ∈ R
n\Ω such that T > 2maxx∈Ω |x−x0|.

Put

R0
�
= min

x∈Ω
|x− x0|, R1

�
= max

x∈Ω
|x− x0|.(3.13)

Then R0 > 0 and T > 2R1. Thus we can choose an α ∈ (3/4, 1) such that

R2
1 < α(T/2)2.(3.14)

Having chosen x0 and α as above, we next introduce the desired pseudoconvex function
φ by setting

φ = φ(t, s, x)
�
=

1

2

[
|x− x0|2 − α(t− T/2)2 − α(s− T/2)2

]
.(3.15)
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Step 2. Some notations and transformations.
We need the following notations. Denote


Q �
= (0, T )×Q, S �

= (0, T )× Σ,

Ti
�
= T/2− biT, T ′

i
�
= T/2 + biT,

Qi �
= (Ti, T

′
i )× (Ti, T

′
i )× Ω, Si �

= (Ti, T
′
i )× (Ti, T

′
i )× Γ

(3.16)

and

Λj
�
=

{
(t, s, x) ∈ Q ∣∣ 2φ(t, s, x) ≥ R2

0

j + 2

}
,(3.17)

where i = 0, 1, 2, 3; j = 0, 1, 2 and 0 < b0 < b1 < b2 < b3 < 1/2 will be given below.
In order to determine bi (i = 0, 1, 2, 3), we need an idea in [5]. First of all, by

(3.13)–(3.15), one sees that

φ(0, s, x) = φ(T, s, x) ≤ 1

2

(
R2

1 −
αT 2

4

)
< 0 ∀ (s, x) ∈ Q.(3.18)

Thus, one can find a b1 ∈ (0, 1/2) (close to 1/2) such that (recall (3.16)–(3.17) for Q1,
T1, T ′

1, and Λ2)

Λ2 ⊂ Q1(3.19)

and for any (t, s, x) ∈ (((0, T1) ∪ (T ′
1, T )) × Q) ∪ ((0, T ) × ((0, T1) ∪ (T ′

1, T )) × Ω) it
holds that

φ(t, s, x) < 0.(3.20)

Next, noting that R0 > 0 and {T/2} × {T/2} × Ω ⊂ Λ0, thus one finds a small
b0 ∈ (0, b1) such that (recall (3.17) and (3.16) for Λ0 and Q0, respectively)

Q0 ⊂ Λ0.(3.21)

Finally, we fix any two numbers b2 and b3 satisfying b1 < b2 < b3 < 1/2.
Now, we note that (recall (3.8) for B)

B = BχΛ2
(t, s, x) +BχQ\Λ2

(t, s, x).(3.22)

First, we will prove Theorem 3.1 under the condition k > 0 being big enough. For
this purpose, let us take

k = βλ,(3.23)

where β ∈ (0, 1) is a constant to be determined later. Note that by (3.8) and (3.23),
we have

BχΛ2(t, s, x) ≥
{
2α(1 + 3α)

[
|x− x0|2 − α(t− T/2)2 − α(s− T/2)2

]
λ3

−2α[β + (1 + 3α)(t+ s− T )]βλ3

−[n2 + 4αn+ 1 + 2α + 5α2]λ2
}
χΛ2(t, s, x)

≥
{

1
2α(1 + 3α)R2

0λ
3 − Cβλ3 −

[
n2 + 4αn+ 1 + 2α + 5α2

]
λ2
}
χΛ2(t, s, x),

(3.24)
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where C = C(α, T ) > 0 is a constant, independent of β. Thus, by (3.23)–(3.24) and
(3.8), one sees easily that there exist a sufficiently small constant β ∈ (0, 1) and a
sufficiently large constant λ1 > 1 such that for any λ > λ1, it holds that

BχΛ2
(t, s, x) ≥ c0λ

3χΛ2
(t, s, x)(3.25)

and ∣∣BχQ\Λ2
(t, s, x)

∣∣ ≤ Cλ3(3.26)

for some constants c0 > 0 and C > 0.
Finally, we need some transformations. For any fixed δ > 0, by Lemma 3.5, we

can choose a function ξ ∈ C∞
0 (Rn; [0, 1]) such that{

ξ ≡ 1 on Ω \ Oδ/2(Γ);
ξ ≡ 0 on Ω ∩ Oδ/3(Γ).(3.27)

Set

p = p(t, x)
�
= ξ(x)w(t, x), (t, x) ∈ Q,(3.28)

where w is the weak solution of (3.2). Then by (3.2), it is easy to see that


ptt −∆p+ kpt = −w∆ξ − 2(∇w) · (∇ξ) in Q,
p = 0 on Σ,
p ≡ 0 in (0, T )× (Ω ∩ Oδ/3(Γ)).

(3.29)

The following simple transformations will play an important role in what follows. Put

z(t, s, x)
�
=

∫ t

s

p(τ, x)dτ, Z(t, s, x)
�
=

∫ t

s

w(τ, x)dτ.(3.30)

Then z(·) satisfies (recall (3.16) for Q and S)


ztt + zss −∆z + k(zt + zs) = −Z∆ξ − 2(∇Z) · (∇ξ) in Q,
z = 0 on S,
z ≡ 0 in (0, T )2 × (Ω ∩ Oδ/3(Γ)).

(3.31)
Step 3. Carleman-type estimate.
For any given τ ∈ (T2, T1) and τ ′ ∈ (T ′

1, T
′
2) (recall (3.16) for Ti and T ′

i ), denote

Qτ ′
τ

�
= (τ, τ ′)× (τ, τ ′)× Ω.(3.32)

Let us observe (3.6), where z is given by (3.30) and φ is given by (3.15). Integrating
(3.6) on Qτ ′

τ , using integration by parts, and taking (3.31) into account, we arrive at
the following (recall (3.5) for v and θ, and recall (3.16) for Q2, T2, and T ′

2):

2(1− α)λ
∫
Qτ′τ (v

2
t + v2

s +
∑
i v

2
i )dxdtds+

∫
Qτ′τ Bv2dxdtds

≤ ∫Q2
θ2
∣∣Z∆ξ + 2(∇Z) · (∇ξ)

∣∣2dxdtds

+Cλ3
[ ∫ T ′

2

T2

∫
Ω

(
|v(τ, s, x)|2 + |vt(τ, s, x)|2 + |vs(τ, s, x)|2 +

∑
i |vi(τ, s, x)|2

+|v(τ ′, s, x)|2 + |vt(τ ′, s, x)|2 + |vs(τ ′, s, x)|2 +∑i |vi(τ ′, s, x)|2
)
dxds

+
∫ T ′

2

T2

∫
Ω

(
|v(t, τ, x)|2 + |vt(t, τ, x)|2 + |vs(t, τ, x)|2 +

∑
i |vi(t, τ, x)|2

+|v(t, τ ′, x)|2 + |vt(t, τ ′, x)|2 + |vs(t, τ ′, x)|2 +∑i |vi(t, τ ′, x)|2
)
dxdt

]
∀ λ > λ1.

(3.33)
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However, recalling v = θz with θ = e�, by (3.15) and (3.20), we get

∫ T ′
2

T2

∫
Ω

(
|v(τ, s, x)|2 + |vt(τ, s, x)|2 + |vs(τ, s, x)|2 +

∑
i |vi(τ, s, x)|2

+|v(τ ′, s, x)|2 + |vt(τ ′, s, x)|2 + |vs(τ ′, s, x)|2 +∑i |vi(τ ′, s, x)|2
)
dxds

+
∫ T ′

2

T2

∫
Ω

(
|v(t, τ, x)|2 + |vt(t, τ, x)|2 + |vs(t, τ, x)|2 +

∑
i |vi(t, τ, x)|2

+|v(t, τ ′, x)|2 + |vt(t, τ ′, x)|2 + |vs(t, τ ′, x)|2 +∑i |vi(t, τ ′, x)|2
)
dxdt

≤ Cλ2
[ ∫ T ′

2

T2

∫
Ω

(
|z(τ, s, x)|2 + |zt(τ, s, x)|2 + |zs(τ, s, x)|2 +

∑
i |zi(τ, s, x)|2

+|z(τ ′, s, x)|2 + |zt(τ ′, s, x)|2 + |zs(τ ′, s, x)|2 +∑i |zi(τ ′, s, x)|2
)
dxds

+
∫ T ′

2

T2

∫
Ω

(
|z(t, τ, x)|2 + |zt(t, τ, x)|2 + |zs(t, τ, x)|2 +

∑
i |zi(t, τ, x)|2

+|z(t, τ ′, x)|2 + |zt(t, τ ′, x)|2 + |zs(t, τ ′, x)|2 +∑i |zi(t, τ ′, x)|2
)
dxdt

]
.

(3.34)

Further, by (3.17), (3.4)–(3.5), (3.15), and (3.25)–(3.26), we get∫
Qτ′τ Bv2dxdtds =

∫
Qτ′τ ∩Λ2

Bv2dxdtds+
∫
Qτ′τ \Λ2

Bv2dxdtds

≥ c0λ
3
∫
Qτ′τ ∩Λ2

v2dxdtds− Cλ3eR
2
0λ/4

∫
Q z2dxdtds ∀ λ > λ1.(3.35)

Note that by (3.17), (3.19), and (3.32), we have Qτ ′
τ ⊃ Λ1. Thus, by (3.35), for any

λ > λ1, we have

2(1− α)λ
∫
Qτ′τ (v

2
t + v2

s +
∑
i v

2
i )dxdtds+

∫
Qτ′τ Bv2dxdtds

≥ c1

[
λ
∫
Λ1
(v2
t + v2

s +
∑
i v

2
i )dxdtds+ λ3

∫
Λ1

v2dxdtds
]
− Cλ3eR

2
0λ/4

∫
Q z2dxdtds,

(3.36)
where c1 > 0 and C > 0 are two constants, independent of λ.

Now, combining (3.33)–(3.34) and (3.36), we conclude that for any λ > λ1, it
holds that∫

Λ1
(v2
t + v2

s +
∑
i v

2
i )dxdtds+ λ2

∫
Λ1

θ2v2dxdtds

≤ Cλ−1
{
eCλ

∫
Q2
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

+λ5
[ ∫ T ′

2

T2

∫
Ω

(
|z(τ, s, x)|2 + |zt(τ, s, x)|2 + |zs(τ, s, x)|2 +

∑
i |zi(τ, s, x)|2

+|z(τ ′, s, x)|2 + |zt(τ ′, s, x)|2 + |zs(τ ′, s, x)|2 +∑i |zi(τ ′, s, x)|2
)
dxds

+
∫ T ′

2

T2

∫
Ω

(
|z(t, τ, x)|2 + |zt(t, τ, x)|2 + |zs(t, τ, x)|2 +

∑
i |zi(t, τ, x)|2

+|z(t, τ ′, x)|2 + |zt(t, τ ′, x)|2 + |zs(t, τ ′, x)|2 +∑i |zi(t, τ ′, x)|2
)
dxdt

]
+λ3eR

2
0λ/4

∫
Q z2dxdtds

}
.

(3.37)

Integrating (3.37) with respect to τ and τ ′ from T2 to T1 and from T ′
1 to T ′

2, respec-
tively, we get∫

Λ1
(v2
t + v2

s +
∑
i v

2
i )dxdtds+ λ2

∫
Λ1

v2dxdtds

≤ Cλ−1
{
eCλ

∫
Q2
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

+λ5
∫
Q2

(
z2 + z2

t + z2
s +

∑
i z

2
i

)
dxdtds+ λ3eR

2
0λ/4

∫
Q z2dxdtds

}
.

(3.38)

Consequently, by (3.4)–(3.5) and (3.15), and using (3.38), we see that for any λ > λ1,
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it holds that∫
Λ1

θ2(z2
t + z2

s +
∑
i z

2
i )dxdtds

≤ Cλ−1
{
eCλ

∫
Q2
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

+λ5
∫
Q2

(
z2 + z2

t + z2
s +

∑
i z

2
i

)
dxdtds+ λ3eR

2
0λ/4

∫
Q z2dxdtds

}
.

(3.39)

Note that by (3.17) and (3.21), we have∫
Λ1

θ2(z2
t + z2

s)dxdtds ≥
∫

Λ0

θ2(z2
t + z2

s)dxdtds ≥ eR
2
0λ/2

∫
Q0

(z2
t + z2

s)dxdsdt.(3.40)

Thus, by (3.39)–(3.40), we see that for any λ > λ1 it holds that∫
Q0
(z2
t + z2

s)dxdtds

≤ C1λ
−1
{
eC1λ

∫
Q2
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

+λ5e−R
2
0λ/2

∫
Q2

(
z2 + z2

t + z2
s +

∑
i z

2
i

)
dxdtds+ λ3e−R

2
0λ/4

∫
Q z2dxdtds

}
,

(3.41)
where C1 > 0 is a generic constant.

Step 4. Estimate on
∫
Q2

∑
i z

2
i dxdsdt.

Denote

η
�
= (t− T3)(T

′
3 − t)(s− T3)(T

′
3 − s).(3.42)

Multiplying the first equation of (3.31) by ηz, integrating it on Q3 (recall (3.16) for
Q3), using integration by parts, by (3.23), and noting that

η(t, s) ≥ (T2 − T3)
2(T ′

3 − T2)
2 ∀ t , s ∈ (T2, T

′
2),

we get∫
Q2

∑
i

z2
i dxdsdt ≤ C

[
λ

∫
Q3

(z2
t + z2

s + z2)dxdsdt+

∫
Q3

|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdsdt

]
.

(3.43)
Thus, by (3.41) and (3.43), we conclude that there is a constant λ2 > λ1, which
depends only on C1 (in (3.41)) and R0, such that∫

Q0
(z2
t + z2

s)dxdtds ≤ C
{
λ−3eCλ

∫
Q3
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

+λ−2e−R
2
0λ/8

∫
Q(z

2 + z2
t + z2

s)dxdsdt
}
∀ λ > λ2.

(3.44)
Step 5. Estimate on

∫
Q3
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds.

Note that by (3.16), (3.27), and Lemma 3.5, using Poincáre’s inequality, we have∫
Q3
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds =

∫ T ′
3

T3

∫ T ′
3

T3

∫
Ω∩Oδ/2(Γ)

|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

≤ Cδ−4
∫ T ′

3

T3

∫ T ′
3

T3

∫
Ω∩Oδ/2(Γ)

|∇Z|2dxdtds.

(3.45)

We need to estimate
∫ T ′

3

T3

∫ T ′
3

T3

∫
Ω∩Oδ/2(Γ)

|∇Z|2dxdsdt. By (3.30) and (3.2), we see

that Z(·) satisfies {
Ztt + Zss −∆Z + k(Zt + Zs) = 0 in Q,
Z = 0 on S.(3.46)
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By Lemma 3.5, we can choose a function ζ ∈ C∞
0 (Rn; [0, 1]) such that{

ζ ≡ 1 on Ω \ O2δ/3(Γ);
ζ ≡ 0 on Ω ∩ Oδ/2(Γ).(3.47)

Denote

ψ
�
= t(T − t)s(T − s)(1− ζ).(3.48)

Multiplying the first equation of (3.46) by ψ2Z, integrating it on Q, by (3.46)–(3.47)
and using integration by parts, and noting (3.23), we get for any λ > 1∫

Q ψ2|∇Z|2dxdsdt

= − ∫Q ψ2
[
Ztt + Zss + k(Zt + Zs)

]
Zdxdsdt− 2

∫
Q(∇Z) · (∇ψ)ψZdxdsdt

= 2
∫
Q ψ(ψtZt + ψsZs)Zdxdsdt+

∫
Q ψ2(Z2

t + Z2
s )dxdsdt

−k
∫
Q ψ2(Zt + Zs)Zdxdsdt− 2

∫
Q ψ(∇Z) · (∇ψ)Zdxdsdt

≤ Cλ
∫
Q(1− ζ)(Z2 + Z2

t + Z2
s )dxdsdt+ C

∫
Q |∇ψ|2Z2dxdsdt

+ 1
2

∫
Q ψ2|∇Z|2dxdsdt.

(3.49)

Note that by (3.47) and Lemma 3.5, we have∫
Q |∇ψ|2Z2dxdsdt ≤ C

∫
Q |∇(1− ζ)|2Z2dxdsdt

= C
∫ T
0

∫ T
0

∫
Ω∩Oδ(Γ)

|∇ζ|2Z2dxdsdt ≤ Cδ−2
∫ T
0

∫ T
0

∫
Ω∩Oδ(Γ)

Z2dxdsdt.
(3.50)

Thus, combining (3.49)–(3.50), noting (3.48), we get

∫ T ′
3

T3

∫ T ′
3

T3

∫
Ω∩Oδ/2(Γ)

|∇Z|2dxdsdt

≤ C(λ+ δ−2)
∫ T
0

∫ T
0

∫
Ω∩Oδ(Γ)

(Z2 + Z2
t + Z2

s )dxdsdt.
(3.51)

Combining (3.45) and (3.51), we get∫
Q3
|Z∆ξ + 2(∇Z) · (∇ξ)|2dxdtds

≤ Cδ−4(λ+ δ−2)
∫ T
0

∫ T
0

∫
Ω∩Oδ(Γ)

(Z2 + Z2
t + Z2

s )dxdsdt.
(3.52)

Now, by (3.44) and (3.52), and noting that δ ∈ (0, 1) and λ2 > 1, we get

∫
Q0
(z2
t + z2

s)dxdtds ≤ Cλ−2
{
δ−6eCλ

∫ T
0

∫ T
0

∫
Ω∩Oδ(Γ)

(Z2 + Z2
t + Z2

s )dxdsdt

+e−R
2
0λ/8

∫
Q(z

2 + z2
t + z2

s)dxdsdt
}
∀ λ > λ2.(3.53)

Step 6. Completion of the proof when k large enough.
Let us return to “w.” By (3.53), (3.16), (3.28), and (3.30), one arrives at

∫ T ′
0

T0

∫
Ω\Oδ/2(Γ)

w2dxdt ≤ Cλ−2
[
δ−6eCλ

∫ T
0

∫
Ω∩Oδ(Γ)

w2dxdt

+e−R
2
0λ/8

∫ T
0

∫
Ω

w2dxdt
]
∀ λ > λ2.(3.54)

Now, adding both sides of (3.54) by
∫ T ′

0

T0

∫
Ω∩Oδ/2(Γ)

w2dxdt, we conclude that

∫ T ′
0

T0

∫
Ω

w2dxdt ≤ Cλ−2
[
δ−6eCλ

∫ T
0

∫
Ω∩Oδ(Γ)

w2dxdt

+e−R
2
0λ/8

∫ T
0

E(t)dxdt
]
∀ λ > λ2,

(3.55)
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where E(t) is defined by (3.11).
However, taking two numbers S0 and S′

0 such that T0 < S0 < S′
0 < T ′

0, using
Lemma 3.3, and noting (3.23), we see that

∫ S′
0

S0

E(s)ds ≤ C(1 + λ2)

∫ T ′
0

T0

∫
Ω

w2dxdt.(3.56)

Combining (3.55) and (3.56), we arrive at

∫ S′
0

S0

E(s)ds ≤ C

[
δ−6eCλ

∫ T

0

∫
Ω∩Oδ(Γ)

w2dxdt+ e−R
2
0λ/8

∫ T

0

E(t)dxdt

]
∀ λ > λ2.

(3.57)
On the other hand, by Lemma 3.4 and (3.57), and noting (3.23), we get

E(0) ≤ C

[
δ−6eCλ

∫ T

0

∫
Ω∩Oδ(Γ)

w2dxdt+ e(4Tβ−R2
0/8)λE(0)

]
∀ λ > λ2.(3.58)

Note that we can take β > 0 small enough such that 4Tβ < R2
0/12. Thus by (3.58),

we see that

E(0) ≤ C2

[
δ−6eC2λ

∫ T

0

∫
Ω∩Oδ(Γ)

w2dxdt+ e−R
2
0λ/24E(0)

]
∀ λ > λ2,(3.59)

where C2 > 0 is a generic constant.
Now, let us take a constant λ3 > λ2 such that

C2e
−R2

0λ3/24 < 1/2.(3.60)

Then, by (3.59)–(3.60), we conclude that

E(0) ≤ Cδ−6eCλ
∫ T

0

∫
Ω∩Oδ(Γ)

w2dxdt ∀ λ > λ3.(3.61)

Now, combining (3.61) and (3.23), we obtain the desired estimate under the condition

λ > λ3, or k > k0
�
= βλ3 (recall (3.23)).

Step 7. Completion of the proof when 0 < k ≤ k0.
Finally, let us consider the case 0 < k ≤ k0. It is easy to see that (3.25)–(3.26)

remains true in this case. Thus, proceeding as in (3.25)–(3.61) of the previous case
the proof may be completed easily.
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Abstract. The conjugate point is an important global concept in the calculus of variations
and optimal control. In these extremal problems, the variable is not a vector in Rn but a function.
So a simple and natural question arises. Is it possible to establish a conjugate points theory for a
nonlinear programming problem, Min f(x) on x ∈ Rn? This paper positively answers this question.
We introduce the Jacobi equation and conjugate points for the nonlinear programming problem, and
we describe necessary and sufficient optimality conditions in terms of conjugate points.

Key words. conjugate points, strict conjugate points, Jacobi equation, Legendre condition,
positive-definite, shortest path problem, Sylvester’s criterion, principal minors

AMS subject classifications. 49K10, 90C30, 26B99

PII. S0363012900368831

1. Introduction. In this paper, we establish a conjugate points theory for a
nonlinear programming problem,

(P) Min f(x) on x ∈ Rn,

where f : Rn → R is assumed to be twice continuously differentiable. We will define
conjugate points for (P) based on the insight in Gelfand and Fomin [1] by comparing
(P) with the simplest problem in the calculus of variations,

(SP) Min

∫ T

0

f(t, x(t), ẋ(t))dt

subject to x(0) = A, x(T ) = B,

where A and B are given points in Rn, T > 0 fixed, and f is a smooth function. So,
we first review the classical conjugate points theory for (SP) in brief. Let x̄(t) be a
weak minimum for (SP). Then it satisfies the Euler equation dfẋ(t, x̄(t), ˙̄x(t))/dt =
fx(t, x̄(t), ˙̄x(t)) (1744) and the Legendre condition fẋẋ(t, x̄(t), ˙̄x(t)) ≥ 0 (1786). Leg-
endre attempted to prove its inverse; that is, he expected that if a feasible so-
lution x̄(t) satisfies the Euler equation and the strengthened Legendre condition
fẋẋ(t, x̄(t), ˙̄x(t)) > 0, then x̄(t) would be a weak minimum. However, his conjecture
was false. Jacobi solved this problem by introducing conjugate points in 1837. For a
feasible solution x̄(t) of (SP), conjugate points are defined via the Jacobi equation

d

dt
{f̄ẋx(t)y(t) + f̄ẋẋ(t)ẏ(t)} = f̄xx(t)y(t) + f̄xẋ(t)ẏ(t),(1.1)

where f̄ẋẋ(t) := fẋẋ(t, x̄(t), ˙̄x(t)), etc. A point c ∈ (0, T ] is said to be conjugate to
t = 0 if there exists a nontrivial solution y(t) of the Jacobi equation (1.1) on [0, c] and
y(0) = y(c) = 0.
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Theorem 1.1 (Jacobi). If x̄(t) is a weak minimum for the simplest problem (SP)
and it satisfies the strengthened Legendre condition, then there is no point conjugate
to t = 0 on [0, T ). Conversely, if x̄(t) satisfies the Euler equation and the strengthened
Legendre condition, and if there is no point conjugate to t = 0 on [0, T ], then x̄(t) is
a weak minimum.

Recently, conjugate points have been extended to complex extremal problems
such as optimal control problems and variational problems with state constraints;
see, for example, [3, 4, 6, 7, 8, 9, 10, 11]. The present paper is outside of this trend.
We deal with the elementary extremal problem (P). It seems to the author that one
reason why researchers have not paid much attention to conjugate points for (P) lies
in the following elementary results.

Theorem 1.2. If x̄ is a minimum for (P), then it satisfies f ′(x̄) = 0 and f ′′(x̄) ≥
0. Conversely, if x̄ satisfies f ′(x̄) = 0 and f ′′(x̄) > 0, then it is a minimum for (P),
where ≥ and > stand for nonnegative definite and positive-definite, respectively.

Theorem 1.2 seems to assert that there is no room for conjugate points to play
a role in (P). However, an interesting connection between Jacobi’s condition and the
theory of quadratic forms in Rn was discussed in Gelfand and Fomin [1, p. 125]; see
section 2 of the present paper. Furthermore, the author [2, p. 8] recently found a
stimulating example that strongly indicates the possibility to establish a conjugate
points theory for (P).

Example 1.1. Let us first consider the shortest path problem on the unit sphere S
in R3. It is finding a shortest path on S joining A = (1, 0, 0) and B = (cosT, sinT, 0),
where 0 < T < 2π is given. When T > π, the equatorial arc, say, AB in Figure 1.1,
is not a weak minimum. Indeed, take another great circle arc (the broken curve in
Figure 1.1) joining A and C = (−1, 0, 0), say, AC, and join AC and the equatorial
arc CB. Then it has the same length as the equatorial arc AB. However, we get a
shorter curve by taking a short cut around C.

Fig. 1.1.

According to the classical conjugate point theory, C is conjugate to A. Next, let us
approximate the shortest path problem by an extremal problem in a finite-dimensional
space as follows.

1. Take a finite number of equally located longitudes �0, �1, . . . , �n+1, where we
assume that A ∈ �0 and B ∈ �n+1; see Figure 1.2.

2. Choose one point, say, Xk, on each �k for k = 1, 2, . . . n.
3. Minimize the length of the polygonal curve joining A,X1, . . . , Xn, B.
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Fig. 1.2.

Fig. 1.3.

Then the above observation on the classical shortest path problem can be also
applied to this extremal problem in Rn. In fact, by taking a short cut around C
in Figure 1.3, we obtain a shorter polygonal curve. Hence C can be regarded as a
conjugate point in the finite-dimensional analogue.

Though Theorem 1.2 seems to negatively answer our question, Example 1.1 seems
to positively answer. In this paper, we show that the latter is right. In section 2, we
first clarify the trick that Theorem 1.2 seems to negatively answer. Next, we introduce
the Jacobi equation and conjugate points for (P), and we give a sufficient optimality
condition in terms of conjugate points. In section 3, we define strict conjugate points,
and we give a necessary optimality condition in terms of strict conjugate points. In
section 4, we provide three examples and compute conjugate points. Readers will see
that our conjugate points theory works very well.

2. The Jacobi equation and conjugate points: Sufficiency. In this section,
we define the Jacobi equation and conjugate points for (P), and we describe sufficient
optimality conditions in terms of conjugate points. In order to investigate conjugate
points for (P), we should start with clarifying what corresponds to the Euler equation
and the (strengthened) Legendre condition in (P), respectively. The point to achieve
this purpose is that both of them are local properties. Namely, they are derived
by giving a minimum x̄(t) an increment ∆x(t) that takes nonzero value only on a
neighborhood of t. Since the variable t corresponds to the index k and the index set
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{1, . . . , n} is discrete, we may take the singleton {k} as the smallest neighborhood
of k. Hence the increment becomes ∆x := (0, . . . , 0,∆xk, 0, . . . , 0). So, defining
F (∆xk) := f(x̄ + ∆x) for any fixed index k, we get F ′(0) = fxk(x̄) and F ′′(0) =
fxkxk(x̄). Therefore, we conclude that

(a) the Euler equation corresponds to fxk(x̄) = 0 ∀k = 1, . . . , n,
(b) the Legendre condition corresponds to fxkxk(x̄) ≥ 0 ∀k = 1, . . . , n,
(c) the strengthened Legendre condition corresponds to fxkxk(x̄) > 0 ∀k =

1, . . . , n.
Since there is a gap between (c) and f ′′(x̄) > 0, there does exist room for conjugate
points to play a role in (P).

So, let us now discuss the positive-definiteness of symmetric matrices. According
to Sylvester’s criterion, an n × n-symmetric matrix A = (aij) is positive-definite if
and only if its descending principal minors |Ak|, (k = 1, . . . , n) are positive, where

Ak :=




a11 · · · a1k

...
. . .

...
ak1 · · · akk


 .

The following lemma shows that the determinant of any square matrix is expanded
with respect to the descending principal minors.

Lemma 2.1. For any n× n-matrix A = (aij), its determinant is expanded as

|A| =
n−1∑
k=0

∑
ρ

ε(ρ)ak+1ρ(k+1)ak+2ρ(k+2) · · · anρ(n)|Ak|,(2.1)

where |A0| := 1, ε(ρ) denotes the sign of ρ, and the summation is taken over all
permutations ρ on {k+1, . . . , n} satisfying that there is no � > k such that ρ is closed
on {�+ 1, . . . , n}.

Proof. For any permutation σ on {1, . . . , n}, put k := max{0 ≤ � ≤ n − 1 :
σ({� + 1, . . . , n}) = {� + 1, . . . , n}}, τ := σ|{1,...,k}, and ρ := σ|{k+1,...,n}, where τ is
empty when k = 0. Then σ = τ ◦ ρ, and ρ is closed on {k+1, . . . , n}. But there is no
� > k such that ρ is closed on {�+ 1, . . . , n}. Hence

|A| =
n−1∑
k=0

∑
ρ

ε(ρ)

{∑
τ

ε(τ)a1τ(1) · · · akτ(k)
}

ak+1ρ(k+1) · · · anρ(n)

=

n−1∑
k=0

∑
ρ

ε(ρ)ak+1ρ(k+1) · · · anρ(n)|Ak|.

This completes the proof.
Example 2.1. When A = (Aij) is a tridiagonal matrix


a1 b1

b1 a2
. . .

. . .
. . . bn−1

bn−1 an


 ,(2.2)

the expansion (2.1) reduces to

|Ak| = ak|Ak−1| − b2k−1|Ak−2|,(2.3)
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which coincides with (81) in Gelfand and Fomin [1, p. 127].
In this paper, we call the expansion (2.1) the Jacobi equation for (P). In the

following, we show the reason. A connection between Jacobi’s condition and the
theory of quadratic forms in Rn was discussed in [1, p. 127] as follows. According to
the classical conjugate point theory, the quadratic functional

∫ T

0

(P ẏ2 +Ry2)dt,(2.4)

where P (t) > 0, is positive for all y(t) such that y(0) = y(T ) = 0 if and only if [0, T ]
contains no point conjugate to 0, where the corresponding Jacobi equation is

d

dt
(P ẏ) = Ry

(see [1, p. 111]). By introducing the points 0 = t0 < t1 < · · · < tn < tn+1 = T , we
get n+ 1 equal parts of length ∆t := T/(n+ 1). Then the quadratic functional (2.4)
is approximated by the quadratic form

n∑
k=0

{
Pk

(
yk+1 − yk

∆t

)2

+Rky
2
k

}
∆t,(2.5)

where Pk := P (tk), Rk := R(tk), yk := y(tk), and y0 = yn+1 = 0. By putting
ak := Rk∆t + (Pk−1 + Pk)/∆t, bk := −Pk−1/∆t, y = (y1, . . . , yn), and A as (2.2),
the quadratic form (2.5) is expressed as yTAy. Furthermore, by making the change
of variables

Y0 := 0, Y1 := ∆t, Yk+1 :=
(∆t)k+1|Ak|
P1 · · ·Pk , k = 1, . . . , n,

the recursion relation (2.3) reduces to

Pk
Yi+1−Yk

∆t − Pk−1
Yk−Yk−1

∆t

∆t
= RkYk.(2.6)

Tending ∆t→ 0 in (2.6), we get the Jacobi equation d(PẎ )/dt = RY . Therefore, the
expansion (2.1) can be regarded as the Jacobi equation for (P).

Additionally, when Ak−1 is nonsingular, the expansion (2.1) is simplified as below.
Lemma 2.2. Divide Ak as follows:

Ak =

(
Ak−1 a
aT akk

)
.(2.7)

If Ak−1 is nonsingular, then it holds that |Ak| = |Ak−1|(akk−aTA−1
k−1a). Furthermore,

when all of |A1|, . . . , |Ak−1| are positive, the necessary and sufficient condition for |Ak|
to be positive is that akk − aTA−1

k−1a > 0.
Proof. Our assertion follows from

Ak =

(
Ik−1 0

aTA−1
k−1 1

)(
Ak−1 0
0 akk − aTA−1

k−1a

)(
Ik−1 A−1

k−1a
0 1

)
,(2.8)

where Ik−1 denotes the (k − 1)× (k − 1) identity matrix.
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Definition 2.3. For any symmetric matrix A, we call the recursion relation on
{yi}

yk =

k−1∑
i=0

∑
ρ

ε(ρ)ai+1ρ(i+1)ai+2ρ(i+2) · · · akρ(k)yi, k = 1, . . . , n,(2.9)

the Jacobi equation for A. We say that k is conjugate to 1 if the solution {yi} of the
Jacobi equation with y0 > 0 changes the sign from positive to nonpositive at i = k.
Namely,

y0 > 0, y1 > 0, . . . , yk−1 > 0, and yk ≤ 0.(2.10)

When Ak−1 is nonsingular, akk−aTA−1
k−1a is called the kth pivot of A for k = 2, . . . , n.

|A1| = a11 is called the first pivot.
Theorem 2.4. For any n×n-symmetric matrix A, the following three conditions

are equivalent.
(a) A is positive-definite.
(b) There is no point conjugate to 1.
(c) All the pivots (k = 1, 2, . . . , n) are positive.
Proof. The assertion follows from Sylvester’s criterion, Lemma 2.2, and Definition

2.3.
Definition 2.5. Let x̄ ∈ Rn be any extremal for (P); that is, it satisfies f ′(x̄) =

0. By taking f ′′(x̄) as A in Definition 2.3, we define the Jacobi equation, conjugate
points, and the kth pivot for (P) at x̄.

Combining Theorems 1.2, 2.4, and Definition 2.5, we readily get the following
theorem.

Theorem 2.6. A sufficient condition for an extremal x̄ to be a minimum for (P)
is that there is no point conjugate to 1.

Remark 2.1. Since each variable xk (1 ≤ k ≤ n) plays the same role with one
another in (P), there is no reason to start with index 1 to define conjugate points.
Indeed, let σ be an arbitrary permutation on {1, . . . , n}, and denote by Aσ the matrix
whose (i, j)-component is a (σ(i), σ(j))-component of A. Then we can define conjugate
points as well as above, and Theorems 2.4 and 2.6 remain valid. However, concerning
sufficient optimality conditions, such an extension is redundant, since it suffices to
test the descending principal minors |A1|, . . . , |An|.

3. Strict conjugate points: Necessity. In this section, we describe a neces-
sary optimality condition for (P) in terms of conjugate points. Since the descend-
ing principal minors |A1|, . . . , |An| are not enough to characterize A ≥ 0, the situ-
ation is slightly different from the sufficiency case. Namely, though the implication
A ≥ 0⇒ |Ak| ≥ 0 (1 ≤ k ≤ n) is true, its inverse is not true in general.

Definition 3.1. Let A = (aij) be an n×n-symmetric matrix, and let 1 ≤ i, j ≤ n
be two distinct integers. Then we say that j is strictly conjugate to i if there exist a
permutation σ and 1 < k ≤ n such that σ(1) = i, σ(k) = j, and if a solution {yi}
of the Jacobi equation (2.9) for Aσ with y0 > 0 changes the sign from nonnegative to
negative at k; that is,

y0 > 0, y1 ≥ 0, . . . , yk−1 ≥ 0, and yk < 0,(3.1)

where Aσ is defined as in Remark 2.1.
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Theorem 3.2. Let A be a symmetric matrix. Then A ≥ 0 if and only if there is
no pair 1 ≤ i, j ≤ n of integers such that j is strictly conjugate to i.

Proof. It is well known that A ≥ 0 if and only if all of the principal minors of A are
nonnegative; see, e.g., [5]. Hence our assertion is a direct consequence of Definition
3.1.

Definition 3.3. Let x̄ ∈ Rn be any extremal for (P), and take f ′′(x̄) as A. Then
we say that j is conjugate to i at x̄ if j is conjugate to i in the sense of Definition
3.1.

Combining Theorems 1.2, 3.2, and Definition 3.3, we readily get the following
theorem.

Theorem 3.4. A necessary condition for an extremal x̄ to be a minimum for
(P) is that there is no pair 1 ≤ i, j ≤ n of positive integers such that j is strictly
conjugate to i.

We close this section with showing the relationship between conjugate points and
strict conjugate points.

Proposition 3.5. If j is strictly conjugate to i, then there exist a permutation σ
and m ≥ 1 such that m is conjugate to 1 concerning the matrix Aσ defined in Remark
2.1.

Proof. By definition, there exist a permutation σ and 1 < k ≤ n such that
σ(1) = i, σ(k) = j, and a solution {yi} of the Jacobi equation (2.9) for Aσ with y0 > 0
satisfies (3.1). Putting m := min{1 ≤ � ≤ n : y� ≤ 0}, we have y0 > 0, . . . , ym−1 > 0,
and ym ≤ 0.

4. Examples. In this section, we give three examples and show that the preced-
ing results work very well. Each example is derived from the classical shortest path
problem on a surface S in R3 by approximating the arc X(t) = (x(t), y(t), z(t)) ∈ S
by a polygonal curve. This approximation is done by the following procedure.

(i) Introduce the points 0 = t0 < t1 < · · · < tn < tn+1 = T , and divide the
interval [0, T ] into n+ 1 equal parts of length ∆t := T/(n+ 1).

(ii) For each feasible arc X(t), put Xk := X(tk).
(iii) Approximate the length of the arc X(t) by the length of the polygonal curve

joining n+ 2 points X0, X1, . . . , Xn+1.
(iv) Minimize the length of the polygonal curve.
Example 4.1. This example is same as Example 1.1. Here we compute conjugate

points for the finite-dimensional analogue. By means of the spherical coordinates, any
point on the kth longitude �k is expressed as

Xk = (sin θ(tk) cos tk, sin θ(tk) sin tk, cos θ(tk)).

Hence the minimization problem of the length of the polygonal arc joining n+2 points
A = X0, X1, . . . , Xn+1 = B is formulated as follows:

(P1) Min f(θ1, . . . , θn) :=

n∑
k=0

√
2(1− cos∆t sin θk+1 sin θk − cos θk+1 cos θk),

where θ0 = θn+1 = π/2. The variable θ ∈ Rn that corresponds to the equatorial arc
θ̄(t) ≡ π/2 is θ̄ := (π/2, . . . , π/2). Then the Hesse matrix of f at θ̄ is

f ′′(θ̄) =
1√

2(1− c)




2c −1
−1 2c

. . .

. . .
. . . −1
−1 2c


 ,(4.1)
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where c := cos∆t. It follows from Lemma 4.1 below that the principle minor of size
k of (4.1) is positive if (k + 1)∆t < π. Since ∆t = T/(n+ 1), we conclude that

(a) when T < π, there is no point conjugate to 1, and
(b) when T ≥ π, the first number k satisfying (k+1)/(n+1) ≥ π/T is conjugate

to 1,
which matches the classical result.

The following lemma is easily proved by induction.
Lemma 4.1. For c = cos∆t, define k × k-matrices

Ak :=




2c −1
−1 2c

. . .

. . .
. . . −1
−1 2c


 , Bk :=




c −1
−1 2c

. . .

. . .
. . . −1
−1 2c


 .(4.2)

Then their determinants are given by |Ak| = sin(k+1)∆t/ sin∆t and |Bk| = cos k∆t,
respectively.

Example 4.2. This example is a finite-dimensional analogue to the initial-
free shortest path problem on the unit sphere S, that is, finding a shortest path
joining the initial longitude �0 := {(sinα, 0, cosα) : 0 ≤ α ≤ π} and the point
B = (cosT, sinT, 0).

Fig. 4.1.

As well as in Example 4.1, the finite-dimensional analogue is formulated as

(P2) Min f(θ0, θ1, . . . , θn) :=

n∑
k=0

√
2(1− cos∆t sin θk+1 sin θk − cos θk+1 cos θk),

where θn+1 := π/2. The variable θ ∈ Rn+1 that corresponds to the equatorial arc
θ̄(t) ≡ π/2 is θ̄ := (π/2, . . . , π/2). Then

f ′′(θ̄) =
1√

2(1− c)




c −1
−1 2c

. . .

. . .
. . . −1
−1 2c







n+ 1,(4.3)

where c := cos∆t. It follows from Lemma 4.1 that the principle minor of size k of
(4.3) is positive if k∆t < π/2. Since ∆t = T/(n+ 1), we conclude that
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(a) when T < π/2, there is no point conjugate to 1, and
(b) when T ≥ π/2, the first number k satisfying kT/(n + 1) ≥ π/2 is conjugate

to 1,
which matches the classical result.

Example 4.3. The original variational problem is finding a shortest path on
the cylinder S := {(x, y, z) : x2 + y2 = 1, z ∈ R} joining A = (1, 0, 0) and B =
(cosT, sinT, γ), where γ ∈ R is given.

Fig. 4.2.

By applying the procedure (i)–(iv) above to it, we get its finite-dimensional ana-
logue

(P3) Min f(z1, . . . , zn) :=

n∑
k=0

√
(zk+1 − zk)2 + 4 sin2 ∆t

2
,

where z0 := 0, zn+1 := γ. Furthermore, the variable z ∈ Rn that corresponds to the
spiral z̄(t) = tγ/T is z̄ := (γ/(n+1), . . . , nγ/(n+1)). Then the Hesse matrix of f at
z̄ is

f ′′(z̄) = s(s+ d)−3/2




2 −1
−1 2

. . .

. . .
. . . −1
−1 2


 ,(4.4)

where s := 4 sin2(∆t/2) and d := γ2/(n+1)2. Since |Ak| = {s(s+d)−3/2}k(k+1) > 0,
there is no point conjugate to 1, which matches the classical result.
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Abstract. Trading in stock markets consists of three major steps: select a stock, purchase a
number of shares, and eventually sell them to make a profit. The timing to buy and sell is extremely
crucial. A selling rule can be specified by two preselected levels: a target price and a stop-loss
limit. This paper is concerned with an optimal selling rule based on the model characterized by
a number of geometric Brownian motions coupled by a finite-state Markov chain. Such a policy
can be obtained by solving a set of two-point boundary value differential equations. Moreover, the
corresponding expected target period and probability of making money and that of losing money
are derived. Analytic solutions are obtained in one- and two-dimensional cases. Finally, a numerical
example is considered to demonstrate the effectiveness of our method.

Key words. optimal selling rule, geometric Brownian motion, Markov switching, two-point
boundary value problem

AMS subject classifications. 91B26, 91B28, 91B70

PII. S0363012999356325

1. Introduction. Trading in stocks consists of three major steps: (a) select a
stock based on certain criteria; (b) buy a number of shares at the right time (usually
associated with the so-called pivot points; see Livermore [14] and O’Neil [18]); (c)
hold the position for a period of time and then sell it to make a profit. A selling
(liquidation) decision can be made when the price of the underlying stock reaches a
target price or a stop-loss limit.

To analyze and study the performance of a stock, it is important to establish a
mathematical model to characterize its price movement. In mathematical finance, the
price of a stock is often modeled as a geometric Brownian motion (see Merton [15])
which is determined by two parameters: the expected return and volatility (see Elliott
and Kopp [7], Karatzas [11], and Karatzas and Shreve [12] for analysis of the model
and applications). Such parameters are usually assumed to be deterministic when
analyzing option pricing; see Duffie [6] and Hull [10]. As a result, such a model is
good only for a relatively short period because it wouldn’t respond to random changes
in these parameters. Some modifications with random parameters are available in
the literature in which the volatility is dictated by additional stochastic differential
equations; see Fouque, Papanicolaou, and Ronnie [9], Hull [10], and Musiela and
Rutkowski [16], among others, for related results.

A major factor that dominates the movement of an individual stock is the trends
of the general market. If the overall market moves up, most stocks go up; if the
general market goes down, most follow. By and large, the movements of a market can
be viewed as a composition of a primary movement and secondary movement. Such
a classification is summarized in Table 1.

In order to incorporate the broad trend of a stock market, it is necessary to revise
and modify the geometric Brownian motion model to allow the expected return and
volatility parameters to depend on general market movements. In view of this, it is
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Table 1
Major movements of a stock market.

Market movements Market trends Duration

Primary
Broad upward
or downward

Several years

Secondary

Significant decline
in a great bull market
or strong recovery

in a great bear market

Several weeks
to a few months

natural to introduce a finite-state Markov chain α(·) representing the general market
direction. For example, one may consider α(t) = (α1(t), α2(t)), where α1(t) ∈ {1, 2}
represents the primary market trend (here the state 1 represents up-trend and 2 down-
trend) and α2(t) ∈ {1, 2} represents the secondary market movement indicator. In
this case, we may consider the Markov chain

α(t) ∈ {(2, 2), (1, 2), (2, 1), (1, 1)}(1)

with a generator given by

Q =



−λ1 λ1 0 0
λ2 −λ2 0 0
0 0 −λ1 λ1

0 0 λ2 −λ2


+



−µ1 0 µ1 0
0 −µ1 0 µ1

µ2 0 −µ2 0
0 µ2 0 −µ2


 ,

where λ1 and µ1 are the transition rates of going up and λ2 and µ2 the rates of going
down. If a great bull market lasts for 5 years and a bear market for 3 years, then
λ1 = 1/3 and λ2 = 1/5 when time is measured in years. Similarly, we can take µ1 = 4
and µ2 = 12 representing a recovery in a bear market which lasts for a quarter of a
year and a decline in a bull market that runs for about 4–5 weeks. Clearly, it is more
realistic to include the random process α(·) in the model. In this paper, we consider
a model with a single stock and its price observes a switching geometric Brownian
motion. Moreover, the stock pays no dividends. Given the current price of a stock,
a selling rule in this paper consists of a target price and a stop-loss limit. A selling
decision is made whenever the price reaches either the target price or the stop-loss
limit. The timing to sell is as important as that of buying. The primary goal of
investing is to make a profit. However, in reality, one often picks up the wrong stock
or purchases it at the wrong time. In this case, it is necessary to sell it sooner to
stop loss. In practice, a target price is typically around a gain of 20% to 50% and a
stop-loss limit generally varies from 10% to 30% depending on the risk an investor is
willing to take. Clearly, it is not a good idea to adopt uniform profit-taking or cut-loss
rates. Each stock is different and has its own trait. It should be treated differently
with different liquidation rules.

In this paper, we consider a set of target prices and stop-loss limits. Our goal
is to choose a target price and a stop-loss limit in that set in order to maximize an
expected reward function. We aim at deriving these price limits. In addition, we
obtain the expected target period (holding duration) and the probability of making
money and that of losing money.

In practice, an often used criterion for measuring the performance of a portfolio
is that of percentage return per unit time. However, such a criterion leads to frequent
transactions because it encourages small profit taking within short holding time τ0
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(say, a few minutes to a couple of days). Clearly, such a criterion is not suitable to
many individual investors because of limited time available for trading and additional
transaction costs. A discounted reward, on the other hand, rules out too frequent
transactions because the time factor (1/τ0) is replaced by a discount rate e−ρτ0 (see
section 6 for discussions on selection of ρ > 0). Such a discounted reward function is
natural in many financial problems. Moreover, the resulting selling rule involves only
a set of ordinary differential equations (ODEs) rather than a number of partial differ-
ential equations (PDEs), which makes the corresponding computation much easier.
Our optimal selling rule can be determined by solving a set of ODEs with two-point
boundary conditions. In this paper, we prove the existence and uniqueness of the so-
lution to these equations. Examples with one-dimensional (1-D) and two-dimensional
(2-D) models are considered. Analytic solutions are obtained in these cases. Fi-
nally, daily closes of the Microsoft Corp. stock in 1999 are used to demonstrate the
effectiveness of our results.

The paper is organized as follows. In the next section, we formulate the optimiza-
tion problem under consideration. In sections 3 and 4, we derive an optimal selling
policy under the model formulated and assumptions imposed in this paper. We also
obtain expected exit time and profit and loss probabilities. In section 5, analytic solu-
tions of these policies are obtained in both 1-D and 2-D cases. A numerical example is
reported in section 6. All proofs of results are postponed and given in the appendix.

2. Problem formulation. Let M = {1, 2, . . . ,m} denote the state space of
the Markov chain α(·). Note that each element in M is an index and may be used
to represent a vector as in (1). Let Q = (qij)m×m be the generator of α(·) with
qij ≥ 0 for i �= j and

∑m
j=1 qij = 0 for each i ∈ M. In this paper, the market-trend

indicator process α(t) is not necessarily observable. Only the generator and its initial
distribution {pi = P (α(0) = i) for i ∈M} are available.

Let S(t) denote the price of a stock at time t. It satisfies the equation{
dS(t) = µ(α(t))S(t)dt+ σ(α(t))S(t)dw(t),
S(0) = S0, t ≥ 0,

(2)

where S0 > 0 is the initial price; µ(i), i ∈ M, is the expected return; σ(i), i ∈ M,
represents the stock volatility; and w(·) is a standard Brownian motion. The processes
α(·) and w(·) are independent. In addition, we assume σ2(i) > 0 for i ∈M.

This paper is concerned with a stock selling rule. A commonly used selling rule
in practice is of the form

τ0 = inf
{
t > 0 : S(t) �∈ (A,B)

}
,(3)

i.e., to sell a stock at time τ0 for prespecified A ≤ S0 ≤ B.
In this paper, we study only those strategies with A > 0 and B <∞.
The condition A > 0 is mainly motivated by practical considerations. In fact,

the lower bound A prescribes the maximum risk level of an investment. Cutting a
loss short is crucial to preserve the capital. This is especially important during a
sharp market downturn. An often used cut-loss level is 10–30% for active traders,
which corresponds to A = S0(1–10%) to A = S0(1–30%). W. J. O’Neil, the founder
of Investor’s Business Daily, suggests an even more conservative limit of 8% in [18].
In addition, Dammon and Spatt [4] have shown that an optimal selling rule should
include A = xL > 0 when transaction costs (commissions) and capital gain taxes are
added to the picture. Similar results are obtained in Cadenillas and Pliska [2] when
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µ > σ2 with constant µ and σ. However, from a purely mathematical point of view,
it is possible to have A = 0 as an optimal lower bound. This is demonstrated by
Øksendal [17, p. 199] using an optimal stopping approach. This condition means that
an investor needs to risk the entire capital to maximize a potential future return.

The condition B <∞ is imposed mainly for theoretical convenience (used in the
proof of Theorem 3.2). It is shown in [17] that the optimal upper bound B = x0 <∞.
In addition, even in the presence of capital gain taxes and transactions costs, the
optimal B should be finite when σ2/2 < µ < σ2 (see [2]). Furthermore, our numerical
study in this paper indicates that the optimal B < ∞; see Remark 5.1 and Tables
6 and 8 in which the optimal B(= S0e

z∗2 ) is bounded with fixed discount factor ρ.
However, when µ > σ2, it is proved in [2] that the optimal B = ∞. Infinite upper
bound is also obtained in [4]. Intuitively, the condition B = ∞ suggests that one
should never sell his position no matter how high its price goes. However, in reality, a
stock’s price often rests at a certain level (or goes sideways) after substantial advances
during a period of time. In this case, a predetermined B < ∞ (say 20–50% annual
return) would help an investor lock in real profit following these price advances and
move the money elsewhere for other investment opportunities. In view of this, such a
predetermined rule is more desirable for a relatively short-term (several months to a
year) investment.

Clearly, an optimal time to sell depends on the reward (utility) function and
system parameters. It may also depend on transaction costs and capital gain taxes if
these factors are included in the model. By and large, including commission and tax
factors in the model typically makes transactions less frequent, which corresponds to
smaller A and larger B. We refer the reader to [2], [3], and [4], among others, for
further discussions on models with these factors.

Assumption (A). In this paper, we consider the selling rule (3) with

A1 ≤ A ≤ A2 and B1 ≤ B ≤ B2

for any given 0 < A1 < A2 < S0 < B1 < B2 <∞.
Our goal is to find an optimal pair (A,B) under this assumption for a given

reward function.
For convenience, we choose a1, a2, b1, b2 such that

A1 = S0e
−b1 , A2 = S0e

−a1 , B1 = S0e
a2 , B2 = S0e

b2 .

It is easy to see that 0 < a1 ≤ b1 < ∞ and 0 < a2 ≤ b2 < ∞. Moreover, choose z1
and z2 such that

A = S0e
−z1 and B = S0e

z2

for some z1 and z2. Let I = [a1, b1]× [a2, b2]. We consider (z1, z2) ∈ I.
Here the target price is given by B = S0e

z2 and the stop-loss limit is A = S0e
−z1 .

A selling rule is determined by (z1, z2). For example, taking z1 = − log 0.9 and
z2 = log 1.2 corresponds to a target price of 20% gain and a stop limit of 10% loss.

Let

X(t) =

∫ t

0

(
µ(α(s))− σ2(α(s))

2

)
ds+

∫ t

0

σ(α(s))dw(s),

where the stochastic integral∫ t

0

σ(α(s))dw(s) =

∞∑
n=0

σ(αn)(w(tn+1)− w(tn))
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with random jump times 0 = t0 < t1 < · · · < tn < · · · of α(·) and α(t) = αn for
t ∈ [tn, tn+1), n = 0, 1, 2, . . .. Note that α(·) is a Markov chain with generator Q. It
follows that limn→∞ tn = ∞ with probability one; see Davis [5, p. 60]. Using X(t),
we can write S(t) as follows:

S(t) = S0 expX(t).

Moreover, τ0 can be defined in terms of X(·):

τ0 = inf
{
t > 0 : X(t) �∈ (−z1, z2)

}
.

The objective of the problem is to find (z1, z2) ∈ I to maximize

V = V (z1, z2) :=

m∑
i=1

piE[Φ(X(τ0))e
−ρτ0 |α(0) = i],

where ρ > 0 is a discount factor and Φ(x) is a function of x. For example, we may
consider a discounted reward

E

[(
S(τ0)− S0

S0

)
e−ρτ0

]
,(4)

which corresponds to Φ(x) = ex−1. This reward function will be used in our numerical
example in section 6.

3. An optimal policy. Given x ∈ [−z1, z2] ∈ I, consider the switching diffusion{
dξ(t) = r(α(t))dt+ σ(α(t))dw(t),
ξ(0) = x,

(5)

where r(i) = µ(i)− σ2(i)/2 for i ∈ M represents a continuously compounded return
rate. It follows that

ξ(t) = x+X(t).

For x ∈ [−z1, z2], we define

τ(x) = inf
{
t ≥ 0 : ξ(t) �∈ (−z1, z2)

}
.

Given α(0) = i and ξ(0) = x, let v(x, i) denote the value function

v(x, i) = E[Φ(ξ(τ(x)))e−ρτ(x)].

Then τ0 = τ(0) and E[Φ(X(τ0))e
−ρτ0 |α(0) = i] = v(0, i). The corresponding reward

function

V = V (z1, z2) =

m∑
i=1

piv(0, i).(6)

In order to evaluate V , one has only to find v(x, i). Formally, v(x, i) satisfies the
following differential equations:


σ2(i)

2

∂2v(x, i)

∂x2
+ r(i)

∂v(x, i)

∂x
− ρv(x, i) +Qv(x, ·)(i) = 0,

v(−z1, i) = Φ(−z1), v(z2, i) = Φ(z2) for x ∈ (−z1, z2), i ∈M,

(7)
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where Qf(·)(i) =∑j �=i qij(f(j)− f(i)) for any function f onM. In fact, if (7) has a
smooth solution v(x, i), then using Dynkin’s formula (see Fleming and Soner [8]), we
can show that v(x, i) = E[Φ(ξ(τ(x)))e−ρτ(x)], which in turn proves the uniqueness of
the solution.

Remark 3.1. Solving the differential equations in (7) consists of a two-point
boundary value (TPBV) problem. In general, such a problem may not have a solution.
For example, the equation ÿ + y = 0 with y(0) = 0 and y(π) = 1 does not have a
solution.

Let C2[−z1, z2] denote the space of functions that are twice continuously differen-
tiable on [−z1, z2]. The next theorem is concerned with the existence of a C2 solution
and optimal (z1, z2). All proofs of results are given in the appendix.

Theorem 3.2. Under Assumption (A), the following assertions hold:
(a) For each i ∈M, v(x, i) ∈ C2[−z1, z2] and is the unique solution to (7).
(b) For each fixed (x, i), v(x, i) is a continuous function of (z1, z2) on I.
(c) There exists an optimal selling policy determined by (z∗1 , z

∗
2) with the target

price S0e
z∗2 and stop-loss limit S0e

−z∗1 .
Remark 3.3. One may also consider a model involving a time variable in the

differential equation. In this case, the class of ODEs in (7) becomes a set of PDEs
which is much more difficult to deal with. From the computational point of view, it
is easier to work with an ODE than with a PDE. In addition, the existence of a time
dependent v typically requires Φ ∈ C3; see Krylov [13]. Such a condition is not suitable
when evaluating exit probabilities in the next section because the corresponding Φ(x)
is merely Borel measurable; see Remark 4.4.

4. Expected exit time and probabilities. In this section, we compute the
expected holding time Eτ0, the profit probability P (S(τ0) ≥ S0e

z∗2 ), and the loss
probability P (S(τ0) ≤ S0e

−z∗1 ), where (z∗1 , z
∗
2) is determined by the optimal policy

given in Theorem 3.2.

Expected Holding Time Eτ0. We first consider τ0. Given z1 and z2, define

T (x, i) = E[τ(x)|ξ(0) = x, α(0) = i].

The next lemma is concerned with the uniform boundedness of T .
Lemma 4.1. Given (z1, z2) ∈ I, there exists a constant K such that

T (x, i) ≤ K

for all x ∈ [−z1, z2] and i ∈M.
The boundedness of T and Dynkin’s formula lead to the following theorem.
Theorem 4.2. For each i ∈M, T (x, i) ∈ C2[−z1, z2] and is the unique solution

to the following equation:


σ2(i)

2

∂2T (x, i)

∂x2
+ r(i)

∂T (x, i)

∂x
+QT (x, ·)(i) + 1 = 0,

T (−z1, i) = T (z2, i) = 0 for x ∈ (−z1, z2), i ∈M.

(8)

The expected exit time is given by

Eτ0 =

m∑
i=1

piE[τ0|α(0) = i] =

m∑
i=1

piE[τ(0)|ξ(0) = 0, α(0) = i] =

m∑
i=1

piT (0, i).
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Remark 4.3. Note that the ODEs in (8) corresponds to the HJB equation in a
“control” problem with the cost function

J(x, i) = E

[∫ τ(x)

0

dt
∣∣∣ξ(0) = x, α(0) = i

]
.

Of course, there is no control variable involved.

Profit Probability P (S(τ0) ≥ S0ez2). Let

P1(x, i) = P (ξ(τ(x)) ≥ z2|ξ(0) = x, α(0) = i).

Then it is easy to see that

P (S(τ0) ≥ S0e
z2 |α(0) = i) = P1(0, i).

Moreover, P1 should satisfy the following equations:


σ2(i)

2

∂2P1(x, i)

∂x2
+ r(i)

∂P1(x, i)

∂x
+QP1(x, ·)(i) = 0,

P1(−z1, i) = 0, P1(z2, i) = 1 for x ∈ (−z1, z2), i ∈M.
(9)

Remark 4.4. Similarly, the ODEs in (9) correspond to the HJB equation of a
control problem with the cost function

J(x, i) = E
[
e−ρτΦ(ξ(τ))

∣∣∣ξ(0) = x, α(0) = i
]

with no (or fixed) control variable. Here Φ(x) = I{x=z2}, which is not differentiable.
Theorem 4.5. For each i ∈M, P1(x, i) ∈ C2[−z1, z2] and is the unique solution

to (9).
The profit probability is

P ∗
1 := P (S(τ0) ≥ S0e

z2) =

m∑
i=1

piP1(0, i).

Loss Probability P (S(τ0) ≤ S0e−z1). Similarly, let

P2(x, i) = P (ξ(τ(x)) ≤ −z1|x(0) = x, α(0) = i).

Then we have

P (S(τ0) ≤ S0e
−z1 |α(0) = i) = P2(0, i).

Moreover, P2 satisfies


σ2(i)

2

∂2P2(x, i)

∂x2
+ r(i)

∂P2(x, i)

∂x
+QP2(x, ·)(i) = 0,

P2(−z1, i) = 1, P2(z2, i) = 0 for x ∈ (−z1, z2), i ∈M.
(10)

Theorem 4.6. For each i ∈M, P2(x, i) ∈ C2[−z1, z2] and is the unique solution
to (10).

Then the loss probability is

P ∗
2 := P (S(τ0) ≤ S0e

−z1) =
m∑
i=1

piP2(0, i).
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5. Analytic solutions with m = 1, 2. In this section, we consider the simple
cases with m = 1 and m = 2. We aim at deriving analytic solutions.

1-D Case (m = 1). We consider the 1-D case, i.e., m = 1. Let σ = σ(1) and

r = r(1). We assume r �= 0. Then, the differential equations in (7) become




σ2

2
v̈(x) + rv̇(x)− ρv(x) = 0, x ∈ (−z1, z2),

v(−z1) = Φ(−z1), v(z2) = Φ(z2),

where ḟ(x) = df(x)/dx and f̈(x) = d2f(x)/dx2. Solve this equation to obtain

v(x) =

(
eη1z1−η2(z1+z2)Φ(z2)− eη1z1Φ(−z1)

e(η1−η2)(z1+z2) − 1

)
eη1x

+

(−e−η2z2Φ(z2) + eη1z1+(η1−η2)z2Φ(−z1)
e(η1−η2)(z1+z2) − 1

)
eη2x,

where 


η1 =
−r +

√
r2 + 2ρσ2

σ2
,

η2 =
−r −

√
r2 + 2ρσ2

σ2
.

The objective is to choose (z1, z2) ∈ I to maximize

V = v(0) =
(eη1z1+(η1−η2)z2 − eη1z1)Φ(−z1) + (e(η1−η2)z1−η2z2 − e−η2z2)Φ(z2)

e(η1−η2)(z1+z2) − 1
.

We next compute Eτ0. The corresponding differential equation is


σ2

2
T̈ (x) + rṪ (x) + 1 = 0,

T (−z1) = T (z2) = 0.

Let η0 = −2r/σ2. Then

T (x) =
z1 + z2

r(eη0z2 − e−η0z1)e
η0x − x

r
− z1e

η0z2 + z2e
−η0z1

r(eη0z2 − e−η0z1) .

It follows that

Eτ0 = T (0) =
z1 + z2

r(eη0z2 − e−η0z1) −
z1e

η0z2 + z2e
−η0z1

r(eη0z2 − e−η0z1) .

To compute P (S(τ0) ≥ S0e
z2) and P (S(τ0) ≤ S0e

−z1), we solve the corresponding
equations (9) and (10) and obtain


P1(x) =

e−η0z1 − eη0x
e−η0z1 − eη0z2 ,

P2(x) =
eη0x − eη0z2
e−η0z1 − eη0z2 .
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Table 2
Cases when ρ = 4 and σ = 0.3.

r 0.1 0.2 0.3 0.4 0.5

(−z∗1 , z∗2 ) (−0.36,0.13) (−0.36,0.14) (−0.36,0.16) (−0.36,0.19) (−0.36,0.21)

Eτ0 0.46 0.43 0.43 0.42 0.40

P ∗
1 0.83 0.90 0.94 0.97 0.98

P ∗
2 0.17 0.10 0.06 0.03 0.02

Table 3
Cases when ρ = 4 and r = 0.15.

σ 0.1 0.2 0.3 0.4 0.5

(−z∗1 , z∗2 ) (−0.36,0.06) (−0.36,0.09) (−0.36,0.13) (−0.36,0.16) (−0.36,0.20)

Eτ0 0.39 0.51 0.43 0.34 0.27

P ∗
1 1.00 0.97 0.87 0.79 0.72

P ∗
2 0.00 0.03 0.12 0.21 0.28

Table 4
Dependence of (z∗1 , z

∗
2 ) on b1.

b1 0.5 1 2 3 4 5

(−z∗1 , z∗2 ) (−0.5, 0.30) (−1, 0.30) (−2, 0.30) (−2.81, 0.30) (−3.77, 0.30) (−4.06, 0.31)

Setting x = 0, we have 


P ∗
1 = P1(0) =

e−η0z1 − 1

e−η0z1 − eη0z2 ,

P ∗
2 = P2(0) =

1− eη0z2
e−η0z1 − eη0z2 .

If we choose I = [0.01, 0.36]×[0.01, 2.3], then b1 = 0.36 which limits the maximum
risk to 30% and b2 = 2.3 which indicates a maximal 900% return.

Intuitively, stocks with larger expected return rate r correspond to bigger z∗2 , with
shorter holding time and higher probability of making profit. This can be seen from
Table 2 with fixed ρ = 4 and σ = 0.3.

On the other hand, for stocks with higher volatility, the corresponding z∗2 should
be bigger to create more room for higher returns. In the meantime, this brings with
it higher risk and therefore smaller probability of making money. This can be seen
from Table 3.

Note that z∗1 = 0.36 in all of these cases. This means in general an optimal
cut-loss level (30%) should be the maximum risk one is willing to take.

Remark 5.1. In addition, we also examine the dependence of (z∗1 , z
∗
2) on the choice

of b1 and b2. For this purpose, we choose ρ = 4, r = 0.75, and σ = 0.38 (which will be
used in section 6). According to our numerical tests, if b2 ≤ 0.30, then z∗2 = b2. For
b2 > 0.30, z∗2 = 0.30. Therefore, the optimal level z∗2 is mainly determined by other
parameters, such as r(i) and σ(i), which is not sensitive to the choice of b2 when it
is greater than 0.3. Fixing b2 = 5, we next examine the dependence of (z∗1 , z

∗
2) on b1.

The results are summarized in Table 4.
These results tell us that z∗1 ∼ b1; it means the larger the b1, the higher the risk

is allowed, and that usually yields better expected return.
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2-D Case (m = 2). The 2-D case (m = 2) corresponds to the model with

Markov switching. Let the generator of α(·) have the form

Q =

( −λ1 λ1

λ2 −λ2

)
for λ1 > 0 and λ2 > 0. The corresponding stationary distribution is

(ν1, ν2) =

(
λ2

λ1 + λ2
,

λ1

λ1 + λ2

)
.

In this example, we consider the market with two trends: up and down. Here r(1) > 0
corresponds to the up-trend return rate and r(2) < 0 the down-trend return rate. Let
r̃ = r(1)λ2 + r(2)λ1. Then the long-term average rate is given by

r(1)ν1 + r(2)ν2 = (λ1 + λ2)
−1r̃(11)

which is typically greater than 0 in practice.
The corresponding differential equations are given by


σ2(1)

2

∂2v(x, 1)

∂x2
+ r(1)

∂v(x, 1)

∂x
− ρv(x, 1) + λ1(v(x, 2)− v(x, 1)) = 0,

σ2(2)

2

∂2v(x, 2)

∂x2
+ r(2)

∂v(x, 2)

∂x
− ρv(x, 2) + λ2(v(x, 1)− v(x, 2)) = 0,

v(−z1, 1) = Φ(−z1), v(−z1, 2) = Φ(−z1),
v(z2, 1) = Φ(z2), v(z2, 2) = Φ(z2)

(12)

for −z1 < x < z2. Using the first equation, we obtain

v(x, 2) =
1

λ1

(
−σ

2(1)

2

∂2v(x, 1)

∂x2
− r(1)∂v(x, 1)

∂x
+ (ρ+ λ1)v(x, 1)

)
.

Substituting this into the second equation leads to(
σ2(1)σ2(2)

4

)
∂4v(x, 1)

∂x4
+

(
σ2(1)r(2) + σ2(2)r(1)

2

)
∂3v(x, 1)

∂x3

+

(
r(1)r(2)− σ2(1)(ρ+ λ2) + σ2(2)(ρ+ λ1)

2

)
∂2v(x, 1)

∂x2

−
(
r(1)(ρ+ λ2) + r(2)(ρ+ λ1)

)∂v(x, 1)
∂x

+ (ρ2 + ρ(λ1 + λ2))v(x, 1) = 0.

The corresponding characteristic equation is given by

ψ(η) =
σ2(1)σ2(2)

4
η4 +

σ2(1)r(2) + σ2(2)r(1)

2
η3

+

(
r(1)r(2)− σ2(1)(ρ+ λ2) + σ2(2)(ρ+ λ1)

2

)
η2

−
(
r(1)(ρ+ λ2) + r(2)(ρ+ λ1)

)
η + ρ2 + ρ(λ1 + λ2) = 0.

(13)

It is easy to show that ψ can be written as

ψ(η) =
σ2(1)σ2(2)

4

{(
η2 +

2r(1)

σ2(1)
η − 2(ρ+ λ1)

σ2(1)

)

×
(
η2 +

2r(2)

σ2(2)
η − 2(ρ+ λ2)

σ2(2)

)
− 4λ1λ2

σ2(1)σ2(2)

}
.
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Note that ψ(∞) = ψ(−∞) = ∞ and ψ(0) > 0. Moreover, let η+ > 0 and η− < 0
denote the zeros of

η2 +
2r(1)

σ2(1)
η − 2(ρ+ λ1)

σ2(1)
.

One may also take η+ > 0 and η− < 0 to be the zeros of

η2 +
2r(2)

σ2(2)
η − 2(ρ+ λ2)

σ2(2)
.

Then both ψ(η+) and ψ(η−) are less than zero. Therefore, in view of the intermediate
value property, ψ(η) should have four real zeros denoted by ηi, i = 1, 2, 3, 4. Hence,
there are constants ci, i = 1, 2, 3, 4, such that


v(x, 1) =

4∑
i=1

cie
ηi(x+z1),

v(x, 2) =

4∑
i=1

ciκie
ηi(x+z1),

where

κi =
1

λ1

(
−σ

2(1)

2
η2
i − r(1)ηi + ρ+ λ1

)
.

Using the initial conditions, we have


1 1 1 1
κ1 κ2 κ3 κ4

eη1(z1+z2) eη2(z1+z2) eη3(z1+z2) eη4(z1+z2)

κ1e
η1(z1+z2) κ2e

η2(z1+z2) κ3e
η3(z1+z2) κ4e

η4(z1+z2)





c1
c2
c3
c4


=



Φ(−z1)
Φ(−z1)
Φ(z2)
Φ(z2)


 .

In view of Theorem 3.2, the above equation has a unique solution (c1, c2, c3, c4).
The objective is to choose (z1, z2) to maximize

V := p1v(0, 1) + p2v(0, 2) =

4∑
i=1

ci(p1 + κip2)e
ηiz1 .

We next compute T (x, i). The corresponding differential equations are given by


σ2(1)

2

∂2T (x, 1)

∂x2
+ r(1)

∂T (x, 1)

∂x
+ λ1(T (x, 2)− T (x, 1)) + 1 = 0,

σ2(2)

2

∂2T (x, 2)

∂x2
+ r(2)

∂T (x, 2)

∂x
+ λ2(T (x, 1)− T (x, 2)) + 1 = 0,

T (−z1, 1) = T (−z1, 2) = T (z2, 1) = T (z2, 2) = 0 for − z1 < x < z2.

(14)

Following a similar procedure as in solving (12), we can show that the correspond-
ing characteristic function ψ0(η) is identical to the one in (13) with ρ = 0. In view of
(11), we consider only the case when r̃ := r(1)λ2+r(2)λ1 �= 0. Note that ψ̇0(0) = −r̃.
Therefore, ψ0 has zeros

η0
1 < 0, η0

2 < 0, η0
3 > 0, η0

4 = 0 if r̃ > 0,
η0
1 < 0, η0

2 > 0, η0
3 > 0, η0

4 = 0 if r̃ < 0.



STOCK TRADING: AN OPTIMAL SELLING RULE 75

Thus we have


T (x, 1) =
3∑
i=1

cie
η0
i (x+z1) + c4 − (λ1 + λ2)x

r̃
,

T (x, 2) =
3∑
i=1

ciκ
0
i e
η0
i (x+z1) + c4 − (λ1 + λ2)x− (r(1)− r(2))

r̃
,

where

κ0
i =

1

λ1

(
−σ

2(1)

2
(η0
i )

2 − r(1)η0
i + λ1

)
, i = 1, 2, 3.

In view of the initial conditions in (14), the following equation has a unique solution:


1 1 1 1
κ0

1 κ0
2 κ0

3 1

eη
0
1(z1+z2) eη

0
2(z1+z2) eη

0
3(z1+z2) 1

κ0
1e
η0
1(z1+z2) κ0

2e
η0
2(z1+z2) κ0

3e
η0
3(z1+z2) 1






c1
c2
c3
c4




=
1

r̃




−(λ1 + λ2)z1
−(λ1 + λ2)z1 − (r(1)− r(2))

(λ1 + λ2)z2
(λ1 + λ2)z2 − (r(1)− r(2))


 .

Hence the expected exit time is given by

Eτ0 = p1T (0, 1) + p2T (0, 2) =

3∑
i=1

ci(p1 + κ0
i p2)e

η0
i z1 + c4 +

p2(r(1)− r(2))
r̃

.

We now compute P1(x, i). The corresponding differential equation is


σ2(1)

2

∂2P1(x, 1)

∂x2
+ r(1)

∂P1(x, 1)

∂x
+ λ1(P1(x, 2)− P1(x, 1)) = 0,

σ2(2)

2

∂2P1(x, 2)

∂x2
+ r(2)

∂P1(x, 2)

∂x
+ λ2(P1(x, 1)− P1(x, 2)) = 0,

P1(−z1, 1) = P1(−z1, 2) = 0, P1(z2, 1) = P1(z2, 2) = 1

(15)

for −z1 < x < z2.
Similarly, we can show


P1(x, 1) =

3∑
i=1

cie
η0
i (x+z1) + c4,

P1(x, 2) =

3∑
i=1

ciκ
0
i e
η0
i (x+z1) + c4,

where, using the initial conditions in (15), (c1, c2, c3, c4) is determined by


1 1 1 1
κ0

1 κ0
2 κ0

3 1

eη
0
1(z1+z2) eη

0
2(z1+z2) eη

0
3(z1+z2) 1

κ0
1e
η0
1(z1+z2) κ0

2e
η0
2(z1+z2) κ0

3e
η0
3(z1+z2) 1






c1
c2
c3
c4


 =




0
0
1
1


 .
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Therefore, we obtain

P ∗
1 = P (S(τ0) ≥ S0e

z2) = p1P1(0, 1) + p2P1(0, 2) =

3∑
i=1

ci(p1 + κ0
i p2)e

η0
i z1 + c4.

Finally, we compute P2(x, i). The corresponding differential equation is identical
to that in (15) except the boundary conditions become

P1(−z1, 1) = P1(−z1, 2) = 1, P1(z2, 1) = P1(z2, 2) = 0.

Similarly, the loss probabilities given α = 1, 2 can be written as


P2(x, 1) =

3∑
i=1

cie
η0
i (x+z1) + c4,

P2(x, 2) =

3∑
i=1

ciκ
0
i e
η0
i (x+z1) + c4,

where the constants ci, i = 1, 2, 3, 4, are determined by


1 1 1 1
κ0

1 κ0
2 κ0

3 1

eη
0
1(z1+z2) eη

0
2(z1+z2) eη

0
3(z1+z2) 1

κ0
1e
η0
1(z1+z2) κ0

2e
η0
2(z1+z2) κ0

3e
η0
3(z1+z2) 1






c1
c2
c3
c4


 =




1
1
0
0


 .

The loss probability is

P ∗
2 = P (S(τ0) ≤ S0e

−z1) = p1P2(0, 1) + p2P2(0, 2) =

3∑
i=1

ci(p1 + κ0
i p2)e

η0
i z1 + c4.

Remark 5.2. It would be interesting to study the sensitivity (or robustness) of the
solution with respect to these parameters. Our numerical experiments indicate that
the solution (z∗1 , z

∗
2) is not sensitive with respect to small changes in (λi, r(i), σ(i)) in

both the 1-D and 2-D cases. However, there is no straightforward way to prove this
even in these simple cases. The main difficulty seems due to the fact that a maximizer
of a function is not necessarily continuous with respect to these parameters.

6. A numerical example. In this section, we consider a numerical example
with the reward function Φ(x) = ex − 1 given in (4). We begin with related compu-
tational issues. In this paper, the time is measured in years.

Estimation of r(i) and σ(i). To use the results in this paper, one needs to

estimate r(i) and σ(i). We first consider a 1-D case. In this case, r = r(1) and
σ = σ(1). The following procedure is standard for estimating the so-called historical
volatility; see Hull [10].

Let Si, i = 0, 1, . . . , n, denote the daily closing price of a stock and let

ζi = logSi − logSi−1, i = 1, 2, . . . , n.

Let ti = i/N0, where N0 = 252 equals the number of trading days per annum.
Then

ζi = r(ti − ti−1) + σ(w(ti)− w(ti−1)) ∼ N

(
r

N0
,
σ2

N0

)
.
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Let

ζ =
ζ1 + · · ·+ ζn

n
.

Then in view of the law of large numbers, the mean r = N0ζ. Moreover, the standard
deviation

σ√
N0

=

√√√√ 1

n− 1

n∑
i=1

(ζi − ζ)2.

Therefore, the volatility rate

σ =
√
N0 ·
√√√√ 1

n− 1

n∑
i=1

(ζi − ζ)2.(16)

In the 2-D case, we start from a major market index such as the DJIA, NASDAQ,
or S&P 500 to determine the market trends (up- or down-trends during a period of
time) in the past 52 weeks. The jump rates λ1 and λ2 can be determined using one
of these indices. Next we split the entire historical stock price data into two parts:
the up-trend part consists of the price during the market up-trend periods and the
down-trend part includes the price during the down-trend periods. Then we treat the
up-trend and down-trend parts separately as in the 1-D case to obtain the up-trend
volatility σ(1) and down-trend volatility σ(2).

To estimate the expected return rates, in the up-trend part let Sup
0 denote the

initial price, Nup the total points gained during the entire combined periods, and nup

the total number of trading days of the up-trend periods. Similarly, let Sdown
0 , Ndown,

and ndown denote the initial price, total points declined, and number of trading days
in the down-trend periods, respectively. We choose

r(1) = N0

(
log(Sup

0 +Nup)− logSup
0

nup

)
,

r(2) = N0

(
log(Sdown

0 −Ndown)− logSdown
0

ndown

)
.

Remark 6.1. There are several other approaches available for estimating the
parameters r(i) and σ(i) with constant α(t) (no switching). For example, linear
filtering theory [17, p. 93] can be used to estimate the expected return r(i). Another
volatility estimation method uses daily price spreads (daily highs vs. daily lows). The
larger the averaged spread the more volatile the stock. Interestingly, such an estimate
is quite consistent with the estimate in (16); see Tompkins [19].

We next apply our method to daily closes of Microsoft stock (NASDAQ-MSFT)
in 1999 (see Figure 1) based on the closes in the year 1998.

We use the NASDAQ Composite Index from 1998 to determine the general market
movement which is given as follows:

Up-trend 1/2–4/22 6/16–7/20 9/11–9/23 10/9–12/31

Down-trend 4/23–6/15 7/21–9/10 9/24–10/8
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Fig. 1. Adjusted closing price of MSFT (Jan. 4–Dec. 31, 1999).

Moreover, the total number of “up” trading days is 167 and that of “down” days
is 85. Thus, the average up (and average down, respectively) duration time is

1

λ1
=

167

252
· 1
4

and (
1

λ2
=

85

252
· 1
3
, respectively

)
.

This gives the jump rates of α(·)

λ1 = 6.04, λ2 = 8.90.

Remark 6.2. We would like to point out that the switching α(t) can also be used
to characterize the trends of an industrial group index or even that of an individual
stock.

In addition, we obtain

r(1) = 1.50, r(2) = −1.61, σ(1) = 0.44, σ(2) = 0.63.

We choose p1 = p2 = 0.5 because the market had rallied long enough since
September 1998 that a market correction was possible. We choose I = [0.01, 0.36]×
[0.01, 2.3]. Moreover, we take the initial value S0 = 70.5, which is the closing price on
January 4, 1999.

Selection of ρ. Note that the expected holding time Eτ0 and the probability

ratio P ∗
1 /P

∗
2 depend on the discount factor ρ. Typically, Eτ0 provides a time period

that capital has to be tied to the investment. On the other hand, P ∗
1 /P

∗
2 gives the

likelihood of profitability. Clearly, these are two important factors in trading decision
making. Intuitively, larger ρ discounts more on a future return, which leads to shorter
holding time and larger probability of making a profit (see Table 5). In view of this,
the discount factor ρ should be chosen according to how long investment capital is
available and/or the outlook of profit probability. For example, if one plans to invest
the capital for half a year, then one should choose ρ such that Eτ0 ∼ 0.5. Or one may
choose ρ so that the probability ratio

P ∗ :=
P ∗

1

P ∗
2

≥ k0
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Table 5
Dependence of Eτ0 and P ∗

1 /P
∗
2 on ρ in 2-D model.

ρ 1 2 3 4 5 6 7 8 9 10

Eτ0 2.07 1.23 1.00 0.51 0.44 0.39 0.35 0.33 0.30 0.29

P ∗
1 /P

∗
2 1.58 2.59 3.51 5.21 6.42 7.76 9.10 10.24 11.84 13.0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.5

1

1.5

2

2.5

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

z1

 

z2

V

Fig. 2. 2-D reward function: MSFT (Jan. 2–Dec. 30, 1998).

for a predetermined k0 > 0. These two criteria can also be used jointly if so desired.
To illustrate this idea, we compute Eτ0 and P ∗

1 /P
∗
2 for ρ = 1, 2, . . . , 10. Table 5 gives

the dependence of these quantities on ρ.
Suppose, for example, we plan to invest capital for half a year and want the

corresponding profit probability greater than 0.8 (or P ∗
1 /P

∗
2 ≥ 4). Then we should

choose ρ = 4. Using ρ = 4, the graph of the reward function V is given in Figure 2,
which indicates the maximum occurs at (z∗1 , z

∗
2) = (0.36, 0.28).

If one decides to observe our selling rule, then, according to Figure 1, sell on
January 20, 1999 at 81 if choosing ρ = 10, sell on January 26, 1999 at 81.48 if ρ = 9,
and so on. These selling dates are listed in Table 6, in which τ0 is the actual holding
time if sold at or above the target price S0e

z∗2 at closing. In Table 6, “*” means
the target price has not yet been reached. Since the target period Eτ0 = 2.07 is a
little more than two years, one expects the corresponding target 195.18 to be reached
around the beginning of year 2001.

One may also use the 1-D formula for similar calculations. In this case, r = 0.75
and σ = 0.38. The corresponding 1-D reward function (with ρ = 4) is given in
Figure 3. As in Tables 5 and 6, Tables 7 and 8 provide corresponding results in the
1-D setting.
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Fig. 3. 1-D reward function: MSFT (Jan. 2–Dec. 30, 1998).

Table 6
2-D model: Comparisons with real data.

ρ 1 2 3 4 5 6 7 8 9 10

S0e
z∗2 195.18 116.35 100.20 92.99 88.81 85.80 83.85 82.89 81.48 81.00

sold on * 12/22 12/15 4/5 3/25 1/26 1/26 1/26 1/26 1/20

τ0 * 0.98 0.96 0.25 0.23 0.064 0.064 0.064 0.064 0.048

|Eτ0 − τ0| * 0.25 0.04 0.26 0.21 0.33 0.29 0.27 0.24 0.24

Table 7
Dependence of Eτ0 and P ∗

1 /P
∗
2 on ρ in 1-D model.

ρ 1 2 3 4 5 6 7 8 9 10

Eτ0 2.34 0.78 0.50 0.38 0.31 0.26 0.23 0.20 0.19 0.17

P ∗
1 /P

∗
2 41.08 41.16 41.80 43.01 44.72 46.49 48.20 50.57 52.10 53.93

Looking at Tables 6 and 8, it can be seen that the 2-D model provides more
realistic target prices. As for the expected holding times, the 1-D model provides
better estimates for larger ρ(≥ 5), which corresponds to smaller Eτ0. On the other
hand, the 2-D model yields better estimates for smaller ρ(≤ 4). In addition, the 1-D
model in Table 7 produces a much greater probability ratio estimate P ∗

1 /P
∗
2 .

7. Concluding remarks. Selling a stock is a crucial step to nail down real
profit or to cut loss short. But emotions may come into play when selling. A rigorous
selling rule would help an investor to control human emotion and consistently make
profits. The results obtained in this paper, including the predetermined target price,
stop-loss limit, target period, and the corresponding probabilities, could be used as a
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Table 8
1-D model: comparisons with real data.

ρ 1 2 3 4 5 6 7 8 9 10

S0e
z∗2 428.86 129.70 104.24 95.08 89.77 86.72 84.75 82.82 81.88 80.94

sold on * * 12/15 7/16 3/25 3/25 1/26 1/26 1/26 1/20

τ0 * * 0.96 0.54 0.23 0.23 0.064 0.064 0.064 0.048

|Eτ0 − τ0| * * 0.46 0.16 0.08 0.03 0.17 0.17 0.13 0.12

guide to actual trading.

Appendix. In this appendix, we provide proofs of the results in this paper. We
also give two technical lemmas required in the proofs.

Proof of Theorem 3.2. To show (a), it suffices to show the equation has a C2

solution. Then following from Dynkin’s formula, we have

v(x, i) = E[e−ρτ(x)Φ(ξ(τ(x)))|α(0) = i],

which implies the uniqueness of the solution.
Let φ(x) = (v(x, 1), . . . , v(x,m))′ ∈ R

1×m. Then the differential equations (7)
can be written as

1

2
diag(σ2(1), . . . , σ2(m))φ̈+ diag(r(1), . . . , r(m))φ̇− ρφ+Qφ = 0.(17)

Let

Γ = diag

(
r(1)

σ2(1)
, . . . ,

r(m)

σ2(m)

)
,

Σ = diag

(
1

σ2(1)
, . . . ,

1

σ2(m)

)
.

Then (17) can be written as

φ̈+ 2Γφ̇− 2ρΣφ+ 2ΣQφ = 0.

Let θ ∈ [0, 1], a, b ∈ R
m. Consider the differential equation{
φ̈+ 2Γφ̇− 2ρΣφ+ 2θΣQφ = 0,
φ(−z1) = a, φ(z2) = b.

(18)

Let

y(x) = (φ′(x), φ̇′(x))′ =
(
v(x, 1), . . . , v(x,m),

∂v(x, 1)

∂x
, . . . ,

∂v(x,m)

∂x

)′

and

Aθ =

(
0m×m Im×m

2Σ(ρI − θQ) −2Γ
)
.

Then the differential equation (18) is equivalent to

ẏ = Aθy, φ(−z1) = a, φ(z2) = b.(19)
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Let

Θ =
{
θ ∈ [0, 1] : such that (18) (or (19)) has a solution for all a, b ∈ R

m
}
.

Using the condition φ(−z1) = a, we can write

y(x) = exp(Aθ(x+ z1))

(
a
c

)
,

where c ∈ R
m needs to be determined by the condition φ(z2) = b. Write

exp(Aθ(x+ z1)) =

(
F θ11(x+ z1) F θ12(x+ z1)
F θ21(x+ z1) F θ22(x+ z1)

)
,

such that F θij ∈ R
m×m for i, j = 1, 2. Then (19) has a solution for all b ∈ R

m if and

only if F θ12(z1 + z2) is invertible.
We first show that Θ is not empty. In fact, 0 ∈ Θ. To show this, we note that

when θ = 0

exp(A0x) =


 diag(eη

1
1x, . . . , eη

1
mx) diag(eη

2
1x, . . . , eη

2
mx)

diag(η1
1e
η1
1x, . . . , η1

me
η1
mx) diag(η2

1e
η2
1x, . . . , η2

me
η2
mx)




×
(

Im×m Im×m
diag(η1

1 , . . . , η
1
m) diag(η2

1 , . . . , η
2
m)

)−1

,

where η1
i and η2

i are the eigenvalues of A0 given by


η1
i = − r(i)

σ2(i)
−
√(

µ(i)

σ2(i)

)2

+
2ρ

σ2(i)
,

η2
i = − r(i)

σ2(i)
+

√(
µ(i)

σ2(i)

)2

+
2ρ

σ2(i)
,

i = 1, . . . ,m.

F 0
12(z1 + z2) = diag

(
eη

2
1(z1+z2) − eη1

1(z1+z2)

η2
1 − η1

1

, . . . ,
eη

2
m(z1+z2) − eη1

m(z1+z2)

η2
m − η1

m

)
,

which is invertible.
Next, let

θ∗ = sup
{
θ : [0, θ] ⊂ Θ

}
.

Clearly, θ∗ ≥ 0. We show that θ∗ = 1. Note that if we can show θ∗ ∈ Θ, then
F θ

∗
12 (z1 + z2) is invertible, which implies, for any δ > 0,

exp(Aθ
∗+δ(z1 + z2)) = exp(Aθ

∗
(z1 + z2)) +O(δ),

because

Aθ
∗+δ(z1 + z2) = Aθ

∗
(z1 + z2) + δ

(
0m×m 0m×m
−2ΣQ 0m×m

)
.
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Thus for δ small enough, F θ12(z1+z2)) is invertible. Following a similar argument, it is
easy to see that [0, δ) ⊂ Θ. Therefore, θ∗ > 0. If θ∗ < 1, then it follows (θ∗ + δ) ∈ Θ,
which contradicts the definition of θ∗. It remains to show θ∗ ∈ Θ. By the definition
of θ∗, there exists a sequence {θn} ⊂ Θ such that θn → θ∗ as n → ∞. For any
a = (a1, . . . , am)′ and b = (b1, . . . , bm)′, let φn(x) ∈ C2[−z1, z2] be the corresponding
solutions with terminal reward function

Φ(x, i) =
bi − ai
z1 + z2

(x− z2) + bi.

Then it can be shown that φn is uniformly bounded by applying Dynkin’s formula to

e−ρtφn(ξn(t), αn(t)),

which leads to

φn(x) =
(
E[e−ρτ(x)Φ(ξn(τ(x)))|αn(0) = 1], . . . , E[e−ρτ(x)Φ(ξn(τ(x)))|αn(0) = m]

)′
,

where αn(t) is a Markov chain generated by θnQ and ξn(t) is the corresponding
diffusion given in (5).

Integrating twice the differential equation (18) from −z1 to x yields{
φn(x) = a+ (x+ z1)φ̇n(−z1) + gn(x),

b = a+ (z1 + z2)φ̇n(−z1) + gn(z2),

where

gn(x) = −2Γ
∫ x

−z1
(φn(r)− a)dr+2ρΣ

∫ x

−z1

∫ u

−z1
φn(r)drdu− 2θnΣQ

∫ x

−z1

∫ u

−z1
φn(r)drdu.

In view of the uniform boundedness of φn, there exists a subsequence {nk} such
that

∫ x
−z1 φnk(r)dr converges in sup-norm. Thus gnk(−z1) converges which in turn

implies φ̇nk(−z1) converges. Therefore, φnk(x) converges in sup-norm. Hence, for all
a, b ∈ R

m, (18) has a solution when θ = θ∗. It follows that θ∗ ∈ Θ.
We next show that φ(x, i) = φz1,z2(x, i) is continuous. This can be seen from

φ(x) = F 1
11(x+ z1)Φ(−z1)11 + F 1

12(x+ z1)(F
1
12(z1 + z2))

−1

× (Φ(z2)11− F 1
11(z1 + z2)Φ(−z1)11

)
,

where 11 = (1, . . . , 1)′ ∈ R
m.

Given (x, i), the continuity of v(x, i) in (z1, z2) implies the continuity of V in
(z1, z2). The existence of (z∗1 , z

∗
2) maximizing V follows from the compactness of I.

This completes the proof.
Remark A.1. Note that a key condition that guarantees the existence is the

uniform boundedness of φ(x). The proof does not go through without such a condition.
For example, consider

ÿ + η2y = 0,

with 0 ≤ η ≤ 1, y(0) = a, and y(π) = b. Then

y(x) =

(
b− a cos ηπ

sin ηπ

)
sin ηx+ a cos ηx,
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which is not uniformly bounded as η → 1. Consequently,

eAx =


 cos ηx

sin ηx

η
−η sin ηx cos ηx


 .

F12 = (sin ηx)/η is not invertible at x = π when η = 1.
Recall the independence condition of α(·) and w(·). We have the following lemma.
LEMMA A.2. Let D denote the sigma-algebra generated by {α(s) : s ≤ T}. Then

E

[∫ T

0

σ(α(s))dw(s)
∣∣∣D
]
= 0.

Proof. Given a positive integer n, let tk = kT/n for k = 0, 1, . . . , n. Define

αn(t) = α(tk) if t ∈ [tk, tk+1), k = 0, 1, . . . , n,

and αn(T ) = α(T ). Then it follows that, as n→∞,∫ T

0

(
σ(α(s))− σ(αn(s))

)2
ds→ 0 a.s.

Since M is finite, σ(i) is bounded. The Lebesgue dominated convergence theorem
implies

E

∫ T

0

(
σ(α(s))− σ(αn(s))

)2
ds→ 0.

We next show that, for each fixed n,

E

[∫ T

0

σ(αn(s))dw(s)
∣∣∣D
]
= 0 a.s.

In fact, let yn(t) = yk if t ∈ [tk, tk+1) for given (y0, y1, . . . , yn) ∈ R
n+1. Define

f(y0, y1, . . . , yn, ω) =

∫ T

0

σ(yn(s))dw(s)(ω).

We have

g(y0, y1, . . . , yn) := E[f(y0, y1, . . . , yn, ω)|D] = 0.

It follows that, in view of the martingale property,

g(α(t0), α(t1), . . . , α(tn)) = Ef(α(t0), α(t1), . . . , α(tn), ω) = 0.

Moreover, using Jensen’s inequality, we have(
E

[∫ T

0

(
σ(α(s))− σ(αn(s))

)
dw(s)

∣∣∣D
])2

≤ E



(∫ T

0

(
σ(α(s))− σ(αn(s))

)
dw(s)

)2 ∣∣∣D

 .
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Therefore, we obtain

E

(
E

[∫ T

0

σ(α(s))dw(s)
∣∣∣D
]
− E
[∫ T

0

σ(αn(s))dw(s)
∣∣∣D
])2

≤ E

∫ T

0

(
σ(α(s))− σ(αn(s))

)2
ds→ 0.

Hence we have

E

[∫ T

0

σ(α(s))dw(s)
∣∣∣D
]
= 0 a.s.

The next lemma will be needed in the proof of Lemma 4.1.
LEMMA A.3. Given z > 0, there exist s0 > 0 and δ0 > 0 such that

P (|ξ(s0)| ≥ z|ξ(0) = x, α(0) = i) ≥ δ0(20)

for all |x| ≤ z and i ∈M.
Proof. If (20) does not hold, then, for some z0 > 0, there exist |x0| ≤ z0 and

i0 ∈M such that, for all s0 and δ0,

P (|ξ(s0)| ≥ z0|ξ(0) = x0, α(0) = i0) < δ0,

which implies P (|ξ(s0)| ≥ z0|ξ(0) = x0, α(0) = i0) = 0 and hence |ξ(s0)| < z0 a.s.
Therefore,

|ξ(s0)− x0| ≤ z0 + |x0| a.s.(21)

In view of Lemma A.2, we have

E

[∫ s0

0

r(α(s))ds

∫ s0

0

σ(α(s))dw(s)

]

= E

{∫ s0

0

r(α(s))dsE

[∫ s0

0

σ(α(s))dw(s)
∣∣∣D]} = 0.

It follows that

E(ξ(s0)− x0)
2 = E

(∫ s0

0

r(α(s))ds

)2

+ E

(∫ s0

0

σ(α(s))dw(s)

)2

≥ E

∫ s0

0

(σ(α(s)))2ds.

Moreover, it is well known that for i1 ∈M,

νi := lim
s→∞P (α(s) = i|α(0) = i1) exists.

It is easy to see that νi ≥ 0 and ν1 + · · ·+ νm = 1. Therefore,

1

s0
E

∫ s0

0

(σ(α(s)))2ds =
1

s0

∫ s0

0

m∑
i=1

σ2(i)P (α(s) = i|α(0) = i1)ds

→
m∑
i=1

σ2(i)νids > 0.
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This contradicts (21) because

E(ξ(s0)− x0)
2

s0
≤ (z0 + |x0|)2

s0
→ 0 as s0 →∞.

Proof of 4.1. Let z = max{z1, z2}. Then in view of Lemma A.3, there exist s0
and δ0 such that

P (|ξ(s0)| ≥ z|ξ(0) = x, α(0) = i) ≥ δ0

for all |x| ≤ z and i ∈M.
Using this inequality, we have

P (τ0 > s0) ≤ P (|ξ(s0)| < z|ξ(0) = x, α(0) = i)
≤ 1− P (|ξ(s0)| ≥ z|ξ(0) = x, α(0) = i)
≤ 1− δ0.

Similarly, we have

P (τ0 > 2s0) ≤ P (|ξ(2s0)| < z, |ξ(s0)| < z|ξ(0) = x, α(0) = i)

=

m∑
j=1

∫ z

−z
P (|ξ(2s0)| < z|ξ(s0) = y, α(s0) = j)

×P (ξ(s0) ∈ dy, α(s0) = j|ξ(0) = x, α(0) = i)
≤ (1− δ0)P (|ξ(s0)| < z|ξ(0) = x, α(0) = i)
≤ (1− δ0)2.

In general, we can show, for each n = 1, 2, . . .,

P (τ0 > ns0) ≤ (1− δ0)n.

Following the proof of Chow and Teicher [1, Corollary 4.1.3], we have

Eτ(x) ≤ s0

∞∑
n=0

P (τ0 > ns0) ≤ s0

∞∑
n=0

(1− δ0)n =
s0
δ0
.

Proof of Theorem 4.2. The proof is similar to that of Theorem 3.2 except that if
T (x, i) is a solution to (8), then by Dynkin’s formula,

T (x, i) = E[τ(x)|ξ(0) = x, α(0) = i] ≤ K.

Proof of Theorem 4.5. The proof follows that of Theorem 3.2 except by taking
Φ(x) = I{x=z2}, ρ = 0, and noting that

P1(x, i) = E[Φ(ξ(τ(x)))|α(0) = i].

Proof of Theorem 4.6. This is similar to the proof of Theorem 4.5.

Acknowledgments. The author would like to thank the referees and the as-
sociate editor for their many valuable comments and suggestions which led to much
improvement of the paper.
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ON THE BOUNDEDNESS AND CONTINUITY OF THE SPECTRAL
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Abstract. It is known that the spectral factorization mapping is bounded, but not continuous,
on L∞, the space of essentially bounded measurable functions on the unit circle. In this article
we study the spectral factorization mapping on decomposing Banach algebras. The most important
example of a decomposing Banach algebra is the Wiener algebra, the space of all absolutely convergent
Fourier series. It is shown that the spectral factorization mapping is locally Lipschitz continuous,
but not bounded, on all decomposing Banach algebras in consideration. An application is given to
the construction of approximate normalized coprime factorization.

Key words. spectral factorization, continuity of the factorization, boundedness of the factor-
ization, normalized coprime factorization, decomposing Banach algebras

AMS subject classifications. 47A68, 46J10, 46J15
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1. Introduction. Spectral factorization is the process by which a (possibly
matrix-valued) function G is written as G = W ∗W ; that is, G(eiθ) = W (eiθ)∗W (eiθ)
for θ ∈ [0, 2π], or G(iω) = W (iω)∗W (iω) for ω ∈ R. It is a procedure arising in many
system-theoretic applications: for example, it is linked to H∞ robust control, linear
quadratic optimal control, and linear quadratic Gaussian (LQG) optimal control by
the solution of Riccati equations [6, 8, 9, 19, 27, 29, 30]. Again, it is also seen in
robust control via the construction of normalized coprime factorizations [30, 8].

For finite dimensional linear systems, the required spectral factors are generally
rational functions, and there are well-established algebraic techniques for their so-
lution. In the infinite dimensional case, it is common to proceed by approximation
procedures (cf. [20, 11]), in which case it is important to know whether the operation
of taking spectral factors is continuous and to be able to provide error estimates. The
answer to this question depends crucially on which normed spaces one is using, as we
shall see later. We shall build on work of Clancey and Gohberg [7], which we relate
to work of Peller and Khrushchev [23], in order to give a systematic approach to this
problem.

It is also important to know under what circumstances the norms of the spectral
factors can be bounded in terms of the norm of the function being factorized. One
application that we mention here is in the work of Patil on recovery of Hardy class
functions from their values on a limited bandwidth [22, 21], where a sequence of
spectral factorizations is employed. Similar calculations arise in the context of band-
limited identification [2]. The boundedness problem turns out to be independent of
the question of the continuity of the factorization. We shall see that, in most of the
function spaces considered in systems theory (excepting the obvious case of the L∞
norm), spectral factorization is actually unbounded.

In this paper we study only the scalar case. However, all the results obtained in
this paper can be generalized without any problems to the matrix case.
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The outline of this paper is as follows. In section 2 we review the notion of a
decomposing Banach algebra and present some important examples. Spectral factor-
ization is discussed in section 3, and its continuity in decomposing Banach algebras
is the subject of section 4. The more difficult issue of boundedness is analyzed in sec-
tion 5. Most of the results are presented originally for discrete-time systems (spectral
factorization on the unit circle): a brief discussion of the half-plane case is given in
section 6.

2. Decomposing Banach algebras. In this section we recall the notion of
decomposing Banach algebras and we give many examples of these Banach algebras.
We start by recalling some facts about Banach algebras which are frequently used in
this paper.

By T we denote the unit circle {z ∈ C | |z| = 1} and by D the disc {z ∈ C | |z| <
1}. Let Lp(T), 1 < p <∞, be the Banach space of p-integrable functions on T.

Let B be a commutative Banach algebra satisfying B ⊂ L2(T). We will denote
the norm of B by ‖ · ‖B and let GB be the set of all invertible elements of B. If f ∈ B,
we define the exponential by ef :=

∑∞
n=0

fn

n! . Then ef ∈ GB. By expB we denote
the set {f ∈ B | f = eg, g ∈ B}. Note that expB coincides with the component of GB
which contains the identity, which is denoted by 1. Another important subset of B is

Bpos := {f ∈ B | f(t) > 0 for every t ∈ T}.
For more information on Banach algebras we refer the reader to Rickart [24], Larsen
[18], and Bonsall and Duncan [5].

Next we will recall the notion of decomposing Banach algebras. For every f ∈
L2(T) we can define a function Pf ∈ L2(T) by

(Pf)(z) =
1

2πi

∫
T

f(ω)

ω − z
dω.

P is the projection from L2(T) to the Hardy class H2(D), the space of all functions
in L2(T) which are holomorphic within the unit disc; see, for example, Hoffman [13,
p. 151]. Moreover, P is the projection from Lp(T) onto Hp(D) if p ∈ (1,∞); see
Hoffman [13, p. 151].

Definition 2.1. A commutative Banach algebra B ⊂ L2(T) is called a decom-
posing Banach algebra if

(A1) f ∈ B implies f̄ ∈ B and Pf ∈ B;
(A2) B is a Banach algebra with respect to pointwise multiplication on T;
(A3) the set of trigonometric polynomials is dense in B;
(A4) every nonzero multiplicative functional on B coincides with a functional f �→

f(t) defined as the value at some point t ∈ T (note that ϕ : B → C is a
multiplicative functional if ϕ is a linear functional and ϕ(ab) = ϕ(a)ϕ(b),
a, b ∈ B).

This class of Banach algebras coincides with a class of Banach algebras introduced
by Peller and Khrushchev [23] in order to study the problem of best approximation
by analytic functions. Clancey and Gohberg [7] gave a more general definition of a
decomposing Banach algebra, although they then imposed extra conditions in order to
guarantee the existence of factorizations. The following proposition has been proved
by Peller and Khrushchev [23].

Proposition 2.2. Let B be a decomposing Banach algebra. Then B is continu-
ously embedded in C(T), the space of maximal ideals of the algebra B coincides with
T, and P ∈ L(B).
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From now on, the symbol B will invariably denote a decomposing Banach algebra.
The following proposition follows directly from the Beurling–Gel’fand theorem (see,
for example, Larsen [18, p. 79 ff]).

Proposition 2.3. Every f ∈ B, such that f(t) �= 0 for all t ∈ T, is an element
of GB.

Using Proposition 2.3, we get Bpos ⊆ expB, because an element f ∈ Bpos can be
joined to the identity via the path λ + (1 − λ)f . As usual, for a function f ∈ L1(T)

and n ∈ Z, we write f̂(n) for the nth Fourier coefficient of f . Let B+ be defined by

B+ := {f ∈ B | f̂(n) = 0 for all n < 0}.
For a decomposing Banach algebra B, the set B+ is the set of all functions f in B that
can be written as f = Pg for some g ∈ B; that is, P is the projection from B onto
B+. By Q ∈ L(B) we denote the operator Q := I − P . Note that by this definition
1(t) = 1 is an element of B+. An important property of B+ is that B+ is a Banach
algebra.

Besides decomposing Banach algebras B, we consider the Banach algebras L∞(T)
and C(T). By L∞(T) we denote the space of measurable and essentially bounded
functions on T. Clearly L∞(T) satisfies (A2) and L∞(T)+ is given by H∞(D), the
space of holomorphic and bounded functions within the unit disc D. However, L∞(T)
does not satisfy the second part of (A1); see, for example, Hoffman [13, p. 155]. Let
C(T) be the Banach space of continuous functions on T. The algebra C(T) satisfies
(A2)–(A4), but the second part of (A1) does not hold. Note that the space C(T)+
coincides with the disc algebra A(D), the Banach space of all continuous functions on
D̄ which are holomorphic within the unit disc. Finally, we define

(L∞(T))pos := {f ∈ L∞(T) | f−1 ∈ L∞(T) and f(t) > 0 for almost every t ∈ T},
(C(T))pos := {f ∈ C(T) | f(t) > 0 for t ∈ T}.

Thus L∞(T) and C(T) are Banach algebras, but not decomposing Banach algebras.
Moreover, Proposition 2.2 implies that a decomposing Banach algebra cannot be a
C∗-algebra. Otherwise, the Gel’fand–Naimark theorem [18, p. 277] implies B = C(T),
which cannot hold since C(T) is not a decomposing Banach algebra.

All Banach algebras presented in the following are decomposing Banach algebras.
The proofs can be found in Peller and Khrushchev [23]. One of the most important
examples is the Wiener algebra.

Example 2.4. TheWiener algebraW consists of all absolutely convergent Fourier
series

f(eit) =
∑
n∈Z

ane
int(2.1)

and is equipped with the norm

‖f‖W :=
∑
n∈Z

|an| <∞.

The next example shows that it is also possible to introduce a weighted version
of the Wiener algebra.

Example 2.5. Let ω = {ωn}∞n=0 be a sequence of numbers satisfying

ω|n| > 0 and ω|n| ≤ ω|n−k|ω|k|, n, k ∈ Z,(2.2)
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and

limn→+∞ω1/n
n = 1.(2.3)

Then W (ω) denotes the weighted Wiener algebra with respect to the weights ω, which
consists of all Fourier series f , given by (2.1), with

‖f‖W (ω) :=
∑
n∈Z

ω|n||an| <∞.

Note that

ω|n| ≤ ω|n−n|ω|n|

implies ω0 ≥ 1, and thus

ω|0| ≤ ω|0−k|ω|k| = ω2
|k|

shows infk≥0 ωk ≥ 1 > 0.
Choosing the sequence ωn := 1, we get W (ω) = W .
Example 2.6. Let p ∈ (1,∞) and ω = {ωn}n∈N0

be a sequence of numbers
satisfying

sup
m∈Z


 ∑
k+j=m

(
ω|m|

ω|k|ω|j|

)p′
1/p′

<∞(2.4)

and (2.3), where 1/p+ 1/p′ = 1. Then F p(ω) denotes the space of all Fourier series
f , given by (2.1), which satisfy

‖f‖F�p(ω) :=

(∑
n∈Z

ωp|n||an|p
)1/p

<∞.

Using ω0 = ‖enite−nit‖F�p(ω) ≤ ‖enit‖F�p(ω)‖e−nit‖F�p(ω) = ω2
n, we get infn≥0 ωn >

0. Finally, using (2.4), we see supn≥0 ωn =∞.
Another quite important example is the Hölder continuous functions of order α.
Example 2.7. By λα, α > 0, we denote the Banach algebra of Hölder continuous

functions of order α. If α ∈ (0, 1], then λα is the closure of the set of trigonometric
polynomials under the norm

‖f‖λα := ‖f‖∞ + sup
s,t∈T,s �=t

|f(s)− f(t)|
|s− t|α .

λ1 is also known as the Lipschitz class. If α > 1, then λα is the Banach algebra given
by the closure of the set of trigonometric polynomials under the norm

‖f‖λα :=

n∑
j=0

1

j!
‖f (j)‖∞ + ‖f (n)‖λα−n ,

where n is the integer for which n < α ≤ n+ 1.
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Example 2.8. For q ∈ (1,∞), p ∈ [1,∞], and α ∈ (1/p,∞), or q = 1, p ∈ [1,∞],
and α = 1/p, the Besov class Bα

pq is defined by

Bα
pq :=

{
f ∈ Lp | ‖f‖Bαpq :=

∫ 2π

0

‖∆n
t f‖qLp(T)

|t|1+αq dt <∞
}

,

where n is an integer such that α < n, and ∆n
t := ∆t∆

n−1
t with (∆tf)(e

is) :=
f(ei(s+t))− f(eis). This definition does not depend on the choice of n, n > α.

Example 2.9. Let Lsp, p ∈ [1,∞), and s > 1/p, denote the Sobolev spaces of order
s, which denotes the space of all Fourier series f , given by (2.1), which satisfy

‖f‖Lsp :=

(∑
n∈Z

(1 + |n|)sp|an|p
)1/p

<∞.

If s is an integer, then an equivalent norm on Ls2 is given by

‖f‖Ls2 :=


 n∑
j=0

‖f (j)‖2L2(T)




1/2

, f ∈ Ls2,

and (Ls2)+ coincides with the Hardy–Sobolev space on the disc; see, for example,
Baratchart and Zerner [3].

Example 2.10. Let Z be one of the spaces V MO, A(D)+A(D), H1(D)+H1(D),

or L1(T)+ L̃1(T). Here V MO is the space of functions of vanishing mean oscillation,
i.e.,

V MO :=

{
f ∈ L1(T) | lim

a↘0
sup

λ(I)≤a

1

λ(I)

∫
I

|f − fI |dλ = 0

}
,

where I is an arc of T, λ is the normalized Lebesgue measure on T, and fI :=
1

λ(I)

∫
I
fdλ is the mean value on I. A suitable norm on V MO is given by

‖f‖∗ = |f̂(0)|+ sup
I

1

λ(I)

∫
I

|f − fI |dλ.

If f is a function on T, then f̄ denotes the function given by f̄(t) := f(t), and f̃
denotes the harmonic conjugate of f . Note that for every f ∈ L1(T) there exists a
harmonic conjugate f̃ ; see Zygmund [31]. By Z(n), n ∈ N, we denote the space

Z(n) := {f a distribution on T | f (n) ∈ Z}
provided with the norm

‖f‖Z(n) :=

n∑
j=0

1

j!
‖f (j)‖Z .

If Z is one of the spaces V MO, A(D) + A(D), H1(D) + H1(D), then Z(n), n ∈ N,

is a decomposing Banach algebra. Moreover, if n ≥ 2, then (L1(T) + L̃1(T))
(n) is a

decomposing Banach algebra.
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Example 2.11. Let C be a decomposing Banach algebra, and let Q be a positive
constant. Furthermore, let {Mn}n≥0 be an increasing and logarithmically convex
sequence with M0 = 1 for which there exists a constant k > 0 such that

lim inf
n→∞

Mn

nMn−k
> 0.

Then the Carleman class CQ(C, {Mn}), the space of all infinitely differentiable func-
tions f on T with

lim
n→∞

‖f (n)‖C
Qnn!Mn

= 0,

equipped with the norm

‖f‖CQ(C,{Mn}) := sup
n≥0

‖f (n)‖C
Qnn!Mn

,

is a decomposing Banach algebra.

3. Spectral factorization. Next we recall the definitions of spectral densities
and spectral factors, and we show that every spectral density that is positive and
bounded away from zero admits a spectral factor. Let A denote L∞(T), C(T), or a
decomposing Banach algebra B.

Definition 3.1. We call f ∈ A a spectral density if there exists a function
h ∈ GA+ := G(A+) such that

f(eit) = |h(eit)|2.
h is called a spectral factor of f .

If f ∈ A is a spectral density, then the spectral factor is unique up to a constant
of modulus 1. Next we consider whether every f ∈ Apos is a spectral density.

Proposition 3.2. Every f ∈ (L∞(T))pos is a spectral density, and one spectral
factor is given by

h(z) := exp

{
1

2

1

2π

∫ 2π

0

eit + z

eit − z
log f(eit) dt

}
.(3.1)

Proof. h and h−1 are holomorphic within the disc [13, p. 61], and f(eit) = |h(eit)|2
[13, pp. 30, 32], which proves the statement.

However, Treil [28] showed that there exist functions f ∈ (C(T))pos for which
there is no continuous spectral factor.

Proposition 3.3. Every f ∈ Bpos is a spectral density, and one spectral factor
is given by (3.1).

Proof. We have f(eit) = |h(eit)|2 [13, pp. 30, 32]. We write f = eg with g ∈ B.
Using

eit + z

eit − z
=

2eit

eit − z
− 1,

we get

h(z) = exp

{
−1

2
(P (log f))(0)

}
exp{(P (log f))(z)}

= exp

{
−1

2
(Pg)(0)

}
exp{(Pg)(z)}.(3.2)
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Since Pg ∈ B+ and B+ is a Banach algebra, this shows h ∈ GB+. Thus the proof is
completed.

Note that it is easy to see that, for A = L∞ or B, this sufficient condition is also
a necessary condition, i.e., f ∈ A is a spectral density if and only if f ∈ Apos. We
now consider the mapping Φ : Apos → A+, given by

Φ(f)(z) := exp

{
1

2

1

2π

∫ 2π

0

eit + z

eit − z
log f(eit) dt

}
.

Thus Φf is a spectral factor of f , and we have

Φ(f)Φ(f) = f, f ∈ Apos.(3.3)

We call the mapping Φ the spectral factorization mapping. We also could define the
spectral factorization mapping for A = C(T). However, in this case Φ only maps from
C(T)pos to H∞(D) = L∞(T)+ and not to A(D) = C(T)+.

4. Continuity of the spectral factorization. In this section we discuss the
continuity of the spectral factorization mapping.

Definition 4.1. We say the spectral factorization mapping is continuous if for
every converging sequence {fn}n ∈ Apos with limit in Apos the sequence of correspond-
ing spectral factors converges.

Anderson [1] showed that the spectral factorization mapping is not continuous
in L∞(T) and in C(T). This result also follows from the example given by Treil
[28] of a continuous spectral density with discontinuous spectral factor. However, we
shall show that the spectral factorization mapping is locally Lipschitz continuous in
decomposing Banach algebra. The next lemma is taken from Clancey and Gohberg
[7, Theorem 1.1, p. 35].

Lemma 4.2. If f ∈ Bpos, then the operators Tf , Rf ∈ L(B), given by
Tf (x) := P (fx) +Q(x) and Rf (x) := P (x) +Q(fx), x ∈ B,

are invertible. Moreover, e−Pg = T−1
f 1 and e−Qg = R−1

f 1, where f = eg.
A further useful result is the following.
Lemma 4.3. There exists a constant m > 0 such that

‖g‖B ≤ m‖g‖B, g ∈ B.(4.1)

Proof. The supremum-norm ‖ · ‖∞ is also a norm on B, and we have ‖f̄f‖∞ =
‖f‖2∞. Thus B is a A∗-algebra. For more information on A∗-algebras we refer the
reader to Rickart [24]. Since the involution is continuous on A∗-algebras (see Rickart
[24, p. 187]), we get (4.1). Thus the lemma is proved.

Our next result is a continuity result for spectral factorization. It is a stronger
form of the results of Clancey and Gohberg [7, p. 205], and we provide more complete
arguments than they did.

Theorem 4.4. The spectral factorization mapping is locally Lipschitz continuous
on B. More precisely, for every f ∈ Bpos there exist constants ρ, c > 0 such that for all
f1, f2 ∈ Bρ(f) := {g ∈ Bpos | ‖g − f‖B < ρ} we have that f1, f2 are spectral densities
and that

‖Φ(f1)− Φ(f2)‖B ≤ c‖f1 − f2‖B,‖Φ(f1)
−1 − Φ(f2)

−1‖B ≤ c‖f1 − f2‖B,

‖Φ(f1)− Φ(f2)‖B ≤ c‖f1 − f2‖B,‖Φ(f1)
−1 − Φ(f2)

−1‖B ≤ c‖f1 − f2‖B.
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Proof. Let f ∈ Bpos be arbitrary. Using a standard result about the continuity
of inversion (which, for example, can be found in Hille and Phillips [12, Theorem 2.2,
p. 118]), there exist constants ρ1,m > 0 such that for every f1, f2 ∈ Bρ1(f), we have
that f1, f2 are spectral densities, and ‖f−1

1 ‖B, ‖f−1
2 ‖B ≤ m. Let f1, f2 ∈ Bρ1(f) be

arbitrary, and choose g1, g2 ∈ B such that f1 = eg1 and f2 = eg2 . Since f1 and f2

are spectral densities, Lemma 4.2 shows that the operators Tf1 and Tf2 are invertible.
Moreover, we have ‖Tf1 − Tf2‖ ≤ ‖P‖‖f1 − f2‖B.

Using again the theorem of inversion, there exist constants ρ2 ∈ (0, ρ1] and
d0, d1 > 0 such that for every f1, f2 ∈ Bρ2

(f), we have ‖T−1
f1
‖B, ‖T−1

f2
‖B ≤ d0 and

‖T−1
f1
− T−1

f2
‖ ≤ d1‖f1 − f2‖B. Especially, ‖T−1

f1
(1)− T−1

f2
(1)‖B ≤ d1‖1‖B‖f1 − f2‖B,

and thus by Lemma 4.2 we get

‖e−Pg1 − e−Pg2‖B ≤ d1‖1‖B‖f1 − f2‖B.

In a similar manner it can be proved that there exist constants ρ ∈ (0, ρ2] and d2, d3 >
0 such that for every f1, f2 ∈ Bρ(f), we have ‖e−Qg1‖B, ‖e−Qg2‖B ≤ d2 and ‖e−Qg1 −
e−Qg2‖ ≤ d3‖f1 − f2‖B.

Using ePg1 = f1e
−Qg1 and ePg2 = f2e

−Qg2 , there now exists a constant d4 > 0
such that for every f1, f2 ∈ Bρ(f) we have

‖ePg1 − ePg2‖B ≤ d4‖f1 − f2‖B.

Since B is continuously embedded into C(T), we get

|ePg1(0)− ePg2(0)| ≤ ‖ePg1 − ePg2‖C(T) ≤ c‖ePg1 − ePg2‖B ≤ cd4‖f1 − f2‖B,

and thus inf{|e−Pg1(0)| | f1 ∈ Bρ(f)} > 0. In a similar way it can be shown that
inf{|ePg1(0)| | f1 ∈ Bρ(f)} > 0. Thus there exists a constant d5 > 0, such that for
every f1, f2 ∈ Bρ(f), we have∣∣∣∣

√
ePg1(0)−

√
ePg2(0)

∣∣∣∣ ≤ d5‖f1 − f2‖B

and ∣∣∣∣
√

e−Pg1(0)−
√

e−Pg2(0)
∣∣∣∣ ≤ d5‖f1 − f2‖B.

Finally, using (3.2) and Lemma 4.3, the theorem is proved.
We conclude this section with the following corollary concerning normalized co-

prime factorization. In the special situation that the decomposing Banach algebra
B equals the Wiener algebra W , this result can already be found in Mäkilä and
Partington [20]. We say the functions (N,D) ∈ B+ × B+ are coprime factors of
G : D→ C∪{∞} if D is not identically 0, G = N/D, and there exist U, V ∈ B+ such
that

UN + V D = 1 on D.

Moreover, the functions (N,D) ∈ B+ × B+ are called normalized coprime factors of
G : D→ C ∪ {∞} if D is not identically 0, G = N/D, and

|N |2 + |D|2 = 1 on T.
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Corollary 4.5. Let (Nk, Dk) ∈ B+ × B+, k ∈ N0, be coprime factors. If
Nk → N0 and Dk → D0 as k tends to ∞, then there exist normalized coprime factors
(Ñk, D̃k) ∈ B+ × B+ of Nk/Dk such that Ñk → Ñ0 and D̃k → D̃0 as k tends to
∞. Moreover, the convergence is locally Lipschitz continuous, i.e., for every coprime
factor N,D there exist constants ρ, c > 0 such that for all N1, N2 ∈ Bρ(N) := {g ∈
B+ | ‖g −N‖ < ρ} and D1, D2 ∈ Bρ(D) with (Ni, Di), i = 1, 2, are coprime factors;

there exist normalized coprime factors (Ñi, D̃i) of Ni/Di, i = 1, 2, such that

‖Ñ1 − Ñ2‖B ≤ cmax{‖N1 −N2‖B, ‖D1 −D2‖B},
‖D̃1 − D̃2‖B ≤ cmax{‖N1 −N2‖B, ‖D1 −D2‖B}.

Proof. Let N,D be coprime factors. Then there exist constants ρ, c1 > 0 such
that ‖n‖, ‖d‖ < c1 if n ∈ Bρ(N) and d ∈ Bρ(D). We now choose N1, N2 ∈ Bρ(N)
and D1, D2 ∈ Bρ(D) such that (Ni, Di), i = 1, 2, are coprime factors and define
Fi(e

it) := |Ni(e
it)|2 + |Di(e

it)|2, t ∈ [0, 2π) and i = 1, 2. Thus there exists a constant
c2 > 0 such that

‖F1 − F2‖ ≤ c2 max{‖N1 −N2‖, ‖D1 −D2‖}.(4.2)

The coprimeness of Ni and Di implies that Fi ∈ Bpos. Thus Fi is a spectral density,
and so there exist functions Hi ∈ GB+ with Fi(e

it) = |Hi(e
it)|2, t ∈ [0, 2π). Defining

Ñi := NiH
−1
i and D̃i := DiH

−1
i , we get |Ñi(e

it)|2 + |D̃i(e
it)|2 = 1, and (Ñi, D̃i) are

normalized coprime factors of Ni/Di, i = 1, 2. Now (4.2) together with the previous
theorem completes the proof.

5. Boundedness of the spectral factorization. In this section we are con-
cerned with the question whether or not the spectral factorization mapping is bounded.
Boundedness of the spectral factorization mapping guarantees that the norm of the
spectral factor is small if the spectral densities are small in norm. Thus the spectral
factorization mapping is bounded if and only if it is continuous at the point 0. Note
that boundedness is not included in the definition of continuity, since 0 is not an ele-
ment of Apos. We will see in this section that in general boundedness does not imply
continuity and continuity does not imply boundedness.

Definition 5.1. We say that the spectral factorization mapping is bounded if
for every bounded sequence {fn}n ∈ Apos the sequence of the corresponding spectral
factors {Φfn}n is bounded.

Clearly, the spectral factorization mapping is bounded on L∞(T) and on C(T).
However, we show in this section that on almost every decomposing Banach algebra
the spectral factorization mapping is unbounded. In the next proposition we give a
simple equivalent condition for the spectral factorization mapping to be bounded.

Proposition 5.2. The spectral factorization mapping is bounded on the decom-
posing Banach algebra B if and only if there exists a constant M > 0 such that

‖f‖2B ≤M‖ff̄‖B, f ∈ GB+.(5.1)

Proof. Since B is separable, the spectral factorization mapping is bounded if and
only if there is a constant M1 > 0 such that

‖Φf‖2B ≤M1‖f‖B, f ∈ Bpos.(5.2)

Thus we need to show that (5.1) is equivalent to (5.2). Assume (5.1) holds. Then for
f ∈ Bpos we have Φf ∈ GB+. Using (3.3), we thus get (5.2).
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We now assume that (5.2) holds. Let f ∈ GB+. Defining g := ff̄ , we get g ∈ Bpos.
Using (5.2) for g and the definition of a spectral factor, we get (5.1).

Note that the condition (5.1) is required only for f ∈ GB+ and not for every f in
B. In a C∗-algebra, condition (5.1) is even satisfied for every f ∈ B and with M = 1
(see, for example, Rickart [24, p. 190]). However, Rickart [24, p. 190] shows that in a
decomposing Banach algebra the condition (5.1) cannot be satisfied for every f ∈ B,
since it would imply that B is isomorphic to C(T).

Recalling the formula Φ(f)Φ(f) = f , f ∈ Bpos (see (3.3)), a definition of the
boundedness of the spectral factorization mapping should also include that the se-
quence {Φfn}n is bounded if {fn}n ∈ Bpos is bounded. However, this is already
included in our definition, as the following proposition shows.

Proposition 5.3. Assuming that the spectral factorization mapping is bounded
on B, for every bounded sequence {fn}n ∈ Bpos the sequence {Φfn}n is bounded.

Proof. The proof follows from Lemma 4.3.
The next theorem provides us with an easy, checkable sufficient condition for the

spectral factorization mapping to be unbounded on a decomposing Banach algebra B.
Theorem 5.4. If the spectral factorization mapping is bounded on B, then the

Wiener algebra W can be continuously embedded into B, i.e., W ⊂ B and
‖f‖B ≤ c‖f‖W , f ∈W,

for some constant c > 0.
Proof. Since the spectral factorization mapping is bounded on B, there exists

a constant M > 0 such that (5.1) holds. Equation (4.1) shows that there exists a
constant m > 0 such that

‖e−in·‖B ≤ m‖ein·‖B, n > 0.(5.3)

Defining fn ∈ GB+ by

fn(e
it) := 2 + eint, t ∈ [0, 2π],

we get

(‖ein·‖B − 2) ≤ ‖fn‖B ≤M1/2‖fnf̄n‖1/2B ≤M1/2(5 + 2(1 +m)‖ein·‖B)1/2, n > 0.

However, this can only hold if supn≥0 ‖ein·‖B <∞. This, together with (5.3), implies

c := sup
n∈Z

‖ein·‖B <∞.

Choosing an arbitrary trigonometric polynomial p, i.e.,

p(eit) =

N∑
n=−N

ane
int, t ∈ [0, 2π],

we get

‖p‖B ≤
N∑

n=−N
|an|‖ein·‖B ≤ c‖p‖W .

Since the trigonometric polynomials are dense in W and B, the theorem is
proved.
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Corollary 5.5. If limn→+∞ ‖ein·‖B = ∞, then the spectral factorization map-
ping is unbounded on B.

Corollary 5.6. The spectral factorization mapping is not bounded on the fol-
lowing decomposing Banach algebras:

1. W (ω) if supn∈N0
ωn =∞.

2. F p(ω), p ∈ (1,∞).
3. λα, α ∈ (0,∞).
4. Bα

pq, q ∈ (1,∞), p ∈ [1,∞], and α ∈ (1/p,∞).
5. Lsp, p ∈ [1,∞), and s > 1/p.

6. V MO(n), (A(D) +A(D))(n), (H1(D) +H1(D))(n), and (L1(T) + L̃1(T))
(k), if

n ≥ 1 and k ≥ 2.
7. CQ(C, {Mn}).
Proof. Let us first consider the space λα for α ∈ (0, 1]. In order to show that the

spectral factorization mapping is not bounded on λα, it remains to show

lim
n→+∞ ‖e

in·‖λα =∞;

see the previous corollary. However, this follows from the calculation

‖ein·‖λα ≥ sup
s,t∈[0,2π],s �=t

|eins − eint|
|eis − eit| |e

is − eit|1−α = 21−αn.

Since λα ⊂ λ1, α ∈ (1,∞), part 3 holds. In Peller and Khrushchev [23] it is proved
that Lsp ⊂ λβ , β ∈ (0, s − 1/p), and Bα

pq ⊂ λβ , β ∈ (0, α − 1/p). Thus parts 4 and 5
hold. Finally, parts 1 and 2 follow from Corollary 5.5, and parts 6 and 7 are easy to
see.

In order to show that on B
1/p
p1 , p ∈ [1,∞], the spectral factorization mapping is

not bounded, we give another easy, checkable sufficient condition.
Proposition 5.7. If there exists a constant m > 0 such that

‖f̄f‖B ≤ m‖f2‖B, f ∈ GB+,(5.4)

then the spectral factorization mapping is unbounded on B.
Proof. We assume that the spectral factorization mapping is bounded, i.e., there

exists a constant M > 0 (Proposition 5.2) such that

‖f‖2B ≤M‖ff̄‖B, f ∈ GB+.

This, together with (5.4), implies

‖f‖2B ≤ c‖f2‖B, f ∈ GB+,

where c := mM . Applying this estimate repeatedly, we get for f ∈ GB+

‖f‖B ≤ c1/2‖f2‖1/2B ≤ c1/2c1/4‖f4‖1/4B ≤ · · · ≤ c‖f2n‖1/2nB ,

and thus by the spectral radius formula, that is, ‖f‖∞ = limn→∞ ‖fn‖1/nB , we get
‖f‖B ≤ c‖f‖∞ for f ∈ GB+. Next we extend this estimate to all functions f ∈ B+.
Let f ∈ B+. Then for δ ∈ (‖f‖∞, ‖f‖B) we get that δ is not in the spectrum of f ,
and thus f + δ ∈ GB+. This implies

‖f‖B − δ ≤ ‖f + δ‖B ≤ c‖f + δ‖∞ ≤ c(‖f‖∞ + δ).
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Thus we get ‖f‖B − δ ≤ c(‖f‖∞ + δ), and, taking the limit δ → ‖f‖∞, we get

‖f‖B ≤ (2c+ 1)‖f‖∞.

Thus ‖·‖B and ‖·‖∞ are equivalent norms on B+. Next we show that B = C(T). Since
we have assumed that the spectral factorization mapping is bounded on B, Corollary
5.5 and Lemma 4.3 show

d := sup
n∈Z

‖ein·‖B <∞.

For an arbitrary trigonometric polynomial p, i.e.,

p(eit) :=

N∑
n=−N

ane
int, t ∈ [0, 2π],

we get

‖p‖B = ‖e−iN ·eiN ·p‖B ≤ d‖eiN ·p‖B
≤ d(2c+ 1)‖eiN ·p‖∞ = d(2c+ 1)‖p‖∞.

The trigonometric polynomials are dense in B and in C(T), and B ⊂ C(T), and so we
get B = C(T). Since C(T) is not a decomposing Banach algebra, our assumption can
no longer hold, and so the spectral factorization mapping is not bounded on B.

Corollary 5.8. The spectral factorization mapping is unbounded on B
1/p
p,1 , where

p ∈ [1,∞].
Proof. Using the triangle inequality

||a|2 − |b|2| ≤ |a2 − b2|, a, b ∈ C,

it is easy to see that the Banach algebras B
1/p
p,1 satisfy (5.4), and so, using Theorem

5.7, the spectral factorization mapping is not bounded on these decomposing Banach
algebras.

However, Theorem 5.7 does not imply that the spectral factorization mapping is
unbounded on any decomposing Banach algebra, since (5.4) is not satisfied by every
decomposing Banach algebra. In the next example we show that the Wiener algebra
does not satisfy (5.4).

Example 5.9. Let the sequence (pn)n∈N0 of trigonometric polynomials be given
by

p0(e
it) := 1,

pn+1(e
it) := pn(e

it)
(
8− 4ei2·7

nt − 2ei4·7
nt − ei6·7

nt
)
.

It is easy to see that pn ∈ GW+. Moreover, we get

(pn+1(e
it))2 = (pn(e

it))2
(
64− 64ei2·7

nt − 16ei4·7
nt

+12ei8·7
nt + 4ei10·7

nt + ei12·7
nt
)

and

|pn+1(e
it)|2 = |pn(eit)|2(−8e−i6·7nt − 12e−i4·7

nt − 22e−i2·7
nt

+85− 22ei2·7
nt − 12ei4·7

nt − 8ei6·7
nt).
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Noting that pn is a polynomial of degree 7n − 1, it is easy to see that

‖(pn(eit))2‖W = 161‖(pn−1(e
it))2‖W = 161n

and

‖ |pn(eit)|2‖W = 169‖ |pn−1(e
it)|2‖W = 169n,

and so

‖|pn(eit)|2‖W =

(
169

161

)n
‖ (pn(eit))2‖W .

This shows that (5.4) does not hold for the Wiener class.
The only decomposing Banach algebra considered in section 2 which can be em-

bedded into W and which does not satisfy (5.4) is the weighted Wiener algebra W (ω)
with supn∈N0

ωn <∞. However, the next theorem shows that the spectral factoriza-
tion mapping is not bounded on W (ω).

Theorem 5.10. The spectral factorization mapping is not bounded on W (ω) with
supn∈N0

ωn <∞. In particular, the spectral factorization mapping is not bounded on
W .

Proof. supn∈N0
ωn <∞ implies W = W (ω) and

k‖f‖W ≤ ‖f‖W (ω) ≤ K‖f‖W , f ∈W,

for some constants k,K > 0, and so it remains to show that the spectral factorization
mapping is not bounded on W .

Rudin [25] and Shapiro [26] showed independently of each other that there exist
polynomials

h̃n(e
it) =

n∑
j=1

aje
ijt, t ∈ [0, 2π], n ∈ N,

such that {aj}j∈N ⊆ {−1, 1} and ‖h̃n‖H∞ < 5n1/2. These polynomials are also called

Rudin–Shapiro polynomials [17]. Clearly, h̃n ∈W+ and ‖h̃n‖W = n. We now define

hn := 10n−1/4 +
1

n3/4
h̃n.

By this definition, we get hn ∈W+, ‖hn‖H∞ < 15n−1/4, and ‖h̃n‖W = 10n−1/4+n1/4.
Moreover, |hn(t)| ≥ 5n−1/4, and so hn ∈ GW+.

We now define fn ∈ W by fn(e
it) = |hn(eit)|2 = hn(eit)hn(e

it). This definition
implies fn(t) > 0, t ∈ T, and so fn is a spectral density and Φfn = bnhn for some
constant bn of modulus 1. We get that ‖fn‖L∞(T) < 225n−1/2 and ‖fn‖L2(T) <√
2π225n−1/2. This implies

‖fn‖W ≤ ‖fn‖L2(T)


 n∑
j=−n

12




1/2

≤ 225
√
2π

(
2 +

1

n

)1/2

.

This proves that the sequence {fn}n is bounded in W , whereas the corresponding
sequence of spectral factors is not bounded in W . Thus the spectral factorization
mapping is not bounded in W .
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6. Spectral factorization on the right half-plane. Up until now we have
studied the spectral factorization mapping on the disc. In what follows we will see that
similar results are available on the right half-plane. Some of the results below can be
obtained by transforming to the disc by a Möbius mapping such as z = (1−s)/(1+s);
for example, it was shown [4] that for W (iR), the Wiener algebra on the imaginary
axis, the transformed algebra is a decomposing Banach algebra on the circle. (This
was used in order to prove various properties of the Nehari extension.) However, it is
possible to proceed directly, and we do this now.

In order to define decomposing Banach algebras on the imaginary line, we need to
introduce some definitions. By C+ we denote the right half-plane {z ∈ C | Re z > 0},
and by BMO(R) we denote the set of all locally integrable functions f defined on R

such that

sup
I

1

|I|
∫
I

|f(ω)− fI | dω <∞,

where the supremum is taken over all intervals I of finite positive measure, and

fI =
1

|I|
∫
I

f(ω) dω.

Moreover, by BMOA(C+) we denote the set of all holomorphic functions h : C+ → C

such that h(z)/(1 + z) is an element of H2(C+) and the boundary function h(iω) is
in BMO(R). For every function f ∈ L∞(iR) there exists a function h ∈ BMOA(C+)
such that

h(s)− h(β) =
1

2π

∫
R

f(iω)

[
1

iω − s
− 1

iω − β

]
dω.(6.1)

h is determined to within a constant. More information on the spaces BMO(R) and
BMOA(C+) can be found in the books of Garnett [10] and Koosis [16].

Definition 6.1. A commutative Banach algebra H ⊂ L∞(iR) is called a decom-
posing Banach algebra on the imaginary line if the following hold.

(H1) f ∈ H implies f̄ ∈ H and h ∈ H, where h is given by (6.1).
(H2) H is a unital Banach algebra with respect to pointwise multiplication on iR.
(H3) The set of rational functions in C(iR ∩ {∞}) is dense in H.
(H4) Every multiplicative functional on H coincides with a functional f �→ f(iω)

defined as the value at some point ω ∈ R ∪ {∞}.
Let P ∈ L(H) be given by Pf := h, where h is given by (6.1) with h(i∞) = f(i∞).

Similar to Proposition 2.2 and Proposition 2.3, we get the following proposition.
Proposition 6.2. H is continuously embedded in C(iR ∪ {i∞}), the space of

maximal ideals of the algebra H coincides with iR ∪ {i∞}, and every f ∈ H with
f(iω) > 0 for ω ∈ R ∪ {∞} is an element of GH.

As in the case on the circle, there are many examples for decomposing Banach
algebras on the imaginary line available. Here we introduce only one of the most
important examples: the Wiener algebra on the imaginary line. For g ∈ L1(R) we
denote by ĝ the two-sided Laplace transform of g, which is given by

ĝ(s) :=

∫ ∞

−∞
e−stg(t) dt, s ∈ iR.

The two-sided Laplace transform of a function g ∈ L1(R) is an element of C(iR ∪
{i∞}).
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Example 6.3. The Wiener algebra W (iR) (on the imaginary line) is the algebra
of functions f ∈ C(iR ∪ {i∞}) of the form

f = ĝ + c,

where c is a constant and g ∈ L1(R), and the norm of f is given by

‖f‖W (iR) := |c|+ ‖g‖L1(R).

Clancey and Gohberg [7] showed that W (iR) is indeed a decomposing Banach algebra
on the imaginary line.

Besides decomposing Banach algebras on the imaginary line, the spectral factor-
ization can be defined on L∞(iR) and C(iR). Let K denote L∞(iR), C(iR), or a
decomposing Banach algebra H. In a similar way as on the circle, we define K+ and
Kpos.

Definition 6.4. We call f ∈ K a spectral density if there exists a function
h ∈ GK+ such that

f(iω) = |h(iω)|2.
h is called a spectral factor of f .

If f ∈ K is a spectral density, then the spectral factor is unique up to a constant
of modulus 1. The following proposition can be proved in a similar way as Theorem
3.5 and Corollary 3.6 in Jacob, Winkin, Zwart [15].

Proposition 6.5. Let K = L∞(iR) or H. Then every f ∈ Kpos is a spectral
density, and one spectral factor is given by

h(s) = exp

{
1

2π

∫ ∞

−∞

iωs− 1

iω − s

1

1 + ω2
log f(iω) dω

}
, Re s > 0.(6.2)

As on the circle, there exist functions C(iR)pos for which there is no continuous
spectral factor.

For K = L∞(iR) or H, we define the spectral factorization mapping Φ : Kpos →
K+ on the right half-plane by

Φ(f) := h,

where h is given by (6.2). We also could define the spectral factorization mapping for
K = C(iR). However, in this case, Φ maps only from C(T)pos to L∞(T)+.

The continuity and boundedness of the spectral factorization mapping on the
right half-plane is defined in a similar way as on the circle.

In Jacob, Winkin, and Zwart [14] it is shown that the spectral factorization map-
ping is not continuous on L∞(iR) and on C(iR), and in Jacob, Winkin, and Zwart
[15] it is shown that the spectral factorization mapping is continuous on W (iR). Fol-
lowing the line of Theorem 4.5 in [15], we see that the spectral factorization mapping
is continuous on decomposing Banach algebras on the imaginary axis.

As on the circle, it is easy to see that the spectral factorization mapping is bounded
on L∞(iR) and on C(iR). In the remaining part of this section we study the bound-
edness of the spectral factorization mapping on decomposing Banach algebras.

Proposition 6.6. If

sup
n∈N

∥∥∥∥ 1

(·+ 1)n

∥∥∥∥
H

=∞,
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then the spectral factorization mapping is not bounded on H.
Proof. We assume that the spectral factorization mapping is bounded on H,

i.e., there exists a constant M > 0 such that

‖f‖2H ≤M‖ff̄‖H, f ∈ GH+.

Similar to Lemma 4.3, it can be proved that there exists a constant m > 0 such that∥∥∥∥ 1

(·+ 1)n

∥∥∥∥
H
≤ m

∥∥∥∥ 1

(− ·+1)n

∥∥∥∥
H

, n > 0.

Defining fn ∈ GH+ by

fn(iω) := 2 +
1

(iω + 1)n
, ω ∈ R,

we get (∥∥∥∥ 1

(·+ 1)n

∥∥∥∥
H
− 2

)
≤ ‖fn‖H ≤M1/2‖fnf̄n‖1/2H

≤M1/2

(
5 + 2(1 +m)

∥∥∥∥ 1

(·+ 1)n

∥∥∥∥
H

)1/2

, n > 0.

However, this can only hold if supn≥0 ‖ 1
(·+1)n ‖H < ∞. Thus the proposition is

proved.
As on the circle, this sufficient condition excludes most of the examples of a

decomposing Banach algebra on the imaginary line from having a bounded spectral
factorization mapping, as the Hölder classes, the Sobolev classes, the Carleman classes,
etc. We close this section by showing that the spectral factorization mapping is not
bounded on the Wiener algebra W (iR). The proof is based on an idea used in Rudin
[25].

Proposition 6.7. The spectral factorization mapping is unbounded on W (iR).
Proof. First, we consider the sequences {qn}n∈N0

, {pn}n∈N0
⊂ L1(R) defined by

q0(t) := p0(t) :=

{
1 , t ∈ [0, 1],
0 , otherwise,

pn+1 := pn + qn(· − 2n),

qn+1 := pn − qn(· − 2n).

By this definition ‖pn‖L1(R) = ‖qn‖L1(R) = 2n. Moreover, we define the sequences
{kn}n∈N0 , {ln}n∈N0 ⊂ W (iR)+ by kn := p̂n and ln := q̂n. Thus ‖kn‖W (iR) = 2n, and
the parallelogram law

|a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2

shows

|kn+1(iω)|2 + |ln+1(iω)|2

= |p̂n(iω) + ̂qn(· − 2n)(iω)|2 + |p̂n(iω)− ̂qn(· − 2n)(iω)|2

= 2|p̂n(iω)|2 + 2| ̂qn(· − 2n)(iω)|2 = 2|kn(iω)|2 + 2|ln(iω)|2.
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Thus

|kn(iω)|2 ≤ |kn(iω)|2 + |ln(iω)|2 = 2n(|k0(iω)|2 + |l0(iω)|2) = 2n+1|k0(iω)|2.

An easy calculation shows

|k0(iω)| = 2

|ω|
∣∣∣sin ω

2

∣∣∣ ,
and thus ‖k0k̄0‖L2(iR) =

√
2π
3 , and

‖knk̄n‖L2(iR) ≤
√

2π

3
2n+1.

Moreover,

‖kn‖L∞(iR) ≤ 2(n+1)/2‖k0‖L∞(iR) ≤ 2(n+1)/2‖k0‖W (iR) ≤ 2(n+1)/2.

We now define

hn := 2 · 2−n/4 + 2−(3n)/4kn.

By this definition, we get hn ∈W (iR)+, and ‖hn‖W (iR) = 2 · 2−n/4 +2n/4. Moreover,

|hn(iω)| ≥ (2−√2) · 2−n/4, and so hn ∈ GW (iR)+.

We now define fn ∈ W (iR) by fn = |hn|2 = hnhn. This definition implies
fn(t) > 0, t ∈ T, and so fn is a spectral density, and Φfn = bnhn for some constant
bn of modulus 1. This implies

‖fn‖W (iR) = ‖4 · 2−n/2 + 2 · 2−n(kn + k̄n) + 2−(3n)/2knk̄n‖W (iR)

≤ 22−n/2 + 21−n‖kn + k̄n‖W (iR) + 2−(3n)/2‖knk̄n‖W (iR)

≤ 22−n/2 + 4 + 2−(3n)/2‖pn ∗ pn(−·)‖L1(R)

≤ 22−n/2 + 4 + 2−(3n)/2

(∫ 2n

−2n
1 dt

)1/2

‖pn ∗ pn(−·)‖L2(R)

≤ 22−n/2 + 4 + 21/2−n‖pn ∗ pn(−·)‖L2(R)

= 22−n/2 + 4 +
21/2−n
√
2π
‖knk̄n‖L2(iR)

≤ 22−n/2 + 4 +
2−n√

π

√
2π

3
2n+1 ≤ 10.

This proves that the sequence {fn}n is bounded in W (iR), whereas the corresponding
sequence of spectral factors is not bounded in W (iR). Thus the spectral factorization
mapping is not bounded in W (iR).

7. Conclusions. We presented in this paper a detailed study of two properties of
the spectral factorization mapping on L∞ and C as well as on decomposing Banach
algebras: continuity and boundedness. We showed that these two properties are
quite different. On L∞ and C the spectral factorization mapping is bounded but not
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continuous, whereas on all decomposing Banach algebras under consideration this
mapping is continuous and not bounded.

One of our main results concerning the boundedness of the spectral factorization
mapping on decomposing Banach algebras was that the mapping can be bounded
only if the Wiener algebra W can be continuously embedded into the decomposing
Banach algebra B and B �= W . However, it is an open problem whether there exists
a decomposing Banach algebra B �= W such that W can be continuously embedded
into B.
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nD SYSTEMS∗
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Abstract. In this paper we examine the relationship between control viewed as concatenation
of trajectories and control viewed as interconnection of systems. We show that, for one-dimensional
linear time-invariant systems, the ability to obtain a given subsystem by regular interconnection (a
prerequisite for any feedback-type structure) is equivalent to the ability to drive any trajectory into
that subsystem. However, in the case of multidimensional systems, the former is a stronger property
than the latter. Trajectory controllability can, however, be expressed as a regular interconnection of
behaviors in an extended variable space by introducing latent or auxiliary variables. This leads as a
by-product to the notion of controlling a system by means of latent variables.

Key words. behavioral approach, multidimensional systems, controllability, regular intercon-
nection, set-controllability
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1. Introduction. The notion of feedback is ubiquitous in modern control theory.
However, feedback interconnections of systems are based (albeit implicitly) on the
still more fundamental concept of regular interconnection, formally introduced by
Willems in the context of the behavioral approach [32]. As we will see in section 3,
an interconnection is regular if the additional restrictions imposed on the plant by
the controller are independent of the restrictions already present (e.g., only system
inputs are restricted, as in a feedback loop). Given a plant and a desired subsystem
which is a regular interconnection of the plant and some controller, we will say that
the given subsystem is “achievable from the plant by regular interconnection.”

Another fundamental concept in control systems theory is that of controllabil-
ity. According to the behavioral definition, or the related state space definition of
Kalman, controllability is the ability to drive any system trajectory into any other
system trajectory (in finite time). Thus “controllability” is concerned with the driv-
ing of trajectories, whereas feedback “control” is concerned with the interconnection
of systems. Clearly the two must be related. Indeed, for a one-dimensional (1D)
linear state space model, controllability à la Kalman is necessary and sufficient to
place a system’s poles arbitrarily using state feedback. In the 1D behavioral context,
Willems has shown that controllability is equivalent to achievability of any subsystem
by regular interconnection.

Since many of the results in this paper answer open questions for standard 1D
behaviors, our contribution is not only at the level of generalization of existing results
in the 1D behavioral approach. However, most of our attention is given to the multi-
dimensional (nD) case, in which every system trajectory is a function of two or more
independent variables (rather than just one, usually time, in the standard 1D case).
Such systems have classical applications in areas such as paper rolling, seismology,
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iterative learning control, and image processing, or, more generally, in the analysis
of any system described by PDEs or difference equations. The theory of control for
general linear nD systems is to date not very far developed, and we hope here to
provide a helpful foundation for future work.

The structure of the paper is as follows. We begin by introducing some necessary
background from the field of 1D/nD behavioral theory. Most of this material is stan-
dard, centering around concepts such as autonomy, controllability and input/output
structures. Also, in section 2.4 we look at the structure and representation of factor
behaviors, which will be crucial in what follows. Section 3 is devoted to an exposition
of the theory of regular interconnection for 1D and nD systems, including the recently
discovered equivalence to feedback interconnection. This section concludes with an
algorithm, based on recent work by Bisiacco and Valcher, for testing achievability by
regular interconnection and constructing a controller.

Then in section 4 we introduce the notion of set-controllability, which describes
the ability to concatenate any trajectory of a given behavior with some trajectory
of a prescribed subset. Thus this definition captures the “trajectory driving” aspect
of control. We look at the characterization of set-controllability and the relationship
between it and regular interconnection. In particular, we show that, for a 1D linear
time-invariant system, a behavior B is set-controllable to a subbehavior B′ if and
only if B′ is achievable from B by regular interconnection. In the nD case, however,
achievability by regular interconnection is strictly stronger and is generally a very
strong requirement.

We unify these two concepts in section 5 by introducing “regular extended in-
terconnection,” which is regular interconnection of extended behaviors obtained by
introducing latent or auxiliary variables (i.e., through an autoregressive moving av-
erage (ARMA)–type representation of the system). This use of variables other than
those which we wish to control is also a basic idea in recent work of Polderman and
Mareels [16] and Trentelman and Willems [23, 24]. One of our main results is that
achievability of a given subbehavior by regular extended interconnection is equivalent
to set-controllability to that subbehavior in both the 1D and nD cases.

A preliminary version of this work was presented in [22].

2. Differential/difference behaviors. In this section we introduce the neces-
sary background material on behavioral theory. Except where explicitly indicated, all
of this material has appeared previously in the literature.

2.1. Behaviors, representations, and admissible signal spaces. We define
a system to be a triple (A, q,B), where A is a set called the signal space, q ∈ Z+, and
B ⊆ Aq is called the system behavior [29, 30]. The elements of B or, more generally, of
Aq are called trajectories. Throughout this paper, A will be some space of functions
or distributions on some signal domain T and taking values in a field k taken to be
R or C. In the 1D case, T = N,Z, or R; in the nD case, T = N

n,Zn, or R
n.

Our behaviors will be specified by sets of linear differential equations (or difference
equations) with constant coefficients. Denote by D the polynomial ring k[z1, . . . , zn]
in n indeterminates, and let R ∈ Dg,q for some g, q ∈ Z+ be a polynomial matrix. Let
A = C∞(Rn, k) or D′(Rn, k). Then the differential behavior defined by R is given by

B = ker R :=

{
w ∈ Aq

∣∣∣∣ R
(

∂

∂t1
, . . . ,

∂

∂tn

)
w = 0

}
,(2.1)

and R is said to be a kernel representation of B.
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In case of behaviors specified by difference equations, which we will consider
simultaneously, A is equal to kZ

n

or kN
n

, and the difference behavior defined by R is
given by

B = ker R := {w ∈ Aq | R (σ1, . . . , σn)w = 0} ,(2.2)

where each σi is a backward shift operator, defined on a given trajectory w by

(σiw)(t1, . . . , tn) := w(t1, . . . , ti + 1, . . . , tn).(2.3)

We again say that R is a kernel representation of B. In order to consider both
differential and difference behaviors simultaneously, we will drop the operator notation
and simply write Rw = R(z1, . . . , zn)w for a given polynomial matrix R applied to a
given trajectory w, where the meaning is understood to be given by substitution in
R of partial derivative or shift operators according to A.

As an example, the two-dimensional (2D) differential behavior with three variables
described by the single PDE

∂w1

∂t1
(t1, t2) +

∂w1

∂t2
(t1, t2)− ∂2w2

∂t1t2
(t1, t2)− 2

∂3w3

∂t31
(t1, t2) + w3(t1, t2) = 0,

with signal space A = C∞(R2,R), can be written as

B = ker R, R = ((z1 + z2) (−z1z2) (1− 2z3
1)).

For the case A = kZ
n

, the shift operators σi are invertible, and so we consider the
polynomial matrices to have entries in the ring k[z1, . . . , zn, z

−1
1 , . . . , z−1

n ] of Laurent
polynomials; that is, in this case only we take D = k[z1, . . . , zn, z

−1
1 , . . . , z−1

n ] through-
out. We will not refer to the Laurent polynomial ring again; however, it should be
borne in mind that Laurent polynomials replace polynomials for this particular signal
space.

The two continuous and two discrete signal spaces listed above all possess certain
important abstract properties which give our behaviors a far richer structure than
would otherwise be the case, as explained in the ground-breaking work of Oberst [14].
Throughout the remainder of the paper, we take A to be one of these four spaces,
and all behaviors considered will be differential or difference behaviors as defined by
(2.1) or (2.2) according to A. Thus, when we write “B ⊆ Aq,” we implicitly assume
not only that A is one of the listed signal spaces but also that B can be described by
differential or difference equations as above. In particular, all behaviors are given by
linear equations with constant coefficients.

It will occasionally be necessary to refer to module-theoretic properties of behav-
iors. For any r ∈ D and any w ∈ Aq, rw is an element of Aq defined as (rIq)w, where
rIq is that polynomial matrix given by r times the identity.

Given a differential or difference behavior B ⊆ Aq, it will sometimes be necessary
to refer to the orthogonal module B⊥, defined by

B⊥ = {v ∈ D1,q | vw = 0 ∀ w ∈ B},(2.4)

where the meaning of vw is simply the 1 × q polynomial matrix v applied to the
trajectory w in the usual way. Thus B⊥ is the set (actually a submodule of D1,q)
of all polynomial equations satisfied by the behavior. Given a kernel representation
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B = ker R, we in fact have that B⊥ is the set of all D-linear combinations of the rows
of R.

The following important result effectively says that an inclusion of behaviors is
equivalent to the reverse inclusion of the corresponding orthogonal modules.
Theorem 2.1 (see [14, 2.61], [19, Prop. II.9]). Let B1 = ker R1, B2 = ker R2 be

two behaviors in Aq for some q. Then B1 is a subbehavior of B2 (i.e., B1 ⊆ B2) if
and only if there exists a polynomial matrix L with R2 = LR1.

For a behavior B ⊆ Aq, we also say that a given matrix M ∈ Dq,l is an image
representation of B if

B = im M := {w ∈ Aq | w = Mv for some v ∈ Al}.(2.5)

Not all behaviors have image representations.

2.2. Free variables, autonomous behaviors, and regular behaviors.
Definition 2.2 (see [19, Def. III.11]). Let B ⊆ Aq. The set of variables {wi | i ∈

Φ} for some subset Φ of {1, . . . , q} is said to be a set of free variables if the mapping
ρ : B → AΦ, which projects a trajectory onto the components of Φ, is surjective.

The maximum size of a set of free variables is called the number of free variables
of B and is denoted by m(B).

We will often abuse this nomenclature somewhat by referring to certain variables
wi as free when we actually mean that the set of such variables is free.

If R is a kernel representation of B, then m(B) = q − rank R (where the rank is
defined over the ring D or, equivalently, over the field k(z1, . . . , zn)); see [14, Thm.
2.69]. It can also be shown [35, remarks following Def. 6] that for any behavior B
with subbehavior B′, we have

m(B) = m(B′) + m(B/B′);(2.6)

the meaning of B/B′ will be discussed in section 2.4. Now it is a well-known alge-
braic fact that B + B is isomorphic (as a module) to the factor of B ⊕ B by B ∩ B.
Consequently, we have the following equation for any B,B ⊆ Aq:

m(B) + m(B) = m(B + B) + m(B ∩ B).(2.7)

We will use the following definition of autonomous systems; an equivalent condi-
tion in terms of trajectories is given for discrete behaviors in [7, 35].
Definition 2.3. A behavior B is called autonomous if it has no free variables,

i.e., if m(B) = 0.
Lemma 2.4 (see [7, 35]). The following are equivalent for any behavior B =

ker R.
1. B is autonomous.
2. There exists a nonzero polynomial r with rw = 0 for all w ∈ B.
3. R has full column rank.

A behavior is said to be regular if it has a full row rank kernel representation [19].
For n = 1, all behaviors are regular; this fails for n ≥ 2, as can be seen from the
simple 2D differential behavior

B = ker

(
z1
z2

)
,

consisting of all constant functions, which cannot be described as the kernel of a single
polynomial operator.
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2.3. Input/output structures and controllability. Inputs (assumed to be
free) and outputs are defined in the behavioral framework as follows.
Definition 2.5 (see [14, Thm. 2.69], [19, Def. IV.8], [30, Def. VIII.3], [35, Def. 12]).

A (free) input/output structure on the behavior B is a partitioning of the system vari-
ables w = (u, y), such that the set of variables u is free and the zero-input behavior
B0,y, defined by

B0,y = {(u, y) ∈ B | u = 0},(2.8)

is autonomous.
Equivalently, we can consider a partitioning R = (−Q P ) of any kernel represen-

tation R of B (to within a column permutation), where the columns of Q correspond
to the input variables u and the columns of P correspond to the output variables y,
and we have the condition

rank R = rank P = number of columns of P .(2.9)

It is easy to show that the number of inputs is equal to m, the number of free
variables. In particular, the number of inputs and number of outputs of a behavior
are independent of the input/output structure. We will denote the number of outputs
of a behavior B ⊆ Aq by p(B) = q −m(B); then for B = ker R we have

p(B) = rank R.(2.10)

For a given free input/output structure, any behavior B has a unique transfer
(function) matrix G ∈ k(z1, . . . , zn)p,m characterized by the equation PG = Q; see
[14, Thm. 2.69] and also [19, p. 75], [30] for the 2D/1D cases. Collecting together
all behaviors with a given input/output structure (i.e., which have the same number
of system variables and both admit the given partitioning of those variables into
inputs and outputs) and the same transfer matrix with respect to that input/output
structure, we obtain a transfer class. The transfer class turns out to be independent
of the input/output structure and resulting transfer matrix, and the transfer classes
partition the set of behaviors. Furthermore, each transfer class has a unique element
which is minimal with respect to set inclusion [14, Thm. 7.21], [19, p. 76].

Next, recall the notion of a minimal left annihilator (MLA) [19, p. 24]. The
following is not the usual definition but is equivalent to it [35, Lem. 7].
Definition 2.6. Suppose that R ∈ Dg,q. Then R is called an MLA (of M) if

there exists a matrix M ∈ Dq,h for some h with ker R = im M .
Every polynomial matrix has an MLA [14, Lem. 2.27], [35, Lem. 7].
It is also shown in [35, Lem. 10] that a given matrix E is an MLA (of some matrix)

precisely when it satisfies the condition of generalized factor left primeness introduced
in [14, Thm. 7.21], [38]. Furthermore, a full row rank matrix E ∈ Dg,q is an MLA
precisely when E is minor left prime, i.e., when the gth order minors of E have no
nontrivial common factor.

We can now define and characterize controllability. It will be convenient to first
introduce the notion of concatenability of trajectories.
Definition 2.7. Let B be a behavior, w(1), w(2) ∈ B, and let T1, T2 be subsets of

the signal domain T . We say that w(1) and w(2) are concatenable in B with respect
to (T1, T2) if the following condition, dependent on the signal space A, holds.
A = C∞(Rn, k) or A = D′(Rn, k). There exists w(0) ∈ B such that w(0) agrees

with w(1) on T1 and with w(2) on T2.
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A = kT , T = N
n or Z

n. For any b1, b2 ∈ T , there exists w(0) ∈ B with

w(0)(t) =

{
w(1)(t− b1), t ∈ T1 and t− b1 ∈ T,
w(2)(t− b2), t ∈ T2 and t− b2 ∈ T.

(2.11)

Concatenability therefore expresses the possibility of being able to find a trajec-
tory w(0) which looks like the trajectory w(1) on the set T1 and like w(2) on T2. In
the discrete case, we further require that this should be possible with w(1) and w(2)

“positioned anywhere” within the signal domain, i.e., with the origins of their coor-
dinate systems located at any points b1, b2. This is necessary in the case T = N

n to
allow for the possibility that the behavior may not be forward shift-invariant [36].

The behavioral definition of controllability is due to Willems in the 1D case [30]
and to various authors in the nD discrete/continuous cases [15, 19, 21, 35, 36]. The
metric d(·, ·) on the signal domain T in the discrete case can be arbitrary.
Definition 2.8. A differential behavior B is controllable if, for any two open

sets T1, T2 ⊆ R
n with disjoint closures, any pair of trajectories of B are concatenable

in B with respect to (T1, T2).
A difference behavior B with signal domain T = Z

n or T = N
n is controllable

(with separation distance ρ) if ρ > 0 has the property that for any sets T1, T2 ⊆ T
with d(T1, T2) > ρ, any pair of trajectories of B are concatenable in B with respect to
(T1, T2).

For the purposes of the definition of controllability, in the discrete case T = N
n

we need consider only b1 = 0 in Definition 2.7, whereas for T = Z
n we can take

b1 = b2 = 0 without loss of generality [36].
The characterization of controllability is due to many authors [4, 14, 15, 17, 19,

21, 30, 35, 36, 38].
Theorem 2.9. The following are equivalent for a behavior B ⊆ Aq with kernel

representation R.
1. B is controllable.
2. B is minimal in its transfer class.
3. B has an image representation.
4. R is an MLA.
5. B is a divisible module, i.e., for any nonzero r ∈ D and any w ∈ B, there

exists w′ ∈ B with rw′ = w.
6. B has no proper subbehaviors with the same number of free variables.

Any behavior has a “controllable-autonomous decomposition” B = Bc + Ba [35,
Thm. 7]; the argument given in that paper applies equally well to continuous systems.
In this decomposition, the controllable part Bc ⊆ B is uniquely determined as the
minimal element of the transfer class of B. An example of an autonomous part is B0,y

for any free input/output structure (u, y) on B [34, Lem. 3.9]. Note that in the nD
context we do not require Bc ∩ Ba = 0.

The following result has not previously appeared in the literature.
Corollary 2.10. The following are equivalent for any subbehavior B′ of B.

1. B′ contains the controllable part Bc of B.
2. B′ and B have the same number of free variables.
3. B′ and B are in the same transfer class.

Proof. We prove 1 ⇒ 2 ⇒ 3 ⇒ 1. Suppose first that B′ contains Bc. Then we
must have m(Bc) ≤ m(B′) ≤ m(B). However, since Bc is in the same transfer class as
B, it in particular has the same number of free variables, and therefore m(B) = m(B′)
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also. Now let (B′)c denote the controllable part of B′; this is in the transfer class of
B′, so has the same number of free variables, and we find

m((B′)c) = m(B′) = m(B).

However, by [33, Thm. 7], Bc is the unique controllable subbehavior of B with the
same number of free variables as B; therefore, Bc = (B′)c. Since B′ and B have
the same controllable part, they are in the same transfer class. Finally, if B′ and B
are in the same transfer class, then they have the same controllable part, and so, in
particular, Bc ⊆ B′.

The following definition is not the original one given for strong controllability [19],
which has not yet been usefully extended from 2D to nD or to the continuous case.
Definition 2.11. A matrix R ∈ Dg,q is called zero left prime if its gth order

minors generate D as an ideal. A behavior B is called strongly controllable if it has
a zero left prime kernel representation.
Lemma 2.12. A behavior B ⊆ Aq is strongly controllable if and only if it is a di-

rect summand of Aq (the complementary summand being also a differential/difference
behavior).

Proof. Suppose that B = ker R with R zero left prime. Then it is well known that
R has a right inverse Y over D, and it is now routine to show that Aq = ker R⊕ im Y .
Conversely, if B is a direct summand of Aq, then the “orthogonal module” B⊥ of all
system equations is a direct summand of D1,q. A standard algebraic argument now
yields that there exists a polynomial matrix R which is zero left prime such that the
rows of R generate B⊥. Hence ker R = B.

Any zero left prime matrix is minor left prime so, in particular, an MLA; therefore,
any strongly controllable behavior is also controllable. Since minor left primeness and
zero left primeness are equivalent in the 1D case, the converse holds for 1D systems
but not for n ≥ 2. Strong controllability as defined above has previously been termed
“rectifiability” and is equivalent to the concepts of free-controllability and flatness
due to Fliess and coworkers (e.g., [6, 12]).

2.4. Factors and sums of behaviors. Due to the categorical duality of Oberst,
if B′ ⊆ B ⊆ Aq are behaviors, then the factor space (module) B/B′ also admits the
structure of a behavior [14, Thm. 2.56(iii)]. This can be seen by choosing a kernel
representation R′ ∈ Dg′,q for B′. The restriction of this operator map from Aq to B
has kernel B′, and so its image is isomorphic to B/B′:

R′B ∼= B/B′.(2.12)

This is an isomorphism of behaviors in the sense that it is the dual of an isomorphism
of the corresponding finitely generated modules [33, Sect. 2.5]. Such isomorphisms
preserve many important system-theoretic properties such as controllability, strong
controllability, autonomy, number of free variables, etc., and for most purposes we
may consider them to be “the same behavior.” Note that R′B is dependent upon the
choice of R′; different R′B’s may even have different numbers of system variables.

The next result, adapted from [34, Thm. 5.7], demonstrates the construction of a
kernel representation for a factor behavior.
Lemma 2.13. Let B′ ⊆ B be behaviors, where B′ has the kernel representation

R′, and KR′ is a kernel representation of B for some K. Let C be an MLA of R′,
and set

L =

(
K
C

)
.
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Then L is a kernel representation of R′B ∼= B/B′. In the case where R′ has full row
rank, K itself is a kernel representation of R′B ∼= B/B′.

Proof. For the first claim, follow the first part of the proof of [34, Thm. 5.7],
which does not depend upon the special choice B′ = Bc in that result. The second
claim is immediate from the fact that a full row rank matrix has 0 as an MLA.

Alternatively, if given two kernel representations B = ker R,B′ = ker R′, construct

an MLA (C C ′) of
(
R′

R

)
. By the procedure for elimination of variables [8], [14, Cor.

2.38], ker C = R′B.
Of particular interest are the factors of controllable or autonomous behaviors.

If B is controllable and B′ is a subbehavior of B, then it is easy to show from the
divisibility characterization in Theorem 2.9 that B/B′ is also controllable. Similarly,
from condition 2 in Lemma 2.4 we find that if B is autonomous, then so is B/B′.

We can also construct a representation for the sum of two given behaviors; this
technique is implicit in some of the work of Valcher, e.g., [25, Lem. 4.3].
Lemma 2.14. Suppose B = ker R,B = ker R are subbehaviors of Aq. Let (C C)

be an MLA of
(
R
R

)
. Then CR = −C R is a kernel representation of B + B.

Proof. Let R,R,C, and C be as stated. Suppose first that CRw = 0. Then(
Rw
0

)
∈ ker (C C) = im

(
R
R

)
,

so there exists w′ with Rw = Rw′ and Rw′ = 0. Hence w = (w − w′) + w′ with
w − w′ ∈ B and w′ ∈ B. Conversely if w = w1 + w2, w1 ∈ B, w2 ∈ B, then
CRw = CRw2 = −C Rw2 = 0. Hence B + B = ker CR.

3. Regular interconnection. In the behavioral approach, interconnections of
systems are described by intersections of the corresponding behaviors (e.g., [3, 30, 32]).
Thus if B = ker R and B = ker R, then B ∩ B = ker R

R is the behavior of the system

obtained by interconnecting B and B. In some cases, the physical interconnection
is not along all input/output channels, e.g., in a series interconnection. Such an
interconnection can, however, still be represented in this framework by extending
each of the original systems to include the variables of the other (without constraints).
Such variations are discussed in detail in the work of Weiland and Stoorvogel [27, 28].
Various types of interconnections have also been discussed and related to the module-
theoretic approach by Fliess and Bourlès [5]. In this dual domain, interconnection is
described as a fibered sum of modules [5].

A prerequisite for an interconnection to be describable in terms of feedback is that
it should be “regular” [32]. This has nothing to do with the concept of a “regular”
behavior. The definition that we give here is different from the original definition of
Willems, but the two are equivalent in both 1D and nD cases.

Throughout this section and the remainder of the paper, B′,B, and B denote
three (linear, shift-invariant) differential/difference behaviors in the same space Aq.
B can be thought of as the plant, B as the controller, and B′ as the controlled system.
Definition 3.1. The interconnection B∩B is said to be a regular interconnection

if the sets B⊥ and B⊥ of system equations intersect trivially.
If B′ ⊆ B and there exists B such that B′ = B ∩ B and this is a regular intercon-

nection, we say that B′ is achievable from B by regular interconnection.
With this new definition, regular interconnection expresses the idea of “restricting

what is not yet restricted.” In a regular interconnection, the controller imposes new
restrictions on the plant; it does not reimpose restrictions that are already present. In
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this sense, the controller in a regular interconnection has no redundancy. A feedback
controller is a simple example of a regular interconnection; the controller imposes
restrictions only on the plant input, which is unrestricted in the plant. Feedback
interconnections (with no assumptions of causality) can be formally defined in the
current framework as follows.
Definition 3.2 (see [20, 32]). The interconnection B ∩ B is said to be imple-

mentable as a feedback interconnection if there exist input/output structures (u, y) on
B and (u, y) on B such that y and y are disjoint sets of variables, and (u ∩ u, y ∪ y)
is an input/output structure on B ∩ B.

We now give a number of conditions characterizing regular interconnection; in
particular, we show that Definition 3.1 is equivalent to the original definition given
in [32]. The last condition, established in [20], shows that regular interconnection is
both necessary and sufficient for the existence of a feedback control structure.
Lemma 3.3. Take B = ker R, B = ker R. Then the following are equivalent.

1. B ∩ B is a regular interconnection.
2. p(B) + p(B) = p(B ∩ B).
3. rank R + rank R = rank (RR ).

4. B + B = Aq.
5. B ∩ B can be implemented as a feedback interconnection.

Proof. The equivalence of conditions 2 and 3 is obvious from the equality of the
rank and the number of outputs. Now subtract 2q from each side of (2.7) to obtain

p(B ∩ B) + p(B + B) = p(B) + p(B).(3.1)

This holds for any B,B. Thus condition 2 is equivalent to the condition

p(B + B) = 0,

which is trivially equivalent to the condition 4. Next, note that any equation satisfied
by both B and B is satisfied by B+B, and vice versa. Since Aq is the only (linear, shift-
invariant) differential/difference behavior satisfying no nontrivial system equation,
conditions 1 and 4 are equivalent.

Finally, equivalence of conditions 1 and 5 is shown in [20] for the case A = kZ
n

;
the proof techniques given there apply also to the other signal spaces.

Note that an interconnection satisfying the conditions of Lemma 3.3 is called a
feedback interconnection in [10, 31], where the term regular (feedback) interconnection
is reserved for something more specific. Weiland and Stoorvogel [27, 28] have another
nonequivalent definition of regular interconnection. The term “achievable” is used
in a similar way by Polderman and Mareels [16] but not in the context of regular
interconnections.

Condition 3 in Lemma 3.3 provides an algorithmic test for the regularity of a
given interconnection. Condition 2 intuitively says that the plant and controller can-
not share output variables in a regular interconnection (though this interpretation
depends upon a suitable choice of input/output structures and is hard to formalize).
Condition 4 says that any q-tuple of signals can be decomposed as a sum of a plant
trajectory and a controller trajectory; further interpretation of this is still open. One
immediate consequence of condition 4 is that regularity of interconnection is preserved
by extending either the plant or the controller behavior. This condition provides us
with an alternative test of regularity of an interconnection: if B = ker R, B = ker R,
and (C C) is an MLA of

(
R
R

)
, then by Lemma 2.14 B ∩B is a regular interconnection
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if and only if CR = 0. This test says that B ∩B is a regular interconnection precisely
when any relation on the rows of

(
R
R

)
can be decomposed into a relation on the rows

of R and a relation on the rows of R.
Lemma 3.3 shows that regular and feedback interconnections are equal in a certain

sense. Moreover, it is shown in [20] (following [32] for the 1D case) that if B′ ⊆ B
is achievable from B by regular interconnection and if input/output structures on B′
and B are given, where the inputs of B′ are a subset of the inputs of B, then B′ can be
achieved from B by control in a standard feedback loop. In other words, achievability
by regular interconnection is sufficient for the existence of a feedback controller, even
when inputs and outputs for plant and controlled system are assigned a priori. Since
we have no new observations to make on the subject of feedback, we will discuss it
no further in this paper; see [20] for further details.

Example 3.4. 1. We begin with a 1D example, taken over the signal space
A = C∞(R,R). Consider the behavior B and subbehavior B′ given by

B = ker R, R = (z − 1 z − 1 z2 + z − 2),

B′ = ker R′, R′ =

( −z 1 1
z − 1 0 z − 1

)
.

We can achieve B′ by interconnection with the following controller:

B = ker R, R =

( −z2 z z
z − 1 0 z − 1

)
.

In fact, we have (
R
R

)
= L̂R′, R′ = K̂

(
R
R

)

with

L̂ =


 z − 1 z + 1

z 0
0 1


 , K̂ =

( −1 1 z + 1
0 0 1

)
.

Unfortunately, B has rank R = 1 output, and B has rank R = 2 outputs, whereas
B ∩ B = B′ has rank R′ = 2 outputs. The interconnection is therefore not regular,
and a feedback structure connecting B and B cannot exist.

2. For A = C∞(R3,R), consider the interconnection

B ∩ B = ker




0 z1 −z2
−z1 0 z3

0 z2 z1z2
0 z3 z1z3


 .

It is easy from the rank condition to check that this interconnection is regular. The
interconnection may be implemented by means of a feedback loop: take the first two
variables to be outputs in B and inputs in B, and the third variable to be an input in
B and an output in B; all three variables are then outputs in the intersection.

3. For the same signal space and behavior B, look at the following interconnection
with a different controller B:

B ∩ B = ker


 0 z1 −z2
−z1 0 z3
z2 −z3 0


 .
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The interconnected system is given by the curl or rot operator, which is singular. Since
the ranks of the representations of B and B add to up 3 > 2, the interconnection is
not regular. Indeed, (z1z2 − z1z3 0)w = 0 is a system equation of both B and B.
This interconnection cannot be implemented through feedback: the intersection has
an input, which should therefore be a common input to both plant and controller,
and by counting we find this is impossible without the nonfeedback phenomenon of a
common output.

We now consider the condition of achievability by regular interconnection.
Lemma 3.5. Suppose B′ ⊆ B ⊆ Aq. Then the following are equivalent.

1. B′ is achievable from B by regular interconnection.
2. B/B′ is a direct summand of Aq/B′.

In the case where B′ is a regular behavior, a further equivalent condition is that B/B′
is strongly controllable.

Also, for any B the following are equivalent.
(i) B is strongly controllable.
(ii) Any B′ ⊆ B is achievable from B by regular interconnection.
(iii) The subbehavior {0} is achievable from B by regular interconnection.
Proof. If B′ can be achieved from B by regular interconnection, then there exists

a B ⊆ Aq with B ∩ B = B′ and B + B = Aq. It follows immediately that B/B′ ∩
B/B′ = {0} and B/B′ + B/B′ = Aq/B′, i.e., B/B′ is a direct summand of Aq/B′ and
conversely. Now suppose that B′ is a regular behavior with a full row rank kernel
representation R′. Then, as discussed in section 2.4, B/B′ can be identified with R′B,
and Aq/B′ = im R′, which by [14, pp. 24–25] equals Ap(B′), as R′ has full row rank.
Furthermore, there is a natural one-to-one correspondence between the subbehaviors
of Ap(B′) and the subbehaviors of Aq/B′. Hence B/B′ is a direct summand of Aq/B′
if and only if R′B is a direct summand of Ap(B′), and by Lemma 2.12 this is precisely
the condition of strong controllability of R′B ∼= B/B′.

Next, if B is strongly controllable, then B is a direct summand of Aq, and so {0}
is achievable from B by regular interconnection, say, {0} = B ∩ B, B + B = Aq, and
conversely. Hence (i) and (iii) are equivalent. Given such a controller B, for any given
B′ ⊆ B we have B ∩ (B + B′) = B′. Since B + (B + B′) = Aq, this interconnection
is regular, and so B′ is achievable from B′ by regular interconnection. Hence (ii) and
(iii) are equivalent.

Note that in the 1D case every behavior is regular, and so B′ is achievable from
B by regular interconnection if and only if B/B′ is strongly controllable. In the nD
case this is not so, and the condition does not generally apply. For example, take
B = Aq. Then for any ker R′ = B′ ⊆ B, B′ is certainly achievable from B by regular
interconnection (take the controller B = B′), whereas B/B′ ∼= im R′ is controllable
but not in general strongly controllable.

Recall that for 1D systems controllability and strong controllability are equivalent.
Equivalence of (i)–(iii) in Lemma 3.5 therefore gives us again the 1D result [32] that
any subbehavior of a given 1D behavior B is achievable from B by regular intercon-
nection if and only if B is controllable. In the nD case, even for n = 2, controllability
and strong controllability are no longer equivalent, and we find that achievability by
regular interconnection is generally a strong property. In particular, not every au-
tonomous part, or even every minimal autonomous part, of a given behavior B can
be achieved from B by regular interconnection, even when B is controllable. We see
this by taking B to be a controllable but not strongly controllable behavior, e.g.,

B = ker (z1−1 z2−1).
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Then B′ = {0} cannot be achieved from B by regular interconnection.
We provide examples of behaviors which can and cannot be achieved by regular

interconnection in the next section.

3.1. Constructing controllers. As shown in Lemma 3.5, achievability by reg-
ular interconnection can be tested through a direct summand condition. Conditions
and an algorithm for testing whether one behavior is a direct summand of another
have recently been given by Bisiacco and Valcher [2], extending some previous work
of Valcher [26, Thm. 3.4]. Furthermore, this work is constructive in that it allows the
construction of a complementary direct summand when one exists.

Using these techniques, we can test for achievability by regular interconnection
and construct a suitable controller as follows. For brevity, we omit some of the details,
which can be found by inspecting the results and proofs in [2].

1. Suppose we are given B = ker R and B′ = ker R′ with B′ ⊆ B ⊆ Aq. Begin
by constructing a kernel representation L of R′B ∼= B/B′, as described in Lemma 2.13.
Construct also an MLA C of R′, so that ker C ∼= Aq/B′. Then we must find whether
ker L is a direct summand of ker C.

2. Apply the method of Bisiacco and Valcher. Construct a matrix K with
KL = C, and extend K to K̂ by adding rows which form an MLA of C. Now ker L
is a direct summand of ker C if and only if K̂ and L are internally zero skew-prime,
i.e., there exists polynomial matrices X,Y with XK̂ + LY = I.

3. Internal zero skew-primeness can be tested using Gröbner basis techniques,
since XK̂ +LY = I is a system of linear equations in the entries of X and Y , and we
simply want to know whether a solution exists and to find one if it does. Accordingly,
if no such X,Y exist, then B′ is not achievable from B by regular interconnection.

4. If, on the other hand, we can compute X and Y with XK̂ + LY = I, then
we can extend this equation to a “doubly coprime factorization”(

X L
W1 W2

)(
K̂ Z1

Y Z2

)
=

(
I 0
0 I

)
,

in which the two matrices on the left-hand side are mutual unimodular inverses (a
unimodular matrix being a square matrix with an inverse over the polynomial ring).
Since

(
L
W2

)
is zero right prime, ker L ∩ ker W2 = 0. Furthermore, (K̂ Z1) must be

an MLA of
(
L
W2

)
, so from Lemma 2.14 we find that K̂L is a kernel representation of

ker L+ ker W2. However, by definition of K̂ we have that ker K̂L = ker C, so ker W2

is the complementary summand of ker L in ker C.
5. Set B = ker W2R

′. It is now easy to check that B ∩ B = B′ and B+ B = Aq.
Hence this interconnection is regular.

In the case where B′ is regular, a simpler algorithm can be applied; we need only
construct R′B and test to see whether it is strongly controllable. In the case where
it is, we can find a full row rank kernel representation L of R′B, which must be zero
left prime. We then construct a matrix W2 such that

(
L
W2

)
is unimodular (see, e.g.,

[1, 9]), and W2R
′ gives us the required controller as in the above algorithm.

Example 3.6. 1. If (u, y) is a free input/output structure on B, then B0,y is
achievable from B by regular interconnection. A suitable controller is

B :=

{(
u
y

)
∈ Am+p

∣∣∣∣ u = 0

}
.

It is easy to see that B + B = Aq; from this we find by Lemma 3.3 that B ∩ B = B0,y

is a regular interconnection.
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2. Let us return to the 1D example in 3.4.1, in which we previously found a
nonregular interconnection:

B = ker R, R = (z − 1 z − 1 z2 + z − 2),

B′ = ker R′, R′ =

( −z 1 1
z − 1 0 z − 1

)
.

The given kernel representations for the behaviors B and B′ are related by

R = LR′, L = (z − 1 z + 1).

Since R′ has full row rank, L is a kernel representation for R′B. It is zero left prime,
proving that R′B is controllable or, equivalently, strongly controllable, and is therefore
extendable by the Quillen–Suslin theorem to a unimodular matrix, e.g.,(

L
L

)
=

(
z − 1 z + 1

1 1

)
.

A suitable controller is given by

B = ker LR′ = ker (−1 1 z),

which has a single output. We have p(B) + p(B) = p(B′), so the interconnection is
regular. It can be implemented via a feedback loop: choose the first variable to be
an input in B and an output in B,B′, the second variable to be an input in B and an
output in B,B′, and the third variable to be an input in all three behaviors.

3. Consider the 2D behaviors given by the matrices

B = ker R, B′ = ker R′, R = (z2
1−1 z1−z2), R′ =

(
z1+1 z2

0 −z1
)
.

In this case, R′ has full row rank, and so from Lemma 3.5 we have that B′ is achievable
from B by regular interconnection if and only if B/B′ is strongly controllable. We have

R = LR′, L = (z1−1 z2−1),

from which L is a kernel representation of R′B ∼= B/B′. Since L is not zero left
prime, B/B′ is not strongly controllable, and so B′ is not achievable from B by regular
interconnection, even though B is controllable.

4. Now look at the following 2D behaviors: B = ker R,B′ = ker R′, where

R = (z1z2 z1 + 1 z2), R′ =


 0 z1 + z2 + 1 z2

z1z2 −z2
1 − z1z2 + 1 −z1z2 + z2

−z2
1 − z1z2 z1 + z2 0


 .

Again we compute a kernel representation of R′B,

R′B = ker L, L =

(
z1 1 0

z2
1 + z1z2 − z1 − z2 z1 + z2 z2

)
,

and an MLA C of R′, which is given by the second row of L. Since R′ is not full row
rank (moreover B′ is not regular), we proceed by applying the method of Bisiacco
and Valcher. We have ker L ⊆ ker C, and we wish to know whether ker L is a direct
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summand of ker C. A kernel representation of L(ker C) is K̂ = (0 1), and we have
that B′ is achievable from B by regular interconnection if and only if K̂ and L are
internally zero skew-prime. This is indeed the case; we have

( −1 z1 1 0
1 z2

1 +z1z2−z1−z2 z1+z2 z2

)
0 1

1−z2 1−z2
z1z2−z1+1 z1z2−z1+1
−z1−z2 −z1−z2


 = I,

and the matrix W2 in the algorithm above is accordingly constructed as(
z1z2 − z1 + 1 z2 − 1 0
z2
1 + z1 − 1 z1 + 1 1

)
,

from which we obtain, as a suitable controller,

B = ker R, R = W2R
′ =

(
z1z

2
2 − z1z2 z1z2 + 2z2 z2

2

z2
1z2 − z2

1 z2
1 + 2z1 z1z2

)
.

Since the ranks of R, R, and
(
R
R

)
are 1, 1, and 2, respectively, B ∩ B is certainly a

regular interconnection. It remains to confirm that B ∩ B = B′. However, we find

(
R
R

)
= U


 0 z1 + z2 + 1 z2

z1z2 −z2
1 − z1z2 + 1 −z1z2 + z2

−z2
1 − z1z2 z1 + z2 0


 = UR′,

where

U =


 z1 1 0

z1z2 − z1 + 1 z2 − 1 0
z2
1 + z1 − 1 z1 + 1 1




is a unimodular matrix, proving that B ∩ B = B′, as predicted by the theory.
Lomadze and Zerz [11] have recently provided a direct method for testing for

achievability by regular interconnection and controller construction. Their algorithms
address the problem more directly, but we will not discuss their work here, since the
homological techniques involved are beyond the scope of this paper.

4. Set-controllability. In this section we introduce and characterize the new
concept of set-controllability, which formalizes the idea of being able to drive any
system trajectory into a prescribed trajectory set, in practice a subbehavior B′. This
concept has not previously appeared in the literature, even in the 1D case. The
formalization is necessarily slightly different for the different signal spaces of interest.
Definition 4.1. Let B′ ⊆ B ⊆ Aq. Then we say that B is set-controllable to B′

if the following condition, dependent on the signal space A, holds.
A = C∞(Rn, k) or A = D′(Rn, k): For any w ∈ B, there exists w′ ∈ B′ such that,

for any open sets T1, T2 ⊆ R
n with disjoint closures, w and w′ are concatenable in B

with respect to (T1, T2).
A = kT , T = N

n or Z
n: There exists a ρ > 0 such that for any w ∈ B, there exists

w′ ∈ B′ such that, for any T1, T2 ⊆ T with d(T1, T2) ≥ ρ, w and w′ are concatenable
in B with respect to (T1, T2).

In the above definition, w ∈ B is interpreted as the given system trajectory, and
w′ ∈ B′ is some trajectory in the desired subsystem into which w can be controlled,
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by means of some driving trajectory w∗ ∈ B (the concatenating trajectory w(0) in
Definition 2.7). As in the definition of controllability, it is sufficient for the definition
of set-controllability in the discrete case to consider only b1 = 0 in Definition 2.7, and
for T = Z

n we can take b2 = 0 as well.
In each case, note that w′ ∈ B′ can be chosen independently of the regions T1

and T2. This sounds like a very stringent requirement, but as we will now show,
set-controllability as defined above admits a variety of interesting characterizations.

4.1. Characterizing set-controllability. Here follows one of our main results.
Theorem 4.2. Let B′ ⊆ B. The following are equivalent.

1. B is set-controllable to B′.
2. B/B′ is controllable.
3. B = Bc + B′.
4. Any autonomous part of B′ is also an autonomous part of B.
5. B has no proper subbehaviors with the same number of free variables which

contain B′.
6. B has no proper subbehaviors in the same transfer class which contain B′.

Proof. 1 ⇒ 2. Suppose that B is set-controllable to B′, and let R′ be any kernel
representation of B′. We will prove that the behavior R′B is controllable. Since
R′B ∼= B/B′, and controllability is (by the divisibility condition in Theorem 2.9)
preserved by isomorphism, this is sufficient. We treat the discrete and continuous
cases in turn.

The case A = kT , T = N
n or Z

n: Let ρ > 0 be the distance given in the definition
of set-controllability, and take d(t1, t2) :=

∑n
i=1 |(t1)i − (t2)i|. Note that without loss

of generality we can take R′ to have entries in D regardless of T . Hence we can use
the notation

R′ =
∑
a∈Nn

R′
az
a1
1 · · · zann

with coefficient matrices R′
a over k:

supp (R′) := {a ∈ N
n : R′

a �= 0}.

Set

∆ := max{d(0, a) | a ∈ supp (R′)}

and τ := ρ + 2∆. We will prove that R′B is controllable with separation distance τ .
Let v ∈ R′B be arbitrary, say, v = R′w for some w ∈ B. Now there exists w′ ∈ B′

with the property given in the definition of set-controllability. Let T1, T2 ∈ T be such
that d(T1, T2) ≥ τ . It suffices by linearity to prove that v and 0 are concatenable in
R′B with respect to (T1, T2). Therefore, choose b1, b2 ∈ T arbitrarily, and extend T1

and T2 to T3 and T4, respectively, according to

T3 := {t + a | t ∈ T1, a ∈ supp (R′)},

and similarly for T4. Now for any t1 + a1 ∈ T3, t2 + a2 ∈ T4 with t1 ∈ T1, t2 ∈ T2,
a1, a2 ∈ supp (R′), we have

d(t1, t2) ≤ d(t1, t1 + a1) + d(t1 + a1, t2 + a2) + d(t2 + a2, t2),
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and, consequently, d(T3, T4) ≥ ρ. Hence, by set-controllability, there exists w∗ ∈ B
satisfying

w∗(t) =

{
w(t− b1) if t ∈ T3 and t− b1 ∈ T,
w′(t− b2) if t ∈ T4 and t− b2 ∈ T.

(4.1)

Set v∗ = R′w∗; we now find that for any t ∈ T1 with t− b1 ∈ T , we have

v∗(t) =
∑

a∈supp(R′)

R′
aw

∗(t + a).

Now t + a − b1 must be in T for any a ∈ supp (R′), and t + a ∈ T3, which by (4.1)
gives us

v∗(t) =
∑

a∈supp(R′)

R′
aw(t + a− b1)

= (R′w)(t− b1)

= v(t− b1).

Similarly, for any t ∈ T2 with t− b2 ∈ T , we have

v∗(t) = (R′w′)(t− b2) = 0.

Hence v∗ drives the given trajectory v to the zero trajectory. This is sufficient to
prove that R′B is controllable.

The case A = C∞(Rn, k) or A = D′(Rn, k): Let U be any open subset of R
n, and

let V be any closed subset whose interior contains the closure of U . Let v ∈ R′B be
arbitrary, say, v = R′w for some w ∈ B. Since B is set-controllable to B′, ∃w′ ∈ B′
and w∗ ∈ B such that w∗ agrees with w on U and with w′ on V c, the complement of
V . Now define v∗ = R′w∗ ∈ R′B. Since the support of R′(w∗ − w′) is contained in
the support of w∗ −w′ (the differential operator R′ is a local operator), we have that
v∗ = R′(w∗−w′) vanishes on V c. On the other hand, v−v∗ = R′(w−w∗) vanishes on
U , so v∗ agrees with v on U . This proves that v has a “cutoff” v∗ ∈ R′B with respect
to U and V , which by [15, Lemma 3.3] is sufficient to prove that R′B is controllable.

2⇒ 3. Now suppose that B/B′ is controllable, and consider the behavior B/(Bc+
B′). This behavior is a factor of B/B′ but is also a factor of the behavior B/Bc.
However, B/Bc is autonomous by (2.6). By the remarks in section 2.4, B/(Bc +B′) is
therefore both controllable and autonomous, and therefore equal to {0}.

3⇒ 1. Suppose that B = Bc + B′. Then any trajectory w = wc + w′ of B can be
driven to B′ by driving wc to 0. Hence B is set-controllable to B′.

3⇔ 4. Let B′a be an autonomous part of B′, and let B′c be the controllable part.
We argue as follows:

B = Bc + B′ = Bc + B′c + B′a.(4.2)

Now Bc + B′c contains Bc and is contained in B so by Corollary 2.10 has the same
number of free variables as B and Bc. But it is easy to see that Bc + B′c is itself
controllable, which by condition 6 of Theorem 2.9 implies that we must have Bc =
Bc + B′c. Equation (4.2) now becomes B = Bc + B′a, i.e., B′a is an autonomous part
of B. The converse is easy.

2 ⇔ 5 ⇔ 6. By condition 6 of Theorem 2.9, controllability of B/B′ means that
no proper subbehavior of B/B′ can have the same number of free variables as B/B′.
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By (2.6), an equivalent statement is 5, and the equivalence of 5 and 6 is immediate
from Corollary 2.10.

Condition 2 in Theorem 4.2 suggests that we can think of set-controllability to
B′ as “controllability to within B′.” We will use this characterization heavily in what
follows.

Next, note that any B is set-controllable to B. In fact, this is the only pos-
sibility for set-controllability when B is autonomous. Indeed, the condition “B is
set-controllable to B′ ⇒ B′ = B” characterizes autonomy. Controllability may also
be characterized in terms of set-controllability (compare with Lemma 3.5 (i)–(iii)).

Corollary 4.3. The following are equivalent.

1. B is controllable.
2. B is set-controllable to B′ for any subbehavior B′.
3. B is set-controllable to {0}.

Thus controllability expresses the ability to control a given system in the above
sense into any desired subsystem. Notice a more general property: if B is set-
controllable to B′, and B′ ⊆ B′′ ⊆ B, then B is also set-controllable to B′′.

Example 4.4. 1. From condition 3 in Theorem 4.2, B is set-controllable to B′ for
any autonomous part B′ of B. In particular, B is set-controllable to B0,y for any free
input/output structure (u, y) (any trajectory is driven into B0,y by setting the inputs
to 0).

2. In Example 3.6.3, the subbehavior B′ was shown not to be achievable from
the controllable B by regular interconnection. However, we showed that B/B′ ∼=
ker (z1−1 z2−1), which by Theorem 4.2 demonstrates that B is set-controllable to
B′, as predicted by Corollary 4.3.

From condition 2 of Theorem 4.2 and (for example) the divisibility characteriza-
tion of controllability, we can easily prove the intuitive result that set-controllability is
transitive. In particular, if a behavior is set-controllable to a controllable subbehavior,
then it must itself be controllable.

It is interesting to consider set-controllability of B to B′ from the point of view
of the subbehavior B′. For any behavior B, Theorem 4.2 tells us that Bc + B′ is set-
controllable to B′. This behavior Bc+B′ is also easily shown to be in the same transfer
class as B. Furthermore, there cannot be another behavior B∗ in this transfer class
which is also set-controllable to B′, since B∗ and B must have the same controllable
part, and condition 3 of Theorem 4.2 therefore requires that B∗ = Bc + B′. This
means that each transfer class contains at most one element which is set-controllable
to B′ for fixed B′. When B′ is autonomous, each transfer class contains exactly one
such element. It follows that two distinct elements in the same transfer class cannot
both be set-controllable to B′ for any B′, i.e., they have in a sense no controllability
properties in common!

From these observations, we might go on to define a “B′-transfer class” for fixed
B′, being a subset of an ordinary transfer class consisting of all those behaviors which
contain B′. Then each B′-transfer class has a unique minimal element, and such
elements are precisely the behaviors set-controllable to B′.

It seems reasonable to assume set-controllability to B′ as at least a necessary
condition for control under any paradigm. Not only the plant, but also the controller,
must be set-controllable to B′, where B′ is the controlled system. This means that,
when designing a controller for a given problem, it suffices to identify the transfer
class of that controller, for then the controller itself is uniquely identified as the single
behavior in that transfer class which is set-controllable to B′. This suggests that the
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transfer function matrix approach may be an appropriate initial tool in nD controller
design.

4.2. Testing for set-controllability. We now discuss algorithmic tests for set-
controllability. These are based on conditions 2 and 3 in Theorem 4.2. We have the
isomorphism

R′B ∼= B/B′,

which enables us to test for set-controllability to B′ by constructing a kernel represen-
tation E for R′B and testing to see whether E is an MLA. If E is an MLA, then R′B
is controllable and so B is set-controllable to B′, and conversely. Methods for finding
a kernel representation of R′B have been discussed in section 2.4.

An alternative method for testing for set-controllability of B to B′, which may
be more efficient when a representation Rc of Bc is already given, is to test for the
inclusion B ⊆ Bc +B′. By Lemma 2.14, a kernel representation of Bc +B′ is given as
CRc = −C ′R′, where (C C ′) is an MLA of

(
Rc

R′
)
.

These algorithms require procedures for the following basic problems:
1. construction of a minimal left/right annihilator of a given matrix;
2. construction of a kernel representation for the controllable part of a given

ker R;
3. a test for inclusion ker R1 ⊆ ker R2, and the construction of a matrix L with

LR1 = R2 when the inclusion holds;
4. a test to see whether a given R is an MLA.

The first problem is effectively the problem of constructing a syzygy module in
commutative algebra, which can be solved through Gröbner basis techniques. The
second problem is solved for a given R by constructing a minimal right annihilator
M ; the controllable part is then im M , a kernel representation of which can be found
as any MLA Rc of M . This algorithm is explained in [14, pp. 144–145], [35, 38]; see
also the related algorithms in [18, section 4]. The third problem is another standard
Gröbner basis problem, while the last reduces to the previous three, as it is equivalent
to testing ker R ⊆ ker Rc.

4.3. Regular interconnection and set-controllability. We have now exam-
ined in outline two different paradigms for the control of 1D/nD systems. Regular
interconnection is based on the notion of adding restrictions to systems and is related
to classical feedback. Set-controllability, on the other hand, formalizes the concept of
“on-line” control by steering system trajectories. For a 1D system, we know from the
work of Willems [32] that controllability is equivalent to achievability of any subbe-
havior by means of regular interconnection. This leads to two immediate questions.

• What happens when the given behavior B is not controllable? In particular,
if B is a 1D behavior which is set-controllable to some subbehavior B′ (but
not necessarily actually controllable), is this sufficient for B′ to be achievable
from B by regular interconnection? What about the converse?
• What is the situation for nD behaviors?

The next result answers these questions.
Theorem 4.5. If B′ can be achieved from B by regular interconnection, then B

is set-controllable to B′. The converse holds for n = 1 but not for n ≥ 2.
Proof. Suppose that B′ can be achieved from B by regular interconnection. Then

by Lemma 3.5, B/B′ is a direct summand of the controllable behavior Aq/B′ and so is
isomorphic to a factor of it. By the divisibility condition, any factor of a controllable
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Fig. 4.1. Mergeable behaviors.

behavior is controllable, and so B is set-controllable to B′. In the 1D case, suppose,
conversely, that B is set-controllable to B′. Then B/B′ is controllable, or, equivalently,
strongly controllable, B′ is regular, and so by Lemma 3.5 B′ is achievable from B by
regular interconnection. For any n ≥ 2, the following is a controllable but not strongly
controllable behavior:

B = ker (z1−1 z2−1).

Hence {0} is not achievable from B by regular interconnection, although B is set-
controllable to {0}.

More generally, we have seen at the end of section 3 that not every autonomous
part is achievable from a given (controllable) system by regular interconnection. On
the other hand, a given behavior is set-controllable to any autonomous part.

The conclusion here is that “on-line” control to a desired subsystem is often
possible in situations where there exists no suitable controller forming a regular inter-
connection with the plant. On the other hand, for a 1D system set-controllable to a
given subsystem, it is always possible to construct a (not necessarily causal) feedback
controller resulting in that subsystem.

4.4. Mergeable behaviors. We now discuss briefly a related controllability-
type concept, which describes the possibility of interconnecting two systems on-line
(e.g., a plant and controller) by steering their given trajectories to a common trajec-
tory. This is a third possible paradigm for control of nD systems. While this concept
has, to our knowledge, not previously appeared in the literature, similar ideas are the
notions of a compliance-free interconnection [30] and interconnectability with finite lag
[27, 28].
Definition 4.6. Let B and B be two subbehaviors of Aq. Then we say that B and

B are mergeable if the following condition, dependent on the signal space A, holds.
A = C∞(Rn, k) or A = D′(Rn, k). For any w(1) ∈ B, w(2) ∈ B(2), there exists

w ∈ B ∩ B such that for any open sets T1, T2 with disjoint closures, w(1) and w are
concatenable in B with respect to (T1, T2), and w(2) and w are concatenable in B with
respect to (T1, T2).
A = kT , T = N

n or Z
n. There exists a ρ > 0 such that, for any w(1) ∈ B,

w(2) ∈ B(2), there exists w ∈ B ∩ B such that for any T1, T2 ⊆ T with d(T1, T2) ≥ ρ,
there exists w ∈ B ∩ B such that w(1) and w are concatenable in B with respect to
(T1, T2), and w(2) and w are concatenable in B with respect to (T1, T2).

Thus mergeability formalizes the idea that any two trajectories in the given be-
haviors B and B can be controlled to the same trajectory “in finite time.” This concept
is illustrated in the 1D case by Figure 4.1.
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The next result characterizes mergeability and is new even in the 1D case; it also
illustrates the usefulness of the set-controllability concept.
Theorem 4.7. Let B,B ⊆ Aq. Then B and B are mergeable if and only if B+B

is controllable.
Proof. Consider the behavior B ⊕ B, which is naturally a subbehavior of A2q.

Now B ∩ B can be treated as a subbehavior of B ⊕ B under the map ι : w �→ (w,w).
With this embedding in mind, it is clear that B and B are mergeable if and only if
B ⊕ B is set-controllable to (B ∩ B).

Now the image of the map ι is equal to the kernel of the projection π : B ⊕ B �→
B + B, (w(1), w(2)) �→ w(1) − w(2), and therefore B + B is naturally isomorphic to
the factor (B ⊕ B)/(B ∩ B). The result now follows from condition 2 of Theorem
4.2.

It can be seen that behaviors which are regularly interconnectable are mergeable,
but not conversely. Also, a pair of mergeable behaviors are each set-controllable to
their intersection, though this condition is not sufficient for mergeability.

5. Regular extended interconnection. In this section we will extend the
framework of regular interconnection to include a concept equivalent in the nD case
to set-controllability. The key is to introduce additional variables and to construct
controllers in the extended variable space. We can think of these additional control
variables as being variables internal to the system, which cannot be directly affected
by means of a regular interconnection. By allowing restrictions to be placed directly
on such internal variables, we can achieve a larger set of controlled behaviors than
is possible through regular interconnection. In the 1D case, however, no additional
power is gained through the ability to restrict latent or internal variables. This seems
to be due to the fact that, in the 1D case, we can always choose our latent variable
descriptions (see below) to be observable, so that the values of the latent variables
can be determined from those of the system variables. Restrictions on such latent
variables are therefore equivalent to restrictions on the manifest variables.

An idea similar to the use of latent variables is the partitioning of system vari-
ables in the plant B into variables w, which we wish to control, and variables v, which
we are not interested in controlling but which we can nevertheless influence by inter-
connection. This framework has been used by Polderman and Mareels [16] and by
Trentelman and Willems [23, 24] as a starting point for more advanced control theo-
ries in the behavioral context. In this paper we take the complementary approach of
starting with the variables w, which we wish to control, and introducing the additional
variables v, which we can also influence.

Recall that a behavior Bw,v ⊆ Aq+l is said to be a latent variable description of
a behavior Bw if

Bw = {w ∈ Aq | ∃ v ∈ Al such that (w, v) ∈ Bw,v}.(5.1)

The variables w are called manifest variables, and the variables v are called latent
variables or auxiliary variables. Latent variable descriptions are often represented in
“ARMA form” as

Bw,v = ker (−R̂ M) = {(w, v) ∈ Aq+l | R̂w = Mv}(5.2)

for some polynomial matrices R̂, M . These ideas are described in [8, 19, 21, 30]. The
manifest behavior Bw can be constructed from the full behavior Bw,v as follows [8], [14,

Cor. 2.38]: if E is an MLA of M , then Bw = ker ER̂. Note our use of R̂ rather than
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the conventional R; this is to avoid the suggestion that the kernel of the left-hand
operator is equal to our B = Bw. However, we do of course have that ker R̂ ⊆ Bw.
Analogously to (5.1), we define the behavior Bv.

5.1. Free latent variable descriptions. If we wish to perform a control action
to drive a system trajectory into some desired subbehavior, our first problem is that
we can normally affect only free variables. Control of the free input variables of the
system unfortunately can only determine the controlled trajectory to within B0,y, and
this may not be good enough. It therefore becomes necessary to look for free latent
variables, which leads us to introduce the following concept.
Definition 5.1. A latent variable description Bw,v ⊆ Aq+l is said to be a free

latent variable description if the variables v are free variables, i.e., if Bv = Al.
We can characterize free latent variable descriptions as follows.
Lemma 5.2. Let Bw,v = ker (−R̂ M) be a latent variable description of the

behavior B = Bw. Then the following are equivalent.
1. Bw,v is a free latent variable description.

2. rank R̂ = rank (−R̂ M).
3. im M ⊆ im R̂.
4. M is an image representation of R̂B.

Proof. 1 ⇒ 2. Suppose Bw,v is a free latent variable representation. Then
m(Bv) = l, the number of variables v. Now Bv = Bw,v/Bw,0, so by additivity of
the number of free variables we have m(Bw,v) −m(Bw,0) = l. However, m(Bw,v) =

(q+l)−rank (−R̂ M), and m(Bw,0) = q−rank R̂, from which rank R̂ = rank (−R̂ M)
as required.

2⇒ 3. Suppose that rank R̂ = rank (−R̂ M). Then every column of M is linearly
dependent on the columns of R̂, i.e., there exist a nonsingular diagonal polynomial
matrix D and a polynomial matrix X such that R̂X = MD. Since D has full row
rank, im D = Al by [14, pp. 24–25], and consequently im M = im R̂X ⊆ im R̂ as
required.

3 ⇒ 4. Suppose that im M ⊆ im R̂. Then for any x ∈ im M , x = Mv = R̂w for
some w, v, which implies w ∈ B, and so x ∈ R̂B. Conversely, if x ∈ R̂B, then x = R̂w
for some w ∈ B, so there must exist v with x = R̂w = Mv, and now x ∈ im M . This
proves that im M = R̂B.

4⇒ 1. Suppose that M is an image representation of R̂B. Then for any v ∈ Al,
Mv ∈ R̂B, and so v ∈ Bv. Hence Bw,v is a free latent variable representation as
required.

We now look at some interesting special cases of free latent variable descriptions.
Example 5.3. 1. Free input/output structures: A behavior B = By,u with a given

free input/output structure is clearly a free latent variable description of the manifest
output behavior By. Conversely, in the case where R̂w = Mv defines a free latent

variable description and the behavior ker R̂ is furthermore autonomous, we have a free
input/output structure on Bw,v with inputs v and outputs w. An interesting open
question is whether the resulting transfer matrix and minimal element of the transfer
class then have any interpretation in terms of the latent variable description.

2. A latent variable description arising from a controllable-autonomous decom-
position B = Bc + Ba, Bc = im M , Ba = ker R̂ of B: In this situation,

R̂w = R̂Mv

defines a free latent variable description of B. It is a latent variable description of B
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since if R̂w = R̂Mv, then w−Mv ∈ ker R̂, so w ∈ im M +ker R̂, and conversely. The
latent variables v are free from the fact that im M = Bc ⊆ B.

3. Consider a classical 1D state-space model, given in the form(
B 0
D −I

)(
u
y

)
=

(
zI −A
−C

)
x,(5.3)

where the matrices A, B, C, and D are matrices over the field k. This is a latent
variable description of the manifest behavior Bu,y (the behavior of the input and
output variables only). By Lemma 5.2, it is free precisely when

rank

(
zI −A −B 0
−C −D I

)
= rank

( −B 0
−D I

)
.(5.4)

However, the rank of the left-hand side is equal to the number of output variables
plus the number of state variables, whereas the rank of the right-hand side is equal
to the number of output variables plus the rank of B. Therefore, (5.3) is a free latent
variable description of Bu,y if and only if B has full row rank.

5.2. Extended interconnection. Having introduced an appropriate class of
latent variable descriptions, we now discuss interconnections on the extended variable
spaces given by latent variable descriptions.
Definition 5.4. Suppose that B′ ⊆ B ⊆ Aq. If there exists a latent variable

description Bw,v ⊆ Aq+l of B such that

B′w,v = Bw,v ∩ Bw,v(5.5)

for some Bw,v,B′w,v ⊆ Aq+l with B′ equal to the manifest behavior B′w of B′w,v, then
we say that B′ is achievable from B by extended interconnection, and we call (5.5)
an extended interconnection. If the variables w are free in Bw,v, then (5.5) is called
a latent interconnection, and Bw,v is called a latent controller. If (5.5) is a regular
interconnection, i.e., if

p(B′w,v) = p(Bw,v) + p(Bw,v),

then it is called a regular extended interconnection or a regular latent interconnection,
appropriately. Hence we define achievability by regular extended/latent interconnec-
tion.

Achievability by regular extended interconnection therefore describes the possi-
bility of achieving the desired subsystem by extending the variable space using some
latent variable description, applying a regular interconnection, and then projecting
onto the manifest variables. Latent interconnections are extended interconnections in
which the only restrictions applied are on the latent variables. To make a clear dis-
tinction, we will refer to an “ordinary” interconnection (i.e., one which restricts only
the manifest variables w) as a manifest interconnection, and, similarly, we will refer
to manifest controllers. Latent and manifest controllers are investigated by Kuijper
in [10].

Given a latent variable description represented by the formula R̂w = Mv, a
general extended interconnection is described by the polynomial matrix( −R̂ M

N1 N2

)
.
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The case N2 = 0 describes a manifest interconnection in extended interconnection
form, and the case N1 = 0 is an important special case of a latent interconnection.

Any manifest interconnection can therefore be expressed trivially as an extended
interconnection. Also, any latent interconnection is equivalent to some manifest in-
terconnection (in the sense that there exists a manifest interconnection resulting in
the same controlled manifest behavior). To see this, note that any latent controller
N2v = 0 is equivalent in this sense to a latent controller of the form (LM)v = 0, which
is in turn equivalent to the manifest controller (LR̂)w = 0. However, we can obtain
any subbehavior of the full behavior Bw by some manifest interconnection, whereas
only those subbehaviors containing ker R̂ are achievable by latent interconnection (see
[16, 23, 24] for discussions along these lines). For a fixed latent variable description,
more behaviors can generally be achieved by manifest interconnection than by latent
interconnection.

However, any manifest interconnection can be expressed as a latent interconnec-
tion on some suitably chosen latent variable description, e.g., the behavior B = ker R
can be extended to the latent variable description given by(

I
0

)
w =

(
I
R

)
v,

and the manifest controller Rw = 0 is equivalent to the latent controller Rv = 0.
Furthermore, any regular interconnection becomes a regular latent interconnection in
this way. In particular, any subbehavior achievable from B by regular interconnection
is achievable from B by regular latent interconnection. We will shortly see that the
converse of this is not true.

It is important to make a distinction between the behavior B′w,v obtained by
extended interconnection and the behavior

B∗w,v := {(w, v) ∈ Bw,v | w ∈ B′w}

obtained from the manifest B′ = B′w. It can be easily shown that the latter is equal
to B′w,v + B0,v. Another trap is to suppose that the manifest controlled behavior
B′w is given by the intersection of the original manifest behavior Bw and the mani-
fest behavior Bw of the controller. This is generally not the case, e.g., for a latent
interconnection we have Bw = Aq, and certainly Bw ∩ Aq �= B′w, except when the
interconnection is trivial.

Example 5.5. 1. Consider the behaviors B,B′ from Example 3.6.3. We saw there
that B′ is not achievable from B by regular interconnection. Now a free latent variable
description of B is given by

 z1 + 1 0
0 z2
0 −z1


w =


 z2 − z1

z2(z1 − 1)
−z1(z1 − 1)


v.

It is easy to verify that the compound matrix (−R̂ M) in this case has rank 2, so that
condition 2 of Lemma 5.2 holds. Now consider the controller (which restricts both
manifest and latent variables) given by

(
0 z1(z2 − 1)
0 z1(z1 − 1)

)
w =

(
z2
1(z2 − 1)
z2
1(z1 − 1)

)
v.
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We can see that this is a regular extended interconnection. The resulting manifest
controlled behavior is computed by elimination of latent variables as the subbehavior
B′ specified earlier.

Free latent variable descriptions are particularly simple as regards latent inter-
connection:
Lemma 5.6. Any latent interconnection on a free latent variable description is

regular.
Proof. Suppose that Bw,v ⊆ Aq+l is a free latent variable description of Bw, and

that B′w,v = Bw,v ∩ Bw,v is a latent interconnection. Then the variables v are free

in Bw,v, and the variables w are free in Bw,v. Hence Bw,v + Bw,v = Aq+l, so by
Lemma 3.3 the latent interconnection is regular.

5.3. Set-controllability and extended interconnection. Our final main re-
sult shows that set-controllability is precisely equivalent to regular interconnection
using latent variables.
Theorem 5.7. Let B′ ⊆ B. The following are equivalent.

1. B is set-controllable to B′.
2. B admits a free latent variable description R′w = Mv with ker R′ = B′.
3. B′ is achievable from B by latent interconnection on a free latent variable

description.
4. B′ is achievable from B by regular latent interconnection on a free latent

variable description.
5. B′ is achievable from B by regular latent interconnection.
6. B′ is achievable from B by regular extended interconnection.

Proof. Suppose that B is set-controllable to B′, and let R′ be an image repre-
sentation of B′. Then by Theorem 4.2 R′B ∼= B/B′ is controllable and so admits an
image representation M . Now the manifest behavior of R′w = Mv is equal to B, since
R′w = Mv ⇒ R′w ∈ R′B ⇒ w ∈ B+B′ = B, whereas w ∈ B implies R′w ∈ im M .
Hence R′w = Mv is a latent variable description of B and is free by Lemma 5.2. This
establishes condition 2. Given that condition, we achieve B′ through the trivial latent
interconnection Iv = 0. By Lemma 5.6, this is a regular latent (extended) intercon-
nection. This establishes 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6. Finally, suppose that B′ is
achievable from B by regular extended interconnection, and let B′w,v and Bw,v be the
corresponding extended behaviors. By Theorem 4.5, Bw,v is set-controllable to B′w,v,
and it follows from the definition of set-controllability that Bw is set-controllable to
B′w, i.e., B is set-controllable to B′. This completes the proof.

The proof of Theorem 5.7 shows that B′ = ker R′ can be achieved by regular
extended or latent interconnection on the free latent variable description R′w = Mv
for some M . In fact, the choice of free latent variable descriptions allowing control to
B′ is much wider.
Lemma 5.8. If B is set-controllable to B′, then B′ is achievable from B by regular

latent interconnection on any free latent variable description of B given by an equation
of the form

R̂w = Mv,

where ker R̂ ⊆ B′.
Proof. Let R̂ be such that R̂w = Mv is a free latent variable description of B,

and also ker R̂ ⊆ B′. There must exist an L with ker LR̂ = B′. Now imposition of the
controller LMv = 0 on the extended behavior is a latent interconnection and regular
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by Lemma 5.6. The manifest behavior of the controlled system is then

{w ∈ Aq | ∃ v with R̂w = Mv, LMv = 0}
= {w ∈ Aq | ∃ v with R̂w = Mv, LR̂w = 0}
= B′.

Hence B′ is achievable by regular latent interconnection on R̂w = Mv.
Example 5.9. 1. Returning to the 1D state-space model in item 3 in Example 5.3,

we see that if the matrix B has full row rank, then the full behavior Bx,u,y is set-
controllable to B0,u,y, i.e., to the subbehavior of all trajectories for which the state
variables remain 0.

An interesting extension of the results in this section would be the consideration of
which manifest behaviors can be achieved by restricting only the free latent variables
in a (not necessarily free) latent variable description. We expect that this again gives
only the subbehaviors to which Bw is set-controllable.

5.4. On-line control. We have seen that a behavior B is set-controllable to a
given subbehavior B′ if and only if B has a latent variable description of the form

R′w = Mv, ker R′ = B′,(5.6)

in which the latent variables v are free. The question then arises: how can we actually
perform the control, i.e., if we are given a trajectory w ∈ B in the region T1 ⊆ T , how
can we drive w into the desired subbehavior B′ in the region T2 ⊆ T? The obvious
answer is by setting the variables v to 0 in T2.

Unfortunately, the obvious answer is wrong. Setting v to 0 on T2 enforces only
R′w = 0 on T2, which remarkably is not enough to establish that w agrees on T2 with
a trajectory of B′. For example, with A = R

Z
n

, n = 2, we might have the behavior
B′ = ker (z1 − 1) consisting of functions which are constant in the t1-direction. Take
T2 = Z

2\{(0, 0)}, and take w∗ to be a trajectory given by

w∗(t1, t2) =

{
1 if t1 ≥ 1 and t2 = 0,
0 elsewhere.

Then (z1 − 1)w∗ clearly vanishes on T2, although w∗ does not agree on T2 with any
trajectory of B′. We can easily manufacture continuous and even 1D examples of this
phenomenon.

We can get around this problem by making a change of latent variables. Suppose
we are considering a free latent variable description of B of the form

R̂w = Mv,(5.7)

where, of course, ker R̂ is contained in the desired subbehavior B′. By condition 2 of
Lemma 5.2, the columns of M must be linearly dependent (over the ring D) on the
columns of R̂. Hence there exists a diagonal nonsingular polynomial matrix D and a
polynomial matrix L satisfying R̂L = MD. Since D has full row rank, it follows that
im MD = im M , and so

R̂w = R̂Lv(5.8)

is another free latent variable description of B. For such a latent variable description,
a given trajectory w can be steered into the subbehavior B′ by control of the variables
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v. Since if we can drive a trajectory into ker R̂, we can certainly drive it into any
larger behavior B′, it suffices to prove this in the case R̂ = R′, ker R′ = B′. In this
case, the control action is the setting of the latent variables v to 0 in a suitable region.
The next result demonstrates this; for brevity it is stated and proved in the continuous
case only.
Lemma 5.10. Let A = C∞(Rn, k) or A = D′(Rn, k). Suppose that B has a free

latent variable description of the form

R′w = R′Lv,

where L has l columns and B′ = ker R′. Then B is set-controllable to B′, and, fur-
thermore, any given trajectory of B can be driven into B′ by control of the variables
v.

More formally, let w ∈ B, and suppose v ∈ Al is such that R′w = R′Lv. Then
for any open sets T1, T2 ⊆ R

n with disjoint closures, there exists a trajectory v∗ ∈ Al
which agrees with v on T1, such that for any w∗ ∈ B satisfying the conditions

1. R′w∗ = R′Lv∗, and
2. w∗ agrees with w on T1,

w∗ agrees with a trajectory of B′ on T2.
Proof. The fact that B is set-controllable to B′ is immediate from Theorem 5.7.

Now let w ∈ B and v ∈ Al satisfy R′w = R′Lv. Let v∗ ∈ Al be any trajectory which
agrees with v on T1 and vanishes on T2; v∗ exists because Al is controllable. Now let
w∗ be a trajectory agreeing with w on T1 and satisfying R′w∗ = R′Lv∗; note that
w∗ ∈ B. For any t2 ∈ T2 we now have

w∗(t2) = (w∗ − Lv∗)(t2) + (Lv∗)(t2) = (w∗ − Lv∗)(t2).

Since w∗ − Lv∗ ∈ ker R′ = B′, we have that w∗ agrees with a trajectory of B′ on
T2.

The interpretation of the various trajectories in the statement of Lemma 5.10 is as
follows. The initial system trajectory is w, and v is some corresponding latent variable
trajectory. Now w is controlled by setting v appropriately outside the region T1. (This
is formalized by having v∗ agree with v on T1, so that v∗ is the latent trajectory “that
actually occurs”.) The trajectory w∗ is required to fit the given “initial data” w on
T1 and is assumed to result from the given controlled latent variable trajectory v∗, so
it must also satisfy R′w∗ = R′Lv∗. The lemma now guarantees that any such w∗ will
agree with a trajectory of the subbehavior B′ on the region T2. Therefore, the control
action of choosing v∗ appropriately is guaranteed to steer w∗ into B′ on T2.

It is worth noting that when adjusting Lemma 5.10 to the discrete case, it is
necessary that v∗ should agree with v on a suitably large extension of T1. Note also
that in the proof of Lemma 5.10, the resulting trajectory w′ = w∗−Lv∗ ∈ B′ depends
upon the choice of T1, unlike in the definition of set-controllability.

6. Conclusions. We have looked at “control” from two points of view: as regular
interconnection and as the ability to drive trajectories. We have seen that for 1D
systems theory these paradigms are essentially different perspectives on the same
phenomenon, whereas in the nD case they differ. Regular interconnection of nD
systems appears to be a very strong condition. However, we have shown that the
subsystems to which a given system is set-controllable are precisely those which are
obtainable by regular interconnection in an extended trajectory space. In order to
control nD trajectories by interconnection, it seems necessary to introduce these latent
variables.
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One important issue to be addressed in the future is that of causality. In the nD
framework, this is most naturally defined with respect to a cone [15, 25]; a cohesive
theory of 2D causality in the behavioral framework is emerging in the work of Napoli
and Zampieri [13, 37]. Combining the causality theory with the theory of regular
interconnections will surely be a difficult but important step in the future development
of nD control theory.
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Abstract. The problem of sequential vector quantization of a stationary Markov source is cast
as an equivalent stochastic control problem with partial observations. This problem is analyzed using
the techniques of dynamic programming, leading to a characterization of optimal encoding schemes.
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1. Introduction. In this paper, we consider the problem of optimal sequential
vector quantization of stationary Markov sources. In the traditional rate distortion
framework, the well-known result of Shannon shows that one can achieve entropy rates
arbitrarily close to the rate distortion function for suitably long lossy block codes [9].
Unfortunately, long block codes imply long delays in communication systems. In par-
ticular, control applications require causal coding and decoding schemes.

These concerns are not new, and there is a sizable body of literature addressing
these issues. We shall briefly mention a few key contributions. Witsenhausen [24]
looked at the optimal finite horizon sequential quantization problem for finite state
encoders and decoders. His encoder had a fixed number of levels. He showed that
the optimal encoder for a kth order Markov source depends on at most the last k
symbols and the present state of the decoder’s memory. Walrand and Varaiya [23]
looked at the infinite horizon sequential quantization problem for sources with finite
alphabets. Using Markov decision theory, they were able to show that the optimal
encoder for a Markov source depends only on the current input and the current state
of the decoder. Gaarder and Slepian [12] look at sequential quantization over classes
of finite state encoders and decoders. Though they lay down several useful definitions,
their results, by their own admission, are incomplete. Other related works include a
neural network based scheme [17] and a study of optimality properties of codes in
specific cases [3], [10]. Some abstract theoretical results are given in [19].
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A formulation similar in spirit to ours (insofar as it aims to minimize a “La-
grangian distortion measure” described below) is studied in [7], [8]. They show em-
pirically that one can make gains in performance by entropy coding the codewords.
In [7] the entropy constrained vector quantization problem for a block is formulated
and a Max–Lloyd-type algorithm is introduced. In [8] they introduce the conditional
entropy constrained vector quantization problem and show that one should use con-
ditional entropy coders when the codewords are not independent from block to block.
In these papers there is more emphasis on synthesizing algorithms and less emphasis
on proving rigorously the optimality of the schemes proposed. Along with this work
there is a large literature on differential predictive coding, where one encodes the
innovation. Other than the Gauss–Markov case, though, it is not apparent how one
may prove the optimality of such innovation coding schemes. Herein we emphasize,
through the dynamic programming formulation, the optimality properties of the se-
quential quantization scheme. This leads the way for the application of many powerful
approximate dynamic programming tools.

In this paper we do not impose a fixed number of levels on the quantizer. The
aim is to somehow jointly optimize the entropy rate of the quantized process (in order
to obtain a better compression rate) as well as a suitable distortion measure. The
traditional rate distortion framework [9] calls for the minimization of the former with
a hard constraint on the latter. We shall, however, consider the analytically more
tractable Lagrangian distortion measure of [7], [8], which is a weighted combination
of the two. We approach the problem from a stochastic control viewpoint, treating
the choice of the sequential quantizer as a control choice. The correct “state space”
then turns out to be the space of conditional laws of the underlying process given
the quantizer outputs, these conditional laws serving as the “state” or “sufficient
statistics.” The “state dynamics” is then given by the appropriate nonlinear filter.
While this is very reminiscent of the finite state quantizers studied, e.g., in [16], the
state space here is not finite, and the state process has the familiar stochastic control
interpretation as the output of a nonlinear filter. We then consider the “separated”
or “certainty equivalent” control problem of controlling this nonlinear filter so as to
minimize an appropriately transformed Lagrangian distortion measure. This problem
can be analyzed in the traditional dynamic programming framework. This in turn
can be made a basis for computational schemes for near-optimal code design.

To summarize, the main contributions of this paper are as follows.
(i) We formulate a stochastic control problem equivalent to the optimal vector

quantization problem. In the process, we make precise the passage from the
source output to its encoded version in a manner that ensures the well-
posedness of the control problem.

(ii) We underscore the crucial role of the process of conditional laws of the source
given the quantized process as the correct “sufficient statistics” for the prob-
lem.

(iii) We analyze the equivalent control problem by using the methodology of
Markov decision theory. This opens up the possibility of using the com-
putational machinery of Markov decision theory for code design.

Specifically, we consider a pair of a “state process” {Xn} and an associated “ob-
servation process” {Yn}, given by the dynamics

Xn+1 = g(Xn, ξn), Yn+1 = h(Xn, ξ
′
n),

where {ξn}, {ξ′n} are independently and identically distributed (i.i.d.) driving noise
processes. We quantize Yn+1 into its quantized version qn+1 that has a finite range and
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is selected based on the “history” qn
∆
= [q0, q1, . . . , qn]. The aim then is to minimize

the long run average of the Lagrangian distortion measure Rn = E[H(qn+1/q
n) +

λ||Yn− q̄n||2], where λ > 0 is a prescribed constant, H(·/·) is the conditional entropy,
and q̄n is the best estimate of Yn given qn.

Let πn be the regular conditional law of Xn given qn for n ≥ 0. From πn,
one can easily derive the regular conditional law of Yn+1 given qn. Using Bayes’s
rule, {πn} can be evaluated recursively by a nonlinear filter. Furthermore, one can
express Rn as the expected value of a function of πn and a “control” process Qn
alone. ({Qn} is, in fact, the finite set depicting the range of the vector quantization
of Yn+1 prior to its encoding into a fixed finite alphabet.) This allows us to consider
the equivalent problem of controlling {πn} with the aim of minimizing the long run
average of the Rn recast as above. This then fits the framework of traditional Markov
decision theory and can be approached by dynamic programming. As usual, one has
to derive the dynamic programming equations for the average cost control problem by
a “vanishing discount” argument applied to the associated infinite horizon discounted
control problem for which the dynamic programming equation is easier to justify.

The structure of the paper is as follows. In section 2, we describe the sequential
quantization problem and introduce the formalism. Section 3 derives the equivalent
control problem. This is analyzed in section 4 using the formalism of Markov decision
theory.

2. Sequential quantization. This section formulates the sequential vector quan-
tization problem. In particular, it describes the passage from the observation process
to its quantized version, which in turn gets mapped into its encoding with respect to
a fixed alphabet. We also lay down our key assumptions which, apart from making
the coding scheme robust, also make its subsequent control formulation well-posed.
The section concludes with a precise statement of this “long run average cost” control
problem with partial observations that is equivalent to our original vector quantization
problem.

Throughout, for a Polish (i.e., complete separable metric) space X,P (X) will
denote the Polish space of probability measures on X with Prohorov topology [6,
Chapter 2]. For a random process {Zm}, set Zn = {Zm, 0 ≤ m ≤ n}, its past up to
time n. Finally, K will denote a finite positive constant, depending on the context.

Let {Xn} be an ergodic Markov process taking values in Rs, s ≥ 1, with an
associated “observation process” {Yn} taking values in Rd, d ≥ 1. ({Yn} thus is the
actual process being observed.) Their joint evolution is governed by a transition
kernel x ∈ Rs → p(x, dz, dy) ∈ P (Rs × Rd), as described below. We assume this
map to be continuous and further, that p(x, dz, dy) = ϕ(y, z|x)dzdy for a density
ϕ(·, ·|·) : Rd×Rs×Rs → R+ that is continuous and strictly positive, and furthermore,
ϕ(y, z|·) is Lipschitz uniformly in y, z.

The evolution law is as follows. For A ⊂ Rs, B ⊂ Rd Borel,

P (Xn+1 ∈ A, Yn+1 ∈ B/Xn, Y n) =

∫
A×B

p(Xn, dx, dy)

=

∫
A

∫
B

ϕ(y, z|Xn)dydz.

Following [13], we call the pair ({Xn}, {Yn}) a Markov source, though the terminology
“hidden Markov model” is more common nowadays. We impose on ({Xn}, {Yn}) the
condition of “asymptotic flatness” described next. We assume that these processes
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are given recursively by the dynamics

Xn+1 = g(Xn, ξn),(2.1)

Yn+1 = h(Xn, ξ
′
n),(2.2)

where {ξn}, {ξ′n} are i.i.d.Rm-valued (say) random variables independent of each other
and of X0, and g : Rs × Rm → Rs, h : Rs × Rm → Rd are prescribed measurable
maps satisfying

||g(x, y)||, ||h(x, y)|| ≤ K(1 + ||x||) ∀ y.
Equations (2.1) and (2.2) and the laws of {ξn}, {ξ′n} completely specify p(x, dz, dy),
and therefore the conditions we impose on the latter will implicitly restrict the choice
of the former.

Let ({Xn(x)}, {Yn(x)}), ({Xn(y)}, {Yn(y)}) denote the solutions to (2.1), (2.2)
for X0 = x, respectively, y with the same driving noises {ξn}, {ξ′n}. The assumption
of asymptotic flatness then is that there exist K > 0, 0 < β < 1, such that

E[||Xn(x)−Xn(y)||] ≤ Kβn||x− y||, n ≥ 0.

A simple example would be the case when g(x, u) = ḡ(x) + u, h(x, u) = h̄(x) + u
for all x, u, where ḡ : Rs → Rs is a contraction with respect to some equivalent
norm on Rs. This covers, e.g., the usual linear quadratic Gaussian (LQG) case when
the state process is stable. Another example would be a discretization of continuous
time asymptotically flat processes considered in [1], where a Lyapunov-type sufficient
condition for asymptotic flatness is given. This assumption, one must add, is not
required for our formulation of the optimization problem per se but will play a key
role in our derivation of the dynamic programming equations in section 4.

Let
∑

= {α1, α2, . . . , αN} be an ordered set that will serve as the alphabet for our
vector quantizer. Let {qn} denote the

∑
-valued process that stands for the “vector

quantized” version of {Yn}. The passage from {Yn} to {qn} is described below.
Let D denote the set of finite nonempty subsets of Rd with cardinality at most

N ≥ 1, satisfying the following.
(†) There exist M > 0 (“large”) and � > 0 (“small”) such that
(i) x ∈ A ∈ D implies ||x|| ≤M,
(ii) x = [x1, . . . , xd], y = [y1, . . . , yd] for x, y ∈ A ∈ D, x �= y, implies |xi−yi| > �

for all i.
We endow D with the Hausdorff metric which renders it a compact Polish space.

For A ∈ D, let lA : Rd → A denote the map that maps x ∈ Rd to the element
of A nearest to it with reference to the Euclidean norm || · ||, any tie being resolved
according to some fixed priority rule. Let iA : A→∑

denote the map that first orders
the elements {a1, . . . , am} of A lexicographically and then maps them to {α1, . . . , αm}
preserving the order.

Let
∑∞

=
∑×∑× · · · (i.e., a one-sided countably infinite product. Analogous

notation will be used elsewhere.) At each time n, a measurable map ηn :
∑n+1 → D

is chosen. With Qn
∆
= ηn(q

n), one sets

qn+1 = iQn(lQn(Yn+1)).

This defines {qn} recursively as the quantized process that is to be encoded and
transmitted across a communication channel.
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The explanation of this scheme is as follows. In case of a fixed quantizer, the
finite subset of Rd to which the signal gets mapped can itself be identified with the
alphabet

∑
. In our case, however, this set will vary from one instant to another and

therefore must be mapped to a fixed alphabet
∑

in a uniquely invertible manner.
This is achieved through the map iA. Assuming that the receiver knows ahead of
time the deterministic maps {nn(·)} (later on we argue that a single fixed η(·) will
suffice), she can reconstruct Qn as ηn(q

n) on having received qn by time n. In turn,
she can reconstruct i−1

Qn
(qn+1) = lQn(Yn+1) as the vector quantized version of Yn+1.

The main contribution of the condition (†) is to render the map A = {a1, . . . , am} ∈
D → {iA(a1), . . . , iA(am)} ∈∑∗

continuous. Not only does this make sense from the
point of view of robust decoding, but it also makes the control problem we formulate
later well-posed.

As mentioned in the introduction, our aim will be to jointly optimize over the
choice of {ηn(·)} the average entropy rate of {qn} (≈ the average code length if
the encoding is done optimally) and the average distortion. The conventional rate
distortion theoretic formulation would be to minimize the average entropy rate

lim sup
n→∞

1

n

n−1∑
m=0

E[H(qm+1/q
m)],

H(·) being the (conditional) Shannon entropy, subject to a hard constraint on the
distortion

lim sup
n→∞

1

n

n−1∑
m=0

E[||Ym − q̄m||2] ≤ K,

where q̄m = i−1
Qm−1

(qm) = lQm−1(Ym).We shall, however, consider the simpler problem
of minimizing the Lagrangian distortion measure

lim sup
n→∞

1

n

n−1∑
m=0

E[H(qm+1/q
m) + λ||Ym − q̄m||2],(2.3)

where λ > 0 is a prescribed constant. One may think of λ as a Lagrange multiplier,
though, strictly speaking, such an interpretation is lacking given our arbitrary choice
thereof.

3. Reduction to the control problem. This section derives the “completely
observed” optimal stochastic control problem equivalent to the optimal vector quan-
tization problem described above. In this, we follow the usual “separation” idea of
stochastic control by identifying the regular conditional law of state given past ob-
servations (in our case, past encodings of the actual observations) as the new state
process for the completely observed control problem. The original cost function is
rewritten in an equivalent form that displays it as a function of the new state and
control processes alone. Under the assumptions of the previous section on the per-
missible vector quantization schemes (as reflected in our definition of D), the above
controlled Markov process is shown to have a transition kernel continuous in the ini-
tial state and control. Finally, a relaxation of this control problem is outlined, which
allows for a larger class of controls. This is purely a technical convenience required for
the proofs of the next section and does not affect our control problem in any essential
manner.
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Let πn(dx) ∈ P (Rs) denote the conditional law of Xn given qn, n ≥ 0. A standard
application of the Bayes rule shows that {πn} is given recursively by the nonlinear
filter

πn+1(dx
′) =

∫ ∫
I{iQn(lQn(y)) = qn+1}ϕ(y, x′|x)dydx′πn(dx)∫ ∫ ∫
I{iQn(lQn(y)) = qn+1}ϕ(y, z|x)dydzπn(dx) .(3.1)

By (†), l−1
A (i−1

A (a)) contains an open subset of Rd for any a,A. Given this fact and
the condition that ϕ(·, ·|·) > 0, it follows that the denominator above is strictly
positive, and hence the ratio is well defined. The initial condition for the recursion
(3.1) is π0 = the conditional law of X0 given q0. We assume q0 to be the trivial
quantizer, i.e., q0 ≡ 0, say, so that π0 = the law of X0. Thus defined, {πn} can
be viewed as a P (Rs)-valued controlled Markov process with a D-valued “control”
process {Qn}. To complete the description of the control problem, we need to define

our cost (2.3) in terms of {πn}, {Qn}. For this purpose, let ϕ̄(y|x) ∆
=
∫
ϕ(y, z|x)dz for

all (x, y) ∈ Rs ×Rd. Note that for a ∈∑,
P (qn+1 = a/qn) = E[E[I{qn+1 = a}/qn, Xn]/qn]

= E

[∫
p(Xn, R

s, dy)I{qn+1 = a}/qn
]

=

∫
πn(dx)

∫
ϕ̄(y|x)I{iηn(qn)(lηn(qn)(y)) = a}dy

∆
= ha(πn, Qn),

where ha : P (Rs)×D → R is defined by

ha(π,A) =

∫
π(dx)fa(x,A)

with

fa(x,A) =

∫
ϕ̄(y|x)I{iA(lA(y)) = a}dy.

Also define

f̂(x,A) =

∫
ϕ̄(y|x)||y − lA(y)||2dy,

k(π,A) = −
∑
a

ha(π,A) log ha(π,A),

r(π,A) =

∫
π(dx)f̂(x,A),

where the logarithm is to the base 2. We assume fa(·, A), f̂(·, A) to be Lipschitz
uniformly in a,A. This would be implied in particular by the condition that ϕ̄(y/·)
be Lipschitz uniformly in y. Now (2.3) can be rewritten as

lim sup
n→∞

1

n

n−1∑
m=0

E[k(πm, Qm) + λr(πm, Qm)].(3.2)

Strictly speaking, we should consider the problem of controlling {πn} given by
(3.1) so as to minimize the cost (3.2). We shall, however, introduce some further
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simplifications, thereby replacing (3.2) by an approximation of the same. Let 1
N >

ε > 0 be a small positive constant. For n ≥ 1, let P n denote the simplex of probability
vectors in Rn which have each component bounded from below by ε. That is,

P n =

{
x = [x1, . . . , xn] ∈ Rn : xi ∈ [ε, 1] ∀ i,

∑
i

xi = 1

}
.

Similarly, let

Pn =

{
x = [x1, . . . , xn] ∈ Rn : xi ∈ [0, 1] ∀ i,

∑
i

xi = 1

}

denote the entire simplex of probability vectors in Rn. Let Πn : Pn → P n denote the
projection map. Let h(π,A) = [ha1

(π,A), . . . , ham(π,A)] for A = {a1, . . . , am} and
h̃(π,A) = Π|A|(h(π,A))

∆
= [h̃a1(π,A), . . . , h̃am(π,A)].

Note that

| log h̃a(π,A)| ≤ − log ε <∞ ∀ a, π,A.(3.3)

Finally, let

k̃(π,A) = −
∑
a

h̃a(π,A) log h̃a(π,A).

The control problem we consider is that of controlling {πn} so as to minimize the cost

lim sup
n→∞

1

n

n−1∑
m=0

E[k̃(πn, Qn) + λr(πn, Qn)].(3.4)

Replacing k(·, ·) by k̃(·, ·) is a purely technical convenience to suit the needs of the
developments to come in section 4. We believe that it should be possible to obtain
the same results directly for (3.2), though possibly at the expense of a considerable
additional technical overhead.

We shall analyze this problem using techniques of Markov decision processes.
With this in mind, call {Qn} a stationary control policy if Qn = v(πn) for all n
for a measurable v : P (Rs) → D. The map v(·) itself may be referred to as the
stationary control policy by a standard abuse of notation. Let (π,A) ∈ P (Rs) ×
D → φ(π,A, dπ′) = P (P (Rs)) denote the transition kernel of the controlled Markov
process {πn}.

Lemma 3.1. The map φ(·, ·, dπ′) is continuous.
Proof. It suffices to check that for f ∈ Cb(P (Rs)), the map

∫
f(y)φ(·, ·, dy) is

continuous. Let (µn, An) → (µ∞, A∞) in P (Rs) × D. Then {µn} are tight, and
therefore, for any ε > 0, we can find a compact Sε ⊂ Rs such that µn(Sε) > 1 − ε
for n = 1, 2, . . . ,∞. Fix ε > 0 and Sε ⊂ Rs. By the Stone–Weierstrass theorem, any
f ∈ Cb(P (Rs)) can be approximated uniformly on Sε by f̄ ∈ Cb(P (Rs)) of the form

f̄(µ) = F

(∫
f1dµ, . . . ,

∫
fldµ

)
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for some l ≥ 1, f1, . . . , fl ∈ Cb(Rs) and F ∈ Cb(Rl). Then∣∣∣∣
∫
f(y)φ(µn, An, dy)−

∫
f(y)φ(µ∞, A∞, dy)

∣∣∣∣
≤ 4εK + sup

µ∈Sε
|f(µ)− f̄(µ)|+

∣∣∣∣
∫
f̄(y)φ(µn, An, dy)−

∫
f̄(y)φ(µ∞, A∞, dy)

∣∣∣∣ .
(3.5)
Let

νai(π,A) =

∫ ∫
fi(y)I{iA(lA(y)) = a}ϕ̄(y|x)dyπ(dx)

for a ∈∑, 1 ≤ i ≤ l. Direct verification leads to∫
f̄(y)φ(π,A, dy) =

∑
a

ha(π,A)F

(
νa1(π,A)

ha(π,A)
, . . . ,

νal(π,A)

ha(π,A)

)
.(3.6)

Note that for all a,

I{iAn(lAn(y)) = a} → I{iA∞(lA∞(y)) = 0} almost everywhere (a.e.),

because this convergence fails only on the boundaries of the regions l−1
A∞(b), b ∈ A∞,

which have zero Lebesgue measure. (These are the so called Voronoi regions in vector
quantization literature, viz., sets in the partition generated by the quantizer lA∞(·).)
Therefore, for all a, j,

fj(y)I{iAn(lAn(y)) = a} → fj(y)I{iA∞(lA∞(y)) = a} a.e.

If xn → x∞ in Rs, ϕ̄(y|xn)→ ϕ̄(y|x∞) for all y. Then by Scheffe’s theorem [6, p. 26],

ϕ̄(y|xn)dy → ϕ̄(y|x∞)dy

in total variation. Hence for any a, j,∫
fj(y)I{iAn(lAn(y)) = a}ϕ̄(y|xn)dy →

∫
fj(y)I{iA∞(lA∞(y)) = a}ϕ̄(y|x∞)dy.

That is, the map

(x,A)→
∫
fj(y)I{iA(lA(y)) = a}ϕ̄(y|x)dy

is continuous. It is clearly bounded. The continuity of νia(·, ·) follows. That of
ha(·, ·) follows similarly. The continuity of the sum in (3.6) then follows by one more
application of Scheffe’s theorem. Thus the last term on the right-hand side (RHS)
of (3.5) tends to zero as n → ∞. Since ε > 0 was arbitrary and the second term on
the RHS of (3.5) can be made arbitrarily small by a suitable choice of f̄ , the claim
follows.

We conclude this section with a description of a certain relaxation of this control
problem wherein we permit a larger class of control policies, the so-called wide sense
admissible controls used in [11]. Let (Ω,F , P ) denote the underlying probability
space, where, without loss of generality, we may suppose that F = VnFn for Fn =
σ(Xi, Yi, ξi, ξ

′
i, Qi, i ≤ n), n ≥ 0. Define a new probability measure P0 on (Ω,F) as
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follows. Let ψn :
∑n+1×Rm → P (

∑
) denote the regular conditional law of qn+1

given (qn, Yn+1) for n ≥ 0. (Thus we are now allowing for a randomized choice of
Qn, i.e., Qn is not necessarily a deterministic function of (qn, Yn+1).) Let Γ ∈ P (

∑
)

be any fixed probability measure with full support. If, for n ≥ 0, Pn, P0n, we denote
the restrictions of P, P0 to (Ω,Fn), respectively, then Pn << P0n with

dPn
dP0n

=

n−1∏
m=0

ψn(q
m, Ym+1)({qm+1})
Γ({qm+1}) , n ≥ 1.

Then, under P0, {qn} are independent of {Xn, Yn, ξn, ξ′n} and are i.i.d. with law Γ.
We say that {Qn} is a wide sense admissible control if under P0, (qn+1, qn+2, . . .)
is independent of (qn, Qn) for n ≥ 0. Note that this includes {Qn} of the type
Qn = ηn(q

n) for suitable maps {ηn(·)}.
It should be kept in mind that this allows explicit randomization in the choice

of {Qn}, whence the entropy rate expression in (3.2) or (3.4) is no longer valid.
Nevertheless, we continue with wide sense admissible controls in the context of (3.1)–
(3.4) because, for us, this is strictly a temporary technical device to facilitate proofs.
The dynamic programming formulation that we shall finally arrive at in section 4 will
permit us to return without any loss of generality to the apparently more restrictive
class of {Qn} we started out with.

4. The vanishing discount limit. This section derives the dynamic program-
ming equations for the equivalent “separated control problem” by extending the tra-
ditional “vanishing discount” argument to the present setup. Deriving the dynamic
programming equations for the long run average cost control of the separated control
problem has been an outstanding open problem in the general case. We solve it here
by using in a crucial manner the asymptotic flatness assumption introduced earlier. It
should be noted that this assumption was not required at all in the development thus
far and is included purely for facilitating the vanishing discount limit argument that
follows. In particular, it could be dispensed with altogether were we to consider the
finite horizon or infinite horizon discounted cost. For an alternative set of conditions
(also strong) under which the dynamic programming equations for the average cost
control under partial observations have been derived, see [21].

Our first step will be to modify the construction at the end of section 3 so as
to construct on a common probability space two controlled nonlinear filters with a
common control process but differing in their initial condition. This allows us to
compare discounted cost value functions for two different initial laws. In turn, this
allows us to show that their difference, with one of the two initial laws fixed arbitrarily,
remains bounded and equicontinuous with respect to a certain complete metric on the
space of probability measures, as the discount factor approaches unity. (This is where
one uses the condition of asymptotic flatness.) The rest of the derivation mimics the
classical arguments in this field.

For α ∈ (0, 1), consider the discounted control problem of minimizing

Jα(π0, {Qn}) = E
[ ∞∑
n=0

αn(k̃(πn, Qn) + λr(πn, Qn))

]
(4.1)

over Φ
∆
= the set of all wide sense admissible controls, with the prescribed π0. Define

the associated value function Vα : P (Rs)→ R by

Vα(π0) = inf
Φ
J(π0, {Qn}).
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Standard dynamic programming arguments show that Vα(·) satisfies

Vα(π) = min
A

[
k(π,A) + λr(π,A) + β

∫
φ(π,A, dπ′)Vα(π′)

]
(4.2)

for π ∈ P (Rs).We shall arrive at the dynamic programming equation for our original
problem by taking a “vanishing discount” limit of a variant of (4.2). For this purpose,
we need to compare Vα(·) for two distinct values of its argument. In order to do so, we
first set up a framework for comparing (4.1) for two choices of π0 but with a “common”
wide sense admissible control {Qn}. This will be done by modifying the construction
at the end of the preceding section. Let (Ω,F , P0) be a probability space on which
we have (i) Rs-valued, possibly dependent random variables X̂0, X̃0, with laws π0, π

′
0,

respectively; (ii) Rm-valued i.i.d. random processes {ξm}, {ξ′m}, independent of each
other and of [X̂0, X̃0] with laws as in (2.1), (2.2); and (iii)

∑
-valued i.i.d. random

sequences {q̂m}, {q̃m} with law Γ. Also defined on (Ω,F , P0) is a D-valued process
{Qn} independent of ([X̂0, X̃0], {ξn}, {ξ′n}, {q̃n}) and satisfying the following. For
n ≥ 0, (q̂n+1, q̂n+2, . . .) is independent of Qn, q̂n. Let (X̂n, Ŷn), (X̃n, Ỹn) be solutions
to (2.1), (2.2) with X̂0, X̃0 as above. Without loss of generality, we may suppose that
F = VnFn with Fn = σ(X̂n, X̃n, Ŷ n, Ỹ n, q̂n, q̃n, Qn), n ≥ 0. Define a new probability
measure P on (Ω,F) as follows. If Pn, P0n denote the restrictions of P, P0, respectively,
to (Ω,Fn), n ≥ 0, then Pn << P0n with

dPn
dP0n

=

n−1∏
m=0

ψn(q̂
n, Ŷn+1)({q̂n+1, })ψ′

n(q̃
n, Ỹn+1)({q̃n+1})

Γ({q̂n+1})Γ({q̃n+1}) ,

where the ψn (respectively, ψ′
n) are the regular conditional laws of Qn(Ŷn+1) given

(q̂n, Ŷn+1) (respectively, of Qn(Ỹn+1) given (q̃n, Ỹn+1)) for n ≥ 0.
What this construction achieves is the identification of each wide sense admissible

control {Qn} for initial law π̂0 with one wide sense admissible control for π̃0. (This
identification can be many-one.) By a symmetric argument that interchanges the
roles of π̂0 and π̃0, we can identify each wide sense admissible control for π̃0 with
one for π̂0. Now suppose that Vα(π̂0) ≤ Vα(π̃0). Then for a wide sense admissible
control {Qn} that is optimal for π̂0 (existence of this follows by standard dynamic
programming arguments), we have

|Vα(π̂0)− Vα(π̃0)| = Vα(π̃0)− Vα(π̂0)

≤ Jα(π̃0, {Qn})− Jα(π̂0, {Qn})
≤ sup

Φ
|Jα(π̃0, {Qn})− Jα(π̂0, {Qn})|,

where we use the above identification. If Vα(π̂0) ≥ Vα(π̃0), a symmetric argument
applies. Thus we have proved the following lemma.

Lemma 4.1.

|Vα(π̂0)− Vα(π̃0)| ≤ sup
Φ
|Jα(π̂0, {Qn})− Jα(π̃0, {Qn})|.

Next, let P1(R
s) = {µ ∈ P (Rs) :

∫ ||x||µ(dx) < ∞}, topologized by the (com-
plete) Vasserstein metric [20]

ρ(µ1, µ2) = inf E[||X − Y ||],
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where the infimum is over all joint laws of (X,Y ) such that the law of X (respectively,
Y ) is µ1 (respectively, µ2). We shall assume from now on that π0 ∈ P1(R

s). Given
the linear growth condition on g(·, y), h(·, y) of (2.1), (2.2), uniformly in y, it is then
easily deduced that E[||Xn||] <∞ for all n and therefore πn ∈ P1(R

s) almost surely
(a.s.) for all n. Thus we may and do view {πn} as a P1(R

s)-valued process. We then
have the following lemma.

Lemma 4.2. For π̂0, π̃0 ∈ P1(R
s) and α > 0, |Vα(π̂0)− Vα(π̃0)| ≤ Kρ(π̂0, π̃0).

Proof. Let {π̂n}, {π̃n} be solutions to (3.1) with initial conditions π̂0, π̃0, re-
spectively, and a “common” wide sense admissible control {Qn} ∈ Φ. Then for
{X̂n}, {X̃n} as above (with K denoting a generic positive constant that may change
from step to step)

|E[r(π̂n, Qn)]− E[r(π̃n, Qn]|
= |E[f̂(X̂n, Qn)]− E[f̂(X̃n, Qn)]|
≤ E[|f̂(X̂n, Qn)− f̂(X̃n, Qn)|]
≤ KE[||X̂n − X̃n||]

(by the Lipschitz condition on f̂)

≤ KβnE[||X̂0 − X̃0||]
(by asymptotic flatness).

Now consider

|E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn]|.
Suppose that E[k̃(π̂n, Qn)] ≥ E[k̃(π̃n, Qn)]. Then
|E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn)]|

= E[k̃(π̂n, Qn)]− E[k̃(π̃n, Qn)]

= E

[∑
a

h̃a(π̃n, Qn) log h̃a(π̃n, Qn)

]
− E

[∑
a

h̃a(π̂n, Qn) log h̃a(π̂n, Qn)

]

= E

[∑
a

(
h̃a(π̃n, Qn) log h̃a(π̃n, Qn)− h̃a(π̂n, Qn) log h̃a(π̃n, Qn)

+ h̃a(π̂n, Qn) log
h̃a(π̃n, Qn)

h̃a(π̂n, Qn)

)]

≤ E
[∑

a

(h̃a(π̃n, Qn)− h̃a(π̂n, Qn)) log h̃a(π̃n, Qn))
]

(by Jensen’s inequality)

≤ E
[∑

a

(fa(X̃n, Qn)− fa(X̂n, Qn)) log h̃a(π̃n, Qn))
]

≤ KE[||X̃n − X̂n||]
≤ KβnE[||X̃0 − X̂0||],

where we use (3.3) to arrive at the second to last inequality. A symmetric argument
works if E[k̃(π̂n, Qn)] ≤ E[k̃(π̃n, Qn)], leading to the same conclusion. Combining
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everything, we have

|E[k̃(π̃n, Qn) + λr(π̃n, Qn)]− E[k̃(π̂n, Qn) + λr(π̂n, Qn)]|
≤ KβnE[||X̂0 − X̃0||].

Therefore, by Lemma 4.1,

|Vα(π̂0)− Vα(π̃0)| ≤ K
∑
n

βnαnE[||X̂0 − X̃0||]

≤ K

1− βE[||X̂0 − X̃0||].

For any ε > 0, we can render

E[||X̂0 − X̃0||] ≤ ρ(π̂0, π̃0) + ε

by suitably choosing the joint law of (X̂0, X̃0). Since ε > 0 is arbitrary, the claim
follows.

Fix π ∈ P (Rs) and define V̄α(π) = Vα(π)−Vα(π) for π ∈ P (Rs), α ∈ (0, 1). By
the above lemma, V̄α(·) is bounded equicontinuous. Letting α→ 1, we use the Arzela–
Ascoli theorem to conclude that V̄α(·) converges in C(P1(R

s)) to some V (·) along a
subsequence {α(n)}, α(n) → 1. By dropping to a further subsequence if necessary,
we may also suppose that {(1−α(n))Vα(n)(π

∗)}, which is clearly bounded, converges
to some γ ∈ R as n → ∞. These V (·), γ will turn out to be, respectively, the value
function and optimal cost for our original control problem.

Our main result is the following theorem.
Theorem 4.3.
(i) (V (·), γ) solve the dynamic programming equation

V (π) = min
u

(
k̃(π, u) + λr(π, u) +

∫
φ(π, u, dπ′)V (π′)− γ

)
.(4.3)

(ii) γ is the optimal cost, independent of the initial condition. Furthermore, a
stationary policy v(·) is optimal for any initial condition if

v(π) ∈ Argmin

(
k̃(π, ·) + λr(π, ·) +

∫
φ(π, ·, dπ′)V (π′)

)
∀ π.

In particular, an optimal stationary policy exists.
(iii) If v(·) is an optimal stationary policy and µ is a corresponding ergodic prob-

ability measure for {πn}, then

V (π) = k̃(π, v(π)) + λr(π, v(π)) +

∫
φ(π, v(π), dπ′)V (π′)− γ, µ-a.s.

Proof. For (i) rewrite (4.2) as

V̄α(π) = min
u

(
k̃(π, u) + λr(π, u) + α

∫
φ(π, u, dπ′)V̄α(π′)− (1− α)Vα(π)

)
.

Let α→ 1 along {α(n)} to obtain (4.3).
For (ii) note that the first two statements follow by a standard argument which

may be found, e.g., in [15, Theorem 5.2.4, pp. 80–81]. The last claim follows from a
standard measurable selection theorem—see, e.g., [22].
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For (iii) note that the claim holds if “=” is replaced by “≤”. If the claim is false,
we can integrate both sides with respect to µ to obtain

γ <

∫
(k̃(π, v(π)) + λr(π, v(π)))µ(dπ).

The RHS is the cost under v(·), whereby this inequality contradicts the optimality of
v(·). The claim follows.

This result opens up the possibility of exploiting the computational machinery of
Markov decision theory (see, e.g., [2], [18], [21]) for code design.

Finally, we briefly consider the decoder’s problem. If transmission is error free,
the decoder can construct {πn} recursively given {qn} and the stationary policy v(·).
Then {Xn}, {Yn} may be estimated by the maximum a posteriori (MAP) estimates:

X̂n = argmax πn(·),
Ŷn = argmax

(∫ ∫
I{iQn−1(lQn−1(·)) = qn+1}ϕ(·, z|x)dz πn−1(dx)

)
.

Suppose the decoder receives {qn} through a noisy but memoryless channel with input
alphabet

∑
and output alphabet another finite set O, with transition probabilities

p̃(i, j), i ∈ D, j ∈ O. Thus p̃(i, j) ≥ 0,
∑
l p̃(i, l) = 1 for all i, j. Let dn be the channel

output at time n.
The decoder can estimate (Xn, Yn) given dn, n ≥ 0, but this is no longer easy

because we cannot reconstruct {Qn} exactly in absence of his knowledge of {πn}, {qn}.
Thus he should estimate {qn} by {q̂n}, say (e.g., by maximum likelihood), given {dn}
and use these estimates in place of {qn} in the nonlinear filter for {πn}, giving an
approximation {π̂n} to {πn}. The guess for Qn then is v(π̂n), n ≥ 0.

5. Conclusions and extensions. In this paper we have considered the prob-
lem of optimal sequential vector quantization of a stationary Markov source. We have
formulated the problem as a stochastic control problem. We have used the method-
ology of Markov decision theory. Further, we have shown that the conditional law
of the source given the quantized past is a sufficient statistic for the problem. Thus
the optimal encoding scheme has a separated structure. The conditional laws are
given recursively by the nonlinear filter described in (3.1). The optimal policy is
characterized by Theorem 4.3.

The next step is to apply traditional Markov decision problem approximation
techniques to compute approximate schemes. If we have access to training data,
then we can use the tools of reinforcement learning. Here the idea is to parametrize
the value function space or the control law itself and apply stochastic approximation
techniques to optimize those parameters.

In general, the nonlinear filter recursion is very complicated. In the literature
people have approximated this by a linear prediction of the mean. These linear
predictive methods can be considered an approximation to the general nonlinear filter.
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Abstract. In this paper we consider an abstract linear system with perturbation of the form

dy

dt
= Ay + εBy

on a Hilbert space H, where A is skew-adjoint, B is bounded, and ε is a positive parameter. Motivated
by a work of Freitas and Zuazua on the one-dimensional wave equation with indefinite viscous
damping [P. Freitas and E. Zuazua, J. Differential Equations, 132 (1996), pp. 338–352], we obtain
a sufficient condition for exponential stability of the above system when B is not a dissipative
operator. We also obtain a Hautus-type criterion for exact controllability of system (A,G), where
G is a bounded linear operator from another Hilbert space to H. Our result about the stability is
then applied to establish the exponential stability of several elastic systems with indefinite viscous
damping, as well as the exponential stabilization of the elastic systems with noncolocated observation
and control.

Key words. linear elastic system, exponential stability, exact controllability, Hautus-type cri-
terion, indefinite damping, stabilization
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1. Introduction. We consider a linear evolution equation{
d

dt
y(t) = Aεy(t) ≡ (A+ εB)y(t),

y(0) = y0

(1.1)

in a Hilbert space H, where A is a densely defined, closed linear operator with domain
D(A). We assume that

(H1) A is skew-adjoint (A∗ = −A) and has a compact resolvent, and
(H2) B is a bounded linear operator on H with ‖B‖ = Nb.

Under assumptions (H1) and (H2), we know that the operator Aε generates a C0

semigroup Sε(t) onH (see [9]). In this paper we study mainly the exponential stability
of the above system, i.e., that there exist µ > 0 and M ≥ 1 such that

‖Sε(t)‖ ≤Me−µt ∀ t ≥ 0.(1.2)

When ε = 1, this problem has been investigated extensively for both bounded and un-
bounded operator B. These works are based on the assumption of the dissipativeness
of B,

Re〈By, y〉 ≤ 0 ∀ y ∈ D(A),(1.3)
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which implies that the energy of the system, E(t) = ‖Sε(t)‖2, is a decreasing function
of time. Clearly, this is not a necessary condition for E(t) being upper bounded
by a function which tends to zero exponentially. A natural question to ask is the
following. Without the dissipativeness of B, can we still obtain (1.2) under some
extra conditions? This problem is quite significant in the control theory for distributed
parameter systems because

(a) the optimality systems resulting from the regulators are nondissipative;
(b) the closed-loop systems by feedback with noncolocated sensors and actuators

are nondissipative;
(c) the perturbations arising from undetermined parts of models are nondissipa-

tive in general.
Such a question was first raised in [2] for the one-dimensional wave equation


wtt(x, t) = wxx(x, t)− d(x)wt(x, t), 0 < x < 1, t > 0,
w(0, t) = w(1, t) = 0, t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,

(1.4)

where d is a smooth function and changes sign on (0, 1). It was conjectured that (1.2)
holds if

In ≡
∫ 1

0

d(x) sin2 nπxdx ≥ C0 > 0, n = 1, 2, . . . .(1.5)

It turns out that (1.5) is not enough to ensure exponential stability. When ‖d‖L∞

becomes large enough, there will be eigenvalues of the system (1.2) with positive real
part (see [3]). Thus, in order to have exponential stability, the damping coefficient
must not only satisfy (1.5), but also has a small L∞ norm. Later on, Freitas and
Zuazua [4] considered the modified system of (1.4):


wtt(x, t) = wxx(x, t)− εd(x)wt(x, t), 0 < x < 1, t > 0,
w(0, t) = w(1, t) = 0, t > 0,
w(0, t) = w0(x), wt(x, 0) = w1(x), 0 < x < 1.

(1.6)

They proved that if d ∈ BV (0, 1) and the condition (1.5) holds, then there exist
positive constants ε0,M, ω, depending only on the function d, such that for all 0 <
ε < ε0,

E(t) =

∫ 1

0

(|wx|2 + |wt|2)dx ≤Me−εωtE(0) ∀t > 0,(1.7)

for every finite energy solution of (1.6). Their result was further extended in [1] to
the equation

wtt = wxx − 2εd(x)wt − b(x)w,(1.8)

where b ∈ L1(0, 1).
These works lead us to the current study in this paper. Instead of working on

a particular PDE system, we would like to obtain a general result along the line
developed in [2]. Although the shooting method used in [4] and [1] is no longer
applicable to our abstract problem, the analysis in these papers does provide us with
valuable information on how to impose additional conditions in order to guarantee
(1.2). In the next section, we estimate the growth rate of the semigroup Sε(t), by
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a formula for the type of a C0 semigroup on a Hilbert space due to Huang [7] and
Prüss [10]. The exponential stability of the semigroup follows from a negative growth
rate. It is well known that the exponential stability of a linear system reversible
in time is always connected with exact controllability of the corresponding system.
Thanks to the fact that our sufficient condition for exponential stability of (1.1) is
also necessary when −B is symmetrical and nonnegative, in section 3 we obtain a
Hautus-type criterion for exact controllability of system (A,G), where G is a bounded
linear operator from another Hilbert space to H. In section 4, we apply the result
on exponential stability to several elastic systems (such as string, Euler–Bernoulli
beam, Timoshenko beam, and two-dimensional Schrödinger equations) with indefinite
viscous damping or nondissipative perturbation arising from feedback by noncolocated
observation and control.

2. Sufficient condition for exponential stability. Under the condition (H1),
there is an orthonormal base of H consisting of eigenvectors of A,

{φn | n = 1, 2, . . .},(2.1)

such that {
Aφn = iβnφn, n = 1, 2, . . . , βn ∈ R,
0 ≤ |β1| ≤ |β2| ≤ · · · ≤ |βn| ≤ |βn+1| → ∞.

(2.2)

We have taken multiple eigenvalues into account. Every eigenvalue has a finite mul-
tiplicity.

For each γ > 0, set

Σγ =


ψ =

∑
n∈Iγ,m

anφn

∣∣∣ ∑
n∈Iγ,m

|an|2 = 1, m ∈ N, an ∈ C


 ,(2.3)

where

Iγ,m = {n ∈ N| |βn − βm| < γ}.(2.4)

Let

Cγ = inf
ψ∈Σγ

Re〈−Bψ,ψ〉.(2.5)

Note that Iγ,m = Iγ,l if βm = βl and Cγ1 ≥ Cγ2 for 0 < γ1 < γ2. We further assume
that

(H3) Cγ > 0 for some γ > 0.

Denote the type of semigroup Sε(t) by

ω0(Aε) = lim
t→∞

ln ‖Sε(t)‖
t

(2.6)

and the spectral bound of Aε by

σ0(Aε) = sup{Reλ| λ ∈ σ(Aε)}.(2.7)

We shall use a result in [7, 10] which states

ω0(Aε) = inf

{
s > σ0(Aε) | sup

Reλ=s
‖(λI −Aε)

−1‖ < +∞
}
.(2.8)
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Theorem 2.1. Under the assumptions (H1)–(H3), for every C ∈ [0, Cγ) it holds
that

ω0(Aε) < −εC(2.9)

whenever

0 < ε <
γ(

√
N2

b + Cγ(Cγ − C)−Nb)

2Cγ

√
N2

b − C2
.(2.10)

In particular, Sε(t) is exponentially stable if

0 < ε <
γ

2NbCγ

(√
N2

b + C2
γ −Nb

)
.(2.11)

Proof. We will prove that for every σ ≥ −C there exists δε > 0 such that

‖(εσ + iτ)y −Aεy‖ ≥ δε‖y‖ ∀ τ ∈ R, y ∈ D(Aε).(2.12)

Since for y ∈ D(A), σ, τ ∈ R,

‖(εσ + iτ)y −Aεy‖‖y‖ ≥ Re〈(εσ + iτ)y −Aεy , y〉 ≥ ε(σ −Nb)‖y‖2,
(2.12) holds for all σ > Nb. If (2.12) is false for some σ ∈ [−C,Nb], then there exist
a sequence of real numbers τp and a sequence of normalized vectors yp ∈ D(Aε) such
that

((εσ + iτp)I −Aε)yp ≡ fp → 0 in H as p→ +∞.(2.13)

From (2.13) we have

σ =
1

ε
〈fp − (iτpI −A)yp + εByp , yp〉 = lim

p→+∞Re〈Byp, yp〉.(2.14)

Moreover, (2.13)–(2.14) imply that

‖(iτpI −A)yp‖2 = ‖fp − ε(σI −B)yp‖2
≤ ‖fp‖2 + 2ε‖σI −B‖‖fp‖+ ε2‖(σI −B)yp‖2
= o(1) + ε2(σ2 − 2σRe〈Byp, yp〉+ ‖Byp‖2)
≤ ε2(N2

b − σ2) + o(1).

Thus for any δ > 0 there exists N ∈ N such that

‖(iτpI −A)yp‖2 ≤ ε2(N2
b − σ2 + δ) ∀ p > N.(2.15)

We expand yp for p > N in the eigenvectors of A:

yp =

∞∑
n=1

〈yp, φn〉φn.(2.16)

Substituting (2.16) into (2.15) yields

∞∑
n=1

|τp − βn|2|〈yp, φn〉|2 ≤ ε2(N2
b − σ2 + δ).(2.17)
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Choose m = m(p) such that

|τp − βm| = min{|τp − βn| | n ∈ N}.(2.18)

Then we have

γ

2
< |τp − βn| ∀n /∈ Iγ,m.(2.19)

In fact, if |τp − βm| ≥ γ
2 , (2.19) holds obviously. If |τp − βm| < γ

2 , then (2.19) follows
from |τp − βn| ≥ |βn − βm| − |τp − βm|. Combination of (2.17) and (2.19) gives that

γ2

4

∑
n/∈Iγ,m

|〈yp, φn〉|2 ≤ ε2(N2
b − σ2 + δ).(2.20)

Define

zp =
∑

n∈Iγ,m
〈yp, φn〉φn, p > N.(2.21)

Then (2.20) implies that

‖yp − zp‖ ≤ 2ε

γ

√
N2

b − σ2 + δ, 1 ≥ ‖zp‖2 ≥ 1− 4ε2

γ2
(N2

b − σ2 + δ).(2.22)

Note that −σ ≤ C < Cγ ≤ Nb. Since the function

g(x) ≡
√
N2

b + Cγ(Cγ + x)−Nb√
N2

b − x2
(2.23)

is monotonically increasing on (−Cγ , Nb) (see Supplement 1), the inequality (2.10)
implies (2.11) and, therefore,

2Nbε/γ <

√
N2

b + C2
γ −Nb

Cγ
=

Cγ√
N2

b + C2
γ +Nb

< 1.

From (2.22) we know zp �= 0 if δ is small enough. Hence we have zp/‖zp‖ ∈ Σγ and

−Re〈Bzp, zp〉 ≥ Cγ‖zp‖2 ≥ Cγ

(
1− 4ε2

γ2
(N2

b − σ2 + δ)

)
.(2.24)

It follows from (2.14), (2.22), and (2.24) that

σ = lim
p→+∞Re〈Byp, yp〉

≤ sup
p>N

[Re〈Bzp, zp〉+Re〈B(yp − zp), yp〉+Re〈Bzp, yp − zp〉]

≤ sup
p>N

[−Cγ‖zp‖2 + (1 + ‖zp‖)‖B‖‖yp − zp‖]

≤ −Cγ

(
1− 4ε2

γ2
(N2

b − σ2 + δ)

)
+

4Nbε

γ

√
N2

b − σ2 + δ.(2.25)
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We take δ → 0 in (2.25) to get

Cγ + σ ≤ 4Cγ

(
ε

γ

√
N2

b − σ2

)2

+ 4Nb

(
ε

γ

√
N2

b − σ2

)
.(2.26)

If σ = Nb, then (2.26) is an obvious contradiction. For −C ≤ σ < Nb, (2.26) implies

ε ≥ γ

2Cγ
g(σ) ≥ γ

2Cγ
g(−C),(2.27)

which contradicts (2.10).
Since Aε also has a compact resolvent, from (2.12) we deduce that the resolvent

of Aε is bounded on εσ+ iR for all σ ≥ −C. By the resolvent equation, the resolvent
is bounded on {εσ + iτ |σ ≥ −C − δ, τ ∈ R} for some δ > 0 small enough. The proof
is complete from (2.8).

It is easy to see that (H3) is satisfied with γ = γ0 when the following conditions
hold.

(H4) The spectrum of A satisfies the gap condition

inf{|βj − βk| : j, k = 1, 2, . . . , βj �= βk} ≡ γ0 > 0.(2.28)

(H5) For any normalized eigenvector φ of A,

−Re〈Bφ, φ〉 ≥ C0 > 0.(2.29)

Corollary 2.2. Assume that the conditions (H1), (H2), (H4), and (H5) hold.
Then the semigroup Sε(t) is exponentially stable if

0 < ε <
γ0

2NbC0

(√
N2

b + C2
0 −Nb

)
.(2.30)

Moreover, for every C ∈ (0, C0), it holds that

ω0(Aε) < −εC ∀ 0 < ε <
γ0(

√
N2

b + C0(C0 − C)−Nb)

2C0

√
N2

b − C2
.(2.31)

Proof. This follows from Theorem 2.1 with γ = γ0, Cγ ≥ C0, and the fact that
the function

g1(x) =

√
N2

b + x(x− C)−Nb

x
=


 Nb

x− C
+

√(
Nb

x− C

)2

+
C

x− C
+ 1




−1

is monotonically increasing for x > C ≥ 0.
Remark 2.1. In the analysis above, we provided not only the sufficient conditions

for the exponential stability of semigroup Sε(t) but also an explicit negative bound of
the type ω0(Aε) of semigroup Sε(t) with the perturbation parameter ε in an explicit
range.

Remark 2.2. Chen et al. [2] discussed the exponential stability of (1.1) with ε = 1
and the dissipative operator B. In addition to assumptions similar to (H1)–(H3),
they needed the condition that Re〈Byp, yp〉 → 0 implies Byp → 0 for any sequence of
normalized vectors yp. This condition does not hold generally if B is nondissipative.
On the other hand, if −B is symmetrical and nonnegative, i.e., −B = −B∗ ≥ 0, then
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the assumption (H3) is necessary for the exponential stability of semigroup Sε(t) (see
the proof of Theorem 3.1).

Remark 2.3. The spectral gap condition (H4) is very restrictive. Corollary 2.2
applies primarily to the one-dimensional problems. Actually, as we will see in section
4, the condition (H4) can be absent even for some PDE system on the region of
one spatial dimension. Roughly speaking, (H5) means that the damping operator
B is uniformly effective for all the normalized eigenvectors. When the spectral gap
condition fails, (H3) means that the damping operator B is uniformly effective for all
the normalized linear combinations of eigenvectors corresponding to the eigenvalues
located in the γ-neighborhood of any eigenvalue.

3. Hautus-type criterion for exact controllability. Let H and U be Hilbert
spaces. Consider the control system (A,G)

y(u, t) = etAy0 +

∫ t

0

e(t−s)AGu(s)ds,(3.1)

where A generates a C0 semigroup etA on H, G ∈ L(U ;H), y0 ∈ H. When H = C
n

and U = C
m are finite dimensional, the famous Hautus lemma [6] says that the system

(A,G) is controllable if and only if

Rank[λI −A, G] = n ∀ λ ∈ σ(A),(3.2)

or, equivalently,

‖(λI −A)∗y‖+ ‖G∗y‖U > 0 ∀ λ ∈ σ(A), ‖y‖ = 1.(3.3)

When A∗ = −A, (3.3) is equivalent to
‖G∗φ‖U > 0 ∀ φ being normalized eigenvectors of A.(3.4)

In this section, we will give a counterpart of the special Hautus criterion (3.4) for
infinite dimensional systems. We need the following Lemma given in Liu [8, Thm.
2.3]. Concerning the definitions of exact controllability and exponential stabilizability
of (A,G), we refer the reader to [8].

Lemma 3.1. Let A∗ = −A, G ∈ L(U ;H). Then the following propositions are
equivalent.

(a) The system (A,G) is exactly controllable.
(b) The system (A,G) is exponentially stabilizable.
(c) For every positive-definite self-adjoint K ∈ L(U) the operator A − GKG∗

generates an exponentially stable C0 semigroup on H.
By Lemma 3.1 and the frequency domain condition for exponential stability [7,

10], Liu [8] gave a Hautus-type criterion for exact controllability of the second order
conservative systems in Hilbert spaces. Also by Lemma 3.1, Zhou and Yamamoto [11]
gave a counterpart of (3.3) for the conservative system (A,G), A∗ = −A. Our result
is the following.

Theorem 3.2. Suppose that the assumption (H1) holds and G ∈ L(U ;H). Then
the following propositions are equivalent.

(a) The system (A,G) is exactly controllable.
(b) The assumption (H3) holds for B = −GG∗; that is,

lim
γ→0+

inf
ψ∈Σγ

‖G∗ψ‖U > 0.(3.5)

(c) There exists F ∈ L(H;U) such that the assumption (H3) holds for B = GF .
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Proof. The implication (b)⇒(c) is trivial; (c)⇒(a) follows readily from Theorem
2.1 and Lemma 3.1.

(a)⇒(b). By Lemma 3.1, the exact controllability of (A,G) is equivalent to
the exponential stability of the semigroup Sε(t) with B = −GG∗, ε > 0. Thus it
suffices to prove that (H3) is necessary for the exponential stability of Sε(t) when
−B = −B∗ ≥ 0. In this case, Cγ ≥ 0 for all γ > 0. If for any γ > 0, Cγ = 0, then
there exist βm and a normalized vector of the form

ψγ =
∑

n∈Iγ,m
anφn(3.6)

such that

‖Bψγ‖ ≤ ‖(−B)
1
2 ‖〈−Bψγ , ψγ〉 12 < γ.

Thus

‖(iβmI −Aε)ψγ‖ ≤ εγ +

∥∥∥∥∥∥
∑

n∈Iγ,m
(βm − βn)ianφn

∥∥∥∥∥∥ ≤ (1 + ε)γ.(3.7)

This means that the resolvent of Aε is unbounded on iR if it exists. Thus Sε(t) is not
exponentially stable.

Remark 3.1. If the spectral gap condition (H4) holds, then the condition (3.5)
takes the form

‖G∗φ‖U ≥ δ > 0 ∀ φ being normalized eigenvectors of A.(3.8)

This is just a counterpart of the finite dimensional case (3.4).

4. Applications. In this section, we apply our result about exponential stability
to the wave, beam, and two-dimensional Shrödinger equations with indefinite viscous
damping or nondissipative perturbation arising from feedback by noncolocated obser-
vation and control.

Example 1. We consider the following one-dimensional wave equation with indef-
inite viscous damping:


wtt(x, t) = wxx(x, t)− εd(x)wt(x, t), 0 < x < 1, t > 0,
w(0, t) = wx(1, t) = 0, t > 0,
w(0, t) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,

(4.1)

where d ∈ L∞(0, 1) is real-valued. The underlying Hilbert space is

H =

{[
w
v

]
∈ H1(0, 1)× L2(0, L)

∣∣∣ w(0) = 0

}

with the inner product〈[
w1

v1

]
,

[
w2

v2

]〉
=

∫ 1

0

[w′
1w̄

′
2 + v1v̄2]dx.

Define

D(A) =
{[

w
v

] ∣∣∣ w ∈ H2(0, 1), v ∈ H1(0, 1), w(0) = v(0) = w′(1) = 0

}
,

A =

[
0 I
∂2
x 0

]
, B =

[
0 0
0 −d(x)

]
, y =

[
w
wt

]
.
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Then the system (4.1) can be rewritten as (1.1). A has a complete orthonormal set
of eigenfunctions

φ±
n =

1

(n+ 1
2 )π

[
sin(n+ 1

2 )πx

±i(n+ 1
2 )π sin(n+ 1

2 )πx

]

with eigenvalues

iβ±
n = ±i

(
n+

1

2

)
π, n = 0, 1, 2, . . . .

It is easy to see that (H1), (H2), and (H4) are satisfied with γ0 = π, and

−〈Bφ±
n , φ

±
n 〉 =

∫ 1

0

d(x) sin2

(
n+

1

2

)
πxdx.(4.2)

Thus (H5) holds if and only if

inf
n≥0

∫ 1

0

d(x)[1− cos(2n+ 1)πx]dx > 0.(4.3)

For example, we take

d(x) = 1 + α cos 2kπx, α ∈ R,(4.4)

with k being any positive integer. Then

γ0 = π, Nb = 1 + |α|, −〈Bφ±
n , φ

±
n 〉 =

1

2
∀ n ≥ 0.

Therefore, Sε(t) is exponentially stable if

0 < ε <
π

2(1 + |α|)
(√

4(1 + |α|)2 + 1− 2(1 + |α|)
)
.(4.5)

Moreover, for every C ∈ (0, 1
2 ), it holds that

ω0(Aε) < −εC ∀ 0 < ε <
π(

√
4(1 + |α|)2 + 1− 2C − 2(1 + |α|))

2
√
(1 + |α|)2 − C2

.(4.6)

We can also choose d(x) with local support, such as

d(x) =




sin 4πx, 1
4 ≤ x ≤ 1

2 ,

2 sin 4πx, 1
2 ≤ x ≤ 3

4 ,
0, otherwise.

(4.7)

For this case,

−〈Bφ±
n , φ

±
n 〉 ≥

3

20π
∀ n ≥ 0.

Example 2. Let us consider the following system with distributed control and
locally distributed observation:


wtt(x, t) + wxxxx(x, t) = f(x, t), 0 < x < 1, t > 0,
w(0, t) = w(1, t) = wxx(0, t) = wxx(1, t) = 0, t > 0,
w(0, t) = w0(x), wt(x, 0) = w1(x), 0 < x < 1, t > 0,
h(x, t) = wt(x, t), x ∈ ( 1

2 , 1), t > 0.

(4.8)
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Our purpose is to find a bounded linear operator K from L2( 1
2 , 1) to L2(0, 1) so that

the feedback control law

f(·, t) = −εKh(·, t), t > 0,(4.9)

stablizes the system (4.8) for some ε > 0. The simplest form of operator K would be

[Kh](x) =

{
2c(x)h(1− x), 0 < x < 1

2 ,
2d(x)h(x), 1

2 < x < 1,
(4.10)

where c ∈ L∞(0, 1
2 ), d ∈ L∞( 1

2 , 1) are real-valued. The underlying Hilbert space is

H = [H2(0, 1) ∩H1
0 (0, 1)]× L2(0, 1)

with the inner product〈[
w1

v1

]
,

[
w2

v2

]〉
=

∫ 1

0

[w′′
1 w̄

′′
2 + v1v̄2]dx.

Define

D(A) =
{[

w
v

] ∣∣∣ w ∈ H4(0, 1), v ∈ H2(0, 1), w, v ∈ H1
0 (0, 1), w

′′(0) = w′′(1) = 0

}
,

A =

[
0 I
−∂4

x 0

]
, B =

[
0 0
0 −KI0

]
, y =

[
w
wt

]
,

where I0 is the embedding from L2(0, 1) to L2( 1
2 , 1). Then the closed-loop system

(4.8)–(4.9) can be rewritten as (1.1). A has a complete orthonormal set of eigenfunc-
tions

φ±
n =

1

n2π2

[
sinnπx
±in2π2 sinnπx

]

with eigenvalues

iβ±
n = ±in2π2, n = 1, 2, . . . .

It is easy to see that (H1), (H2), and (H4) are satisfied with γ0 = 3π2. For K defined
in (4.10), we have

−〈Bφ±
n , φ

±
n 〉 = 2

∫ 1
2

0

c(x) sinnπ(1− x) sinnπxdx+ 2

∫ 1

1
2

d(x) sin2 nπxdx

=

∫ 1
2

0

[d(1− x) + (−1)n+1c(x)](1− cos 2nπx)dx.(4.11)

Thus (H5) holds if and only if

inf
n≥1

∫ 1
2

0

[d(1− x) + (−1)n+1c(x)](1− cos 2nπx)dx > 0.(4.12)

For example, we take

c(x) = cos 4πx, d(x) =
1

2
+ cos 4πx.(4.13)
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Then

Nb = 3, −〈Bφ±
n , φ

±
n 〉 =

1

4
∀ n ≥ 1.

Therefore, Sε(t) is exponentially stable if

0 < ε <
π2

2

(√
145− 12

)
.(4.14)

Moreover, for every C ∈ (0, 1
4 ), it holds that

ω0(Aε) < −εC ∀ 0 < ε <
3π2

(√
145− 4C − 12

)
2
√
9− C2

.(4.15)

Remark 4.1. Let d ≡ 0 in (4.10); then the observation and control are com-
pletely noncolocated. In this case, by (4.11) we know that K can be uniformly
effective only for finite many eigenmodes. The problem of whether there exists K
∈ L(L2( 1

2 , 1), L
2(0, 1)) with suppKh ⊂ (0, 1

2 ) for any h ∈ L2( 1
2 , 1) such that (H5)

holds remains open.
Example 3. We consider the following two-dimensional Schrödinger equation with

distributed control and locally distributed observation:


∂y

∂t
(x, t) = i∆y(x, t) + f(x, t), x ∈ Ω = (0, a)× (0, b), t > 0,

y|∂Ω = 0, t > 0, y(x, 0) = y0(x), x ∈ Ω,
h(x, t) = y(x, t), x ∈ Ω1 = (a2 , a)× (0, b), t > 0.

(4.16)

Let

H = L2(Ω)

with the standard L2 (complex) inner product. Define

A = i∆, D(A) = H2(Ω) ∩H1
0 (Ω).(4.17)

Then the operator A is skew-adjoint and has eigenvalues

λk,l = iβk,l = i

(
k2

a2
+

l2

b2

)
π2, k, l ∈ N,

and the corresponding normalized eigenfunctions

φk,l(x) =
2√
ab

sin
kπx1

a
sin

lπx2

b
, k, l ∈ N.

Set the feedback control law

f(·, t) = −εKh(·, t), K ∈ L(L2(Ω1), L
2(Ω),(4.18)

[Kh](x) =

{
c(x1)h(a− x1, x2), 0 < x1 <

a
2 , 0 < x2 < b,

d(x1)h(x),
a
2 < x1 < a, 0 < x2 < b,

(4.19)
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where c ∈ L∞(0, a2 ), d ∈ L∞(a2 , a) are real-valued. Then the closed-loop system
(4.16)–(4.18) can be rewritten as (1.1) with B = −KI1, where I1 is the embedding
from L2(Ω) to L2(Ω1). When a/b is a rational number, the gap condition (H4) is
true, but there are multiple eigenvalues. While a/b is an irrational number, the gap
condition (H4) is false (see [2]). So, we have to check the condition (H3). We recount
the eigenvalues and the corresponding normalized eigenfunctions:

iβn = iβkn,ln , βn ≤ βn+1, φn = φkn,ln , n ∈ N.

Choose γ = (πa )
2; then

Iγ,m =

{
n ∈ N

∣∣∣∣
∣∣∣∣k2

n − k2
m

a2
+

l2n − l2m
b2

∣∣∣∣ < 1

a2

}
.

We note that for p, q ∈ Iγ,m, p = q if and only if lp = lq for any ψ ∈ Σγ ,

ψ =
∑

n∈Iγ,m
anφn =

∑
n∈Iγ,m

2an√
ab

sin
knπx1

a
sin

lnπx2

b
,

∑
n∈Iγ,m

|an|2 = 1.(4.20)

Using the orthogonality of {sin(lπx2/b)}∞l=1 in L2(0, b), we have

−〈Bψ,ψ〉 =
∫ a

2

0

c(x1)

∫ b

0

∑
p,q∈Iγ,m

apāqφp(a− x1, x2)φq(x1, x2)dx2dx1

+

∫ a

a
2

d(x1)

∫ b

0

∣∣∣∣∣∣
∑

n∈Iγ,m

2an√
ab

sin
knπx1

a
sin

lnπx2

b

∣∣∣∣∣∣
2

dx2dx1

=
2

a

∑
n∈Iγ,m

|an|2
∫ a

2

0

[d(a− x1) + (−1)1+knc(x1)] sin
2 knπx1

a
dx1.(4.21)

Thus (H3) holds if and only if

inf
k∈N

∫ a
2

0

[d(a− x1) + (−1)1+kc(x1)] sin
2 kπx1

a
dx1 > 0.(4.22)

The sufficiency follows from (4.21). If (4.22) is false, then there exists a sequence ξn
of positive integers such that

lim
n→+∞

∫ a
2

0

[d(a− x1) + (−1)1+ξnc(x1)] sin
2 ξnπx1

a
dx1 = α ≤ 0.

Thus for the sequence φξn,1 of normalized eigenfunctions of A we have

−〈Bφξn,1 , φξn,1〉 =
2

a

∫ a
2

0

[d(a− x1) + (−1)1+ξnc(x1)] sin
2 ξnπx1

a
dx1 → 2α

a
≤ 0,

which implies that (H3) is false. For example, we take

c(x1) = cos
4πx1

a
, d(x1) =

1

2
+ cos

4πx1

a
.(4.23)
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Then

Nb =
3

2
, γ =

(π
a

)2

, Cγ =
1

4
.

Therefore, Sε(t) is exponentially stable if

0 < ε <
π2

3a2

(√
37− 6

)
.(4.24)

Moreover, for every C ∈ (0, 1
4 ), it holds that

ω0(Aε) < −εC ∀ 0 < ε <
π2

(√
37− 4C − 6

)
a2
√
9− 4C2

.(4.25)

Example 4. We consider the following Timoshenko beam equation with indefinite
viscous damping:


utt = puxx − pφx − εd1(x)ut, 0 < x < π, t > 0,
φtt = qφxx + pux − pφ− εd2(x)φt, 0 < x < π, t > 0,
u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = 0, t > 0,
u(x, 0) = u0, ut(x, 0) = u1, φ(x, 0) = φ0, φt(x, 0) = φ1, 0 < x < π,

(4.26)

where p, q > 0 are constants and d1, d2 ∈ L∞(0, π) are real-valued.
The underlying Hilbert space is

H = H1
0 (0, π)× L2(0, π)×H1(0, π)× L2(0, π)

with the inner-product induced by the quadratic form of energy,

‖[u, v, φ, ψ]T ‖2 =
∫ π

0

(
p|ux − φ|2 + q|φx|2 + |v|2 + |ψ|2

)
dx.

Define in H

D(A) = {[u, v, φ, ψ]T | u, v,∈ H1
0 (0, π), u, φ ∈ H2(0, π), ψ ∈ H1(0, π)},

A =




0 I 0 0
p∂2

x 0 −p∂x 0
0 0 I 0
p∂x 0 q∂2

x − pI 0


 , B =




0 0 0 0
0 −d1(x) 0 0
0 0 0 0
0 0 0 −d2(x)


 .

Then the system (4.26) can be rewritten as (1.1) by setting y = [u, ut, φ, φt]
T . It is

easy to verify that (H1) and (H2) are satisfied. To compute the eigenvalues of A, we
solve the eigenequation

A[u, v, φ, ψ]T = λ[u, v, φ, ψ]T , [u, v, φ, ψ]T ∈ D(A).

Eliminating the unknowns v, φ, ψ, we obtain{
pquxxxx − (p+ q)λ2uxx + λ2(λ2 + p)u = 0,
u(0) = u(π) = uxx(0) = uxx(π) = 0.
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A straightforward calculation leads to

{
λ2
n,1 = − 1

2 [(p+ q)n2 + p] + 1
2

√
[(p− q)n2 + p]2 + 4pqn2,

λ2
n,2 = − 1

2 [(p+ q)n2 + p]− 1
2

√
[(p− q)n2 + p]2 + 4pqn2,

(4.27)

λ±
n,i = ±i

√
−λ2

n,i (counting multiple eigenvalues),

and the corresponding normalized eigenvectors

Z±
n,i =

1

Rn,i
[sinnx, λ±

n,i sinnx, Sn,i cosnx, λ
±
n,iSn,i cosnx]

T , i = 1, 2; n ∈ N,

where

Sn,i =
1

n

(
n2 +

1

p
λ2
n,i

)
(�= 0)

=
1

2pn

(
[(p− q)n2 − p] + (−1)1+i

√
[(p− q)n2 + p]2 + 4pqn2

)
,(4.28)

Rn,i =

√
π

2

[
p(n− Sn,i)

2 + qn2S2
n,i − λ2

n,i − λ2
n,iS

2
n,i

] 1
2 .(4.29)

These sequences have asymptotic expansions:

for p = q,

{
λ±
n,j = ±i

√
p(n+ (−1)j

2 +O( 1
n )), S2

n,j = 1 +O( 1
n ),

R2
n,j = 2πpn2 +O(n), j = 1, 2,

(4.30)

for p �= q,




(i, j) = (1, 2) for p > q, (i, j) = (2, 1) for p < q,
λ2
n,i = −qn2 +O(1), λ2

n,j = −pn2 +O(1),
S2
n,i = (1− q

p )
2n2 +O(1), S2

n,j = O( 1
n2 ),

R2
n,i = πq(1− q

p )
2n4 +O(n2), R2

n,j = πpn2 +O(1).

(4.31)

In order to verify condition (H3), we need the following observations of the eigenvalues.

1. Each of the two branches of eigenvalues is distinct within itself. This can be
verified by showing that −λ2

n,i, i = 1, 2, are strictly monotonically increasing

functions of n2; see Supplement 2. Moreover, infn≥1 |λ±
n+1,i − λ±

n,i| = γi >
0, i = 1, 2, by the asymptotic expansions (4.30) and (4.31).

2. infn≥1 |λ±
n,1 − λ±

n,2| = γ3 > 0. This follows from the fact that λ2
n,1 − λ2

n,2 > 0
for all n ≥ 1 and the asymptotic expansions (4.30) and (4.31).

3. Multiplicity of each eigenvalue is less than two. For any 1 ≤ m < n, there
exists r = p/q such that λn,1 = λm,2, i.e., double eigenvalues occur. This can
be verified by showing that the function f(r) = (λ2

n,1 − λ2
m,2)/q changes sign

on (0,∞) (see Supplement 3).
4. When p �= q, the gap condition (H4) never holds. In fact, if

√
p/q = k/l, k, l ∈

N, is a rational number, we have λ2
kj,1 − λ2

lj,2 = O(1) for p > q and λ2
lj,1 −

λ2
kj,2 = O(1) for p < q as j →∞. See Supplement 4 for the case when

√
p/q

is an irrational number.
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Choose γ = min{γ1, γ2, γ3, 2|λ+
1,1|}. From the above observations, we know that

(4.32)

Σγ = {c1Z±
n,1 + c2Z

±
m,2 | |c1|2 + |c2|2 = 1, |λ±

n,1 − λ±
m,2| < γ, m, n ∈ N, c1, c2 ∈ C}.

For any c1Z
±
n,1 + c2Z

±
m,2 ∈ Σγ , by γ ≤ γ3 we have n �= m, and

Γ(m,n, c1, c2) ≡ −〈B(c1Z
±
n,1 + c2Z

±
m,2) , c1Z

±
n,1 + c2Z

±
m,2〉

=

∫ π

0

d1(x)

∣∣∣∣∣c1λ
+
n,1

Rn,1
sinnx+

c2λ
+
m,2

Rm,2
sinmx

∣∣∣∣∣
2

dx

+

∫ π

0

d2(x)

∣∣∣∣∣c1λ
+
n,1Sn,1

Rn,1
cosnx+

c2λ
+
m,2Sm,2

Rm,2
cosmx

∣∣∣∣∣
2

dx.(4.33)

Thus (H3) holds if and only if

inf{Γ(m,n, c1, c2) | m �= n, |c1|2 + |c2|2 = 1,m, n ∈ N, c1, c2 ∈ C} > 0.(4.34)

For example, we take

(4.35)

di(x) = αi(1 + βi cos kix), αi ≥ 0, α2
1 + α2

2 �= 0, |βi| < 2, ki ∈ N, i = 1, 2.

Using ∣∣∣∣
∫ π

0

cos k2x cosnx cosmxdx

∣∣∣∣ ≤ π

4
,

∣∣∣∣
∫ π

0

cos k1x sinnx sinmxdx

∣∣∣∣
{

= 0, k1 = 2n or 2m,
≤ π

4 , otherwise,

we deduce that

Γ(m,n, c1, c2) ≥ π

2
α1

(
1− |β1|

2

)(
−λ2

n,1

R2
n,1

|c1|2 +
−λ2

m,2

R2
m,2

|c2|2
)

+
π

2
α2

(
1− |β2|

2

)(
−λ2

n,1S
2
n,1

R2
n,1

|c1|2 +
−λ2

m,2S
2
m,2

R2
m,2

|c2|2
)

≥ π

2
min(η1, η2),

where we have put

η1 = inf
n≥1

(
α1

(
1− |β1|

2

) −λ2
n,1

R2
n,1

+ α2

(
1− |β2|

2

) −λ2
n,1S

2
n,1

R2
n,1

)
,

η2 = inf
m≥1

(
α1

(
1− |β1|

2

) −λ2
m,2

R2
m,2

+ α2

(
1− |β2|

2

) −λ2
m,2S

2
m,2

R2
m,2

)
.
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Now, using the asymptotic expansions (4.30) and (4.31), we can easily conclude the
following.

1. When p = q, (H3) holds even if either α1 or α2 is zero. Therefore, by Theorem
2.1, Sε(t) is exponentially stable if ε is small enough. This means that when
the two wave speeds are the same, only one displacement or rotation angle
damping is sufficient for the exponential energy decay in the Timoshenko
beam.

2. When p �= q, (H3) holds if both α1 and α2 are positive. Therefore, Sε(t) is
exponentially stable if ε is small enough. On the other hand, for d1(x) ≡ 0 or
d2(x) ≡ 0, it is easy to see that Sε(t) is not exponentially stable for any ε > 0.
This means that when the two wave speeds are different, the displacement
and rotation angle dampings are necessary for the exponential energy decay
in the Timoshenko beam.

5. Technical supplements.
Supplement 1. Let 0 < Cγ ≤ Nb, and

g(x) =

√
N2

b + Cγ(Cγ + x)−Nb√
N2

b − x2
.

Then g is a monotonically increasing function on (−Cγ , Nb).
Proof. Write the function g in the following form:

g(x) =
Cγ√
Nb − x

√
1− Nb − Cγ

Nb + x

(√
N2

b

Cγ + x
+ Cγ +

Nb√
Cγ + x

)−1

.

Then the monotony of g follows from the fact that all the factors are positive mono-
tonically increasing functions on (−Cγ , Nb).

Supplement 2. −λ2
n,i, i = 1, 2, are monotonic increasing functions of n2.

Proof. It is obvious that the conclusion holds for −λ2
n,2. Let

f(x) = (p+ q)x+ p−
√
[(p− q)x+ p]2 + 4pqx

= (p+ q)x+ p−
√
[(p+ q)x+ p]2 − 4pqx2.

Then 2f(n2) = −λ2
n,2. Since

f ′(x) = (p+ q)− [(p+ q)x+ p](p+ q)− 4pqx√
[(p+ q)x+ p]2 − 4pqx2

= (p+ q)

[
1− (p+ q)x+ p− 4pq(p+ q)−1x√

[(p+ q)x+ p]2 − 4pqx2

]

and the fraction in the bracket is strictly less than one, we know that f ′(x) > 0 for
all x > 0.

Supplement 3. For any 1 ≤ m < n, there exist p, q > 0 such that λ2
n,1 = λ2

m,2.
Proof. Let r = p/q, and

f(r) =
1

q
(λ2

n,1 − λ2
m,2)

= (r + 1)(m2 − n2) +
√
[(r − 1)n2 + r]2 + 4rn2 +

√
[(r − 1)m2 + r]2 + 4rm2,
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which is continuous for r ∈ (0,+∞). Moreover, we have

lim
r→0+

f(r) = m2 − n2 < 0, lim
r→+∞ f(r) = +∞.(5.1)

This proves that for a certain ratio of p and q, there exist double eigenvalues.
Supplement 4. Let

√
p/q be an irrational number; then there exist sequences

of integers kj → +∞, lj → +∞, such that qk2
j − pl2j = O(1).

Proof. By a result in number theory [5, p. 140], for any j ≥ 1, there exists a

rational number
kj
lj

with lj > j such that

∣∣∣∣
√

p

q
− kj

lj

∣∣∣∣ ≤ 1

l2j
, i.e.,

∣∣∣∣lj
√

p

q
− kj

∣∣∣∣ ≤ 1

lj
.

Thus

|qk2
j − pl2j | = q

(
lj

√
p

q
+ kj

) ∣∣∣∣lj
√

p

q
− kj

∣∣∣∣
≤ qlj

(
2

√
p

q
+ 1

)
1

lj
= 2
√
pq + q.
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Abstract. This paper presents a series expansion that describes the evolution of a mechanical
system starting at rest and subject to a time-varying external force. Mechanical systems are pre-
sented as second-order systems on a configuration manifold via the notion of affine connections. The
series expansion is derived by exploiting the homogeneity property of mechanical systems and the
variations of constant formula. A convergence analysis is obtained using some analytic functions and
combinatorial analysis results. This expansion provides a rigorous means of analyzing locomotion
gaits in robotics and lays the foundation for the design of motion control algorithms for a large class
of underactuated mechanical systems.

Key words. series expansions, control of mechanical systems, nonlinear controllability
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1. Introduction. The general purpose of this work is to develop an innovative
and powerful control and analysis method for underactuated mechanical control sys-
tems. This paper introduces a series expansion that characterizes the evolution of a
mechanical system starting at rest and subject to an open loop time-varying force.
This tool should prove useful in the study of robotic locomotion and in the design of
motion control algorithms.

1.1. Series expansions and their control applications. Original works on
perturbation methods and series expansions in mechanics go back to Poincaré and
Lagrange. Magnus [33] describes the evolution of systems on a Lie group. Chen [14],
Fliess [17], and Sussmann [42] develop a general framework to describe the evolution
of a nonlinear system via the so-called Chen–Fliess series and its factorization. Re-
lated work on the “chronological calculus” formalism was developed by Agračhev and
Gamkrelidze [2].

Within the context of modern geometric control theory, series expansions play
a key role in the study of nonlinear controllability. Small-time local controllability
(STLC) was studied, for example, by Sussmann [41, 43], Agračhev and Gamkre-
lidze [3], and Kawski [22, 24]. Controllability along trajectories was investigated by
Bianchini and Stefani in [8]. Finally, the work by Lewis and Murray [32] on configu-
ration controllability for mechanical control systems is much related to this work.

Motion planning problems provide a second important use of series expansions.
A rich literature is available on the motion planning problem for kinematic systems,
that is, systems without drift. Numerous approaches include algorithms for chained
systems by Murray and Sastry [36], for systems on Lie groups by Leonard and Krish-
naprasad [30] and Kolmanovsky and McClamroch [26], and the very general solution
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proposed by Lafferriere and Sussmann [28]. These works rely on the following ob-
servation: an explicit expression for the “input history to final displacement” map
simplifies dramatically the two-point boundary value problem that defines the mo-
tion planning task. In other words, whenever an explicit expression (provided by a
series expansion) for the evolution of the control system is available, the two-point
boundary value problem is reduced to a low dimensional nonlinear program. Accord-
ingly, motion control algorithms are designed by inverting this “input history to final
displacement” map.

Finally, series expansions and the techniques developed in this paper have poten-
tial relevance in several areas including averaging and vibrational stabilization [6, 10],
high-order variations for use in optimal control [25], digital multirate sampling of
nonlinear systems [18], and model reduction [19].

Series expansions that specifically exploit the structure of mechanical systems
have so far not been computed. However, some preliminary progress in this direction
has been obtained by Bullo, Leonard, and Lewis [12, 13] via a perturbation analysis.
Under the assumption of small amplitude forcing, the authors compute the initial
terms of a Taylor series describing the forced evolution. The results are then found
to be in agreement with the controllability analysis in [32]. A different but related
research direction has focused on open loop vibrational control and the recent progress
we described in [10] is related to this paper. A preliminary short version of this work
appeared in [11].

1.2. Summary of results. The main contribution of this paper is a series that
describes the evolution of a forced mechanical system starting from rest. Mechanical
systems are characterized as second-order systems on a configuration manifold using
the theory of affine connections. By exploiting the problem’s structure, the system’s
evolution is described as a flow on the configuration space (n-dimensional) instead of
a series on the full phase space (2n-dimensional).

The treatment relies on some differential geometric tools to describe the homo-
geneity properties of nonlinear mechanical systems and the variations of constants
formula; see [2] and [23]. The homogeneous structure of nonlinear mechanical sys-
tems leads to a recursive procedure to compute the forced solution to a mechanical
system. The terms in the series are computed recursively via time integrals and
certain Lie brackets called symmetric products [32].

The series is guaranteed to convergence in a strong sense for small amplitude
inputs and bounded final time. The convergence analysis is sophisticated and relies
on various concepts from complex and combinatorial analysis. Following the analysis
by Agračhev and Gamkrelidze in [2, Proposition 2.1], a bound is computed for every
term of the series so that a notion of order is established. However, as opposed to [2],
only a recursive expression for the series terms is available, and this much complicates
the treatment. The key idea is to obtain a recursive bound not only on the terms of
the expansion but also on their partial derivative.

The series expansion can be computed in simplified fashion in two settings. For
simple Hamiltonian systems with integrable forces, the main theorem can be inter-
preted as a statement on gradient and Hamilton flows: the flow of a Hamiltonian
system forced from rest can be written as a (time-varying) gradient flow. For invari-
ant systems on groups, the series can be computed via algebraic manipulations (no
differentiations). In other words, the computations are performed on the correspond-
ing Lie algebra, and the theorem reduces to a statement on the flow of polynomial
control systems. These results agree with and supersede the preliminary results in
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in [12, 13].
Finally, some numerical simulations of a three degree of freedom robotic manip-

ulator are performed. Truncating the series expansion at increasingly higher order,
various approximations are obtained, and their accuracy is illustrated via some nu-
merical data.

1.3. Organization. The paper is organized as follows. In section 2 we present
the model and the homogeneity properties of a large class of mechanical control sys-
tems. Most ideas are common in the literature; some are not. In section 3 we present
the main result of the paper, that is, a convergent series describing the evolution of
a forced mechanical system. Section 4 contains some applications and extensions,
including the simple Hamiltonian and the invariant system settings, as well as some
simulations. We present our conclusions in section 5.

2. Some geometric and analytical properties of mechanical systems. We
present a geometric definition of mechanical control systems, study their homogeneous
properties, and provide bounds using analytic function theory.

2.1. Natural objects on manifolds. We review some basic definitions to fix
some notation; see [1]. All the objects we consider are smooth in the sense of analytic.
Let Q be a finite dimensional, Hausdorff, second countable manifold, let q be a point
on it, let vq be a point on TQ, let I ⊂ R be a real interval, and let γ : I → Q be a
curve on Q. We let 0q denote the zero velocity tangent vector on the tangent space
TqQ. Let π : TQ → Q denote the usual projection on the tangent bundle, that is,
π(vq) = q. On the manifold Q, we will define scalar functions q �→ f(q) ∈ R and
vector fields q �→ X(q) ∈ TqQ. Lie derivatives of functions and Lie brackets of vector
fields are denoted by

LXf and LXY = [X,Y ].

2.2. Variation of constants formula in geometric terms. This section
presents a quick review of the variation of constants formula within the chronologi-
cal calculus formalism introduced in [2]; see also [38]. Given a vector field Y and a
diffeomorphism φ, the pull-back of Y along φ, denoted φ∗Y , is a vector field defined
by

(φ∗Y )(q) � Tqφ
−1 ◦ Y ◦ φ,

where Tqφ
−1 is the tangent map to φ−1; see [1]. In a system of local coordinates

(q1, . . . , qn), a vector field is written as Y (q) = Y i(q) ∂/∂qi, and the pull-back of Y
along φ is

(φ∗Y )i(q) =
∂(φ−1)i

∂qj
Y j(φ(q),

where the summation convention is enforced here and in what follows.
A time-varying vector field (q, t) �→ X(q, t) gives rise to the initial value problem

q̇(t) = X(q, t), q(0) = q0,

and its solution at time T , which we refer to as the flow of X, is denoted by q(T ) =
ΦX0,T (q0). We shall usually assume time-varying quantities to be integrable with re-
spect to time. Given a time-varying vector field X(q, t), we denote its definite time
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q0 q1

flow along X + Y

flow along Y

ΦX+Y
0,T (q0) = ΦY0,T (q1)

Fig. 2.1. The flow along X + Y is written as the flow along Y with initial condition qq. The
“variation” q1 is computed via the variation of constants formula as the flow along (ΦY

0,t)
∗X for

time [0, T ] with initial condition q0.

integral from time 0 to time T by

X(q, T ) =

∫ T

0

X(q, τ)dτ.(2.1)

The integral takes place over the linear space TqQ at fixed q ∈ Q. This operation
can be defined in two ways. Given a coordinates chart about q, the integral is well
defined in the coordinate system. (This definition suffices for the purpose of this
paper, since the analysis is local.) A global coordinate-free definition is obtained,
providing sufficient conditions in order for TqQ to be a Banach space and introducing
the Cauchy–Bochner integral; see [1, p. 61].

Next, consider the initial value problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0,(2.2)

where X and Y are analytic time-varying vector fields. If we regard X as a perturba-
tion to the vector field Y , we can describe the flow of X+Y in terms of a nominal and
perturbed flow. The following relationship is referred to as the variation of constants
formula and describes the perturbed flow:

ΦX+Y
0,t = ΦY0,t ◦ Φ

(ΦY0,t)
∗X

0,t .(2.3)

The result is illustrated in Figure 2.1 and proven in [2, equation (3.15)]; see also [10,
Appendix A.1]. The result can be alternatively stated as follows. For all T ≥ 0, the
final value q(T ) of the curve q : [0, T ]→M solution to the initial value problem (2.2)
is also the final value of the curve solution to

q̇(s) = Y (q, s), q(0) = z(T ),(2.4)

where z : [0, T ]→M is the solution to the initial value problem

ż(s) =
(
(ΦY0,s)

∗X
)
(z), z(0) = q0.(2.5)

The differential equation (2.5) is referred to as the “pulled back” or the “adjoint”
system in [20]. If both X and Y are time invariant, then the classic infinitesimal
Campbell–Backer–Hausdorff formula (see [21]) provides a means of computing the
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pull-back:

(ΦY0,t)
∗X =

∞∑
k=0

adkYX
tk

k!
.

If instead X and Y are time-varying, a generalized expression is (see [2])

(2.6) (ΦY0,t)
∗X(q, t) = X(q, t)

+

∞∑
k=1

∫ t

0

· · ·
∫ sk−1

0

(
adY (q,sk) . . . adY (q,s1)X(q, t)

)
dsk . . . ds1.

Just like in the classic Campbell–Backer–Hausdorff formula (see [44]), the con-
vergence of the series expansion in the previous equation is a delicate manner. Suffi-
cient conditions for local convergence are given in [2, Propositions 2.1 and 3.1]. For
our analysis, the following straightforward statement suffices. If all the Lie brackets
adY (sk) . . . adY (s1)X vanish for all k greater than a given N , then the series in (2.6)
becomes a finite sum, and it readily converges.

2.3. Affine connections. We refer to [16, 29] for a comprehensive treatment on
affine connections and Riemannian geometry. An affine connection on Q is a smooth
map that assigns to a pair of vector fields X,Y a vector field ∇XY such that for any
function f and for any third vector field Z

(i) ∇fX+Y Z = f∇XZ +∇Y Z,
(ii) ∇X(fY + Z) = (LXf)Y + f∇XY +∇XZ.

We also say that ∇XY is the covariant derivative of Y with respect to X. Vector
fields can also be covariantly differentiated along curves, and this concept will be
instrumental in writing the Euler–Lagrange equations. Consider a smooth curve γ :
[0, 1]→ Q and a vector field along γ, that is, a map v : [0, 1]→ TQ such that π(v(t)) =
γ(t) for all t ∈ [0, 1]. Let V be a smooth vector field satisfying V (γ(t)) = v(t). The
covariant derivative of the vector field v along γ is defined by

Dv(t)

dt
� ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣∣
q=γ(t)

.

It can be shown that this definition is independent of the choice of V . In a system
of local coordinates (q1, . . . , qn), an affine connection is uniquely determined by its
Christoffel symbols1 Γiij ,

∇ ∂
∂qi

(
∂

∂qj

)
= Γkij

∂

∂qk
,

and, accordingly, the covariant derivative of a vector field is written as

∇XY =

(
∂Y i

∂qj
Xj + ΓijkX

jY k

)
∂

∂qi
.

1We here refer to the Γk
ij functions as Christoffel symbols, even without requiring ∇ to be a

Levi–Civita connection.
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2.4. Control systems described by affine connections. We introduce a
class of control systems that is a generalization of Lagrangian control systems. This
approach to the modeling of vehicles and robotic manipulators is common to a number
of recent works; see [9, 32, 31, 10]. A control system described by an affine connection
is defined by the following objects:

(i) an n-dimensional configuration manifold Q, with q ∈ Q being the configura-
tion of the system and vq ∈ TqQ being the system’s velocity,

(ii) an affine connection ∇ on Q, whose Christoffel symbols are {Γijk : i, j, k ∈
{1, . . . , n}},

(iii) a time-varying vector field Y on Q defining the input force.
The corresponding equations of motion are written as

Dvq
dt

= Y (q, t)(2.7)

or, equivalently, in coordinates as

q̇i = vi, v̇i + Γijk(q)v
jvk = Y i(q, t),(2.8)

where the indices i, j, k run from 1 to n and where vq = vi ∂
∂qi . These equations are a

generalized form of the Euler–Lagrange equations.
Remark 2.1. This definition of control systems described by an affine connection

provides a convenient means of treating various classes of Lagrangian mechanical
systems. For example, systems with nonholonomic constraints are described within
this framework in [31]. We will treat in more details “simple Hamiltonian systems”
in section 4.2 and “invariant systems on Lie groups” in section 4.3. A more detailed
exposition is presented in [10].

The second-order system in (2.7) can be written as a first-order differential equa-
tion on the tangent bundle TQ. Using { ∂

∂qi ,
∂
∂vi } as a basis for the tangent bundle to

TQ, we define

Z(vq) = vi
∂

∂qi
− Γ(q)ijkvjvk

∂

∂vi
and Y lift(vq, t) = Y i(q, t)

∂

∂vi
,

so that the control system is rewritten as

v̇q = Z(vq) + Y lift(vq, t).(2.9)

We refer to [32, 29] for coordinate independent definitions of the lifting operation
Y → Y lift and of the drift vector field Z.

2.5. Homogeneity and Lie algebraic structure. One fundamental structure
of the control system in (2.7) is the polynomial dependence of the vector fields Z
and Y lift on the velocity variables viq. This structure is reflected in the Lie brackets

computations involving Z and Y lift; see related ideas in [40, 10].
We here rely on the notion of geometric homogeneity2 as described in [23]. Given

two vector fields X and XE , we say that the vector field X is homogeneous with
degree m with respect to XE if

[XE , X] = mX.

2Geometric homogeneity corresponds to the existence of an (infinitesimal) symmetry in the equa-
tions of motion. For control systems described by an affine connection the symmetry is invariance
under affine time-scaling transformations.
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(1, 1)

#Y lift

2

1

3 4

#Zg

2

(2, 1)

(i, j)

1

P1 P0 P−1

{0} {0}

{0}

Fig. 2.2. Table of Lie brackets between the drift vector field Z and the input vector field Y lift.
The (i, j)th position contains Lie brackets with i copies of Y lift and j copies of Z. The corresponding
homogeneous degree is j− i. All Lie brackets to the right of P−1 exactly vanish. All Lie brackets to
the left of P−1 vanish when evaluated at vq = 0q.

For control systems described by an affine connection, we introduce the Liouville
vector field on TQ (see [7, pp. 19 and 29]) as

L(vq) = vi
∂

∂vi
,

where we recall vq = vi ∂
∂qi . The key mathematical relationships between vector fields

on TQ are

[L,Z] = (+1)Z and [L, Y lift] = (−1)Y lift.

Hence the vector field Z is homogeneous of degree +1, and the vector field Y lift is
homogeneous of degree −1 with respect to the Liouville vector field. Let Pj be the
set of vector fields on TQ of homogeneous degree j, so that

Z ∈ P1 and Y lift ∈ P−1.

The sets Pj enjoy various interesting properties. Figure 2.2 illustrates them, their
proof is via direct computation, and they are listed as follows:

(i) [Pi,Pj ] ⊂ Pi+j , that is, the Lie bracket between a vector field in Pi and a
vector field in Pj belongs to Pi+j .

(ii) Pk = {0} for all k ≤ −2.
(iii) For all X ∈ Pk with k ≥ 1, X(0q) = 0q.
(iv) Every X ∈ P−1 is the lift of a vector field on Q.

It is helpful to provide an interpretation of Pi in coordinates. In a system of local
coordinates, let Hi(q, vq) be the set of scalar functions on TQ = R

2n, which are
arbitrary functions of q and which are homogeneous polynomials in {v1, . . . , vn} of
degree i. Pi is the set of vector fields on R

2n with the first n components in Hi and
the second n components in Hi+1.

Finally, it is of interest to focus on the Lie bracket [Y lift
b , [Z, Y lift

a ]], where Ya, Yb
are two vector fields on Q. This operation will play an important role in later compu-
tations. Since this Lie bracket belongs to P−1, there must exist a vector field on Q,
which we denote 〈Ya : Yb〉, such that

〈Ya : Yb〉lift = [Y lift
b , [Z, Y lift

a ]].
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Such a vector field is called the symmetric product between Yb and Ya, and a direct
computation shows that it satisfies

〈Yb : Ya〉 = ∇YaYb +∇YbYa,

or, equivalently, in coordinates

〈Yb : Ya〉i = ∂Y i
a

∂qj
Y j
b +

∂Y i
b

∂qj
Y j
a + Γijk

(
Y j
a Y

k
b + Y k

a Y j
b

)
.

The adjective “symmetric” comes from the equality 〈Ya : Yb〉 = 〈Yb : Ya〉.
2.6. Integrable flows. Here we compute solutions to a few differential equations

defined by certain homogeneous vector fields. In particular, significant simplifications
take place in the following two cases. First, let (q, t) �→ X(q, t) be a time-varying
vector field on Q, and consider the differential equation on TQ

v̇q = X lift(vq, t)(2.10)

with initial condition vq(0) = v0 ∈ Tq0Q. It can be seen that

ΦX
lift

0,t (v0) = v0 +

∫ t

0

X(q0, s)ds,(2.11)

that is, in coordinates

ΦX
lift

0,t

([
q0
v0

])
=

[
q0

v0 +
∫ t
0
X(q0, s)ds

]
.

Next, let X0 ∈ P0 and X1 ∈ P1, and consider the differential equation

v̇q = X0(vq, t) +X1(vq, t)(2.12)

with initial condition vq(0) = 0q0 ∈ Tq0Q. Define the vector field X0,1 on Q and its
flow ζ : [0, T ] �→ Q via

X0,1 = Tπ ◦X0,

ζ(t) = Φ
X0,1

0,t (q0),

where Tπ : TTQ → TQ is the tangent map to the projection map π : TQ → Q.
In coordinates, this vector field consists of the first n components of the vector field
X0 =

[
X0,1(q, t)

′, X0,2(q, v, t)
′]′ on TQ. It can be seen that

ΦX0+X1
0,t (0q0) = 0ζ(t),

that is, in coordinates

ΦX0+X1
0,t

([
q0

0

])
=

[
ζ(t)
0

]
.

The key observation in proving this statement is that the components of X0,2 and
X1 are polynomials in {v1, . . . , vn} of degree at least 1. Since the initial velocity is
assumed to be zero, vq remains zero for all time.
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2.7. Analyticity and bounds over complex neighborhoods. In this section
we introduce a norm on the set of analytic vector fields over a compact subset of Q.
We also provide bounds to partial derivatives of analytic functions. The bounds are
not coordinate-free, i.e., they depend on the specific selection of a coordinate system.
Accordingly, the treatment here assumes Q = R

n.

Let q0 be a point on R
n, let σ be a positive scalar, and define the complex σ-

neighborhood of q0 in C
n as

Bσ(q0) = {z ∈ C
n : ‖z − q0‖ < σ}.

Let f be a real analytic function on R
n that admits a bounded analytic continuation

over Bσ(q0). The norm of f is defined as

‖f‖σ � max
z∈Bσ(q0)

|f(z)|,

where f denotes both the function over R
n and its analytic continuation. Given a

time-varying vector field (q, t) �→ Y (q, t) = Yt(q), let Y i
t be its ith component with

respect to the usual basis on R
n. Assuming t ∈ [0, T ] and assuming that every

component function Y i
t is analytic over Bσ(q0), we define the norm of Y as

‖Y ‖σ,T � max
t∈[0,T ]

max
i∈{1,...,n}

‖Y i
t ‖σ.

In what follows, we will often simplify notation by neglecting the subscript T in
the norm of a time-varying vector field. Finally, given an affine connection ∇ with
Christoffel symbols {Γijk : i, j, k ∈ {1, . . . , n}}, we introduce the notation

‖Γ‖σ � max
ijk

∥∥Γijk∥∥σ .

Next, we examine the norm of partial derivatives of these objects. Recall that the
Cauchy integral representation of analytic functions leads to bounds on high-order
derivatives of analytic functions in terms of the norm of the functions themselves;
see the so-called Cauchy estimates in [27, section 2.3] and [37]. Let (i1, . . . , im) be a
collection of integers belonging to {1, . . . , n}, and let σ′ be a positive real strictly less
than σ. It is known that

‖∂mf‖σ′ � max
i1,... ,im

∥∥∥∥ ∂mf

∂qi1 · · · ∂qim

∥∥∥∥
σ′
≤ m! δm‖f‖σ,

where δ = n/(σ−σ′). The quantity ∂mf/∂qi1 · · · ∂qim is a real function; it is bounded
by bounding its analytic continuation over Bσ(q0). Similarly, for vector fields

‖∂mY ‖σ′ � max
t∈[0,T ]

max
i,i1,... ,im

∥∥∥∥ ∂mY i
t

∂qi1 · · · ∂qim

∥∥∥∥
σ′
≤ m! δm‖Y ‖σ,

and for the Christoffel symbols

‖∂mΓ‖σ′ � max
i,j,k,i1,... ,im

∥∥∥∥∥ ∂mΓijk
∂qi1 · · · ∂qim

∥∥∥∥∥
σ′

≤ m! δm‖Γ‖σ.
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3. A series expansion for mechanical control systems. This section de-
scribes first a preliminary bound, and then the main result of the paper, that is, a
series expansion describing the evolution of a forced control system starting at rest.

Problem 3.1. Assume that the functions q �→ Γijk(q) and the vector field
(q, t) �→ Y (q, t) are analytic in q ∈ Q and integrable in t ∈ [0, T ] for some positive
time T . Let γ : [0, T ] �→ Q be the solution to the differential equation (2.7) with
initial condition γ̇(0) = 0q0 . Characterize γ as a series expansion containing iterated
symmetric products and time integrals of Y .

We start with a conservative bound.
Lemma 3.2 (bound on evolution). Consider the system as described in Prob-

lem 3.1. Select a coordinate system about the point q0 ∈ Q, and let σ be a positive
constant. A sufficient condition for γ([0, T ]) to be a subset of Bσ(q0) is that

‖Y ‖σT 2 <
η2(σn2‖Γ‖σ)

n2‖Γ‖σ ,(3.1)

where the function η : x ∈ R+ → [0, π/2] is the unique solution to η tan(η) = x.
Proof. Let T0 < T be the smallest time at which the solution γ reaches the

distance ‖γ(T0) − q0‖ = σ. If the solution never reaches this distance, then γ([0, T ])
is obviously a subset of Bσ(q0). Since γ([0, T0]) ⊂ Bσ(q0) for all t ∈ [0, T0], we have
the bound ‖γ̇(t)‖ ≤ y(t), where

ẏ = n2‖Γ‖σy2 + ‖Y ‖σ, y(0) = 0.

The solution to this initial value problem is

y(t) =

√
‖Y ‖σ
n2‖Γ‖σ tan

(√
‖Y ‖σn2‖Γ‖σ t

)
.

Straightforward manipulations show that the condition in (3.1) is equivalent to Ty(T ) <
σ. But since y is a monotone function, T0y(T0) < σ also. Note that ‖γ(0)− q0‖ = 0
and

d

dt
‖γ(t)− q0‖ ≤ ‖γ̇‖ ≤ y(t) < σ/T0

for all t ∈ [0, T0]. Therefore, ‖γ(T0) − q0‖ < T0σ/T0, and the contradiction is now
immediate.

We are now ready to present the main theorem.
Theorem 3.3 (evolution of a forced mechanical system starting at rest). Con-

sider the system as described in Problem 3.1. Define recursively the time-varying
vector fields Vk:

V1(q, t) =

∫ t

0

Y (q, s)ds,(3.2)

Vk(q, t) = −1
2

k−1∑
j=1

∫ t

0

〈Vj(q, s) Vk−j(q, s)〉ds, k ≥ 2.(3.3)

Select a coordinate system about the point q0 ∈ Q, let σ > σ′ be two positive constants,
and assume that

‖Y ‖σT 2 < L � min

{
σ − σ′

24n2(n+ 1)
,

1

24n(n+ 1)‖Γ‖σ ,
η2(σ′n2‖Γ‖σ′)

n2‖Γ‖σ′

}
.(3.4)
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Then the solution γ : [0, T ]→ Q satisfies

γ̇(t) =
+∞∑
k=1

Vk(γ(t), t),(3.5)

where Vk satisfies the bound

‖Vk‖σ′ ≤ L1−k ‖Y ‖kσ t2k−1,(3.6)

and the series (q, t) �→ ∑∞
k=1 Vk(q, t) converges absolutely and uniformly for q ∈

Bσ′(q0) and for t ∈ [0, T ].
A few comments on the various steps of the proof are appropriate. First, we

investigate how to write the flow of a mechanical control system as the composition
of more elementary flows. Two observations play a key role: the homogeneity of
system (2.7) renders the computations tractable, and the simplifying procedure can
be easily repeated giving rise to an iterative procedure. Second, we prove absolute and
uniform convergence of the series expansion resulting from the first formal part of the
proof. The proof of the bounds is inspired by the treatment in [2, Proposition 2.1],
but it is considerably more complicated here by the recursive nature of the series
expansion. Once the series is formally derived and it is proven to be convergent, a
limiting argument leads to the final statement in (3.5).

Proof. Part I. Here we write the solution to (2.7) as composition of the flow of
two separate vector fields, one of which is defined recursively.

Let k be a strictly positive integer, let Xk, Yk,Wk be time-varying vector fields
on Q, and let vq,k be a smooth curve on TQ that satisfies the differential equation

v̇q,k =
(
Z + [X lift

k , Z] + Y lift
k +W lift

k

)
(vq,k, t),(3.7)

vq,k(0) = 0q0 .

The mechanical system in (2.7) corresponds to setting k = 1, X1 = W1 = 0, Y1 =
Y (q, t), and, accordingly, γ̇(t) = vq,1(t). Using the formula in (2.4) and (2.5) discussed
in section 2.2, we set

vq,k(t) = Φ
Y lift
k

0,t (vq,k+1(t))(3.8)

and

v̇q,k+1 =

((
Φ
Y lift
k

0,t

)∗
(Z + [X lift

k , Z] +W lift
k )

)
(vq,k+1),(3.9)

vq,k+1(0) = 0q0 ,

where we compute the pull-back along the flow by means of the infinite series in (2.6).
Remarkably, this series reduces to a finite sum. From the discussion in section 2.5 on
the Lie algebraic structure of the various vector fields, we have

adm+2
Y lift
k

Z = 0,

adm+1
Y lift
k

[X lift
k , Z] = 0, admY lift

k
W lift
k = 0
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for all m ≥ 1. With a little bookkeeping we can exploit these equalities and compute(
Φ
Y lift
k

0,t

)∗
(Z+[X lift

k , Z] +W lift
k )

= Z + [X lift
k , Z] +W lift

k +

∫ t

0

[Y lift
k (s),

(
Z + [X lift

k , Z]
)
]ds

+

∫ t

0

∫ s1

0

[Y lift
k (s2), [Y

lift
k (s1), Z]]ds2ds1

= Z + [X lift
k + Y

lift

k , Z] + [Y
lift

k (s), [X lift
k , Z]] +W lift

k

+

∫ t

0

∫ s1

0

[Y lift
k (s2), [Y

lift
k (s1), Z]]ds2ds1

= Z + [X lift
k + Y

lift

k , Z]− 〈Y k : Xk

〉lift
+W lift

k − 1

2

〈
Y k : Y k

〉lift
,

where we have used the · notation introduced in (2.1). The last equality also relies
on ∫ t

0

∫ s1

0

[Y lift
k (s2), [Y

lift
k (s1), Z]]ds2ds1 = −1

2

〈
Y k : Y k

〉lift
,

which follows from an integration by parts and the symmetry of the symmetric prod-
uct. Remarkably, the differential equation describing the evolution of vk+1(t) is of the
same form as (3.7) describing the evolution of vq,k(t), where

Xk+1 = Xk + Y k,

Yk+1 +Wk+1 = −
〈
Y k : Xk + 1

2Y k

〉
+Wk.

The vector field Xk can be computed and substituted in as

Xk =

k−1∑
j=1

Y j ,

Yk+1 +Wk+1 = −
〈
Y k :

k−1∑
j=1

Y j +
1

2
Y k

〉
+Wk.(3.10)

Notice that the quantities Yk and Wk are not yet uniquely determined. Equa-
tion (3.10) is verified for all k if and only if for all m

(Y2 + Y3 + · · ·+ Ym+1) +Wm+1 = −
m∑
k=1

〈
Y k :

k−1∑
j=1

Y j +
1

2
Y k

〉
,(3.11)

where we used W1 = 0. Some further manipulation leads to

m∑
k=1

〈
Y k :

k−1∑
j=1

Y j +
1

2
Y k

〉
=

m∑
k=1

k−1∑
j=1

〈
Y k : Y j

〉
+
1

2

m∑
k=1

〈
Y k : Y k

〉

=
1

2

m∑
j,k=1,j 	=k

〈
Y k : Y j

〉
+
1

2

m∑
k=1

〈
Y k : Y k

〉

=
1

2

m∑
j,k=1

〈
Y k : Y j

〉
.
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A selection of {Yi : i ∈ {1, . . . ,m}}, and Wm+1 that satisfies (3.11) is

Yi = −1
2

m∑
j,k=1,j+k=i

〈
Y k : Y j

〉
= −1

2

i−1∑
j=1

〈
Y j : Y i−j

〉
,(3.12)

Wm+1 = −1
2

m∑
j,k=1,j+k>m

〈
Y k : Y j

〉
.

Note that (3.12) is a well-defined recursive relationship, and note that the recursive
definition of Vk in (3.3) and (3.2) inside the theorem statement corresponds to setting
Vk(q, t) = Y k(q, t). The iteration procedure proves that, for any k ≥ 2, the solution
to the original mechanical system γ̇ = vq,1 : [0, T ] �→ TQ satisfies

γ̇(t) =

(
Φ
Y lift
1

0,t ◦ ΦY
lift
2

0,t ◦ · · ·◦ Φ
Y lift
k−1

0,t

)
(vq,k(t)),

where vq,k : [0, T ] �→ TQ is the solution to (3.7). The flow γ̇ is now written as the
composition of k flows, and a first simplification is immediate. For all integers i, j
and for all times s1, s2 the vector fields Y lift

i and Y lift
j commute, that is,

[Y lift
i (vq, s1), Y

lift
j (vq, s2)] = 0,

so that γ is the solution to

γ̇(t) = Φ
∑k−1
j=1 Y

lift
j

0,t (vq,k(t)).(3.13)

A second simplification is also straightforward. The vector field in (3.13) is homoge-
neous of degree 0, i.e., it is in the form of (2.10). According to the result in (2.11),
we have for all t ∈ [0, T ]

γ̇(t) = vq,k(t) +

k−1∑
j=1

Y j(π(vq,k(t)), t),(3.14)

where the sequence of vector fields Yj is defined via (3.12) and where the curve vq,k :
[0, T ] �→ TQ is the solution to

dvq,k
dt

=


Z +


k−1∑
j=1

Y
lift

j , Z


+ Y lift

k +W lift
k


 (vq,k, t),(3.15)

vq,k(0) = 0q0 .

Part II. Here we show absolute and uniform convergence of the series
∑∞

k=1 Yk(q, t)
over all q in a compact neighborhood of q0 and for all t ≤ T .

Given the vector field Y , let Ω1 = {Y }, and define recursively the set Ωk to be
the collection of vector fields − 1

2

〈
Bi : Bk−i

〉
for all Bi ∈ Ωi and Bk−i ∈ Ωk−i. The

first few sets are

Ω1 = {Y }, Ω2 =

{
−1
2

〈
Y : Y

〉}
, Ω3 =

{
1

4

〈
Y :
〈
Y : Y

〉〉}
,(3.16)

Ω4 =

{
−1
8

〈
Y :
〈
Y :
〈
Y : Y

〉〉〉
,−1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉}
.
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Next, we prove by induction that, for all k, the vector field Yk is the sum of Nk vector
fields belonging to Ωk. The statement is true at k = 1 with N1 = 1. We assume it is
true for all j < k and prove it for k. Because of the induction assumption, we write

Yj =
∑Nj

a=1 Bj,a, where the Bj,a are elements in Ωj . We compute

Yk = −1
2

k−1∑
j=1

〈
Y j : Y k−j

〉

= −1
2

k−1∑
j=1

〈
Nj∑
a=1

Bj,a :

Nk−j∑
b=1

Bk−j,b

〉

=

k−1∑
j=1

Nj∑
a=1

Nk−j∑
b=1

−1
2

〈
Bj,a : Bk−j,b

〉
︸ ︷︷ ︸

∈ Ωk

.

This concludes the proof by induction, and the recursive relation on Nk is

N1 = 1, Nk =

k−1∑
j=1

NjNk−j , k ≥ 2.(3.17)

As we discuss in the appendix, the sequence Nk can be explicitly computed and
bounded as

Nk =
1

k

(
2k − 2
k − 1

)
≤ 22(k−1)

k − 1
2

.(3.18)

We now focus our attention on bounding the generic time-varying vector field
(q, s) �→ Bk(q, s) in Ωk. Recall the symbols δ, ‖ · ‖σ, ‖∂m · ‖σ introduced in section 2.7.
We claim that there exist sequences of real and integer coefficients {ck : k ∈ R} and
{dk : k ∈ N} such that

‖∂mBk‖σ′ ≤ ck
(m+ dk)!

dk!
δm+k−1‖Y ‖kσt2(k−1).(3.19)

For convenience, we redefine δ to δ = max{ n
σ−σ′ , ‖Γ‖σ}, so that ‖∂mΓ‖σ′ ≤ m! δm+1.

As discussed in that section, the bound in (3.19) is satisfied at k = 1 for all m ∈ N,
with c1 = 1, d1 = 0. In what follows we provide a proof by induction on k ≥ 2.

Any time-varying vector field Bk at k ≥ 2 can be written as Bk = − 1
2

〈
Ba : Bb

〉
for some 1 ≤ a, b ≤ k−1, a+ b = k and Ba ∈ Ωa, Bb ∈ Ωb. Accordingly, we compute

‖∂m 〈Ba : Bb

〉 ‖σ′

= max
i,i1,... ,im

∥∥∥∥∥ ∂m

∂qi1 · · · ∂qim

(
∂Bi

a

∂qj
Bj
b +

∂Bi
b

∂qj
Bj
a + Γijl(B

j
aBl

b +Bj
b B

l
a)

)∥∥∥∥∥
σ′

≤ max
i

(∥∥∥∥∥∂m
(

∂Bi
a

∂qj
Bj
b

)∥∥∥∥∥
σ′

+

∥∥∥∥∥∂m
(

∂Bi
b

∂qj
Bj
a

)∥∥∥∥∥
σ′

+ 2
∥∥∥∂m (ΓijlBj

aBl
b

)∥∥∥
σ′

)
.

Relying on the equality

dm

dxm
f(x)g(x) =

m∑
α=0

(
m
α

)
dαf(x)

dxα
dm−αg(x)
dxm−α ,
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the first term is bounded according to∥∥∥∥∥∂m
(

∂Bi
a

∂qj
Bj
b

)∥∥∥∥∥
σ′

≤ n

m∑
α=0

m!

α!(m− α)!

∥∥∂α+1Ba

∥∥
σ′
∥∥∂m−αBb

∥∥
σ′

≤ n

m∑
α=0

m!

α!(m− α)!

(
ca
(α+ 1 + da)!

da!
δα+a‖Y ‖aσ

t2a−1

2a− 1
)

·
(
cb
(m− α+ db)!

db!
δm−α+b−1‖Y ‖bσ

t2b−1

2b− 1
)

=
ncacb

(2a− 1)(2b− 1)

(
m!

da!db!

m∑
α=0

(α+ 1 + da)!(m− α+ db)!

α!(m− α)!

)

· δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

The third term is bounded according to

∥∥∥∂m (ΓijlBj
aBl

b

)∥∥∥
σ′
≤ n2

m∑
α=0

α∑
β=0

m! ‖∂m−αΓ‖σ′

(m− α)!β!(α− β)!
‖∂βBa‖σ′ ‖∂α−βBb‖σ′

≤ n2
m∑
α=0

α∑
β=0

m!

(m− α)!β!(α− β)!

(
(m− α)! δm−α+1

)

·
(
ca
(β + da)!

da!
δβ+a−1‖Y ‖aσ

t2a−1

2a− 1
)

·
(
cb
(α− β + db)!

db!
δα−β+b−1‖Y ‖bσ

t2b−1

2b− 1
)

≤ n2cacb
(2a− 1)(2b− 1)


 m!

da!db!

m∑
α=0

α∑
β=0

(β + da)!(α− β + db)!

β!(α− β)!




· δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

To simplify notation, let us define

S(l, d1, d2) �
l∑

a=0

(a+ d1)!(l − a+ d2)!

a!(l − a)!
.

Putting it all together,

‖∂m 〈Ba : Bb

〉 ‖σ′ ≤ ncacb
(2a− 1)(2b− 1)

m!

da!db!
δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1)

·
(
S(m, da + 1, db) + S(m, da, db + 1) + 2n

m∑
α=0

S(α, da, db)

)
.

Equation (A.2) in the appendix implies that

S(l, d1, d2) =
d1!d2!(l + 1 + d1 + d2)!

l!(1 + d1 + d2)!
,(3.20)
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so that we compute

m!

da!db!

(
S(m, da + 1, db) + S(m, da, db + 1) + 2n

m∑
α=0

S(α, da, db)

)

=
m!

da!db!

((
(da + 1)!db! + da!(db + 1)!

) (m+ 2 + da + db)!

m!(2 + da + db)!

+ 2n

m∑
α=0

da!db!(α+ 1 + da + db)!

α!(1 + da + db)!

)

=
(m+ 2 + da + db)!

(1 + da + db)!
+

2nm!

(1 + da + db)!

m∑
α=0

(α+ 1 + da + db)!

α!︸ ︷︷ ︸
S(m, 1 + da + db, 0)

,

and again applying (3.20) with (l, d1, d2) = (m, 1 + da + db, 0)

=
(m+ 2 + da + db)!

(1 + da + db)!
+

2nm!

(1 + da + db)!

(1 + da + db)!(m+ 2 + da + db)!

m!(2 + da + db)!

=
(m+ 2 + da + db)!

(2 + da + db)!
(2 + 2n+ da + db) .

Substitute in

‖∂m 〈Ba : Bb

〉 ‖σ′

≤ ncacb(2 + 2n+ da + db)(m+ 2 + da + db)!

(2a− 1)(2b− 1)(2 + da + db)!
δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

Next, we express everything back in terms of k = a+ b and Bk = − 1
2

〈
Ba : Bb

〉
.

We have that

‖∂mBk‖σ′ ≤ max
a+b=k

(
ncacb(2 + 2n+ da + db)

2(2a− 1)(2b− 1)
(m+ 2 + da + db)!

(2 + da + db)!

)
δm+k−1 ‖Y ‖kσ t2(k−1).

Equation (3.19) is proven by defining sequences ck and dk such that c1 = 1, d1 = 0,
together with

dk ≥ max
a+b=k

2 + da + db,

ck ≥ max
a+b=k

ncacb(2 + 2n+ da + db)

2(2a− 1)(2b− 1) .

It is immediate to see that dk = 2(k − 1) satisfies the recursive requirement, so that
we require ck to satisfy c1 = 1, together with the requirement

ck ≥ max
a+b=k

n(k + n− 1)cacb
(2a− 1)(2b− 1) = max

a∈{1,...k−1}
n(k + n− 1)cack−a
(2a− 1)(2k − 2a− 1) .

Consider the polynomial p(a) = (2a− 1)(2k − 2a− 1) in a ∈ [1, k − 1]; it assumes its
minimum value (2k − 3) at a = 1, or, equivalently, a = k − 1. Accordingly, a stricter
requirement on ck is

ck ≥ max
a∈{1,...k−1}

n(k + n− 1)
2k − 3 cack−a.
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Since (k − 1)/(2k − 3) ≤ 1 and n/(2k − 3) ≤ n for all k ≥ 2, a conservative selection
of ck that satisfies this requirement is provided by the sequence

c1 = 1, ck = n(1 + n)

k−1∑
a=1

cack−a, k ≥ 2.

Recalling the definition in (3.17), one can show that ck = (n(1 + n))k−1Nk.
Finally, we summarize all the analysis in Part II and prove convergence. Evalu-

ating at m = 0 the bound in (3.19), we have

‖Bk‖σ′ ≤ (n(1 + n))k−1Nk δ
k−1‖Y ‖kσ t2(k−1),

and recalling the bound in (3.18), we compute

‖Yk‖σ′ ≤ Nk ‖Bk‖σ′ ≤ (n(1 + n))k−1N2
k δk−1 ‖Y ‖kσ t2(k−1)

≤ (24n(1 + n) δ)k−1

(k − 1/2)2 ‖Y ‖kσ t2(k−1).

An immediate consequence is that for (24n(n+ 1)δ) ‖Y ‖σT 2 < 1, the series

Y∞(q, t) � lim
K→∞

K∑
k=1

Yk(q, t)

converges absolutely and uniformly in t ∈ [0, T ] and q ∈ Bσ′(q0).
Part III. Here we provide the final limiting argument by collecting various results

in Parts I and II and in Lemma 3.2.
We start by studying the behavior as k → ∞ of (3.14) and of the initial value

problem (3.15) from Part I. We shall exploit a variation of a standard result on the
continuous dependence of solutions of differential equations with respect to param-
eter changes; see [15, chapter I, section 3]. Uniform convergence of the vector field

describing a differential equation, say, for example,
∑K

k=1 Yk, implies the uniform con-
vergence of the solution to the Kth differential equation to the solution of the limiting
differential equation. In order to apply this result to the differential equation (3.15),
we need to ensure that the vector field on right-hand side converges uniformly and
absolutely.

Assume that the time length T and input vector field Y satisfy the bound in (3.4)
inside the theorem statement. Then Lemma 3.2 guarantees that γ([0, T ]) ⊂ Bσ′(q0),
and the analysis in Part II guarantees that series

∑∞
k=1 Yk converges absolutely and

uniformly over q ∈ Bσ′(q0). Therefore, the series converges uniformly and absolutely
along the curve γ. From (3.14) one can deduce that γ(t) = π (vq,k(t)), so that the
series

∑∞
k=1 Yk converges also along π ◦ vq,k : [0, T ] �→ Q. Accordingly, we can take

the limit as k →∞ in (3.15).
Notice that uniformly in t ∈ [0, T ] and q ∈ Bσ′(q0)

lim
k→∞

Yk(q, t) = 0 and lim
k→∞

Wk(q, t) = 0,

and define the time-varying vector field

V∞ =

∞∑
k=1

Vk =

∞∑
k=1

Y k.
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Taking the limit as k →∞ in (3.14) and (3.15), one obtains

γ̇(t) = vq,∞(t) + V∞(π(vq,∞(t)), t),

where the curve vq,∞ : [0, T ] �→ TQ is the solution to

dvq,∞
dt

=
(
Z +

[
V lift
∞ , Z

])
(vq,∞, t),(3.21)

vq,∞(0) = 0q0 .

According to the discussion in section 2.6, the initial value problem in (3.21) can
be explicitly integrated. Because Z ∈ P1, [V

lift
∞ , Z] ∈ P0, and because of the equality

Tπ ◦ [V lift
∞ , Z

]
= V∞,

the curve vq,∞ satisfies

vq,∞(t) = 0ζ(t), where ζ(t) = ΦV∞
0,t (q0),

and therefore

γ̇(t) = 0ζ(t) + V∞(π(0ζ(t)), t) = V∞(ζ(t), t).

The last two statements imply γ = ζ and are equivalent to (3.5).
Two brief comments are appropriate. First, it is interesting to emphasize an

intermediate result proved in Part II: the Vk term in the series is the sum of the
known number of vector fields belonging to the set Ωk; see the definition preceding
(3.16). This additional structure might be useful in controllability or motion planning
studies. Second, it is unpleasant to remark that while the series expansion is stated
in a coordinate-free context, its convergence properties rely on the introduction of a
coordinate system.

4. Applications and extensions. We present a few diverse comments in order
to relate the theorem to various earlier works as well as to obtain stronger results
under specific additional assumptions on the system.

4.1. The first few order terms and small amplitude forcing. Equation (3.5)
is well defined in the sense that, at fixed q, the integration is performed with respect
to the time variable. Using the abbreviated notation introduced in (2.1), the first few
terms of the sequence {Vk : k ∈ N} are computed as

V1 = Y ,

V2 = −1
2

〈
Y : Y

〉
,

V3 =
1

2

〈〈
Y : Y

〉
: Y
〉
,

V4 = −1
2

〈〈〈
Y : Y

〉
: Y
〉
: Y

〉
− 1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉
,

so that we can write

γ̇(t) = Y (γ, t)− 1

2

〈
Y : Y

〉
(γ, t) +

1

2

〈〈
Y : Y

〉
: Y
〉
(γ, t)

− 1

2

〈〈〈
Y : Y

〉
: Y
〉
: Y

〉
(γ, t)− 1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉
(γ, t) +O(‖Y ‖5t9).
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This series converges under the assumption that the product of final time T and input
magnitude ‖Y ‖σ is small. Typically, in controllability studies [41], it is the final time
that is assumed to be small (the famous acronym STLC stands for STLC). Within
the context of motion planning problems [30, 13], it is instead convenient to study
the small input magnitude case. Motivated by the treatment in [13], let ε be a small
positive constant, and consider a total acceleration of the form

Y (q, t, ε) = εX1(q, t) + ε2X2(q, t) + ε3X3(q, t), t ∈ [0, 1].

Accordingly, (3.5) is equivalent to

γ̇(t) = εX1(γ, t) + ε2
(
X2 − 1

2

〈
X1 : X1

〉)
(γ, t)

+ ε3
(
X3 − 1

2

〈
X1 : X2

〉
+
1

2

〈〈
X1 : X1

〉
: X1

〉)
(γ, t) +O(ε4).

This expression generalizes the results presented in Proposition 4.1 in [13]. Note that
those results were proven via a perturbation theory argument that is not as general
and powerful as the treatment in Theorem 3.3.

4.2. Simple Hamiltonian systems with integrable forces. In this and the
following section we analyze systems with more structure both in the affine connec-
tions ∇ as well as in the input forces Y . Here we consider systems with Lagrangian
equal to “kinetic minus potential” and with integrable forces. In the interest of brevity,
we refer to the textbooks [16, 34] for a detailed presentation and review here only the
necessary notation. The affine connection of a simple system is the Levi–Civita con-
nection associated with the kinetic energy matrix M ; that is, the Christoffel symbols
are defined according to the usual relationship

Γkij =
1

2
Mmk

(
∂Mmj

∂qi
+

∂Mmi

∂qj
− ∂Mij

∂qm

)
,(4.1)

where Mij and Mmk are the components of the matrix representation of M and of
its inverse. An integrable time-varying force is written as

Y (q, t) = gradϕ(q, t), where (gradϕ)i = M ij ∂ϕ

∂qj
,(4.2)

and where ϕ is a scalar function on R
n × R.

One remarkable simplification takes place for a simple system described by a
Levi–Civita connection: the set of gradient vector fields is closed under the operation
of a symmetric product. Let ϕ1, ϕ2 be scalar functions on R

n, and define a symmetric
product between functions according to

〈ϕ1 : ϕ2〉 � ∂ϕ1

∂q
M−1 ∂ϕ2

∂q
.(4.3)

Then the symmetric product of the corresponding gradient vector fields equals the
gradient of the symmetric product of the functions. In equations,

〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉 .
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We refer to [10] for the proof. Accordingly, the main theorem can be restated as
follows.

Theorem 4.1. Consider the system as described in Problem 3.1. Additionally,
let the Christoffel symbols and the input vector field be defined as in (4.1) and (4.2).
Define recursively the time-varying functions

ϕ1(q, t) =

∫ t

0

ϕ(q, s)ds,

ϕk(q, t) = −1
2

k−1∑
j=1

∫ t

0

〈
ϕj(q, s) : ϕk−j(q, s)

〉
ds, k ≥ 2.

Then the solution γ : [0, T ]→ Q satisfies

γ̇(t) = grad
+∞∑
k=1

ϕk(γ(t), t).(4.4)

In other words, the flow of a simple Hamiltonian system forced from rest is writ-
ten as a (time-varying) gradient flow. For completeness, we include a convergence
treatment derived from the one in the main theorem.

Remark 4.2. Given 0 < σ′′ < σ′ < σ, we assume M and ϕ to be analytic in
a neighborhood Bσ(q0) of q0 and uniformly integrable in t ∈ [0, T ]. Two immediate
bounds are

‖ gradϕ‖σ′ ≤ n‖M−1‖σ′

∥∥∥∥∂ϕ∂q
∥∥∥∥
σ′

,

‖Γ‖σ′ ≤ A � 3n2

2(σ − σ′)
‖M−1‖σ′‖M‖σ.

Accordingly, the bounds in the main theorem can be restated (in a more conservative
manner) as follows. If∥∥∥∥∂ϕ∂q

∥∥∥∥
σ′

T 2 <
1

n‖M−1‖σ′
min

{
σ′ − σ′′

24n2(n+ 1)
,

1

24n(n+ 1)A
,
η2(n2σ′′A)

n2A

}
,

the series
∑∞

k=1 ϕk(q, t) converges absolutely and uniformly in t and q for all t ∈ [0, T ]
and for all q in a neighborhood Bσ′′(q0) of q0.

4.3. Invariant systems on Lie groups. In this section we briefly investigate
systems with kinetic energy and input forces invariant under a certain group action.
These systems have a configuration space G with the structure of an n-dimensional
matrix Lie group. Systems in this class include satellites, hovercraft, and underwater
vehicles.

The equation of motion (2.7) decouples into a kinematic and dynamic equation
in the configuration variable g ∈ G and the body velocity3 v ∈ R

n. The kinematic
equation can be written as a matrix differential equation4 using matrix group notation

3More precisely, the body velocity v lives in the Lie algebra of the group G.
4Alternatively, the kinematic equation can be written in a system of local coordinates q (e.g.,

Euler angles in the case of rotation matrices) as q̇ = J(q)v, where J(q) is an appropriate Jacobian
matrix.
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Table 4.1
Numerical comparison of various degrees of approximations. The entries in the table are the

error values eε,N that provide a measure of the accuracy of the Nth-order truncated approximation.

ε 1 .1 .01

N = 1 5.3 · 10−3 4.6 · 10−5 4.5 · 10−7
N = 2 2.4 · 10−4 4.2 · 10−7 4.2 · 10−10
N = 3 1.4 · 10−4 3.0 · 10−9 2.3 · 10−13
N = 4 5.2 · 10−5 2.4 · 10−10 3.5 · 10−15

ġ = gv̂; we refer to [35] for the details. The dynamic equation, sometimes referred to
as Euler–Poincaré, is

v̇i + γijkv
jvk = yi(t),(4.5)

where the coefficients γijk are determined by the group and metric structure. The
curve y : [0, T ] �→ R

n denotes the time-varying forcing.
Within this setting, the result in Theorem 3.3 is summarized as follows. The

solution to (4.5) with initial condition v(0) = 0 is v(t) =
∑∞

k=1 vk(t), where

v1(t) =

∫ t

0

y(s)ds,

vk(t) = −1
2

k−1∑
j=1

∫ t

0

〈
vj(s) : vk−j(s)

〉
ds, k ≥ 2,

and where the symmetric product between velocity vectors is 〈x : y〉i = −2γijkxjyk.
Local convergence for the series expansion can be easily established in this setting.

This result agrees with and indeed supersedes the ones presented in [13] obtained
via the perturbation method. The relationship of this case to the more general setting
studied in Theorem 3.3 is clarified via the notion of invariant connection; see [5,
Appendix B] and [39, section 27, “Variations on a theme by Euler”] for more details.

4.4. Simulations for a three degree of freedom manipulator. In this sec-
tion we illustrate the approximations derived in Theorem 3.3 by applying them to an
example system. We consider a three-link planar manipulator. The configuration is
described by three angles (θ1, θ2, θ3). A constant (integrable) force is applied to the
first variable. Specifically, we set ϕ(q, t) = εθ1, and we let the parameter ε vary in the
range 10−2 to 1. The integration time is T = 1 seconds. Setting all lengths, masses,
and moments of inertia to unity, the kinetic energy matrix is

M =
1

16


 25 6 cos(θ1 − θ2) 2 cos(θ1 − θ3)
6 cos(θ1 − θ2) 21 2 cos(θ2 − θ3)
2 cos(θ1 − θ3) 2 cos(θ2 − θ3) 17


 .

The initial condition is assumed to be q(0) = (0, π/4, 0). We investigate the error
value eε,N = ‖γ(T )− γN (T )‖, where γN is the solution to the Nth order truncation:

γ̇N (t) = grad
∑N

k=1 ϕk(γN , t). An empirical forecast of the eε,N is computed as
follows. Since T = 1 and ‖Y ‖ = O(ε), there exist two constants c, d such that the kth
term in the series is bounded by c(dε)k. Summing the neglected contributions from
k = N + 1 to infinity and assuming that dε � 1, one can compute eε,N ≈ c(dε)N+1.
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We summarize the results of the numerical investigation5 in Table 4.1. The results
are in qualitative agreement with the theoretical forecasts.

5. Conclusions. We have presented a series expansion that describes the evo-
lution of a forced mechanical system. Our result provides a first-order description to
the solutions of a second-order initial value problem. Both the series and the proof
method provide insight into the geometry of mechanical control systems. The treat-
ment expands on our previous work [10] on high-amplitude high-frequency averaging
and vibrational stabilization.

Series expansions are the underlying technique for controllability and motion plan-
ning. For mechanical systems moving in the low-velocity regime, these two problems
have been tackled with various degrees of success in [32, 13]. Future research will rely
on the contributions in this work to develop more general motion planning algorithms
than the ones in [13] and sharper sufficient controllability tests than the ones in [32].

Appendix. Some basic identities in combinatorial analysis. We here
present a basic result and derive a useful expression that is needed in the proof of the
main theorem. The main reference is the method of generating functions as described
in section 3.4 in [4]. The first identity is explicitly proven in the reference. If N1 = 1
and

Nk =

k−1∑
j=1

NjNk−j , k ≥ 2,

then

Nk =
1

k

(
2k − 2
k − 1

)
=

2k

(4k − 2)
1 · 3 · 5 · · · (2k − 1)

1 · 2 · 3 · · · k ≤ 4k

4k − 2 .(A.1)

The second equality needed in the proof of Theorem 3.3 is

k∑
a=0

(
a+ d1

d1

)(
k − a+ d2

d2

)
=

(
k + 1 + d1 + d2

k

)
.(A.2)

To prove it we use the method of generating functions; see [4]. We claim that, for all
real x with |x| < 1,

∞∑
k=0

(
k∑

a=0

(
a+ d1

d1

)(
k − a+ d2

d2

))
xk =

∞∑
k=0

(
k + 1 + d1 + d2

k

)
xk.(A.3)

The first step is to notice that

∞∑
k=0

(
k∑

a=0

(
a+ d1

d1

)(
k − a+ d2

d2

))
xk =

∞∑
k=0

∑
m+n=k

(
n+ d1

d1

)(
m+ d2

d2

)
xn+m

=

( ∞∑
n=0

(
n+ d1

d1

)
xn

)( ∞∑
m=0

(
m+ d2

d2

)
xm

)
.

5The numerical integration is performed inside the Mathematica environment, specifying 16 digits
of accuracy and 32 digits of working precision.
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Accordingly, we define

fa(x) =

∞∑
m=0

(
m+ a

a

)
xm,(A.4)

and the thesis in (A.3) is equivalent to proving that

fd1(x)fd2(x) = fd1+d2+1(x).(A.5)

In passing, we also note that the convergence radius of f is |x| < 1.

The second step is to study the properties of f . First of all,

fa(x) =

∞∑
m=0

(m+ a)!

m!a!
xm =

1

a!

∞∑
m=0

(m+ a) · · · (m+ 1)xm

=
1

a!

da

dxa

∞∑
m=0

xm+a =
1

a!

da

dxa

(
xa

∞∑
m=0

xm

)
=

1

a!

da

dxa
xa

1− x
.

Additionally, it is immediate to see that

f0(x) =
1

1− x
, xf0(x) = f0(x)− 1,

and, consequently,

fa(x) =
1

a!

da

dxa
1

1− x
=

1

a!

da

dxa
f0(x).

Finally, we prove by induction that

fa(x) = f0(x)
a+1.(A.6)

At a = 0 the statement is obvious. We assume it is true up to a and compute

fa+1(x) =
1

(a+ 1)!

da+1

dxa+1

1

1− x
=

1

(a+ 1)!

da

dxa

(
1

1− x

)2

=
1

(a+ 1)!

a∑
b=0

(
a
b

)(
db

dxb
1

1− x

)(
da−b

dxa−b
1

1− x

)

=
a!

(a+ 1)!

a∑
b=0

(
1

b!

db

dxb
1

1− x

)(
1

(a− b)!

da−b

dxa−b
1

1− x

)

=
1

a+ 1

a∑
b=0

(
1

1− x

)b+1(
1

1− x

)a−b+1

=

(
1

1− x

)a+2

.

This concludes the proof of (A.6), which immediately implies (A.5) and the main
thesis in (A.3).
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Abstract. Problems of global asymptotic stabilization and disturbance attenuation are ad-
dressed for a class of highly nonlinear systems that are comprised of a lower dimensional zero-
dynamics subsystem and a chain of power integrators perturbed by a nontriangular vector field. It
is shown in this paper that global stabilization and disturbance attenuation are solvable by smooth
state feedback if one takes full advantage of the characteristics of the system in the feedback de-
sign to dominate the nonlinearity rather than to cancel it. A systematic design procedure which is
based upon, but generalizes, the recent technique of adding a power integrator is developed for the
explicit construction of the smooth controllers. Several examples are presented to demonstrate the
key features of the proposed nonlinear control schemes.
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1. Introduction. Most of the practical control systems are usually nonlinear
with uncertainties or disturbances. One of the important problems in nonlinear con-
trol theory is to design a smooth state feedback control law that globally stabilizes
the system in the absence of additive disturbances and attenuates the effect of the dis-
turbances on the system output to an arbitrary degree of accuracy in the presence of
disturbances. To address this issue, new ideas and powerful concepts have been devel-
oped over the last decade, leading to the development of a number of systematic design
methods for global synthesis of affine systems. Among the proposed approaches, a
Lyapunov-like design technique called adding a linear integrator [3, 30], also known
as backstepping [16, 24], has been proved to be one of the effective control methods
in studying the problems such as global stabilization and disturbance attenuation for
a class of nonlinear systems in the so-called normal form [11, 13, 23, 12]

ż = f0(z, x1) + φ0(z, x1)w,

ẋi = xi+1 + fi(z, x1, · · · , xi) + φi(z, x1, · · · , xi)w, i = 1, · · · , r, xr+1 := v,

y = x1,(1.1)

where v, y, and w are the system input, output, and disturbance, respectively.
There are three key features exhibited in system (1.1): (i) The Jacobian lineariza-

tion of the x-subsystem of (1.1) at the origin is controllable. Hence, when w = 0 and
dim z = 0, (1.1) is feedback linearizable. (ii) The system is affine in the control
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input v. (iii) (1.1) is of a lower-triangular form. These assumptions have been com-
monly used in most of the existing control schemes that were based on the integrator
backstepping design. They guarantee that for system (1.1) the problem of global
stabilization when w = 0 [11, 17, 18, 16, 24] or the problem of global disturbance
attenuation with internal stability when w �= 0 [11, 13, 23, 12, 31] is solvable by
smooth state feedback. A globally stabilizing controller can be constructed by using
the technique of adding a linear integrator [3, 30] and dealing with a design problem
for a “one dimension system” every time. In fact, it was proved in [3, 30] that the
cascade system

ż = f(z) + yf1(z, y),

ẏ = u+ g1(z, y)(1.2)

is globally asymptotically stabilizable by smooth state feedback if there exists a posi-
tive definite and proper Lyapunov function V such that LfV (z) < 0 ∀z �= 0. The proof

was based on the design of a Lyapunov function U(z, y) = V (z)+ y2

2 and a smooth con-

troller u(z, y) = −g1(z, y)−y−Lf1V , making U̇ = LfV (z)−y2 < 0 ∀(z, y) �= (0, 0).
The crucial point here is to use u(z, y) to cancel the nonlinear terms g1(z, y) and Lf1V

in the equation U̇ = LfV + yLf1V + y(u+ g1(z, y)). As illustrated by Theorem 9.2.3
in [11], global stabilization of minimum-phase systems (1.1) with w = 0 can then be
achieved by repeatedly using this backstepping construct r times.

Many existing design methodologies on global stabilization and disturbance atten-
uation use this aforementioned construct [11, 3, 30, 16, 23, 1]; hence it becomes clear
that they rely essentially on feedback cancelation and therefore can only be applied to
a class of lower-triangular systems of the form (1.1).

An important question that remains largely open is to what extent the three
structural conditions of (1.1)—feedback linearizability, affine structure, and lower-
triangularity—can be significantly relaxed so that global stabilization and disturbance
attenuation are still solvable by smooth state feedback for a larger class of highly
nonlinear systems (even possibly nonaffine systems) with uncontrollable Jacobian lin-
earization. In this paper we shall address this question and provide a partial answer.
Specifically, we shall first consider the problem of global stabilization via smooth state
feedback for a class of nonlinear systems of the form

ż = f0(z, x1),

ẋi = xpii+1 + fi(z, x1, . . . , xi, xi+1), i = 1, . . . , r, xr+1 := u,(1.3)

where z ∈ R
n−r and x = (x1, . . . , xr)

T are the states, u ∈ R and y ∈ R are the
system input and output, respectively, and pi, i = 1, . . . , r, are positive integers. The
functions fi : R

n−r+i+1 → R and f0 : R
n−r+1 → R

n−r are smooth and evaluate to
zero at (z, x1, . . . , xr) = (0, 0, . . . , 0). The system above can be regarded as a lower
dimensional zero-dynamics driven by a nonlinear subsystem that consists of a chain
of power integrators perturbed by a nonstrict-triangular vector field.

The notable characteristics of system (1.3) are that it is neither feedback lineariz-
able (even partially) nor affine in the control input when pi > 1. More significantly,
(1.3) is not in a lower-triangular form due to the appearance of xi+1 in fi. All these
make global stabilization of system (1.3) challenging and unsolvable via the exist-
ing design methods, such as feedback linearization and backstepping. Actually, one
may try to apply the adding a linear integrator method to system (1.3). However,
a more careful examination indicates that in the high-order case, the conventional
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backstepping design results in a possibly nonsmooth control law. To make this point
clear, consider system (1.2) with a nonaffine input, e.g., u = v3. If the adding a
linear integrator method were applied, the resulting control law would be given by

v = − (g1(z, y) + y + Lf1V )
1
3 , which, in general, is only C0. Therefore, no more in-

tegrators can be added in the next step of the recursive design. The same difficulty
would be faced in the problem of disturbance attenuation. Therefore, a new synthesis
tool that goes beyond the adding a linear integrator design must be developed in order
to handle inherently nonlinear systems like (1.3).

Motivated by the theory of homogeneous systems [8, 1, 9, 10, 14, 15] and the sub-
sequent works [6, 7, 5, 25, 19, 27], we develop in this paper a new design tool which is
based upon, but substantially extends, the adding a power integrator technique pro-
posed in [20]. The new design method enables us to relax, in addition to the removal
of feedback linearizability and affineness, the lower-triangularity condition assumed
in [20], hence enlarging the class of nonlinear systems for which global stabilization
and disturbance attenuation are still solvable by smooth state feedback. There are,
however, some major differences from the work in [20]. One of them is that the current
paper deals with the nonstrict-triangular system (1.3) rather than a lower-triangular
system, and several technical issues arise immediately. For example, when the system
is not in the lower-triangular form, the adding a power integrator technique devel-
oped in [20] encounters two obstacles, namely, that at every step it is necessary to
guarantee the existence of a smooth virtual controller, and that a method has to be
developed to carry out an iterative design for sequentially adding a power integra-
tor. Solving these problems will be one of the main contributions of this paper. The
other key difference from [20] is that a constructive solution to the global stabilization
of nontriangular systems is sought, which requires subtle but important changes in
the stability analysis. Finally, due to the nature of the nontriangular structure, it is
more difficult to identify suitable growth conditions for global stabilization and distur-
bance attenuation to be solvable via smooth state feedback. As we shall see in what
follows, the new adding a power integrator technique proposed in this paper takes
full advantage of the characteristics of the dynamic system in the feedback design,
particularly, using feedback to dominate the high-order nonlinearities of the system.
This is in sharp contrast to the classical adding a linear integrator approach [3, 30],
which relies upon exact cancelation of terms. As illustrated above, designs which
rely on exact cancelation may result in a nondifferentiable controller, which makes
an iterative design exceptionally difficult. Our generalized adding a power integrator
design overcomes not only this difficulty but also enables us to solve, in a unified
manner, the problems of global stabilization and disturbance attenuation via static
smooth feedback for nonlinear systems (1.3) which are neither feedback linearizable
nor transformable to a lower-triangular form.

A byproduct of the new adding a power integrator design is the development of
sufficient conditions for the problem of global disturbance attenuation to be solvable by
smooth state feedback, and the explicit construction of smooth state feedback control
laws. The robust control results thus obtained incorporate and significantly generalize
the existing disturbance attenuation results [22, 23, 12], which are only applicable to
a class of feedback linearizable systems having a lower-triangular structure (1.1).

2. Global asymptotic stabilization via smooth state feedback. For the
sake of simplicity, in this section we concentrate on the situation where the nonlinear
system (1.3) involves no zero-dynamics, i.e., dim z = 0. In this case, system (1.3)
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reduces to

ẋ1 = xp12 + f1(x1, x2),

...

ẋn−1 = xpn−1
n + fn−1(x1, · · · , xn),

ẋn = upn + fn(x1, · · · , xn, u).(2.1)

Our objective is to investigate conditions under which the problem of global
asymptotic stabilization is solvable by smooth state feedback. It is worth noticing
that, compared to the system considered in [20], the high-order system (2.1) is not in
a triangular form due to the existence of xi+1 in fi(x1, . . . , xi+1). This new feature,
together with the nonaffineness and uncontrollability of the Jacobian linearization,
makes the existing nonlinear feedback design methods inapplicable. Moreover, the
technique of adding a power integrator, proposed recently in [20], is only applicable
to a class of strict-triangular systems. In what follows, we shall show how a gen-
eralized adding a power integrator technique can be further developed, enabling us
to construct a smooth state feedback control law that renders system (2.1) globally
asymptotically stable (GAS) at the equilibrium (x1, . . . , xn) = (0, . . . , 0).

We begin with two assumptions that characterize the subclass of nonlinear sys-
tems (2.1).

Assumption 2.1. p1 ≥ p2 ≥ · · · ≥ pn ≥ 1 are odd integers.
Assumption 2.2. For i = 1, . . . , n,

fi(x1, . . . , xi+1) =

pi−1∑
l=0

ai,l(x1, . . . , xi)x
l
i+1,(2.2)

|ai,l(x1, . . . , xi)| ≤ (|x1|pi−l + · · ·+ |xi|pi−l)γi,l(x1, . . . , xi), l = 0, . . . , pi − 1,(2.3)

where xn+1 := u and γi,l(·) is a smooth and nonnegative function.
Under Assumptions 2.1–2.2, it is possible to prove the following global stabiliza-

tion theorem, which is one of the main results of the paper.
Theorem 2.3. Suppose the nonlinear system (2.1) satisfies Assumptions 2.1–2.2.

Then there exists a C∞ state feedback control law u = u(x1, . . . , xn) with u(0, . . . , 0) =
0, such that the closed-loop system is GAS at the equilibrium x = 0.

The proof of Theorem 2.3 relies crucially on the following simple but useful lemma.
Lemma 2.4. Let X , Y, and Zi, i = 1, . . . , l, be real variables. Assume that

g1 : R → R and g2 : R
l+1 → R are smooth mappings. Then, for any positive

integers m, n, and real number N > 0, there exist two nonnegative smooth functions
h1 : R

2 → R and h2 : R
l+1 → R, such that

(i) |Xm[(Y + X g1(X ))n − (X g1(X ))n]| ≤ |X |m+n

N + |Y|m+nh1(X ,Y),
(ii) |Yn(Zm1 + · · ·+ Zml + Ym)g2(Z1, . . . ,Zl,Y)|
≤ |Z1|m+n+···+|Zl|m+n

N + |Y|m+nh2(Z1, . . . ,Zl,Y).
Proof. For any positive integers m, n and any real-valued smooth function

γ(X ,Y) > 0, set

a = |X |mγ m
m+n , b = |Y|nγ− m

m+n ,
p = m+n

m , q = m+n
n .

Then, using Young’s inequality

|ab| ≤ |a|
p

p
+
|b|q
q
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yields

|X |m|Y|n ≤ m

m+ n
γ(X ,Y)|X |m+n +

n

m+ n
γ−

m
n (X ,Y)|Y|m+n.(2.4)

From (2.4) it is straightforward to deduce the inequality (ii) by choosing appro-
priate γ(·) in (2.4). To deduce (i), first expand the expression Xm[(Y + X g1(X ))n −
(X g1(X ))n], and apply (2.4) to each term.

With the aid of Lemma 2.4, a constructive solution to the global stabilization
problem can be obtained by repeatedly using a generalized adding a power integra-
tor technique, which is based upon, but substantially extends, the design method
proposed in [20].

Proof of Theorem 2.3. Initial step. Consider the x1-subsystem of (2.1). Let

V1(x1) =
x2
1

2 . Then

V̇1(x1) = x1 [x
p1
2 + f1(x1, x2)]

= x1 [x
p1
2 − x∗2p1 + f1(x1, x2)− f1(x1, x

∗
2)] + x1 (x

∗
2
p1 + f1(x1, x

∗
2))

for arbitrary x∗2. By Assumption 2.2 and Lemma 2.4, there are smooth functions
γ1,l(x1) ≥ 0, ρ1,l(x1) ≥ 0, l = 0, . . . , p1 − 1, such that

|f1(x1, x2)| ≤
p1−1∑
l=0

|x1|p1−lγ1,l(x1)|x2|l ≤
p1−1∑
l=0

( |x2|p1
2p1

+ |x1|p1ρ1,l(x1)

)
(2.5)

≤ |x2|p1
2

+ |x1|p1 ρ̂1(x1), ρ̂1(x1) :=

p1−1∑
l=0

ρ1,l(x1) ≥ 0.

Using this estimate, we have

V̇1(x1) ≤ x1 [x
p1
2 − x∗2p1 + f1(x1, x2)− f1(x1, x

∗
2)] + x1x

∗
2
p1 +

|x1x
∗
2
p1 |

2
+ xp1+1

1 ρ̂1(x1).

Clearly, the virtual smooth controller

x∗2(x1) = −x1α1(x1), α1(x1) := (2n+ 2ρ̂1(x1))
1
p1 > 0,(2.6)

is such that

V̇1(x1) ≤ −nxp1+1
1 + x1 [x

p1
2 − x∗2p1 + f1(x1, x2)− f1(x1, x

∗
2)] .(2.7)

Inductive step. Suppose at step k there exist a C∞ global change of coordinates

ξ1 = x1 − x∗1, ξ2 = x2 − x∗2(x1), . . . , ξk = xk − x∗k(x1, . . . , xk−1)(2.8)

(where x∗1 = 0, x∗m(x1, . . . , xm) with x∗m(0, . . . , 0) = 0, m = 2, . . . , k, are smooth
functions), a Lyapunov function

Vk(ξ1, . . . , ξk) =

k∑
j=1

ξ
p1−pj+2
j

p1 − pj + 2
,

and a smooth state feedback control law of the form

x∗k+1(x1, . . . , xk) = −ξkαk(ξ1, . . . , ξk), ξm = xm − x∗m, m = 1, . . . , k,(2.9)
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with αk(·) > 0 being smooth, such that

V̇k(ξ1, . . . , ξk) ≤ −(n− k + 1)(ξp1+1
1 + · · ·+ ξp1+1

k )

+ξp1−pk+1
k [xpkk+1 − x∗k+1

pk + fk(x1, . . . , xk+1)− fk(x1, . . . , xk, x
∗
k+1)].(2.10)

We claim that (2.10) also holds at step k + 1. To see this, define

ξk+1 = xk+1 − x∗k+1(x1, . . . , xk).

Then

ξ̇k+1 = x
pk+1

k+2 + Fk+1(x1, . . . , xk+2),(2.11)

where

Fk+1(x1, . . . , xk+1, xk+2) = fk+1(x1, . . . , xk+1, xk+2)

−
k∑

m=1

∂x∗k+1

∂xm

(
xpmm+1 + fm(x1, . . . , xm+1)

)

=

pk+1−1∑
l=0

ãk+1,l(x1, . . . , xk+1)x
l
k+2,

ãk+1,l(x1, . . . , xk+1) = ak+1,l(x1, . . . , xk+1), l = 1, . . . , pk+1 − 1,
ãk+1,0(x1, . . . , xk+1) = ak+1,0(x1, . . . , xk+1)

−
k∑

m=1

∂x∗k+1

∂xm

(
xpmm+1 + fm(x1, . . . , xm+1)

)
.

Assumption 2.2 implies that for l = 1, . . . , pk+1−1, there are C∞ functions γ̃k+1,l(·) ≥
0 such that

|ãk+1,l(x1, . . . , xk+1)| ≤ (|x1|pk+1−l + · · ·+ |xk+1|pk+1−l)γk+1,l(x1, . . . , xk+1)

≤ (|ξ1|pk+1−l + · · ·+ |ξk+1|pk+1−l)γ̃k+1,l(ξ1, . . . , ξk+1).(2.12)

By definition,

|ãk+1,0(x1, . . . , xk+1)| ≤ |ak+1,0(x1, . . . , xk+1)|

+

k∑
m=1

∣∣∣∣∂x∗k+1

∂xm

∣∣∣∣ (|xpmm+1|+ |fm(x1, . . . , xm+1)|
)

≤ (|x1|pk+1 + · · ·+ |xk+1|pk+1)γk+1,0(x1, . . . , xk+1)

+

k∑
m=1

∣∣∣∣∂x∗k+1

∂xm

∣∣∣∣ (|x1|pm + · · ·+ |xm+1|pm) rm(x1, . . . , xm).

Note that pk+1 ≤ pk ≤ · · · ≤ p1 and x
∗
m(0) = 0, m = 1, . . . , k. Thus we have

|ãk+1,0(·)| ≤ (|ξ1|pk+1 + · · ·+ |ξk+1|pk+1)γ̃k+1,0(ξ1, . . . , ξk+1)(2.13)

for a C∞ function γ̃k+1,0(·) ≥ 0. Putting (2.12) and (2.13) together, it is deduced
from Lemma 2.4 that

|Fk+1(x1, . . . , xk+2)| ≤
pk+1−1∑

l=0

(|ξ1|pk+1−l + · · · + |ξk+1|pk+1−l)γ̃k+1,l(·)|xk+2|l
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≤
pk+1−1∑

l=0

(
|xk+2|pk+1

2pk+1
+ (|ξ1|pk+1 + · · · + |ξk+1|pk+1)ρk+1,l(ξ1, . . . , ξk+1)

)

=
|xk+2|pk+1

2
+ (|ξ1|pk+1 + · · · + |ξk+1|pk+1)ρ̄k+1(ξ1, . . . , ξk+1),

where ρk+1,l(ξ1, . . . , ξk+1) ≥ 0, l = 0, . . . , pk+1 − 1, and ρ̄k+1(ξ1, . . . , ξk+1) ≥ 0 are
smooth functions. Consequently (by Lemma 2.4(ii)),

|ξp1−pk+1+1
k+1 Fk+1(x1, . . . , xk+2)| ≤

|ξp1−pk+1+1
k+1 x

pk+1

k+2 |
2

+
ξp1+1
1 + · · ·+ ξp1+1

k

2
(2.14)

+ξp1+1
k+1 ρ̂k+1(ξ1, . . . , ξk+1),

for a C∞ρ̂k+1(·) ≥ 0.
Now construct the smooth Lyapunov function

Vk+1(ξ1, . . . , ξk+1) = Vk(ξ1, . . . , ξk) +
ξ
p1−pk+1+2
k+1

p1 − pk+1 + 2
,(2.15)

which is positive definite and proper. Clearly, it follows from (2.10) that

(2.16)

V̇k+1(ξ1, . . . , ξk+1) = V̇k(ξ1, . . . , ξk) + ξ
p1−pk+1+1
k+1 ξ̇k+1

≤ ξp1−pk+1
k [(ξk+1 + x∗k+1)

pk − x∗k+1
pk + fk(x1, . . . , xk, ξk+1 + x∗k+1)

−fk(x1, . . . , xk, x
∗
k+1)]− (n− k + 1)(xp1+1

1 + · · ·+ ξp1+1
k )

+ξ
p1−pk+1+1
k+1 [x

pk+1

k+2 + Fk+1(x1, . . . , xk+2)]

≤ ξp1−pk+1
k [(ξk+1 + x∗k+1)

pk

−x∗k+1
pk + fk(x1, . . . , xk, ξk+1 + x∗k+1)− fk(x1, . . . , xk, x

∗
k+1)]

−(n− k + 1)(xp1+1
1 + · · ·+ ξp1+1

k )

+ξ
p1−pk+1+1
k+1 [x∗k+2

pk+1 + Fk+1(x1, . . . , x
∗
k+2)]

+ξ
p1−pk+1+1
k+1 [x

pk+1

k+2 − x∗pk+1

k+2 + fk+1(x1, . . . , xk+2)

−fk+1(x1, . . . , x
∗
k+2)].

Since x∗k+1 = −ξkαk(ξ1, . . . , ξk), it can be shown that

|(ξk+1 + x∗k+1)
l − x∗k+1

l| ≤ |ξk+1|(|ξk+1|l−1 + |ξk|l−1)βk+1,l(ξ1, . . . , ξk+1)(2.17)

for a C∞ βk+1,l(·) ≥ 0. Hence

ξp1−pk+1
k [ fk(x1, . . . , xk, ξk+1 + x∗k+1)− fk(x1, . . . , xk, x

∗
k+1)](2.18)

≤ |ξk+1|(|ξ1|p1 + · · ·+ |ξk+1|p1)
pk−1∑
l=1

2k2βk+1,l(·)γk+1,l(·)

≤ ξp1+1
1 + · · ·+ ξp1+1

k

4
+ ξp1+1

k+1 ρ̃k+1,2(ξ1, . . . , ξk+1)

for a C∞ ρ̃k+1,2(·) ≥ 0. This, together with Lemma 2.4, implies that there exists a
smooth function ρ̃k+1(·) ≥ 0, such that
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ξp1−pk+1
k

[
(ξk+1 + x∗k+1)

pk − x∗pkk+1 + fk(x1, . . . , xk, ξk+1 + x∗k+1)(2.19)

−fk(x1, . . . , xk, x
∗
k+1)

]
≤ ξp1+1

1 + · · ·+ ξp1+1
k

2
+ ξp1+1

k+1 ρ̃k+1(ξ1, . . . , ξk+1).

Substituting (2.14) and (2.19) into (2.16) yields

V̇k+1(ξ1, . . . , ξk+1) ≤ −(n− k)(ξp1+1
1 + · · ·+ ξp1+1

k )(2.20)

+ξ
p1−pk+1+1
k+1 [xpkk+2 − x∗k+2

pk + fk+1(x1, . . . , xk+2)

−fk+1(x1, . . . , xk+1, x
∗
k+2)]

+ξ
p1−pk+1+1
k+1 x∗k+2

pk+1 +
|ξp1−pk+1+1
k+1 x∗k+2

pk+1 |
2

+ξp1+1
k+1 (ρ̃k+1(·) + ρ̂k+1(·)) .

Clearly, the smooth state feedback control law

x∗k+2(x1, . . . , xk+1) = −ξk+1αk+1(ξ1, . . . , ξk+1), ξm = xm−x∗m, m = 1, . . . , k+1,
(2.21)

with αk+1(ξ1, . . . , ξk+1) = [2n− 2k + 2ρ̃k+1(·) + 2ρ̂k+1(·)]
1

pk+1 > 0, is such that

V̇k+1(ξ1, . . . , ξk+1) ≤ −(n− k)(ξp1+1
1 + · · ·+ ξp1+1

k+1 )

+ξ
p1−pk+1+1
k+1 [x

pk+1

k+2 − x∗pk+1

k+2 + fk+1(x1, . . . , xk+2)

−fk+1(x1, . . . , xk+1, x
∗
k+2)].

This completes the inductive proof.
Repeatedly using the above inductive argument, it is easy to prove, at the nth

step, that one can explicitly construct a change of coordinates (ξ1, . . . , ξn) of the form
(2.8), a smooth state feedback law

u = x∗n+1 = −ξnαn(ξ1, . . . , ξn), αn(·) > 0,(2.22)

and a positive definite and proper Lyapunov function Vn(ξ1, . . . , ξn) of the form (2.15),
such that

V̇n(ξ1, . . . , ξn) ≤ −(ξp1+1
1 + · · ·+ ξp1+1

n ).(2.23)

Since the change of coordinates (2.8) is a global diffeomorphism, we conclude from
(2.23) that system (2.1) is globally asymptotically stabilizable at the equilibrium
(x1, . . . , xn) = (0, . . . , 0) by the smooth state feedback control law (2.22).

Remark 2.5. When ai,l(x1, . . . , xi) = 0, i = 1, . . . , n, and l = 1, · · · , pi−1, system
(2.1) reduces to a lower-triangular system considered in [20]. Therefore, Theorem 2.3
includes the previous global stabilization result for a high-order lower-triangular sys-
tem as a special case. The technique used in the proof of Theorem 2.3 is a generalized
version of the adding a power integrator technique proposed in [20].

We conclude this section with an example that demonstrates how a smooth con-
troller can be designed for a two-dimensional nonlinear system in the form (2.1).

Example 2.6. Consider the planar system

ẋ1 = x3
2 + x2

1x2 + x3
1,

ẋ2 = u3.(2.24)
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Obviously, this system is of the form (2.1) with p1 = p2 = 3. Hence Assumption
2.1 holds. A simple calculation shows that f1(x1, x2) = a1,0(x1) + a1,1(x1)x2 with
a1,0(x1) = x3

1 and a1,1(x1) = x2
1. Clearly,

|a1,0(x1)| ≤ |x1|3, |a1,1(x1)| ≤ |x1|2,

which implies that Assumption 2.2 is also fulfilled. By Theorem 2.3, there exists a
smooth controller that renders the equilibrium (x1, x2) = (0, 0) of (2.24) GAS. The
controller can be explicitly constructed by following the design procedure in Theorem
2.3.

First, choose V1 =
x2
1

2 . Then the virtual controller

x∗2 = − 3

√
11

2
x1(2.25)

renders

V̇1 ≤ −2x4
1 + x1(x

3
2 − x∗32 ) + x3

1(x2 − x∗2).(2.26)

Next consider the Lyapunov function

V2 =
x2

1

2
+

(
x2 +

3

√
11
2 x1

)2

2
.

Using an argument similar to the proof of Theorem 2.3, it is easy to see that the
smooth controller

u = −38
(
x2 +

3

√
11

2
x1

)

is such that

V̇2 ≤ −x4
1 −

(
x2 +

3

√
11

2
x1

)4

,

thus stabilizing the system (2.24) in the large.

3. Necessity of Assumptions 2.1–2.2. In this section, we discuss to what
extent the sufficient conditions Assumptions 2.1 and 2.2 given in the previous section
are necessary for global stabilization via smooth state feedback. We give examples
to illustrate that smooth stabilization of the system (2.1) is not possible if either
Assumption 2.1 or Assumption 2.2 fails to be satisfied.

First, we show that Assumption 2.1 is somewhat necessary for solving the stabi-
lization problem of high-order nonlinear systems (2.1).

Example 3.1. Consider the two-dimensional nonlinear system

ẋ1 = x3
2 + x2

1x2 + x3
1,

ẋ2 = up.(3.1)

When p = 3 or p = 1, the system satisfies the hypotheses Assumptions 2.1 and 2.2.
By Theorem 2.3, there is a smooth static state feedback control law that globally
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asymptotically stabilizes (3.1) at (x1, x2) = (0, 0). An explicit smooth controller has
been given in Example 2.6.

If p ≥ 5 is an odd integer, system (3.1) satisfies Assumption 2.2 but not Assump-
tion 2.1. Then one can prove the following claim: system (3.1) with p = 5 cannot be
stabilized, even locally, by any smooth static state feedback.

Proof. The claim is proved by contradiction. Suppose there is a smooth state
feedback α(x), with α(0) = 0 and x = (x1, x2)

T , such that system (3.1) is locally
asymptotically stable at (0, 0). Then ∀ε ∈ (0, 1), there is a δ ∈ (0, ε) such that
‖x(0)‖ < δ ⇒ ‖x(t, x(0))‖ < ε ∀t ≥ 0.

Now consider the domain Ωε = {x| ‖x‖ ≤ ε, x1 ≥ 0, x1 ≥ −2x2} shown in Figure
3.1. Choose an initial condition (x1(0), x2(0)) in the interior of Ωε and 0 < ‖x(0)‖ < δ.
Let x(t, x(0)) be a trajectory starting from x(0). In the interior of Ωε, 1 > x1 > −2x2

and x1 > 0, which implies ẋ1 > 0, (x1, x2) ∈ interior of Ωε.
In fact, when x2 ≥ 0 it is clear that ẋ1 > 0. In the case when x2 < 0, a direct

calculation gives

ẋ1 = x3
2 + x2

1x2 + x3
1 ≥ x3

2 + x3
1 −

2x3
1

3
− |x2|3

3
=
4x3

2 + x3
1

3
>
(2x2)

3 + x3
1

3
≥ 0.

x
1
+2x

2
=0

||x||=

x
1

x
2

Fig. 3.1. The domain of Ωε.

Therefore, x(t) cannot remain in Ωε forever if the origin is asymptotically sta-
bilizable. In other words, the trajectory of (3.1) must cross the boundaries of Ωε
in finite time. By assumption, ‖x(t, x(0))‖ < ε ∀t ≥ 0. Thus the trajectory can-
not cross the boundary Ωε

⋂{x| ‖x‖ = ε}. Note that the trajectory cannot cross
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Ωε
⋂{x| x1 = 0, x2 �= 0} as on that boundary ẋ1 > 0. In conclusion, the trajectory

x(t, x(0)) of (3.1) must cross the line Ωε
⋂{x| x1 + 2x2 = 0}. In other words, there

exists a point x∗ = (x∗1, x
∗
2) on Ωε

⋂{x| x1 + 2x2 = 0} such that
−2α5(x∗) ≥ x∗1

3 + x∗1
2x∗2 + x∗2

3, x∗1 = −2x∗2, ‖x∗‖ < ε.(3.2)

Since x1(0) > 0 and ẋ1(t) > 0 in the interior of Ωε, x
∗
1 ≥ x1(0) > 0.

From the argument above it is concluded that for every εi ∈ (0, 1), there exists a
x∗1 = θi > 0 such that (3.2) holds. Choose ε1 = ε and εi =

θi−1

2 , i = 2, 3, . . . . In this
way, we have generated a monotone, strictly decreasing sequence {θi > 0}∞i=1, having
the properties that θi → 0 as i→∞ and

−2α5

(
θi,
−θi
2

)
≥ θ3

i + θ2
i

(−θi
2

)
+

(−θi
2

)3

=
3θ3
i

8
> 0, i = 1, 2, . . . .

This implies that

|α(θi, −θi2 )− α(0, 0)|
‖(θi, −θi2 )− (0, 0)‖ =

|α(θi, −θi2 )|√
θ2
i +

θ2
i

4

≥
5
√
6√
5
θ
− 2

5
i →∞ as i→∞.

Therefore, the controller u = α(x) is not differentiable at (0, 0), which is a contradic-
tion.

The next example demonstrates that the condition (2.3) is also crucial for the
problem of smooth stabilization to be solvable.

Example 3.2. Consider the scalar system

ẋ = u5 + u2xp,(3.3)

where p is a nonnegative integer.
This system always satisfies Assumption 2.1 and (2.2). However, if p < 3,

|a1,2(x)| = |xp| cannot be bounded by |x|3ρ(x), where ρ(x) ≥ 0 is a smooth func-
tion. Thus (2.3) is not satisfied. In this case, it can be shown that there is no smooth
controller, making the equilibrium x = 0 of system (3.3) locally asymptotically sta-
ble. To this end, suppose that there exists a stabilizing smooth controller u(x) with
u(0) = 0 and u(x) �= 0 ∀x ∈ N − {0}, where N is an open neighborhood of x = 0.
By smoothness, u(x) = xh(x) for a smooth function h(x). Let δ be a real number in
(0, 1). Then, for 0 < x ≤ δ and sufficiently small δ, xp + u3 = xp + x3h3(x) > 0 and
u(x) �= 0. This implies that for V (x) = x,

V̇ = u2(xp + u3) > 0, x ∈ {x | V (x) > 0, |x| ≤ δ}.
By the Lyapunov instability theorem, the closed-loop system is unstable at the equi-
librium x = 0.

When p ≥ 3, (2.3) holds. By Theorem 2.3, there does exist a smooth state
stabilizer. A smooth controller can be constructed as

u = −x
(
5

3
+ (1 + x2)

5(p−3)
6

)1/5

.(3.4)

It is straightforward to verify that the time derivative of V = x2/2 along the trajectory
of the closed-loop system (3.3)–(3.4) satisfies

V̇ ≤ −x6.
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Finally, the necessity of hypothesis (2.2) can be illustrated by the simple example
below.

Example 3.3. Consider the planar system

ẋ1 = x3
2 + x3

2x1,

ẋ2 = u3,(3.5)

for which Assumption 2.1 and (2.3) are fulfilled. However, (2.2) is violated as the
order of x2 in the decomposition term is equal to p1 = 3. We claim that the system
cannot be GAS by smooth state feedback, for observe that x1 = −1 makes the first
component of the vector field vanish. Thus, regardless of the choice of u = u(x1, x2),
the vertical line x1 = −1 in the phase-plane is an invariant set which cannot be crossed
by any trajectory. Indeed, for any x1(0) ≤ −1 there exists no feedback controller that
can steer x1(t) to zero as t→∞.

4. Synthesis of cascade systems.
A. Global stabilization by smooth feedback. Now we show how the smooth

feedback stabilization result developed in section 2 can be extended to the class of
nonlinear systems of the form (1.3). We begin by listing three assumptions.

Assumption 4.1. p1 ≥ p2 ≥ · · · ≥ pr ≥ 1 are odd integers.
Assumption 4.2. For i = 1, . . . , r,

fi(z, x1, . . . , xi, xi+1) =

pi−1∑
j=0

Ci,j(z, x1, . . . , xi)x
j
i+1,

|Ci,j(z, x1, . . . , xi)| ≤ (‖z‖pi−j + |x1|pi−j + · · ·+ |xi|pi−j)ρi,j(z, x1, . . . , xi),(4.1)

where xr+1 := u and ρi,j(·) ≥ 0 is a known smooth function.
Assumption 4.3. Assume that there is a real-valued, nonnegative smooth function

γ0(z, x1) such that

‖f0(z, x1)‖ ≤ (‖z‖p1 + |x1|p1)γ0(z, x1).

Using Assumptions 4.1–4.3, it is possible to prove the following global stabilization
result.

Theorem 4.4. Consider the nonlinear system (1.3) satisfying Assumptions 4.1–
4.3. Suppose there exist a smooth function x1 = v∗(z) with v∗(0) = 0, and a smooth
Lyapunov function V (z), which is positive definite and proper, such that

∂V

∂z
f0(z, v

∗(z)) ≤ −‖z‖p0+1W (z), W (z) > 0, ∀z,(4.2) ∥∥∥∥∂V∂z ∂f0(z, x1)

∂x1

∥∥∥∥ ≤ (‖z‖p0 + |x1|p0)γ1(z, x1), γ1(·) ≥ 0,(4.3)

where p0 ≥ p1 is an odd integer and W (z) and γ1(·) are smooth functions. Then
system (1.3) is globally asymptotically stabilizable at (z, x1, . . . , xr) = 0 by a smooth
static controller u = u(z, x1, . . . , xr) with u(0, 0, . . . , 0) = 0.

Proof. The theorem can be proved in a fashion similar to the proof of Theorem 2.3
by using the generalized adding a power integrator technique. The major difference
lies in the first step. For this reason, in what follows we consider only the case where
r = 1 in system (1.3), i.e.,

ż = f0(z, x1),

ẋ1 = up1 + f1(z, x1, u).(4.4)
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This system can be rewritten as

ż = f0(z, v
∗(z)) + ∆(z, x1),

ẋ1 = up1 + f1(z, x1, u)(4.5)

with

∆(z, x1) = f0(z, x1)− f0(z, v∗(z)).(4.6)

For system (4.5), consider the Lyapunov function

U(z, x1) = V (z) +
(x1 − v∗(z))p0−p1+2

p0 − p1 + 2
,

which is positive definite and proper. Then a direct calculation gives

U̇(z, x1)|(4.5) ≤ −‖z‖p0+1W (z) +
∂V (z)

∂z
∆(z, x1) + ξp0−p1+1up1(4.7)

+ξp0−p1+1φ(z, ξ, u),

where

ξ = x1 − v∗(z) ≡ x1 − zTα(z) for a C∞, α(z) ∈ Rm,
φ(z, ξ, u) = f1(z, ξ + v∗(z), u)− ∂v∗

∂z
f0(z, ξ + v∗(z)).

Using Assumption 4.2 and Lemma 2.4(i), we have

|φ(z, ξ, u)| ≤
p1−1∑
j=0

(‖z‖p1−j + |ξ + v∗|p1−j)ρ1,j(z, ξ + v∗(z))|uj |

+(‖z‖p1 + |ξ + v∗|p1)
∣∣∣∣∂v∗∂z

∣∣∣∣ γ0(z, ξ + v∗)(4.8)

≤
p1−1∑
j=0

∥∥∥∥ z
ξ

∥∥∥∥
p1−j

|uj |ρ̂1,j(z, ξ) + (‖z‖p1 + |ξ + v∗|p1)
∣∣∣∣∂v∗∂z

∣∣∣∣ γ0(z, ξ + v∗)

≤ |u|
p1

2
+ (‖z‖p1 + |ξ|p1)γ(z, ξ)

for a smooth γ(z, ξ) ≥ 0. By (4.8) and Lemma 2.4, there exists a smooth nonnegative
function ρ1(z, ξ) such that

|ξp0−p1+1φ(z, ξ, u)| ≤ ‖z‖
p0+1W (z)

4
+ ξp0+1ρ1(z, ξ) +

1

2
|ξ|p0−p1+1|u|p1 .(4.9)

Using (4.3), (4.6), and the Taylor expansion formula, one has∣∣∣∣∂V (z)∂z
∆(z, x1)

∣∣∣∣ ≡
∣∣∣∣∣∂V∂z

(∫ 1

0

∂f0
∂x1

∣∣∣∣
x1=v∗+λξ

dλ

)
ξ

∣∣∣∣∣
≤ |ξ|

∫ 1

0

(‖z‖p0 + |v∗ + λξ|p0)γ1(·)dλ

≤ |ξ|
∫ 1

0

(‖z‖p0 + |λξ|p0)γ̃(z, v∗ + λξ)dλ

≤ |ξ| (‖z‖p0 + |ξ|p0)
∫ 1

0

γ̃(z, v∗ + λξ)dλ,
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where γ̃(·) ≥ 0 is a smooth function.
The last inequality, together with Lemma 2.4(i), implies∣∣∣∣∂V (z)∂z

∆(z, x1)

∣∣∣∣ ≤ ‖z‖p0+1W (z)

4
+ ξp0+1ρ2(z, ξ)(4.10)

for an appropriate nonnegative smooth function ρ2(z, ξ).
Substituting (4.9) and (4.10) into (4.7), we arrive at

U̇(z, x1)|(4.5) ≤ −‖z‖
p0+1W (z)

2
+ ξp0−p1+1up1(4.11)

+
1

2
|ξ|p0−p1+1|u|p1 + ξp0+1[ρ1(z, ξ) + ρ2(z, ξ)].

Choose a smooth controller of the form

u = −2ξ
[
W (z)

2
+ ρ1(z, ξ) + ρ2(z, ξ)

] 1
p1

.(4.12)

Clearly, the proposed controller renders

U̇(z, x1)|(4.5) ≤ −
(‖z‖p0+1 + ξp0+1

) W (z)

2
.

Thus Theorem 4.4 is true when r = 1.
If r > 1, Theorem 4.4 can be proved by repeatedly using the technique of adding

a power integrator, as done in the proof of Theorem 2.3.
In the remainder of this section, we use several examples to illustrate some of

the interesting features of Theorem 4.4 and its applications to the smooth feedback
stabilization problem. First, we illustrate how Theorem 4.4 can be used to deal with
a general system which is not in a lower-triangular form.

Example 4.5. Consider the nonlinear system

ż1 = z3
2 − 2z1x2

1,

ż2 = x5
1 − z5

2 ,

ẋ1 = u3 + u2 sinx1 + uz1z2,(4.13)

which is not feedback linearizable, as the linearized system is not controllable. More-
over, the system is neither in a lower-triangular form nor affine in u; thus it cannot
be handled by [20].

On the other hand, the system is of the form (1.3). The zero-dynamics (z1, z2)

of (4.13) is GAS by x1 = v∗(z1, z2) = −z1. In fact, let V (z1, z2) = z41+2z22
4 . A direct

calculation gives

V̇ |x1=v∗(z1,z2) ≤ −
1

3
(z6

1 + z6
2).

For p0 = 5, p1 = 3, it is easy to see that (4.2) and (4.3) are satisfied. Since
f1(z1, z2, x1, u) = u3 + u2 sinx1 + uz1z2, Assumption 4.2 also holds. Therefore, by
Theorem 4.4 system (4.13) is GAS by smooth state feedback.

It has been known that achieving global stabilizability for a nonlinear system
whose zero-dynamics depend on more than one component of x (i.e., x1) is usually
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difficult [29, 4]. It is of interest to point out that this may not be the case when
dealing with high-order nonlinear systems. In fact, one can extend Theorem 4.4 to
a more general class of nonlinear systems (than (1.3)), in which the zero-dynamics
ż = f0(z, x1) are replaced by

ż = f0(z, x1) +

p1−1∑
j=1

aj(z, x1)x
j
2.(4.14)

Corollary 4.6. Consider the nonlinear system (1.3), where the z-equation is
replaced by (4.14). Suppose all the hypotheses of Theorem 4.4 are fulfilled. In addition,
assume the following:

aj(z, v
∗(z)) = 0,

∣∣∣∣∂aj(z, x1)

∂x1

∣∣∣∣ ≤ (‖z‖p1−1−j+|x1|p1−1−j)r̂j(z, x1), j = 1, . . . , p1−1,
(4.15)
where r̂j(z, x1) ≥ 0 is smooth. Then the system is globally asymptotically stabilizable
by smooth state feedback.

The proof of this result is strongly reminiscent of the proof of Theorem 4.4 and
is therefore left to the reader as an exercise. The example below demonstrates an
appealing application of Corollary 4.6 to a high-order nonlinear system that is not in
the form (1.3).

Example 4.7. The nonlinear system

ż = x2
2z + x2

2x1 + x3
1,

ẋ1 = x3
2,

ẋ2 = u3(4.16)

satisfies the assumptions of Corollary 4.6, and therefore a globally stabilizing smooth
controller exists.

To construct such a smooth feedback law, let ξ = x1 + z and V = z2+ξ2

2 . Then
the time derivative of V along the trajectory of (z, x1)-subsystem of (4.16) is

V̇ = −z4 + z((ξ − z)3 + z3) + zξx2
2 + ξ(x3

2 + (ξ − z)3 + x2
2ξ)

= −z4 − 2ξ3z + 2ξz3 + ξx3
2 + zξx2

2 + x2
2ξ

2 + ξ4.

By Lemma 2.4(i), it is clear that

x2
2ξ

2 ≤ |ξ|
(
4

3
|ξ|3 + 1

3
|x2|3

)
,

|ξzx2
2| ≤ |ξ|

(
4

3
|z|3 + 1

3
|x2|3

)
.

Hence

V̇ ≤ −z4 + 2|zξ3|+ 10

3
|ξz3|+ ξx3

2 +
2

3
|ξx3

2|+
7

3
ξ4.(4.17)

Note that

2|zξ3| ≤ 1

8
z4 + 3ξ4,

10

3
|ξz3| ≤ 5

8
z4 +

160

3
ξ4.
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Substituting the estimates above into (4.17), we have

V̇ ≤ −1
4
z4 + ξx3

2 +
2

3
|ξx3

2|+ ξ4
(
7

3
+ 3 +

160

3

)
.

Obviously, the virtual smooth controller

x2 = x∗2 = −(177)1/3ξ

renders

V̇ |x2=x∗
2
≤ −1

4
(z4 + ξ4).

Therefore, a globally stabilizing smooth controller for (4.16) can be derived directly
by adding one more power integrator ẋ2 = u3.

B. Disturbance attenuation with stability. So far we have studied the global
stabilization problem for nonlinear systems in the absence of disturbances. When a
nonlinear system under consideration involves an undesired input or disturbance that
is additive to the system, it is no longer possible nor meaningful to asymptotically
stabilize the system, due to the shift of the equilibrium of the system caused by ad-
ditive external disturbances. Therefore, in the presence of external disturbances, a
more realistic problem to be addressed is the so-called problem of disturbance atten-
uation. That is, the problem of seeking a smooth state feedback control law so that
the influence of the disturbance on the output is as small as possible. Of course, such
a feedback law should also guarantee global asymptotic stability of the system in the
absence of disturbances.

The problem of disturbance attenuation of this type was first formulated, in terms
of L2-gain, for linear systems in [32]. For nonlinear systems, the problem has been
one of the important subjects in nonlinear control theory over the last decade; see,
for instance, the books [11, 26, 31]. To the best of our knowledge, the first work on
the disturbance attenuation problem was reported in [22]. The solution presented in
[22] is characterized in terms of the L∞ induced norm from the disturbance inputs
to the outputs. A drawback of [22] is that it did not consider the internal stability
which is crucial for a meaningful application or a practical implementation. The
stability issue was addressed later in [23], where a novel design technique based on
adding a linear integrator [3, 30] was presented, resulting in an elegant solution to the
global disturbance attenuation problem with internal stability, for minimum-phase
nonlinear systems of the form (1.1). The disturbance attenuation result obtained in
[23] has been generalized to a larger class of minimum-phase and nonminimum-phase
nonlinear systems [3, 12, 13]. Notice that all the above-mentioned papers assume that
the controlled plants are feedback linearizable and have a lower-triangular structure.
As a result, most of the disturbance attenuation results in the literature can only be
applied to affine systems that are globally diffeomorphic to (1.1).

In a recent work [28], the disturbance attenuation problem has been studied for
a class of lower-triangular systems which are neither feedback linearizable nor affine
in the control input. In what follows, we show how the result of [28] can be extended,
with the aid of the generalized adding a power integrator technique, to the nonstrict-
triangular cascade system
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ż = f0(z, x1) + φ0(z, x1)w,

ẋ1 = xp12 + f1(z, x1, x2) + φ1(z, x1)w,

...

ẋr = upr + fr(z, x1, . . . , xr, u) + φr(z, x1, . . . , xr)w,

y = h(z, x1),(4.18)

where w ∈ R
s represents a disturbance signal, the functions fi(·), i = 0, 1, . . . , r, are

defined as in (1.3), φ0 : R
n−r+1 → R

1×s, φi : R
n−r+i → R

1×s, i = 1, . . . , r, are
smooth functions which do not necessarily vanish at the origin, and h : R

n−r+1 → R

is a smooth output function with h(0, 0) = 0.
Our goal is to construct, under appropriate conditions, a smooth state feedback

control law

u = u(x) with u(0) = 0,(4.19)

such that for any real number γ > 0, the closed-loop system (4.18)–(4.19) satisfies the
following:

(1) When w = 0, the closed-loop system (4.18)–(4.19) is GAS at x = 0.
(2) For every disturbance w(t) ∈ L2, the response of the closed-loop system

(4.18)–(4.19) starting from the initial state x(0) = 0 is such that∫ t

0

|y(s)|2pds ≤ γ2

∫ t

0

‖w(s)‖2ds ∀t ≥ 0, for some integer p ≥ 1.(4.20)

Here, the problem of disturbance attenuation with internal stability is formulated
in terms of an L2–L2p-gain (rather than a conventional L2-gain) for cascade nonlinear
systems (4.18). This is due to the consideration that the standard L2-gain formulation
is usually not well-posed in the case of high-order nonlinear systems. As a matter
of fact, for cascade nonlinear system (4.18) an L2 input signal may not necessarily
produce an L2 output signal. As shown in [28], an L2 input signal is likely to yield
an L2p output signal, where p may be varying and depending on a structure of the
system or the output of the system. In the case of feedback linearizable systems,
p = 1. Then, the formulation above reduces to the standard L2-gain characterization.

The following theorem gives a constructive solution to the disturbance attenuation
problem characterized by an L2–L2p-gain for the cascade nonlinear system (4.18).

Theorem 4.8. Consider the nonlinear system (4.18). Suppose there exists a
smooth Lyapunov function V (z), which is positive definite and proper, such that∥∥∥∥∂V∂z φ0(z, x1)

∥∥∥∥ ≤ (‖z‖p0 + |x1|p0)r0(z, x1), r0(z, x1) ≥ 0,∥∥∥∥∂V∂z ∂f0(z, x1)

∂x1

∥∥∥∥ ≤ (‖z‖2p0−1 + |x1|2p0−1)r̃0(z, x1), r̃0(z, x1) ≥ 0,(4.21)

and

∂V

∂z
f0(z, v

∗(z)) +
1

4γ2

(
∂V

∂z
φ0(z, v

∗(z))
)2

+ h2p0(z, v∗(z)) ≤ −‖z‖2p0W (z)(4.22)

for a C∞ W (z) > 0, where p0 ≥ p1 is an odd integer, v
∗(z) is a smooth real-valued

function with v∗(0) = 0, and the functions r0(·), r̃0(·), and W (z) are smooth. Then
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the disturbance attenuation problem with internal stability is solvable via smooth state
feedback, if the hypotheses in Assumptions 4.1– 4.3 hold.

The proof of this result again relies on the generalized adding a power integrator
technique. To begin with, we first introduce an important technical lemma which
shows that the Hamilton–Jacobi–Isaacs (HJI) partial differential inequality (4.22)
arising from the disturbance attenuation problem implies a dissipation inequality at
the first step and can be propagated through adding a power integrator at each step.

Lemma 4.9. Consider a nonlinear system described by equations of the form


ż = f0(z, ζ) + φ0(z, ζ)w,

ζ̇ = up1 + f1(z, ζ, u) + φ1(z, ζ)w,
y = h(z, ζ),

(4.23)

in which z ∈ R
n−r and ζ ∈ R. Suppose there exists a smooth Lyapunov function V (z),

which is positive definite and proper, such that∥∥∥∥∂V∂z φ0(z, ζ)

∥∥∥∥ ≤ (‖z‖p0 + |ζ|p0)r0(z, ζ), r0(z, ζ) ≥ 0,(4.24) ∥∥∥∥∂V∂z ∂f0(z, ζ)∂ζ

∥∥∥∥ ≤ (‖z‖2p0−1 + |ζ|2p0−1)r̃0(z, ζ), r̃0(z, ζ) ≥ 0,(4.25)

and

∂V

∂z
f0(z, v

∗(z))+
1

4γ2

(
∂V

∂z
φ0(z, v

∗(z))
)2

+h2p0(z, v∗(z)) ≤ −‖z‖2p0W (z), W (z) > 0,

(4.26)
where p0 ≥ p1 is an odd integer, v

∗(z) is a smooth function with v∗(0) = 0, and the
functions r0(·), r̃0(·), and W (z) are smooth. Under Assumptions 4.2 and 4.3 (with
r = 1, ζ = x1), there are a smooth state feedback law u(z, ζ) with u(0, 0) = 0 and a
smooth Lyapunov function U(z, ζ), which is positive definite and proper, such that

LFU(z, ζ) +
1

4γ2
(LΦU(z, ζ))

2
+ h2p0(z, ζ) ≤ − (‖z‖2p0 + ‖ζ‖2p0)W(z, ζ)

for a C∞ W(z, ζ) > 0, where

F (z, ζ) =

(
f0(z, ζ)
up1(z, ζ) + f1(z, ζ, u(z, ζ))

)
, Φ(z, ζ) =

(
φ0(z, ζ)
φ1(z, ζ)

)
.

The proof of Lemma 4.9 is analogous to that of Theorem 4.4 with an appropriate

modification. However, a different Lyapunov function U(z, ζ) = V (z)+ (ζ−v∗(z))2p0−p1+1

2p0−p1+1
must be used to carry out the proof.

Proof of Theorem 4.8. By Lemma 4.9, it is clear that Theorem 4.8 holds when
r = 1. In the case where r > 1, Theorem 4.8 can be proved by repeatedly using
Lemma 4.9. In fact, it can be easily verified that all the conditions of Lemma 4.9 are
fulfilled when adding a power integrator each time. At the last step, one can prove
that there are a smooth Lyapunov function Ũ(z, x), which is positive definite and
proper, and a smooth state feedback law u(z, x) with u(0, 0) = 0, such that system
(4.18) satisfies

LF̃ Ũ(z, x) +
1

4γ2

(
LΦ̃Ũ(z, x)

)2

+ h2p0(z, x1) ≤ −
(‖z‖2p0 + ‖x‖2p0) W̃ (z, x)
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for a C∞ W̃ (z, x) > 0, where

F̃ (z, x) =




f0(z, x1)
xp12 + f1(z, x1, x2)
...
upr (z, x) + fr(z, x1, . . . , xr, u(z, x))


 ,

Φ̃(z, ζ) =




φ0(z, x1)
φ1(z, x1)
...
φr(z, x1, . . . , xr)


 .

It is straightforward to prove that the HJI inequality above implies

˙̃U + y2p0 − γ2w2 ≤ − (‖z‖2p0 + ‖x‖2p0) W̃ (z, x).(4.27)

Therefore, Theorem 4.8 follows immediately from the dissipation inequality (4.27).
Indeed, (4.27) implies that system (4.18) is GAS by the smooth state feedback u =
u(z, x) when w = 0. Moreover, in the presence of an L2 disturbance signal w(t), the
disturbance attenuation problem, characterized in term of an L2−L2p0-gain, is solved
by smooth state feedback.

As a consequence of Theorem 4.8, we arrive at the following important conclusion.
Corollary 4.10. Consider the nonlinear system (4.18) with trivial zero-dynamics,

i.e., dim z = 0. Under the hypotheses in Assumptions 4.1–4.2 with z = 0, the distur-
bance attenuation problem with p = p1 is solvable by smooth state feedback.
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Abstract. We propose an exact controllability result for Schrödinger equations in bounded
domains under the Bardos–Lebeau–Rauch geometric control condition with an estimate of the control
which is explicit with respect to the time of controllability. Also, we prove an explicit in time
logarithmic observability estimate for the Schrödinger equation, where no geometrical conditions are
supposed on the domain.
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1. Introduction. Let Ω be a bounded domain of R
n, n ≥ 1, with a smooth

boundary ∂Ω. We consider a nonempty open subset ω of Ω. The question we wish
to address is that of controllability for Schrödinger equations with an explicit in time
bound of the cost of the following control function. Given a time ε > 0 and considering
initial data wo in some appropriate space X, can we find a control ϑ ∈ L1 (0, ε;X)
such that the solution of the system


i∂tw +∆w = ϑ|ω in Ω× ]0, ε[ ,

w = 0 on ∂Ω× ]0, ε[ ,
w (·, 0) = wo in Ω

(1.1)

satisfies w (·, ε) ≡ 0 in Ω, with an estimate of the control ϑ
1√
ε

∥∥ϑ|ω ∥∥L1(0,ε;X)
≤ C (ε) ‖wo‖X ,(1.2)

where C is an explicit function of ε?
From the work of Lions [Li] on the control for distributed systems, such a result

can be obtained with the Hilbert uniqueness method (HUM) by solving the dual
observability problem: in the case where X = L2 (Ω), under which hypothesis the
solution of the homogenous Schrödinger equation


i∂tu+∆u = 0 in Ω× Rt,

u = 0 on ∂Ω× Rt,
u(·, 0) = uo in Ω

(1.3)

satisfies

∀ε > 0, ∀uo ∈ L2 (Ω) , ‖uo‖L2(Ω) ≤ C (ε) ‖u‖L2(ω×]0,ε[) .(1.4)

The relation (1.4) concerns any initial data but may need suitable geometric
conditions on ω. Also, we can establish such an observability estimate which is true for

∗Received by the editors February 21, 2000; accepted for publication (in revised form) December
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any geometric situation but carries information only when ‖uo‖Hs(Ω) = O(‖uo‖L2(Ω))
for some s ≥ 1. The problem becomes the following. For all ω ⊂ Ω, can we find a
positive continuous and strictly increasing function F : R∗

+ → R
∗
+ which satisfies the

relation limx→0F (x) = 0 such that one has the assertion

∀ε > 0, ∀uo ∈ Hs(Ω) ∩H1
0 (Ω), ‖uo‖2L2(Ω) ≤ D (ε) F

(‖u‖2L2(ω×]0,ε[)

‖uo‖2L2(Ω)

)
‖uo‖2Hs(Ω) ,

(1.5)

where D is an explicit positive function of ε?
These exact controllability and observability problems were already investigated

in [M], [F], and in [LT], [M], [Le], [B], [T] if the control acts on a part of the boundary,
but C (ε) was not calculated explicitly. The observability problem arises also in the
context of parabolic [FI], [F-CZ], [LR1] or hyperbolic [Li], [BLR] systems. In [FI] and
[LR1], an exact null controllability result for parabolic problems is established with
no restriction on the time of control or on the support of the control function. Also,
Fernandez-Cara and Zuazua [F-CZ] proved an explicit in time observability estimate
for the heat equation. In [Ru], Russell used a transformation to show that a null con-
trollability result for the heat equation for any time can be obtained from the exact
controllability result for the wave equation in some time. Concerning hyperbolic sys-
tems, Bardos, Lebeau, and Rauch [BLR] show a link between the propagation of rays
of geometric optics and the problem of exact controllability for hyperbolic problems.
They give a geometrical control condition which is sufficient and almost necessary to
obtain the observability for hyperbolic problems. Without this geometrical control
condition, Robbiano [Ro] proved a logarithmic observability estimate for hyperbolic
problems (but where ε must be large enough because of the finite speed of propa-
gation) and showed how to use it to obtain an approximate control result with an
estimation of the cost of the control.

In this paper, we give simple techniques and results which try to answer the three
previous questions in different geometrical situations. Our strategy is to obtain results
for the Schrödinger equation from well-known works on observation and controllability
for parabolic and hyperbolic problems. Also, we will describe a method to have an
exact control result for Schrödinger equations in bounded domain in R

n, n > 1, from
an observability result for the Schrödinger equation in one space dimension. Even if
our approach does not give optimal results, we hope it can be used in other control
problems. Let us now state the different results of this paper in the next section.
The first result concerns the problem of observability for the Schrödinger equation
when no geometrical conditions are required on ω. We give a logarithmic observability
estimate. Then we study the case where the Bardos–Lebeau–Rauch geometric control
hypothesis [BLR] holds. The second result is about the particular one-dimensional
situation. The third result concerns the problem of exact control for the Schrödinger
equation in a bounded domain of R

n, n > 1.

2. The main results and some remarks. When no geometrical condition is
assumed, we propose a logarithmic explicit in time observability estimate.

Theorem 2.1. Suppose Ω ⊂ R
n, n ≥ 1, is of class C∞. Let ω be a nonempty

open subset of Ω. Then there exists C > 0 such that for all ε > 0, for all initial
data uo ∈ H2(Ω)∩H1

0 (Ω), the solution of the homogenous Schrödinger equation (1.3)
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satisfies

‖uo‖2L2(Ω) ≤
C (1 + 1/ε)

ln

(
2 +

‖uo‖2
L2(Ω)

‖u‖2
L2(ω×]0,ε[)

) ‖∆uo‖2L2(Ω) .(2.1)

The following second result is about the Schrödinger equation in one space di-
mension. We give an explicit in time observability estimate.

Theorem 2.2. Suppose Ω ⊂ R
n, n = 1. Let ω be a nonempty open subset of Ω.

Then there exists C > 0 such that for all ε > 0, for all initial data uo ∈ L2(Ω), the
solution of the homogenous Schrödinger equation (1.3) satisfies

‖uo‖2L2(Ω) ≤ eC(1+1/ε2) ‖u‖2L2(ω×]0,ε[) .(2.2)

The last result concerns the problem of exact control for the Schrödinger equation
in a bounded domain of R

n, n > 1. We estimate the size of the control.
Theorem 2.3. Suppose Ω ⊂ R

n, n > 1, is of class C∞, and there is no infinite
order of contact between the boundary ∂Ω and the bicharacteristics of ∂2

t − ∆ . If
all generalized bicharacteristic rays meet ω × ]0, Tc[ for some 0 < Tc < +∞, then
for all ε > 0, for all initial conditions wo ∈ H1

0 (Ω), there is a control ϑ = ϑε ∈
L1
(
0, ε;L2 (Ω)

)
such that the solution w ∈ C ([0, ε] ;L2 (Ω)

)
of the Schrödinger prob-

lem (1.1) satisfies w (·, ε) ≡ 0 in Ω . Furthermore there exists a constant C > 0, such
that for all ε > 0, we have

‖∇w (·, t)‖L2(Ω) ≤
(
C√
t
+ eC(1+1/ε2)

)
‖∇wo‖L2(Ω) ∀t > 0(2.3)

with an estimate of the control ϑε as follows:

1√
ε
‖ϑε‖L1(0,ε;L2(ω)) ≤

(
C +

√
ε
)
eC(1+1/ε2) ‖∇wo‖L2(Ω) .(2.4)

Let us make some comments.
1. Theorem 2.1 expresses a unique continuation property for the Schrödinger

equation. Our approach to proving Theorem 2.1 consists of using an explicit in
time observability estimate for parabolic equations obtained by Fernandez-Cara and
Zuazua [F-CZ]. Next we introduce a Gaussian transformation to return to the solution
of the Schrödinger equation. The logarithmic observability estimate (2.1) is equivalent
to the following interpolation inequality:

∃C > 0, ∀ε, δ > 0, ‖uo‖2L2(Ω) ≤ exp
(
C

(
1 +

1

ε

)
δ

)
‖u‖2L2(ω×]0,ε[) +

1

δ
‖∆uo‖2L2(Ω) .

(2.5)

2. Theorem 2.2 asserts that we have an exact controllability result for the
Schrödinger equation in one space dimension, due to the HUM of Lions [Li]. The proof
of Theorem 2.2 combines multiplier techniques [M], [F] and interpolation inequalities.
The interpolation estimates which are similar to (2.5) allow us to absorb the terms of
lower order. The estimate (2.2) of Theorem 2.2 is also true for n > 1 if we suppose
ω ⊂ Ω ⊂ R

n to be a neighborhood of Γo, where Γo = {x ∈ ∂Ω/ (x− xo) · ν (x) > 0}
is either equal to ∂Ω or is such that the boundary ∂Ω \Γo is included in a hyperplan
(see [F]), when xo is a fixed point of R

n, and ν (x) is the unit outward normal vector.
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The author is indebted to Professor Zuazua, who called his attention to the papers
[MZ], [I] and who pointed out that Theorem 2.2 can also be obtained from [MZ, Thm.
3.4], [I, Thm. 1], and a Fourier analysis.

3. Lebeau [Le] has proved the exact boundary controllability for the Schrödinger
equation with an analytic boundary under the geometrical control condition of the
work of Bardos, Lebeau, and Rauch on exact controllability for the wave equation
[BLR]. Moreover, Burq [B] has proved the existence of open subsets of ∂Ω which do
not geometrically control Ω for the wave equation in which it is possible to construct an
exact boundary control for the Schrödinger equation if initial data are more regular
than those with finite energy. Here the result of Theorem 2.3 is not optimal in
norm in the sense that it should be enough to choose the initial condition in wo ∈
L2 (Ω) to obtain a result of exact controllability for the Schrödinger equation with
a control in L2 (ω × ]0, ε[) when it satisfies suitable geometric conditions (see the
previous comment or the multiplier techniques [M], [F]). Also, Theorem 2.3 only
implies the following observability estimate under the geometric control condition:

∀ε > 0, ∀uo ∈ L2 (Ω) , ‖uo‖H−1(Ω) ≤ C (ε) sup
[0,ε]

‖u‖L2(ω) .(2.6)

4. Here our construction of the control given by Theorem 2.3 provides more precise
information on the cost of the control. We propose a proof based on the theorem of
Bardos, Lebeau, and Rauch [BLR] on exact controllability for hyperbolic equations,
and a transformation inspired from the work of Boutet de Monvel [BdM] on the
propagation of singularities in Schrödinger-type equations (see also [KS]). We will also
use the estimate (2.2) of Theorem 2.2 in one space dimension to establish an explicit
estimate on the size of the control function for the problem of exact controllability
for the Schrödinger equation in Ω ⊂ R

n, n > 1, when the control region ω controls
geometrically Ω. Furthermore, our method described (in section 5) below also applies
to the case of Schrödinger equations with nonconstant principal part [HL]. We have
the following control result.

Theorem 2.4. Let ∆A =
∑n

i,j=1
∂
∂xi
aij (x)

∂
∂xj

+ ao (x) , where the coefficients

of ∆A are real, smooth, and satisfy the following conditions: aij (x) = aji (x) and∑n
i,j=1 aij (x) ξiξj ≥ c |ξ|2 . Suppose Ω ⊂ R

n, n > 1, of class C∞, and there is
no infinite order of contact between the boundary ∂Ω and the bicharacteristics of
∂2
t −∆A. If all generalized bicharacteristic rays of ∂2

t −∆A meet ω× ]0, Tc[ for some
0 < Tc < +∞, then for all ε > 0, for all initial conditions wo ∈ H1

0 (Ω), there is
a control ϑε ∈ L1

(
0, ε;L2 (Ω)

)
such that the solution w ∈ C ([0, ε] ;L2 (Ω)

)
of the

Schrödinger problem 

i∂tw +∆Aw = ϑε|ω in Ω× ]0, ε[ ,

w = 0 on ∂Ω× ]0, ε[ ,
w (·, 0) = wo in Ω

(2.7)

satisfies w (·, ε) ≡ 0 in Ω . Furthermore, there exists a constant C > 0, such that for
all ε > 0, the estimates (2.3)–(2.4) hold.

5. The main goal of this paper is to point out that an observability result for the
heat equation gives a logarithmic observability estimate for the Schrödinger equation
but also that an exact control result for the wave equation gives the exact controlla-
bility for the Schrödinger equation. Moreover, we show that an exact control result
for the Schrödinger equation in one space dimension implies the exact controllability
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for the Schrödinger equation in bounded domain Ω ⊂ R
n, n > 1, when a geomet-

rical condition is assumed. The observability results for the Schrödinger equation
are established under two different kinds of geometry: either when no geometrical
hypothesis is assumed (Theorem 2.1) or when the Bardos–Lebeau–Rauch geometric
control condition is satisfied (Theorem 2.2 (n = 1) and Theorem 2.3 (n > 1); see (2.6)
in comment 3). Also, these techniques allow us to have explicit estimates with respect
to the time of controllability.

The paper is organized in the following way. The proofs of Theorems 2.1 and 2.2
(see comment 2) rest on interpolation estimates which are established in section 3.
These interpolation estimates can be seen as low frequency estimates. The proof of
Theorem 2.1 is then easily described. In section 4, we prove Theorem 2.2. Section 5
is devoted to the construction of the control stated in Theorem 2.3.

3. Low frequency estimates. In this section, we first state interpolation in-
equalities in Theorem 3.1 below, which are the key results to prove Theorems 2.1 and
2.2 (see comment 2). Next, we recall some results on the observability for parabolic
problems obtained by Fernandez-Cara and Zuazua [F-CZ]. Finally, we prove Theo-
rem 3.1.

3.1. Interpolation inequalities and the proof of Theorem 2.1. We have
the following interpolation inequalities.

Theorem 3.1. Suppose Ω ⊂ R
n, n ≥ 1, is of class C∞. Let ω be a nonempty

open set included in Ω. Then there exist C > 0, εo > 0, µo > 0, such that for all
ε ≤ εo, for all µ ≥ µo, for all initial data uo ∈ H2(Ω) ∩ H1

0 (Ω), the solution of the
homogenous Schrödinger equation (1.3) satisfies∫

Ω

|uo (x)|2 dx ≤ exp
(
Cµ

ε

)∫
ω

∫ ε

0

|u(x, t)|2 dtdx+ ε
3

µ

∫
Ω

|∆uo (x)|2 dx.(3.1)

Furthermore, there exist C > 0, εo > 0, µo > 0, such that for all ε ≤ εo, for all
µ ≥ µo, for all initial data uo ∈ H2(Ω) ∩ H1

0 (Ω), the solution of the homogenous
Schrödinger equation (1.3) satisfies∫

Ω

|uo (x)|2 dx ≤ exp
(
Cµ

ε

)∫
ω

∫ ε

0

|∆u(x, t)|2 dtdx+ ε
3

µ

∫
Ω

|∆uo (x)|2 dx.(3.2)

Let us assume that the interpolation inequality (3.1) holds in order to prove
Theorem 2.1. The proof of Theorem 3.1 will be given at the end of section 3.

Proof of Theorem 2.1. By taking µ such that µ = C0

∫
Ω
|∆u0|2dx∫
Ω
|u0|2dx ≥ µo, the estimate

(3.1) becomes∫
Ω

|u0|2 dx ≤ exp
(
CC0

ε

∫
Ω
|∆u0|2 dx∫

Ω
|u0|2 dx

)∫
ω

∫ ε

0

|u|2 dtdx+ ε
3

C0

∫
Ω

|u0|2 dx.(3.3)

So, ∃C > 0, ∃εo > 0, for all ε ≤ εo,∫
Ω

|u0|2 dx ≤ exp
(
C

ε

∫
Ω
|∆u0|2 dx∫

Ω
|u0|2 dx

)∫
ω

∫ ε

0

|u|2 dtdx.

And also, ∃C > 0, for all ε > 0,∫
Ω

|u0|2 dx ≤ exp
(
C

(
1 +

1

ε

) ∫
Ω
|∆u0|2 dx∫

Ω
|u0|2 dx

)∫
ω

∫ ε

0

|u|2 dtdx.(3.4)
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The estimate (2.1) of Theorem 2.1 is equivalent to (3.4) by using properties of the
logarithmic and exponential functions. That concludes the proof of Theorem 2.1. Let
us remark here that we obtain (2.5) from (3.4) by studying the case where either
‖∆uo‖ ≤ δ ‖uo‖ or ‖∆uo‖ > δ ‖uo‖ (see comment 1).

It will be useful to recall some explicit in time observability results for parabolic
problems before proving Theorem 3.1.

3.2. Observability for the parabolic problem. We recall the result in [F-CZ]
in the particular case of a null potential.

Theorem [F-CZ]. Let Ω be a connected bounded domain in R
n, with smooth

boundary. Let v be the solution of the following adjoint parabolic equation:{
∂tv +∆v = 0 in Ω×]0, T [,

v = 0 on ∂Ω×]0, T [.(3.5)

Then there is C > 0, such that for all T > 0,∫
Ω

|v (x, 0)|2 dx ≤ exp
(
C

(
1 +

1

T

))∫
ω

∫ T

0

|v|2 dtdx.(3.6)

Remark 3.2. Theorem [F-CZ] is obtained from the works of Fursikov and Imanu-
vilov [FI] on Carleman estimates for adjoint parabolic equations. Another approach,
based on the work of Lebeau and Robbiano [LR1] on the exact controllability of
the heat equation on a Riemannian compact manifold with boundary, and Dirich-
let boundary conditions, in both cases of interior or boundary controls, gives us the
estimates (3.6) but not explicitly in time. Nevertheless, a logarthmic boundary ob-
servability estimate for the Schrödinger equation is presented with that approach in
[P].

We deduce from Theorem [F-CZ] the following corollary.
Corollary 3.3. LetW be the solution of the following adjoint parabolic problem:


∂tW +∆W = f in Ω×]0, T [,

W = 0 on ∂Ω×]0, T [,
W (·, T ) ∈ L2(Ω).

(3.7)

Then

∃CT > 0,
∫

Ω

|W (x, 0)|2 dx ≤ CT
(∫

ω

∫ T

0

|W |2 dtdx+
∫

Ω

∫ T

0

|f |2 dtdx
)

.(3.8)

If, moreover, W (·, T ) ∈ H2 ∩H1
0 (Ω), then

∃CT > 0,
∫

Ω

|W (x, 0)|2 dx ≤ CT
(∫

ω

∫ T

0

|∆W |2 dtdx+
∫

Ω

∫ T

0

|f |2 dtdx
)

.

(3.9)

Here, the constant CT of the estimates (3.8), (3.9) is of the order of

CT = exp

(
C

(
1 +

1

T

))
,(3.10)

where C > 0 is a constant independent of T > 0.
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Proof of Corollary 3.3. It is easy to see that (3.8) holds from (3.6) with a classical
energy method. Let us prove (3.9). We consider z (x, t) =W (x, t)− a (x, t), where


∂ta+∆a = f in Ω×]0, T [,

a = 0 on ∂Ω×]0, T [,
a(·, T ) = 0 in Ω.

(3.11)

As ∂tz is a solution of (3.5), the regularity of W (·, T ) and (3.6) allow us to obtain
the estimate ∫

Ω

|∆z (x, 0)|2 dx ≤ exp
(
C

(
1 +

1

T

))∫
ω

∫ T

0

|∂tz|2 dtdx.(3.12)

Now we give equalities on the solution a by a classical energy method:

1

2

∫
Ω

|a (x, 0)|2 dx+
∫ T

0

∫
Ω

|∇a|2 dxdt = −
∫ T

0

∫
Ω

fadxdt,

1

2

∫
Ω

|∇a (x, 0)|2 dx+
∫ T

0

∫
Ω

|∂ta|2 dxdt =
∫ T

0

∫
Ω

f∂tadxdt.

(3.13)

By Cauchy–Schwarz and Poincaré inequalities and from (3.13) we have∫
Ω

|a (x, 0)|2 dx+
∫ T

0

∫
Ω

|∂ta|2 dxdt ≤ c
∫ T

0

∫
Ω

|f |2 dxdt.(3.14)

We obtain from (3.12) and (3.14)

∫
Ω

|W (x, 0)|2 dx ≤ 2
∫

Ω

|z(x, 0)|2 dx+ 2
∫

Ω

|a(x, 0)|2 dx

≤ c
∫

Ω

|∆z(x, 0)|2 dx+ 2
∫

Ω

|a(x, 0)|2 dx

≤ exp
(
C

(
1 +

1

T

))∫
ω

∫ T

0

|∂tz|2 dtdx+ c
∫ T

0

∫
Ω

|f |2 dxdt

≤ exp
(
C

(
1 +

1

T

))(∫
ω

∫ T

0

|∂tW |2 dtdx+ c
∫ T

0

∫
Ω

|f |2 dxdt
)

+ c

∫ T

0

∫
Ω

|f |2 dxdt

≤ exp
(
C

(
1 +

1

T

))(∫
ω

∫ T

0

|∆W |2 dtdx+ c
∫ T

0

∫
Ω

|f |2 dxdt
)

+ c

∫ T

0

∫
Ω

|f |2 dxdt.

(3.15)

That concludes the proof of (3.9) and Corollary 3.3.

3.3. Proof of Theorem 3.1. We begin to prove (3.1) as follows.

Let F (z) = 1
2π

∫
R
eizτe−τ

2

dτ ; then F (z) =
√
π

2π e
1
4 (|Im z|2−|Re z|2)e−

i
2 (Im zRe z). Also,

with λ > 0, let us consider

Fλ(z) = λF (λz) =
1

2π

∫
R

eizτe−(
τ
λ )

2

dτ.
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We have

|Fλ(z)| =
√
π

2π
λe

λ2

4 (|Im z|2−|Re z|2).(3.16)

Let s, '0 ∈ R, and

W�0,λ(s, x) =

∫
R

Fλ('0 + is− ')Φ(')u(x, ')d',(3.17)

where Φ ∈ C∞
0 (R). The Gaussian transformation (3.17) is inspired from the Fourier–

Bros–Iagolnitzer transformation in [LR2]. We remark that ∂sFλ('0 + is − ') =
−i∂�Fλ('0 + is− '), so

∂sW�0,λ(s, x) =

∫
R

−i∂�Fλ('0 + is− ')Φ(')u(x, ')d'

=

∫
R

iFλ('0 + is− ')
{
d

d'
Φ(')u(x, ') + Φ(')

∂

∂'
u(x, ')

}
d'.

As u : (x, t) �−→ u (x, t) is the solution of (1.3), W�0,λ satisfies

∂sW�0,λ(s, x) + ∆W�0,λ(s, x) =

∫
R

iFλ('0 + is− ')Φ′(')u(x, ')d',

W�0,λ(s, x) = 0 ∀x ∈ ∂Ω,
W�0,λ(0, x) = (Fλ ∗ Φu(x, ·)) ('0) ∀x ∈ Ω.

(3.18)

We define Φ ∈ C∞
0 (R) such that the following holds. Let L > 0, and we choose

Φ ∈ C∞
0 (]0, L[), 0 ≤ Φ ≤ 1, Φ ≡ 1 on

[
L
4 ;

3L
4

]
and such that |Φ′| ≤ 8

L . We take

K =
[
0; L4

]∪ [ 3L
4 ;L

]
and K0 =

[
3L
8 ;

5L
8

]
. So, mesK0 =

L
4 , mesK =

L
2 , supp(Φ

′) = K,
and dist(K;Ko) =

L
8 . We will choose '0 ∈ K0.

As an application of (3.8), W�0,λ satisfies the following estimate:

∫
Ω

|(Fλ ∗ Φu(x, ·)) ('0)|2 dx ≤ CT
∫
ω

∫ T

0

|W�0,λ(s, x)|2 dsdx

(3.19)

+ CT

∫
Ω

∫ T

0

∣∣∣∣
∫

R

iFλ('0 + is− ')Φ′(')u(x, ')d'
∣∣∣∣
2

dsdx.

On the other hand, from (3.16)

∫
ω

∫ T

0

|W�0,λ(s, x)|2 dsdx =
∫
ω

∫ T

0

∣∣∣∣
∫

R

Fλ('0 + is− ')Φ(')u(x, ')d'
∣∣∣∣
2

dsdx

≤
∫ T

0

∫
ω

∣∣∣∣
∫

R

√
π

2π
λe

λ2

4 (s
2−|�0−�|2)Φ(') |u(x, ')| d'

∣∣∣∣
2

dxds

≤ λ
2

4π

(∫ T

0

e
λ2

2 s2ds

)
|supΦ|2

∫
ω

∣∣∣∣∣
∫ L

0

|u(x, ')| d'
∣∣∣∣∣
2

dx

≤ λ
2

4π
e
λ2

2 T 2

T |supΦ|2 L
∫
ω

∫ L

0

|u(x, ')|2 d'dx
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and ∫
Ω

∫ T

0

∣∣∣∣
∫

R

iFλ('0 + is− ')Φ′(')u(x, ')d'
∣∣∣∣
2

dsdx

≤
∫ T

0

∫
Ω

∣∣∣∣
∫

R

√
π

2π
λe

λ2

4 (s
2−|�0−�|2) |Φ′(')| |u(x, ')| d'

∣∣∣∣
2

dxds

≤ λ
2

4π
e
λ2

2 T 2

T

∫
Ω

(∫
K

e−
λ2

2 |�0−�|2 |Φ′(')|2 |u(x, ')|2 d'
)
mes (K) dx

≤ λ
2

4π
e
λ2

2 T 2

T e−
λ2

2 dist(K,K0)
2

sup |Φ′(')|2mes (K)
∫

Ω

∫
K

|u(x, ')|2 d'dx

≤ λ
2

4π
e
λ2

2 T 2

T e−
λ2

2 dist(K,K0)
2

sup |Φ′(')|2mes (K)2
∫

Ω

|uo|2 dx

≤ λ
2T

4π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]

82

L2

L2

4

∫
Ω

|uo|2 dx

≤ 4λ
2T

π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]∫

Ω

|uo|2 dx.

So, the inequality (3.19) becomes∫
Ω

|(Fλ ∗ Φu(x, ·)) ('0)|2 dx ≤ CT λ
2TL

4π
exp

(
λ2

2
T 2

)∫
ω

∫ L

0

|u(x, ')|2 d'dx

+ CT
4λ2T

π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]∫

Ω

|uo|2 dx.(3.20)

With the Parseval relation, we have∫
R

|Φ('0)u (x, '0)− (Fλ ∗ Φu (x, ·)) ('0)|2 d'0

=
1

2π

∫
R

∣∣∣ ̂Φ('0)u (x, '0)(τ)
∣∣∣2 (1− e−( τλ )2)2

dτ

≤ 1

πλ2

∫
R

∣∣∣τ ̂Φ('0)u (x, '0)(τ)
∣∣∣2 dτ

≤ 2

λ2

∫
R

|Φ′('0)u (x, '0) + Φ('0)∂�0u (x, '0)|2 d'0

≤ 4

λ2

[
82

L2

∫
K

|u(x, '0)|2 d'0 +
∫ L

0

|∂�0u(x, '0)|2 d'0
]
.

By integrating on Ω, we obtain∫
Ω

∫
R

|Φ('0)u (x, '0)− (Fλ ∗ Φu (x, ·)) ('0)|2 d'0dx(3.21)

≤ 4

λ2

[
c2

L2

∫
K

∫
Ω

|u(x, '0)|2 d'0dx+
∫ L

0

∫
Ω

|∂�0u(x, '0)|2 d'0dx
]

≤ 4

λ2

[
82

L2

L

2

∫
Ω

|uo|2 dx+ L
∫

Ω

|∆uo|2 dx
]
.
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So, with (3.20) and (3.21),

mes (K0)

∫
Ω

|uo|2 dx =
∫
K0

∫
Ω

|Φ('0)u(x, '0)|2 dxd'0

≤ mes (K0)CT
λ2TL

4π
exp

(
λ2

2
T 2

)∫
ω

∫ L

0

|u(x, ')|2 d'dx

+mes (K0)CT
4λ2T

π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]∫

Ω

|uo|2 dx

+
4

λ2

[
82

L2

L

2

∫
Ω

|uo|2 dx+ L
∫

Ω

|∆uo|2 dx
]
.

Finally,

∫
Ω

|uo|2 dx ≤ CT λ
2TL

4π
exp

(
λ2

2
T 2

)∫
ω

∫ L

0

|u(x, ')|2 d'dx

+ CT
4λ2T

π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]∫

Ω

|uo|2 dx

+
1

λ2

42

L

[
82

2L

∫
Ω

|uo|2 dx+ L
∫

Ω

|∆uo|2 dx
]
.

Let us consider A > 0 real such that
(
1−A2

)
< 0. By choosing L = 8AT , it becomes

∫
Ω

|uo|2 dx ≤ 2A
π
CTλ

2T 2 exp

(
λ2T 2

2

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx+ 16 1
λ2

∫
Ω

|∆uo|2 dx

+

[
8

A2

1

λ2T 2
+
4

π
CTλ

2T exp

(
−A

2 − 1
2
λ2T 2

)]∫
Ω

|uo|2 dx.

With the relation (3.10), we have the following uniform in time interpolation estimate:

∫
Ω

|uo|2 dx ≤ AeCeC/Tλ2T 2 exp

(
λ2T 2

2

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx

+

[
C

A2

1

λ2T 2
+ eCeC/Tλ2T exp

(
−A

2 − 1
2
λ2T 2

)]∫
Ω

|uo|2 dx

+
16

λ2

∫
Ω

|∆uo|2 dx.

We introduce λ2 = µ
T 3 . Let α > 0 be real such that

(
2α+ 1−A2

)
< 0; hence,

∫
Ω

|uo|2 dx ≤ AeCeC/T µ
T
exp

( µ
2T

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx

+

[
C

A2

T

µ
+ eCeC/T

µ

T 2
exp

(
−A

2 − 1
2

µ

T

)]∫
Ω

|uo|2 dx

+ 16
T 3

µ

∫
Ω

|∆uo|2 dx

≤ AeCeC/T µ
T
exp

( µ
2T

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx
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+

[
C

A2

T

µ
+ eCeC/T

1

µ

4

α2
exp

(
−A

2 − 1− 2α
2

µ

T

)]∫
Ω

|uo|2 dx

+ 16
T 3

µ

∫
Ω

|∆uo|2 dx.

We take µ > 2C
A2−1−2α , so∫
Ω

|uo|2 dx ≤ AeC µ
T
exp

(
A2µ

2T

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx

+

[
C

A2

T

µ
+ eC

4

α2

1

µ

] ∫
Ω

|uo|2 dx+ 16T
3

µ

∫
Ω

|∆uo|2 dx,∫
Ω

|uo|2 dx ≤ e
C

A
exp

(
A2µ

2T

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx(3.22)

+

[
CT

A2
+
4eC

α2

]
1

µ

∫
Ω

|uo|2 dx+ 16T
3

µ

∫
Ω

|∆uo|2 dx,

and with µo = max(
2C

A2−1−2α ; 2(
C
A2 +

4eC

α2 ))

∀T ≤ 1, ∀µ > µo, 1

2

∫
Ω

|uo|2 dx(3.23)

≤ e
C

A
exp

(
A2µ

2T

)∫
ω

∫ 8AT

0

|u(x, ')|2 d'dx+ 16T
3

µ

∫
Ω

|∆uo|2 dx.

Therefore, (3.1) is proved by choosing T = ε
8A ≤ 1.

The proof of (3.2) follows the same approach by using (3.9).
As application of (3.9), W�0,λ satisfies the following estimate:

∫
Ω

|(Fλ ∗ Φu(x, ·)) ('0)|2 dx ≤ CT
∫
ω

∫ T

0

|∆W�0,λ(s, x)|2 dsdx

+CT

∫
ω

∫ T

0

∣∣∣∣
∫

R

iFλ('0 + is− ')Φ′(')u(x, ')d'
∣∣∣∣
2

dsdx.

(3.24)

On the other hand, from (3.16)∫
ω

∫ T

0

|∆W�0,λ(s, x)|2 dsdx ≤
λ2

4π
e
λ2

2 T 2

T |supΦ|2 L
∫
ω

∫ L

0

|∆u(x, ')|2 d'dx.

Consequently, the inequality (3.24) becomes∫
Ω

|(Fλ ∗ Φu(x, ·)) ('0)|2 dx ≤ CT λ
2TL

4π
exp

(
λ2

2
T 2

)∫
ω

∫ L

0

|∆u(x, ')|2 d'dx

+ CT
4λ2T

π
exp

[
λ2

2

(
T 2 −

(
L

8

)2
)]∫

Ω

|uo|2 dx.(3.25)

Now, due to (3.25) and (3.21), for
(
1−A2

)
< 0 and T ≤ 1, we have

∫
Ω

|uo|2 dx ≤ AeCeC/Tλ2T 2 exp

(
λ2T 2

2

)∫
ω

∫ 8AT

0

|∆u(x, ')|2 d'dx+ 16
λ2

∫
Ω

|∆uo|2 dx
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+

[
C

A2

1

λ2T 2
+ eCeC/Tλ2T exp

(
−A

2 − 1
2
λ2T 2

)]∫
Ω

|uo|2 dx.

We introduce λ2 = µ
T 3 and 0 < α <

1
2

(
A2 − 1), so that

∫
Ω

|uo|2 dx ≤ AeC/T µ
T
exp

( µ
2T

)∫
ω

∫ 8AT

0

|∆u(x, ')|2 d'dx+ 16T
3

µ

∫
Ω

|∆uo|2 dx

+

[
C

A2
T + eCeC/T

(µ
T

)2

exp

(
−A

2 − 1
2

µ

T

)]
1

µ

∫
Ω

|uo|2 dx

≤ AeC/T µ
T
exp

( µ
2T

)∫
ω

∫ 8AT

0

|∆u(x, ')|2 d'dx+ 16T
3

µ

∫
Ω

|∆uo|2 dx

+

[
C

A2
T + eCeC/T

4

α2
exp

(
−A

2 − 1− 2α
2

µ

T

)]
1

µ

∫
Ω

|uo|2 dx.

We choose µ large enough such that

∫
Ω

|uo|2 dx ≤ AeC/T µ
T
exp

(
Aµ

2T

)∫
ω

∫ 8AT

0

|∆u(x, ')|2 d'dx+ CT
3

µ

∫
Ω

|∆uo|2 dx.

Consequently, we have the following assertion: ∃C > 0, ∃µo > 0, for all T ≤ 1, for all
µ > µo,

∫
Ω

|uo|2 dx ≤ C exp
(
Aµ

T

)∫
ω

∫ 8AT

0

|∆u(x, ')|2 d'dx+ CT
3

µ

∫
Ω

|∆uo|2 dx.(3.26)

That concludes the proof of Theorem 3.1.

4. Proof of Theorem 2.2. We now prove Theorem 2.2 by using (3.2) when
n = 1 and multiplier techniques. Let A, B, β, ε be four reals such that A < B,
0 < 2β < B − A, and ε > 0. Let ϕ : (t, s) ∈ ]0, ε[×]A,B[�−→ ϕ (t, s) be the solution
of the Schrödinger equation in one space dimension:


i∂tϕ+ ∂

2
sϕ = 0 in ]0, ε[×]A,B[,

ϕ (·, A) = ϕ (·, B) = 0 on ]0, ε[ ,
ϕ (0, ·) = ϕo in ]A,B[.

(4.1)

We will prove the following stable observability estimate: ∃C > 0, for all ε > 0,
∫ B

A

∣∣∂2
sϕo

∣∣2 ds ≤ eC(1+1/ε2)
∫ B−β

B−2β

∫ ε

0

∣∣∂2
sϕ
∣∣2 dtds.(4.2)

Indeed, let q ∈ C2 ([A,B]) be a real function

iq
d

dt

(
∂sϕ∂

2
sϕ
)
= q

(
i
d

dt
∂sϕ∂

2
sϕ+ i∂sϕ

d

dt
∂2
sϕ

)
= q

(−∂3
sϕ∂

2
sϕ+ ∂sϕ∂

4
sϕ
)

= q
(−∂3

sϕ∂
2
sϕ+ ∂s

(
∂sϕ∂

3
sϕ
)− ∂2

sϕ∂
3
sϕ
)

= −q∂s
(
∂2
sϕ∂

2
sϕ
)
+ q∂s

(
∂sϕ∂

3
sϕ
)
.
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So

∫ ε

0

∫ B

A

iq
d

dt

(
∂sϕ∂

2
sϕ
)
dsdt = −

∫ ε

0

∫ B

A

q∂s
∣∣∂2
sϕ
∣∣2 + ∫ ε

0

∫ B

A

q∂s
(
∂sϕ∂

3
sϕ
)

= −
∫ ε

0

[
q
∣∣∂2
sϕ
∣∣2]B

A
+

∫ ε

0

∫ B

A

q′
∣∣∂2
sϕ
∣∣2

+

∫ ε

0

[
q∂sϕ∂

3
sϕ
]B
A
−
∫ ε

0

∫ B

A

q′
(
∂sϕ∂

3
sϕ
)

=

∫ ε

0

∫ B

A

q′
∣∣∂2
sϕ
∣∣2 + ∫ ε

0

[
q∂sϕ∂

3
sϕ
]B
A

−
∫ ε

0

[
q′∂sϕ∂2

sϕ
]B
A
+

∫ ε

0

∫ B

A

(
q′′∂sϕ+ q′∂2

sϕ
)
∂2
sϕ

=

∫ ε

0

[
q∂sϕ∂

3
sϕ
]B
A
+ 2

∫ ε

0

∫ B

A

q′
∣∣∂2
sϕ
∣∣2 + ∫ ε

0

∫ B

A

q′′∂sϕ∂2
sϕ.

Finally,

∫ B

A

[
iq∂sϕ∂

2
sϕ
]ε
0
ds =

∫ ε

0

[
q∂sϕ∂

3
sϕ
]B
A
dt(4.3)

+2

∫ ε

0

∫ B

A

q′
∣∣∂2
sϕ
∣∣2 dsdt+ ∫ ε

0

∫ B

A

q′′∂sϕ∂2
sϕdsdt.

Consequently, by taking the real part of (4.3), we obtain

2

∫ ε

0

∫ B

A

q′
∣∣∂2
sϕ
∣∣2 dsdt+Re ∫ ε

0

[
q∂sϕ∂

3
sϕ
]B
A
dt

= − Im
∫ B

A

[
q∂sϕ∂

2
sϕ
]ε
0
ds− Re

∫ ε

0

∫ B

A

q′′∂sϕ∂2
sϕdsdt.

By choosing q (s) = s−A, we have

2

∫ ε

0

∫ B

A

∣∣∂2
sϕ
∣∣2 dsdt = − (B −A)Re ∫ ε

0

∂sϕ (t, B) ∂
3
sϕ (t, B) dt(4.4)

− Im
∫ B

A

[
(s−A) ∂sϕ∂2

sϕ
]ε
0
ds.

By choosing q (s) = χ (s) with suppχ ⊂ [B − 2β,B] and χ (B) �= 0, we have

−χ (B)Re
∫ ε

0

∂sϕ (t, B) ∂
3
sϕ (t, B) dt = 2

∫ ε

0

∫ B

A

χ′ (s)
∣∣∂2
sϕ
∣∣2 dsdt

+Im

∫ B

A

[
χ (s) ∂sϕ∂

2
sϕ
]ε
0
ds+Re

∫ ε

0

∫ B

A

χ′′ (s) ∂sϕ∂2
sϕdsdt.

(4.5)

Due to (4.4) and (4.5), if, moreover, suppχ′ ⊂ [B − 2β,B − β], we obtain the following
assertion:
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∃c > 0, ∀ε > 0,∫ ε

0

∫ B

A

∣∣∂2
sϕ
∣∣2 dsdt ≤ c

(∫ ε

0

∫ B−β

B−2β

∣∣∂2
sϕ
∣∣2 dsdt+ (1 + ε) ‖∂sϕo‖∥∥∂2

sϕo
∥∥
L2(]A,B[)

)
.

Hence∫ B

A

∣∣∂2
sϕo

∣∣2 ds ≤ c
ε

∫ B−β

B−2β

∫ ε

0

∣∣∂2
sϕ
∣∣2 dsdt+ c(1 + 1

ε

)
‖∂sϕo‖L2(]A,B[)

∥∥∂2
sϕo

∥∥
L2(]A,B[)

.

Finally,

∃c > 0, ∀ε ≤ 1,
∫ B

A

∣∣∂2
sϕo

∣∣2 ds ≤ c
ε

∫ B−β

B−2β

∫ ε

0

∣∣∂2
sϕ
∣∣2 dtds+ c

ε2
‖∂sϕo‖2L2(]A,B[) .

By interpolation, we have

∃c > 0, ∀ε ≤ 1,
∫ B

A

∣∣∂2
sϕo

∣∣2 ds ≤ c
ε

∫ B−β

B−2β

∫ ε

0

∣∣∂2
sϕ
∣∣2 dtds+ c

ε4
‖ϕo‖2L2(]A,B[) .

(4.6)

But the interpolation inequality (3.2) of Theorem 3.1 in the one-dimensional case
implies that
∃C > 0, ∃εo > 0, ∃µo > 0, ∀ε ≤ εo, ∀µ ≥ µo,∫ B

A

|ϕo|2 ds ≤ exp
(
C
µ

ε

)∫ B−β

B−2β

∫ ε

0

∣∣∂2
sϕ
∣∣2 dtds+ ε3

µ

∫ B

A

∣∣∂2
sϕo

∣∣2 ds.(4.7)

Let Do be real such that Do = max(2;
min(1;εo)µo

c ). By choosing µ = Do
c
ε ≥ µo, we

conclude the proof of (4.2) from (4.7) and (4.6). And, in a standard way [Li], [F], we
also have ∃C > 0, for all ε > 0,

∫ B

A

|ϕo|2 ds ≤ eC(1+1/ε2)
∫ B−β

B−2β

∫ ε

0

|ϕ|2 dtds.(4.8)

That concludes the proof of Theorem 2.2.
Remark 4.1. To prove (2.2), we used the multiplier methods and we absorbed

the terms of lower order with the interpolation inequality (3.2) for n = 1. The same
method can be used for n > 1 (see comment 2). Indeed, from the equality (1.21) of the
work of Fabre [F, Lemma 1.9] on the exact internal controllability of the Schrödinger
equation, we choose θ = g2 (t), where g ∈ C∞

0 (]0, ε[), g = 1 in ]ε/3; 2ε/3[, and
0 ≤ g ≤ 1, to obtain with standard bootstrap arguments the following assertion:

∃c > 0, ∀ε ≤ 1,
∫

Ω

|∆uo|2 dxdt ≤ c
ε

∫ ε

0

∫
ω

|∆u|2 dxdt+ c
ε2
‖uo‖2H1(Ω) .(4.9)

Under the hypothesis of Lemma 1.9 of the work of Fabre [F, p. 350],we have (2.2) for
n > 1 by applying the interpolation inequality (3.2) of Theorem 3.1.

5. Proof of Theorem 2.3. This section is devoted to proving the exact control
result for Schrödinger equations with an explicit in time estimate of the control. We
proceed in three steps.
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5.1. Step 1. The Schrödinger equation on R. In this section, we prove the
existence of the following solution of the Schrödinger equation on R.

Proposition 5.1. Let T > 0 be real, and let δ be the Dirac measure. There
exists a distribution f = f (t, s) defined on ]0, ε[×Rs such that ft : s ∈ Rs �−→ f (t, s)
has a support included in J = (]−∞,−2T [ ∪ ]2T,+∞[) and the solution F : (t, s) ∈
[0, ε]× Rs �−→ F (t, s) of the Schrödinger equation{

i∂tF + ∂
2
sF = f|J in ]0, ε[× Rs,

F (0, ·) = δ (·) in Rs
(5.1)

satisfies F (ε, ·) ≡ 0 in [−T, T ] . Moreover, if H = F −E, where E is the fundamental
solution of the Schrödinger equation in one space dimension, then

∃C > 0, ∀ε > 0, ‖H‖L∞(0,ε;L2(]−T,T [)) ≤ eC(1+1/ε2).(5.2)

Remark 5.2. The result of Proposition 5.1 simply says that the Schrödinger
equation on the whole line can be controlled to zero with a control concentrated in
the exterior of the ball. This is also true in several dimensions. The proof of this
can be easily obtained from the result on a bounded domain by a cut-off argument
(see also [Z]). In our case, we obtain an explicit estimate with respect to the time
ε of controllability. Here T does not denote time, and let us adopt the variables
(t, s) ∈ [0, ε]× Rs when we consider the one-dimensional case.

Proof of Proposition 5.1. Using the HUM of Lions [Li] and estimate (2.2) of
Theorem 2.2, we know that for all data vε ∈ L2(] − 3T, 4T [, there exists a control
h ∈ L2(]0, ε[×]3T, 4T [) such that the solution v : (t, s) �−→ v(t, s) ∈ C([0, ε];L2(]−3T,
4T [)) satisfies 


i∂tv + ∂

2
sv = h|]3T,4T [ in ]0, ε[× ]−3T, 4T [ ,

v (·,−3T ) = 0, v (·, 4T ) = 0 on ]0, ε[ ,
v(0, ·) = 0 in ]−3T, 4T [ ,
v (ε, ·) = vε in ]−3T, 4T [

(5.3)

and

1√
ε
‖h‖L1(0,ε;L2(]3T,4T [)) ≤ ‖h‖L2(]0,ε[×]3T,4T [) ≤ eC(1+1/ε2) ‖vε‖L2(]−3T,4T [) .(5.4)

In particular, we take vε (ε, s) = −χ (s) e
−i π

4√
4πε
ei
s2

4ε , where s ∈ ]−3T, 4T [, χ ∈ C∞
0 (]−3T,

4T [), 0 ≤ χ ≤ 1, χ|[−T,T ] = 1. So

‖v‖L∞(0,ε;L2(]−3T,4T [)) ≤ 2 ‖h‖L1(0,ε;L2(]3T,4T [)) ≤ CeC(1+1/ε2).(5.5)

Let us consider

H (t, s) =

∣∣∣∣ v (t, s) in [0, ε]× [−3T, 4T ] ,
0 in [0, ε]× (]−∞,−3T [ ∪ ]4T,+∞[) ,(5.6)

where v is the solution of (5.3). So



i∂tH + ∂

2
sH = h|]3T,4T [ − ∂sv ⊗ δ (s− 4T ) + ∂sv ⊗ δ (s+ 3T ) in ]0, ε[× Rs,

H(0, ·) = 0 in Rs,

H (ε, s) = −χ (s) e−i
π
4√

4πε
ei
s2

4ε

(5.7)
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and

∃C > 0, ∀ε > 0, ‖H‖L∞(0,ε;L2(]−3T,4T [)) ≤ eC(1+1/ε2).(5.8)

Let E be the fundamental solution of the Schrödinger equation on the whole line

E (t, s) =
e−i

π
4√

4πt
ei
s2

4t .(5.9)

The solution E ∈ C∞ ({t > 0} × Rs) ∩ C
(
[0,+∞[ ;H−1/2−ε (Rs)

)
satisfies{

i∂tE + ∂
2
sE = 0 in {t > 0} × Rs,

E (0, ·) = δ (·) ∈ H−1/2−ε (Rs) .
(5.10)

We finally consider f = h|]3T,4T [ − ∂sv ⊗ δ (s− 4T ) + ∂sv ⊗ δ (s+ 3T ) such that the
solution F = E +H satisfies


i∂tF + ∂

2
sF = f|J in ]0, ε[× Rs,

i∂tF + ∂
2
sF = 0 in ]0, ε[× [−T, T ] ,

F (0, ·) = δ (·) in Rs,
F (ε, ·) ≡ 0 in [−T, T ] .

(5.11)

That concludes the proof of Proposition 5.1.

5.2. Step 2. Controllability for the hyperbolic problem. The following
exact controllability result holds.

Lemma 5.3. Suppose Ω ⊂ R
n, n ≥ 1, is of class C∞, and there is no infinite

order of contact between the boundary ∂Ω and the bicharacteristics of ∂2
t − ∆. If

all generalized bicharacteristic rays meet ω × ]0, Tc[ for some 0 < Tc < +∞, then
for all T > Tc, for all initial condition wo ∈ H1

0 (Ω), there exists a control g ∈
L2 (Ω× ]−T, T [) such that the solution y ∈ C (Rt;H

1
0 (Ω)

) ∩ C1
(
Rt;L

2 (Ω)
)

satisfies

∂2
t y −∆y = g|ω×]−T,T [ in Ω× Rt,

y = 0 on ∂Ω× Rt,
y(·, 0) = wo, ∂ty(·, 0) = 0 in Ω,

y ≡ 0 in Ω× (]−∞,−T ] ∪ [T,+∞[)
(5.12)

and

‖g‖L2(ω×]−T,T [) ≤ Cω,T ‖∇wo‖L2(Ω) .(5.13)

Remark 5.4. The result of Lemma 5.3 holds by a simple reflection argument
as a consequence of the theorem of Bardos, Lebeau, and Rauch [BLR] on the exact
controllability for hyperbolic equations which are obtained with microlocal techniques
and propagation of singularities of the solution of hyperbolic systems. We recall their
result to be complete.

Theorem [BLR]. Suppose Ω ⊂ R
n, n ≥ 1, is of class C∞, and there is no infinite

order of contact between the boundary ∂Ω and the bicharacteristics of ∂2
t −∆ . If all

generalized bicharacteristic rays meet ω × ]0, Tc[ for some 0 < Tc < +∞, then for all
T > Tc, for all θ ∈ C∞

0 (]0, T [), for all initial conditions (wo, w1) ∈ H1
0 (Ω) × L2 (Ω),

there exists a control 7 ∈ L2 (Ω× Rt) such that the solution Ψ ∈ C
(
Rt;H

1
0 (Ω)

) ∩
C1
(
Rt;L

2 (Ω)
)
satisfies


∂2
tΨ−∆Ψ = θ7|ω in Ω× Rt,

Ψ = 0 on ∂Ω× Rt,
Ψ(·, 0) = wo, ∂tΨ(·, 0) = w1 in Ω,
Ψ(·, T ) = ∂tΨ(·, T ) = 0 in Ω
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and

‖θ7‖L2(ω×]0,T [) ≤ Cω,T ‖(∇wo, w1)‖L2(Ω) .

Proof of Lemma 5.3. We choose w1 = 0 and extend Ψ in a symmetric way by
taking

y (x, t) =

∣∣∣∣ Ψ(x, t) in Ω× [0, T ] ,
Ψ(x,−t) in Ω× [−T, 0[ .

The control g will be given by

g (x, t)|ω×]−T,T [ = θ (t) 7 (x, t)|ω×]0,T [ + θ (−t) 7 (x,−t)|ω×]−T,0[ in Ω× ]−T, T [ ,
(5.14)

where θ ∈ C∞
0 (]0, T [) so that g (·,−T ) = g (·, 0) = g (·, T ) = 0.

5.3. Step 3. Construction of the control. Now we are able to construct and
estimate the control of Theorem 2.3 as follows.

We define w : (x, t) ∈ Ω× [0, ε] �−→ w (x, t) such that

w (x, t) =

∫
R

F (t, ') y (x, ') d',(5.15)

where F : (t, ') ∈ [0, ε]× R� �−→ F (t, ') is obtained from Proposition 5.1:

i∂tF + ∂

2
�F = f|J in ]0, ε[× R�,

i∂tF + ∂
2
�F = 0 in ]0, ε[× [−T, T ] ,

F (0, ·) = δ (·) in R�,
F (ε, ·) ≡ 0 in [−T, T ] ,

(5.16)

and y : (x, ') ∈ Ω× R� �−→ y (x, ') given by Lemma 5.3 satisfies

∂2
� y −∆y = g|ω×]−T,T [ in Ω× R�,

y = 0 on ∂Ω× R�,
y(·, 0) = wo ∈ H1

0 (Ω) , ∂�y(·, 0) = 0 in Ω,
y ≡ 0 in Ω× (]−∞,−T ] ∪ [T,+∞[) .

(5.17)

Let us calculate i∂tw (x, t):

i∂tw (x, t) =

∫
R

i∂tF (t, ') y (x, ') d'

=

∫
R

[−∂2
�F (t, ') + f|J

]
y (x, ') d'

=

∫
R

−F (t, ') ∂2
� y (x, ') d'+

∫ T

−T

[
f|J
]
y (x, ') d'

=

∫
R

F (t, ')
[
−∆y (x, ')− g (x, ')|ω×]−T,T [

]
d'.

Remark 5.5. The key point is that the solution y : (x, ') �−→ y (x, '), where ' ∈ R,
is identically null for ' out of the domain ]−T, T [. Next, we need that the solution
F : (t, ') �−→ F (t, ') is defined for ' ∈ R. Moreover, F must satisfy F (0, ·) = δ (·)
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in R, F (ε, ·) ≡ 0 in [−T, T ], and also the homogenous Schrödinger equation in the
domain ]0, ε[× [−T, T ]. Out of the domain [−T, T ] , F is solution of the Schrödinger
equation with a second member f , but we do not see it in the integrations by parts
because y is null on the support of f .

Our conclusion is 

i∂tw +∆w = ϑε|ω in Ω× ]0, ε[ ,

w = 0 on ∂Ω× ]0, ε[ ,
w (·, 0) = wo in Ω,
w (·, ε) = 0 in Ω

(5.18)

with an estimate of the control ϑε in ω × ]0, ε[, given by

ϑε (x, t) =

∫ T

−T
−F (t, ') g (x, ') d'

=

∫ T

−T
− (E +H) (t, ') g (x, ') d'

= ϑε,1 (x, t) + ϑε,2 (x, t) ,

(5.19)

where, from Proposition 5.1, (5.2), and (5.13), we have

‖ϑε,1 (·, t)‖L2(ω) =


∫

ω

∣∣∣∣∣
∫ T

−T
E (t, ') g (x, ') d'

∣∣∣∣∣
2

dx




1/2

≤ c
(∫

ω

∣∣∣∣ 1√t ‖g‖L2(]−T,T [)

∣∣∣∣
2

dx

)1/2

≤ 1√
t
Cω,T ‖∇wo‖L2(Ω),

(5.20)

‖ϑε,2 (·, t)‖L2(ω) =


∫

ω

∣∣∣∣∣
∫ T

−T
H (t, ') g (x, ') d'

∣∣∣∣∣
2

dx




1/2

≤
(
‖H (t, ·)‖2L2(]−T,T [)

∫
ω

‖g (x, ·)‖2L2(]−T,T [) dx

)1/2

≤ eC(1+1/ε2) Cω,T ‖∇wo‖L2(Ω).

(5.21)

We conclude with an estimate of (
∫
Ω
|∇w(x, t)|2dx)1/2 = (∫

Ω
| ∫

R
(E+H)(t, ')∇y(x,

')d'|2dx)1/2:

(∫
Ω

∣∣∣∣
∫

R

E (t, ')∇y (x, ') d'
∣∣∣∣
2

dx

)1/2

=


∫

Ω

∣∣∣∣∣
∫ T

−T
E (t, ')∇y (x, ') d'

∣∣∣∣∣
2

dx




1/2

≤ c
(∫

Ω

∣∣∣∣ 1√t ‖∇y (x, ·)‖L2(]−T,T [)

∣∣∣∣
2

dx

)1/2

≤ 1√
t
Cω,T ‖∇wo‖L2(Ω) ,

(5.22)
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(∫
Ω

∣∣∣∣
∫

R

H (t, ')∇y (x, ') d'
∣∣∣∣
2

dx

)1/2
=


∫

Ω

∣∣∣∣∣
∫ T

−T
H (t, ')∇y (x, ') d'

∣∣∣∣∣
2

dx



1/2

≤
(
‖H (t, ·)‖2L2(]−T,T [)

∫
Ω

‖∇y (x, ·)‖2L2(]−T,T [) dx

)1/2

≤ eC(1+1/ε2) Cω,T ‖∇wo‖L2(Ω) .

(5.23)

Remark 5.6. If we choose w (x, t) =
∫

R
F (t, ') y (x, ') d' with F given by (5.16)

and y given by (5.17) where the operator ∆ is replaced by ∆A, then w is solution of
(2.7).
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MOBILE POINT CONTROLS VERSUS LOCALLY DISTRIBUTED
ONES FOR THE CONTROLLABILITY OF THE SEMILINEAR

PARABOLIC EQUATION∗
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Vol. 40, No. 1, pp. 231–252

Abstract. It is well known now that a rather general semilinear parabolic equation with globally
Lipschitz nonlinear term is both approximately and exactly null-controllable in L2(Ω), when governed
in a bounded domain by the locally distributed controls. In this paper we intend to show that, in
fact, in one space dimension (Ω = (0, 1)) the very same results can be achieved by employing at
most two mobile point controls with support on the curves properly selected within an arbitrary
subdomain of QT = (0, 1) × (0, T ). We will show that such curves can be described by a certain
differential inequality and the explicit examples are provided. We also discuss some extensions of
our main results to the superlinear terms and to the case of several dimensions.

Key words. linear and semilinear parabolic equations, controllability, observability, point con-
trols

AMS subject classifications. 93, 35

PII. S0363012999358038

1. Introduction.

1.1. Problem description. In modeling physical processes in bounded domains
by controlled PDEs two types of controls—boundary and internal—are typically used.
The boundary controls act upon the system from outside, while the internal controls
act in the interior of the system’s space domain. Each of these controls can be both
distributed (i.e., depending both on x and t) and lumped (depending on t only). In
general, it seems obvious that the former ones are more powerful. However, the latter
ones seem more preferred in terms of applications. In this paper we are interested in
the following question arising in this context: Do the locally distributed controls really
(always) work “better” than the internal point ones?

We consider the Dirichlet initial-boundary value problem for the following one-
dimensional parabolic equation:

ut = uxx+ b(x, t)ux+a(x, t)u+f(u)+(Bv)(x, t) in QT = Ω× (0, T ) = (0, 1)× (0, T ),

(S) u(0, t) = u(1, t) = 0 in (0, T ), u |t=0 = u0 ∈ L2(0, T ),

a ∈ C(Q̄T ), b ∈ C0,1(Q̄T ).

Here the term (Bv)(x, t) models an internal control: B denotes the control operator
(it describes how the “control mechanism” acts and is “fixed”), and v is the value of
control.

Accordingly, in the case of locally distributed controls we have

(Bv)(x, t) = χω(x)v(x, t),(1.1)

∗Received by the editors June 21, 1999; accepted for publication (in revised form) January 10,
2001; published electronically May 31, 2001. This work was supported in part by NATO grant
CRG.CRG.972964.

http://www.siam.org/journals/sicon/40-1/35803.html
†Department of Pure and Applied Mathematics, Washington State University, Pullman, WA

99164-3113 (khapala@wsu.edu).
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where ω = (l1, l2) is the given subdomain of Ω = (0, 1) on which control v is supported
(so χω(x) is the characteristic function of ω), and v = v(x, t) is the function of both
the time and space variables.

To the contrary, the lumped controls, as it follows from their name, are the func-
tions of time only. Typically two kinds of internal lumped controls are employed:

(a) the point controls

(Bv)(x, t) = v(t)δ(x− s(t)),(1.2)

where s(t) is the preassigned point support of control v = v(t) at time t (so δ(x−s(t))
denotes Dirac’s mass concentrated at s(t)); and

(b) the averaged (or zone) controls

(Bv)(x, t) = v(t)χω(t)(x),(1.3)

where ω(t) ⊂ Ω is the given support of control v = v(t) at time t. Note that in the
latter case (1.3) the same value v(t) of the control function applies at every point of
the set ω(t).

If s(t) ≡ x0 in (1.2) and ω(t) ≡ ω in (1.3) for all t ∈ (0, T ), the lumped controls
are “static”; otherwise, they are called “mobile” or “scanning.”

The lumped controls are strongly motivated by numerous applications. They can
be regarded as a degenerate class of locally distributed ones. (The latter in turn can
be viewed as a collection of infinitely many former ones.) To analyze these two types
of control, one usually needs quite different methods. For example, the controllability
property by means of the locally distributed controls is essentially based on the unique
continuation property of solutions to the linear parabolic equation from an open set.
This property cannot, obviously, be associated with the case of lumped controls.

Generally, one cannot expect equally strong results for these two types of con-
trols. Nonetheless, we intend to show below that for a rather general system like (S),
whenever (S) is globally controllable by the locally distributed controls (1.1) supported
in ω × (0, T ), it is also globally controllable by means of at most two mobile point
controls (1.2) (see (1.6) below), which are supported on the curves s1(·) and s2(·) suit-
ably selected within the very same set ω× (0, T ). Our special concern is their explicit
description.

Let us recall in this respect that the geometry of control support is critical for
controllability by means of lumped controls. Namely, unlike the locally distributed
ones, the outcome in terms of controllability for the lumped controls is generally
unstable with respect to their support. For example, it is well known (see [4], [7],
[26]) that the standard heat equation in Ω = (0, 1) with the static point control
v(t)δ(x − x0), x0 ∈ (0, 1), is not controllable for any rational location x0. However,
it becomes approximately controllable in L2(0, 1) at any positive time T for x0 be-
ing any irrational number and exactly null-controllable for almost all irrational x0.
(These results are based on the explicit Fourier series approach and do not apply to
a linear system like (S) with f = 0, convection term, and time-varying coefficients.)
In this respect, nonetheless, our main results below deal with quite feasible geometric
Assumptions 1.1–1.3 that are “stable” with respect to either the C-, or, at most,
C2,1-topology for the choice of control curves.

Before we proceed any further, let us recall the classical definitions of controlla-
bility.

Assume that system (S) has a unique solution in the space C([0, T ];H) for any
u0 ∈ H and v ∈ V , where H and V are some Banach spaces.
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Definition 1.1. Given T > 0, system (S) is said to be approximately controllable
in H at time T if for an arbitrary ε > 0 and u0, uT ∈ H, there is a suitable v ∈ V
such that for the corresponding solution to (S) we have

‖ u(·, T )− uT ‖H ≤ ε.(1.4)

Definition 1.2. Assume f(0) = 0. Given T > 0, system (S) is said to be exactly
null-controllable in H at time T if for an arbitrary u0 ∈ H there is a suitable v ∈ V
such that the corresponding solution to (S) reaches the zero state (the equilibrium of
(S)) at time T ; that is,

u(·, T ) = 0.(1.5)

Everywhere below we deal with H = L2(0, 1) and controls either in L2(ω×(0, T ))
in the case of locally distributed controls or in L2(0, T ) in the case of point controls.

1.2. Main results. We further assume that the control term Bv is represented
by no more than two point controls as follows:

(Bv)(x, t) = v1(t)δ(x− s1(t)) + v2(t)δ(x− s2(t)).(1.6)

To ensure both the mathematical well-posedness of the system at hand (see Theorem
A1, below) and to preserve the physical meaning of s1(·) and s2(·) as of the trajectories
for the point controls, the following conditions are assumed throughout the remainder
of this paper.

Assumption 1.1. (i) The functions s1 = s1(t) and s2 = s2(t) are defined on some
segments lying in [0, T ] and are continuous functions with values in [0, 1]. (This means
that the actual controls act only where si’s are defined and are inactive otherwise.)

(ii) Any “horizontal” line {(x, t) | t = t∗} can cross any of the trajectories si(·)
at most at one point. (Indeed, if si(·), i = 1, 2 represent the paths of point controls,
then at every moment of time these controls can be supported at the single points
only; see Figures 1.1 and 1.2.)

Our first two results—Theorems 1.1 and 1.2—deal with the linear version of
system (S) and are, respectively, about the approximate and exact null-controllability
properties. Theorem 1.1 employs the following additional geometric condition.

Assumption 1.2. (meeting condition). There is an interval [t1, t2] ⊂ [0, T ) such
that the functions x = s1(t) and x = s2(t) are continuous and one-to-one on it with
values in [0, 1] and

s1(t2) = s2(t2), s1(t) < s2(t) ∀t ∈ [t1, t2).

This condition means that the two control point controls at hand arrive (“meet”)
at time t2 at the same point, as shown in Figure 1.2, for example.

Theorem 1.1 (approximate controllability). Let T > 0 be given, and let As-
sumptions 1.1 and 1.2 hold. Then the linear version of system (S), namely, with
f = 0 and Bv as in (1.6) (or, system (2.2) below, which is the same) is approximately
controllable in L2(0, 1) at time T . In turn its dual system (2.5) with two point sensors
is observable (in the sense described in (2.7) below).

Our next exact null-controllability result makes use of the following conditions.
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Fig. 1.1. One point control.

Assumption 1.3. (i) In addition to Assumption 1.2, assume that on the inter-
val [t1, t2] ⊂ [0, T ] the functions s1(·) and s2(·) are, respectively, strictly monotone
increasing and decreasing.

(ii) Assume that the connected geometric curve s(·) in Q̄T ⊂ R2, composed from
s1(·) and s2(·) on the interval [t1, t2] (recall that they “meet” at t2 by Assumption
1.2), is smooth and admits the following representation:

s(·) = {(x, t) | (x, t) ∈ A, F (x, t) = 0},

where A = {(x, t) | x ∈ [0, 1], t ∈ [t1, t2]} and F is an element of C2,1(A) and

−Ft(x, t) + 2b(x, t)Fx(x, t)−{b(x, t)F (x, t)}x + Fxx(x, t) ≤ 0 ∀(x, t) ∈ A∗,(1.7)

F (x, t) > 0 ∀(x, t) ∈ int {A∗}, F (x, t) ≤ 0 ∀(x, t) ∈ A\A∗,(1.8)

where A∗ = {(x, t) | s1(t) ≤ x ≤ s2(t), t ∈ [t1, t2]}.
Assumption 1.3(i) means that any “vertical” line (x = constant) within the layer

A crosses at most one of the curves s1(·), s2(·) at no more than one point. This
assumption (as well as (ii)) can be relaxed somewhat: we assume it to simplify our
further integration by parts. Several explicit examples illustrating Assumption 1.3
are given in section 6 below.
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Fig. 1.2. Two point controls.

Theorem 1.2 (exact null-controllability). Let T > 0 be given, and let Assump-
tions 1.1–1.3 hold. Then the linear version of system (S), namely, with f = 0 and Bv
as in (1.6) (see system (2.2) below), is exactly null-controllable in L2(Ω) at time T .

The approximate and exact null-controllability properties of a system like (S)
with globally Lipschitz f and the locally distributed controls were established (in
several space dimensions) in [14], [13], based on the method of Carleman estimates
(see also [24] for the case of the standard heat equation). For a different variational
approach relevant solely to the issue of approximate controllability we refer to [6]. In
this respect we have the following “lumped” result.

Theorem 1.3 (the semilinear case). Suppose that f is globally Lipschitz, dif-
ferentiable at zero, and vanishes at zero: f(0) = 0. Let T > 0 be given, and let
Assumptions 1.1–1.3 hold. Then system (S) with Bv as in (1.6) (or, (5.1) below,
which is the same) is exactly null-controllable in L2(Ω) at time T .

Remark 1.1.
• In Corollaries 2.1 and 5.1 and in Remark 2.1 we distinguish the cases when
all the above results hold with a single point control active only.
• In section 7.4 we also discuss possible extensions of Theorem 1.3 to some
superlinear growth rates for f , which were the subject of the recent works
[16], [8], [20], [21], [9], [2], [1], [11] dealing with the locally distributed controls.
• For the one-dimensional semilinear heat equation with the uniformly bounded
globally Lipschitz term, governed by the static point controls like in (1.2)
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with s(t) ≡ x0, the approximate controllability was shown in [28].
• In [19] the approximate controllability was established for the static zone
lumped controls like in (1.3), assuming that either (a) f is a sublinear logr |
u |-like function or (b) it is superlinear like | f(x, t, u, ux) |≤ β(t)(| u |r1 +
| ux |r2), where r1, r2 can exceed 1 and β(t)→ 0 faster than any of e−ν/t, ν >
0 as t → 0, and the dissipativity condition holds for such f . In [22] the last
restriction on the growth of f in t was avoided, assuming that b = 0, a = a(t)
in (S), and, in addition to the locally distributed control (1.3), one can use
the coefficient a = a(t) as an extra bilinear control.

In the appendix we prove the following supporting existence and regularity result
which insures the well-posedness of the boundary problem (S), (1.6). (To separate it
from our main controllability results and to indicate that its proof is delegated to the
appendix, we mark it as “A.1.”)

Theorem A.1. Let Assumption 1.1 hold, let f be globally Lipshitz, and let f(0) =
0. Then system (S), (1.6) admits a unique generalized solution in C([0, T ];L2(0, 1))

⋂
L2(0, T ;H1

0 (0, 1)) for which the following two estimates hold:

‖ u ‖L6(QT ) ≤ c(T )
(‖ u0 ‖L2(Ω) + ‖ v1 ‖L2(0,T ) + ‖ v2 ‖L2(0,T )

)
,(1.9a)

‖ u ‖C([0,T ];L2(0,1)) +

(∫ T

0

∫ 1

0

u2
x dxdt

)1/2

(1.9b)

≤ c(T )
(‖ u0 ‖L2(Ω) + ‖ v1 ‖L2(0,T ) + ‖ v2 ‖L2(0,T )

)
,

where c(T ) is nondecreasing and depends also on the C(Q̄T )-norms of a(x, t) and
b(x, t) and the Lipschitz constant of f .

The remainder of the paper is organized as follows. In sections 2–4 we deal with
the case when (S) is linear. Sections 4 and 5 consider the semilinear case with globally
Lipschitz f . Several explicit examples are given in section 6. In section 7 we analyze
some possible extensions of our main results.

2. The linear case: The dual observed system. In the linear case, to sep-
arate two types of controls, we represent (S) with the locally distributed controls
as

pt = pxx + b(x, t)px + a(x, t)p + v(x, t)χω(x) in QT ,(2.1)

p(0, t) = p(1, t) = 0 in (0, T ), p |t=0 = p0 ∈ L2(0, 1), v ∈ L2(ω × (0, T )),

while with two point controls (1.6) system (S) will look as follows:

ut = uxx + b(x, t)ux + a(x, t)u + v1(t)δ(x− s1(t))(2.2)

+ v2(t)δ(x− s2(t)) in QT ,

u(0, t) = u(1, t) = 0 in (0, T ), u |t=0 = u0 ∈ L2(0, 1), v1, v2 ∈ L2(0, T ).

It is known for (2.1) (and (2.5); see, e.g., [23]) and it is shown in the appendix
for (2.2) that these systems possess unique solutions in the space
Ξ = C([0, T ];L2(0, 1))

⋂
L2(0, T ;H1

0 (0, 1)), which we further endow with the norm

‖ z ‖Ξ = ‖ z ‖C([0,T ];L2(0,1)) +

(∫ T

0

∫ 1

0

z2
x dxdt

)1/2

,(2.3)

and the estimates like (1.9a) and (1.9b) hold.
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2.1. Approximate controllability: The linear case. Clearly, to analyze this
property in this case, it is sufficient to do it when the initial data is the zero-state:

p0 = 0 for (2.1) and u0 = 0 for (2.2).(2.4)

Then, as is well known (see, e.g., [5]), the issue of global approximate controllability
of systems (2.1) and (2.2) is tantamount to the observability property of the corre-
sponding dual boundary problem:

yt = yxx − (b(x, T − t)y)x + a(x, T − t)y in QT ,(2.5)

y(0, t) = y(1, t) = 0, y |t=0 = y0 ∈ L2(0, 1).

Namely, for (2.1) (or, for (2.1), (2.4), which is the same) system (2.5) must be observ-
able with respect to the locally distributed observation over ω × (0, T ); that is,

y ≡ 0 in ω × (0, T ) =⇒ y ≡ 0 in QT .(2.6)

In turn, for system (2.2) the dual observability property means that

y ≡ 0 along s1(T − ·), s2(T − ·) =⇒ y ≡ 0 in QT .(2.7)

This classical conclusion follows from the duality relations∫ 1

0

p(x, T )y0(x)dx =

∫ T

0

∫
ω

v(x, t)y(x, T − t)dxdt,

∫ 1

0

u(x, T )y0(x) dx =

∫ T

0

v1(t)y(s1(t), T − t) dt +

∫ T

0

v2(t)y(s2(t), T − t) dt,

which can be derived by multiplying accordingly (2.1), (2.4) and (2.2), (2.4) by
y(x, T − t) and further integration by parts over QT .

Note now that the statement (2.6) is equivalent to the unique continuation prop-
erty of solutions to (2.5) (also possessing the backward uniqueness property, e.g., [3])
from ω × (0, T ) to QT , which holds for any nondegenerate interval ω = (l1, l2).

We now intend to show that for any nondegenerate ω = (l1, l2) ⊆ (0, 1) one can
select two curves s1(·) and s2(·), lying in ω × (0, T ), which ensure (2.7), and hence
the approximate controllability of (2.2). Our results here are linked to the geometric
Assumptions 1.2 and 1.3 on these curves. In this subsection we employ the former.

We start with the discussion of the well-posedness of point observations.
Note that we have (b(·, T − ·)y)x, a(·, T − ·)y ∈ L2(QT ), while by the smoothing

effect u(·, t∗) ∈ H1
0 (0, 1) for any t∗ ∈ (0, T ] (see, e.g., [23, pp. 178–180], [25]). Hence

solutions to (2.5) on (t∗, T ) can be viewed as the ones of the standard heat equation
with the source term in L2((0, 1) × (t∗, T )) and the initial data in H1

0 (0, 1). Hence
they are continuous on any [0, 1] × [t∗, T ], i.e., on [0, 1] × (0, T ] for all y0 ∈ L2(0, 1).
Moreover, the following estimate holds for any t∗ ∈ (0, T ) (e.g., [25]):

‖ y ‖C([0,1]×[t∗,T ]) ≤ c(t∗)
(
‖ y(·, t∗) ‖H1

0 (0,1) + ‖ (b(·, T − ·)y)x + a(·, T − ·)y ‖L2(QT )

)
,

(2.8a)
where the symbol c(s) denotes any generic (i.e., they can be different) finite positive
function of s > 0. (The symbol C is reserved for a generic positive constant.)
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On the other hand, from the classical regularity results (based on the Fourier
series approach) it is known (again viewing (2.5) as the standard heat equation with
the source term in L2(QT )) that

‖ y(·, t∗) ‖H1
0 (0,1) ≤ c(t∗)

(‖ y0 ‖L2(0,1) + ‖ (b(·, T − ·)y)x(2.8b)

+ a(·, T − ·)y ‖L2(QT )

) ≤ c(t∗) ‖ y0 ‖L2(0,1),

(recall c(·) is generic), where we also used the following classical estimate for solutions
of (2.5) (see (1.9a), (1.9b), and (2.3)):

‖ y ‖Ξ ≤ c(T ) ‖ y0 ‖L2(Ω) .

Combining all of the above, we obtain

‖ y ‖C([0,1]×[t∗,T ]) ≤ c(t∗) ‖ y0 ‖L2(0,1) ∀t∗ ∈ (0, T ),(2.9)

which ensures the well-posedness of point observation.
Note also that for any continuous curve s(t) ∈ (0, 1), t ∈ (0, T ) satisfying As-

sumption 1.1, by the continuity of embedding H1
0 (0, 1) ⊂ C[0, 1], and by Poincaré–

Friedrichs’s inequality, we have

‖ y(s(T − ·), ·) ‖L2(0,T ) ≤ C ‖ y ‖L2(0,T ;H1
0 (0,1)) .

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. The case of the standard heat equation. Note that by the

smoothing effect, the solutions to (2.5) are classical in the cylinder

B = {(x, t) | x ∈ [0, 1], t ∈ [T − t2, T − t1]} = {(x, t) | (x, T − t) ∈ A}

for any y0 ∈ L2(0, 1). This permits us to apply the classical maximum principle in it,
which states that the maximum and minimum of y in (the closed set) B are attained
on the boundary

ΓT−t2,T−t1 = {(x, t) | x = 0, 1; t ∈ [T − t2, T − t1]}
⋃
{(x, t) | t = T − t2, x ∈ [0, 1]}

of this cylinder. Now we would like to remind the reader of the classical proof of this
statement in order to show that it remains true for the set

B∗ = {(x, t) | (x, T − t) ∈ A∗}

in place of B as well.
Assume it is false, e.g., that y reaches its maximum in B, say, M , at the point

(x0, t0) ∈ B\ΓT−t2,T−t1 , where M = m+ ε, m = max{y(x, t) | (x, t) ∈ ΓT−t1,T−t2},
and ε > 0. Introduce an auxiliary function v(x, t) = y(x, t) + k(t0 − t).

Now select a positive parameter k sufficiently small to ensure that

‖ y − v ‖C(B)≤ ε/2.

Then v also reaches its maximum in B, say, at the point (x1, t1) ∈ B\ΓT−t2,T−t1 ,
because

v(x1, t1) ≥ v(x0, t0) = m+ ε,
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while v cannot exceed m+ε/2 on ΓT−t2,T−t1 . At the maximum point (x1, t1) we have

yxx(x1, t1) = vxx(x1, t1) ≤ 0 ≤ vt(x1, t1) = yt(x1, t1)− k.

Therefore, the heat equation does not hold at (x1, t1), which is a contradiction.
Analyzing this proof, the reader can see that, under Assumptions 1.1 and 1.2, it

holds true without any changes for the set B∗ = {(x, t) | s1(T−t) ≤ x ≤ s2(T−t), t ∈
[T − t2, T − t1]} in place of B and for the combined connected (by Assumption 1.2)
geometric curve s(·) = s1(T − ·)

⋃
s2(T − ·) in place of ΓT−t2,T−t1 as well. Thus we

establish the following:

‖ y ‖C(B∗) ≤ max
i=1,2
{‖ y(si(T − ·), ·) ‖C[T−t2,T−t1]}(2.10)

= max
i=1,2
{‖ y(si(·), T − ·) ‖C[t1,t2]}.

In other words, if the solution y to (2.5) vanishes on the curves s1(T − t) and s2(T −
t), t ∈ [T − t2, T − t1], “emitted” from the point (s1(t2) = s1(t2), T − t2), then y
vanishes everywhere in B∗.

Furthermore, by the unique continuation property (e.g., [27]) y vanishes in the
horizontal layer B. By backward (and forward) uniqueness this solution vanishes in
QT . Thus we have (2.7) and hence the approximate controllability of dual (2.2).

The general case. Step 1. Represent the equation in (2.5) as follows:

yt = yxx − b(x, T − t)yx + d(x, T − t)y,

where d(x, T − t) = a(x, T − t)− bx(x, T − t).
We know (see (2.8a–b)–(2.9)) that y(x, T − t2) ∈ H1

0 (0, 1). Let us assume for a
while that y(x, T − t2) and the coefficients b(x, T − t) and d(x, T − t) are infinitely
many times continuously differentiable in B. Then y will be the classical solution to
(2.5) in the latter set; see, e.g., [12, p. 65].

Moreover, without loss of generality, we can assume that d(x, T − t) ≤ 0 in B.
(Indeed, this can be achieved by a simple change of variable ŷ → y : ŷ = eλty with
properly selected parameter λ.) If so, y satisfies the maximum principle in any set
P(t) = B∗

⋂{(x, t) | t ≥ t∗}, where t∗ ∈ (T − t2, T − t1] (see [12], pp. 34–35); that is,
| y(x, t) | reaches its maximum on the lower boundary of the set P(t):

| y(x, t) | ≤ max{‖ y(si(T−·), ·) ‖C[T−t∗,T−t1], i = 1, 2; max
r∈[s1(T−t∗,s2(T−t∗)]

| y(r, t∗) |}

∀(x, t) ∈ P(t);

see Figure 2.1. Since s1(t2) = s2(t2) with t∗ → T − t2, this estimate implies (2.10)
whenever y is the classical solution.

Step 2. Consider now any solution to (2.5). Similar to the argument leading to
(2.9), we can show that it can be approximated in the C(B)-norm by a sequence of
the classical solutions to the boundary problem

yjt = yjxx − bj(x, T − t)yjx + dj(x, T − t)yj in B,

yj(0, t) = yj(1, t) = 0, yj |t=T−t2 = yj0,
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where bj(x, T − t), dj(x, T − t), and yj0(x) are infinitely many times continuously
differentiable functions converging, respectively, in the C(B)-norm to b(x, T − t) and
d(x, T − t), and in the H1

0 (0, 1)-norm to y∗0(x) = y(x, T − t2). Moreover, dj ’s can be
selected to preserve the inequality dj(x, T − t) ≤ 0 in B for all j = 1, . . ..

Indeed, to approximate the coefficients, one may first continuously extend their
domain to a larger set and then use a suitable averaging procedure. To ensure the
above-mentioned inequality for dj ’s, if necessary, d(x, T − t) should be approximated
first by a sequence of continuous functions for which this inequality is strict in B. To
approximate y∗0 , it is sufficient to recall that the infinitely many times continuously
differentiable functions with compact support in (0, 1) are dense in H1

0 (0, 1).
Then, for the difference zj = y − yj , we have the following boundary problem:

zjt = zjxx − bj(x, T − t)zjx + dj(x, T − t)zj + fj in B,(2.11)

zj(0, t) = zj(1, t) = 0, zj |t=T−t2 = y∗0 − yj0,

where fj(x, t) = −(b(x, T − t) − bj(x, T − t))yx + (d(x, T − t) − dj(x, T − t))y. An
estimate like (1.9a)–(1.9b) applied to (2.5) implies that

‖ fj ‖L2(B) ≤ C
(‖ b− bj ‖C(A) + ‖ d− dj ‖C(A)

) ‖ y0 ‖L2(0,1)

for some C > 0.
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Similar to (2.8a) and (2.8b), that is, viewing (2.11) as the standard heat equation
with the source term −bj(x, T − t)zjx + dj(x, T − t)zj + fj(x, t) in L2(B), we obtain
that

‖ zj ‖C(B)

≤ C1

(
‖ zj(·, T − t2) ‖H1

0 (0,1) + ‖ −bj(·, T − t)zjx + dj(·, T − t)zj + fj ‖L2(B)

)

≤ C2(‖ zj(·, T − t2) ‖H1
0 (0,1) + (‖ bj ‖C(A) + ‖ dj ‖C(A)) ‖ zj ‖Ξ(B)

+
(‖ b− bj ‖C(A) + ‖ d− dj ‖C(A)

) ‖ y0 ‖L2(0,1)])

for some positive constants Ci, i = 1, 2, where Ξ(B) is the restriction of the space
Ξ defined on QT to B). Now, applying the estimates like (1.9a) and (1.9b) to zj as
the solution of (2.11), we derive that

‖ zj ‖Ξ(B) ≤ C
(‖ zj(·, T − t2) ‖L2(0,1) + ‖ fj ‖L2(B)

)
for some C > 0, with ‖ fj ‖L2(B) already evaluated in the above. Hence

lim
j→∞

‖ zj ‖C(B) = lim
j→∞

‖ y − yj ‖C(B) = 0.(2.12)

Step 3. Now, if y vanishes on the curves s1(T−t) and s2(T−t), t ∈ [T−t2, T−t1],
lying in B, then, by (2.12),

lim
j→∞

max
i=1,2
{‖ yk(si(T − ·), ·) ‖C[T−t2,T−t1]} = 0.(2.13)

Combining (2.13) with (2.10) applied to the classical solutions yj , j = 1, . . . (see Step
1), yields that

lim
j→∞

‖ yj ‖C(B∗) = 0,

which in view of (2.12) means that y vanishes in B∗.
The end of the proof in the general case of (2.5) is identical to the case of the

standard heat equation in the above with one correction: in the general case we don’t
have enough regularity to make use of the unique continuation result of [27]. Instead,
we will use the estimate (4.4) below with D = intB∗, which gives y |t=T= 0 and, by
duality discussed in the beginning of this subsection, the approximate controllability
of (2.2). To obtain (2.7), one needs also to use the backward uniqueness property of
solutions to (2.5) (e.g., [3]). This completes the proof of Theorem 1.1.

Corollary 2.1. Note that, due to the zero boundary condition in (2.5) (i.e.,
y vanishes on the lines x = 0 and x = 1), the conclusion of Theorem 1.1 also holds
when we have just one point control, whose trajectory “hits” the boundary of (0, 1) at
some time t2, while approaching it from the interior of Ω = (0, 1). (The actual proof
of Theorem 1.1 is given below for this case.)
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2.2. Exact null-controllability: The linear case. For a system like (2.1)
with varying coefficients and the locally distributed controls this property was shown
in [14], [13] (see [24] for the standard heat equation). The methods of these works
employ Carleman’s estimates to enhance the unique continuation property, namely,
by establishing the following estimate for the solutions to (2.5):

‖ y(·, T ) ‖L2(0,1) ≤ C ‖ y ‖L2(ω×(0,T )) .(2.14)

Note that (2.14) also provides the unique continuation property of y from ω×(0, T )
to QT , and hence the approximate controllability of (2.1). However, it means more,
namely, that the operator which maps the trace y on ω × (0, T ) to y(·, T ) on (0, 1)
is well defined and continuous with respect to the spaces in (2.14). By duality, this
classically yields the exact null-controllability of (2.1) in L2(0, 1) at time T .

In this respect our next goal is to derive an estimate analogous to (2.14) for two
point sensors “dual” of the two point controls in (2.2), which, by duality, is tantamount
to Theorem 1.2. Our main result here is as follows.

Theorem 2.2 (observability estimate). Let T > 0 be given, and let Assump-
tions 1.1–1.3 hold. Then for any solution to the system (2.5) we have the following
observability estimate (also implying (2.7)):

‖ y(·, T ) ‖L2(0,1) ≤ C

(∫ T−t1

T−t2
(y2(s1(T − t), t) + y2(s2(T − t), t))dt

)1/2

.(2.15)

The proof of Theorem 2.2 is given in the next two sections.
Remark 2.1. Both Theorems 2.2 and 1.2 can be extended as in Corollary 2.1.

3. An auxiliary observability estimate (3.6). In this section our goal is to
derive the estimate (3.6) under the assumptions of Theorem 2.2. For simplicity we
will further assume that t1 = 0, t2 = T and formally set s1(t) = 0 for t ∈ [0, T ] (as in
Corollary 2.1; otherwise, see Remark 3.1).

Let

‖ a(x, t) ‖C(Q̄T ) = L.(3.1)

Let F be as in Assumption 1.3. Given T > 0, put

ϕ(x, t) =

{
F (x, T − t) for (x, t) ∈ B∗,
0 for (x, t) ∈ B\B∗.(3.2a)

Under Assumption 1.3, ϕ ∈ C2,1(B∗) is nonnegative, vanishes in B\B∗, and

ϕ = 0 on s2(T − ·) and ϕ > 0 in int {B∗}.(3.2b)

Multiplication of (2.5) by ϕy and further integration by parts over Qt (for all t ∈
[0, T ]) or over the set B∗t = B∗

⋂{(x, τ) | 0 < τ < t}, which is the same, yield

1

2

∫ 1

0

ϕ(x, t)y2(x, t)dx

=

∫ t

0

∫ 1

0

(
a(x, T − τ)ϕy2 +

1

2
ϕτy

2 + yxxϕy − (b(x, T − τ)y)xyϕ

)
dxdτ
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=

∫ ∫
B∗
t

a(x, T − τ)ϕy2dxdτ − 1

2

∫ ∫
B∗
t

ϕx(y
2)xdxdτ

−
∫ ∫

B∗
t

ϕy2
xdxdτ +

1

2

∫ ∫
B∗
t

(ϕτy
2 + 2b(x, T − τ)ϕxy

2 + b(x, T − τ)ϕ(y2)x)dxdτ

≤ L

∫ ∫
B∗
t

ϕy2dxdτ − 1

2

∫ ∫
B∗
t

ϕx(y
2)xdxdτ

+
1

2

∫ ∫
B∗
t

{ϕτ + 2b(x, T − τ)ϕx − (b(x, T − τ)ϕ)x} y2dxdτ.(3.3)

From (3.2a) we derive, using Green’s formula, that

−
∫ ∫

B∗
t

ϕx(y
2)xdxdτ ≤

∫ ∫
B∗
t

ϕxxy
2dxdτ +

∫ t

0

| ϕx(s2(T−τ), τ) | y2(s2(T−τ), τ)dτ.
(3.4)

Combining further (3.4) with (3.3), we obtain∫ 1

0

ϕ(x, t)y2(x, t)dx ≤ 2L

∫ t

0

∫ 1

0

ϕy2dxdτ + max
(x,t)∈s̄(T−·)

| ϕx |
∫ T

0

y2(s2(T−τ), τ)dτ

+

∫ ∫
B∗
t

(ϕτ + 2b(x, T − τ)ϕx − (b(x, T − τ)ϕ)x + ϕxx)y
2dxdτ.

In turn, recalling (3.2a) and (1.7) yields∫ 1

0

ϕ(x, t)y2(x, t)dx

≤ 2L

∫ t

0

∫ 1

0

ϕy2dxdτ + max
(x,t)∈ω̄(·)

| Fx |
∫ T

0

y2(s2(T − τ), τ)dτ.(3.5)

Making use of Bellman–Gronwall’s lemma, we can obtain from (3.5) that∫ 1

0

F (x, T − t)y2(x, t)dx ≤ e2LT max
(x,t)∈s̄(·)

| Fx |
∫ T

0

y2(s2(T − τ), τ)dτ ∀t ∈ (0, T ).

Hence, by (3.2b), there is an open subset D∗ in QT (say, near the line {(x, t) | t = T})
for which ∫

D∗
y2(x, t)dxdt ≤ Me2‖a‖C(Q̄T )T

∫ T

0

y2(s2(T − t), t)dt,(3.6)

where M is a positive constant, which does not depend on a(x, t). (This circumstance
is critical for the fixed point argument in section 5.)

Remark 3.1. In the general case (i.e., when s1(·) is present) in the above proof
we will have just one more term similar to that in the above containing s2(T − ·) for
the other branch of the curve s(·) defined in Assumption 1.3.
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4. Auxiliary observability estimate for locally distributed support. It
was shown in [14], [13, p. 24] that system (2.1) is exactly null-controllable from any
p0 ∈ H1

0 (0, 1) at any positive time T by using a locally distributed control whose
magnitude is bounded as follows:

‖ v ‖L2(ω×(0,T )) ≤ C ‖ p0 ‖H1
0 (0,1),(4.1)

where C depends on ω × (0, T ).
The same result is also true for p0 ∈ L2(0, 1) and the locally distributed controls

supported on any open subset of QT . Indeed, it is sufficient to show this for a control
support like Υ = (l1, l2) × (t1, t2), where (l1, l2) ⊂ (0, 1), 0 < t1 < t2 < T (i.e., with
control v = v(x, t) vanishing on QT \Υ).

Indeed, by the regularity of solutions to (2.1) with p0 ∈ L2(0, 1) and v = 0 on
(0, t1), we have (similar to (2.8a) and (2.8b)) that

‖ p(·, t1) ‖H1
0 (0,1) ≤ C ‖ p0 ‖L2(0,1) .(4.2)

Applying the above exact null-controllability result on the time-interval (t1, t2)
yields that there is a control v = v(x, t) with support on Υ such that p(·, t2) = 0,
while (4.1) holds with (t1, t2) in place of (0, T ) and p(·, t1) in place of p0. Hence, with
v = 0 on (t2, T ), p(·, T ) = 0 also. Combining this with (4.2), we derive the estimate

‖ v ‖L2(Υ) ≤ C(Υ) ‖ p0 ‖L2(0,1),(4.3)

in which Υ can thus be any open subset of QT .
By the classical duality argument (4.3) implies the following dual observability

estimate for (2.5):

‖ y(·, T ) ‖L2(0,1) ≤ C(D) ‖ y ‖L2(D),(4.4)

where, again, D = {(x, t) | (x, T − t) ∈ Υ} can be any open subset of QT .
If one selects D = D∗ as in (3.6), then combining (4.4) and (3.6) provides the

conclusion of Theorem 2.2.
Remark 4.1. Estimates (4.3) and (4.4) are immediate “adjustments” of the cor-

responding results in the above-cited works [14] and [13, p. 24]. The reader can find
much more refined estimates of this type in [10]. (They were applied to the semilinear
case in [11].)

5. The semilinear case.
Proof of Theorem 1.3. Let us give first the explicit form of system (S), (1.6) in

Theorem 1.3, which is as follows:

ut = uxx + b(x, t)ux + a(x, t)u + f(u) + v1(t)δ(x−s1(t)) + v2(t)δ(x−s2(t)) in QT ,
(5.1)

u(0, t) = u(1, t) = 0 in (0, T ), u |t=0 = u0 ∈ L2(0, 1), v1, v2 ∈ L2(0, T ).

Now note that the proof of Theorem 1.3 follows, in fact, from Theorems 2.2 and 1.2 by
the fixed point argument (see, e.g., [6], [14], [13]). Its idea is to seek a suitable solution
u to (5.1) satisfying (1.5) as a special (“fixed point”) solution to the linear system like
(2.2) with the potential a(x, t)+ f(z(x, t))/z(x, t) in place of a(x, t) when z runs over
L2(QT ), namely, for which z = u. In its abstract operator form, this argument, based
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on the estimate (1.9a)–(1.9b) and Theorems 2.2 and 1.2, is principally the same as
for the locally distributed controls [18]. Therefore, we omit it here.

Remark 5.1. Theorem 1.3 can easily be extended to the case of f = f(x, t, u) for
which the properties described in it hold uniformly in x and t.

Corollary 5.1. The result of Theorem 1.3 holds with respect to approximate
controllability, provided t2 = T in Assumption 1.3.

This is an immediate traditional “structural” consequence of the exact null-
controllability; see, e.g., [13, pp. 35–38]. Indeed, fix any ε > 0, and select any two
initial and target states u0 and u1 in L2(0, 1) for (5.1). Then, by the continuity of
solutions to (5.1) in time (see, e.g., Theorem A.1), we can find T∗ close enough to T
and u∗ close enough to u1 such that the solution to (5.1) on (T∗, T ), which we denote
by ū with the “initial” state ū(·, T∗) = u∗ and v1 = v2 = 0, satisfies

‖ ū(·, T )− u1 ‖L2(0,1) ≤ ε.(5.2)

We build the control required to obtain (1.4) as follows.
On (0, T∗) we apply the zero controls, while on (T∗, T ) we employ controls v1 and

v2, which solve the following auxiliary exact null-controllability problem:

ût = ûxx + b(x, t)ûx + a(x, t)û + f(û+ ū) − f(ū) + v1(t)δ(x− s1(t))

+ v2(t)δ(x− s2(t)) in (0, 1)× (T∗, T ),

û(0, t) = û(1, t) = 0 in (T∗, T ), û |t=T∗ = u(·, T∗)− u∗,

û(·, T ) = 0 in (0, 1).(5.3)

This is possible due to Theorem 1.3 applied on (T∗, T ) (recall we assumed that s1(·)
and s2(·) “meet” at t2 = T ) for the function f(x, t, s) = f(s + ū(x, t)) − f(ū(x, t))
satisfying the assumptions of Theorem 1.3 along with Remark 5.1. Then on (T∗, T )
we have

u = û+ ū,

and hence, since u(·, T ) = ū(·, T ), (5.3) and (5.2) imply (1.4).

6. Examples.
Example 6.1. Let Ω = (0, 1) and the equation in (2.2) has the form

ut = uxx + bux + v(t)δ(x− α(T − t)) in QT , v ∈ L2(0, T ).(6.1)

We assume that α > 0 and the velocity of convection b is positive and constant.
Thus (6.1) is the case of the point control, which moves across Ω from the point
x = min{1, αT} to the left end-point x = 0 of the space domain Ω at the constant
speed α; see Figure 1.1.

Put

F (x, t) = −x+ α(T − t),

A∗ = {(x, t) ∈ Q̄T | x ≤ α(T − t)}.
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Take any 0 < T < 1/α. In turn, condition (1.7) gives

α ≤ b.

Hence, to make Theorem 1.2 work along Remark 2.1 with a single point control, we
need the latter to move in the direction of convection with a speed which does not
exceed that of convection. Note that our point control moves within the interval
[0, αT ].

Example 6.2. In Example 6.1, one can consider a parabolic trajectory F (x, t) =
−(x− 0.5)2 + α(T − t) = 0, whose two branches on the left and on the right of the
line x = 0.5 form the control curves for two point controls:

s1(t) = 0.5−
√

α(T − t), s2(t) = 0.5 +
√

α(T − t), t ∈ (0, T );

see Figure 6.1.
To satisfy Theorem 1.2, one may select, e.g., α ∈ (0, 2], T < 0.25/α, while setting

b = 0, i.e., omitting convection. Note that our point controls move within the interval
[0.5 − √αT , 0.5 +

√
αT ]. (For instance, for α = 0.4, T = 0.1 this interval will be

[0.3, 0.7].)
Example 6.3. The parabolic trajectories as in Example 6.2 will satisfy any a and

b described in (S). Indeed, in this case (1.8) holds as before, and (1.7) is as follows:

αT + b(x, t)(−2(x− 0.5)) − bx(x, t)(−(x− 0.5)2 + α(T − t)) − 2 ≤ 0.
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The estimate will hold if, e.g., t2 = T , while αT and t2 − t1 are sufficiently small
positive numbers.

Examples 6.1–6.3 admit immediate extension to the semilinear case like in The-
orem 1.3.

7. Concluding remarks. The above results can be extended in a number of
ways.

7.1. More general coefficients. In (S) we may introduce a varying coefficient
for the leading term; that is, q(x, t)uxx, q(x, t) > 0 instead of uxx. In particular, along
the scheme of section 3 dealing with the integration by parts, this will change the
condition (1.7) to the following:

−Ft(x, t) + 2b(x, t)Fx(x, t)− {b(x, t)F (x, t)}x + (q(x, t)F )xx ≤ 0 ∀(x, t) ∈ A∗.

7.2. Alternative L∞(ε, T )-estimates. Note that if [t1 = 0, t2] ⊂ [0, T ), then
by (2.9) the trace of y on the curve s(·) in Assumption 1.3 is a continuous function.
Hence (2.15), derived for two point sensors, implies

‖ y(·, T ) ‖L2(0,1) ≤ C(ε) ‖ y(s(T − ·), ·) ‖L∞(ε,T ),(7.1)

where ε = T − t2.
The same type of estimates was the subject of the works [15] and [17], where

the path s(·) for a single point sensor was selected within QT following a certain
algorithmic optimization procedure with infinitely many steps. Unlike the results of
this paper, the method of [15] and [17] did not provide the explicit description of s(·).

The idea of [15] and [17] was to select (a) a countable set of solutions {y1, . . .}
to (2.5) which is dense (in suitable sense) in the set of all possible solutions to (2.5)
and (b) an arbitrary sequence of moments 0 < t1 < t2 . . . in (ε, T ), and then (c) to
associate them with a sequence of points xk ∈ (0, 1) such that

‖ yk(·, T ) ‖L2(0,1) ≤ C | yk(xk, tk) |

for the same C > 0 for all k = 1, . . .. The latter was achieved making use of the
maximum principle in [15] and its generalized version in [17]. Then to have (7.1), s(·) is
to be selected as any continuous curve passing through all the points (tk, xk), k = 1, . . ..

The estimate (7.1) yields the observability in the sense of (2.7) of system (2.5)
for the corresponding s(·) and hence, as it was described in section 2, the approx-
imate controllability of (2.2) by means of L2(0, T )-controls. Moreover, in the dual
fashion leading to Theorem 1.2, the estimate (7.1) also provides a similar exact null-
controllability result but with controls from the space dual of L∞(ε, T ).

It seems plausible that the results of [15] and [17] can be extended to narrow the
(implicit) selection of the trajectories s(·) to those lying within any open set ω×(ε, T ),
based on the technique of section 4 in the above, making use of the estimate (4.4)
instead of the maximum principle as in these works. However, one should expect a
highly irregular (“impractical”) behavior of such curves when following this strategy.

7.3. The case of several dimensions. The just-mentioned “linear” results of
[15] and [17] for single point sensors actually hold in the several space dimensions as
well, in which case solutions to the dual linear system like (2.2) with (L∞(0, T ))′-
controls can be defined by the duality technique. It is not so in the semilinear case
like (5.1).
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It should also be noted that in several space dimensions the well-posedness of the
point observations requires more regularity than L2(Ω) for the initial data. Hence
the dual controllability of the corresponding multidimensional version of (2.2) can be
achieved only in the spaces that are weaker than L2(Ω). This explains, in particular,
why in the above we focused on the one-dimensional case.

On the other hand, the results of this paper for the controllability in L2(Ω) can
easily be extended to the case of several dimensions in the sense that in n space
dimensions we should use controls that are supported on the surfaces of dimension
[n−1]. In this way in [15] we established the exact null-controllability of the semilinear
reaction-diffusion-convection equation with the superlinear reaction term like f(u) =
− | u | ur, r > 0 and the additive linear convection term, assuming that the control
supporting surface (a) satisfies a differential inequality like (1.7) and (b) separates the
top of the cylinder QT from its bottom.

7.4. Superlinear growth. In the series of recent works [16], [8], [20], [21], [9],
[2], [1], [11], [22] the global exact null- and/or approximate controllability of a mul-
tidimensional system like (S) were shown by means of locally distributed controls for
various types of superlinear growth of nonlinear terms.

• Superlinear logarithmic growth. In [8] the exact null-controllability property
was shown in L2(Ω) (or appropriate Sobolev space) assuming that f can
grow superlinearly at the rate lim|p|→∞ f(p)/(p log | p |) = 0. This result

was improved in [2] to the rate lim|p|→∞ f(p)/(p(log | p |)3/2) = 0 under the
additional dissipativity condition that −f(u)u ≥ −cu2, where c > 0. In [9],
[11] it was shown that the latter condition can be avoided, both in terms of
exact null- and approximate controllability. Interestingly, [9], [11] deal with
the system which admits blow-up.
• Polynomial growth. It is well known that if f is dissipative and admits the
polynomial growth at infinity, then, in general, it is not globally controllable
in any of Lp(Ω)-type spaces; see [13], [6], and the references therein. Nonethe-
less, it was shown in [20] that this property indeed holds in some spaces that
are weaker than any of the above-mentioned Lp-spaces. Alternatively, the
global approximate controllability in L2(Ω) can be achieved for such systems
by using an additional bilinear lumped control [22] (see also Remark 1.1).
The result of [21] extends that of [19] for the superlinear time-dependent
nonlinearities with “fast” convergence to zero as t→ 0 to the n-dimensional
case with the locally distributed controls in place of the lumped ones as in
(1.3) in the one-dimensional case; see Remark 1.1.

• Polynomial growth: Finite dimensional controllability. The local aspects at
an equilibrium of this property for dissipative nonlinearities were analyzed in
[29]. For the global aspects we refer to [20].

The extension of our Theorem 1.3 to the above-listed superlinear terms is an open
question. On the one hand, since in this article we reduce the issue of controllability
with the point controls to that with the locally distributed ones (namely, (2.15) fol-
lows from (3.6) and (4.4)), this extension does not seem impossible, at least in some
situations. On the other hand, there are many serious difficulties, both technical and
conceptual, in this direction. Let us mention just two of them here.

• The existence of a solution to (S) with the point control (1.2) seems to be
a highly technical issue and can intrinsically be ill-posed (involving potential
blow-up) when the dissipativity condition is not assumed (see, [8], [9], [11]).
• In the superlinear case the uniqueness of solutions to the boundary problem
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at hand typically is not guaranteed. This means that Definitions 1.1 and 1.2
are ill-posed, which requires their certain generalization. In the works [8], [9],
[11], and [2] these properties were established in the sense that there is at
least one solution to the PDE at hand for which either (1.4) or (1.5) holds.
In [16], [20], [21], and [22] controllability was achieved by selecting a control
that can uniformly steer all possible multiple solutions.

Appendix A. In this section we prove Theorem A.1 formulated at the end of
subsection 1.2. For simplicity of notations our proof deals with the system (S) or
(5.1), which is the same, and one point control as in (1.2).

Proof of Theorem A.1. The uniqueness follows by the standard technique.
Our proof of existence is based on that of the corresponding existence result

in [23, pp. 467–474], established there for (5.1) in the absence of the control term
v(t)δ(x− s(t)). The degenerate nature of the latter is the crux here.

For simplicity we further omit the coefficient a, assuming that it is incorporated
into the globally Lipschitz f .

First of all, let us recall that we deal here with generalized solutions, understood
in the sense of the following identity, obtained by formal integration by parts of (5.1)
multiplied by an arbitrary smooth test function ψ, vanishing at x = 0, 1:

∫ t

0

∫
Ω

(−uψt − uxψxdxdt − buxψ + f(u)ψ)dxdt

=

∫
Ω

(ψ(x, 0)u0 − ψ(x, t)u(x, t))dx +

∫ T

0

vψ(s(τ))dτ ∀t ∈ [0, T ].(A.1)

Here, by the Lipschitz property of f and the embedding theorems (e.g., [23]) f(u) ∈
L6(QT ) for all u ∈ Ξ and

‖ ψ(s(·), ·) ‖L2(0,T ) ≤ C ‖ ψ ‖L2(0,T ;H1
0 (0,1)(A.2)

for some positive constant C.
Following [23], we apply Galerkin’s method. Namely, we look for an approximate

solution uN in the form

uN (x, t) =

N∑
k=1

cNk (t)ψk(x),

where {ψk} is a fundamental system in H1
0 (QT ), i.e., ψk’s are linear independent and

span the entire H1
0 (QT ), and∫

Ω

ψkψldx = δlk and ‖ ψk, ψkx ‖L∞(QT ) ≤ ck k = 1, . . . .

The substitution of uN into (5.1) provides the following system of ordinary dif-
ferential equations in cNk ’s:

∂ck
∂t

=

∫
Ω

(
uNxiψkx + b(x, t)uNx ψk − f(uN )ψk

)
dx + v(t)ψk(s(t), t), k = 1, . . . , N,

(A.3)
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with the initial conditions

cNk (0) =

∫
Ω

u0(x)ψk(x, 0)dx, k = 1, . . . , N.

Multiplication of the kth equation in (A.3) by cNk (t) and summation of all the
equations and integration over (0, T ) yield that

1

2
‖ uN (x, t) ‖2L2(Ω) ≤

1

2
‖ uN (·, 0) ‖2L2(Ω) −

∫ t

0

∫
Ω

(uNx )
2dxdτ

+ max
(x,t)∈Q̄T

{| b(x, t) |}
∫ t

0

∫
Ω

uNx uNdxdτ

+ L

∫ t

0

∫
Ω

(uN )2dxdt + ‖ v ‖L2(0,T )‖ uN (s(·), ·) ‖L2(0,t),(A.4)

where L is the Lipschitz constant for f .
Young’s and Poincaré–Friedrichs’s inequalities and (A.2) provide us with the fol-

lowing estimates, valid for any s > 0:

‖ v ‖L2(0,T )‖ uN (s(·), ·) ‖L2(0,t) ≤ 1

s
‖ v ‖2L2(0,T ) + s ‖ uN (s(·), ·) ‖2L2(0,t)

≤ 1

s
‖ v ‖2L2(0,T ) + sC∗

∫ t

0

∫
Ω

(uNx )
2dxdτ(A.5)

for some C∗ > 0, and

∫ t

0

∫
Ω

uNx uNdxdτ ≤ 1

s
‖ uN ‖2L2(Qt)

+ s

∫ t

0

∫
Ω

(uNx )
2dxdτ.(A.6)

Select s > 0 in (A.5) and (A.6) so that

1 − sC∗ − s max
(x,t)∈Q̄T

| b(x, t) | > 1

2
.

Then we derive from (A.4)–(A.6) that

max
τ∈[0,t]

‖ uN (·, τ) ‖2L2(Ω) +

∫ t

0

∫
Ω

(uNx )
2dxdτ

≤ 2

[
‖ uN (·, 0) ‖2L2(Ω) + 2L

∫ t

0

∫
Ω

(uN )2dxdτ

+ 2 max
(x,t)∈Q̄T

{b(x, t)}1
s

∫ t

0

∫
Ω

(uN )2dxdτ +
2

s
‖ v ‖2L2(0,T )

]
.
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Since∫ t

0

∫
Ω

(uN (x, τ))2dxdτ ≤
∫ t

0

(
max
s∈[0,τ ]

‖ uN (·, s) ‖2L2(Ω) +

∫ τ

0

∫
Ω

(uNx )
2dxds

)
dτ,

we further have

max
τ∈[0,t]

‖ uN (·, τ) ‖2L2(Ω) +

∫ t

0

∫
Ω

(uNx )
2dxdτ

≤ 2 ‖ uN (·, 0) ‖2L2(Ω) +
4

s
‖ v ‖2L2(0,T )

+ c0

∫ t

0

(
max
s∈[0,τ ]

‖ uN (·, s) ‖2L2(Ω) +

∫ τ

0

∫
Ω

(uNx )
2dxds

)
dτ

for c0 = 4(c3 + max(x,t)∈Q̄T {b(x, t)} 1
s ). Employing Bellman–Gronwall’s lemma, we

obtain

‖ uN ‖Ξ =

(
max
t∈[0,T ]

‖ uN (x, t) ‖2L2(Ω) +

∫ t

0

∫
Ω

(uNx )
2dxdt

) 1
2

≤ c(T )
(‖ uN (x, 0) ‖L2(Ω) + ‖ v ‖L2(0,T )

)
(A.7)

for some constant c(T ), which does not depend on N and a(x, t). This is exactly the
estimate (6.47) in [23, p. 468] from which the rest of the proof of Theorem A.1 follows
the lines of that of Theorem 6.7 in [23, Ch. V, pp. 466–474] (by appropriate limit
passage). Note that (A.7) provides the second estimate in (1.9a) and (1.9b), while the
first one follows by continuous embedding Ξ ⊂ L6(QT ); see, e.g., [23, p. 466].
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Abstract. It was recently shown that a family of exponentially stable linear systems whose
matrices generate a solvable Lie algebra possesses a quadratic common Lyapunov function, which
implies that the corresponding switched linear system is exponentially stable for arbitrary switching.
In this paper we prove that the same properties hold under the weaker condition that the Lie algebra
generated by given matrices can be decomposed into a sum of a solvable ideal and a subalgebra with
a compact Lie group. The corresponding local stability result for nonlinear switched systems is also
established. Moreover, we demonstrate that if a Lie algebra fails to satisfy the above condition, then
it can be generated by a family of stable matrices such that the corresponding switched linear system
is not stable. Relevant facts from the theory of Lie algebras are collected at the end of the paper for
easy reference.
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1. Introduction. A switched system can be described by a family of continuous-
time subsystems and a rule that orchestrates the switching between them. Such
systems arise, for example, when different controllers are being placed in the feedback
loop with a given process, or when a given process exhibits a switching behavior caused
by abrupt changes of the environment. For a discussion of various issues related to
switched systems, see the recent survey article [13].

To define more precisely what we mean by a switched system, consider a family
{fp : p ∈ P} of sufficiently regular functions from R

n to R
n, parameterized by some

index set P. Let σ : [0,∞) → P be a piecewise constant function of time, called a
switching signal. A switched system is then given by the following system of differential
equations in R

n:

ẋ = fσ(x).(1)

We assume that the state of (1) does not jump at the switching instants, i.e., the
solution x(·) is everywhere continuous. Note that infinitely fast switching (chattering),
which calls for a concept of generalized solution, is not considered in this paper. In
the particular case when all the individual subsystems are linear (i.e., fp(x) = Apx,
where Ap ∈ R

n×n for each p ∈ P), we obtain a switched linear system

ẋ = Aσx.(2)

This paper is concerned with the following problem: find conditions on the indi-
vidual subsystems which guarantee that the switched system is asymptotically stable
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for an arbitrary switching signal σ. In fact, a somewhat stronger property is desir-
able, namely, asymptotic or even exponential stability that is uniform over the set of
all switching signals. Clearly, all the individual subsystems must be asymptotically
stable, and we will assume this to be the case throughout the paper. Note that it
is not hard to construct examples where instability can be achieved by switching be-
tween asymptotically stable systems (section 4 contains one such example), so one
needs to determine what additional requirements must be imposed. This question
has recently generated considerable interest, as can be seen from the work reported
in [9, 12, 16, 17, 18, 19, 21, 22].

Commutation relations among the individual subsystems play an important role
in the context of the problem posed above. This can be illustrated with the help
of the following example. Consider the switched linear system (2), take P to be
a finite set, and suppose that the matrices Ap commute pairwise: ApAq = AqAp
for all p, q ∈ P. Then it is easy to show directly that the switched linear system
is exponentially stable, uniformly over all switching signals. Alternatively, one can
construct a quadratic common Lyapunov function for the family of linear systems

ẋ = Apx, p ∈ P,(3)

as shown in [18], which is well known to lead to the same conclusion.
In this paper we undertake a systematic study of the connection between the

behavior of the switched system and the commutation relations among the individual
subsystems. In the case of the switched linear system (2), a useful object that reveals
the nature of these commutation relations is the Lie algebra g := {Ap : p ∈ P}LA
generated by the matrices Ap, p ∈ P (with respect to the standard Lie bracket
[Ap, Aq] := ApAq − AqAp). The observation that the structure of this Lie algebra
is relevant to stability of (2) goes back to the paper by Gurvits [9]. That paper
studied the discrete-time counterpart of (2) taking the form

x(k + 1) = Aσ(k)x(k),(4)

where σ is a function from nonnegative integers to a finite index set P and Ap = eLp ,
p ∈ P, for some matrices Lp. Gurvits conjectured that if the Lie algebra {Lp : p ∈
P}LA is nilpotent (which means that Lie brackets of sufficiently high order equal zero),
then the system (4) is asymptotically stable for any switching signal σ. He was able
to prove this conjecture for the particular case when P = {1, 2} and the third-order
Lie brackets vanish: [L1, [L1, L2]] = [L2, [L1, L2]] = 0.

It was recently shown in [12] that the switched linear system (2) is exponentially
stable for arbitrary switching if the Lie algebra g is solvable (see section A.3 for the
definition). The proof relied on the facts that matrices in a solvable Lie algebra can
be simultaneously put in the upper-triangular form (Lie’s theorem) and that a fam-
ily of linear systems with stable upper-triangular matrices has a quadratic common
Lyapunov function. For the result to hold, the index set P does not need to be finite
(although a suitable compactness assumption is required). One can derive the corre-
sponding result for discrete-time systems in similar fashion, thereby confirming and
directly generalizing the statement conjectured by Gurvits (because every nilpotent
Lie algebra is solvable).

In the present paper we continue the line of work initiated in the above references.
Our main theorem is a direct extension of the one proved in [12]. The new result states
that one still has exponential stability for arbitrary switching if the Lie algebra g is
a semidirect sum of a solvable ideal and a subalgebra with a compact Lie group
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(which amounts to saying that all the matrices in this second subalgebra have purely
imaginary eigenvalues). The corresponding local stability result for the nonlinear
switched system (1) is also established. Being formulated in terms of the original
data, such Lie-algebraic stability criteria have an important advantage over results
that depend on a particular choice of coordinates, such as the one reported in [16].
Moreover, we demonstrate that the above condition is in some sense the strongest
one that can be given on the Lie algebra level. Loosely speaking, we show that if a
Lie algebra does not satisfy this condition, then it could be generated by a switched
linear system that is not stable.

More precisely, the main contributions of the paper can be summarized as follows.
(See the appendix for an overview of relevant definitions and facts from the theory of
Lie algebras.) Given a matrix Lie algebra ĝ which contains the identity matrix, we
are interested in the following question. Is it true that any set of stable generators
for ĝ gives rise to a switched system that is exponentially stable, uniformly over all
switching signals? We discover that this property depends only on the structure of ĝ
as a Lie algebra and not on the choice of a particular matrix representation of ĝ. The
following equivalent characterizations of the above property can be given.

1. The factor algebra ĝ mod r, where r denotes the radical, is a compact Lie
algebra.

2. The Killing form is negative semidefinite on [ĝ, ĝ].
3. The Lie algebra ĝ does not contain any subalgebras isomorphic to sl(2,R).

We will also show how the investigation of stability (in the above sense) of a
switched linear system in R

n, n > 2, whose associated Lie algebra is low-dimensional,
can be reduced to the investigation of stability of a switched linear system in R

2. For
example, take P = {1, 2}, and define Ãi := Ai − 1

n trace(Ai)I, i = 1, 2. Assume that

all iterated Lie brackets of the matrices Ã1 and Ã2 are linear combinations of Ã1, Ã2,
and [Ã1, Ã2]. This means that if we consider the Lie algebra g = {A1, A2}LA and add
to it the identity matrix (if it is not already there), the resulting Lie algebra ĝ has
dimension at most 4. In this case, the following algorithm can be used to verify that
the switched linear system generated by A1 and A2 is uniformly exponentially stable
or, if this is not possible, to construct a second-order switched linear system whose
uniform exponential stability is equivalent to that of the original one.

Step 1. If [Ã1, Ã2] is a linear combination of Ã1 and Ã2, stop: the system is
stable. Otherwise, write down the matrix of the Killing form for the Lie algebra
g̃ := {Ã1, Ã2}LA relative to the basis given by Ã1, Ã2, and [Ã1, Ã2]. (This is a
symmetric 3× 3 matrix; see section A.4 for the definition of the Killing form.)

Step 2. If this matrix is degenerate or negative definite, stop: the system is stable.
Otherwise, continue.

Step 3. Find three matrices h, e, and f in g̃ with commutation relations [h, e] = 2e,
[h, f ] = −2f , and [e, f ] = h (this is always possible in the present case). We can then
write Ãi = βie+ γif + δih, where αi, βi, γi are constants, i = 1, 2.

Step 4. Compute the largest eigenvalue of h. It will be an integer; denote it by
k. Then the given system is stable if and only if the switched linear system generated
by the 2× 2 matrices

Â1 :=

(
trace(A1)

nk − δ1 −β1

−γ1
trace(A1)

nk + δ1

)
, Â2 :=

(
trace(A2)

nk − δ2 −β2

−γ2
trace(A2)

nk + δ2

)

is stable.
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All the steps in the above reduction procedure involve only elementary matrix op-
erations (addition, multiplication, and computation of eigenvalues and eigenvectors).
Details and justification are given in section 4.

Before closing the introduction, we make one more remark to further motivate
the work reported here and point out its relationship to a more classical branch of
control theory. Assume that P is a finite set, say, P = {1, . . . ,m}. The switched
system (1) can then be recast as

ẋ =

m∑
i=1

fi(x)ui,(5)

where the admissible controls are of the form uk = 1, ui = 0 ∀i �= k. (This corresponds
to σ = k.) In particular, the switched linear system (2) gives rise to the bilinear system

ẋ =

m∑
i=1

Aixui.

It is intuitively clear that asymptotic stability of (1) for arbitrary switching corre-
sponds to lack of controllability for (5). Indeed, it means that for any admissible con-
trol function the resulting solution trajectory must approach the origin. Lie-algebraic
techniques have received a lot of attention in the context of the controllability prob-
lem for systems of the form (5). As for the literature on stability analysis of switched
systems, despite the fact that it is vast and growing, Lie-algebraic methods do not
yet seem to have penetrated it. The present work can be considered as a step towards
filling this gap.

The rest of the paper is organized as follows. In section 2 we establish a sufficient
condition for stability (Theorem 2) and discuss its various implications. In section 3
we prove a converse result (Theorem 4). Section 4 contains a detailed analysis of
switched systems whose associated Lie algebras are isomorphic to the Lie algebra
gl(2,R) of real 2 × 2 matrices. This leads to, among other things, the reduction
algorithm sketched above and to a different (and arguably more illuminating) proof
of Theorem 4. To make the paper self-contained, in the appendix we provide an
overview of relevant facts from the theory of Lie algebras.

2. Sufficient conditions for stability. The switched system (1) is called (lo-
cally) uniformly exponentially stable if there exist positive constantsM , c, and µ such
that for any switching signal σ the solution of (1) with ‖x(0)‖ ≤M satisfies

‖x(t)‖ ≤ ce−µt‖x(0)‖ ∀t ≥ 0.(6)

The term “uniform” is used here to describe uniformity with respect to switching
signals. If there exist positive constants c and µ such that the estimate (6) holds
for any switching signal σ and any initial condition x(0), then the switched system
is called globally uniformly exponentially stable. Similarly, one can also define the
property of uniform asymptotic stability, local or global. For switched linear systems
all the above concepts are equivalent (see [15]). In fact, as shown in [1], in the
linear case global uniform exponential stability is equivalent to the seemingly weaker
property of asymptotic stability for any switching signal.

In the context of the switched linear system (2), we will always assume that
{Ap : p ∈ P} is a compact (with respect to the usual topology in R

n×n) set of real
n× n matrices with eigenvalues in the open left half-plane. Let g be the Lie algebra
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defined by g = {Ap : p ∈ P}LA as before. The following stability criterion was
established in [12]. It will be crucial in proving Theorem 2 below.

Theorem 1 (see [12]). If g is a solvable Lie algebra, then the switched linear
system (2) is globally uniformly exponentially stable.

Remark 1. The proof of this result given in [12] relies on a construction of
a quadratic common Lyapunov function for the family of linear systems (3). The
existence of such a function actually implies global uniform exponential stability of
the time-varying system ẋ = Aσx with σ not necessarily piecewise constant. This
observation will be used in the proof of Theorem 2.

The above condition can always be checked directly in a finite number of steps if
P is a finite set. Alternatively, one can use the standard criterion for solvability in
terms of the Killing form. Similar criteria exist for checking the other conditions to
be presented in this paper—see sections A.3 and A.4 for details.

We now consider a Levi decomposition of g, i.e., we write g = r ⊕ s, where r is
the radical and s is a semisimple subalgebra (see section A.4). Our first result is the
following generalization of Theorem 1.

Theorem 2. If s is a compact Lie algebra, then the switched linear system (2) is
globally uniformly exponentially stable.

Proof. For an arbitrary p ∈ P, write Ap = rp + sp with rp ∈ r and sp ∈ s. Let us
show that rp is a stable matrix. Writing

e(rp+sp)t = esptBp(t),(7)

we have the following equation for Bp(t):

Ḃp(t) = e−sptrpesptBp(t), Bp(0) = I.(8)

To verify (8), differentiate the equality (7) with respect to t, which gives

(rp + sp)e
(rp+sp)t = spe

sptBp + e
sptḂp.

Using (7) again, we have

rpe
sptBp + spe

sptBp = spe
sptBp + e

sptḂp;

hence (8) holds. Define cp(t) := e−sptrpespt. Clearly, spec(cp(t)) = spec(rp) for all t.
It is well known that for any two matrices A and B one has

e−ABeA = eadA(B) = B + [A,B] +
1

2
[A, [A,B]] + · · · ;(9)

hence we obtain the expansion

cp(t) = rp + [spt, rp] +
1

2
[spt, [spt, rp]] + · · · .

Since [s, r] ⊆ r, we see that cp(t) ∈ r. According to Lie’s theorem, there exists a
basis in which all matrices from r are upper-triangular. Combining the above facts,
it is not hard to check that spec(Bp(t)) = etspec(rp). Now it follows from (8) that
spec(rp) lies in the open left half of the complex plane. Indeed, as t → ∞, we have
e(rp+sp)t → 0 because the matrix Ap is stable. Since s is compact, there exists a
constant C > 0 such that we have |esx| ≥ C|x| for all s ∈ s and x ∈ R

n; thus we
cannot have esptx→ 0 for x �= 0. Therefore, Bp(t)→ 0, and so rp is stable.
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Since p ∈ P was arbitrary, we see that all the matrices rp, p ∈ P, are stable. The-
orem 1 implies that the switched linear system generated by these matrices is globally
uniformly exponentially stable. Moreover, the same property holds for matrices in
the extended set r̄ := {Ā : ∃ p ∈ P and s ∈ s such that Ā = e−srpes}. This is true
because the matrices in this set are stable and because they belong to r. (The last
statement follows from the expansion (9) again since [s, r] ⊆ r.) Now the transition
matrix of the original switched linear system (2) at time t takes the form

Φ(t, 0) = e(rpk+spk )tk · · · e(rp1+sp1 )t1 = espk tkBpk(tk) · · · esp1 t1Bp1(t1),

where t1, t1 + t2, . . . , t1 + t2 + · · ·+ tk−1 < t are switching instants, t1 + · · ·+ tk = t,
and, as before, Ḃpi(t) = e−spi trpie

spi tBpi(t), i = 1, . . . , k. To simplify the notation,
let k = 2. (In the general case one can adopt the same line of reasoning or use
induction on k.) We can then write

Φ(t, 0) = esp2 t2esp1 t1e−sp1 t1Bp2(t2)e
sp1 t1Bp1(t1) = esp2 t2esp1 t1B̃p2(t2)Bp1(t1),

where B̃p2(t) := e−sp1 t1Bp2(t)e
sp1 t1 . We have

d

dt
B̃p2(t) = e−sp1 t1e−sp2 trp2e

sp2 tBp2(t)e
sp1 t1

= e−sp1 t1e−sp2 trp2e
sp2 tesp1 t1e−sp1 t1Bp2(t)e

sp1 t1

= e−sp1 t1e−sp2 trp2e
sp2 tesp1 t1B̃p2(t).

Thus we see that

Φ(t, 0) = esp2 t2esp1 t1 · B̄(t),(10)

where B̄(t) is the transition matrix of a switched/time-varying system generated by
matrices in r̄, i.e., d

dt B̄(t) = Ā(t)B̄(t) with Ā(t) ∈ r̄ ∀t ≥ 0. The norm of the first
term in the above product is bounded by compactness, while the norm of the second
goes to zero exponentially by Theorem 1 (see also Remark 1), and the statement of
the theorem follows.

Remark 2. The fact that r is the radical, implying that s is semisimple, was not
used in the proof. The statement of Theorem 2 remains valid for any decomposition
of g into the sum of a solvable ideal r and a subalgebra s. Among all possible de-
compositions of this kind, the one considered above gives the strongest result. If g
is solvable, then s = 0 is of course compact, and we recover Theorem 1 as a special
case.

Example 1. Suppose that the matrices Ap, p ∈ P, take the form Ap = −λpI+Sp,
where λp > 0 and STp = −Sp for all p ∈ P. These are automatically stable matrices.
Suppose also that span{Ap, p ∈ P} � I. Then the condition of Theorem 2 is satisfied.
Indeed, take r = {λI : λ ∈ R} (scalar multiples of the identity matrix) and observe
that the Lie algebra {Sp : p ∈ P}LA is compact because skew-symmetric matrices
have purely imaginary eigenvalues.

In [12] the global uniform exponential stability property was deduced from the
existence of a quadratic common Lyapunov function. In the present case we found it
more convenient to obtain the desired result directly. However, under the hypothesis of
Theorem 2, a quadratic common Lyapunov function for the family of linear systems
(3) can also be constructed, as we now show. Let V̄ (x) = xTQx be a quadratic
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common Lyapunov function for the family of linear systems generated by matrices in
r̄ (which exists according to [12]). Define the function

V (x) :=

∫
S
V̄ (Sx)dS = xT ·

∫
S
STQSdS · x,

where S is the Lie group corresponding to s and the integral is taken with respect
to the Haar measure invariant under the right translation on S (see section A.4).
Using (10), it is straightforward to show that the derivative of V along solutions of
the switched linear system (2) satisfies

d

dt
V (x(t)) =

d

dt

∫
S
V̄ (SB̄(t)x(0))dS

=

∫
S
xT (0)B̄T (t)ST ((SĀ(t)S−1)TQ+QSĀ(t)S−1)SB̄(t)x(0)dS < 0.

The first equality in the above formula follows from the invariance of the measure,
and the last inequality holds because SĀ(t)S−1 ∈ r̄ for all t ≥ 0 and all S ∈ S.

Remark 3. It is now clear that the above results remain valid if piecewise constant
switching signals are replaced by arbitrary measurable functions (cf. Remark 1).

The existence of a quadratic common Lyapunov function will be used to prove
Corollary 3 below. It is also an interesting fact in its own right because, although the
converse Lyapunov theorem proved in [15] implies that global uniform exponential
stability always leads to the existence of a common Lyapunov function, in some cases
it is not possible to find a quadratic one [4]. Incidentally, this clearly shows that
the condition of Theorem 2 is not necessary for uniform exponential stability of the
switched linear system (2). Another way to see this is to note that the property
of uniform exponential stability is robust with respect to small perturbations of the
parameters of the system, whereas the condition of Theorem 2 is not. In fact, no Lie-
algebraic condition of the type considered here can possess the indicated robustness
property. This follows from the fact, proved in section A.6, that in an arbitrarily
small neighborhood of any pair of n× n matrices there exists a pair of matrices that
generate the entire Lie algebra gl(n,R).

We conclude this section with a local stability result for the nonlinear switched
system (1). Let fp : D → R

n be continuously differentiable with fp(0) = 0 for each
p ∈ P, where D is a neighborhood of the origin in R

n. Consider the linearization
matrices

Fp :=
∂fp
∂x

(0), p ∈ P.

Assume that the matrices Fp are stable, that P is a compact subset of some topological

space, and that
∂fp
∂x (x) depends continuously on p for each x ∈ D. Consider the Lie

algebra g̃ := {Fp : p ∈ P}LA and its Levi decomposition g̃ = r̃ ⊕ s̃. The following
statement is a generalization of [12, Corollary 5].

Corollary 3. If s̃ is a compact Lie algebra, then the switched system (1) is
uniformly exponentially stable.

Proof. This is a relatively straightforward application of Lyapunov’s first method
(see, e.g., [11]). For each p ∈ P we can write fp(x) = Fpx + gp(x)x. Here gp(x) =
∂fp
∂x (z) − ∂fp

∂x (0), where z is a point on the line segment connecting x to the origin.
We have gp(x) → 0 as x → 0. Under the present assumptions, the family of linear
systems ẋ = Fpx, p ∈ P, has a quadratic common Lyapunov function. Because of
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compactness of P and continuity of
∂fp
∂x with respect to p, it is not difficult to verify

that this function is a common Lyapunov function for the family of systems ẋ = fp(x),
p ∈ P, on a certain neighborhood D̄ of the origin. Thus the switched system (1) is
uniformly exponentially stable on D̄.

An important problem for future research is to investigate how the structure of
the Lie algebra generated by the original nonlinear vector fields fp, p ∈ P, is related
to stability properties of the switched system (1). Taking higher-order terms into
account, one may hope to obtain conditions that guarantee stability of nonlinear
switched systems when the above linearization test fails. A first step in this direction
is the observation made in [21] that a finite family of commuting nonlinear vector fields
giving rise to exponentially stable systems has a local common Lyapunov function.
Imposing certain additional assumptions, it is possible to obtain analogues of Lie’s
theorem which yield triangular structure for families of nonlinear systems generating
nilpotent or solvable Lie algebras (see [3, 10, 14]). However, the methods described
in these papers require that the Lie algebra have full rank, and so typically they do
not apply to families of systems with common equilibria of the type treated here.

3. A converse result. We already remarked that the condition of Theorem 2 is
not necessary for uniform exponential stability of the switched linear system (2). It is
natural to ask whether this condition can be improved. A more general question that
arises is to what extent the structure of the Lie algebra can be used to distinguish
between stable and unstable switched systems. The findings of this section will shed
some light on these issues.

We find it useful to introduce a possibly larger Lie algebra ĝ by adding to g the
scalar multiples of the identity matrix if necessary. In other words, define ĝ := {I, Ap :
p ∈ P}LA. The Levi decomposition of ĝ is given by ĝ = r̂⊕ s with r̂ ⊇ r (because the
subspace RI belongs to the radical of ĝ). Thus ĝ satisfies the hypothesis of Theorem 2
if and only if g does.

Our goal in this section is to show that if this hypothesis is not satisfied, then ĝ
can be generated by a family of stable matrices (which might in principle be different
from {Ap : p ∈ P}) with the property that the corresponding switched linear system
is not stable. Such a statement could in some sense be interpreted as a converse of
Theorem 2. It would imply that by working just with ĝ it is not possible to obtain a
stronger result than the one given in the previous section.

We will also see that there exists another set of stable generators for ĝ which
does give rise to a uniformly exponentially stable switched linear system. In fact,
we will show that both generator sets can always be chosen in such a way that they
contain the same number of elements as the original set that was used to generate ĝ.
Thus, if the Lie algebra does not satisfy the hypothesis of Theorem 2, this Lie algebra
alone (even together with the knowledge of how many stable matrices were used to
generate it) does not provide enough information to determine whether or not the
original switched linear system is stable.

Let {A1, A2, . . . , Am} be any finite set of stable generators for ĝ. (If the index
set P is infinite, a suitable finite subset can always be extracted from it.) Then the
following holds.

Theorem 4. Suppose that s is not a compact Lie algebra. Then there exists a set
of m stable generators for ĝ such that the corresponding switched linear system is not
uniformly exponentially stable. There also exists another set of m stable generators
for ĝ such that the corresponding switched linear system is globally uniformly expo-
nentially stable.
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Proof. To prove the second statement of the theorem, we simply subtract λI
from each of the generators A1, A2, . . . , Am, where λ > 0 is large enough. Namely,
take λ to be any number larger than the largest eigenvalue of (Ai + ATi )/2 for all
i = 1, . . . ,m. Then it is easy to check that the linear systems defined by the matrices
A1−λI, A2−λI, . . . , Am−λI all share the common Lyapunov function V (x) = xTx.
To prove that these matrices indeed generate ĝ, it is enough to show that the span of
these matrices and their iterated Lie brackets contains the identity matrix I. We know
that I can be written as a linear combination of the matrices A1, A2, . . . , Am, and
their suitable Lie brackets. Replacing each Ai in this linear combination by Ai − λI,
we obtain a scalar multiple of I. If it is nonzero, we are done; otherwise, we just have
to increase λ by an arbitrary amount.

We now turn to the first statement of the theorem. Since s is not compact,
it contains a subalgebra that is isomorphic to sl(2,R). Such a subalgebra can be
constructed as shown in section A.5. The existence of this subalgebra is the key
property that we will explore.

It follows from basic properties of solutions to differential inclusions that if a
family of matrices gives rise to a uniformly exponentially stable switched linear system,
then all convex linear combinations of these matrices are stable. (This fact is easily
seen to be true from the converse Lyapunov theorems of [15, 4], although in [15] it was
actually used to prove the result; see also Remark 5 below.) To prove the theorem,
we will first find a pair of stable matrices B1, B2 that lie in the subalgebra isomorphic
to sl(2,R) and have an unstable convex combination, and then we will use them to
construct a desired set of generators for ĝ. (An alternative method of proof will be
presented in the next section.)

Since every matrix representation of sl(2,R) is a direct sum of irreducible ones,
there is no loss of generality in considering only irreducible representations. Their
complete classification in all dimensions (up to equivalence induced by linear coor-
dinate transformations) is available. In particular, it is known that any irreducible
representation of sl(2,R) contains two matrices of the following form:

B̃1 =



0 µ1 · · · 0
...

. . .
. . .

...
...

. . . µr
0 · · · · · · 0


 and B̃2 =



0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
0 · · · 1 0




(cf. section A.2). The matrix B̃1 has positive entries µ1, . . . , µr immediately above the
main diagonal and zeros elsewhere, and the matrix B̃2 has ones immediately below
the main diagonal and zeros elsewhere.

It is not hard to check that the nonnegative matrix B̃ := (B̃1 + B̃2)/2 is irre-
ducible1 and as such satisfies the assumptions of the Perron–Frobenius theorem (see,
e.g., [6, Chapter XIII]). According to that theorem, B̃ has a positive eigenvalue. Then
for a small enough ε > 0 the matrix B := B̃ − εI also has a positive eigenvalue. We
have B = (B̃1 − εI + B̃2 − εI)/2. This implies that a desired pair of matrices in the
given irreducible matrix representation of sl(2,R) can be defined by B1 := B̃1 − εI
and B2 := B̃2 − εI. Indeed, these matrices are stable, but their average B is not.

For α ≥ 0, define A1(α) := B1+αA1 and A2(α) := B2+αA2. If α is small enough,
then A1(α) and A2(α) are stable matrices, while (A1(α)+A2(α))/2 is unstable. Thus

1A matrix is called irreducible if it has no proper invariant subspaces spanned by coordinate
vectors.
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the matrices A1(α), A2(α), A3, . . . , Am yield a switched system that is not uniformly
exponentially stable. Moreover, it is not hard to show that for α small enough these
matrices generate ĝ. Indeed, consider a basis for ĝ formed by A1, . . . , Am, and their
suitable Lie brackets. Replacing A1 and A2 in these expressions by A1(α) and A2(α)
and writing the coordinates of the resulting elements relative to this basis, we obtain
a square matrix ∆(α). Its determinant is a polynomial in α whose value tends to ∞
as α → ∞, and therefore it is not identically zero. Thus ∆(α) is nondegenerate for
all but finitely many values of α; in particular, we will have a basis for ĝ if we take α
sufficiently small. This completes the proof.

Remark 4. Given the matrices B1 and B2 as in the above proof, it is of course
quite easy to construct a set of stable generators for ĝ giving rise to a switched linear
system that is not uniformly exponentially stable: just take any set of generators for ĝ
containing −I, B1, and B2, and make them into stable ones by means of subtracting
positive multiples of the identity if necessary. The above more careful construction
has the advantage of producing a set of generators with the same number of elements
as in the original generating set for ĝ.

Remark 5. The existence of an unstable convex combination actually leads to
more specific conclusions than simply a lack of uniform exponential stability. Namely,
one can find a sequence of solutions of the switched system that converges in a suitable
sense to a trajectory of the unstable linear system associated with such a convex
combination. This is a consequence of the so-called relaxation theorem which in our
case says that the set of solutions to the differential inclusion ẋ ∈ {Apx : p ∈ P} is
dense in the set of solutions to the differential inclusion ẋ ∈ co{Apx : p ∈ P}, where
co(K) denotes the convex hull of a set K ⊂ R

n. For details, see [2, 5].

The results that we have obtained so far reveal the following important fact: the
property of ĝ which is being investigated here, namely, global uniform exponential
stability of any switched system whose associated Lie algebra is ĝ, depends only on
the structure of ĝ (i.e., on the commutation relations between its matrices) and is
independent of the choice of a particular representation.

4. Switched linear systems with low-dimensional Lie algebras. In the
proof of Theorem 4 in the previous section, we needed to construct a pair of stable
matrices in a representation of sl(2,R) which give rise to an unstable switched system.
To achieve this, we relied on the fact that a switched system defined by two matrices
is not stable if these matrices have an unstable convex combination. However, even if
all convex combinations are stable, stability of the switched system is not guaranteed.
As a simple example that illustrates this, consider the switched system in R

2 defined
by the matrices A1 := Ã1 − εI and A2 := Ã2 − εI, where

Ã1 :=

(
0 k
−1 0

)
, Ã2 :=

(
0 1
−k 0

)

with ε > 0 and k > 1. It is easy to check that all convex combinations of A1 and A2

are stable. When ε = 0, the trajectories of the corresponding individual systems look
as shown in Figure 1 (left) and Figure 1 (center), respectively. It is not hard to find a
switching signal σ : [0,∞)→ {1, 2} that makes the switched system ẋ = Ãσx unstable:
simply let σ = 1 when xy > 0 and σ = 2 otherwise. For an arbitrary initial state,
this results in the switched system ẋ = Ãσ(t)x whose solutions grow exponentially.
Therefore, the original switched system ẋ = Aσx will also be destabilized by the same
switching signal, provided that ε is sufficiently small.
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Fig. 1. Unstable switched system in the plane.

As a step toward understanding the behavior of switched systems in higher di-
mensions, in view of the findings of this paper it is natural to investigate the case
when given matrices generate a Lie algebra that is isomorphic to one generated by
2× 2 matrices. This is the goal of the present section.

Consider the Lie algebra g := {Ap : p ∈ P}LA, and assume that g = RIn×n ⊕
sl(2,R). Here sl(2,R) means an n-dimensional matrix representation, which we take
to be irreducible. (As before, this will not introduce a loss of generality because every
matrix representation of sl(2,R) is a direct sum of irreducible ones.) Then for each
p ∈ P we can write

Ap = (n− 1)αpIn×n + βpφ(e) + γpφ(f) + δpφ(h),(11)

where βp, γp, δp are constants, φ is the standard representation of sl(2,R) constructed
in section A.2 (n here corresponds to k + 1 there), {e, h, f} is the canonical basis for
sl(2,R), and αp =

1
n(n−1) trace(Ap). For each p ∈ P, define the following 2×2 matrix:

Âp := αpI2×2 − βpe− γpf − δph.(12)

We now demonstrate that the task of investigating stability of the switched system
generated by the matrices Ap, p ∈ P, reduces to that of investigating stability of the

two-dimensional switched system generated by the matrices Âp, p ∈ P.
Proposition 5. The switched linear system (2) with Ap given by (11) is globally

uniformly exponentially stable if and only if the switched linear system ẋ = Âσx with
Âp given by (12) is globally uniformly exponentially stable.

Proof. The transition matrix of the switched system (2) for any particular switch-
ing signal takes the form

Φ(t, 0) = e(n−1)(αpk tk+···+αp1 t1)Ie(βpkφ(e)+γpkφ(f)+δpkφ(h))tk · · · e(βp1φ(e)+γp1φ(f)+δp1φ(h))t1 .

Consider the (n-dimensional) linear space Pn−1[x, y] of polynomials in x and y, homo-
geneous of degree n− 1, with the basis chosen as in section A.2. Denote the elements
of this basis by p1, . . . , pn. (These are monomials in x and y.) Fix an arbitrary
polynomial p ∈ Pn−1[x, y], and let a1, . . . , an be its coordinates relative to the above
basis. As an immediate consequence of the calculations given in section A.2, for any
values of x and y we have

(
a1 · · · an

)
Φ(t, 0)



p1
...
pn


 = p

(
Φ̂(t, 0)

(
x

y

))
,
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where

Φ̂(t, 0) = e(αpk tk+···+αp1 t1)Ie(−βp1e−γp1f−δp1h)t1 · · · e(−βpke−γpkf−δpkh)tk .

Since the polynomial p was arbitrary, it is clear that Φ(t, 0) approaches the zero matrix
as t→∞, uniformly over the set of all switching signals, if and only if Φ̂(t, 0) does so.
But Φ̂(t, 0) is the transition matrix of the switched system ẋ = Âσx, corresponding
to the “reversed” switching signal on [0, t]. We conclude that this switched system
is globally asymptotically stable, uniformly over σ, if and only if the same property
holds for the original system (2). The statement of the proposition now follows from
the fact that for switched linear systems, uniform asymptotic stability is equivalent
to uniform exponential stability.

We are now in position to justify the reduction procedure outlined in the in-
troduction. Assume that ĝ has dimension at most 4. We know from section A.5
that any noncompact semisimple Lie algebra contains a subalgebra isomorphic to
sl(2,R). Thus ĝ contains a noncompact semisimple subalgebra if only if its dimen-
sion exactly equals 4 and the Killing form is nondegenerate and sign-indefinite on
g̃ = {Ã1, Ã2}LA = ĝ mod RI (see section A.4). In this case g̃ is isomorphic to sl(2,R).
An sl(2)-triple {h, e, f} can be constructed as explained in section A.5. (The proce-
dure given there for a general noncompact semisimple Lie algebra certainly applies to
sl(2,R) itself.) Specifically, as h we can take any element of the subspace on which the
Killing form is positive definite, normalized in such a way that the eigenvalues of adh
equal 2 and −2. The corresponding eigenvectors yield e and f . The resulting represen-
tation of sl(2,R) is not necessarily irreducible; the dimension of the largest invariant
subspace is equal to k+1, where k is the largest eigenvalue of h. If the switched linear
system restricted to this invariant subspace is globally uniformly exponentially stable,
then the same property holds for the switched linear system restricted to any other
invariant subspace. This is true because, in view of the role of the scalar k = n − 1
in the context of Proposition 5, the matrices of the reduced (second-order) system
associated with the system evolving on the largest invariant subspace are obtained
from those of the reduced system associated with the system evolving on another
invariant subspace by subtracting positive multiples of the identity matrix, and this
cannot introduce instability (to see why this last statement is true, one can appeal to
the existence of a convex common Lyapunov function [15]). Note that we do not need
to identify the invariant subspaces; we need to know only the dimension of the largest
one. Thus the outcome of the algorithm depends on the matrix representation of ĝ
and not just on the structure of ĝ as a Lie algebra, but it does so in a rather weak
way.

As another application of Proposition 5, we can obtain an alternative proof of
Theorem 4. Indeed, let the matrices B̃1 and B̃2 be as in the proof of Theorem 4 given
in the previous section. (The existence of a subalgebra isomorphic to sl(2,R) remains
crucial.) Define the matrices B1 := −kB̃1+ B̃2− εI and B2 := −B̃1+kB̃2− εI, where
ε > 0 and k > 1. Then the switched system

ẋ = Bσx, σ : [0,∞)→ {1, 2}(13)

is not stable for ε small enough (even though all convex combinations of B1 and B2

are stable). This follows from Proposition 5 and from the example presented at the
beginning of this section; in fact, a specific (periodic) destabilizing switching signal
for the system (13) can be constructed with the help of that example. Interestingly,
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it appears to be difficult to establish the same result by a direct analysis of (13). The
rest of the proof of Theorem 4 can now proceed exactly as before.

It was shown by Shorten and Narendra in [22] that two stable two-dimensional lin-
ear systems ẋ = A1x and ẋ = A2x possess a quadratic common Lyapunov function if
and only if all pairwise convex combinations of matrices from the set {A1, A2, A

−1
1 , A−1

2 }
are stable. Combined with Proposition 5, this yields the following result.

Corollary 6. Let P = {1, 2}. Suppose that all pairwise convex combinations of
matrices from the set {Â1, Â2, Â

−1
1 , Â−1

2 }, with A1 and A2 given by (12), are stable.
Then the switched linear system (2), with Ap given by (11), is globally uniformly
exponentially stable.

The above corollary provides only sufficient and not necessary conditions for
global uniform exponential stability of (2). This is due to the fact that, as we already
mentioned earlier, it may happen that a switched linear system is globally uniformly
exponentially stable while there is no quadratic common Lyapunov function for the
individual subsystems (see the example in [4]).

Appendix. Basic facts about Lie algebras. In this appendix we give an
informal overview of basic properties of Lie algebras. Only those facts that directly
play a role in the developments of the previous sections are discussed. Most of the
material is adopted from [8, 20], and the reader is referred to these and other standard
references for more details.

A.1. Lie algebras and their representations. A Lie algebra g is a finite-
dimensional vector space equipped with a Lie bracket, i.e., a bilinear, skew-symmetric
map [·, ·] : g× g→ g satisfying the Jacobi identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.
Any Lie algebra g can be identified with a tangent space at the identity of a Lie group
G (an analytic manifold with a group structure). If g is a matrix Lie algebra, then
the elements of G are given by products of the exponentials of the matrices from g.
In particular, each element A ∈ g generates the one-parameter subgroup {eAt, t ∈ R}
in G. For example, if g is the Lie algebra gl(n,R) of all real n× n matrices with the
standard Lie bracket [A,B] = AB − BA, then the corresponding Lie group is given
by the invertible matrices.

Given an abstract Lie algebra g, one can consider its (matrix) representations. A
representation of g on an n-dimensional vector space V is a homomorphism (i.e., a
linear map that preserves the Lie bracket) φ : g → gl(V ). It assigns to each element
g ∈ g a linear operator φ(g) on V , which can be described by an n × n matrix. A
representation φ is called irreducible if V contains no nontrivial subspaces invariant
under the action of all φ(g), g ∈ g. A particularly useful representation is the adjoint
one, denoted by “ad.” The vector space V in this case is g itself, and for g ∈ g the
operator adg is defined by adg(a) := [g, a], a ∈ g. There is also Ado’s theorem, which
says that every Lie algebra is isomorphic to a subalgebra of gl(V ) for some finite-
dimensional vector space V . (Compare this with the adjoint representation which is
in general not injective.)

A.2. Example: sl(2, R) and gl(2, R). The special linear Lie algebra sl(2,R)
consists of all real 2× 2 matrices of trace 0. A canonical basis for this Lie algebra is
given by the matrices

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
.(14)
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They satisfy the relations [h, e] = 2e, [h, f ] = −2f , [e, f ] = h and form what is some-
times called an sl(2)-triple. One can also consider other representations of sl(2,R).
Although all irreducible representations of sl(2,R) can be classified by working with
the Lie algebra directly (see [20, pp. 27–30]), for our purposes it is more useful to
exploit the corresponding Lie group SL(2,R) = {S ∈ R

n×n : detS = 1}. Let P k[x, y]
denote the space of polynomials in two indeterminates x and y that are homogeneous
of degree k (where k is a positive integer). A homomorphism φ that makes SL(2,R)
act on P k[x, y] can be defined as

φ(S)p

((
x

y

))
= p

(
S−1

(
x

y

))
,

where S ∈ SL(2,R) and p ∈ P k[x, y]. The corresponding representation of the Lie
algebra sl(2,R), which we denote also by φ with slight abuse of notation, is obtained
by considering the one-parameter subgroups of SL(2,R) and differentiating the action
defined above at t = 0. For example, for e as in (14) we have

φ(e)p

((
x

y

))
=
d

dt

∣∣∣
t=0
p

(
e−et

(
x

y

))
=
d

dt

∣∣∣
t=0
p

((
1 −t
0 1

)(
x

y

))
= −y ∂

∂x
p

((
x

y

))
.

Similarly, φ(f)p = −x ∂
∂yp and φ(h)p = (−x ∂

∂x + y ∂
∂y )p. With respect to the basis

in P k[x, y] given by the monomials yk,−kyk−1x, k(k − 1)yk−2x2, . . . , (−1)kk!xk, the
corresponding differential operators are realized by the matrices

h �→



k · · · · · · 0
... k − 2

...
...

. . .
...

0 · · · · · · −k


, e �→



0 µ1 · · · 0
...

. . .
. . .

...
...

. . . µk
0 · · · · · · 0


, f �→



0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
0 · · · 1 0


 ,

where µi = i(k − i+ 1), i = 1, . . . , k. It turns out that any irreducible representation
of sl(2,R) of dimension k + 1 is equivalent (under a linear change of coordinates)
to the one just described. An arbitrary representation of sl(2,R) is a direct sum of
irreducible ones.

When working with gl(2,R) rather than sl(2,R), one also has the 2× 2 identity
matrix I2×2. It corresponds to the operator x ∂

∂x + y ∂
∂y on P k[x, y], whose associated

matrix is kI(k+1)×(k+1). One can thus naturally extend the above representation to
gl(2,R). The complementary subalgebras RI and sl(2,R) are invariant under the
resulting action.

A.3. Nilpotent and solvable Lie algebras. If g1 and g2 are linear subspaces
of a Lie algebra g, one writes [g1, g2] for the linear space spanned by all the products
[g1, g2] with g1 ∈ g1 and g2 ∈ g2. Given a Lie algebra g, the sequence g(k) is defined
inductively as follows: g(1) := g, g(k+1) := [g(k), g(k)] ⊂ g(k). If g(k) = 0 for k
sufficiently large, then g is called solvable. Similarly, one defines the sequence gk by
g1 := g, gk+1 := [g, gk] ⊂ gk and calls g nilpotent if gk = 0 for k sufficiently large. For
example, if g is a Lie algebra generated by two matrices A and B, we have: g(1) =
g1 = g = span{A,B, [A,B], [A, [A,B]], . . . }, g(2) = g2 = span{[A,B], [A, [A,B]], . . . },
g(3) = span{[[A,B], [A, [A,B]]], . . . } ⊂ g3 = span{[A, [A,B]], [B, [A,B]], . . . }, and so
on. Every nilpotent Lie algebra is solvable, but the converse is not true.

The Killing form on a Lie algebra g is the symmetric bilinear form K given by
K(a, b) := tr(ada ◦ adb) for a, b ∈ g. Cartan’s 1st criterion says that g is solvable
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if and only if its Killing form vanishes identically on [g, g]. Let g be a solvable Lie
algebra over an algebraically closed field, and let φ be a representation of g on a vector
space V . Lie’s theorem states that there exists a basis for V with respect to which
all the matrices φ(g), g ∈ g, are upper-triangular.

A.4. Semisimple and compact Lie algebras. A subalgebra ḡ of a Lie algebra
g is called an ideal if [g, ḡ] ∈ ḡ for all g ∈ g and ḡ ∈ ḡ. Any Lie algebra has a unique
maximal solvable ideal r, the radical. A Lie algebra g is called semisimple if its radical
is 0. Cartan’s 2nd criterion says that g is semisimple if and only if its Killing form is
nondegenerate (meaning that if for some g ∈ g we have K(g, a) = 0 ∀a ∈ g, then g
must be 0).

A semisimple Lie algebra is called compact if its Killing form is negative definite.
A general compact Lie algebra is a direct sum of a semisimple compact Lie algebra
and a commutative Lie algebra (with the Killing form vanishing on the latter). This
terminology is justified by the facts that the tangent algebra of any compact Lie
group is compact according to this definition, and that for any compact Lie algebra g
there exists a connected compact Lie group G with tangent algebra g. Compactness
of a semisimple matrix Lie algebra g amounts to the property that the eigenvalues
of all matrices in g lie on the imaginary axis. If G is a compact Lie group, one can
associate to any continuous function f : G → R a real number

∫
G f(G)dG so as to have∫

G 1dG = 1 and
∫
G f(AGB)dG =

∫
G f(G)dG ∀A,B ∈ G (left and right invariance).

The measure dG is called the Haar measure.

An arbitrary Lie algebra g can be decomposed into the semidirect sum g = r⊕ s,
where r is the radical, s is a semisimple subalgebra, and [s, r] ⊆ r because r is an ideal.
This is known as a Levi decomposition. To compute r and s, switch to a basis in
which the Killing form K is diagonalized. The subspace on which K is not identically
zero corresponds to s ⊕ (r mod n), where n is the maximal nilpotent subalgebra of
r. Construct the Killing form K̄ for the factor algebra s⊕ (r mod n). This form will
vanish identically on (r mod n) and will be nondegenerate on s. The subalgebra s
identified in this way is compact if and only if K̄ is negative definite on it. For more
details on this construction and examples, see [7, pp. 256–258].

A.5. Subalgebras isomorphic to sl(2, R). Let g be a real, noncompact,
semisimple Lie algebra. Our goal here is to show that g has a subalgebra isomor-
phic to sl(2,R). To this end, consider a Cartan decomposition g = k ⊕ p, where k is
a maximal compact subalgebra of g and p is its orthogonal complement with respect
to K. The Killing form K is negative definite on k and positive definite on p. Let a
be a maximal commuting subalgebra of p. Then it is easy to check using the Jacobi
identity that the operators ada, a ∈ a, are commuting. These operators are also sym-
metric with respect to a suitable inner product on g (for a, b ∈ g this inner product
is given by −K(a,Θb), where Θ is the map sending k + p, with k ∈ k and p ∈ p, to
k− p), and hence they are simultaneously diagonalizable. Thus g can be decomposed
into a direct sum of subspaces invariant under ada, a ∈ a, on each of which every
operator ada has exactly one eigenvalue. The unique eigenvalue of ada on each of
these invariant subspaces is given by a linear function λ on a, and accordingly the
corresponding subspace is denoted by gλ. Since p �= 0 (because g is not compact) and
since K is positive definite on p, the subspace g0 associated with λ being identically
zero cannot be the entire g. Summarizing, we have

g = g0 ⊕
(⊕

λ∈Σ gλ
)
,
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where Σ is a finite set of nonzero linear functions on a (which are called the roots) and
gλ = {g ∈ g : ada(g) = λ(a)g ∀a ∈ a}. Using the Jacobi identity, one can show that
[gλ, gµ] is a subspace of gλ+µ if λ+µ ∈ Σ∪ {0}, and equals 0 otherwise. This implies
that the subspaces gλ and gµ are orthogonal with respect to K unless λ+ µ = 0 (cf.
[20, p. 38]). Since K is nondegenerate on g, it follows that if λ is a root, then so is
−λ. Moreover, the subspace [gλ, g−λ] of g0 has dimension 1, and λ is not identically
zero on it (cf. [20, pp. 39–40]). This means that there exist some elements e ∈ gλ and
f ∈ g−λ such that h := [e, f ] �= 0. It is now easy to see that, multiplying e, f , and h
by constants if necessary, we obtain an sl(2)-triple. Alternatively, we could finish the
argument by noting that if g ∈ gλ for some λ ∈ Σ, then the operator adg is nilpotent
(because it maps each gµ to gµ+λ, to gµ+2λ, and eventually to 0 since Σ is a finite
set), and the existence of a subalgebra isomorphic to sl(2,R) is guaranteed by the
Jacobson–Morozov theorem.

A.6. Generators for gl(2, R). This subsection is devoted to showing that in
an arbitrarily small neighborhood of any pair of n× n matrices one can find another
pair of matrices that generate the entire Lie algebra gl(n,R). This fact demonstrates
that Lie-algebraic stability conditions considered in the previous sections are never
robust with respect to small perturbations of the matrices that define the switched
system. Constructions like the one presented here have certainly appeared in the
literature, but we are not aware of a specific reference.

We begin by finding some matrices B1, B2 that generate gl(n,R). Let B1 be a
diagonal matrix B1 = diag(b1, b2, . . . , bn) satisfying the following two properties.

1. bi − bj �= bk − bl if (i, j) �= (k, l).
2.
∑n
i=1 bi �= 0.

Denote by od(n,R) the space of matrices with zero elements on the main diagonal.
Let B2 be any matrix in od(n,R) such that all its off-diagonal elements are nonzero.
It is easy to check that if Ei,j is a matrix whose ijth element is 1 and all other
elements are 0, where i �= j, then [B1, Ei,j ] = (bi − bj)Ei,j . Thus it follows from
property 1 above that B2 does not belong to any proper subspace of od(n,R) that is
invariant with respect to the operator adB1. Therefore, the linear space spanned by
the iterated brackets adkB1(B2) is the entire od(n,R). Taking brackets of the form
[Ei,j , Ej,i], we generate all traceless diagonal matrices (cf. the example [e, f ] = h in
section A.2). Since B1 has a nonzero trace by property 2 above, we conclude that
{B1, B2}LA = gl(n,R).

Now let A1 and A2 be two arbitrary n× n matrices. Using the matrices B1 and
B2 just constructed, we can define A1(α) := A1+αB1 and A2(α) := A2+αB2, where
α ≥ 0. The two matrices A1(α) and A2(α) generate gl(n,R) for any sufficiently small
α, as can be shown by using the same argument as the one employed at the end of the
proof of Theorem 4. Thus one can take (A1(α), A2(α)) as a desired pair of matrices
in a neighborhood of (A1, A2).
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1. Introduction. Our main concern in this paper is with the so-called class of
continuous-time linear systems with Markovian jump parameters (LSMJP). The usual
infinite-time horizon quadratic cost is considered, and we assume that both the state
and the Markov jump are accessible to the controller. (It is perhaps worth mentioning
that although in engineering problems the Markov state is not often at hand, there
are enough cases where this indeed happens. An illustrative list of such situations is
found in [12].) Recent advances in LSMJP have greatly increased its power and led
to new applications in many different fields. Potential applications include, inter alia,
safety-critical and high-integrity systems (e.g., aircraft, chemical plants, nuclear power
stations, robotic manipulator systems, large-scale flexible structures for space stations
such as antennae, solar arrays, etc.). Without any intention of being exhaustive here,
we mention [6], [7], [10], [12], [13], [14], [16], [17], [18], [19], [20], [22], [26], [27], [28],
[33], [34], [35], [39], [40], [41], [42], [46], and [49], as a small sample of works dealing
with different aspects of control problems. We mention also [5], [17], [30], [38], [40]
(and references therein), and [46] as works dealing with applications of this class.
In addition, the connection between linear dynamically varying (LDV) systems and
jump linear systems, which has been exploited in [8] and [9], will certainly give a
new impetus to LSMJP in the coming years. LDV controllers have been introduced
as a technique to control systems with complicated dynamics (nonlinear dynamical
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systems that run over compact sets and have such features as nontrivial recurrence
and periodic and aperiodic orbits).

What essentially distinguishes our problem from previous ones is that the Markov
chain takes values in a countably infinite set. This, associated with the continuous-
time feature of the problem, requires the use of operator theory, particularly, powerful
tools from semigroup theory. Semigroup theory laid the basis for establishing here the
equivalence between the conditions for stochastic stabilizability (SS) and stochastic
detectability (SD) and the spectrum of a certain infinite dimensional linear operator.
Operator theory was essential to allowing us to frame the whole problem into an
infinite dimensional Banach space setting that lead us to the optimal solution which,
analogously to the classical LQ case (see for instance [49]), boils down essentially to
questions of existence and uniqueness of solution to a certain countably infinite set of
coupled algebraic Riccati equations (ICARE).

In its content, this paper is closely related to [12]. However, technically they are
rather different. For instance, beside the tools mentioned above, we have to intro-
duce a natural adaptation of the decomplexification concept described in [1, section
18] for nonlinear complex functions with range in R . This is required to establish a
certain version of the gradient concept and, from that, the linear approximation to
nonholomorphic functionals. This has allowed us to conveniently specify the semi-
group of the Markov process {x, θ} applied to a certain (nonholomorphic) quadratic
functional with domain in the complex space C

n. In this way, we have preserved a
more general (complex) framework to the problem, as in [12]. It is noteworthy that
this framework is not only important for the sake of generalization, but because it
allows us a self-adjoint matrix decomposition (refer to Remarks 2.3 and 2.5), as it is
effectively required in the proof of the important Lemma 6.6. In addition, it is tacitly
usual to work in the complex setting when using an operator theoretical approach.

Of course, it is too early to predict the full extent to which the theory devel-
oped here will be applied. However, from the outset we can envisage some situations
in which model (3.1) can be naturally applied. For instance, applications to a non-
linear plant for which there is a conceivably infinite countable number of operating
points, each of them characterized by a corresponding linearized model, where the
abrupt changes would represent the dynamics of the system moving from one oper-
ating point to another, are suggested in [12]. This could probably also happen in
economics and finance, where the complexity of the system, including the fact that
the future is uncertain, is such that you have to consider infinitely many conceivable
economical scenarios in order to have a more accurate model. ([3] gives practical-
oriented-motivation for the use of infinite dimensional analysis in economics, and [17]
gives practical-oriented-motivation for the use of LSJMP in economics.)

Finally, it is worth mentioning that if we specialize our results to the setting
in which the state space of the Markov chain is finite, this paper still provides an
important contribution in that the conditions in Theorem 6.13 below can be seen as
a relaxation of those in Theorem 5 of [33], i.e., Theorem 5 of [33] uses the concept of
observability, while we use the concept of SD. Indeed, if we consider the single state
case (no jumps), SD reduces to detectability in the usual sense (see Remark 6.14),
while the observability concept used in Theorem 5 of [33] (see also Definition 3 of [33])
reduces to observability in the usual sense.

An outline of the content of this paper is as follows. In section 2 we provide
the bare essentials of notations and fundamental remarks. The model description is
stated in section 3. Some preliminaries are given in section 4. The bulk of the results
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in control are exhibited in sections 5 and 6.

2. Notations and initial remarks. As usual, C
n (respectively, R

n) stands
for the n-dimensional Euclidean space over the field of complex (respectively, real)
numbers C (respectively, R) and N = {1, 2, . . . }. We denoteM(Cm,Cn) as the normed
linear space of all n by m complex matrices and, for simplicity, write M(Cn) whenever
n = m. We use the superscripts − , ′, and ∗ for complex conjugate, transpose, and
conjugate transpose, respectively. The notation L ≥ 0 and L > 0 is adopted if a
self-adjoint matrix is positive semidefinite or positive definite, respectively. We denote
M(Cn)+={L ∈ M(Cn);L = L∗ ≥ 0} and write ‖·‖L for the norm in C

n induced by the
inner product 〈x, y〉L = x∗Ly whenever the matrix L = L∗ ≥ 0. Furthermore, ‖·‖Y
indicates a norm in the space Y . Except when otherwise mentioned, ‖·‖ represents
either the Euclidean norm in C

n or the spectral induced norm in M(Cn). To avoid
notational confusion with the summation index i and j, we denote by ι the pure
imaginary complex number. For z ∈ C, we write zRe(and sometimes Re(z)) and zIm

for the real and imaginary parts of z, respectively, so that z = zRe+ ιzIm. For x ∈ C
n

we denote the real vectors xRe := (x1 Re, . . . , xnRe)
′ and xIm := (x1 Im, . . . , xn Im)

′,
which we call the real and imaginary parts of x ∈ C

n, and we may write x = xRe+
ιxIm. (The notation xj Re and xj Im abbreviates the more precise notation (xj)Re
and (xj)Im, respectively, j = 1, . . . , n.) In addition, by the decomplexification of an
arbitrary x ∈ C

n, we mean the operation C
n 	 x 
→ Rx = (xRe xIm)

′ ∈ R
2n, and

by the decomplexification of a generic operator g : [0,∞) × C
n 
→ R, we mean the

operator Rg : [0,∞)× R
2n 
→ R that coincides with g pointwise, i.e.,

Rg
(
t,R x

)
= g (t, x) for all t ∈ [0,∞) and x ∈ C

n,(2.1)

which is a natural adaptation of the concept devised in [1].
Remark 2.1. From the above definition, RC

n = R
2n, R(x+ y) =Rx+Ry, R(cx) =

cR(x), and ‖x‖ = ∥∥Rx∥∥ for x, y ∈ C
n, c a real number.

Remark 2.2. For every L ∈ M(Cn)+, there is a unique L1/2 ∈ M(Cn)+ such
that (L1/2)2 = L. The absolute value of L ∈ M(Cn), denoted by |L|, is defined as
|L| = (L∗L)1/2. It is easy to verify that ‖L‖ = ‖|L|‖.

Remark 2.3. Every element in M(Cn) has a Cartesian self-adjoint decomposition
(see, e.g., [44, p. 376]) and every self-adjoint operator in M(Cn) can be decomposed
in positive and negative parts [44, p. 464]. Thus, for any L ∈ M(Cn), there exist
X+, X−, Y +, Y − in M(Cn)+ such that L = (X+ −X−) + ι (Y + − Y −). Moreover,
X+ ≤ X+ + X− = (L+ L∗) /2, and thus ‖X+‖ ≤ ‖L‖. Similarly, ‖X−‖ ≤ ‖L‖,
‖Y +‖ ≤ ‖L‖, and ‖Y −‖ ≤ ‖L‖.

Set Hm,n
1 (respectively, Hm,n

∞ ) as the linear space made up of all infinite sequences
of complex matrices H = (H1, H2, . . . ), Hi ∈ M(Cm,Cn), such that

∑∞
i=1 ‖Hi‖ <∞

(respectively, sup{‖Hi‖ , i = 1, 2, . . . } <∞). ForH ∈ Hm,n
1 (respectively, H ∈ Hm,n

∞ )
we define a norm in Hm,n

1 (respectively, Hm,n
∞ ) by ‖H‖1 =

∑∞
i=1 ‖Hi‖ (respectively,

‖H‖∞ = sup{‖Hi‖ , i = 1, 2, . . . }). We shall write Hn
1 and Hn

∞ whenever n = m and

denote Hn+

1 = {H ∈ Hn
1 , Hi ∈ M(Cn)+, i = 1, 2, . . . } and Hn+

∞ = {H ∈ Hn
∞, Hi ∈

M(Cn)+, i = 1, 2, . . . } as the class of positive semidefinite elements of Hn
1 and Hn

∞,
respectively. For H = (H1, H2, . . . ) and L = (L1, L2, . . . ) in Hn+

1 we shall use the
notation H ≤ L to indicate that Hi ≤ Li for each i in N. It is clear that

H ≤ L⇒ ‖H‖1 ≤ ‖L‖1 .(2.2)

Furthermore, we shall use the notation H∗ to indicate that each component H∗
i of

H∗ is the adjoint of Hi, i = 1, 2, . . . .
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We shall denote (l1, ‖·‖1), (l2, ‖·‖2), and (l∞, ‖·‖∞), respectively, as the sets made
up of all infinite sequences of complex numbers x = (x1,x2, . . . ) such that

∑∞
i=1 |xi| <

∞, ∑∞
i=1 |xi|2 <∞, and sup{|xi| , i = 1, 2, . . . } <∞, equipped with the usual norm

‖x‖1 =
∑∞

i=1 |xi|, ‖x‖2 =
∑∞

i=1 |xi|2, and ‖x‖∞ = sup{|xi| , i = 1, 2, . . . } and, in the
case of (l2, ‖·‖2), equipped with the usual internal product 〈·, ·〉.

Remark 2.4. It is easy to verify that (Hm,n
1 , ‖·‖1) and (l1, ‖·‖1) are uniformly

homeomorphic. Similarly, (Hm,n
∞ , ‖·‖∞) and (l∞, ‖·‖∞) can be shown to be uni-

formly homeomorphic. Since (l1, ‖·‖1) and (l∞, ‖·‖∞) are Banach spaces, we have
that (Hm,n

1 , ‖·‖1) and (Hm,n
∞ , ‖·‖∞) are also Banach spaces.

Remark 2.5. Consider Q = (Q1, Q2, . . . ) ∈ Hn
1 . From Remark 2.3, Qi =(

X+
i −X−

i

)
+ ι
(
Y +
i − Y −

i

)
, where X+

i , X−
i , Y +

i , and Y −
i belong to M(Cn)+. Now

define X+ = (X+
1 , X+

2 , . . . ), X− = (X−
1 , X−

2 , . . . ), Y + = (Y +
1 , Y +

2 , . . . ), and Y − =
(Y −

1 , Y −
2 , . . . ). Since Q ∈ Hn

1 , it follows, again from Remark 2.3, that X+, X−, Y +,
and Y − also belong to Hn

1 . Therefore, Q can always be decomposed as

Q =
(
X+ −X−)+ ι

(
Y + − Y −)

with X+, X−, Y +, and Y − in Hn+

1 .
To support the sketch of the proof of Proposition 4.9, we define Wm,n

∞ as the
Banach space made up of all infinite dimensional complex matrices of the type C =
diag (Ci), where Ci ∈ M(Cm,Cn), i ∈ S, and supi∈S ‖Ci‖ < ∞. For C ∈ Wm,n

∞ we
define ‖C‖W∞ = supi∈S ‖Ci‖ as the norm inWm,n

∞ and C∗ = diag(C∗
i ) ∈ Wn,m

∞ , where

C∗
i is the adjoint of Ci. We write Wn

∞ whenever n = m and denote Wn+

∞ = {C ∈
Wn

∞, Ci ∈ M(Cn)+, i ∈ S} as the class of positive semidefinite elements of Wn
∞. For

B, C ∈ Wn+
∞ , we say that B ≤ C if Bi ≤ Ci, i ∈ S.

For any complex Banach space X, we denote by Blt (X) the Banach space of all
bounded linear transformations of X into X equipped with the uniform induced norm
represented by ‖·‖, and for L ∈ Blt (X) we denote by σ (L) the spectrum of L.

Finally, we denote by 1A {.} the Dirac measure, we write {η} for any process
{η(t), 0 ≤ t ≤ T}, whenever it is clear whether T is finite or not, and we adopt E[·]
for the usual expectation. In addition, a function f : Y→ R, Y a finite dimensional

space, is denoted o (‖r‖) if limr→0
f(r)
‖r‖Y = 0 with r approaching zero by any path in

Y . A function f : [0,∞)→ E, E standing for R or C, is said to be o (δ) if limδ↓0
|f(δ)|
δ = 0. A similar notation, namely, on (δ) (respectively, onn (δ)), stands for a

vector (respectively, matrix) valued function if the above limit holds for each entry.

For g : R
n→ R with partial derivatives ∂g(x)

∂xi
, i = 1, . . . , n, we denote by ∇xg(x) =

(∂g(x)
∂x1

. . . ∂g(x)
∂xn

)′ the gradient of g.

3. Problem statement. Let us fix an underlying complete probability space
(Ω,F ,P) and, for arbitrary s, T ∈ [0,∞), consider the class of stochastic differential
equations

ẋ(t) = Aθ(t)x(t) +Bθ(t)u(t), s < t < T,(3.1)

x(s) = xs, θ(s) = θs,(3.2)

where x(t) ∈ C
n denotes the state vector and u(t) ∈ C

m the control input. The system
parameters are functions of a homogeneous Markov process {θ(t), t ∈ [s, T ]} with right
continuous trajectories and an infinite countable state space which, for convenience,
we assign to the set S = {1, 2, . . . }. We assume that {θ} has a stationary standard
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transition probability matrix function (see [36, p. 138]) {Pτ (i, j)}i,j∈S in that, for
0 ≤ τ ≤ T − t,

Pτ (i, j) = P{θ(t+ τ) = j| θ(t) = i} =
{

λijτ + oij(τ), i �= j,
1 + λiiτ + oii(τ), i = j,

(3.3)

with infinitesimal matrix Λ = [λij ]i,j∈S , where λij ≥ 0 for i �= j. The Markov process

{θ} is conservative and stable in that
∞∑

j=1,j =i

λij = −λii ≤ c <∞, i = 1, 2, . . . ,(3.4)

where c does not depend on i. We assume that
{
A(.), B(.)

}
are such that for any j ∈ S

and for θ(t) = j, Aθ(t) = Aj and Bθ(t) = Bj , with Aj , Bj being constant matrices
in M(Cn) and M(Cm,Cn), respectively. In addition, the parameters are supposed
norm-bounded in that A = (A1, A2, . . . ) ∈ Hn

∞ and B = (B1, B2, . . . ) ∈ Hm,n
∞ . We

consider xs a second order random variable (r.v.) which may depend on the r.v. θs,
and we shall denote ϑs=ϑs(xs, θs) as the joint initial distribution of xs and θs. By
its turn, we assume the r.v.’s θ(t+ τ) are conditionally independent of xs, given θ(t),
for s ≤ t < T , 0 < τ < T − t.

In order to tackle our main problem, we begin by studying the auxiliary finite-time
control problem as defined below.

We assume that the class of admissible control policies, Us,T (U0,T ≡ UT for
short), is the class of all Borel measurable functions u : {[s, T ],Cn,S} → C

m such
that, for some constant c, which might depend on u, the following hold.

C1. For every z, y ∈ C
n, t ∈ [s, T ], and each i ∈ S,

(a) ‖u(t, z, i)− u(t, y, i)‖ ≤ c ‖(z − y)‖ (Lipschitz condition), and
(b) ‖u(t, y, i)‖ ≤ c(1 + ‖y‖) (growth condition).

For starting time 0 ≤ s < T , terminal cost condition L ∈ Hn+

∞ , and for each
policy u ∈ Us,T , define the cost functional

J[s,T ],L(ϑs, u) = E

[∫ T

s

∥∥∥Q1/2x(t)
∥∥∥2

+
∥∥∥R1/2u(t)

∥∥∥2

dt+ x(T )∗Lθ(T )x(T )

]
,(3.5)

where x(t) is subject to (3.1), R,Q ∈ M(Cn)+, and R > 0. For the sake of simplicity,
the cost matrices Q and R are jump independent. However, the results derived here
carry over verbatim to the case Qθ(t) and Rθ(t) when conveniently norm-bounded.

The finite-time optimal control problem consists in finding ûT ∈ Us,T , which
minimizes J[s,T ],L(ϑs, u).

Our main problem consists then in analyzing the infinite-time control problem by
considering the setup as above, where now t ≥ 0 and U ≡ U0,∞ with the following
additional conditions.

C2. Model (3.1) with t ≥ 0 is mean square stable (MSS), i.e., E[‖x(t)‖2] → 0 as
t→∞ for any distribution ϑ0.

C3. The cost functional J (ϑ0, u), defined below, is finite for any distribution ϑ0.
For each policy u ∈ U , define the cost functional

J (ϑ0, u) := E

[∫ ∞

0

(∥∥∥Q1/2x(t)
∥∥∥2

+
∥∥∥R1/2u(t)

∥∥∥2
)

dt

]
,(3.6)

where x(t) is subject to (3.1) with t > 0.
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The infinite-time problem is then to derive an optimal control policy û, within
the class U , that minimizes the above cost, i.e., such that

J (ϑ0, û) := inf
u∈U

J (ϑ0, u),(3.7)

and to establish structural conditions under which the existence and uniqueness of
such a solution are ensured.

Remark 3.1. Since {x(t), θ(t)} is a Markov process, (3.1) and (3.5) set a “Markov”
problem, and therefore control policies of the form u(t) = u(t, x(t), θ(t)) suffice vis-
à-vis the more expanded class consisting of policies of the form u(t) = u(t, {x(s),
θ(s), s ≤ t}).

4. Preliminaries. The following propositions from semigroup theory are essen-
tial tools in this work (see, for instance, [45]).

Proposition 4.1. Let Y be a Banach space, and consider the homogeneous
differential equation {

ẏ(t) = Ay(t), t > 0,
y(0) = y

(4.1)

with arbitrary initial data y ∈ Y , where A is a bounded linear operator defined on Y
into Y . Then (4.1) is satisfied by a unique Y -valued function, continuous for t ≥ 0
and continuously differentiable for t > 0, given by

t→ y(t) = T (t)y ∈ Y , t ≥ 0,(4.2)

where T (t) : Y → Y , t ≥ 0, is the C0-semigroup (actually a uniformly continuous
semigroup) of bounded linear transformations generated by A, its infinitesimal opera-
tor.

Proposition 4.2. Let Y be a Banach space, and, for finite T > 0, consider the
inhomogeneous differential equation{

ẏ(t) = Ay(t) + f(t), 0 < t < T,
y(0) = y

(4.3)

with arbitrary initial data y ∈ Y , where A is a bounded linear operator defined from
Y into Y and f ∈ L1([0, T ], Y ). Then, for every y ∈ Y , the initial value problem (4.3)
has at most one solution. If, for a certain y ∈ Y , it has a solution, it is given by

y(t) = T (t)y +

∫ t

0

T (t− s)f(s)ds, t ∈ [0, T ],

where T (t) is the uniformly continuous semigroup as defined in the above proposition.
Moreover, if f ∈ L1([0, T ], Y ) is continuously differentiable, then (4.3) has, for every
y ∈ Y , a unique continuous and continuously differentiable solution on [0, T ].

The following lemma is, essentially, a combination of results from [45].
Lemma 4.3. Let A : D(A)→ Y be the infinitesimal generator of a C0 semigroup

T (t) : Y → Y , let Y be a Banach space, and let D(A) be the domain of A, and consider
the following assertions.

1. sup{Reλ : λ ∈ σ(A)} < 0.
2. There are constants M ≥ 1 and ω > 0 such that ‖T (t)‖ ≤M exp(−ωt).
3.
∫∞
0
‖T (t)y‖ dt <∞ for every y ∈ Y.
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4.
∫∞
0
‖T (t)‖ dt <∞.

Then 2, 3, and 4 are equivalent assertions and imply 1. Moreover, if T (t) is analytic,
all assertions are equivalent.

Proof (sketch of proof). Implications (2 ⇒ 4) and (4 ⇒ 3) are straightforward
and (3 ⇒ 2) is obtained, e.g., from Theorem 4.4.1 of [45]. For (2 ⇒ 1), note that
the C0 semigroup S(t) = exp(ωt)T (t), t ≥ 0, is such that ‖S(t)‖ ≤ M and so
ρ(As) ⊃ {λ ∈ C : Reλ > 0}, where ρ(As) is the resolvent set of the infinitesimal
generator As of S(t) (see, e.g., [45]). Since A = As − ωI and D(A) = D(As), it
follows that ρ(A) = ρ(As) − ω and so ρ(A) ⊃ {λ ∈ C : Reλ > −ω}, i.e., sup{Reλ :
λ ∈ σ(A)} < 0. Finally, if T (t) is an analytic semigroup, the exponential decay
implication (1 ⇒ 2) follows, e.g., from Theorem 4.4.3 of [45]. For details, see
[4].

Corollary 4.4. If Assertion 2 of Lemma 4.3 holds, then β = M
ω (respectively,

β ‖y‖) is an upper bound for Assertion 4 (respectively, Assertion 3).
For arbitrary initial condition (x0, θ0), let us now consider the homogeneous dy-

namic system {
ẋ(t) = Fθ(t)x(t), t > 0,
x(0) = x0, θ(0) = θ0,

(4.4)

where F = (F1, F2, . . . ) ∈ Hn
∞, and define Q(t) = (Q1(t), Q2(t), . . . ), t ≥ 0, where

Qi(t) = E[x(t)x(t)∗1{θ(t)=i}] ∈ M(Cn)+, i ∈ S.(4.5)

Furthermore, for H = (H1, H2, . . . ) ∈ Hn
1 , let us define the operator D, with

D(H) = (D1(H),D2(H), . . . ), such that

Di(H) = FiHi +HiF
∗
i +

∞∑
j=1

λjiHj , i ∈ S.(4.6)

Proposition 4.5. D ∈ Blt (Hn
1 ).

Proof. The proof follows standard arguments concerning bounded linear trans-
formations in Banach spaces.

Proposition 4.6. Let x(t) be given by (4.4) with arbitrary F ∈ Hn
∞. Then

Q(t), t ≥ 0, defined as in (4.5), belongs to Hn+

1 and satisfies the Banach space linear
differential equation

{
Q̇(t) = D(Q(t)), t > 0,

Q(0) = Q0 ∈ Hn+

1 , Q0
i = E[x0x

∗
01{θ0=i}], i ∈ S,(4.7)

or, equivalently, the infinite countable set of interconnected linear differential equations{
Q̇i(t) = Di(Q(t)), t > 0,
Qi(0) = Q0

i = E[x0x
∗
01{θ0=i}], i ∈ S,(4.8)

where D is given as in (4.6).
Proof. We use (4.4) and (4.5) and the fact that Qi(t) ∈ M(Cn)+ to obtain that

Q(t) ∈ Hn+

1 , t ≥ 0, and that, with probability one,

x(t+ δ) = x(t) + Fθ(t)x(t)δ + on(δ), t, δ ≥ 0.(4.9)
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Furthermore, some algebraic manipulation and standard results with respect to the

existence of limits lead us to d+Q(t)
dt = limδ↓0

Q(t+δ)−Q(t)
δ = D(Q(t)), t > 0.We notice

further that D is the infinitesimal generator of a C0-semigroup, and from an argument
of the proof of Theorem 1.2.4 of [45], the proposition follows.

Let us now define, for H = (H1, H2, . . . ) ∈ Hn+

∞ , the linear operators E(H) =
(E1(H), E2(H), . . . ) and G(H) = (G1(H), G2(H), . . . ) as well as the nonlinear operator
T (H) = (T1(H), T2(H), . . . ), where, for each i ∈ S,

Ei(H) =
∞∑

j=1,j =i

λijHj , Gi(H) = R−1B∗
i Hi,(4.10)

and

Ti(H) = Q+A∗
iHi +HiAi −HiBiR−1B∗

i Hi + λiiHi + Ei(H).(4.11)

Proposition 4.7. The operator E maps Hn+
∞ into Hn+

∞ , T maps Hn+
∞ into

{Z ∈ Hn
∞ : Z∗ = Z}, and G maps Hn+

∞ into Hn,m
∞ .

Proof. The proof is straightforward from standard arguments concerning normed
spaces.

With the operators T , E , and G in hand, let us now define, for finite Tand L ∈ Hn+

∞
arbitrarily fixed, the Banach space Riccati differential equation{

ṠT (t) + T (ST (t)) = 0, t ∈ (0, T ),
ST (T ) = L,

(4.12)

where ST (t) = (ST
1 (t), S

T
2 (t), . . . ).

Equation (4.12) may be written as the following infinite countable set of inter-
connected Riccati differential equations:{

ṠT
i (t) + Ti(ST (t)) = 0, t ∈ (0, T ),

ST
i (T ) = Li, i ∈ S.(4.13)

Remark 4.8. Although it may appear, prima facie, that the above equivalence is a
tautology, we would like to point out that it relies on the fact that the induced norm
by Hn

∞ on the linear subspace {(0, . . . , 0, H, 0, 0, . . . ), H ∈ M(Cn)} coincides with
the usual norm ‖·‖ of M(Cn) ((4.12) ⇒ (4.13)) and that (ṠT

1 (t), Ṡ
T
2 (t), . . . ) ∈ Hn

∞
((4.13) ⇒ (4.12)). (For more information on the matter, see [43].) To see that

(ṠT
1 (t), Ṡ

T
2 (t), . . . ) ∈ Hn

∞, note that for ST (t) ∈ Hn+

∞ , we have from Proposition 4.7
and the definition of T that T (ST (t)) = (T1(S

T (t)), T2(S
T (t)), . . . ) ∈ Hn

∞. In turn,
this and (4.13) yield (ṠT

1 (t), Ṡ
T
2 (t), . . . ) ∈ Hn

∞.
The proposition that follows shows that the solution of the Riccati differential

equation given by (4.12) exists and is unique.

Proposition 4.9. For T ∈ [0,∞) and terminal data L ∈ Hn+

∞ , arbitrarily fixed,

there exists a solution ST (·) : [0, T ] → Hn+

∞ for (4.12), continuous for t ∈ [0, T ] and
continuously differentiable for t ∈ (0, T ). Moreover, this solution is unique (within
the class of solutions with these properties).

Proof (sketch of proof). Besides existence and uniqueness, we have to show that
the solution to (4.12) is positive in the sense defined in section 2. This led us to an
approach inspired, in part, by that in [49] for the finite dimensional scenario, in con-
junction with standard results from the literature on semigroup, evolution equation,



278 MARCELO D. FRAGOSO AND JACK BACZYNSKI

and the Volterra equation in Banach space (see, e.g., [45], [37]). So, we define the
infinite dimensional square matrix S(t) = diag(ST

i (t)), t ∈ [s, T ], and shape (4.12) as

ṠT (t) + Ψ(S(t)) = 0, S(T ) = L, t ∈ (s, T ),(4.14)

where Ψ(S) = A∗
S +SA + Π(S) +Q −SBR−1B∗S, A = A + 1

2diag(λiiIn), A =

diag(Ai) ∈ Wn
∞, B = diag(Bi) ∈ Wm,n

∞ , R−1 = diag(R−1) ∈ Wn+

∞ , Q = diag(Q) ∈
Wm+

∞ , and L = diag(Li) ∈ Wn+

∞ . In addition, Π : Wn
∞ → Wn

∞ is a bounded linear
operator with Π = D◦χ◦D−1, where, for every H ∈ Hn

∞, χ = (χ1, χ2, . . . ) : Hn
∞

→ Hn
∞ is such that χi(H) =

∑∞
j=1,j =i λijHj , and D : Hn

∞ → Wn
∞ is such that

D(H) = diag(Hi). We proceed ensuring that every element in W ·,·
∞ is well defined as

an operator in Blt (W ·,·
∞,W ·,·

∞), namely, that C ∈ Wm,n
∞ implies C ∈ Blt (Wm,q

∞ ,Wq,n
∞ ),

‖C‖ ≤ ‖C‖W∞ , and ‖C‖ = ‖C‖W∞ for n = m = q. Now, in the spirit of the technique
of [49], we define a version of the differential equation (4.14), which is linear in S,
and we obtain its Volterra equivalent. Picard’s successive approximation method and
the positiveness of Π (in that Π(H) ≥ 0 if H ≥ 0) give us that the unique solution to
the Volterra equation is positive semidefinite, i.e., it belongs to Wn+

∞ . An important
step now is to build a sequence of solutions Si(t) to the corresponding set of Volterra
equations equipped with parameters K1(t) (arbitrary) and Ki(t) = R−1B∗Si−1(t),
i = 2, 3, . . . , in that order. Then, exploring (i) a property of the minimum, (ii) a
comparison theorem, and (iii) a standard result on semigroup theory, and applying
the dominated convergence theorem, we show that, for each t, {Si(t)} is a monotone
nonincreasing sequence of positive semidefinite elements that converges to a solution
of (4.14). A Lipschitz condition gives us that this positive solution is unique. For
details, see [4], [27].

5. The finite-time optimal control problem. Referring to the finite-time op-
timal control problem defined in section 3, we have from system (3.1) that {x(t), θ(t)}t∈[s,T ],
is a Markov process evolving in (Cn,S) with sample paths that are continuous from
the right. From this fact, and bearing in mind an argument from [1, p. 37], we have
that {x(t), θ(t)}t∈[s,T ] has a stochastically continuous transition probability and conse-
quently is characterized uniquely in terms of its infinitesimal generator, as follows. Let
B(X ,R), X = ([s, T ]×C

n ×S), be the Banach space of all bounded real valued mea-
surable functions g, defined on X , equipped with the norm ‖g‖ := sup{|g(z)| : z ∈ X}.
The semigroup of linear Markov transition operators T (h) : B(X ,R)→ B(X ,R), h ∈
[0, T − t], which characterizes {x(t), θ(t)}t∈[s,T ], is given by

(T (h)g) (t, x(t), θ(t)) := Ex(t),θ(t)[g(t+ h, x(t+ h), θ(t+ h))](5.1)

for every (t, x(t), θ(t)) ∈ X .
By the infinitesimal generator of a family of transition probabilities of the Markov

process {x(t), θ(t)}t∈[s,T ], we mean the operator L : D(L)
→ B(X ,R), such that

(Lg) (t, x(t), θ(t)) = lim
h↓0

(T (h)g) (t, x(t), θ(t))− (T (0)g) (t, x(t), θ(t))
h

(5.2)

for every (t, x(t), θ(t)) ∈ X and g ∈ D(L) with (T (h)g) (t, x(t), θ(t)) defined as in
(5.1), where D(L) is the set of functions g ∈ B(X ,R) for which the above limit exists.
The limit required is the uniform limit with respect to X . Furthermore, Dynkin’s
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formula reads as (see [32])

g(s, x(s), θ(s)) − Ex(s),θ(s) [g(t, x(t), θ(t))]

= Ex(s),θ(s)

[∫ t

s

− (Lg) (r, x(r), θ(r))dr
]

(5.3)

for g ∈ D(L). (Notice that, since all terms above are measurable and bounded, the
integral and expectations above exist and are finite.)

Bearing in mind now the decomplexification concept in section 2, we get, in our
scenario, a further derivation for the infinitesimal generator of the Markov process
{x(t), θ(t)}t∈[s,T ]. For this, let us start with the following proposition.

Proposition 5.1. For any continuous bounded function g:X 
→ R, we have that

lim
h↓0

(T (h)g) (t, x(t), θ(t)) = g(t, x(t), θ(t)).(5.4)

Proof. The proof follows, mutatis mutandis, from [29] .

We now define C1,R
b (X ) as the set of all functions g ∈ B(X ,R) such that, for

each i ∈ S, the decomplexification Rg is (Fréchet-) continuously differentiable in the
variables t ∈ (s, T ) and Rx ∈ R

2n.

Proposition 5.2. Consider system (3.1) with u ∈ Us,T , and let g ∈ C1,R
b (X ).

Then g ∈ D(L), and the infinitesimal operator (5.2) reads as

(Lug) (t, x(t), θ(t)) = ∂

∂t
g(t, x(t), θ(t)) +∇Rx

Rg(t,Rx(t), θ(t))′ R(Aθ(t)x(t)

+Bθ(t)u(t)) +

∞∑
j=1

g(t, x(t), j)λθ(t)j(5.5)

for any (t, x(t), θ(t)) ∈ ((s, T )× C
n × S).

Proof. The proof follows from (5.2), bearing in mind (3.1), (3.3), (5.1), and
Lemma 7.1. That g ∈ D(L) follows along the same lines of [21, p. 159].

Remark 5.3. Actually, D(L) now is the set C1,R
b (X ) (see [1, p. 38]).

With Xo = ((s, T )×Xo×S) and Xo an arbitrary open and bounded set in C
n, let

us define C1,R(X o) as the set of all real valued measurable functions g, well-defined
on X̄o (the closure of Xo), such that, for each i ∈ S, the decomplexification Rg is
(Fréchet-) continuously differentiable in the variables t ∈ (s, T ) and Rx ∈ RXo. In this
case, mutatis mutandis, as in [23, Ch. V, Lemma 5.1], the integral and expectations
in the above equations exist and are finite, so that Dynkin’s formula (5.3) may be
applied. This is the setting of our next proposition.

Proposition 5.4. Let g ∈ C1,R(X o) be such that

g(t, x, i) = x∗ST
i (t)x,(5.6)

where t 
→ ST (t) = (ST
1 (t), S

T
2 (t) . . . ) ∈ Hn+

∞ satisfies the Banach space Riccati dif-

ferential equation given by (4.12) with terminal condition ST (T ) = L ∈ Hn+

∞ . Then,
for system (3.1) with u ∈ Us,T , the infinitesimal operator Lu is given by

(Lug) (t, x(t), θ(t)) = x(t)∗{−Q+ ST
θ(t)(t)Bθ(t)R−1B∗

θ(t)S
T
θ(t)(t)}x(t)

+ u(t)∗B∗
θ(t)S

T
θ(t)(t)x(t) + x(t)∗ST

θ(t)(t)Bθ(t)u(t)(5.7)
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for any (t, x(t), θ(t)) ∈ ((s, T )×Xo × S). Furthermore, Dynkin’s formula (5.3) reads
as

x(s)∗ST
θ(s)(s)x(s)− Ex(s),θ(s)[x(t)

∗ST
θ(t)(t)x(t)]

= Ex(s),θ(s)

[∫ t

s

x(r)∗Qx(r)− x(r)∗ST
θ(r)(r)Bθ(r)R−1B∗

θ(r)S
T
θ(r)(r)x(r)

− u(r)∗B∗
θ(r)S

T
θ(r)(r)x(r)− x(r)∗ST

θ(r)(r)Bθ(r)u(r)dr

]
.(5.8)

Proof. Bearing in mind [23, Chap. V, Lemma 5.1], we use (5.5) as well as Lemma
7.4.

Proposition 5.5. The above result also holds if we consider Proposition 5.4 with
g now defined on the hole domain X .

Proof. Note that g trivially satisfies a polynomial growth condition, namely,
‖g(t, x, i)‖ ≤ c1(1 + ‖x‖k) for every (t, x, i) ∈ X and some constants c1 and k. Also
note that g with ST (t) given by (4.12) is continuous on X̄o. These facts, together with
Lemma 7.7 in the Appendix, fulfill the conditions given in [23, Ch. V, Theorem 5.1]
so that, along the same lines as in the proof of this theorem, Dynkin’s formula (5.3)
may still be applied (the integral and expectations therein exist) and the proposition
follows.

We now derive a cost expression for an arbitrary u ∈ Us,T and the optimal solution
for the finite-time case.

Proposition 5.6. For arbitrary u ∈ Us,T , the cost defined in (3.5) reads as
follows.

J[s,T ],L(ϑs, u) = E

[
x(s)∗ST

θ(s)(s)x(s)(5.9)

+

∫ T

s

∥∥∥B∗
θ(r)S

T
θ(r)(r)x(r) +Ru(r)

∥∥∥2

R−1
dr

]

with ST (r) ∈ Hn+

∞ (uniquely) satisfying (4.12).
Proof. From (3.5), we have that

J[s,T ],L(ϑs, u) = E

[
Ex(s),θ(s)

[∫ T

s

(x(r)∗Qx(r) + u(r)∗Ru(r))dr

]

+ Ex(s),θ(s)[x(T )
∗Lθ(T )x(T )]

]
.(5.10)

Now, from Proposition 5.5, setting t = T in Dynkin’s formula (5.8), we get

J[s,T ],L(ϑs, u) = E

[
x(s)∗ST

θ(s)(s)x(s) + Ex(s),θ(s)

[∫ T

s

(u(r)∗Ru(r)

+ x(r)∗ST
θ(r)(r)Bθ(r)R−1B∗

θ(r)S
T
θ(r)(r)x(r)

+ u(r)∗B∗
θ(r)S

T
θ(r)(r)x(r) + x(r)∗ST

θ(r)(r)Bθ(r)u(r))dr

]]
.(5.11)
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Now, since R = R∗, the expression under integration may be written as

u(r)∗R∗R−1Ru(r) + x(r)∗ST
θ(r)(r)Bθ(r)R−1B∗

θ(r)S
T
θ(r)(r)x(r)

+ (Ru(r))
∗R−1B∗

θ(r)S
T
θ(t)(r)x(r) + x(r)∗ST

θ(r)(r)Bθ(r)R−1Ru(r),

and, denoting y = B∗
θ(r)S

T
θ(r)(r)x(r) and w = Ru(r), it becomes

w∗R−1w + y∗R−1y + w∗R−1y + y∗R−1w = (y + w)∗R−1(y + w)

= ‖y + w‖2R−1 =
∥∥∥B∗

θ(r)S
T
θ(r)(r)x(r) +Ru(r)

∥∥∥2

R−1
.

Thus substitution in (5.11) yields

J[s,T ],L(ϑs, u) = E

[
x(s)∗ST

θ(s)(s)x(s) +

∫ T

s

∥∥∥B∗
θ(r)S

T
θ(r)(r)x(r) +Ru(r)

∥∥∥2

R−1
dr

]
,

(5.12)

which completes the proof.
Remark 5.7. Note that, instead of Proposition 5.5, we could also use Proposition

5.4 alone to deduce (5.11), bearing in mind that the process {x} satisfies the differ-
ential equation (3.1), with u ∈ Us,T , and E[‖x(r)‖k] is bounded for each k > 0 and
s ≤ r ≤ T (see [23, p. 156]).

Proposition 5.8. The optimal control in the admissible class Us,T is given by

ûT (t) = −GT
θ(t)(t)x(t),(5.13)

where GT (t) = (GT
1 (t), G

T
2 (t), . . . ) = G(ST (t)) ∈ Hn,m

∞ (GT
i (t) = R−1B∗

i S
T
i (t)) with

ST (t) ∈ Hn+

∞ (uniquely) satisfying (4.12), t ∈ [s, T ]. Furthermore, the minimum cost
reads as follows:

J[s,T ],L(ϑs, û
T ) = inf

u∈Us,T
J[s,T ],L(ϑs, u) = E[x(s)∗ST

θ(s)(s)x(s)].(5.14)

Proof. The proof is immediate from (5.12).

6. The infinite-time optimal control problem. In this section conditions
for solving the infinite horizon optimal control problem are established. Parallel to
the classical LQ problem, when dealing with the infinite-time optimal control prob-
lem(infinite horizon) two structural concepts turn out to be essential: SS and SD,
defined as follows.

Definition 6.1 (SS). We say that the system (A,B,Λ) is SS if there exists
G ∈ Hn,m

∞ such that for any joint initial distribution ϑ0, we have that∫ ∞

0

E[‖x(t)‖2]dt <∞,(6.1)

where x(t) is given by (3.1) with t ≥ 0 and u(t) = −Gθ(t)x(t), i.e.,

ẋ(t) = Fθ(t)x(t), t > 0,(6.2)

with Fθ(t) = Aθ(t) − Bθ(t)Gθ(t). In this case we say that (6.2) is stochastically stable
and G stabilizes (A,B,Λ).
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Definition 6.2 (SD). Consider C = (C1, C2, . . . ) ∈ Hn,r
∞ . We say that the sys-

tem (C,A,Λ) is SD if there exists K ∈ Hr,n
∞ such that for any joint initial distribution

ϑ0, we have that ∫ ∞

0

E[‖x(t)‖2]dt <∞,(6.3)

where x(t) is given by

ẋ(t) = Fθ(t)x(t), t > 0,(6.4)

with Fθ(t) = Aθ(t) −Kθ(t)Cθ(t).
Remark 6.3. The system (C,A,Λ) refers to


ṙ(t) = Aθ(t)r(t), t > 0,
y(t) = Cθ(t)r(t),
r(0) = x0, θ(0) = θ0,

(6.5)

and x(t), given by (6.4), assigns the error of a K-based estimate of r(t). We say
then that this estimate detects r(·) in the sense of (6.3) and that K turns (C,A,Λ)
detectable.

Remark 6.4 (SS versus MSS.). It has been shown in [22] that MSS and SS are
equivalent if the Markov chain has a finite state space. For the countably infinite
case, however, this equivalence is no longer true, as we can notice from the coun-
terexample that follows. We denote −bθ(t) = Aθ(t) and consider the infinite-time
scalar version of the random differential equation (3.1) with u ≡ 0, {θ} a Pois-
son process with parameter λ, and bi =

λ
2 ln

(
i+1
i

)
, i ∈ S . In this case (see [11],

[48]) the discontinuities of the sample paths are ordinary jumps with probability
one, the sequence of jump times τ0 = 0 < τ1 < τ2 . . . is infinite and such that
limn→∞ τn = ∞ almost surely (a.s.), and the sojourn times τn − τn−1, n ∈ N, are
independent r.v.’s with average E[τn − τn−1] = 1/λ and density function given by
λe−λs, s ≥ 0. Furthermore, the trajectories of the state process {x} are decreasing
and connected solution pieces of (3.1) given by x(t) = an exp( −bn+θ0−1( t− τn−1))
a.s., τn−1 ≤ t < τn , n ∈ N, where a1 = x0, and, from continuity, an = x0 exp
( −∑n−1

i=1 bi+θ0−1 (τ i − τ i−1)), n = 2, 3, . . . .
Now, for deterministic x(0) = x0 ∈ R

n, x0 �= 0, and θ(0) = = ∈ S, we have, using
the Jensen inequality and Fubini, that∫ ∞

0

E[x(t)2]dt = E

∞∑
n=1

∫ τ−
n

τn−1

x(t)2dt ≥ x2
0

∞∑
n=1

(
θ0

n+ θ0
exp

{∫ ∞

0

(ln s)λe−λsds

})
=∞.

By its turn, we have that x(τn) = an+1 a.s., so that

Ex0,θ0 [x(τn)
2] = x2

0

n∏
i=1

{∫ ∞

0

exp(−2bi+θ0−1s).λ exp(−λs)ds

}

= x2
0

(
n∏
i=1

(
1 + ln

(
i+θ0

i+θ0−1

)))−1

→ 0 as n→∞.

Moreover, since almost all trajectories of {x} are decreasing, we have that
limt→∞ x(t)2 = limn→∞ x(τn)

2 a.s.. Hence, using the Lebesgue monotone conver-
gence theorem, we can write that limt→∞ E[x(t)2] = E[limn→∞ Ex0,θ0 [x(τn)

2]] = 0
for any joint distribution of (x0, θ0).
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An important tool for solving our optimal control problem is an equivalence lemma
which draws the connection between the above concepts and the spectrum of a certain
infinite dimensional linear operator. We start with the following auxiliary proposition.

Proposition 6.5. Define F = (F1, F2, . . . ), where, referring to the SS (respec-
tively, the SD) case, Fi = Ai − BiGi (respectively, Fi = Ai − KiCi), i ∈ S. Then
F ∈ Hn

∞.
Proof. See [4] for details.
Now we have the equivalence lemma.
Lemma 6.6. Consider the operator D given by (4.6), some G = (G1, G2, . . . ) ∈

Hn,m
∞ , C = (C1, C2, . . . ) ∈ Hn,r

∞ , and K = (K1,K2, . . . ) ∈ Hr,n
∞ . Then the following

hold.
(E1) The system (A,B,Λ) is SS with stabilizing G if and only if

sup{Reλ : λ ∈ σ(D)} < 0, Fi = Ai −BiGi, i ∈ S.(6.6)

(E2) Similarly, the system (C,A,Λ) is SD with K turning (C,A,Λ) detectable if
and only if

sup{Reλ : λ ∈ σ(D)} < 0, Fi = Ai −KiCi, i ∈ S.(6.7)

Proof. In order to carry out indistinctly the proof for (E1) or (E2), we shall
consider D and (4.4) equipped either with Fi = Ai −BiGi or with Fi = Ai −KiCi.

⇒(Sufficiency). We have that Q(t) given by (4.5), with x(t) satisfying (4.4), is
continuous and continuously differentiable in Hn

1 . Also, from Proposition 4.6, Q(t)
satisfies (4.7). So, using Proposition 4.1, Q(t) = T (t)Q0, t ≥ 0, where T (t) is the
uniformly continuous semigroup generated by D. Now, ∫∞

0

∥∥T (t)Q0
∥∥

1
dt < ∞ (see

Lemma 4.3) and, since E[‖x(t)‖2] = tr(
∑∞

i=1 E[x(t)x(t)
∗1{θ(t)=i}]) ≤ n ‖Q(t)‖1, it

follows that
∫∞
0

E[‖x(t)‖2]dt < ∞ for every initial condition r.v. (x0, θ0).

⇐ (Necessity). From the hypothesis,
∫∞
0

E[‖x(t)‖2]dt <∞ for every initial condi-

tion r.v. (x0, θ0) and x(t) given by (4.4). This implies
∫∞
0
‖Q(t)‖1 dt <∞, where Q(t)

is given by (4.5). (Notice that ‖Q(t)‖1 ≤
∑∞

i=1 E[‖x(t)x(t)∗‖ 1{θ(t)=i}] ≤ E[‖x(t)‖2].)
Also, Q(t) is continuous and continuously differentiable and, from Proposition 4.6, sat-
isfies (4.7). So, using Proposition 4.1, we have that Q(t) = T (t)Q0, t ≥ 0, where T (t)
is the uniformly continuous semigroup generated by D. Hence ∫∞

0

∥∥T (t)Q0
∥∥

1
dt <

∞ for every Q0 ∈ Hn+

1 . (This is justified since, for any Q0 ∈ Hn+

1 , we can always
find r.v.’s x0 and θ0 that, subject to (4.5), produce Q0.) Now, since our variables are
defined in the field of the complex numbers, we may appeal to the Cartesian decom-
position of Remark 2.5 so that there exist X+, X−, Y +, and Y − in Hn+

1 such that,
for every Q0 ∈ Hn

1 ,
∫∞
0
‖T (t)Q0‖1dt =

∫∞
0
‖T (t){(X+ −X−) + ι (Y + − Y −)}‖1dt <

∞. The result follows from Lemma 4.3.
Let us now turn our attention to the infinite-time optimal control problem. Since

in this case there is no fixed “time horizon,” we expect, parallel to the classical LQ
problem, that the minimum cost (see (5.14)) should not depend on the starting time
s whenever we preserve the same initial condition r.v.’s (x(s), θ(s)). This suggests
finding a constant function [0, T ] 	 t 
→ ST (t) = S satisfying (4.12) with terminal
condition ST (T ) = S, a “matched” solution for the finite-time problem in the sense
that it simulates the infinite-time case. Now we may notice that S satisfies (4.12)
with terminal condition ST (T ) = S if and only if it satisfies the ICARE T (S) = 0.
From this liaison, we should expect that the solution of our infinite-time problem
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should hinge on the solution of the ICARE. This is indeed the case, as we shall show
throughout the following propositions.

Proposition 6.7. [0, T ] 	 t 
→ ST (t) = S ∈ Hn
1 satisfies

{
ṠT (t) + T (ST (t)) = 0, t ∈ (0, T ),
ST (T ) = S

(6.8)

if and only if S satisfies T (S) = 0.
Proof. The proof is a straightforward exercise.
Definition 6.8. We say that S = (S1, S2, . . . ) is a positive semidefinite solution

to the ICARE if S ∈ Hn+

∞ and satisfies the ICARE

T (S) = 0.(6.9)

Furthermore, S is a stabilizing solution to the ICARE if it is a positive semidefinite
solution and G = (G1, G2, . . . ) = G(S) stabilizes (A,B,Λ).

Proposition 6.9 below provides sufficient conditions for the existence of a solution
to (6.9).

Proposition 6.9. Suppose (A,B,Λ) is SS. Then, for L = 0 ∈ Hn+

∞ , the value

ST
i (0) of the (unique) solution ST (t) ∈ Hn+

∞ , t ∈ [0, T ], to (4.12), converges to some
Si ∈ M(C

n
)
+

as T → ∞ for each i ∈ S. Furthermore, S = (S1, S2, . . . ) belongs to

Hn+

∞ and satisfies the ICARE (6.9).
Proof. From Proposition 4.9, the solution to (4.12) indeed exists and is unique for

T ∈ (0,∞) and L = 0 ∈ Hn+

∞ . Let us now consider the finite-time control problem of
section 5 with s = 0 and initial conditions x(0) = x and θ(0) = i, x and i deterministic
and arbitrary in C

n and S, respectively, time horizons T1, T2 ∈ (0,∞), T1 < T2, and
terminal cost conditions ST1(T1) = ST2(T2) = L = 0. In this case, applying the
definition (3.5) in (5.14), we have that

x∗ST2
i (0)x ≥ min

u∈UT2

E

[∫ T1

0

∥∥∥Q1/2x(t)
∥∥∥2

+
∥∥∥R1/2u(t)

∥∥∥2

dt

]

+ min
u∈UT2

E

[∫ T2

T1

∥∥∥Q1/2x(t)
∥∥∥2

+
∥∥∥R1/2u(t)

∥∥∥2

dt

]

≥ min
u∈UT1

E

[∫ T1

0

∥∥∥Q1/2x(t)
∥∥∥2

+
∥∥∥R1/2u(t)

∥∥∥2

dt

]
= x∗ST1

i (0)x,(6.10)

and since the above expression holds for every x ∈ C
n,

0 ≤ ST1
i (0) ≤ ST2

i (0)(6.11)

for every T1, T2 ∈ (0,∞), T1 < T2, and i ∈ S. Let us assume for the moment that,
for every T ∈ (0,∞) and i ∈ S,

ST
i (0) ≤ dI(6.12)

for some constant d which does not depend on i and T . This together with (6.11)
allows us to apply Lemma 7.8 in the appendix, which proves the two first assertions
of the proposition.
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We shall now show that S satisfies T (S) = 0. Bearing in mind Proposition 4.9
and Lemma 7.10 and arbitrarily fixing a > 0 and T ∈ (a,∞), let ST (t), t ∈ [0, T ],
and ST,−a(t), t ∈ [−a, T − a], respectively, be the solution to{

ṠT (t) + T (ST (t)) = 0, t ∈ (0, T ),
ST (T ) = 0

(6.13)

and to {
ṠT,−a(t) + T (ST,−a(t)) = 0, t ∈ (−a, T − a),
ST,−a(T − a) = 0.

(6.14)

Since ST
i (0) → Si as T → ∞, we have that ST−a

i (0) → Si as T → ∞. Renaming T
by T − a in (6.13), it is clear that

ST,−a
i (t) = ST−a

i (t), t ∈ [0, T − a],(6.15)

so that ST,−a
i (0)→ Si as T →∞. Now, from Lemma 7.10, we have that

ST
i (a) = ST,−a

i (0), i ∈ S.(6.16)

Hence

lim
T→∞

ST
i (a) = Si, i ∈ S.(6.17)

Rewriting (6.11) and (6.12) as 0 ≤ ST1−a
i (0) ≤ ST2−a

i (0) and ST−a
i (0) ≤ dI, respec-

tively, we have, from (6.15) and (6.16), that 0 ≤ ST1
i (a) ≤ ST2

i (a) and ST
i (a) ≤ dI for

every T, T1, T2 ∈ (a,∞), T1 < T2, and i ∈ S.
Now, from these two expressions in conjunction with (6.17), the fact that S =

(S1, S2, . . . ) ∈ Hn+

∞ , and assuming (6.12), we get via Lemma 7.9 of the appendix that

lim
T→∞

T (ST (a)) = T (S).(6.18)

Let us now define, for (0, T ) 	 t 
→ ST
i (t), the differential operator D such that

ST
i (·) 
→ DST

i (·) = ṠT
i (·). From (6.17) and since a > 0 is arbitrary, we have that

limT→∞ ST
i (t) = Si, t ∈ (0, T ). Therefore, from the continuity of D and viewing Si

as a constant function of t, we obtain limT→∞ ṠT
i (t) = limT→∞ DST

i (t) = D(Si) =
0, i ∈ S. Choosing t = a in the above expression and in (6.13), we obtain

lim
T→∞

ṠT (a) = 0(6.19)

and

ṠT (a) + T (ST (a)) = 0.(6.20)

Passing the above expression to the limit and using (6.18) and (6.19), we have that

0 = lim
T→∞

ṠT (a) + lim
T→∞

T (ST (a)) = T (S).(6.21)

Finally, let us show that ST
i (0) ≤ dI, i ∈ S, T ∈ (0,∞). This follows from the

hypothesis that (A,B,Λ) is SS. Indeed, Definition 6.1 says that, in this case, there
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exists G ∈ Hm,n
∞ , which stabilizes (A,B,Λ). So let us define the stabilizing control

policy u(t) = −Gθ(t)x(t), t ≥ 0, so that the dynamic (3.1) with t ≥ 0 reads as ẋ(t)
= Fθ(t)x(t), t > 0, with Fθ(t) = Aθ(t)− Bθ(t)Gθ(t). We shall be interested in the
specialized initial condition x(0) = x and θ(0) = i, where x and i are deterministic
and arbitrary in C

n and S, respectively.
From Lemma 6.6, we have that sup{Reλ : λ ∈ σ(D)} < 0 with D given by

(4.6). Recalling that D generates a uniformly continuous semigroup, say, T (t), we
may invoke the equivalence among assertions 1, 2, and 3 of Lemma 4.3, as well as
Corollary 4.4, so that, for some constant β ∈ (0,∞),∫ ∞

0

∥∥T (t)Q0
∥∥

1
dt ≤ β

∥∥Q0
∥∥

1
<∞(6.22)

for every Q0 ∈ Hn
1 . Now, from semigroup theory, Q(t) = T (t)Q0, t ≥ 0, is the solution

to the differential equation{
Q̇(t) = D(Q(t)), t > 0,
Q(0) = Q0 = (Q0

1, Q
0
2, . . . ) ∈ Hn

1 ,

which, from Proposition 4.6, is expressed by (4.5) whenever the initial condition is
such that

Q0
i = E[x(0)x(0)∗1{θ(0)=i}] = xx∗1{θ(0)=i}, i ∈ S.(6.23)

Hence (6.22) reads as ∫ ∞

0

‖Q(t)‖1 dt ≤ β
∥∥Q0

∥∥
1
<∞(6.24)

for Q0 satisfying (6.23). Now we have that E[‖x(t)‖2] ≤ n ‖Q(t)‖1and ‖Q0‖1 ≤
E[‖x(0)‖2] = ‖x‖2, so that (6.24) becomes∫ ∞

0

E[‖x(t)‖2]dt ≤ nβ ‖x‖2 <∞.(6.25)

Using Schwarz’s inequality and Fubini and denoting d = (‖Q‖+ ‖R‖ ‖G‖2∞)nβ, the
expression for the cost of policy u may be dominated from above as follows:

E

[∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t)dt

]
≤ E

[∫ ∞

0

(‖Q‖+ ‖R‖ ‖G‖2∞) ‖x(t)‖2 dt
]

≤ (‖Q‖+ ‖R‖ ‖G‖2∞)nβ ‖x‖2 ≤ d ‖x‖2 = x∗dIx.

Now, turning back to the finite-time control problem (see (6.10)), we have that

x∗ST
i (0)x = min

u∈UT
E

[∫ T

0

x(t)∗Qx(t) + u(t)∗Ru(t)dt

]

≤ E

[∫ ∞

0

x(t)∗Qx(t) + u(t)∗Ru(t)dt

]
≤ x∗dIx.

Since T ∈ (0,∞), i ∈ S, and x ∈ C
n are arbitrary, ST

i (0) ≤ dI for every T and
i.
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Defining Q̄1/2 = (Q1/2,Q1/2, . . . ) ∈ Hn+

∞ , the following proposition provides suf-
ficient conditions for a solution of the ICARE to be stabilizing.

Proposition 6.10. Suppose (Q̄1/2, A,Λ) is SD and S is a positive semidefinite
solution to the ICARE (6.9). Then S is a stabilizing solution to (6.9).

Proof. For x(t) given by (3.1) with t ≥ 0 and u(t) = −Gθ(t)x(t), G = (G1,
G2, . . . ) = G(S) ∈ Hn,m

∞ , and arbitrary initial data (x0, θ0), let us consider the statistic
Q(t), t ≥ 0, given by (4.5) with F replaced by F̄ = (F̄1, F̄2, . . . ), F̄i = Ai − BiGi.
Furthermore, let us define the operators D̄ and D̂ as in (4.6), replacing F by F̄ in
the former and by F̂ = (F̂1, F̂2, . . . ) in the latter, where F̂i = Ai −KiQ1/2 with K =
(K1,K2, . . . ) ∈ Hr,n

∞ such that sup{Reλ : λ ∈ σ(D̂)} < 0 (such K exists, bearing in
mind the SD hypothesis of the proposition).

The idea of the proof runs as follows. We must prove that
∫∞
0

E[ ‖x(t)‖2 ]dt <∞
for any initial data (x0, θ0). Proving this is tantamount to proving that

∫∞
0
‖Q(t)‖1 dt

<∞ for arbitrary initial data Q0 ∈ Hn+

1 , where Q(t), given by (4.5), also satisfies the
differential equation Q̇(t) = D̄(Q(t)). This amounts then, essentially, to obtaining an
adequate function that dominates ‖Q(t)‖1.

From Proposition 4.6 we may write

Q̇i(t) = D̄i(Q(t)) = F̄iQi(t) +Qi(t)F̄
∗
i +

∞∑
j=1

λjiQj(t)

= F̂iQi(t) +Qi(t)F̂
∗
i +

∞∑
j=1

λjiQj(t) + ∆iQi(t) +Qi(t)∆
∗
i

= D̂i(Q(t)) + ∆iQi(t) +Qi(t)∆
∗
i ,(6.26)

where

∆i = KiQ1/2 −BiGi.(6.27)

Now, for arbitrary ε > 0, 0 ≤ (
εI − 1

ε∆i

)
Qi(t)

(
εI − 1

ε∆i

)∗
, so that ∆iQi(t) +

Qi(t) ∆
∗
i ≤ ε2Qi(t) +

1
ε2∆iQi(t)∆

∗
i . Thus, from (6.26),

Q̇i(t) ≤ D̂i(Q(t)) + ε2Qi(t) +
1

ε2
∆iQi(t)∆

∗
i .(6.28)

Now, for H = (H1, H2, . . . ) ∈ Hn
1 , let us define the operators D̃(H) = (D̃1(H),

D̃2(H), . . . ), Γ(H) = (Γ1(H), Γ2(H), . . . ), and V(H) = (V1(H), V2(H), . . . ) inBlt (Hn
1 ),

such that

D̃i(H) = D̂i(H) + ε2Hi, Γi(H) = ∆iHi∆
∗
i ,(6.29)

and

Vi(H) =
(
εI − 1

ε
∆i

)
Hi

(
εI − 1

ε
∆∗
i

)
, i ∈ S.(6.30)

From (6.29), we have that

D̃ = D̂ + ε2I(6.31)

with I being the identity operator associated to Hn
1 . We can rewrite (6.28) as

Q̇i(t) ≤ D̃i(Q(t)) +
1

ε2
Γi(Q(t)).(6.32)
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In order to use a comparison theorem, we consider now the nonhomogeneous differ-
ential equation {

Ṙi(t) = D̃i(R(t)) +
1
ε2Γi(Q(t)),

Ri(0) = Qi(0), i ∈ S,(6.33)

or, equivalently, the Banach space differential equation{
Ṙ(t) = D̃(R(t)) + 1

ε2Γ (Q(t)) ,

R(0) = Q(0) ∈ Hn+

1

(6.34)

with R(t) = (R1(t), R2(t), . . . ). Now, for each finite T and time interval [0, T ], Q(·)
and consequently 1

ε2Γ (Q(·)) belong to L1([0, T ], Hn
1 ) and are continuously differen-

tiable. Thus Proposition 4.2 tells us that the unique solution R(t) ∈ Hn
1 to (6.34) is

given by

R(t) = TD̃(t) (Q(0)) +
1

ε2

∫ t

0

TD̃(t− s)(Γ(Q(s)))ds, t ∈ [0, T ],(6.35)

for any Q(0) ∈ Hn+

, where TD̃ is the uniformly continuous semigroup generated by

D̃. Let us now define
Ui(t) = Ri(t)−Qi(t), i ∈ S.(6.36)

Then U(t) = (U1(t), U2(t), . . . ) belongs to Hn
1 and satisfies the differential equation{

U̇(t) = D̃(U(t)) + V (Q(t)) ,
U(0) = 0.

(6.37)

Indeed,

U̇i(t) = Ṙi(t)− Q̇i(t) = D̃i(R(t)) +
1

ε2
∆iQi(t)∆

∗
i − D̄i(Q(t))

= D̂i(R(t)) + ε2Ri(t) +
1

ε2
∆iQi(t)∆

∗
i −

(
D̂i(Q(t)) + ∆iQi(t) +Qi(t)∆

∗
i

)
= D̃i(U(t)) +

(
εI − 1

ε
∆i

)
Qi(t)

(
εI − 1

ε
∆∗
i

)
= D̃i(U(t)) + Vi(Q(t)).

Now Q(·) and consequently V (Q(·)) belong to L1([0, T ], Hn
1 ). Thus, from Proposition

4.2, U(t) ∈ Hn
1 defined in (6.36) is the unique solution to (6.37) and is given by

U(t) =

∫ t

0

TD̃(t− s) (V(Q(s))) ds, t ∈ [0, T ].

Since Q(s) and consequently V (Q(s)) belong to Hn+

1 and D̃ is a bounded linear
transformation, it follows that TD̃(t − s)V(Q(s)) = (exp((t − s))D̃)V(Q(s)) belongs
to Hn+

1 . Hence U(t) ∈ Hn+

1 , which, together with (6.36), sets our comparison result,

i.e., 0 ≤ Q(t) ≤ R(t) ∈ Hn+

1 , t ∈ [0, T ], for arbitrary Q(0) ∈ Hn+

1 and each finite T .
Now, using (6.35) and (2.2), we have that

‖Q(t)‖1 ≤ ‖TD̃(t) (Q(0))‖1 +
1

ε2

∫ t

0

‖TD̃(t− s)(Γ(Q(s)))‖
1
ds.
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Hence integration on [0, T ] yields

∫ T

0

‖Q(t)‖1 dt ≤
∫ T

0

‖TD̃(t) (Q(0))‖1 dt+
1

ε2

∫ T

0

∫ t

0

‖TD̃(t− s)(Γ(Q(s)))‖
1
dsdt.

(6.38)

Referring to the last term of (6.38), let us define l = t− s and

TE
D̃ (r) =

{
TD̃(r) if r ≥ 0,
0 if r < 0,

so that ∫ T

0

∫ t

0

‖TD̃(t− s)(Γ(Q(s)))‖
1
ds dt =

∫ T

0

∫ T

0

∥∥TE
D̃ (t− s)(Γ(Q(s)))

∥∥
1
dt ds

≤
∫ T

0

‖Γ(Q(s))‖1
∫ T−s

0

‖TD̃(l)‖ dl ds ≤
∫ T

0

‖Γ(Q(s))‖1 ds
∫ T

0

‖TD̃(l)‖ dl.(6.39)

Hence ∫ T

0

‖Q(t)‖1 dt ≤
{
‖(Q(0))‖1 +

1

ε2

∫ T

0

‖Γ(Q(s))‖1 ds
}∫ T

0

‖TD̃(s)‖ ds.(6.40)

Let us now dominate ‖(Γ(Q(s)))‖1 from above. Using (6.27), (6.29), and defining

c = max{‖K‖2∞ , ‖B‖2∞},
‖Γi(Q(s))‖ = ‖(KiQ1/2 −BiGi)Qi(s)(KiQ1/2 −BiGi)

∗‖
≤ c(‖Q1/2Qi(s)Q1/2‖+ ‖GiQi(s)G

∗
i ‖+ 2‖Q1/2Qi(s)G

∗
i ‖).

Now from (4.5),

‖Q1/2Qi(s)Q1/2‖ = ‖Q1/2E[x(s)x(s)∗1{θ(s)=i}]Q1/2‖ ≤ E[‖Q1/2x(s)1{θ(s)=i}‖2].
Similarly, ‖GiQi(s)G

∗
i ‖ ≤ E[‖Gix(s)1{θ(s)=i}‖2] and, bearing in mind that 2ab ≤

a2 + b2 for any real numbers a,b,

2‖Q1/2Qi(s)G
∗
i ‖ ≤ 2E[‖Q1/2x(s) (Gix(s))

∗
1{θ(s)=i}‖]

≤ 2E[‖Q1/2x(s)1{θ(s)=i}‖‖ (Gix(s)) 1{θ(s)=i}‖]
≤ E[‖Q1/2x(s)1{θ(s)=i}‖2] + E[‖ (Gix(s)) 1{θ(s)=i}‖2].

Consequently,

‖Γ(Q(s))‖1 =
∞∑
i=1

‖Γi(Q(s))‖ ≤ 2cE
[ ∞∑
i=1

{∥∥∥Q1/2x(s)
∥∥∥2

1{θ(s)=i}

+
∥∥Gθ(s)x(s)

∥∥2
1{θ(s)=i}

} ]
= 2cE[‖Q1/2x(s)‖2 + ‖Gθ(s)x(s)‖2],

and (6.40) becomes∫ T

0

‖Q(t)‖1 dt ≤
{
‖Q(0)‖1 +

2c

ε2

∫ T

0

E[‖Q1/2x(s)‖2

+‖Gθ(s)x(s)‖2]ds
}∫ T

0

‖TD̃(t)‖ dt(6.41)
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for arbitrary T ∈ (0,∞). At this point we shall use the two hypotheses of the propo-
sition to obtain an adequate bound to the first integral on the right-hand side of
(6.41). So let us first consider the finite-time optimal control problem in section 5
with matched termination cost ST (T ) = L = S such that T (S) = 0. Then it follows
from Propositions 5.8 (with s = 0) and 6.7 that the optimal control reads as ûT (t) =
−Gθ(t)x(t) with G = (G1, G2, . . . ) = G(ST (t)) = G(S) ∈ Hn,m

∞ . Moreover, from (3.5)
and (5.14), and since norms are equivalent in finite dimensional spaces, we have that

‖S‖∞ E[‖x(0)‖2] ≥ E[x(0)∗Sθ(0)x(0)]

= E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖Gθ(t)x(t)‖2R)dt+ ‖x(T )‖2Sθ(T )

]

≥
∫ T

0

E[‖Q1/2x(t)‖2 +mR‖Gθ(t)x(t)‖2]dt(6.42)

for some mR > 0. Or else,∫ T

0

E[‖Q1/2x(t)‖2 + ‖Gθ(t)x(t)‖2]dt ≤ d1E[‖x(0)‖2] <∞

for d1 = ‖S‖∞ (1+ 1
mR

) which do not depend on T . Hence, using this expression to
majorize the right-hand side of (6.41) and passing to the limit, we have that

lim
T→∞

∫ T

0

‖Q(t)‖1 dt ≤
{
‖(Q(0))‖1 +

2c

ε2
d1(E[‖x(0)‖])

}
lim
T→∞

∫ T

0

‖TD̃(t)‖ dt.(6.43)

Now sup{Reλ : λ ∈ σ(D̂)} < 0, and so, from continuity of the spectrum of D̃ on
ε (note, from (6.31), that σ(D̃) = σ(D̂) + ε2), we have that sup{Reλ : λ ∈ σ(D̃)}
< 0 for some ε > 0 sufficiently small. Thus, from Lemma 4.3, limT→∞

∫ T
0
‖TD̃(t)‖ dt

< ∞, where TD̃(t) is the semigroup generated by the bounded linear operator D̃,
or else (see (6.43)) limT→∞

∫ T
0
‖Q(t)‖1 dt < ∞ whenever Q(0) ∈ Hn+

1 . Moreover,

E[‖x(t)‖2] ≤ n ‖Q(t)‖1 so that limT→∞
∫ T
0

E[‖x(t)‖2]dt <∞ for any initial condition
(x0, θ0). Hence G = G(S) stabilizes (A,B,Λ).

The next proposition shows the uniqueness of stabilizing solutions to the ICARE
(6.9) as well as the optimality of this solution.

Proposition 6.11. Suppose S = (S1, S2, . . . ) is a stabilizing solution to the
ICARE (6.9). Then S is the unique stabilizing solution to (6.9) and, for any initial
condition (x(0), θ(0)),

inf
u∈U

J (ϑ0, u) = J (ϑ0, û) := E

[∫ ∞

0

(‖Q1/2x(t)‖2 + ‖R1/2û(t)‖2)dt
]

= E[x(0)∗Sθ(0)x(0)],(6.44)

where û(t) = −Gθ(t)x(t) with G = (G1, G2, . . . ) = G(S) ∈ Hn,m
∞ and x(t) is given by

(3.1) with t ≥ 0 plugged with û.
Proof. First notice that û, as defined above, stabilizes (A,B,Λ). Thus û ∈ U ,

so that U is nonempty. Now let us pick an arbitrary control strategy u ∈ U and,
focusing on the finite time horizon case, let us define, for an arbitrary T , the matched
cost termination ST (T ) = L = S and the control policy uT such that [0, T ] 	 t 
→
uT (t) = u(t) ∈ R

m. Clearly, xT (t) = x(t) for t ∈ [0, T ], where xT (t) satisfies system
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(3.1) with s = 0 plugged with uT , x(t) satisfies (3.1) with t ≥ 0 plugged with u,
and the same initial data (x(0), θ(0)) stands for both cases. Now, as a consequence
of having ST (T ) = L = S, the solution to the Riccati equation (4.12) is ST (t) = S,
t ∈ [0, T ] (see Proposition 6.7), and, consequently, ST

θ(0)(0) = Sθ(0). Thus, from the

cost definition (3.5) and Proposition 5.6, we have that

J[0,T ],S(ϑ0, u
T ) = E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]
+ E[x(T )∗Sθ(T )x(T )]

= E[x(0)∗Sθ(0)x(0)] + E

[∫ T

0

‖B∗
θ(r)Sθ(r)x(r) +Ru(r)‖2R−1dr

]
.(6.45)

Now, since u ∈ U , we have, from condition C2 in section 3, 0 ≤ E[x(T )∗Sθ(T ) x(T )] ≤
‖S‖∞ E[‖x(T )‖2]→ 0 as T →∞. Thus, passing (6.45) to the limit and by inspection
of (3.6), it turns out that

J (ϑ0, u) = lim
T→∞

J[0,T ],S(ϑ0, u
T ) = E

[∫ ∞

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]

= E[x(0)∗Sθ(0)x(0)] + E

[∫ ∞

0

‖B∗
θ(r)Sθ(r)x(r) +Ru(r)‖2R−1dr

]
(6.46)

for arbitrary u ∈ U and initial condition ϑ0. Hence, bearing in mind that a stabilizing
solution S to the ICARE (6.9) belongs to U , the minimum of (6.46) over u ∈ U is
achieved with û, in which case the second term on the right-hand side of (6.46) is zero.
(Recall from (4.10) that û(t) = R−1B∗

θ(t)Sθ(t)x(t).) Expression (6.44) then follows.
Finally, let us suppose that there exists a stabilizing solution V �= S to the ICARE.
As in the case of the stabilizing solution S, we shall arrive at the conclusion that
E[x(0)∗Vθ(0)x(0)] is the minimum of J (ϑ0, u) over u ∈ U . But the minimum clearly
does not depend on S and V , so it follows that

E[x(0)∗Sθ(0)x(0)] = E[x(0)∗Vθ(0)x(0)]

for any initial condition r.v. (x(0), θ(0)). Making x(0) = x and θ(0) = i, x and i
deterministic and arbitrary in C

n and S, respectively, the above equation becomes
x∗Six = x∗Vix. Since Si and Vi are Hermitian for every i ∈ S, S = V .

Proposition 6.12. Suppose (A,B,Λ) is SS and (Q̄1/2, A,Λ) is SD. Then,

for arbitrary terminal condition L ∈ Hn+

∞ , the value S̃T
i (0) of the unique solution

S̃T (t) ∈ Hn+

∞ , t ∈ [0, T ], to (4.12) converges to Si ∈ M(C
n
)
+

as T → ∞ for each
i ∈ S, and S = (S1, S2, . . . ) is the stabilizing solution to the ICARE (6.9).

Proof. The idea of the proof is to recast an essential result of Proposition 6.9,
namely, that limT→∞ ST

i (0) = Si, i ∈ S, where S = (S1, S2, . . . ) is a positive semidef-
inite solution to the ICARE (6.9) and ST (t), t ∈ [0, T ], satisfies (4.12) with null
terminal condition.

Bearing in mind the finite-time control problem of section 5 with arbitrary termi-
nal cost condition L ∈ Hn+

∞ and specialized initial condition x(0) = x and θ(0) = i, x
and i deterministic and arbitrary in C

n and S, respectively, and using, in this order,
Proposition 5.8 coupled with definition (3.5) with s = 0 and the last equality of (6.10),
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we obtain that

x∗S̃T
i (0)x = min

u∈UT
E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt+ x(T )∗Lθ(T )x(T )

]

≥ min
u∈UT

E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]
= x∗S

T

i (0)x,(6.47)

where ST
i (0), i ∈ S, is as defined in Proposition 6.9. Taking the limit on both sides

of (6.47), we have that

lim inf
T→∞

x∗S̃T
i (0)x ≥ lim inf

T→∞
x∗S

T

i (0)x = lim
T→∞

x∗S
T

i (0)x = x∗Six,(6.48)

where, from Propositions 6.9, 6.10, and 6.11, limT→∞ x∗S
T

i (0)x exists, and it is such
that S = (S1, S2, . . . ) is the unique stabilizing solution to the ICARE (6.9).

Let us now select the policy u(t) = −Gθ(t)x(t), t ≥ 0, where G = (G1, G2, . . . )

= G(S) ∈ Hn,m
∞ . Since by assumption S̃T (T ) = L, x∗S̃T

i (0)x is the minimum cost
for the finite-time control problem above. (See Proposition 5.8 with s = 0.) Hence,
considering the restriction of u(t) to the interval [0, T ] (which assigns an admissible
policy in UT ) and using definition (3.5), we have that

x∗S̃T
i (0)x ≤ E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt+ x(T )∗Lθ(T )x(T )

]

≤ E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]
+ ‖L‖∞ E[‖x(T )‖2].(6.49)

Now, bearing in mind the infinite-time control problem, and since S = (S1, S2, . . . ) is

stabilizing, we have that the limit of the integral in (6.49) exists and E[‖x(T )‖2]→ 0
as T →∞. Therefore, taking limits in (6.49), it follows that

lim sup
T→∞

x∗S̃T
i (0)x ≤ lim

T→∞
E

[∫ T

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]

= E

[∫ ∞

0

(‖Q1/2x(t)‖2 + ‖R1/2u(t)‖2)dt
]
= x∗Six,(6.50)

where the last equality above comes from Proposition 6.11. Now, (6.48) and (6.50) tell
us that limT→∞ x∗S̃T

i (0)x = x∗Six. Since x and i are arbitrary and Si is Hermitian,

limT→∞ S̃T
i (0) = Si for each i ∈ S and arbitrary L ∈ Hn+

∞ .

Theorem 6.13. Suppose (A,B,Λ) is SS. Then, for L = 0 ∈ Hn+

∞ , the value

ST
i (0) of the unique solution ST (t) ∈ Hn+

∞ , t ∈ [0, T ], to (4.12) converges to some

Si ∈ M(C
n
)
+

as T →∞ for each i ∈ S. Moreover, S = (S1, S2, . . . ) belongs to Hn+

∞
and satisfies the ICARE (6.9). Suppose, in addition, that (Q̄1/2, A,Λ) is SD. Then S
is stabilizing and the unique positive semidefinite solution to (6.9), and, for arbitrary

terminal condition L ∈ Hn+

∞ , the value S̃T
i (0) of the unique solution S̃T (t) ∈ Hn+

∞ , t ∈
[0, T ], to (4.12) converges to Si as T → ∞ for each i ∈ S. Furthermore, the optimal
control policy û is given by û(t) = −Gθ(t)x(t) with G = (G1, G2, . . . ) = G(S) ∈ Hn,m

∞ ,
and produces the cost J (ϑ0, û) = infu∈U J (ϑ0, u) = E[x(0)∗Sθ(0)x(0)].
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Proof. The proof is a straightforward consequence of Propositions 4.9, 5.6, 5.8,
6.9, 6.10, 6.11, and 6.12.

Remark 6.14. If we specialize our framework to the nonjump case, the defini-
tions of SS and SD in section 6 recast the definitions of stabilizability and detectabil-
ity of the standard linear/quadratic/deterministic case. Indeed, the definition of SS
duly specialized to the single state case and with deterministic x0 ∈ C

n means that∫∞
0
‖x(t)‖2 dt < ∞, where ẋ(t) = Fx(t) with F = A − BG ∈ M(Cn) for some

G ∈ M(Cn,Cm) and arbitrary x0 ∈ C
n. Since F does not depend on {θ}, and to

remain in the operator theoretical context, let us view it as the infinitesimal gen-
erator of the semigroup TF (t) so that x(t) = TF (t)x0. We may then write that∫∞
0
‖TF (t)x0‖2 dt < ∞. Invoking Lemma 4.3 for this finite dimensional application,

the latter expression is the same as saying that every eigenvalue of F is placed on the
open left complex halfplane, i.e., (A,B) is stabilizable in the usual sense. The case of
stochastic stability follows an analogous procedure.

7. Appendix.

7.1. Linear approximation of nonnecessarily holomorphic functionals,
via a decomplexification concept. Based on the decomplexification concept de-
fined in section 2, the following lemma provides the linear approximation of a complex
function g.

Lemma 7.1. Assume the decomplexification Rg : [0,∞) × R
2n 
→ R, of g :

[0,∞)× C
n 
→ R is (Fréchet-) differentiable. Then, for every (t, x) ∈ [0,∞)× C

n, g
has the linear approximation

g(t+ s, x+ w) = g(t, x) +
∂

∂t
g(t, x)s+∇ Rx

Rg(t,Rx)′ Rw + o(‖(s, w)‖).(7.1)

Proof. See [4] for details.
Remark 7.2. Differentiability of Rg suffices to guarantee the existence of the

linear approximation of g. More stringent conditions, such as g being holomorphic,
are not required.

Remark 7.3. From the definition of decomplexification of x ∈ C
n, as stated

in section 2, it is clear that ∇Rx
Rg(t, Rx)′Rw = ∇xRe

Rg(t, Rx)′ wRe + ∇xIm
Rg(t,

Rx)′wIm.
Lemma 7.4. Let g be the (nonholomorphic) function given by

[0, T ]× C
n 	 (t, x)→ g(t, x) = x∗Sm(t)x ∈ R(7.2)

with Sm(t) = Sm(t)
∗ ∈ M(C

n
) differentiable for all t ∈ [0, T ]. Then ∂

∂tg(t, x) =

x∗Ṡm(t)x, and the differentiable function Rg is such that

∇Rx
Rg(t,Rx) =

( ∇xRe
Rg(t,Rx)

∇xIm
Rg(t,Rx)

)
= 2

(
(Sm(t)x)Re

(Sm(t)x)Im

)
,(7.3)

or else

∇Rx
Rg(t,Rx)′ Rw = w∗Sm(t)x+ x∗Sm(t)w.(7.4)

Proof. See [4].
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7.2. Support for the proof of Proposition 5.5. The following results are
essential to the proof of Proposition 5.5.

Lemma 7.5. For arbitrary Q,R ∈ M(Cn)+and T ∈ M(Cm,Cn), there exists
d1 ≥ 0 such that, for every (x, u) ∈ C

n × C
m, we have that

d1(x
∗Qx+ u∗Ru) ≥ u∗Tx+ x∗T ∗u.

Proof. See [4].

Lemma 7.6. H ∈ Hn+

∞ ⇒ Hi ≤ H0 for some H0 ∈ M(C
n
)
+

.
Proof. Suppose, by contradiction, that there exists some sequence {Hij}j∈N,

increasing and unbounded in the self-adjoint partial ordering. Hence there is H1
0 ∈

M(C
n
)
+
with

∥∥H1
0

∥∥ ≥ ‖H‖∞ and some j0 ∈ N such that Hij0
> H1

0 , which leads us

to
∥∥Hij0

∥∥ >
∥∥H1

0

∥∥ ≥ ‖H‖∞ ≥ ∥∥Hij0

∥∥, which is a contradiction.
Lemma 7.7. Let {x} be given by (3.1) with u ∈ Us,T . Then, for g(t, x, i) =

x∗ST
i (t)x defined on X , there is some real valued function Mu(x) ≡ M(x, u(t, x, i))

defined on C
n × C

m with

Es,x,i

[∫ t

s

|M(x(r), u(r))dr |
]
<∞,(7.5)

and such that

∂

∂t
g(t, x, i) + (Lug) (t, x, i) +M(x, u) ≥ 0

for every (t, x, i) ∈ ((s, T )× C
n × S).

Proof. We use Lemmas 7.5 and 7.6. See [4] for details.

7.3. Support for the proof of Proposition 6.9. The following results are
essential to the proof of Proposition 6.9.

Lemma 7.8. For arbitrary i ∈ S and HT
i ∈ M(C

n
)
+

, T ∈ (0,∞), suppose that
HT1
i ≤ HT2

i ≤ dI for every T1 < T2 and some constant 0 < d < ∞ which does not

depend on i, T1, and T2. Then there exists Hi ∈ M(C
n
)
+

such that HT
i → Hi as

T →∞, i ∈ S, and H = (H1, H2, . . . ) ∈ Hn+
∞ .

Proof. The first assertion follows from a standard monotonicity result concerning
positive semidefinite matrices. Now

∥∥HT
i

∥∥ ≤ d for every finite T . Hence ‖Hi‖ ≤ d
for every i ∈ S, which proves the second assertion.

Lemma 7.9. For HT ∈ Hn+

∞ , T ∈ (0,∞), let us assume that
1. HT

i → Hi ∈ M(C
n
)
+

as T →∞, i ∈ S.
2. H = (H1, H2, . . . ) ∈ Hn+

∞ .
3. HT1

i ≤ HT2
i ≤ dI, T1, T2 ∈ (0,∞), T1 < T2, i ∈ S, and some constant

0 < d <∞, which does not depend on i, T1, and T2.
Then, with T given by (4.11), we get that

lim
T→∞

Ti(HT ) = Ti(H), i ∈ S, and lim
T→∞

T (HT ) = T (H).(7.6)

Proof. From (4.11) we have that

lim
T→∞

Ti(HT )

= Q+A∗
i lim
T→∞

HT
i +

(
lim
T→∞

HT
i

)
Ai −

(
lim
T→∞

HT
i

)
BiR−1B∗

i

(
lim
T→∞

HT
i

)
+ λii lim

T→∞
HT
i + lim

T→∞
Ei(HT )

= Q+A∗
iHi +HiAi −HiBiR−1B∗

i Hi + λiiHi + lim
T→∞

Ei(HT ).(7.7)
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If we assume for the moment that limT→∞ Ei(HT ) = Ei(H), then (7.6) follows imme-
diately from (7.7). So, let us prove that the previous equation indeed holds, by first
showing that, for arbitrary x ∈ C

n, limT→∞ x∗Ei(HT )x = x∗Ei(H)x. With this aim,
we have from assertion 3 that 0 ≤ λijx

∗HT1
j x ≤ λijx

∗HT2
j x ≤ λijx

∗dIx for every
positive T1, T2, T1 < T2, i,j ∈ S, which implies that

0 ≤ lim
M→∞

M∑
j=1,j =i

λijx
∗HT1

j x ≤ lim
M→∞

M∑
j=1,j =i

λijx
∗HT2

j x

≤ lim
M→∞

M∑
j=1,j =i

λijx
∗dIx = d ‖x‖2 |λii| .

Hence, from the monotonicity of the bounded function g(M,T ) =
∑M

j=1,j =i λijx
∗HT

j x
on M and T , and bearing in mind assertions 1 and 2, we may write that

lim
T→∞

x∗Ei(HT )x = lim
T→∞

x∗


 lim

M→∞

M∑
j=1,j =i

λijH
T
j


x

= lim
M→∞

lim
T→∞

M∑
j=1,j =i

λijx
∗HT

j x = lim
M→∞

M∑
j=1,j =i

λijx
∗Hjx = x∗Ei(H)x.

Since the above equation holds for every x ∈ C
n and Ei(H) is self-adjoint,

limT→∞ Ei(HT ) = Ei(H), so that the first expression of (7.6) follows. Consequently,
bearing in mind Proposition 4.7, we get

Hn
∞ 	 T (H) =

(
lim
T→∞

T1(H
T ), lim

T→∞
T2(H

T ), . . .
)

= lim
T→∞

(T1(H
T ), T2(H

T ), . . . ) = lim
T→∞

T (HT ).

Lemma 7.10. For finite T , ∆ ∈ R, and K an operator from the Banach space X
into X, let us consider the Banach space differential equation{

V̇ (t) +K(V (t)) = 0, t ∈ (−∆, T −∆),
V (T −∆) = 0,(7.8)

and let ST (·) ≡ ST,0(·) and ST,−∆(·) be functions such that

ST,−∆(t) = ST (t+∆), t ∈ [−∆, T −∆].(7.9)

Then ST,−∆(·) is a solution to (7.8) if and only if ST (·) is a solution to (7.8) with
∆ = 0. If a solution to one system is unique, then it is the case of the other system
too, and both solutions satisfy (7.9).

Proof. The lemma is intuitive since it corresponds to a shift of T . Considering
the “only if ” part, let ST,−∆(·) be such that{

ṠT,−∆(t) +K(ST,−∆(t)) = 0, t ∈ (−∆, T −∆),
ST,−∆(T −∆) = 0.(7.10)

Now, from (7.9), it follows that ṠT,−∆(t) = ṠT (t+∆) and

ST,−∆(T −∆) = ST (T ) = 0,(7.11)
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so that substitution in (7.10) yields ṠT (t+∆) +K(ST ( t+∆)) = 0, t ∈ (−∆, T−∆),
i.e., ṠT (t) +K(ST (t)) = 0, t ∈ (0, T ). This and (7.11) show that ST (·) satisfies (7.8)
with ∆ = 0. For the “if” part, an analogous procedure holds, and the uniqueness part
of the proof is easily shown by contradiction.
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[32] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag,
Berlin, New York, 1974.

[33] Y. Ji and H. J. Chizeck, Controllability, stabilizability, and continuous-time Markovian jump-
ing linear quadratic control, IEEE Trans. Automat. Control, 35 (1990), pp. 777–788.

[34] Y. Ji and H. J. Chizeck, Jump linear quadratic Gaussian control: Steady-state solution and
testable conditions, Control Theory Adv. Tech., 6 (1990), pp. 289–319.

[35] Y. Ji, H. J. Chizek, X. Feng, and K. A. Loparo, Stability and control of discrete-time jump
linear systems, Control Theory Adv. Tech., 7 (1991), pp. 247–270.

[36] S. Karlin and H. M. Taylor, A Second Course in Stochastic Process, Academic Press, New
York, 1981.

[37] M. A. Krall, Applied Analysis, D. Reidel, Dordrecht, The Netherlands, 1986.
[38] R. Malhame and C. Y. Chong, Electric load model synthesis by diffusion approximation in a

high order hybrid state stochastic system, IEEE Trans. Automat. Control, 30 (1985), pp.
854–860.

[39] M. Mariton, Almost sure and moments stability of jump linear systems, Systems Control
Lett., 11 (1988), pp. 393–397.

[40] M. Mariton, Jump Linear Systems in Automatic Control, Marcel Dekker, New York, 1990.
[41] M. Mariton and P. Bertrand, Output feedback for a class of linear systems with stochastic

jump parameters, IEEE Trans. Automat. Control, 30 (1985), pp. 898–903.
[42] T. Morozan, Optimal stationary control for dynamic systems with Markov perturbations,

Stochastic Anal. Appl., 1 (1983), pp. 219–225.
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1. Introduction. The main objective of this paper is to provide an exact char-
acterization for uniform robust performance in sampled-data systems against a class
of structured linear quasi-time-invariant (quasi-LTI) perturbations for systems with
L2 inputs. Motivated by the work of Poolla and Tikku [23] on standard time-invariant
systems, we obtain separate conditions for uniform robust stability and uniform robust
performance. The now ubiquitous use of digital hardware in the control of complex
processes serves to underscore the importance of sampled-data and multirate sys-
tems, which, in turn, motivates the exact analysis presented herein. Although we
focus primarily on sampled-data systems in what follows, this work has more gen-
eral application to periodic continuous time systems such as multirate systems and
jump systems. We therefore believe that this work may find wider application, in, for
instance, control of networked systems.

We choose to work with a perturbation class of arbitrarily slowly time-varying
operators. These operators, at least intuitively, closely approximate the set of linear
time-invariant (LTI) operators and are therefore referred to as quasi-LTI. Moreover,
this set seems to form a natural perturbation class in our framework. Our nominal
model consists of a continuous time plant in feedback with a discrete time controller,
both of which are LTI. However, this is necessarily an idealization since any physical
system exhibits some degree of time-variation, no matter how modest.

Other perturbation classes have previously been considered in the same context.
In Thompson et al. [27, 28], Hara, Nakajima, and Kabamba [16], and [13], conditions
characterizing robustness to the class of LTI perturbations were obtained. The prob-
lem of finding exact conditions characterizing robust performance against periodically
time-varying (PTV) perturbations has been worked on by Thompson et al. [27, 28],
Sivashankar and Khargonekar [26], and Dullerud and Glover [14]. Also, linear time-
varying (LTV) and quasi-PTV perturbations were considered in [12], where exact
conditions for robust performance to these perturbation classes are provided.
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The approach used in the paper uses the framework for sampled-data robustness
of [12] and appeals to the lifting techniques of [5, 4, 29, 30]. The analytical robustness
conditions we obtain are in terms of a convex optimization problem over an infinite
dimensional set. Computational issues associated with the conditions are dealt with in
a separate paper [9]. In particular, it is shown in [9] that converging upper and lower
bounds on the stability radius of a sampled-data system can be computed within any
desired accuracy using computations involving only linear (finite dimensional) matrix
inequalities.

The exact nature of our robustness conditions is not totally unexpected given
the results found in [12] on LTI perturbations. In fact, robustness of sampled-data
systems is similar to that of purely continuous time LTI systems in that a greater
degree of time variation in the perturbation class results in a simpler robustness test.

Finally, in proving the necessity of our robustness conditions, we generalize a
result regarding the so-called S-procedure first proved by Megretski and Treil [18]
from a finite dimensional space to one which has a countable basis. Our version is
a special case, since it is well known that the result does not hold in general for a
countable number of quadratic forms.

2. Mathematical preliminaries. We begin by introducing some concepts from
mathematical analysis. Our treatment is kept brief. However, the material presented
here is standard; see, e.g., [7, 17] for a more complete introduction. Throughout, we
denote the nonnegative integers by No and the real and complex numbers by R and
C, respectively.

Suppose E is a Hilbert space. We denote the norm on E by ‖ · ‖E , although
for convenience we frequently suppress the subscript. The space of bounded linear
operators on E is written L(E), on which we will always put the norm topology; if
X is in L(E), we denote the E to E induced norm of X by ‖X‖E→E . Furthermore,
the adjoint of X is written X∗, its spectrum spec(X) and its spectral radius rad(X).
Given a subspace X ⊂ L(E), we denote the open unit ball by UX .

We will be primarily concerned with three specific Hilbert spaces. The first of
these is Lm2 [0,∞), which is the standard set of square integrable functions mapping
[0,∞) to the Euclidean space R

m. For simplicity we refer to this space as L2 when
convenient. Given a real number h, we can also define a compressed version of the
space Lm2 [0,∞) on the interval [0, h). We will use K2 to denote the space Lm2 [0, h).

A third Hilbert space of interest is formed using a given Hilbert space E, the base
space, and is denoted �2(E). It is the space of sequences mapping No to E consisting
of elements (x0, x1, x2, . . . ) which satisfy

∞∑
k=0

‖xk‖2E <∞.

If the base space E is not particularly relevant, we abbreviate further to �2. We say
an operator is LTI on �2 if it commutes with the unilateral shift.

The half-plane algebra, which we denote AC+ , is a frequency domain space which
will also play an important role throughout this paper. It is comprised of functions

that map the closed right half-plane C
+

to the m × p complex matrices C
m×p, are

continuous on C
+ ∪{∞}, and are analytic on the open half-plane C

+, with the norm

‖∆̂‖∞ := supω∈R σ̄(∆̂(jω)); here σ̄(·) is the maximum singular value. The following
lemma about the half-plane algebra is a result we shall appeal to a number of times.



300 SEAN E. BOURDON AND GEIR E. DULLERUD

Proposition 2.1. The set of stable, proper, rational functions RH∞ is dense in
AC+ .

So, given any D̂ ∈ AC+ and ε > 0, there exist matrices X0, . . . , Xn for some

n ≥ 0, so that with F̂ (s) =
∑n
k=0 Xk

(
1−s
1+s

)k
we have

‖D̂ − F̂‖∞ < ε.

That is, any element of AC+ can be approximated by a finite sum of the above form.
Note that AC+ is a subspace of H∞, and therefore any function ∆̂ in AC+ defines

a causal operator ∆ on L2 through multiplication and the Laplace transform. Let
LA

C+ denote this subspace of L(L2), whose elements have such transfer function
representations in AC+ .

We will also frequently make use of the operator-valued space AD, the discrete
time counterpart to AC+ , called the disc algebra. This space consists of functions
Ǧ : D→ L(K2), which are analytic in the unit disc D, continuous on D, and for which
the norm

‖Ǧ‖∞ := max
ω∈R

‖Ǧ(ejω)‖K2→K2
= max
z∈D

‖Ǧ(z)‖K2→K2

is finite.

3. Problem formulation. In this section, we pose the problem that is to be
the main focus of this paper and provide a technical overview of our results. To begin,
a brief introduction to uncertain sampled-data systems is presented. Next, we define
the central notions of uniform robust stability and uniform robust performance for
the systems under consideration, and then we define the particular perturbation sets
of this paper and their associated scalings. Finally, we state the main results of the
paper, whose proofs are covered in detail in section 5.

A standard configuration for uncertain sampled-data systems is depicted in Fig-
ure 3.1. This paradigm for studying robust performance, in our context of structured
perturbations, was first introduced for continuous time systems by Doyle [11] and
Safonov [25] and can incorporate many standard models of uncertainty; see also the
survey article [21] on the structured singular value.

In the figure, the operator G represents a finite dimensional linear time-invariant
(FDLTI) system with minimal state space realization (A,B,C,D). That is, G has a

transfer function representation Ĝ(s) := C(sI − A)−1B + D =
[

A B
C D

]
. Moreover, we

will assume throughout the paper that the realization for our plant G has the form

Ĝ(s) =




A B1
1 B2

1 B2

C1
1 0 0 D1

12

C2
1 0 0 D2

12

C2 0 0 0


 =:

[
Ĝ11 Ĝ12

Ĝ21 Ĝ22

]
,(3.1)

where each of the matrices B, C, and D is partitioned with respect to its inputs
and its outputs. Notice that the matrix D21 = 0. This ensures that the signal y is
low-pass filtered. We have also set D11 = 0 and D22 = 0 for simplicity, although these
restrictions can be relaxed without affecting our subsequent results.

Our plant G is in feedback with a discrete time FDLTI controller Kd through an
ideal sampler S and a zero-order hold operator H. These mappings satisfy

(Su)[k] := u(kh),

(Hv)(t) := v[k] for t ∈ [kh, (k + 1)h),



QUASI-LTI PERTURBATIONS IN SAMPLED-DATA SYSTEMS 301

KdS H

G

∆

✲

✛

✛✛

✻
✲ ✲

❄✛ ✛

✲ ✲

z w

p2

p1

y u

q2 q1

Fig. 3.1. Uncertain sampled-data system.

for each u : [0,∞)→ C
n, every sequence v : No → C

n, and some real number h > 0,
called the sampling period of the sampled-data system. Throughout the paper, we
assume that the sample and hold devices are synchronized and that the sampling
period h is fixed. We further assume that (AKd , BKd , CKd , DKd) is a minimal state
space realization for Kd.

The final assumption we place on our controller Kd is that it asymptotically
stabilizes its nominal interconnection with our plant G. For future reference, when
∆ = 0, we call the mapping M :

[
p1

w

]
�→
[
q2

z

]
from Figure 3.1 the nominal sampled-data

system.

Assumption 3.1. Suppose that the signals w, p1, and p2 from Figure 3.1 are all
zero. Further suppose that the operator ∆ = 0. Then for any initial states xG(0) and
xKd [0] of the minimal state space realizations for G and Kd, respectively, the limits
limt→∞ xG(t) = 0 and limk→∞ xKd [k] = 0 are both satisfied.

The above condition guarantees input-output stability of the nominal sampled-
data system. However, it is also possible to make this condition equivalent to input-
output stability; see [10].

The various signals appearing in Figure 3.1 are all physically meaningful. For
instance, w represents all exogenous inputs to our system, such as disturbances, noise,
and command signals. The regulated output z is the signal which is to be attenuated.
The internal inputs to our system are given by p1 and p2. Of course, we require that
our system be stable with respect to these inputs. The internal outputs are the signals
q1 and q2. The signal u contains the controlled inputs to our system, whereas the
measured outputs of the system are found in y.

Throughout the paper, we assume that the dimension of the signals p1, p2, q1,
and q2 is m and that r denotes the dimension of w and z. Under these assumptions,
we notice that the nominal closed-loop system is square. As with many of our other
assumptions, this one is made out of convenience and our results will not be affected
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if we choose to remove it. The final assumption we make on our signals is that the
inputs w, p1, and p2 all belong to the space of bounded energy signals L2.

Finally, the operator ∆ also appears in our system through a feedback loop and
represents a perturbation to the nominal model. Its purpose is to encompass the
uncertainty incurred by inaccuracies in the mathematical description. Recall that our
nominal model is linear. However, by including uncertainty directly into our model
description, our results are applicable to a much wider range of possibilities, including
nonlinear and time-varying systems. The exact nature of quasi-LTI perturbations will
be discussed below.

Recall that this paper is dedicated primarily to the study of uniform robust stabi-
lization and performance of sampled-data systems against structured quasi-LTI per-
turbations. Intuitively, the system of Figure 3.1 has uniform robust stability to an
uncertainty set S if it is internally stable given any perturbation ∆ ∈ S. This being
the case, we say that our system has uniform robust performance to the set S if a
performance inequality is also satisfied. The following definition makes these notions
precise.

Definition 3.2. Suppose X is a subspace of L(L2) and ρ > 0. Then the system
in Figure 3.1 is said to have uniform robust stability against perturbations in the set

ρUX if the maps


w
p1

p2


 �→


 z
q1

q2


 exist for each ∆ ∈ ρUX and are uniformly bounded in

norm. If, in addition, the performance inequality ρ · ‖w �→ z‖ ≤ 1 is satisfied for all
∆ ∈ ρUX , then the system in Figure 3.1 is said to have uniform robust performance
with respect to that same perturbation set.

Notice that both definitions are made with the same scaling constant ρ. In prac-
tice, however, we will usually set ρ = 1 for convenience when stating and proving
results. This can be done without loss of generality since all of the systems we con-
sider are linear and can hence be scaled appropriately a priori. Also note that a
similar argument shows that the radius of the uncertainty set and the bound on the
performance inequality can be varied independently by having first scaled G. Having
defined uniform robust stability and uniform robust performance, we can now intro-
duce the set of quasi-LTI perturbations, which is the specific uncertainty set S that
is the focus of this paper.

The perturbations we work with are assumed to be members of the spatially
structured set

Xs := {∆ = diag(∆1, . . . ,∆d) : ∆k ∈ L(Lmk2 ) for 1 ≤ k ≤ d},
where

∑d
k=0 mk = m. Note that it is the Euclidean part of the elements of Xs on

which the structure is imposed; given an operator ∆ = diag(∆1, . . . ,∆d) ∈ Xs and a
signal u = (u1, . . . , ud) ∈ Lm2 with uk ∈ Lmk2 , we have ∆u = (∆1u1, . . . ,∆

dud). Also
notice that the spatial blocks are all square. Again this is strictly for simplicity, and
all of our results hold when this assumption is removed. This structured uncertainty
arrangement is particularly useful in that it models uncertainty occurring simulta-
neously in various parts of the model in a nonconservative fashion. We refer to [3]
and [20], which provide additional motivation for using this particular uncertainty
arrangement from an engineering perspective.

Now let us define the set of quasi-LTI operators. By this, we mean perturbations
∆ lying in the set

LLTI(ν) :=

{
∆ ∈ L(Lm2 ) : sup

T>0

‖DT∆−∆DT ‖
T

≤ ν,∆ causal

}
,
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where ν > 0 and DT is the T -shift on L2. This set is precisely the continuous time
analogue of the discrete time slowly time-varying set in [23] and is called quasi-LTI
since, intuitively, less time variation is permitted as ν is decreased; indeed, the set
LLTI(0) corresponds to the set of all causal LTI operators on L2. We can then define
the set of quasi-LTI structured operators via

XLTI(ν) := Xs ∩ LLTI(ν).

In the case where XLTI(ν) = LLTI(ν), we say that our perturbation set is unstruc-
tured.

Accordingly, we now define a particular class of so-called D-scaling sets, which will
appear throughout what follows. Let Ds

LTI be the set of all nonsingular operators in
LA

C+ whose spatial structure allows them to commute with all members of XLTI(0).
Specifically, we have

Ds
LTI = {D ∈ LA

C+ : D∆ = ∆D for each ∆ ∈ XLTI(0), and 0 /∈ spec(D)}.

That is, every D ∈ Ds
LTI has a corresponding transfer function representation D̂ ∈

AC+ of the form D̂ = diag(d̂1Im1 , . . . , d̂dImd), where each scalar function d̂k ∈ AC+ .

Of course, if XLTI(ν) = LLTI(ν), the transfer function D̂ simply has the form D̂ =

d̂Im, where d̂ ∈ AC+ , and we write Du
LTI in lieu of Ds

LTI for this particular case.
Recall that we defined the operator M to be the nominal closed-loop sampled-

data system mapping
[
p1

w

]
�→

[
q2

z

]
when ∆ = 0. Thus the system of Figure 3.1 is

exactly that of Figure 3.2 below; the latter is more convenient to work with in our
framework. Also notice that by Assumption 3.1, the operator M is bounded. If we
compatibly partition M =:

[
M11 M12

M21 M22

]
with respect to its inputs and outputs, we are in

a position to state our first result regarding robust stabilization. The lemma, whose
proof is straightforward, says that we need only verify the existence and boundedness
of one of the component maps of Figure 3.2 (rather than all four) in appealing to our
definition of uniform robust stability.

M

∆
✻

✲ ✲

❄✛ ✛

✛✛

p2

p1
q2 q1

wz

Fig. 3.2. Robust performance configuration.

Lemma 3.3. Suppose that X is a subspace of L(L2) and ρ > 0. Then the system
of Figure 3.1 has uniform robust stability to the perturbation set ρUX if and only if
for each ∆ ∈ ρUX the mapping (I −M11∆)−1 exists in L(L2) and the family of
maps (I−M11∆)−1 is uniformly bounded over UX .
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In light of the lemma, we see that uniform robust stability of a sampled-data
system can be studied using the simplified configuration of Figure 3.3. Of course, we
can use this framework to study uniform robust stability of the sampled-data system
of Figure 3.2 by setting M = M11 in Figure 3.3. This brings us to our main results.

M

∆
✻

✲ ✲

❄✛ ✛

p2

p1
q2 q1

Fig. 3.3. Robust stabilization configuration.

Theorem 3.4. Suppose the nominal sampled-data closed-loop operator M ∈ LAD
.

Then, for every 0 < ρ < 1, the system of Figure 3.3 has uniform robust stability
against perturbations in ρUXLTI(ν) for some ν > 0 if and only if

inf
D∈Ds

LTI

‖DMD−1‖L2→L2 ≤ 1.

An important feature of our robustness paradigm is that robust performance
problems can be cast in a robust stability framework. See [8] for the details concerning
this conversion. This then allows us to greatly expedite the proofs of our results as
the framework established in proving robust stability results can be reused, modulo
some technical modifications, to prove results concerning robust performance. To this
end, we have Theorem 3.5 below, which constitutes the main result of the paper.

Theorem 3.5. Suppose the nominal sampled-data closed-loop operator M ∈ LAD
.

Then, for every 0 < ρ < 1, the system of Figure 3.1 has uniform robust performance
against perturbations in ρUXLTI(ν) for some ν > 0 if and only if

inf
D∈Ds

LTI

∥∥∥∥∥
[
D 0
0 I

]
M

[
D 0
0 I

]−1
∥∥∥∥∥
L2→L2

≤ 1.

The theorem supplies us with a condition that guarantees uniform robust perfor-
mance of the sampled-data system of Figure 3.1. Written in the operator formulation,
the condition is precisely the same as the discrete time condition derived in [23].

Remark 3.6. Theorems 3.4 and 3.5 both involve the minimization of a scaled
norm condition over the set Ds

LTI . Notice that by Proposition 2.1 we could have
replaced this set by LRH∞ ∩Ds

LTI , where LRH∞ is the subspace of linear operators
on L2 which have stable, proper, rational transfer function representations. Although
all of our results still hold with this new set, it is more technically convenient to use
Ds
LTI in our proofs. Further, we point out that the results do not hold in general if
AC+ and AD are replaced by their associated H∞ spaces.

We now make a few comments regarding the results presented in this section.
First, notice that our robustness conditions involve a minimization over the D-scaling
set Ds

LTI . That we obtain D-scaling problems is not entirely surprising in light
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of previous work in the area. In [12], it is shown that a structured singular value
calculation is an exact test for robust stability of a sampled-data system to the set
of LTI perturbations. It was also shown that if the perturbations are LTV, PTV,
or quasi-PTV, then the test for robustness involves a D-scaling problem. Of course,
it is well known that D-scaling problems form natural upper bounds to structured
singular value calculations.

Having stated the main results of the paper, we now outline the related work
contained within the next few sections. We begin by introducing a further set of tools
and results required in proving our necessity results. In section 5, we prove a simplified
version of Theorem 3.4 with XLTI(ν) = LLTI(ν). Namely, we limit ourselves to the
case where our perturbations are unstructured. The proofs for robustness to the class
of structured quasi-LTI perturbations require mostly technical modifications from the
results presented in section 5 and are omitted due to space considerations. Complete
details concerning these extensions may be found in [8].

4. Analysis of sampled-data systems. In section 2, we focused on presenting
mathematical tools which can be used to study any dynamical system. The goal of
this section is to develop some further results that will simplify the proofs of the
main results stated in the last section. The material presented below is collected
in this section because the results are of independent interest. First, we examine
some of the tools required in the analysis of sampled-data systems. Namely, we will
introduce a lifting formalism for periodic operators as well as another operator-valued
representation of our nominal system M called the sampled-data frequency response.
We reserve the last subsection of this section for an introduction to the S-procedure.

4.1. Lifting of periodic systems. We begin our study of sampled-data systems
by describing a technique for lifting periodic operators. The aim of this formalism,
which was first developed in [5, 29, 30, 4] is to provide a framework in which the
periodic system becomes time-invariant. Although the technique introduced applies
to any periodic operator in L(L2), we focus primarily on sampled-data systems.

The first step is to define the sampled-data lifting operator W as a mapping from
L2[0,∞) to �2(K2). Given u ∈ L2, the sequence ũ = Wu is defined via

(ũ[k])(τ) := u(kh + τ)(4.1)

for τ ∈ [0, h) and k ∈ No. From the definition, it is obvious that W−1 exists and that
W is an isomorphism between L2 and �2(K2). Hence, if F ∈ L(L2), then the mapping
F̃ := WFW−1 is a bounded linear operator on �2(K2); in fact, ‖F‖L2→L2 = ‖F̃‖�2→�2 .
Note the convention we have adopted here: if u ∈ L2 and F ∈ L(L2), then the lifted
signal and the lifted system are denoted by ũ and F̃ , respectively.

Using the sampled-data lifting operator and the Z-transform, we can obtain a
transfer function representation for M of the form M̌(z) = Čz(I − zAd)

−1B̌ + Ď.
The explicit form of the operators on the right-hand side is in Appendix A. Using
these expressions, it is then an easy matter to show that M̌(z) ∈ AD. This property
constitutes the starting point for subsection 4.2.1.

4.2. The sampled-data frequency response. The second tool we introduce
in this section is the sampled-data frequency response, which provides us with an-
other frequency domain representation for a class of operators in L(L2). This new
representation is at the heart of the necessity conditions proposed in Theorems 3.4
and 3.5, as is best seen later through Theorem 5.2. As the name suggests, the sampled-
data frequency response plays an analogous role to the Fourier frequency response for
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standard continuous time systems. This connection will become more obvious in what
follows.

Our study of the sampled-data frequency response is split into three parts. We
begin by defining the frequency response operator. We then focus on the class of
LTI perturbations having transfer function representations in the half-plane algebra
AC+ . This allows us to define the D-scaling sets we will use to scale the frequency
response of our sampled-data systems. In the second part, we dwell on an asymptotic
property of the frequency response operator in proving two technical lemmas used in
the proof of Theorem 3.4. Finally, in subsection 4.2.3, we discuss the continuity of
the mappings introduced in defining the sampled-data frequency response operator
of a system. Our presentation is based on that of [12], and we refer the reader to
this book and the references cited therein for a more complete overview than the one
presented here; see also [1, 2, 31].

4.2.1. Lifting in frequency domain. We begin by defining the set LAD
to

consist of operators G ∈ L(L2) for which there exists a function Ǧ(z) ∈ AD such
that G = W−1Z−1ǦZW. Notice that at a fixed point zo ∈ D the operator Ǧ(zo) :
K2 → K2. Clearly, every operator in the set LAD

is h-periodic, although the set of all
causal h-periodic operators on L2 is isomorphic to the larger space H∞(D). For such
an operator, we also have that

‖G‖ = max
z∈D

‖Ǧ(z)‖ = sup
ω∈R

‖Ǧ(ejω)‖,

where the second equality follows from a maximum modulus result. Thus it seems
that when dealing with questions about robust stability and performance, we need
only concern ourselves with the behavior of Ǧ(z) along the boundary of the unit disc
since this is where the function takes its “largest” values. As we will see later, this is
precisely the case.

Let us now briefly discuss the space K2. It is not difficult to show that for any
ωo ∈ (−π, π] the sequence {ψk} forms a complete orthonormal basis for K2, where

ψk(t) := h− 1
2 ejh

−1(2πνk−ωo)t(4.2)

for t ∈ [0, h), and νk is the kth element in the sequence {0, 1,−1, 2,−2, . . . }.
We now define a one-parameter family of operators Jω : K2 → �2 for ω ∈ (−π, π].

Given ψ ∈ K2 with Fourier expansion ψ =
∑∞
k=0 akψk, we have

Jωoψ := (a0, a1, a2, . . . ),

where ωo ∈ (−π, π] is the frequency at which the basis {ψk} is defined. In this
fashion, we can define an operator-valued function J : ∂D → L(K2, �2) through the
relationship

J(ejω) := Jω.

From this definition, it is immediate that J−1 = J∗ at each point ω ∈ (−π, π] and
that J is an isomorphism between the space of square integrable K2-valued functions
on ∂D and the square integrable �2-valued functions on ∂D.

The sampled-data frequency response of an operator G ∈ LAD
is then defined by

G(ejω) := JωǦ(ejω)J∗
ω.(4.3)
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Our above discussion allows us to conclude that G : ∂D→ L(�2) and that

sup
ω∈(−π,π]

‖G(ejω)‖�2→�2 = sup
ω∈(−π,π]

‖Ǧ(ejω)‖K2→K2 = ‖G‖L2→L2 .

In the last section, we saw that for the sampled-data system of Figure 3.1, the
transfer function M̌(ejω) = Čejω(I − ejωAd)

−1B̌ + Ď. Using our mapping J , we can
define new operators B̃ := B̌J∗

ω, C̃ := JωČ, and D̃ := JωĎJ∗
ω so that

M(ejω) = C̃ejω(I − ejωAd)
−1B̃ + D̃.

From these definitions, it is easy to see that B̃ : �2 → C
ñ, C̃ : C

ñ → �2, and
D̃ : �2 → �2. Hence each operator can be viewed as an infinite dimensional “matrix.”
For example, we can write

B̃ =:
[
(B̃)0 (B̃)1 (B̃)2 · · ·] ,

where the block (B̃)k is simply a matrix acting on the kth element of a sequence in
�m2 . Similar definitions can be made for (C̃)l and (D̃)lk, the matrix components of C̃
and D̃, respectively. State space formulae for all of the above quantities can be found
in Appendix A.

We end our introduction to the sampled-data frequency response with a closer
examination of a special case. The results that we state can be found in [12] along
with their proofs. Recall that LA

C+ denotes the subspace of operators in L(L2)
which have transfer function representations in the half-plane algebra AC+ . Suppose
our perturbation ∆ ∈ XLTI(0) ∩ LA

C+ . That is, ∆ is LTI and lies in our spatially

structured set, while its transfer function ∆̂ ∈ AC+ . By Proposition 2.1, this set is
the closure of the FDLTI operators in the spatially structured set Xs. For such a
perturbation, it can be shown that

∆(ejωo) = diag(∆̂(jθ0), ∆̂(jθ1), ∆̂(jθ2), . . . ),

where the frequency θk = 2πνk−ωo

h . See [12]. Thus ∆(ejωo) can be viewed as an
infinite dimensional block diagonal matrix whose blocks inherit their spatial structure
from Xs. More precisely, by defining the set

∆∆̇ LTI := {diag(∆0, ∆1, ∆2, . . . ) : ∆k ∈ X},
where the set of spatially structured matrices

X := {diag(Q1, Q2, . . . , Qd) : Qk ∈ C
mk×mk} ⊂ C

m×m,

we see that ∆(ejω) ∈ ∆∆̇ LTI at each frequency along the unit circle.
Finally, we can define the set of D-scaling operators for M(ejω). This is done

by analogy with our definitions of the sets Ds
LTI and Du

LTI . Let D̃s be the set
of nonsingular operators which commute with each member of ∆∆̇ LTI . From this
definition, it is easy to show that

D̃s = {diag(D̃0, D̃1, D̃2, . . . ) : D̃k = diag(d̃k,1Im1 , . . . , d̃k,dImd), 0 �= d̃k,l ∈ C}.

Of course, we can similarly conclude that when D̃s = D̃u, each block D̃k = d̃kIm with
0 �= d̃k ∈ C. We now further restrict this set by appealing to the following elementary
result.
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Proposition 4.1. Given bounded linear operators M and D acting on some
Hilbert space H with D invertible. Then for a scalar δ > 0, the following are equiva-
lent:

(1) ‖DMD−1‖2 ≤ δ2.
(2) M∗D∗DM − δ2D∗D ≤ 0.

We therefore define the positive subsets

Ds = {diag(D0, D1, D2, . . . ) : Dk = diag(dk,1Im1 , . . . , dk,dImd), 0 < dk,l ∈ R}(4.4)

and

Du = {diag(d0Im, d1Im, d2Im, . . . ) : 0 < dk ∈ R}(4.5)

and will work with them instead of D̃s and D̃u. With this, we conclude our introduc-
tion to the sampled-data frequency response. Further properties of this representation
are discussed in the next two subsections.

4.2.2. Frequency response as an asymptotic limit. We now focus on an-
other key property of the sampled-data frequency response operator. The results
below provide us with a new means by which we can connect the original operator
M to its frequency response function M(ejω). The result will be used later when we
prove the necessity of the condition of Theorem 3.4.

To begin with, we need to define a two-parameter set of scalar functions

φqωo
(t) :=

{
1√
qh

ejωot, 0 ≤ t < qh,

0, t ≥ qh,
(4.6)

where ωo ∈ R and q ∈ No. Notice that any such function always has unit norm. These
functions have a useful property in connection with the frequency response operator,
as is seen in the following lemma.

Lemma 4.2. Given b0, . . . , bN ∈ C
m, a frequency θo ∈ (−π, π], and the sequence

νk = {0, 1,−1, 2,−2, . . . }. Let ωl := 2πνl−θo
h for every l ∈ No. Then

‖zq −Mwq‖L2
−→ 0 as q →∞,

where M is the nominal sampled-data system of Figure 3.1, wq(t) =
∑N
l=0 blφ

q
ωl

(t),

and zq(t) =
∑N
l=0

∑∞
p=0

(
Mp,l(e

jθo)bl
)
φqωp(t).

The lemma states that each of the N +1 harmonics ω0, . . . , ωN generates a count-
able number of aliased harmonics whose sizes are determined from the frequency re-
sponse operator M(ejω); in interpreting this result, observe for a fixed q that the
functions φqωl form an orthonormal sequence in L2.

4.2.3. Continuity properties. We end our introduction to the sampled-data
frequency response with a look at an important continuity property of the frequency
response operator M(ejω) defined in subsection 4.2.1. Let us begin by defining the
operator X ∈ L(�2) via

(b0, b1, b2, . . . )
X−→ (bη0 , bη1 , bη2 , . . . ),

where ηk is the sequence {2, 0, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, . . . }.
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Recall that M(ejω) provides an alternative representation for the multiplication
operator M̌(z) on the unit circle ∂D. The interesting thing to note is that although
the transfer function M̌(·) is continuous on ∂D, Proposition 4.3 implies that its coun-
terpart M(·) does not always share this property in general. Nonetheless, we still
have the following result, which says that a discontinuity can occur at only one point
on ∂D.

Proposition 4.3. The frequency response of the nominal sampled-data system
M of Figure 3.1 satisfies the following two properties.

(i) M(ejω) is continuous on (−π, π) and left continuous at π.
(ii) limω→−π+ ‖M(ejω)−X∗M(−1)X‖�2→�2 = 0.
The proof results from an easy application of the triangle inequality and the

continuity of the lifting operator Jω. See [12].

4.3. The S-procedure. The final topic we will cover in this section is the S-
procedure [18]. In our presentation we provide a new result, which generalizes earlier
work from a finite to a countable number of quadratic forms under special conditions.
It is worth noting that the general result for a countable number of quadratic forms
does not hold.

It is in this vein that we introduce time-invariant quadratic forms on �2: a mapping
ψ : �2 → R is called a time-invariant quadratic form if there exist two time-invariant
operators X and Y in L(�2) satisfying

ψ(u) = ‖Xu‖22 − ‖Y u‖22
for each u ∈ �2.

In the work that follows, we will work exclusively with sequences of time-invariant
operators on �2. However, our study will be limited to those sequences which satisfy
the following condition.

Condition 4.4. A sequence {Xk} of time-invariant operators on �2 satisfies this
condition if

∑∞
k=0 ‖Xku‖22 is finite for every u ∈ �2 with ‖u‖2 = 1.

Note, in particular, that any such sequence Xk tends strongly to zero.
Suppose we have two sequences {Xk} and {Yk} of time-invariant operators on �2

which satisfy Condition 4.4. We then define the set

∇ := {(ψ0(u), ψ1(u), . . . ) : u ∈ �2, ‖u‖2 = 1} ⊂ �∞,(4.7)

where ψk(u) = ‖Xku‖22 −‖Yku‖22 for k ∈ No and �∞ is the set of bounded real-valued
sequences. Lemma 4.5 below states an important property of the set ∇.

Lemma 4.5. Suppose {Xk} and {Yk} are sequences of time-invariant operators
on �2 which satisfy Condition 4.4, and ∇ is the corresponding subset of �∞ defined
in (4.7). Then ∇ is a subset of �1, the set of absolutely summable sequences, and its
closure ∇ is convex.

The proof of this result can be found in [8] along with the proofs of the other
results of this section; it is an extension of the proof of an analogous result found in
[18] and adopts the presentation of [22].

In what follows, we denote the positive orthant of �1 by

Π+ := {x ∈ �1 : x = (x0, x1, . . . ), xk ≥ 0 for each k ∈ No} .
This definition in hand, we are now set to present the key result in this section. The
proof relies on the strong separation theorem for normed spaces and the fact that the
normed dual space of �1 is isomorphic to �∞.



310 SEAN E. BOURDON AND GEIR E. DULLERUD

Theorem 4.6. Suppose {Xk} and {Yk} are sequences of time-invariant operators
in L(�2) such that ∇, the corresponding set defined by (4.7), is a bounded subset of
�1. Then the following statements are equivalent.

(i) The inequality inf
x∈∇, y∈Π+ ‖x− y‖�1 > 0 is satisfied.

(ii) There exists a bounded sequence of real scalars d∞, d0, d1, d2, . . . > β > 0 for
some β > 0, such that d0ψ0(u) + d1ψ1(u) + · · · ≤ −d∞ for all u ∈ �2 with
‖u‖2 = 1.

We now begin the process of narrowing our focus by specializing this last result
to our sampled-data framework. For each l ∈ No, we define the projection operator
El on �2 to be the operator whose representation is

El = diag(0, 0, . . . , 0︸ ︷︷ ︸
l zeros

, Im, 0, . . . ),

where Im is the m × m identity matrix. Now consider the space �2(�m2 ). Suppose
L ∈ L(�m2 ). We define the memoryless operator TL : �2(�m2 )→ �2(�m2 ) as the mapping
satisfying

(TLu)k := Luk

for each k ∈ No. Given an LTI operator V on �2(�2) and an integer N ∈ No, we define
the special set of quadratic forms

ψl(u) :=



‖TElV u‖22 − ‖TElu‖22, l = 0, . . . , N,

‖TQNV u‖22 − ‖TQNu‖22, l = N + 1,

0, l > N + 1,

(4.8)

where u ∈ �2(�2) and the projection operator Qn : �2 → �2 is defined by

Qn(a0, . . . , an, an+1, . . . ) = (0, . . . , 0, an+1, an+2, . . . )

for each a ∈ �2 and n ∈ No. Having made this definition, we are now able to state our
next result. It relates condition (i) from the last theorem to an equivalent D-scaling
problem over the set Dun ⊂ Du defined by

Dun = {D = diag(d0Im, d1Im, . . . ) ∈ Du : dl = dN+1 for l > N + 1},

where Du is the D-scaling set defined in (4.5); thus note that Dun is a subset of Du.
Corollary 4.7. Given a time-invariant operator V ∈ L(�2(�2)) and the corre-

sponding set of time-invariant quadratic forms defined in (4.8). Then the inequality
inf
x∈∇, y∈Π+ ‖x− y‖�1 > 0 holds if and only if

inf
D∈Du

n

‖TDV TD−1‖�2(�2)→�2(�2) < 1.

This simplified version of Theorem 4.6 is sufficient for our purposes since there is
only a finite number of nonzero quadratic forms defined in (4.8). However, the full
result may have wider application.

The following corollary is the final result of this section. It links the quadratic
forms defined in (4.8) to the D-scaling set Du and is precisely the result we will appeal
to later in proving the main theorems of the paper.
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Corollary 4.8. If the inequality

inf
D∈Du

‖DM(ejωo)D−1‖�2→�2 > 1

holds for some frequency ωo ∈ (−π, π], then for each integer n > 0 there exist u ∈
�2(�m2 ) with ‖u‖ = 1 and γ > 1 such that

γ‖TElu‖�2(�2) ≤ ‖TElTMu‖�2(�2)
for each l = 0, . . . , n, and

γ‖TQnu‖�2(�2) ≤ ‖TQnTMu‖�2(�2).
Note here that TM above, short for TM(ejωo ), is time-invariant.
We now have a complete set of tools with which to study our problems. We shall

make extensive use of the techniques developed here in section 5, where we prove the
necessity and sufficiency results of section 3.

5. Uniform robust stability: Unstructured perturbations. The proofs
for Theorems 3.4 and 3.5 are quite lengthy. For the purposes of this paper, we will
therefore concentrate on the following specialized result. Namely, we shall focus on
characterizing uniform robust stability against the set of unstructured perturbations,
ULLTI(ν). The extensions to Theorems 3.4 and 3.5 are routine; details are in [8].

Theorem 5.1. Suppose the nominal sampled-data closed-loop operator M ∈
LAD

, and the frequency response M(ejωo) is a compact operator at each frequency
ωo ∈ (−π, π]. Then, for every 0 < ρ < 1, the system of Figure 3.3 has uniform robust
stability against perturbations in ρULLTI(ν) for some ν > 0 if and only if

inf
D∈Du

LTI

‖DMD−1‖L2→L2
≤ 1.

The closed loop operator M defined in section 3 will always satisfy the supposition
of the theorem; see the state space formula of Appendix A. Thus the above result holds
for a more general class of periodic systems.

5.1. Necessity. We begin our proof of Theorem 5.1 by showing that the D-
scaling condition put forward is necessary in order to guarantee uniform robust sta-
bility of our sampled-data system. The result stated next is key. It allows us to convert
our original D-scaling condition to a D-scaling condition involving the sampled-data
frequency response operator introduced last section.

Theorem 5.2. Suppose M(ejω) is continuous and compact at each ω ∈ R. Then

inf
D∈Du

LTI

‖DMD−1‖ = sup
ω∈R

inf
D∈Du

‖DM(ejω)D−1‖.

The proof of this result is located in Appendix B. At first, it appears that there
is no distinct advantage to this new formulation since the representations involved
remain infinite dimensional. However, the properties of the sampled-data frequency
response operator that were introduced in the last section make this new representa-
tion more amenable to constructing the required proof. Moreover, the computational
framework we develop in [9] is entirely based on the interchangeability of the two
representations.

Lemma 5.3 below is the main necessity result that we shall prove in this paper. By
Theorem 5.2, it is precisely the contrapositive of the desired result. Now, although we
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significantly bolstered our set of tools in the last section, we still require an additional
technical result which will help us construct the destabilizing perturbation required
in the proof of the theorem. We state the main result here and then briefly digress
before returning to the proof in subsection 5.1.2.

Lemma 5.3. Suppose M ∈ LAD
, and M(ejωo) is a compact operator at each

frequency ωo ∈ (−π, π]. If

sup
ω∈(−π,π]

inf
D∈Du

‖DM(ejω)D−1‖�2→�2 > 1,

then the sampled-data system in Figure 3.3 does not have uniform robust stability to
the perturbation sets ULLTI(ν) for any ν > 0.

5.1.1. Constructing destabilizing perturbations. Here we present a num-
ber of lemmas. The key result of this subsection is concerned with the maximal rate
of time variation required for an operator to move power across frequencies while
maintaining a set of power inequalities. The basic construction parallels that in [23].

Our first result gives an asymptotic property of an operator in the set LA
C+

and is nothing more than a special case of an asymptotic frequency response result
presented in section 4. Since the result is standard in linear systems theory, no proof
is presented.

Lemma 5.4. Suppose Ω ∈ R and Q ∈ LA
C+ . Then the following limit is satisfied:

lim
q→∞ ‖Q̂(jΩ)φqΩ −QφqΩ‖ = 0,

where the function φqΩ is defined in (4.6).
Our next lemma is concerned with filtering a signal consisting of N + 1 countable

sets of aliased frequencies. The construction is based on a result first proved by
Rudin [24] and the asymptotic property presented in our last result.

Lemma 5.5. Suppose (a) the frequencies −π < ω0 < · · · < ωN < ω0 + π, and (b)
the corresponding sequences a0, . . . , aN are in �2. Then there exists Q ∈ LA

C+ with
‖Q‖ = 1 such that

lim
q→∞ ‖Qzq − vq‖ = 0,

where zq =
∑N
k=0

∑∞
l=0 alkφ

q

ωl
k

, vq =
∑N
k=0

∑n
l=0 alkφ

q

ωl
k

, and ωlk = 2πνl−ωk
h .

Lemma 5.6 is the key result in this section. It provides an upper bound for the
rate of change required for an operator ∆ to move power across frequencies. Once
again, due to space limitations, the proof is omitted. We refer the reader to [8].

Lemma 5.6. Suppose (i) alk, b
l
k ∈ C

m for 0 ≤ l ≤ n and 0 ≤ k ≤ N , (ii)
−π < ω0 < · · · < ωN < ω0 + π, ωi �= −ωj for i, j = 0, . . . , N , and (iii) for some
γ > 1, the finite sequences al and bl satisfy |al|2 ≥ γ|bl|2 for each 0 ≤ l ≤ n. Then
there exists ∆ ∈ ULLTI(νo), with νo := ωN−ω0

h , such that

lim
q→∞ ‖∆zq − wq‖ = 0,

where zq =
∑N
k=0

∑n
l=0 alkφ

q

ωl
k

, wq =
∑N
k=0

∑n
l=0 blkφ

q

ωl
k

, and ωlk = 2πνl−ωk
h .

Remark 5.7. The convention introduced in the statement of Lemma 5.6 shall be
used throughout the remainder of the paper. Namely, given a sequence of sequences,
a = (a0, a1, . . . , ), we shall use alk to denote the lth component of the kth sequence.
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✻
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Fig. 5.1. Typical element of �2(�2).

Also, we will denote the sequence (al0, a
l
1, a

l
2, . . . , ) by al. Figure 5.1 illustrates the use

of this notation when a ∈ �2(�2).
Remark 5.8. In the hypotheses of Lemma 5.6, we have assumed that the fre-

quencies ω0,. . . ,ωN are chosen so that ωi �= −ωj . Although this assumption is never
explicitly used in our construction, it is necessary to have it in place when the per-
turbation ∆ is required to map real signals back onto real signals.

Corollary 5.9 below is the result needed to construct the destabilizing perturbation
required in the proof of Lemma 5.3.

Corollary 5.9. Suppose (i) ak, bk ∈ �2 for 0 ≤ k ≤ N , (ii) −π < ω0 < · · · <
ωN < ω0 + π, ωi �= −ωj for i, j = 0, . . . , N , and (iii) there exists γ > 1 such that
for each 0 ≤ l ≤ n, we have |al|2 ≥ γ|bl|2. Then there exists ∆ ∈ UL(νo) with
νo = ωN−ω0

h , such that

lim
q→∞ ‖∆zq − wq‖ = 0,

where zq =
∑N
k=0

∑∞
l=0 alkφ

q

ωl
k

, wq =
∑N
k=0

∑n
l=0 blkφ

q

ωl
k

, and ωlk = 2πνl−ωk
h .

Having established this last result, we are now in a position to prove Lemma 5.3,
which we do next.

5.1.2. Proof of Lemma 5.3. Choose any νo > 0. It is sufficient to show that
given this choice of νo and any ε > 0, we can construct a perturbation ∆ ∈ ULLTI(νo)
and a corresponding signal z ∈ L2 of unit norm such that ‖(I−M∆)z‖ < ε.

Let ε > 0. By hypothesis, there exists a θo ∈ (−π, π] so that

inf
D∈Du

‖DM(ejθo)D−1‖ > 1.(5.1)

Next, choose N ∈ No large enough so that

‖PNM(ejθo)−M(ejθo)‖ <
ε

3‖M‖ ,(5.2)
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where the projection operator Pn = I −Qn is defined by

Pn(a0, . . . , an, an+1, . . . ) = (a0, . . . , an, 0, 0, . . . )

for each a ∈ �2 and n ∈ No. Note that by compactness of M(ejθo), such an integer N
always exists [15]. Moreover, by continuity of M(·), there exists an interval I about
θo such that ‖PNM(ejω)−M(ejω)‖ < ε

3‖M‖ for all ω ∈ I.

Now recall our earlier work on the S-procedure. By Corollary 4.8, condition (5.1)
implies that there exist γ > 1 and b ∈ �2(�2) with ‖b‖ = 1 so that by defining
a′ := TMb, we have

γ‖TElb‖2 ≤ ‖TEla′‖2 =

√√√√ ∞∑
k=0

‖ElM(ejθo)bk‖22(5.3)

for l = 0, . . . , N and

γ‖TQN b‖2 ≤ ‖TQNa′‖2 =

√√√√ ∞∑
k=0

‖QNM(ejθo)bk‖22.(5.4)

Since TM is a memoryless operator, we can assume, without loss of generality, that
(5.3) and (5.4) are satisfied for b with finite support. Let K + 1 be the support length
of b.

Using (5.3), (5.4), and the continuity of M(ejω), we can choose K + 1 distinct
frequencies −π < ω0 < · · · < ωK < ω0 + π, each in the interval I, so that by defining
ak := M(ejωk)bk, we have

(i)
ωK − ω0

h
< νo,

(ii) ωi �= −ωj for all i, j = 0, . . . ,K,

(iii) γ′

√√√√ K∑
k=0

‖Elbk‖22 = γ′‖TElb‖2 ≤ ‖TEla‖2 =

√√√√ K∑
k=0

‖ElM(ejωk)bk‖22(5.5)

for each l = 0, . . . , N , and

(iv) γ′

√√√√ K∑
k=0

‖QNbk‖22 = γ′‖TQN b‖2 ≤ ‖TQNa‖2 =

√√√√ K∑
k=0

‖QNM(ejωk)bk‖22(5.6)

for some 1 < γ′ < γ. Furthermore, without loss of generality, we can also assume that
the frequencies ω0, . . . , ωK are all rational numbers.

We now seek to make use of Corollary 5.9 in order to construct our destabilizing
perturbation. Let

zq :=

K∑
k=0

∞∑
l=0

alkφ
q

ωl
k

, uq :=

K∑
k=0

∞∑
l=0

blkφ
q

ωl
k

, and wq :=

K∑
k=0

N∑
l=0

blkφ
q

ωl
k

.

Henceforth, we shall also assume for simplicity that the integer q in the above defini-
tions is always chosen from the set Ω := {n ∈ No : nωk ∈ Z for k = 1, . . . ,K}. Under
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this assumption and the conditions given in (5.6) and (5.2), we then have that

‖uq − wq‖2L2
=

K∑
k=0

∞∑
l=N+1

‖blk‖22

=

K∑
k=0

‖QNbk‖2�2

≤
K∑
k=0

‖QNM(ejωk)‖2�2→�2 · ‖bk‖2�2

<

(
ε

3‖M‖
)2 K∑

k=0

‖bk‖2�2

=

(
ε

3‖M‖
)2

,(5.7)

since ‖b‖ = 1.

We will now show that ‖M∆zq − zq‖ < ε for q ∈ Ω large enough in order to
complete this part of the proof. By Corollary 5.9 and (5.5), we know there exists
∆ ∈ ULLTI(νo) so that ‖∆zq − wq‖ −→ 0 as q → ∞. Using (5.7) and the triangle
inequality, we find that for q sufficiently large ‖∆zq − uq‖ < ε

3‖M‖ . The submulti-

plicative inequality then implies that

‖M∆zq −Muq‖ <
ε

3
(5.8)

for q ∈ Ω sufficiently large. Also, from the definition of wq and Lemma 4.2, we see
that

∥∥∥∥Mwq −
K∑
k=0

N∑
l=0

∞∑
p=0

(Mp,l(e
jωk)blk)φ

q
ωp
k

∥∥∥∥ −→ 0 as q →∞.

With the help of the triangle and submultiplicative inequalities, it is not difficult to
use (5.7) to deduce that

∥∥∥∥Muq −
K∑
k=0

N∑
l=0

∞∑
p=0

(Mp,l(e
jωk)blk)φ

q
ωp
k

∥∥∥∥ <
ε

3
(5.9)

for q sufficiently large. Finally, from the definition of zq, we have

zq =

K∑
k=0

∞∑
l=0

ElM(ejωk)bkφ
q

ωl
k

=

K∑
k=0

∞∑
p=0

∞∑
l=0

Ml,p(e
jωk)bpkφ

q

ωl
k

,
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from which it follows that∥∥∥∥zq −
K∑
k=0

N∑
l=0

∞∑
p=0

(Mp,l(e
jωk)blk)φ

q
ωp
k

∥∥∥∥
2

L2

=

∥∥∥∥
K∑
k=0

∞∑
l=N+1

∞∑
p=0

(Mp,l(e
jωk)blk)φ

q
ωp
k

∥∥∥∥
2

L2

=

K∑
k=0

‖M(ejωk)QNbk‖2�2

≤ ‖M‖2
K∑
k=0

‖QNbk‖2�2

<
(ε

3

)2
,(5.10)

just as in the derivation of (5.7).
Using (5.8), (5.9), and (5.10) along with the triangle inequality, we see that

‖M∆zq − zq‖ < ε

for q sufficiently large. Now set z := zq

‖zq‖ , where q is chosen as above. Note that since

‖b‖ = 1, (5.5) and (5.6) guarantee that 1 ≤ ‖zq‖ ≤ ∞ and hence that ‖M∆z−z‖ < ε,
as required.

5.2. Sufficiency. Having established the necessity of our robustness condition,
we now focus on proving that the inequality stated in Theorem 5.1 is sufficient in order
to guarantee uniform robust stability against perturbations in the class LLTI(ν) for
some ν > 0.

Our aim in this part is to prove Lemma 5.10, which is a generalization of a similar
result from [23].

Lemma 5.10. Suppose M ∈ LAD
. If

inf
D∈Du

LTI

‖DMD−1‖ < 1,

then the sampled-data system of Figure 3.3 has uniform robust stability to perturba-
tions in the set ULLTI(ν) for some ν > 0.

In proving our result, we will introduce a second definition for the class of quasi-
LTI operators and prove that it is weaker than our original definition. This new
class, which is introduced below, is more technically convenient to work with in our
context. We should also point out that Lemma 5.10 is not specific to our sampled-data
arrangement since M can be any arbitrarily LTV operator.

The proof of the above theorem is rendered much simpler if we choose to work
with an expanded class of quasi-LTI operators. Namely, define the set

P(ε) := {∆ ∈ Lm2 : ‖Θ∆−∆Θ‖ ≤ ε, ∆ causal},
where ε > 0 and Θ ∈ L(Lm2 ) is the operator whose transfer function representation
in AC+ is Θ̂(s) = 1−s

1+s . Lemma 5.11 below states that this new definition is in fact
weaker than our first.

Lemma 5.11. Given ε > 0, there exists ν > 0 such that

ULLTI(ν) ⊆ UP(ε).
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Proof. We sketch the details for the proof of the above result here and refer
the reader to [8] for the complete version. The first step in proving that our new
definition for the class of slowly time-varying operators is weaker than the first is
to notice that given an ε > 0, the inequality ‖Θ∆ − ∆Θ‖ ≤ ε holds if and only
if ‖Λ∆ − ∆Λ‖ ≤ ε, where Λ ∈ L(L2) represents convolution with the function
λ(t) := 2e−t. Now, given δ > 0 and an input u ∈ L2, we can choose N ∈ No

and τ > 0 large enough so that the inequality ‖ΨN,τu − Λu‖ < δ is satisfied. The
operator ΨN,τ simply represents convolution with the piecewise constant function

ψN,τ (t) := 2
∑N−1
k=0 e−kτwkτ,τ (t), where the family of window functions wT,τ is defined

by

wT,τ (t) :=

{
1, T < t < T + τ,

0 otherwise

for T, τ > 0. The idea behind this construction can easily be seen through Figure 5.2
below.

t

ψN,τ (t)

2e−t

2

τ

· · ·
Nτ

Fig. 5.2. Piecewise constant function approximation to λ(t) = 2e−t.

Now, without loss of generality, we could have chosen the above τ small enough
so that the inequality ‖WT,τu − DTu‖ < δ

4 also holds independent of the value of
T > 0. Here WT,τ represents a convolution with the function 1

τwT,τ (t), and DT is the
T -shift on L2. Having made this choice, we can be assured that ‖Ξu−ΨN,τu‖ < δ,

where the operator Ξ is defined by Ξ := 2
∑N−1
k=0 τe−kτDkτ .

From the definition of the set LLTI(ν), we can conclude that if ∆ ∈ ULLTI(ν),
then ‖DT∆ −∆DT ‖ < νT for every T > 0. Let δ = ε

5 . Then, using the above
fact, along with the triangle and submultiplicative inequalities, it can be shown
that ‖Θ∆ − ∆Θ‖ ≤ 4ε

5 + 2ν. Now choose 0 < ν < ε
10 in order to complete the

proof.

Finally, we present a technical result which is used in the proof of Lemma 5.10.
Its proof is straightforward and is hence omitted.

Lemma 5.12. If ∆ ∈ UP(ε), then ‖Θk∆−∆Θk‖ ≤ kε for any k ∈ No.

Proof of Lemma 5.10. Here we assume that M is not the zero operator on Lm2 ;
otherwise, the result is trivial. By hypothesis, there exists D ∈ Du

LTI satisfying the
inequality ‖DMD−1‖ < 1. Choose η > 0 so that ‖DMD−1‖+ η < 1.
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By definition of the set Du
LTI , we know that the operator D−1 has a corre-

sponding transfer function D̂−1 ∈ AC+ . Now functions in the half-plane algebra are
isomorphic to those in the disc algebra via the bilinear transformation z = 1−s

1+s . By
Proposition 2.1, we can choose scalars x0, x1, . . . , xn so that, for any η > 0, we have

∥∥∥∥D−1 −
n∑
k=0

xkΘ
k

∥∥∥∥ =

∥∥∥∥D̂−1 −
n∑
k=0

xk

(
1− s

1 + s

)k ∥∥∥∥
∞

< η,

provided, of course, that we choose n large enough.
Set Tn =

∑n
k=0 xkΘ

k, and choose n sufficiently large so that

‖D−1 −Tn‖ <
1

3
η

1

‖DM‖ .

Then ‖DMD−1 − DMTn‖ ≤ ‖DM‖ ‖D−1 − Tn‖ < 1
3η. Choose εo > 0 so that

‖DM‖ εo

∑n
k=1 k|xk| < 1

3η. Since ‖∆‖ ≤ 1 for any ∆ ∈ UP(εo), we deduce that

‖DMD−1∆−DMTn∆‖ <
1

3
η ‖∆‖ ≤ 1

3
η.(5.11)

Using our last lemma, we find that the following inequalities hold for all perturbations
∆ ∈ UP(εo):

‖Tn∆−∆Tn‖ =
∥∥∥ n∑
k=0

xkΘ
k∆−∆

n∑
k=0

xkΘ
k
∥∥∥

≤
n∑
k=1

|xk| ‖Θk∆−∆Θk‖

≤ εo

n∑
k=1

k|xk|

<
1

3
η

1

‖DM‖ ,

where the last inequality follows by our choice of εo > 0.
The submultiplicative inequality then allows us to conclude that

‖DMTn∆−DM∆Tn‖ ≤ ‖DM‖ ‖Tn∆−∆Tn‖ <
1

3
η.(5.12)

Using (5.11), (5.12), and the triangle inequality, we have

‖DMD−1∆−DM∆Tn‖ <
2

3
η.(5.13)

Notice from our definition of Tn that we have

‖DM∆Tn −DM∆D−1‖ ≤ ‖DM‖ ‖∆‖ ‖D−1 −Tn‖ ≤ 1

3
η.(5.14)

Finally, using (5.13), (5.14), and the triangle inequality, we see that∣∣‖DMD−1∆‖ − ‖DM∆D−1‖∣∣ ≤ ‖DMD−1∆−DM∆D−1‖ < η.
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Thus

‖DM∆D−1‖ < ‖DMD−1∆‖+ η ≤ ‖DMD−1‖+ η < 1

by our choice of η. Since

rad(M∆) = rad(DM∆D−1) ≤ ‖DM∆D−1‖ < 1,

we conclude that I−M∆ is an invertible operator on L2 for every ∆ ∈ UP(εo) with
εo as chosen above. Finally, by Lemma 5.11, we know there exists ν > 0 such that
I−M∆ is invertible for every ∆ ∈ ULLTI(ν).

In order to complete our proof, we need only show that the family of maps (I−
M∆)−1 is uniformly bounded for all ∆ ∈ ULLTI(ν). From an earlier part of the
proof, we already know that by our choice of D, ‖DM∆D−1‖ =: β < 1 for every ∆ ∈
ULLTI(ν). Using a Neumann series expansion (see, for instance, [19]), we can conclude
that ‖D−1(I−M∆)−1D‖ = ‖(I−DM∆D−1)−1‖ ≤ 1

1−β for every ∆ ∈ ULLTI(ν).
By appealing to the submultiplicative inequality, we then find that

‖(I−M∆)−1‖ = ‖DD−1(I−M∆)−1DD−1‖
≤ ‖D‖ · ‖D−1(I−M∆)−1D‖ · ‖D−1‖
≤ 1

1− β
· ‖D‖ · ‖D−1‖

for every ∆ ∈ ULLTI(ν). Finally, since both ‖D‖ and ‖D−1‖ are finite, our proof is
complete.

6. Conclusions and future considerations. This paper establishes the theo-
retical framework for the analysis of quasi-LTI uncertainty in sampled-data systems,
and the main contribution of this paper was to provide an exact characterization
of uniform robust performance against the set of quasi-LTI perturbations. Having
completed this analysis, we now make a few concluding remarks.

Computation of the stability radius, from the conditions presented here, of a
given sampled-data system subject to quasi-LTI uncertainty is an important related
problem for applying the methods of this paper. Theorem 5.2 is used as the starting
point in [9], where we develop a framework for obtaining upper and lower bounds to
the stability radius using only convex matrix calculations.

Although the emphasis was placed on sampled-data systems in this paper, we
should mention once again that many of the results we present apply to a larger class
of periodic continuous time systems. Specifically, suppose an h-periodic (closed-loop)
system is specified by an exponentially stable realization (A(t), B(t), C(t), D(t) = 0)
with all these functions being bounded and h-periodic. Then, via lifting, it is possible
to explicitly write an equivalent frequency response representation M(ejω) for the
system, which has the same continuity properties required in this paper. Further, at
each frequency, M(ejω) is the sum of a finite rank operator and an integral operator;
this integral operator is necessarily compact, and thus the analysis of this paper
immediately generalizes.

As a comment, we conjecture that uniform robust performance against quasi-LTI
perturbations is equivalent to robust performance in the context of the sampled-data
systems studied here.

It should also be noted that the procedure outlined in Appendix B can serve as
a guideline for constructing appropriate D-scaling operators in a process such as D-
K iteration, providing a robust synthesis heuristic similar to that for standard LTI
systems.
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Finally, the results of this paper, together with previously published work, provide
a complete set of tests for all of the standard types of dynamic uncertainty sets
encountered in robust control analysis. We believe that the tools and techniques
developed in this body of research will allow for a straightforward generalization of
the integral quadratic constraint (IQC) framework to sampled-data and multirate
systems.

Appendix A. State space formulae. In this appendix, we provide state space
realizations for several representations of the operator M. In particular, we make
explicit the operators M̃ , M̌(ejω), and M(ejωo). The details concerning the derivation
of the formulae can be found in [12] or in [8].

Recall from section 3 that our plant G has been conformably partitioned to satisfy
equations of the form

[
z
y

]
=

[
G11 G12

G21 G22

] [
w
u

]
.

We also provided a state space realization for G,

Ĝ(s) =


 A B1 B2

C1 0 D12

C2 0 0


 ,

while the matrices (AKd , BKd , CKd , DKd) constituted a minimal realization for our
discrete time controller Kd. Using the above information and referring back to Fig-
ure 3.1, we see that the equations

z = Mw,

u = HKdSy

represent the behavior of our sampled-data system.

The procedure for obtaining M̃ now proceeds as follows. First, provide a state
space realization for the last system of equations and integrate over the interval
[kh, kh + τ). Next, use the procedure described in section 4.1 to lift the input and
output signals to the operator M. Set w̃ = Ww and z̃ = Wz, where W is the
operator defined by (4.1). Recall that we are also using the shorthand w̃[k], z̃[k] to
represent the functions (w̃[k])(τ) = w(τ +kh) and (z̃[k])(τ) = z(τ +kh), respectively,
for τ ∈ [0, h). These definitions in hand, it can be shown that

[
xG((k + 1)h)
xKd [k + 1]

]
= Ad

[
xG(kh)
xKd [k]

]
+ B̌w̃[k],

[
xG(0)
xKd [0]

]
= 0,

z̃[k] = Č

[
xG(kh)
xKd [k]

]
+ Ďw̃[k],

(A.1)

where the operators Ad ∈ C
ñ×ñ, B̌ : K2 → C

ñ, Č : C
ñ → K2, and Ď : K2 → K2 are
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defined as follows:

Ad :=


eAh +

∫ h
0

eA(h−η) dηB2DKdC2

∫ h
0

eA(h−η) dηB2CKd

BKdC2 AKd


 ,

B̌ψ :=



∫ h

0

eA(h−η)B1ψ(η) dη

0


 ,

(Čξ)(τ) :=

[
C1e

Aτ C1

∫ h
0

eA(τ−η) dηB2 + D12

] [
I 0

DKd CKd

]
ξ,

(Ďψ)(τ) := C1

∫ h
0

eA(τ−η)B1ψ(η) dη.

The lifted system M̃ = WMW−1 is then given by (A.1), whereas the operator
M̌(ejω) = Čejω(I − ejωAd)

−1B̌ + Ď.
Finally, we expand the operators B̌, Č, and Ď with respect to the basis {ψk}

defined in (4.2) in order to obtain the matrices (B̃)k := B̌J∗
ωo

, (C̃)l := JωoČ, and

(D̃)lk := JωoĎJ∗
ωo

, which make up the frequency response operator M(ejωo). They
are

(B̃)k = h−1/2

[
I
0

]
eAh
∫ h

0

e(jθkI−A)τ dτB1,

(C̃)l = h−1/2
[
C1 D12

] ∫ h
0

exp
([A−jθlI B2

0 −jθlI

]
τ
)

dτ

[
I 0

DKdC2 CKd

]
,

(D̃)lk = h−1C1

∫ h
0

e(A−jθlI)τ
∫ h

0

e(jθkI−A)η dη dτB1,

where the frequency θk = 2πνk−ωo

h and νk is the sequence {0, 1,−1, 2,−2, . . . }.
Appendix B. Proof of Theorem 5.2. We now concern ourselves with the

proof of Theorem 5.2. Of course this means that we will be dealing with the class
of unstructured operators only. The proof presented here can be changed to deal
with the class of structured operators with modest technical difficulty. We begin by
restating the result for convenience.

Theorem 5.2. The following equality holds:

sup
ω∈(−π,π]

inf
D∈Du

‖DM(ejω)D−1‖ = inf
D∈Du

LTI

‖DMD−1‖.

An outline of the proof of the result spans this entire appendix. Notice that a
number of lemmas are pursued within the proof. Their purpose is to help divide the
presentation into more manageable pieces. We refer the interested reader to [8] for
additional details concerning the omitted proofs.

Proof. Since the frequency response D(ejω) of a D-scaling operator D ∈ Du
LTI

takes its values in the set Du, it readily follows that

inf
D∈Du

LTI

‖DMD−1‖ = inf
D∈Du

LTI

sup
ω∈(−π,π]

‖D(ejω)M(ejω)D−1(ejω)‖

≥ sup
ω∈(−π,π]

inf
D∈Du

LTI

‖D(ejω)M(ejω)D−1(ejω)‖

≥ sup
ω∈(−π,π]

inf
D∈Du

‖DM(ejω)D−1‖.
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The reverse inequality is significantly more challenging to prove. The approach
we adopt is based on work found in [6] and the sampled-data framework and tools
introduced so far. We begin by constructing a smooth operator-valued function map-
ping the interval (−π, π] to Du, which satisfies our norm condition. We then use this
smooth D-scaling operator in order to define a smooth function on the boundary of
the closed right half-plane, whose behavior we approximate by a proper real rational
function which lies in the half-plane algebra AC+ . The D-scaling operator we are ulti-
mately interested in is simply that which has this real rational function as its transfer
function representation in the half-plane algebra.

Now, in order to show the inequality, we will prove that given any α > 0,

if sup
ω∈(−π,π]

inf
D∈Du

‖DM(ejω)D−1‖ < α, then inf
D∈Du

LTI

‖DMD−1‖ < α also.

The first step in validating this assertion is to prove that we can choose a smooth
function that satisfies our norm constraint. The construction proceeds in two steps.
First, we show that we can partition the interval (−π, π] into a finite number of
subintervals on which the D-scaling function can be chosen constant. In addition, we
can choose the D-scales from the set

Dk :=

{
D =

[
ΠkY (Πk)

∗ 0
0 I

]
: Y ∈ Du

}

for some choice of k ∈ No, where the truncation operator Πk : L2 → Rk is defined by

Πk(a0, a1, . . . ) := (a0, . . . , ak).

Namely, the set Dk is the subset of Du which consists of D-scales in which only the
first k + 1 blocks are not prespecified to be the identity. This process is the subject
of the next lemma. Finally, in a second lemma, we smoothly join our constant D-
scaling operators to form an infinitely differentiable D-scaling operator on the interval
(−π, π].

Lemma B.1. Suppose that supω∈(−π,π] inf
D∈Du ‖DM(ejω)D−1‖ < α. Then, for

some pair of integers n and k, there exists a partition

−π < a1 < b1 < a2 < · · · < an < bn < π

of the interval (−π, π] along with a corresponding set of invertible D-scaling operators
D0, D

−1
0 , . . . , Dn, D

−1
n ∈ Dk such that

‖DlM(ejω)D−1
l ‖ < α is satisfied for




ω ∈ (−π, a1], l = 0,

ω ∈ [bl, al+1], l = 1, . . . , n− 1,

ω ∈ [bl, π], l = n.

Moreover, we can choose these frequencies and the D-scales so that for a fixed l =
1, . . . , n the inequalities

‖DlM(ejω)D−1
l ‖ < α and ‖Dl−1M(ejω)D−1

l−1‖ < α

are simultaneously satisfied for every ω ∈ (al, bl).
The construction described in the statement of the lemma is shown pictorially in

Figure B.1 below.
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✲( ( ) ( ) ( ) ( ) ]

−π a1 b1 a2 b2 an−1 bn−1 an bn π

( ) ( ) ( ) ( ]
D0 D2 Dn−2 Dn

( ) ( )
D1 Dn−1

Fig. B.1. Finite partition of (−π, π].

The proof of this first result makes use of the continuity of the sampled-data
frequency response operator M(·) and Lemma 4.3. When combined, these two prop-
erties allow us to show that the domain of the frequency response operator, the interval
(−π, π], exhibits many properties shared by compact intervals on the real line, which
in turn enables the above construction.

The next step in our proof is to smoothly join our newly defined D-scales. We
begin by appealing to the function

λ(t) =

{
0, t ≤ 0,

e−
1
t , t > 0.

It is easy to verify that λ(t) is smooth on R. We now use this first definition in order
to introduce the “bump” function φ(a,b) via

φ(a,b)(t) :=
λ(t− a)

λ(t− a) + λ(b− t)
.

It is routine to verify that φ(a,b)(t) = 0 for t ≤ a, φ(a,b)(t) = 1 for t ≥ b, and that
φ(a,b)(t) is smooth for all t ∈ R.

We are now in a position to define our smooth D-scaling function. Let N(ejω) be
given by

N2(ejω) :=




D∗
0D0, ω ∈ (−π, a1],

D∗
lDl, ω ∈ [bl, al+1], l = 1, 2, . . . , n− 1,

D∗
nDn, ω ∈ [bn, π],

D∗
l−1Dl−1 + (D∗

lDl −D∗
l−1Dl−1)φ(al,bl)(ω),

ω ∈ (al, bl), l = 1, 2, . . . , n,

(B.1)

where Dl denotes the D-scaling operator defined in the previous lemma for each l =
0, . . . , n. In defining N , we have made use of the bump function in the intervals (al, bl),
where two constant D-scales overlap. The function allows us smoothly interpolate the
constant D-scales. The process (in the scalar case) is illustrated in Figure B.2.

It is easy to see that such an N is positive and is also a smooth function of ω.
Hence we need only demonstrate that our norm constraint still holds using this new
function in order to complete our construction. This is done in the following lemma
whose proof follows by the definition of N and repeated application of Proposition 4.1.

Lemma B.2. Given the function N : (−π, π]→ Du defined in (B.1), the following
inequality is satisfied:

sup
ω∈(−π,π]

‖N(ejω)M(ejω)N−1(ejω)‖ < α.
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ω

D21

D2o

N
2
(ejω)

Fig. B.2. Creating a smooth D-scale.

The goal now is to show that we can use the function N to help us define a
D-scaling operator Do ∈ Du

LTI which satisfies the inequality ‖DoMDo‖L2→L2
< α.

Begin by defining the scalar function n̂ : jR→ (0,∞) via

N(ejω) = diag(n̂(jω0)Im, n̂(jω1)Im, . . . ),(B.2)

where ωk = 2πνk−ω
h for ω ∈ (−π, π]. Using the properties of N , we can easily see

that n̂(jθ) is a positive and bounded function on jR and that for θ sufficiently large,
n̂(jθ) = 1. Moreover, it follows that ‖n̂‖∞ = supω∈(−π,π] ‖N(ejω)‖�2→�2 . Hence we
can conclude that n̂ ∈ L∞(jR), the set of complex-valued functions bounded on the
imaginary axis.

Let us now discuss the continuity of n̂. Since N(ejω) is smooth on (−π, π], we see
that n̂(jθ) is smooth on [ 2πνl−πh , 2πνl+π

h ) for every l ∈ No. Now, from the definition
of N and Proposition 4.3, we have that

lim
ω→−π+

N(ejω) = X∗N(−1)X = X∗



n̂(j 2πν0−π

h )Im 0
n̂(j 2πν1−π

h )Im

0
. . .


X,

from which it follows that n̂(jθ) (and hence N(ejω) also) is smooth on R.
Now, given any function D ∈Du

LTI , we similarly have [12] that

D(ejω) =



d̂(jω0)Im 0

d̂(jω1)Im

0
. . .


 ,

where D(ejω) is the frequency response of D and d̂(s)Im is its transfer function rep-

resentation in AC+ . The following lemma says that if d̂ closely approximates n̂, then
D is the D-scaling operator we require in order to complete the proof.

Lemma B.3. Suppose supω∈(−π,π] ‖N(ejω)M(ejω)N−1(ejω)‖ < α, where N is
the operator defined in (B.1). Then there exists an ε > 0 such that if D ∈Du

LTI and
satisfies

sup
θ∈R

|d̂(jθ)− n̂(jθ)| < ε,
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we have

sup
ω∈(−π,π]

‖D(ejω)M(ejω)D−1(ejω)‖ < α.

The proof, which is also omitted, relies on nothing more than the triangle and
submultiplicative inequalities along with the fact that N and n̂, and D and d̂, are
isomorphic pairs of operators.

The following lemma is the final result that we present and is easily proved using
two important properties of the function spaceRL∞(jR). This space, consisting of all
proper real rational functions with no poles on the imaginary axis, is dense in L∞(jR).

Moreover, for any function q̂ ∈ RL∞(jR), there exists a spectral factorization q̂ = d̂∗d̂,

where d̂ and d̂−1 lie in the space RH∞. Using these facts, we can interpolate our
function n̂ to any desired accuracy using a proper real rational function in the half-
plane algebra.

Lemma B.4. Given the smooth function n̂ defined through (B.2). For every ε > 0,

there exists a function d̂ ∈ RH∞ with d̂−1 ∈ RH∞ such that∥∥|d̂| − n̂
∥∥
∞ < ε.

Now, for every ε > 0, there exists an operator D ∈Du
LTI such that

∥∥|d̂o|− n̂
∥∥
∞ <

ε by Lemma B.4. Lemma B.3 then says that we can choose the above ε > 0 small
enough so that

sup
ω∈(−π,π]

‖D(ejω)M(ejω)D−1(ejω)‖ < α,

where the operator-valued function

D(ejω) :=



|d̂o(jω0)|Im 0

|d̂o(jω1)|Im
0

. . .


.

Let Do be the operator in the space Du
LTI whose transfer function representation

in the half-plane algebra AC+ is D̂o := d̂oIm. Its frequency response Do(ejω) then
satisfies

Do(ejω) =



d̂o(jω0)Im 0

d̂o(jω1)Im

0
. . .


 = D(ejω)Ξ(ejω),

where Ξ(ejωo) is a unitary operator on �2 at each frequency ωo ∈ (−π, π]. It then
follows that

‖Do(ejω)M(ejω)D−1
o (ejω)‖ = ‖D(ejω)M(ejω)D−1(ejω)‖

for each ω ∈ (−π, π]. Finally, using the above definitions, we can see that

inf
D∈Du

LTI

‖DMD−1‖L2→L2
≤ ‖DoMD−1

o ‖L2→L2

= sup
ω∈(−π,π]

‖Do(ejω)M(ejω)D−1
o (ejω)‖�2→�2

= sup
ω∈(−π,π]

‖D(ejω)M(ejω)D−1(ejω)‖�2→�2
< α.
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Hence our proof is now complete.
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Abstract. An essential improvement is given of a recent existence result of Crasta [G. Crasta,
SIAM J. Control Optim., 38 (1999), pp. 237–253] for a nonconvex, noncoercive variational problem
whose integrand does not depend on the state variable. This is shown to follow by the methods based
on Fatou’s lemma in several dimensions of [E. J. Balder, J. Math. Anal. Appl., 101 (1984), pp. 527–
539]. The associated Euler–Lagrange inclusions follow from well-known optimality conditions for
such problems [V. M. Alekseev, V. M. Tichimirov, and S. V. Fomin, Optimal Control, Consultants
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1. An existence result. In [15] Crasta considers the following variational prob-
lem:

(P) min
v∈AC([0,R])d)

{∫ R

0

g(t, v′(t))dt : v(R) = 0

}
.

In Theorem 3.2, the main result of [15], he proves the existence of an optimal solution
for problem (P) by means of a complicated proof with several intermediate steps, such
as an Euler–Lagrange inclusion for a convexified version of the above problem and an
L∞-truncation procedure (see [15, pp. 245–250]). In [15] this result is subsequently
applied to radially symmetric variational problems. To be precise, that main result is
as follows. Let [0, R] be equipped with the Lebesgue σ-algebra and Lebesgue measure,
and let R2 have the Borel σ-algebra. Let g : [0, R] ×Rd → (−∞,+∞] be given as
above. Let g∗∗(t, ·) [g∗(t, ·)] be the Fenchel-biconjugate (Fenchel-conjugate) of g(t, ·),
and let ∂g∗(t, p) be the subdifferential of g∗(t, ·) at the point p ∈ Rd. The following
conditions are needed in [15, Theorem 3.2].
(G1′) g is product-measurable and such that g(t, ·) is lower semicontinuous on Rd

for almost every (a.e.) t in [0, R].
(G1′′) g∗∗(t, x) < +∞ for a.e. t in [0, R] and for all x ∈ Rd.
(G2) g∗∗(·, 0) is integrable on [0, R].
(G3) There exist m > 0 and b ∈ L1([0, R]) such that g∗∗(t, x) ≥ m|x|− b(t) for a.e.

t in [0, R] and for all x ∈ Rd.
(G4) For every r1 > 0 there exists r2 > 0 such that for a.e. t in [0, R] and every

p ∈ Rd the following implication holds:

∂g∗(t, p) ∩ {x ∈ Rd : |x| ≤ r1} �= ∅ ⇒ ∂g∗(t, p) ⊂ {x ∈ Rd : |x| < r2}.
(G5) g(·, ξ) is integrable on [0, R] for every ξ ∈ Rd.
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The following theorem improves Theorem 3.2 of [15]. It shows that (G1′′) and the
technical polar condition (G4) are redundant and that much less is needed in (G5),
bringing it exactly in line with (G2). Furthermore, we work with a general dimension
d, whereas Crasta’s approach really uses d = 1. Our approach will also show that
problem (P) can be handled directly without the intervention of (P∗∗). The latter is
a relaxation of problem (P), obtained by replacing g with g∗∗.

Theorem 1.1. (i) Under (G1′), (G2), and (G3) the problem (P∗∗) has an optimal
solution v̄ ∈ AC([0, R])d, v̄(R) = 0, that satisfies the Euler–Lagrange inclusion

0 ∈ ∂g∗∗(t, v̄′(t)) for a.e. t in [0, R].

(ii) Moreover, already if (G5) just holds for ξ = 0, then v̄ satisfies g(t, v̄′(t)) =
g∗∗(t, v̄′(t)) a.e. and is also an optimal solution to (P).

By the substitution v(t) = − ∫ R
t

u(s)ds, problem (P) is evidently equivalent to
the following unconstrained optimal control problem:

(CP) min
u∈L1([0,R])d

∫ R

0

g(t, u(t))dt,

and a similar reformulation holds for (P∗∗); the latter optimal control problem is indi-
cated by (CP∗∗). Problems (CP) and (CP∗∗) are particular, unconstrained instances
of a Lyapunov-type optimization problem. Such problems have been studied exten-
sively [1, 3, 5, 6, 7, 9, 11], both for their existence aspects and optimality conditions.
Seen from that body of knowledge, Theorem 1.1 is entirely standard. For instance,
already by introducing the singular component ȳu(t) :=

∫ t
0

g(s, u(s))ds, the existence
part of Theorem 1.1 follows directly from Corollary 2.9 in [7]1 (see also [13] for re-
lated results). However, since we wish to stress the general background of problem
(P), we have chosen two quite general tools. The first of these is Fatou’s lemma in
several dimensions; see Theorem 2.1. The second general result is the reduction The-
orem 2.2, which is a well-known measurable selection result about “switching infima
and integral signs.”

2. Proof of Theorem 1. Let (T, T , µ) be a finite and complete measure space.
By L1(T )m we denote the set of all functions from T into Rm with µ-integrable
component functions. The unifying Fatou lemma in several dimensions of [6] is as
follows.

Theorem 2.1 (see [6]). Suppose (fk)k ⊂ L1(T )m is such that (max(0,−f ik))k
is uniformly µ-integrable, i =, . . . ,m, and such that a := limk

∫
fk dµ exists in Rm.

Then there exists f∗ ∈ L1(T )m such that
∫

f∗ dµ ≤ a (coordinatewise) and

f∗(t) is a limit point of (fk(t))k for µ-a.e. t in T .

This result extends similar results in [5, 11, 4, 22]. The following version of the
reduction theorem comes from [8, Appendix B], which essentially mimics [12, VII].
Similar results can also be found in [5, 19, 21].

Theorem 2.2 (see [8, Theorem B.1]). Let X be a Suslin space. For every
T × B(X)-measurable function f : T ×X → [−∞,+∞] and every decomposable2 set

1Namely, set a, ā ≡ 0, b ≡ 0, b̄ ≡ 1, c̄ := g, and J(u) := ȳu(R) in [7].
2That is, for every A ∈ T , u ∈ U and every (T ,B(X))-measurable b : T → X with b(T ) ⊂ X

relatively compact, the concatenation 1Ab+ 1T\Au belongs to U .
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U of (T ,B(X))-measurable functions

inf
u∈U

If (u) =

∫
T

(
inf
x∈X

f(t, x)

)
µ(dt),

provided that the left-hand side does not equal +∞.

Above the integrals If (u) :=
∫
T

f(t, u(t))µ(dt) must be interpreted with the fol-
lowing convention: If (u) :=

∫
T
max(f(t, u(t)), 0)µ(dt) − ∫

T
max(−f(t, u(t)), 0)µ(dt),

where the “tie” (+∞)− (+∞) has to be read as +∞. (This coincides precisely with
convention VII.7 in [12].) A similar convention also applies to the integral on the
right, whose integrand is already T -measurable by the measurable projection theo-
rem. (Apply [12, III.39].)

Proof of Theorem 1.1. Let T be the set [0, R]\N , where N is the union of the
exceptional null sets in (G1′) and (G3). We equip T with its Lebesgue σ-algebra T
and the Lebesgue measure µ.

(i) Define ι := inf (CP∗∗) ≥ − ∫
T

b. (Use (G3).) By (G2), (CP∗∗) is feasible,

so ι is a finite number. Let (uk)k ⊂ L1(T )d be a minimizing sequence for (CP∗∗).
Then by (G3) the sequence (

∫
T
|uk|dµ)k is bounded, so without loss of generality

we can suppose that ! := limk

∫
T
|uk| dµ exists in R. Form (fk)k ⊂ L1(T )2 by

setting fk(t) := (g∗∗(t, uk(t)), |uk(t)|). Then the above yields
∫
T

fk dµ→ (ι, !). Also,
observe that max(0,−f ik) is uniformly integrable for each i: for i = 1 this follows
by max(0,−f1

k (t)) ≤ max(0,−b(t)), because of (G3), and for i = 2 it is trivial. By
Theorem 2.1 there exists f∗ := (f1

∗ , f2
∗ ) ∈ L1(T )2 such that (a)

∫
T

f∗ dµ ≤ (ι, !)
and (b) f∗(t) is a limit point of (g∗∗(t, uk(t), uk(t)))k for µ-a.e. t in T . According to
(b), for a.e. t there is a subsequence (kt) of (k) such that (g∗∗(t, ukt(t))→ f1

∗ (t) and
|ukt(t)| → f2

∗ (t). The latter implies that a further subsequence of (ukt)kt converges in
Rd to some limit point u∗,t. By lower semicontinuity of g∗∗(t, ·), the preceding implies
f1
∗ (t) ≥ g∗∗(t, u∗,t) for a.e. t. By continuity of | · |, the same also implies f2

∗ (t) = |u∗,t|.
By the implicit measurable function result in [12, III.38]3 there exists a measurable
function ū : T → Rd such that f1

∗ (t) ≥ g∗∗(t, ū(t)) and f2
∗ (t) = |ū(t)| for a.e. t. By∫

T
f2
∗ dµ ≤ ! < +∞ (see (a)) we obtain ū ∈ L1(T )d, and by

∫
T

f1
∗ dµ ≤ ι the optimality

of ū for (CP∗∗) follows. Next, recall from [12] that L1([0, R])d is decomposable. Again
using (G2), Theorem 2.2 gives Ig∗∗(ū) = inf(CP ∗∗) =

∫
T
infx∈Rd g∗∗(t, x)dt, which is

clearly equivalent to g∗∗(t, ū(t)) = infx∈Rd g∗∗(t, x) a.e. This amounts to the stated

Euler–Lagrange equation, because v̄(t) := − ∫ R
t

ū defines an optimal solution of (P∗∗),
for which v̄′ = ū a.e.

(ii) The proof of existence of an optimal solution u∗ of (CP) by means of The-
orem 2.1 is precisely the same as the one given above. By Theorem 2.2 and (G5)
(for ξ = 0) we have +∞ > Ig(u

∗) = infu∈L1([0,R])d Ig(u) =
∫
T

φ(t)dt with φ(t) :=
infx∈R g(t, x)dt. Because of this and (G2), φ belongs to L1(T ). So the identity∫
T
[g(t, u∗(t))−φ(t)]dt = 0, where the integrand is clearly nonnegative, gives g(t, u∗(t)) =

φ(t) a.e. By elementary properties of Fenchel conjugation, (G3) implies that −∞ <
infx∈Rd g(t, x) = infx∈Rd g∗∗(t, x) for all (or a.e.) t. So u∗ satisfies g∗∗(t, u∗(t)) ≤
g(t, u∗(t)) = infx∈R g∗∗(t, x) a.e. Evidently, this implies that u∗ is also optimal
for (CP). The corresponding optimal solution of (P) and (P∗∗) is given jointly by

v∗(t) := − ∫ R
t

u∗.

3On p. 85 of [12] one should substitute Σ ≡ Rd and Θ(t) := {x ∈ Rd : g∗∗(t, x) ≤ f1∗ (t), |x| =
f2∗ (t)}.
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3. Epilogue. Let us present some observations and remarks about Theorem 1.1.
Observe that our proof does not use the convexity of g∗∗(t, ·), which is unlike [15]. This
also explains why we could prove part (ii) independently from part (i). Moreover, in
contrast to [15], Theorem 1.1 and its proof extend immediately to the situation where
the place of Rd is taken by a separable reflexive Banach space X. (Replace | · | by the
norm of X, but equip X with the weak topology.) Further, for the variational problem
(P) in its equivalent form (CP), we can work with a finite measure space instead of
[0, R]. Also, by using well-known Kuhn–Tucker-type optimality characterizations for
(Q), which involve Theorem 2.2 in connection with scalar multipliers, we could have
dealt with constrained versions of problem (P). This is because (P) is of so-called
Lyapunov-type, as studied in [2, 18] and in [1, 4.3.1]. See [10] for some additional
comments on how to handle the situation where the measure space may have atoms.

Finally, we wish to observe that the proof of Theorem 3.2 in [15] seems to have
been inspired by the approach in the earlier paper [14], which, in turn, has been
inspired by work by Olech [20]. However, [14, Theorem 3.1] deals with a more difficult
existence problem, which is for the following variant of (P):

(P′) min
v∈AC([0,R])d

{∫ R

0

g(t, v′(t))dt : v(0) = v0, v(R) = v1

}
.

The reformulation of this as an optimal control problem is

(CP′) min
u∈L1([0,R])d

{∫ R

0

g(t, u(t))dt :

∫ R

0

u(t)dt = v1 − v0

}
.

This problem cannot be treated by the general apparatus for Lyapunov-type opti-
mization problems, because the uniform integrability condition for negative parts in
Theorem 2.1 fails to hold under the conditions of [14]. In terms of the proof of
Theorem 1.1(i), this can be seen by observing that the adapted proof would have
to use fk(t) := (g∗∗(t, uk(t)), |uk(t)|, uk(t)) or something similar. This fails because
(max(0,−uik))k is not uniformly integrable, given Crasta’s slow growth conditions for
g∗∗. In other words, we conclude that the method of proof followed in [14] is quite ap-
propriate for the problem (P′) but that the related proof in [15] for the much simpler
problem (P) falls short.

After the submission of this note it was pointed out to the present author that in
[16, Theorem 3.10] Crasta has obtained an existence result for a more general Bolza
problem that, when specialized to the setting of the present note, gives precisely the
existence result of Theorem 1.1. Also, in [17] much more general results have been
given for the problem (P∗∗) by exploiting the associated Euler–Lagrange equations in
connection with fixed point results.

Acknowledgments. The author is indebted to two anonymous referees for help-
ful references and suggestions about the presentation of this note.
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Abstract. In this paper we prove some properties of attainable sets for time-varying infinite
dimensional linear control systems with time-varying constrained controls and target sets. We also
characterize the extremal controls and give necessary and sufficient conditions for the normality of
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1. Introduction. The time optimal control problem has been studied by many
authors; while Lee–Markus [24] and Hermes–Lassalle [16] conform a good reference
for the finite dimensional cases, for infinite dimensional linear systems it is worth
mentioning the contributions of authors such as Ahmed [1], Ahmed–Teo [2], Curtain–
Pritchard [8], Fattorini [12], [13], [14], Friedman [15], Hoppe [19], Raymond–Zidani
[32], Li–Yong [25], and Papageorgiou [29] among others. All of these references, except
[29], have the particularity of working with a constant target and hypotheses like
reflexivity to obtain the corresponding time optimal control and maximum principle.

One of the purposes of this paper is to remove these hypotheses and the continuity
of the adjoint evolution operator generated by the system as we indicate below.

Here we consider the general system

ẋ(t) = A(t)x(t) + B(t)u(t), t > 0,(1.1)

x(0) = x0 ∈ X, u(t) ∈ U(t) ⊂ U, x(t∗) ∈ G(t∗),

for some t∗ > 0 minimum, where the state x(t) ∈ X and X and U are nonnec-
essarily separable Banach spaces. The family of unbounded operators A(t) gener-
ates a strongly continuous evolution operator S(t, s) according to [30] and [8], such
that for each t > 0 the mapping s → S∗(t, s) is strongly continuous on [0, t) and
B ∈ L∞

loc(0,+∞;L(U,X)), where L(U,X) is the space of linear and bounded oper-
ators T : U → X, and the controls values U(t) and the target set G(t) ⊂ X are
time-varying. For this class of systems, we get the results announced in the abstract.

As we have pointed out at the beginning of this introduction, the problem for
infinite dimensional linear systems has been studied by several authors. For example,
Friedman [15] established the existence of time optimal control for a class of time-
invariant linear systems for which the target set is a singleton; and Ahmed–Teo [1]
established the same where the target set is just {0} and the system is time-varying.
A generalization of Friedman’s work can be found in Fattorini [13], where some hy-
potheses are relaxed.
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More recently, Papageorgiou [29] extends part of these mentioned works for in-
finite dimensional time-varying systems, removing some restrictive hypotheses like
invertibility of the evolution operator in [1], [12], [15], and target sets time-varying
with a nonempty interior, which makes a different treatment to the problem since it
does not include the case when the target set is a singleton.

The key hypothesis in Papageorgiou’s work is the strong continuity of the ad-
joint evolution operator, which, incidentally, also generalizes some works of Peichl–
Schappacher [31] and Barcenas–Leiva [5], in the sense that the space X does not need
to be reflexive as in [5] and [31].

In this paper, inspired by Papageorgiou [29] and Barcenas–Diestel [3], using only
the uniform integrability of the Bochner integral, we remove the continuity of the
adjoint evolution operator at s = t, incorporating into the subject an important class
of partial differential equations such as diffusion processes in nonreflexive Banach
spaces; our target sets are time-varying and upper semicontinuous (USC) instead of
continuous in the Hausdorff metric as in [29].

The paper is organized as follows. In section 3, a time optimal control theorem is
obtained, where, as indicated, our target set is not continuous as in [29], and neither
is the state space X reflexive as in [25] and [32]; this last reference deals with second
order elliptic operators in the reflexive Banach space Ls (s > 2), and, consequently,
the adjoint of the associated strongly continuous semigroup is strongly continuous.
As we can see in Example 6.1, our existence theorem (Theorem 3.1) applies to a one
dimensional heat equation in nonreflexive Banach spaces, which is a case out of range
of previous works since, as it is shown in this example, the adjoint evolution operator
S∗(t, s) = T ∗

t−s is not strongly continuous at t = s; while this important example
illustrates a time-invariant system, Example 6.2 exhibits a case of a time-varying
system where Theorem 3.1 can be applied.

In section 4, we obtain a maximum principle (Theorem 4.1) which is different from
that in Papageorgiou’s paper; in fact, since the hypothesis in [29] requires intG(t) �= ∅,
we observe that its maximum principle does not include the important case of a
singleton G(t) = {x0}. We also have that Theorem 4.1 applies only in the special
case in which X is a reflexive Banach space and Theorem 4.2 is a generalization of
Papageorgiou’s maximum principle (Theorem 4.1 of [29]); to this end, we would like
to remark that Theorem 4.1 is different from Theorem 4.2 since the latter requires the
sets of attainable points to have nonempty interior. For this reason we prove Theorem
4.1 rather than Theorem 4.2.

We also would like to remark on the difference of our two maximum principles
from those found in Li–Yong [25]. Several maximum principles are found in [25,
Chapters V and VII] without any allusion to reflexivity in the respective hypotheses;
however, we can see that the corresponding maximum principles stated on pages 170,
188, 203, and 212 of [25] ensure the associated solution in a suitable reflexive space
(actually a Sobolev space), while the maximum principle given on page 292 (Chapter
VII) of the same reference requires the existence of the optimal time t∗ as a hypothesis,
and such an existence is proved under the reflexivity assumption (see Theorem 5.9 of
[25]). So the presence of reflexivity means that these results are comparable only with
Theorem 4.1 of this paper; here we notice that in the case of time invariant systems
the Li–Yong treatment is more general than this one since the only requirement is
Codim (K(t)−G(t)) < ∞. However, our conclusion allows us to characterize the
extremal controls.

We also notice that the Raymond–Zidani maximum principle is stated in reflexive
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Banach spaces.
In section 5 we extend the notion of normality from finite dimensional systems

[24] to infinite dimensional systems, and we get the strict convexity of the attainable
sets, a characterization of normality, and a bang-bang principle.

In the last section of this work we provide some examples where our results can
be applied in several familiar situations.

Finally, we want to make the following remark. When we study a time-varying
system

ẋ(t) = A(t)x(t), x ∈ X, t ≥ 0,(1.2)

we can try to transform the system (1.2) into a time-independent system by increasing
the dimension of the phase space in the following way:{

ẋ(t) = A(t)x, t ∈ R+,
ṫ = 1.

(1.3)

The system (1.3) generates a semigroup (semiflow) {πt}t≥0 on the space X ×R given
by πt(x, s) = (T (t + s, s, )x, s + t), t ≥ 0, where T (t, s) is the evolution operator
associated with (1.2). Although this approach is good for some time dependent dy-
namical systems, we do not know anything about the adjoint evolution operator. So
the techniques illustrated here may not be applied.

2. Preliminaries. Even though in this paper we will work with the Lebesgue
measure on the real line, we start our preliminaries in a general form. Let X and U be
arbitrary Banach spaces, and let (Ω,Σ, µ) be a nonnegative, complete, finite measure
space. We will use the following notations.

Pf(c)(U) =: {A ⊂ U : A closed (convex), A �= ∅},

Pwkc(X) =: {A ⊂ X : A �= ∅; weakly compact convex}.
The following definition comes from [4].

Definition 2.1. A multifunction F : Ω→ Pf (U) is called µ-measurable if there
is a sequence fn : Ω→ U of measurable functions and N ∈ Σ with µ(N) = 0 so that

F (ω) = {fn(ω) : n ≥ 1} ∀ω ∈ Ω \N.

As it is shown in [4], this definition coincides with the classical one when U is a
separable Banach space.

Definition 2.2. A measurable selector of F is a µ-measurable function f : Ω→
U such that

f(ω) ∈ F (ω) µ almost everywhere (a.e.).

We denote

S1
F = {f : f ∈ L1

U (µ); f is a measurable selector of F}.
Definition 2.3. A µ-measurable multifunction F : Ω → U is called integrably

bounded if there is g ∈ L1(µ) such that∫
Ω

‖f(ω)‖dω ≤
∫

Ω

gdµ
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for every µ-measurable selector f of F .
Definition 2.4. On Pf (U) the Hausdorff metric is defined by setting

h(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
.

The metric space (Pf (U), h) is complete, and Pf(c)(U) is a closed subspace of it.
Definition 2.5. If V is a Hausdorff topological space, the multifunction F :

V → Pf (U) is continuous if it is a continuous function with the Hausdorff metric.
F is called USC if for each nonempty open subset A of U , the set

F−1(A) = {v ∈ V : F (v) ⊂ A}
is open in V .

3. Time optimal control problem. In this section we shall study the time
optimal control problem associated with the linear system (1.1) which can be written
in the following way using the foregoing notation:

ẋ(t) = A(t)x(t) + B(t)u(t), t > 0,(3.1)

x(0) = x0, u ∈ S1
U , x(t∗) ∈ G(t∗),

where U : [0,∞)→ Pwkc(U) is an integrably bounded multifunction.
A mild solution of (3.1) is a function xu(·) : [0,∞)→ X defined by

xu(t) = S(t, 0)x0 +

∫ t
0

S(t, α)B(α)u(α)dα, t ≥ 0,(3.2)

where u ∈ S1
U .

Definition 3.1. For t1 > 0 the set of admissible controls on [0, t1] is defined by

C(t1) = {u ∈ L1(0, t1;U) : u(t) ∈ U(t) a.e. in [0, t1]} = S1
Ut1 ,

and the corresponding set of attainable points is defined by

K(t1) = {xu(t1) : xu(·) is a mild solution of (3.1), u ∈ C(t1)},
where Ut1 is the restriction of U over [0, t1].

The following definition is a generalization of the similar one given in [24, p. 73].
Definition 3.2. A control u ∈ C(t1) is called an extremal control if the corre-

sponding solution xu of (3.1) satisfies xu(t1) ∈ ∂K(t1).
Definition 3.3. For each t ≥ 0, consider a target set G(t) ⊂ X. Suppose t∗ > 0

and u∗ ∈ C(t∗) such that x∗(t∗) ∈ G(t∗). Then u∗ is called an optimal control if

t∗ = inf{t ∈ [0,∞) : K(t) ∩G(t) �= ∅}.

The goal of this section is to provide the existence of optimal control for (3.1)
under the hypothesis of upper semicontinuity on the target set. The importance of
this result (Theorem 3.1) is that, even with constant target, it applies to linear partial
differential equations in nonreflexive Banach spaces. In order to do that, we need to
prove some propositions.

Proposition 3.1. K(t1) is convex and weakly compact in X.
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Proof. Define the multifunction

Γ : [0, t1]→ P (X) by Γ(s) = S(t1, s)B(s)U(s).

The multifunction Γ is measurable, convex, a.e. weakly compact valued, and inte-
grably bounded. By Theorem 3.2 of [4], S1

Γ is weakly compact in L1(0, t1;X).

Since K(t1) is merely a translation of
∫ t1
0

S1
Γ and the integration is a bounded

linear operator, the conclusion follows.
Proposition 3.2. K(t) is continuous in t ∈ [0, T ] with respect to the Hausdorff

metric if
⋂
t∈(0,T ] U(t) �= ∅.

Proof. Let t1 > 0 be fixed and ε > 0. We must find δ > 0 such that

if |t1 − t2| < δ, then h(K(t1), K(t2)) < ε.

Let t2 ∈ (0, T ) be with 0 < t2− t1 < t1. If x ∈ K(t1), there exists u ∈ C(t1) such that

x = S(t1, 0)x0 +

∫ t1
0

S(t1, α)B(α)u(α)dα.

Define

ū(t) =

{
u(t) if 0 ≤ t ≤ t1,
v if t > t1,

where v ∈ ⋂t∈(0,T ] U(t). Then

y = S(t2, 0)x0 +

∫ t2
0

S(t2, α)B(α)ū(α)dα ∈ K(t2)

by the strong continuity of the evolution operator S(t, s), the absolute continuity of
the Bochner integral, and the Lebesgue dominated convergence theorem; given ε > 0,
there exists δ > 0 such that, if t2 − t1 < δ, then

‖x− y‖ ≤ ‖S(t2, 0)x0 − S(t1, 0)x0‖+

∥∥∥∥
∫ t2
t1

S(t2, α)B(α)ū(α)dα

∥∥∥∥
+

∫ t1
0

‖S(t2, α)B(α)u(α)− S(t1, α)B(α)u(α)‖dα

<
ε

3
+

ε

3
+

ε

3
= ε.

If t2 < t1, the conclusion is immediate.
Even though the following corollary is an infinite dimensional version of the one

found in Lee–Markus [24], our proof is very simple.
Corollary 3.1. If p ∈ intK(t1) and

⋂
t>0 U(t) �= ∅, then there is a neighborhood

N of p and δ > 0 such that N ⊂ K(t2) for |t2 − t1| < δ.
Proof. Since p ∈ intK(t1), there is r > 0 such that B(p, r) ⊂ K(t1) and

α = inf{‖x− y‖ : x ∈ ∂B(p, r), y ∈ ∂K(t1)} > 0.

On the other hand, from Proposition 3.2, there exists δ > 0 such that

|t− t1| < δ =⇒ h(K(t1),K(t)) <
α

2
.(3.3)
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Now suppose that there exists x0 ∈ B(p, r) \K(t) for some t ∈ (t1 − δ, t1 + δ). Then
for y ∈ ∂K(t1) and x ∈ K(t) we have

α < d(x0, y) ≤ d(x, y) + d(x, x0).

Hence

α < inf
x∈K(t)

d(x, y) + inf
x∈K(t)

d(x0, x)

= d(K(t), y) + d(K(t), x0)

≤ sup
y∈K(t1)

d(K(t), y) +
α

2

<
α

2
+

α

2
= α,

which is in contradiction to (3.3). Therefore, B(p, r) ⊂ K(t) for |t− t1| < δ.
Theorem 3.1 (existence of the time optimal control). Suppose the target G(t)

is convex, closed, and USC with respect to the Hausdorff metric. If there is a control
u ∈ C(t1) such that xu(t1) ∈ G(t1), then there exists a time optimal control u∗ ∈
C(t∗).

Proof. Put

H = {t ∈ [0, t1] : K(t) ∩G(t) �= ∅}
and t∗ = inf H. Then there is a decreasing sequence {tn} ⊆ H such that limn→∞ tn =
t∗, which implies the existence of a sequence {un} ⊂ S1

Ut1 such that

S(tn, 0)x0 +

∫ tn
0

S(tn, s)B(s)un(s)ds ∈ G(tn).

Since for each n ∈ N∫ tn
0

S(tn, s)B(s)un(s)ds =

∫ t∗
0

S(tn, s)B(s)un(s)ds +

∫ tn
t∗

S(tn, s)B(s)un(s)ds,

U is integrably bounded, and tn → t∗, then by the absolute continuity of the Bochner
integral, given ε > 0, there is n0 ∈ N such that, if n ≥ n0, we have∥∥∥∥∥

∫ tn
0

S(tn, s)B(s)un(s)ds−
∫ t∗

0

S(tn, s)B(s)un(s)ds

∥∥∥∥∥ < ε.

Since S1
Ut∗ is weakly compact in L1(0, t∗;U), then we can choose {un}n≥1 converging

weakly in L1(0, t∗;U) to some u ∈ S1
Ut∗ .

On the other hand, if we define the multifunction

F : [0, t∗]→ Pwkc(X)

by the formula

F (s) = S(t∗, s)B(s)U(s),

then S1
F is weakly compact in L1(0, t∗;X). Hence there is f ∈ S1

F such that S(t∗, ·)B(·)un(·)
converges in the weak topology of L1(0, t∗;X) to f .
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Suppose f �= S(t∗, ·)B(·)u(·) a.e.. Then by Diestel–Uhl [10, Corollary II.2.5],
there is E ∈ Σ such that ∫

E

fdµ �=
∫
E

S(t∗, ·)B(·)u(·)ds.

Now, given η =
∫
E
‖f − S(t∗, ·)B(·)u(·)‖ds, there is δ > 0 such that

t∗ − t∗∗ < δ ⇒
∫ t∗
t∗∗
‖S(t∗, s)B(s)u(s)‖ds <

η

4
uniformly in u ∈ S1

U

and
∫ t∗
t∗∗ ‖f(s)‖ds < η

4 . So, if x∗ ∈ X∗ and ‖x∗‖ = 1, then∣∣∣∣∣
〈
x∗,
∫ t∗

0

(S(t∗, s)B(s)u(s)− f(s))ds

〉∣∣∣∣∣
≤
∣∣∣∣∣
〈
x∗,
∫ t∗∗

0

(S(t∗, s)B(s)u(s)− f(s))ds

〉∣∣∣∣∣+ η

2

= lim
n→∞

∣∣∣∣∣
∫ t∗∗

0

〈x∗, S(t∗, s)B(s)u(s)− S(t∗, s)B(s)un(s)〉 ds
∣∣∣∣∣+ η

2

= lim
n→∞

∣∣∣∣∣
∫ t∗∗

0

〈B∗(s)S∗(t∗, s)x∗, u(s)− un(s)〉 ds
∣∣∣∣∣+ η

2
.

Since S∗(t∗, ·)x∗ is continuous in [0, t∗∗], we conclude that

B∗(·)S∗(t∗, ·)x∗ ∈ L∞(0, t∗∗;U∗) ⊂ (L1(0, t∗∗;U)
)∗

,

and since un weakly converges to u in L1(0, t∗∗;U), the above limit is equal to zero.
So, we get that S(t∗, ·)B(·)un(·) weakly converges to S(t∗, ·)B(·)u(·) in L1(0, t∗;X).

Since ∫ tn
0

S(tn, s)B(s)un(s)ds =

∫ t∗
0

S(tn, s)B(s)un(s)ds

+

∫ tn
t∗

S(tn, s)B(s)un(s)ds

and ∫ tn
t∗

S(tn, s)B(s)un(s)ds→ 0, as n→∞,

we shall concentrate our attention on the first right-hand side of the foregoing equality.
Since 0 ≤ s ≤ t∗ ≤ tn, we get∫ t∗

0

S(tn, s)B(s)un(s)ds = S(tn, t
∗)
∫ t∗

0

S(t∗, s)B(s)un(s)ds.

Therefore,

lim
n→∞

〈
x∗,
∫ t∗

0

S(tn, s)B(s)un(s)ds

〉
=

〈
x∗,
∫ t∗

0

S(t∗, s)B(s)u(s)ds

〉
.
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Hence

w- lim
n→∞x(tn) = w- lim

n→∞

[
S(tn, 0)x0 +

∫ tn
0

S(tn, s)B(s)un(s)ds

]

= S(t∗, 0)x0 +

∫ t∗
0

S(t∗, s)B(s)u(s)ds

= x(t∗).

Since x(tn) ∈ G(tn) and G is USC, then Theorem 2.4 of [21] implies that x(t∗) ∈ G(t∗)
and the control u ∈ S1

Ut1 is a required optimal control.

The following corollary contains Lemma 2.1 of Fattorini [13] since this reference
uses the hypothesis L∞(X) = L1(X∗)∗, which implies reflexivity.

Corollary 3.2. If A = A(t) is the infinitesimal generator of a strongly con-
tinuous semigroup, if L∞(0, T ;X∗) = L1(0, T ;X)∗ for T > 0, if the target G(t) is
USC, and if K(t)∩G(t) �= ∅ for some t ∈ (0, T ], then the system (3.1) has an optimal
solution.

Proof. L∞(0, T ;X∗) = L1(0, T ;X)∗ if and only if X∗ has the Radon–Nikodym
property [10]. In this case A generates a strongly continuous semigroup {Tt}t≥0 whose
adjoint semigroup is strongly continuous on (0,+∞) [3], [27]. If we put S(t, s) = Tt−s,
then the conclusion follows by applying the foregoing theorem.

4. The maximum principle. Two maximum principles are given in this sec-
tion; the first one holds in reflexive Banach spaces since intK(t) �= ∅. It is so because
in this case, 0 has a relative weakly compact neighborhood, which implies that X is
reflexive (see [11, p. 425]).

Theorem 4.1. Suppose intK(t) �= ∅ for t > 0. If u∗ ∈ C(t∗) is an optimal
control and the target G(t) is convex and continuous in the Hausdorff metric, then
there is x∗ �= 0 such that

m(s) = max
u(s)∈U(s)

〈x∗, S(t∗, s)Bu(s)〉 = 〈x∗, S(t∗, s)Bu∗(t)〉

a.e. on [0, t∗] whenever
⋂
t∈(0,t∗+ε] U(t) �= ∅.

Proof. G(t∗) ∩ intK(t∗) = ∅. In fact, for the purpose of contradiction, let us
suppose that there exists p ∈ G(t∗) ∩ intK(t∗). Then by Corollary 3.1 there is an
open subset N containing p and δ > 0 such that

t∗ − δ < t < t∗ ⇒ N ⊂ K(t)⇒ G(t) ⊂ N c.

On the other hand,

0 < d = dist(p,N c) ≤ inf
x∈G(t)

‖p− x‖, t ∈ (t∗ − δ, t).

Hence h(G(t∗), G(t)) ≥ d, which contradicts the continuity of G(t) with respect to
the Hausdorff metric. So the statement is proved.

Applying the Hahn Banach theorem, we find x∗ ∈ X∗, x∗ �= 0, such that

supx∗(K(t∗)) ≤ inf x∗(G(t∗)).

Then

sup
u∈S1

Ut∗

〈
x∗, S(t∗, 0)x0 +

∫ t∗
0

S(t∗, s)B(s)u(s)ds

〉
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≤
〈
x∗, S(t∗, 0)x0 +

∫ t∗
0

S(t∗, s)B(s)u∗(s)ds

〉
,

where u∗ is an optimal control as in Theorem 3.1.
Therefore,

sup
u∈S1

Ut∗

∫ t∗
0

x∗S(t∗, s)B(s)u(s)ds =

∫ t∗
0

x∗S(t∗, s)B(s)u∗(s)ds.

From Theorem 2.2 of Hiai–Umegaki [17] we get

sup
u∈S1

Ut∗

∫ t∗
0

x∗S(t∗, s)B(s)u(s)ds =

∫ t∗
0

sup
u(s)∈U(s)

〈x∗, S(t∗, s)B(s)u(s)〉 ds

=

∫ t∗
0

x∗S(t∗, s)B(s)u∗(s)ds.

Hence

sup
u(s)∈U(s)

〈x∗, S(t∗, s)B(s)u(s)〉 = 〈x∗, S(t∗, s)B(s)u∗(s)〉 .

Since S(t∗, s)B(s)U(s) is weakly compact for each s ∈ [0, t∗], then James’s weak
compactness theorem [20] implies that

maxu(s)∈U(s) 〈x∗, S(t∗, s)B(s)u(s)〉 = 〈x∗, S(t∗, s)B(s)u∗(s)〉 a.e.

This completes the proof.
In the proof of Theorem 4.1 we used some ideas from Theorem 4.1 of [29]. Here

we shall state a similar result to that one without assuming the strong continuity at
s = t∗ of the adjoint evolution operator S∗(t∗, s). Since the proof of it is essentially
the same, we will omit it.

Theorem 4.2. If G(t) is convex and continuous with respect to the Hausdorff
metric and intG(t) �= ∅ ∀t ∈ [0, t∗], and if u∗ is an optimal control and X is separable,
then there is x∗ ∈ X∗ \ {0} so that

m(s) = maxu(s)∈U(s) 〈x∗, S(t∗, s)B(s)u(s)〉 = 〈x∗, S(t∗, s)B(s)u∗(s)〉 a.e.

Remark 4.1. Theorems 4.1 and 4.2 admit comparison only when X is reflexive
and separable. In fact, suppose the hypotheses of Theorem 4.1 hold. Since K(t) is
weakly compact and intK(t) �= ∅, then the Banach space X must be reflexive. So
apparently, Theorem 4.2 is more general than Theorem 4.1. However, the hypothesis
intG(t) �= ∅ is too restrictive and does not include the simple case G(t) = {x1}, even
in finite dimensional systems. We recall that the hypothesis of “S∗(t∗, s)” having been
strongly continuous on 0 ≤ s < t∗ allows us to incorporate into the subject the study
of the heat equation in nonreflexive Banach spaces, a case which is not considered in
[29].

Theorem 4.3. Suppose that the hypothesis of Theorem 4.1 holds. Then a control
u∗ ∈ C(t∗) is extremal if and only if there is x∗ ∈ X∗ \ {0} so that

maxu(s)∈U(s) 〈x∗, S(t∗, s)B(s)u(s)〉 = 〈x∗, S(t∗, s)B(s)u∗(s)〉 a.e.
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Proof. If u∗ is an extremal control, then the corresponding solution x(·) of (3.1)
satisfies x(t∗) ∈ ∂K(t∗). Since K(t∗) is convex and weakly compact, and since
intK(t∗) �= ∅, there exists x∗ ∈ X∗ \ {0} such that

sup
x∈K(t∗)

〈x∗, x〉 = 〈x∗, x(t∗)〉 .

So,

sup
u∈S1

Ut∗

〈
x∗,
∫ t∗

0

S(t∗, s)B(s)u(s)ds

〉
=

〈
x∗,
∫ t∗

0

S(t∗, s)B(s)u∗(s)ds

〉
,

and the proof follows as in Theorem 4.1.
For the converse, if u∗ ∈ C(t∗), x∗ ∈ X∗ \ {0},

〈x∗, S(t∗, s)B(s)u∗(s)〉 = maxu(s)∈U(s) 〈x∗, S(t∗, s)B(s)u(s)〉

a.e. on [0, t∗] and x(·) is the solution of (1.1) corresponding to u∗, then for each
x̂(t∗) ∈ K(t∗) there exists û ∈ C(t∗) such that

x̂(t∗) = S(t∗, 0)x0 +

∫ t∗
0

S(t∗, s)B(s)û(s)ds.

Hence

〈x∗, x̂(t∗)− x(t∗)〉 =

∫ t∗
0

〈x∗, S(t∗, s)B(s)(û(s)− u∗(s))〉ds ≤ 0,

which implies that x(t∗) ∈ ∂K(t∗).
Remark 4.2. The hypothesis intK(t) �= 0 in the converse portion of the Theorem

4.3 is not necessary.

5. Normal systems. The following definition is a generalization of Lee–Markus
[24, p. 79].

Definition 5.1. The control system (1.1) is called normal if the following impli-
cation holds. If u1, u2 ∈ C(t1) transfer x0 to the same p ∈ ∂K(t1), then u1 = u2 a.e.
on [0, t1].

We recall that a convex set K in a Banach space X is strictly convex if each
support hyperplane meets K in at most one point. This notion was introduced by
Clarkson [7], and a nice study of it can be found in Diestel [9].

Theorem 5.1. Under the hypotheses of Theorems 4.1 and 4.2, if the control
system (1.1) is normal, then K(t1) is strictly convex.

Proof. Suppose that Πt1 is a support hyperplane for K(t1) such that pa, pb ∈
Πt1 ∩K(t1) with pa �= pb and ua, ub ∈ C(t1) as their corresponding controls.

We now consider the Banach space Y = X ×X with the norm

‖y‖Y = ‖
x1

x2

 ‖ = ‖x1‖X + ‖x2‖X

and the function

f(t) =

S(t1, s)B(s)ua(s)

S(t1, s)B(s)ub(s)

 , s ∈ [0, t1],
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with values in Y . Clearly f ∈ L1(0, t1, Y ). By Lyapunov’s convexity theorem [33] the
set

F =

{
w(D) =

∫
D

f(t)dt : D ⊂ [0, t1] is measurable

}

has convex closure. Thus

1

2
w([0, t1]) =

1

2
w([0, t1]) +

1

2
w(∅) ∈ F̄ .

Therefore, there exists a sequence {w(Dn)} contained in F such that

lim
n→∞w(Dn) =

1

2
w([0, t1]), lim

n→∞w([0, t1] \Dn) =
1

2
w([0, t1]).

Consider the controls

u(1)
n (s) =

{
ua(s), s ∈ Dn,
ub(t), s ∈ [0, t1] \Dn,

u(2)
n (s) =

{
ua(s), s ∈ [0, t1] \Dn,
ub(t), s ∈ Dn,

with corresponding solutions x
(1)
n (·) and x

(2)
n (·). It is easy to see that

lim
n→∞x(1)

n (t1) = lim
n→∞x(2)

n (t1) =
1

2
pa +

1

2
pb.

Since C(t1) is weakly compact in L1(0, t1;U), we can suppose that the sequences

{u(1)
n } and {u(2)

n } weakly converge to the controls u1, u2 ∈ C(t1), respectively.
Since S∗(t1, s) is strongly continuous in s ∈ [0, t1), then for each x∗ ∈ X∗ and

α ∈ (0, t1) we have that

B∗(·)S∗(t1, ·)x∗u(i)
n (·) weakly converges to B∗(·)S∗(t1, ·)x∗ui(·), i = 1, 2,

in L1(0, α; R). If we take αm → t1, we see that

B∗(·)S∗(t1, ·)x∗u(i)
n (·)X[0,αm] converges to B∗(·)S∗(t1, ·)x∗ui(·)X[0,t1], i = 1, 2,

on [0, t1]. Since U is integrably bounded we get

‖B∗(·)S∗(t1, ·)x∗ui‖L1 ≤ sup
s∈[0,t1)

‖S(t1, s)‖‖x∗‖‖B‖∞‖g‖L1 ,

where g ∈ L1[0, t1] and ‖u(s)‖ ≤ g(s), a.e. ∀u ∈ S1
Ut1 .

Thus, by applying the Lebesgue dominated convergence theorem, we get that

B∗(·)S∗(t1, ·)x∗u(i)
n (·) converges to B∗(·)S∗(t1, ·)x∗u(i)(·), i = 1, 2,

in the weak topology of L1(0, t1;U). Hence

lim
n→∞

〈
x∗, x1

n(t1)
〉

= 〈x∗, S(t1, 0)x0〉+
〈
x∗,
∫ t1

0

S(t1, s)B(s)u1(s)ds

〉

=

〈
x∗,

1

2
(pa + pb)

〉
=

〈
x∗, S(t1, 0)x0 +

∫ t1
0

S(t1, s)B(s)u2(s)ds

〉
= lim
n→∞

〈
x∗, x2

n(t1)
〉
.



344 DIOMEDES BARCENAS AND HUGO LEIVA

Since this happens for each x∗ ∈ X∗, we conclude that

S(t1, 0)x0 +

∫ t1
0

S(t1, s)B(s)u1(s)ds = S(t1, 0)x0 +

∫ t1
0

S(t1, s)B(s)u2(s)ds,

and by the normality of the system (3.1), we obtain

u1(t) = u2(t) a.e on [0, t1].(5.1)

Since C(t1) ⊂ L1(0, t1;U) is weakly compact, from the equality (5.1) we get

lim
n→∞

〈
u∗, u(1)

n − u(2)
n

〉
= 0 for each u∗ ∈ (L1(0, t1;U)

)∗
.

Therefore, by the definition of u1
n and u2

n we get 〈u∗, ua−ub〉 = 0. Thus ua(t) = ub(t)
a.e. on J = [0, t1], and, consequently, pa = pb, which is a contradiction. This concludes
the proof.

Theorem 5.2. Suppose the hypothesis in Theorem 4.1 holds. Then the control
system (3.1) is normal if and only if for each x∗ ∈ X∗ \ {0} and a pair of controls
u1, u2 ∈ C(t1), such that

〈 x∗, S(t1, s)B(s)u1(s)〉 = 〈x∗, S(t1, s)B(s)u2(s)〉(5.2)

= max
u(s)∈U(s)

〈x∗, S(t1, s)B(s)u(s)〉 a.e on [0, t1]

implies u1 = u2 a.e. on [0, t1].
Proof. Suppose the system (4.1) is normal; consider x∗ ∈ X∗ \ {0}, and let

u1(·), u2(·) be controls in C(t1) with the corresponding solutions x1(·), x2(·), such
that

〈 x∗, S(t1, s)B(s)u1(s)〉 = 〈x∗, S(t1, s)B(s)u2(s)〉
= max
u(s)∈U(s)

〈x∗, S(t1, s)B(s)u(s)〉 a.e. on [0, t1].

Let Π be the hyperplane defined by

Π = {x ∈ X : 〈x∗, x− x1(t1)〉 = 0}.
Π supports K(t1) at x1(t1) and x2(t1), and by the foregoing theorem x1(t1) = x2(t1).
Since (4.1) is normal, u1(t) = u2(t) a.e. on [0, t1].

Conversely, let u1, u2 be controls belonging C(t1) which transfer x0 to p. Then,
by Theorem 4.3,

〈x∗, S(t1, s)B(s)u1(s)〉 = 〈x∗, S(t1, s)B(s)u2(s)〉
= max
u(s)∈U(s)

〈x∗, S(t1, s)B(s)u(s)〉 a.e. on [0, t1].

Therefore, by (5.2) we obtain u1(t) = u2(t) a.e. on [0, t1]. Hence the system (1.1) is
normal.

Theorem 5.3. If for almost all s, U(s) is strictly convex and KerB∗(s)S∗(t∗, s) =
{0}, then the system (1.1) is normal.

Proof. Suppose x∗ ∈ X∗ \ {0}. Then x∗
s = B∗(s)S∗(t∗, s)x∗ �= 0. Since U(s)

is weakly compact and strictly convex, x∗
s attains its maximum at a unique point in

U(s).
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So, if u1, u2 ∈ C(t∗) with

〈x∗, S(t∗, s)B(s)u1(s)〉 = 〈x∗, S(t∗, s)B(s)u2(s)〉
= max
u(s)∈U(s)

〈x∗, S(t∗, s)B(s)u(s)〉 a.e. on [0, t1],

then u1 = u2 a.e. and the system (1.1) is normal by Theorem 5.2.
As a consequence we get the following corollary.
Corollary 5.1 (bang-bang principle). Under the hypothesis of the former the-

orem, the optimal control u∗ is unique and u∗(t) ∈ ∂U(t) a.e.

6. Examples. In this section we shall show how some of our results can be
applied in many evolution processes.

Example 6.1. Consider the one dimensional heat equation


xt(t, ξ) = xξξ(t, ξ) + bu(t, ξ), 0 < ξ < 1, t > 0,
x(t, 0) = x(t, 1), xξ(t, 0) = xξ(t, 1), t ≥ 0,
x(0, ξ) = x0(x),

(6.1)

as shown in Pazy [30, section 8.2]; if we associate with (6.1) the operator Aφ = φξξ,
then A generates a strongly continuous semigroup {Tt}t≥0 of compact operators on
the nonreflexive Banach spaces X = U = Cp[0, 1] of all continuous and periodic
functions with period 1 and the supremum norm.

Since Tt is compact, it is continuous in the uniform topology of L(X) for t > 0, and
therefore the adjoint semigroup T ∗

t is strongly continuous away from 0, and Theorem
3.1 can be applied with any target satisfying the hypothesis of that theorem.

We will show that T ∗
t fails to be strongly continuous at t = 0, and, consequently,

this example does not fit in the theory developed in the cited references by simply
putting S(t, s) = Tt−s.

In fact, since Tt is compact for t > 0, then X is a sun-reflexive Banach space under
the action of Tt (see [27], [28]). Therefore, X∗ is a weakly compact generated Banach
space [28]. Now a theorem from Kuo [23] shows that X∗ has the Radon–Nikodym
property, which is lacked by X∗ in our present case.

We recall that a Banach space X has the Radon–Nikodym property when every
X-valued, countably additive, and bounded variation vector measure has a Bochner
integrable Radon–Nikodym derivative.

Example 6.2. If A is the generator of a strongly continuous semigroup Tt which is
uniformly continuous for t > 0 and F ∈ L∞(0, T ;L(X)), then the evolution operator
S(t, s) generated by A + F (s) is uniformly continuous in s for 0 ≤ s < t and is given
by

S(t, s)x = Tt−sx +

∫ t
s

Tt−rF (r)S(t, r)dr.

The uniform continuity of S(t, s) comes from the uniform integrability of

{Tt−(·)F (·)S(t, ·)x : ‖x‖ ≤ 1};
this implies that the adjoint evolution operator is strongly (actually uniformly) con-
tinuous in 0 ≤ s < t.

Actually, if Tt is compact for t > 0, and X∗ is not weakly compactly generated,
then as in Example 6.1 we can show that T ∗

t is not strongly continuous at t = 0.
Hence, if S(t, s) = Tt−s, then S∗(t, s) is not strongly continuous at t = s.
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These kinds of examples appear in optimal control periodic problems and are
studied in Li–Yong [25, pp. 160–164] in the particular case when Tt is compact for
t > 0. However, neither time optimal control nor maximum principle is considered
for this particular case.

Example 6.3. If we consider the Schrodinger operator Aφ = i∆φ in the Hilbert
space X = L2(Rn), then it is proved in Pazy [30, Chapter VII] that the operator A
generates a strongly continuous group in X. If B ∈ L∞(0, T ;X) such that B(t) is
invertible a.e., then

KerB∗(s)S∗(t− s) = {0} µ. a.e.,

and defining the multifunction

U : [0, T ]→ X,

s→ sBX ,

where BX = {x ∈ X : ‖x‖ ≤ 1}, then U(t) is strictly convex for every s ∈ [0, T ] and
so the system (1.1) is normal by Theorem 5.3.

Example 6.4. Consider the following evolution system:

xt(t, ξ) = k∆x(t, ξ) + b(t, ξ)u(t, ξ), t ≥ 0, ξ ∈ Ω.(6.2)

If Ω = R
n (no boundary conditions), then we work in the space X = L1(Rn). In this

case the operator Aφ = ∆φ also generates a strongly continuous semigroup {Tt}t≥0

given by

Ttφ(ξ) =
1

2n(πkt)n/2

∫
Rn

exp

(−|ξ − η|2
4kt

)
φ(η)dη, t > 0.

As is shown in [13], the adjoint semigroup is strongly continuous away from zero. If
this semigroup were continuous at t = 0, then it would be strongly continuous on
L∞(Rn), and so by Lotz [26], T ∗

t has a bounded generator which implies that Tt has
a bounded generator also, which is a plain contradiction.

Acknowledgments. We want to thank the referees for their comments which
helped us to improve the presentation of this paper.
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Abstract. This paper presents two main results on partially observable (PO) stochastic systems.
In the first one, we consider a general PO system

xt+1 = F (xt, at, ξt), yt = G(xt, ηt) (t = 0, 1, . . . ) (∗)
on Borel spaces, with possibly unbounded cost-per-stage functions, and we give conditions for the
existence of α-discount optimal control policies (0 < α < 1). In the second result we specialize (∗)
to additive-noise systems

xt+1 = Fn(xt, at) + ξt, yt = Gn(xt) + ηt (t = 0, 1, . . . )

in Euclidean spaces with Fn(x, a) and Gn(x) converging pointwise to functions F∞(x, a) and G∞(x),
respectively, and we give conditions for the limiting PO model

xt+1 = F∞(xt, at) + ξt, yt = G∞(xt) + ηt

to have an α-discount optimal policy.

Key words. partially observable control systems, partially observable Markov control processes,
hidden Markov models, discounted cost criterion
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1. Introduction. In this paper we consider a nonlinear, time-varying, partially
observable (PO) stochastic control system with state process {xt} evolving according
to the equation

xt+1 = Ft(xt, at) + ξt , t ∈ N,(1.1)

where N := {0, 1, . . . }, and observations {yt} are of the form

yt = Gt(xt) + ηt, t ∈ N.(1.2)

Assuming that the functions Ft and Gt converge pointwise to functions F∞ and G∞,
that is, as t→∞

Ft(x, a)→ F∞(x, a) and Gt(x)→ G∞(x)(1.3)

for all (x, a) and x, respectively, we investigate the existence of optimal control policies
for the limiting PO system

xt+1 = F∞(xt, at) + ξt, yt = G∞(xt) + ηt,(1.4)
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when the optimality criterion is the α-discounted cost (0 < α < 1).
In fact, we present two main results. In the first one, we consider a general PO

system

xt+1 = F (xt, at, ξt), yt = G(xt, ηt),(1.5)

in which the state space X and the observation set Y are Borel spaces (that is, Borel
subsets of complete and separable metric spaces). Similarly, the state and observation
disturbances ξt and ηt take values in Borel spaces S and S′, respectively, whereas the
control actions at are taken from a compact metric space A. In this setting, we give
conditions for the existence of α-discount optimal policies, allowing the cost-per-stage
to be possibly unbounded. (See Theorem 2.5.)

In the second main result (Theorem 3.4), we consider the additive-noise case (1.1),
(1.2) and the limiting system (1.4) on the spaces X = S = R

d1 and Y = S′ = R
d2 .

Assuming (1.3), we give conditions ensuring the existence of an optimal control policy
for (1.4).

To prove these results we begin by writing (1.5) as a PO Markov control (or
decision) process (MCP), also known as a controlled “hidden Markov model” [6]. In
other words, we work with a general state transition law and a general observation
kernel, as in (2.10) and (2.11), respectively, which can be specialized in the obvious
manner to (1.5), say. (See (2.12) and (2.13).) The formulation (2.10), (2.11) has, of
course, technical advantages, but what is even more important is that it includes a
class of models larger than (1.5). Namely, there are many applications in control of
queues, fisheries, learning processes, and others (see [4, 6, 7, 13, 18, 20, 21]) described
by “stochastic kernels” as in (2.10) and (2.11), on possibly finite or countable spaces,
rather than by a “difference equation” model such as (1.5).

Our original motivation to study the limiting control problem, which naturally
led us to consider the general system (1.5), was our interest in some biotechnological
processes and other time-varying systems, as in (1.1), (1.2), but for which it is known
that their “coefficients” tend to stabilize in the sense of (1.3); see [1, 16]. Alterna-
tively, if the disturbances ξt and ηt have zero means, then (1.3) is equivalent to the
convergence of the expected values

Ft(x, a) = E(xt+1|xt = x, at = a) and Gt(x) = E(yt|xt = x).(1.6)

Thus our Theorem 3.4 can also be interpreted as a result on the adaptive control of
(1.4) when the terms F∞(x, a) and G∞(x) are unknown but they are being estimated
by the conditional expectations in (1.6). Similarly, using (2.10) and (2.11), Theorem
3.4 is easily related to results on either the approximation or the adaptive control of PO
systems with unknown state transition law and observation kernel [4, 6, 7, 9, 13, 14,
25]. This interpretation of Theorem 3.4 is valid, of course, for the completely observable
(CO) case which results when yt = xt for all time index t; see [5, 9, 15, 19, 22].
Similarly, in the noncontrolled case (namely, when the control space A is a one-point
set, say), our results on (1.1)–(1.4) can be seen as stating the convergence of filtering
models—see Lemma 5.1.

Our approach is somewhat related to the CO case considered in [15], but the
technical requirements are quite different. This is due to the fact that the analysis of
(1.5) requires us to introduce an equivalent CO system with values in a set of proba-
bility measures (see (2.5)–(2.7)). Thus, for instance, some “pointwise” statements in
[15] in our present setting turn out to be statements on the convergence of measures
in some suitable sense.
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The remainder of the paper is organized as follows. In section 2 we state our
assumptions and main result (Theorem 2.5) on the general PO system (1.5). Section
3 consists of two parts. In the first we consider the additive-noise system (3.1) and
show that the assumptions in section 2 can be replaced with conditions on (3.1) itself.
This is important to keep in mind because one of those assumptions (Assumption
2.4) is imposed on a “transformed” PO system, whereas the conditions in section 3
(Hypotheses A to D) are all on the original PO system (3.1), and so—at least in
principle—they are easier to verify. In the second part of section 3 we state our result
(Theorem 3.4) on the limiting PO system (1.4). Sections 4 and 5 contain the proofs
of Theorem 2.5 and 3.4, respectively, and, finally, we conclude in section 6 with some
general comments.

2. The general PO system. We begin with the following remark on the ter-
minology and notation we shall use and then proceed to state the optimal control
problem we are concerned with.

Remark 2.1. (a) Given a Borel space X, we denote by B(X) its Borel σ-algebra,
and by P(X) the family of probability measures on X, endowed with the usual weak
topology σ(P(X), Cb(X)), where Cb(X) stands for the Banach space of continuous
bounded functions u on X with the sup norm ‖u‖ := supx |u(x)|. Thus a sequence
{µk} in P(X) is said to converge weakly to µ if∫

X

udµk →
∫

X

udµ ∀u ∈ Cb(X).(2.1)

As X is a Borel space, so is P(X). (See [2, 3, 23], for instance.)
(b) Let X and Y be Borel spaces. A measurable function q : Y → P(X) is called

a stochastic kernel on X given Y, and we denote by P(X|Y) the family of all those
stochastic kernels. Equivalently, q(dx|y) is in P(X|Y) if q(· |y) is a probability measure
on X for each fixed y ∈ Y, and q(B|· ) is a measurable function on Y for each fixed B ∈
B(X). If X = Y, then a stochastic kernel is called a Markov transition probability.

Throughout the paper we suppose the following.
Assumption 2.2. All the stochastic processes considered below are defined on an

underlying probability space (Ω,F , P ). In addition, the following hold.
(a) The state space X, the observation set Y, and the disturbance spaces S and

S′ are all Borel spaces.
(b) The control (or action) set A is a compact metric space.
(c) The state and observation disturbances ξt and ηt, t ∈ N, form independent

sequences of independent and identically distributed (i.i.d.) random variables
with values in S and S′, respectively. These sequences are also independent
of the initial state x0. We denote by µ ∈ P(S) and ν ∈ P(S′) the common
distributions of ξt and ηt, respectively.

(d) The functions F (x, a, s) and G(x, s′) in (1.5) are continuous.
(e) The cost-per-stage function c : X × A → R is (e1) nonnegative and lower

semicontinuous (l.s.c.), and (e2) c(x, a) is continuous in x ∈ X uniformly on
A.

(f) There exists a constant C and a continuous function w ≥ 1 on X such that
c(x, a) ≤ Cw(x) for all x ∈ X and a ∈ A.

For examples of cost functions c(x, a) that satisfy Assumptions 2.2(e) and (f),
see, for instance, [11, 17, 20]. In particular, both assumptions trivially hold if A is a
finite set (as in [7, 18, 21, 24]), whereas (e2) holds if c(x, a) = c1(x) + c2(a), where c1
and c2 are nonnegative functions with c1(x) continuous and c2(a) l.s.c.
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The PO control problem. Let Yt := σ(y0, . . . , yt) be the σ-algebra generated by
the observations up to time t. By an admissible control policy (or simply a policy) we
mean a sequence π = {at} of A-valued random variables such that at is Yt-measurable
for each t ∈ N. We shall denote by Π the set of all such policies.

Let α ∈ (0, 1) be a fixed “discount factor.” For each policy π ∈ Π and initial
distribution ϕ ∈ P(X) ( that is, ϕ is the a priori distribution of x0), the corresponding
α-discounted cost is defined as

V (π, ϕ) :=

∞∑
t=0

αtEπϕ [c(xt, at)] ,(2.2)

where Eπϕ denotes the expectation operator with respect to the probability measure
Pπϕ induced by π and ϕ. Let

V ∗(ϕ) := inf
π
V (π, ϕ) for ϕ ∈ P(X)(2.3)

be the optimal α-discounted cost. The PO optimal control problem is then to find an
optimal policy π∗, that is, a policy such that

V (π∗, ϕ) = V ∗(ϕ) ∀ϕ ∈ P(X).(2.4)

The CO control problem. To study the PO control problem we shall follow the
standard procedure in which the PO problem is transformed into a CO problem using
the filtering process {ϕt} in P(X) defined as follows. For each policy π ∈ Π and initial
distribution ϕ ∈ P(X),

ϕ0(B) := Pπϕ (x0 ∈ B) = ϕ(B),(2.5)

ϕt(B) := Pπϕ (xt ∈ B|Yt) for t ≥ 1,(2.6)

which are defined for all B in B(X). The filtering process depends, of course, on the
policy π and the initial distribution ϕ, and so, strictly speaking, we should write ϕt
as ϕπt,ϕ, for instance. However, we shall use the simpler notation in (2.5) and (2.6)
unless we need to remark which π and ϕ are being used.

To continue with the description of the PO problem, we use the well-known
fact (see, for instance, [2, 6, 25, 27, 28] and (3.5), (3.6) below) that there exists a
measurable function H : P(X)×A×Y → P(X) such that (2.6) can be written as

ϕt+1 = H(ϕt, at, yt+1) ∀t ∈ N(2.7)

with initial condition (2.5). (Note that, by Remark 2.1(b), H is a stochastic kernel
on P(X) given P(X)×A×Y.) Moreover, using the notation

ĉ(ϕ, a) :=

∫
X

c(x, a)ϕ(dx) for ϕ ∈ P(X), a ∈ A,(2.8)

we can rewrite the α-discounted cost in (2.2) as

V (π, ϕ) =
∞∑
t=0

αtEπϕ [ĉ(ϕt, at)] .(2.9)

Finally, the CO problem is to minimize (2.9) over all π ∈ Π, subject to (2.5) and
(2.6), and this problem is equivalent to the original PO problem in the sense that an
optimal policy for CO is optimal for PO.
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Solution of the CO problem. To state our first main result we need some notation.
Let P ∈ P(X|X×A) and Q ∈ P(Y|X) be the state transition law and the observation
kernel corresponding to (1.5), that is,

P (B|x, a) := Prob(xt+1 ∈ B|xt = x, at = a)(2.10)

and

Q(C|x) := Prob(yt ∈ C|xt = x)(2.11)

for each B ∈ B(X), C ∈ B(Y), x ∈ X, a ∈ A, and t ∈ N. More explicitly, in view of
(1.5) and Assumption 2.2(c), we have that

P (B|x, a) =

∫
S

IB [F (x, a, s)]µ(ds),(2.12)

where IB denotes the indicator function of a set B, and, similarly,

Q(C|x) =

∫
S′
IC [G(x, s′)] ν(ds′).(2.13)

From (2.12) and (2.13), together with the bounded convergence theorem, it follows
that P and Q are both weakly continuous; that is, if xn → x and an → a, then∫

X

u(x′)P (dx′|xn, an)→
∫

X

u(x′)P (dx′|x, a) ∀u ∈ Cb(X),(2.14)

and ∫
Y

v(y)Q(dy|xn)→
∫

Y

v(y)Q(dy|x) ∀v ∈ Cb(Y).(2.15)

We also require the following conditions on the state transition law P .
Assumption 2.3. (a) If an → a, then P (·|x, an) → P (·|x, a) weakly, uniformly

in x ∈ X.
(b) If (ϕn, an) → (ϕ, a), then there exists an integer N = Nϕ,a and a finite

measure ζ = ζϕ,a such that∫
X

P (· |x, an)ϕn(dx) ≤ ζ(· ) ∀n ≥ N.

The existence of a “majorant” measure ζ as in Assumption 2.3(b), which we will
use in conjunction with Lemma 4.5, below, is discussed at the end of this section; see
Remark 2.6 and Example 2.7. On the other hand, to verify Assumption 2.3(a) one
may try to use one of the several metrics that metrize the weak convergence, such
as the Dudley metric [29, Corollary 4.3.6]. For instance, suppose that X = R

d and
that F (x, a, s) is of the form F (x, a, s) = F1(x) + F2(a, s), where F2 is a continuous
bounded function on A × S. Now choose an arbitrary Lipschitz bounded function
u : X → R with Lipschitz constant u, that is, |u(x) − u(x′)| ≤ u|x − x′|. Then, by
(2.12), if an → a, we obtain∣∣∣ ∫

X

u(x′)P (dx′|x, an)−
∫
X

u(x′)P (dx′|x, a)
∣∣∣

≤
∫
S

|u[F (x, an, s)]− u[F (x, a, s)]|µ(ds)

≤ u
∫
S

|F2(an, s)− F2(a, s)|µ(ds)

→ 0 uniformly in x ∈ X.
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Hence, as the choice of u was arbitrary, P (·|x, an)→ P (·|x, a) converges in the Dudley
metric [29], uniformly in x ∈ X, and so Assumption 2.3(a) follows. A similar conclu-
sion holds, of course, if F is of the form F (x, a, s) = F1(x, s) + F2(a), where F2 is a
continuous function on A. (For the additive-noise case, see (3.10).)

Now, for each C ∈ B(Y), ϕ ∈ P(X), and a ∈ A, consider the stochastic kernel

q̂(C|ϕ, a) := Prob(yt+1 ∈ C|ϕt = ϕ, at = a),(2.16)

which, using (2.10)–(2.13), can be written as

q̂(C|ϕ, a) =

∫
X

∫
X

Q(C|x′)P (dx′|x, a)ϕ(dx)(2.17)

=

∫
X

∫
S

∫
S′
IC [G(F (x, a, s), s′)] ν(ds′)µ(ds)ϕ(dx).

Finally, for each D ∈ B(P(X)), ϕ ∈ P(X), a ∈ A, and t ∈ N, let

P̂ (D|ϕ, a) := Prob(ϕt+1 ∈ D|ϕt = ϕ, at = a)

be the transition law of the filtering process (2.7), which we can also write as

P̂ (D|ϕ, a) =

∫
Y

ID [H(ϕ, a, y)] q̂(dy|ϕ, a).(2.18)

Assumption 2.4. Let H and w ≥ 1 be as in (2.7) and Assumption 2.2(f),
respectively, and define ŵ : P(X)→ R as ŵ(ϕ) :=

∫
X
w(x)ϕ(dx).

(a) H is continuous.
(b) There is a number 1 ≤ β < 1/α such that∫

P(X)

ŵ(ϕ′)P̂ (dϕ′|ϕ, a) ≤ βŵ(ϕ) ∀ϕ ∈ P(X), a ∈ A.(2.19)

Observe that the property “w ≥ 1” of w is inherited by ŵ because

ŵ(ϕ) :=

∫
X

wdϕ ≥ ϕ(X) = 1 ∀ϕ ∈ P(X).

We shall denote by Bw(P(X)) the (vector) space of all real-valued measurable functions
u on P(X) such that

‖u‖w := sup
ϕ
|u(ϕ)|/ŵ(ϕ) <∞.

We can now state our first optimality result as follows.
Theorem 2.5. If Assumptions 2.2, 2.3, and 2.4 are satisfied, then the following

hold.
(a) The optimal cost function V ∗(ϕ) := infπ V (π, ϕ), with V (π, ϕ) as in (2.9), is

the unique solution in Bw(P(X)) of the Bellman (or dynamic programming)
equation

V ∗(ϕ) = min
a∈A

[
ĉ(ϕ, a) + α

∫
P(X)

V ∗(ϕ′)P̂ (dϕ′|ϕ, a)
]

(2.20)

for all ϕ ∈ P(X).
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(b) Moreover, V ∗ is l.s.c.
(c) There exists a measurable function f∗ : P(X)→ A that attains the minimum

in (2.20), i.e., for all ϕ ∈ P(X)

V ∗(ϕ) = ĉ(ϕ, f∗(ϕ)) + α

∫
P(X)

V ∗(ϕ′)P̂ (dϕ′|ϕ, f∗(ϕ)),(2.21)

and f∗ determines an optimal control policy π∗ = {a∗t } given by
a∗t := f∗(ϕt) ∀t ∈ N,

where {ϕt} is the filtering process.
Theorem 2.5, which is proved in section 4, is essentially standard except for the

fact that we are allowing a general PO system (1.5) and a possibly unbounded cost-
per-stage c(x, a), as in Assumption 2.2(e), (f). To the best of our knowledge, the only
case studied in the literature in which c(x, a) is unbounded is for the so-called linear-
quadratic-Gaussian (LQG) PO system. Furthermore, the existence of the “filtering
function” H in (2.7) depends only on the state transition law and the observation
kernel in (2.10) and (2.11), not on the particular PO model (1.5). This means, in
other words, that Theorem 2.5 is valid for general PO systems on Borel spaces, and
so, in particular, it includes systems on countable spaces, which are very common in
applications; see [4, 6, 7, 13, 18, 20, 21, 24, 25].

On the other hand, it goes without saying that in Theorem 2.5 the most restrictive
hypothesis is Assumption 2.4 because it is stated in terms of the components H and
P̂ of the CO problem—in contrast to Assumptions 2.2 and 2.3 that are given on the
original PO system, and so, in principle, they are “easier” to verify in particular PO
models. In the following section we show, among other things, that Assumptions 2.3
and 2.4 hold for additive-noise models under reasonably mild conditions.

We conclude this section with some comments on Assumption 2.3(b) which are
used in the following sections.

Remark 2.6. (a) Let X be an arbitrary Borel space, and let Γ be an arbitrary
subfamily of P(X). A measure γm on X is said to be a majorant of Γ if γm(·) ≥ γ(·)
for all γ ∈ Γ. If Γ has a finite majorant, we then say that Γ is order-bounded from
above [30, 31].

(b) A family Γ ⊂ P(X) always has an upper envelope, that is, a majorant γu such
that γu(·) ≤ γm(·) for any majorant γm of Γ. The construction of γu, which is used
in the proof of Lemma 5.1, is as follows. Let ρu be the set function defined as

ρu(B) := sup{γ(B)|γ ∈ Γ} ∀ B ∈ B(X).(2.22)

Then, as in Theorem 2.2 in [8], for instance, the upper envelope of Γ is the measure
γu on B(X) given by

γu(B) := sup

{ ∞∑
k=1

ρu(Bk)|{Bk} ⊂ B(X) is a partition of B

}
.(2.23)

(There are more “explicit” ways of constructing γu if Γ is a countable family [8,
Remark 2.4].) Clearly, Γ is order-bounded from above if and only if γu is a finite
measure, i.e.,

γu(X) <∞.(2.24)
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(c) Let ‖ λ ‖TV := |λ|(X) be the total variation norm of a finite signed measure λ
on X, where |λ| = λ+ + λ− denotes the variation measure. Let {γn} be a sequence in
P(X) such that ‖ γn − γ ‖TV→ 0. Then (by the definition of order-convergence—see
[31, Definition 2, p. 366]) there exists a nonincreasing sequence of finite measures γ̂n
on X such that γ̂n(X) ↓ 0 and

|γn − γ| ≤ γ̂n ∀ n = 1, 2, . . . .(2.25)

Now choose an arbitrary integer N (for instance, such that γ̂N (X) ≤ ε for some
ε > 0.) It follows from (2.25) that

γn(·) ≤ γ(·) + γ̂N (·) ∀ n ≥ N.(2.26)

In other words, if λn → λ in the total variation norm, then, for any N > 0, the
sequence {γn, n ≥ N} has the finite majorant γ(·) + γ̂N (·).

For additional criteria for order-boundedness of measures, see, e.g., [30]. On the
other hand, an obvious sufficient condition for Assumption 2.3(b) is that the whole
family {P (·|x, a) : x ∈ X, a ∈ A} is order-bounded from above, i.e.,

P (·|x, a) ≤ ζ(·) ∀x ∈ X, a ∈ A,(2.27)

for some finite measure ζ(·). This is the case in the following well-known example.
Example 2.7 (see, e.g., [32, 33, 34]). Consider the additive-noise system

xt+1 = F (xt, at) + ξt(2.28)

with state space X = R
d1 , say. Suppose that F : X × A → X is continuous and

bounded and that the i.i.d. disturbances ξt have a continuous and bounded density gξ
with respect to the Lebesgue measure λ1 on X. Then, by (2.10) and (2.12),

P (B|x, a) =

∫
B

gξ(s− F (x, a))λ1(ds).(2.29)

Then, as the closure of the set {F (x, a)|x ∈ X, a ∈ A} is compact in X and the
function w → gξ(s − w) is continuous for each s, there is a bounded, λ1-integrable
function ĝξ on X such that gξ(s− F (x, a)) ≤ ĝξ(s) for all s, x, a. Hence (2.27) holds
with

ζ(B) :=

∫
B

ĝξ(s)λ1(ds).

Remark 2.8. (a) An argument as in Example 2.7 shows that (2.27) holds, for
instance, for the nonadditive-noise models in Examples 8.6.2 and 8.6.4 in [11].

(b) Consider an additive-noise observation process

yt = G(xt) + ηt(2.30)

on Y := R
d2 with i.i.d. disturbances ηt, which have a density gη with respect to the

Lebesgue measure λ2 on R
d2 . Then, by (2.11) and (2.13),

Q(C|x) =

∫
C

gη(s′ −G(x))λ2(ds′),(2.31)
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and, as in Example 2.7, it follows that if gη and G are continuous bounded functions
(on their corresponding domains), then there exists a finite measure γ on Y such that

Q(·|x) ≤ γ(·) ∀ x ∈ X.

(c) The additive-noise systems in (b) and Example 2.7 with continuous bounded
“drifts” G(x) and F (x, a), respectively, are also order-bounded from below [32, 33, 34];
that is, there exist nontrivial substochastic measures γl1 on Y and γl2 and X such that

Q(·|x) ≥ γl1(·) and P (·|x, a) ≥ γl2(·) ∀ x, a.(2.32)

For additional conditions ensuring order-boundedness from below, see [9, 11, 30, 34,
35], for instance.

3. Additive-noise models and the limiting PO system. The main objec-
tive in this section is to study the limiting system (1.4). With this in mind, we first
study the general additive-noise system (3.1), below, which serves several purposes.
It illustrates the concepts introduced in section 2; it gives conditions ensuring that
Assumptions 2.3 and 2.4 are satisfied; and it is an introduction to our main result
(Theorem 3.4) on (1.4).

Additive-noise models. Consider the PO additive-noise system

xt+1 = F (xt, at) + ξt, yt = G(xt) + ηt, t ∈ N,(3.1)

with X = S = R
d1 ,Y = S′ = R

d2 , and A a compact metric; see Assumptions 2.2(a),
(b). In addition, the disturbances {ξt} and {ηt} are as in Assumption 2.2(c), except
that now we also suppose the following.

Hypothesis A. The noise distributions µ and ν are absolutely continuous, say,

µ(ds) = gξ(s)λ1(ds) and ν(ds′) = gη(s′)λ2(ds′),(3.2)

where λi (i = 1, 2) denotes the Lebesgue measure on R
di , and, moreover, gξ and gη

are continuous bounded density functions.
Then, as in (2.29) and (2.31), the state transition law and the observation kernel

are given by

P (B|x, a) =

∫
B

gξ(s− F (x, a))λ1(ds)(3.3)

and

Q(C|x) =

∫
C

gη(s′ −G(x))λ2(ds′),(3.4)

respectively. On the other hand, as is well known [4, 9, 14, 24, 25, 27], the filtering
function H in (2.7) is of the form

H(ϕ, a, y)(B) = σ(ϕ, a, y)(B)/σ(ϕ, a, y)(X) ∀B ∈ B(X)(3.5)

with

σ(ϕ, a, y)(B) =

∫
B

gη(y −G(x′))
∫

X

P (dx′|x, a)ϕ(dx)(3.6)

=

∫
X

[∫
B

gη(y −G(x′))P (dx′|x, a)
]
ϕ(dx)

=

∫
X

[∫
B

gη(y −G(x′))gξ(x′ − F (x, a))λ1(dx′)
]
ϕ(dx),
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by (3.3).

On the other hand, Assumption 2.2(d) reduces to the following.

Hypothesis B. The functions F : X × A → X and G : X → Y in (3.1) are
continuous.

Let us denote by ‖· ‖TV the total variation norm for measures and suppose that
xn → x and an → a. Then, by (3.3), Hypotheses A and B, and Scheffé’s theorem
(see, for instance, pp. 223–224 in [3]), we have that

‖P (· |xn, an)− P (· |x, a)‖TV → 0,(3.7)

which is of course a lot stronger than (2.14). Similarly, by (3.4),

‖Q(· |xn)−Q(· |x)‖TV → 0.(3.8)

On the other hand, in addition to the cases that we have already mentioned in section
2, to obtain Assumption 2.3 we may suppose, for example, the following.

Hypothesis C. (a) If an → a, then ‖P (· |x, an) − P (· |x, a)‖TV → 0 uniformly
on X.

(b) If (ϕn, an)→ (ϕ, a), then there exist an integer N = Nϕ,a and a λ1-integrable
function ĝ = ĝϕ,a ≥ 0 such that∫

X

gξ(s− F (x, an))ϕn(dx) ≤ ĝ(s) ∀s ∈ X and n ≥ N.(3.9)

Hypothesis C(a) holds, for instance, if F (x, a) is “separable” in x and a, say,

F (x, a) = F1(x) + F2(a),(3.10)

where F1 and F2 are continuous functions. This follows from (3.3) and using the
change of variable y := s− F1(x). In fact, (3.10) is similar to the “separable” case in
the paragraph after Assumption 2.3, and it covers many control models. For example,
(3.10) appears in the cash-balance model of Hordijk and Yushkevich [17, section 6], in
which the state process, the “cash balance,” follows the scalar linear equation

xt+1 = xt + at + ξt.(3.11)

In (3.11), the disturbances ξt are i.i.d. standard Gaussian variables, and the control
action at = a corresponds to a withdrawal of money of size −a if a < 0, or to a supply
a if a > 0. The control set is a given compact interval, say, A = [−M,M ]. In this
setting, (3.9) also holds if the probability measure ϕn satisfies that, for some constant
k,
∫

exp(x2)ϕn(dx) ≤ k for all n sufficiently large (see [17, p. 445]). Observe that
(3.11) does not satisfy the boundedness of F (x, a) used in Example 2.7.

Proposition 3.1. Hypothesis C implies Assumption 2.3.

Proof. It is evident that Hypothesis C(a) implies Assumption 2.3(a). Now, to
obtain Assumption 2.3(b), note that (3.3) and (3.9) yield∫

X

P (B|x, an)ϕn(dx) =

∫
B

∫
X

gξ(s− F (x, an))ϕn(dx)λ1(ds)

≤
∫
B

ĝ(s)λ1(ds)
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for all n ≥ N . Thus the measure ζ(B) :=
∫
IB(s)ĝ(s)λ1(ds) satisfies that∫

X

P (· |x, an)ϕn(dx) ≤ ζ(· ) ∀n ≥ N,(3.12)

and Assumption 2.3(b) follows.
We next show that Hypothesis C also yields Assumption 2.4(a).
Proposition 3.2. If Hypothesis C holds, then so does Assumption 2.4(a).
Proof. Let H be as in (3.5) and suppose that (ϕn, an, yn) → (ϕ, a, y). We wish

to prove that

H(ϕn, an, yn)(· )→ H(ϕ, a, y)(· ) weakly.(3.13)

To prove this, let

µn(· ) :=

∫
X

P (· |x, an)ϕn(dx) and µ(· ) :=

∫
X

P (· |x, a)ϕ(dx).(3.14)

We will first show that

µn(· )→ µ(· ) setwise.(3.15)

By (3.12) and Lemma 4.5 below (in which X̂ := P(X)), to get (3.15) it suffices to show
that µn → µ weakly. Thus choose an arbitrary function u in Cb(X) and use (3.14) to
write ∣∣∣ ∫

X

udµn −
∫

X

udµ
∣∣∣ ≤ f(n) + g(n)(3.16)

with

f(n) :=
∣∣∣ ∫

X

∫
X

u(x′)[P (dx′|x, an)− P (dx′|x, a)]ϕn(dx)
∣∣∣

and

g(n) :=
∣∣∣ ∫

X

∫
X

u(x′)P (dx′|x, a)ϕn(dx)−
∫

X

∫
X

u(x′)P (dx′|x, a)ϕ(dx)
∣∣∣.

By (3.3), the integral
∫
u(x′)P (dx′|x, a) is, in particular, continuous in x ∈ X for each

a ∈ A. Therefore, g(n)→ 0. On the other hand, by Hypothesis C(a),

f(n) ≤ ‖u‖ sup
x
‖P (· |x, an)− P (· |x, a)‖TV → 0 as n→∞.

Hence from (3.16) we conclude that µn → µ weakly, which, as was already noted,
together with (3.12) and Lemma 4.5, gives (3.15).

Now, going back to (3.13), let u be an arbitrary function in Cb(X), and use (3.14)
and (3.6) to write∫

X

u(x)σ(ϕn, an, yn)(dx) =

∫
X

u(x)gη(yn −G(x))µn(dx).(3.17)

Therefore, as gη(yn − G(x)) → gη(y − G(x)) for all x ∈ X, from (3.15) and Lemma
4.4(c) we obtain that

σ(ϕn, an, yn)→ σ(ϕ, a, y) weakly.(3.18)

Moreover, taking u(· ) ≡ 1 in (3.17), we get σ(ϕn, an, yn)(X) → σ(ϕ, a, y)(X). This
latter fact, combined with (3.18) and (3.5), gives (3.13).

Finally, we will show that the following hypothesis implies (2.19).
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Hypothesis D. There exist positive constants ᾱ and σ̄ such that
(a) gη(y −G(x))/σ(ϕ, a, y)(X) ≤ σ̄ for all ϕ, a, y, x,
(b)

∫
X
w(x′)P (dx′|x, a)≤ᾱw(x) for all x, a, and

(c) 1 ≤ ᾱσ̄ < 1/α, where α is the discount factor in (2.9) (or (2.2)).
For examples satisfying condition (b), see [11 (Chapter 8), 17, 20] and their

references. Concerning (a), see Remark 3.6.
Proposition 3.3. Hypothesis D implies Assumption 2.4(b) with β := ᾱσ̄.

Proof. As ŵ(ϕ) :=
∫
w(x)ϕ(dx), writing P(X) as X̂, the left-hand side of (2.19)

becomes ∫
X̂

ŵ(ϕ′)P̂ (dϕ′|ϕ, a) =

∫
X

w(x)

∫
X̂

ϕ′(dx)P̂ (dϕ′|ϕ, a),

and so, using (2.18),∫
X̂

ŵ(ϕ′)P̂ (dϕ′|ϕ, a) =

∫
X

w(x)

∫
Y

H(ϕ, a, y)(dx)q̂(dy|ϕ, a).(3.19)

On the other hand, by (3.5), (3.6), and Hypothesis D(a),

H(ϕ, a, y)(· ) ≤ σ̄
∫

X

P (· |x, a)ϕ(dx).

This inequality and (3.19) yield∫
X̂

ŵ(ϕ′)P̂ (dϕ′|ϕ, a) ≤ σ̄
∫

X

[∫
X

w(x′)P (dx′|x, a)
]
ϕ(dx)

≤ ᾱσ̄
∫

X

w(x)ϕ(dx) [by Hypothesis D(b)]

= ᾱσ̄ŵ(ϕ).

That is, (2.19) holds with β := ᾱσ̄.
Summarizing, Hypotheses A to D imply Assumptions 2.3 and 2.4.
The limiting PO system. For each n ∈ N∞, consider the PO control system

xt+1 = Fn(xt, at) + ξt, yt = Gn(xt) + ηt,(3.20)

where Fn(x, a) and Gn(x) are functions that satisfy (1.3). For n = ∞, we have
the limiting PO system (1.4). We will use a subindex “n” to indicate functions and
probabilities corresponding to the model in (3.20). For instance, the α-discounted
cost and the optimal cost function in (2.2) and (2.3) become

Vn(π, ϕ) :=

∞∑
t=0

αtEπn,ϕ [c(xt, at)]

and

V ∗
n (ϕ) := inf

π
Vn(π, ϕ),

respectively.
Theorem 3.4. Suppose that for each finite n ∈ N, (3.20) satisfies Assumption

2.2 as well as Hypotheses A to D. Moreover, in addition to (1.3) we suppose that the
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limiting functions F∞(x, a) and G∞(x) are continuous. Then Theorem 2.5 holds for
n =∞.

Theorem 3.4 is proved in section 5. In the meantime, we may observe that
Theorem 3.4 yields an optimal control policy for the limiting system, n = ∞, as
follows.

For each n = 1, 2, . . . , let f∗n be an optimal control policy for the nth control
model, obtained as in (2.21); that is,

V ∗
n (ϕ) = ĉ(ϕ, f∗n(ϕ)) + α

∫
P(X)

V ∗
n (ϕ′)P̂n(dϕ′|ϕ, f∗n(ϕ))(3.21)

for all ϕ ∈ P(X).
Corollary 3.5. Under the hypotheses of Theorem 3.4, there exists a measurable

function f∗∞ : P(X)→ A such that the following hold.
(a) For each ϕ ∈ P(X), f∗∞(ϕ) is an accumulation point of the sequence {f∗n(ϕ)}.
(b) f∗∞ is an optimal control policy for the limiting control model with n =∞.
Proof. (a) This is a consequence of a result of Schäl [26] (reproduced in [10,

Proposition D.7] and also in [11, p. 65]). Part (b) follows from (a) and from an
argument as in the proof of Theorem 4.6.5 in [10], for instance.

Moreover, if for each finite n there is a unique policy f∗n as in (3.21), which is the
case for some “convex” control problems, then in Corollary 3.5(a) we obtain that the
whole sequence {f∗n(ϕ)} converges to f∗∞(ϕ) for each ϕ in P(X).

We conclude this section with some comments on Hypothesis D(a).
Remark 3.6. As gη is bounded, that is, gη(y − G(x)) ≤‖ gη ‖ for all x, y,

Hypothesis D(a) holds if there is a constant σ such that

σ(ϕ, a, y)(X) ≥‖ gη ‖ /σ ∀ ϕ, a, y.

On the other hand, if P (·|x, a) is order-bounded from below, say, as in (2.32),
then by (3.6)

σ(ϕ, a, y)(X) ≥
∫

X

gη(y −G(x′))γl2(dx′) =: ĝη(y) ∀ ϕ, a, y.(3.22)

Therefore, another sufficient condition for Hypothesis D(a) is the existence of a con-
stant σ such that

gη(y −G(x)) ≤ σ ĝη(y) ∀ x, y.(3.23)

Observe that (3.22) and (3.23) are both verifiable for the cases in Example 2.7 and
Remark 2.8(b).

4. Proof of Theorem 2.5. To prove Theorem 2.5 let us first write the CO
problem (2.7)–(2.9) as an MCP. Thus (as in [2, 9, 10, 11], for instance) consider the
control model

(X̂, Â, P̂ , ĉ)(4.1)

with state space X̂ := P(X) and control set Â := A. The “state” transition law P̂ and
the running cost ĉ are as in (2.18) and (2.8), respectively. Then Theorem 2.5 will follow
from the results in section 8.5 (and section 8.3) of [11] if we show that the MCP in (4.1)
satisfies Assumptions 8.5.1 and 8.5.2 in [11], which are reproduced below as Conditions
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4.1 and 4.2, respectively. (Under our present Assumption 2.2(e), the running cost or
cost-per-stage c(x, a) is nonnegative, and, therefore, so is ĉ(ϕ, a). This means that
here we do not require Assumption 8.5.3 in [11], whereas in Assumption 8.5.2 we
need only ŵ(ϕ) to be l.s.c. rather than continuous, where ŵ(ϕ) :=

∫
w(x)ϕ(dx) is the

function in Assumption 2.4 above.)
Condition 4.1 (see Assumption 8.5.1 in [11]).

(a) X̂ := P(X) is a Borel space, and Â := A is a compact metric space.

(b) ĉ is l.s.c. and nonnegative on K := X̂× Â.
(c) P̂ is weakly continuous on K; that is, if (ϕn, an)→ (ϕ, a), then∫

X̂

u(ϕ′)P̂ (dϕ′|ϕn, an)→
∫

X̂

u(ϕ′)P̂ (dϕ′|ϕ, a) ∀u ∈ Cb(X̂).

Condition 4.2 (see Assumptions 8.5.2 and 8.3.2 in [11]). There exist nonnegative

constants C and β, with 1 ≤ β < 1/α, and an l.s.c. function ŵ ≥ 1 on X̂ such that

for each “state” ϕ ∈ X̂
(a) supa∈A ĉ(ϕ, a) ≤ Cŵ(ϕ), and

(b) supa∈A
∫
X
ŵ(ϕ′)P̂ (dϕ′|ϕ, a) ≤ βŵ(ϕ). (See (2.19).)

Comparing these conditions with our Assumptions 2.2, 2.3, and 2.4, we see that
to prove Theorem 2.5 it suffices to show that (in order of difficulty)

(i) ŵ(ϕ) ≥ 1 for all ϕ ∈ X, and ŵ is l.s.c.,
(ii) ĉ(ϕ, a) satisfies Conditions 4.1(b) and 4.2(a), and

(iii) P̂ satisfies Condition 4.1(c).
Proof of (i). We already noted (after Assumption 2.4) that ŵ ≥ 1, whereas the

lower semicontinuity of ŵ follows from the general well-known fact (see, for instance,
statement (12.3.37) on p. 225 of [11]) that if ϕn converges weakly to ϕ and v : X→ R

is l.s.c. and bounded below, then

lim inf
n→∞

∫
X

v(x)ϕn(dx) ≥
∫

X

v(x)ϕ(dx).(4.2)

Hence, as w ≥ 1 is continuous (Assumption 2.2(f)), taking v = w in (4.2), we get that
ŵ is l.s.c.

Proof of (ii). Condition 4.2(a) obviously follows from (2.8) and Assumption 2.2(f).
Now, to prove that ĉ(ϕ, a) is l.s.c., suppose that (ϕn, an)→ (ϕ, a). Let

c̄j(x) := inf
i≥j
c(x, ai) for each j = 1, 2, . . . ,(4.3)

and observe that c̄j(· ) is continuous (by Assumption 2.2(e2)) and that

c(x, an) ≥ c̄j(x) ∀x ∈ X and n ≥ j.
Therefore, for each j = 1, 2, . . . and n ≥ j we have

ĉ(ϕn, an) :=

∫
X

c(x, an)ϕn(dx) ≥
∫

X

c̄j(x)ϕn(dx),

and taking the limit infimum as n→∞, from (4.2) we obtain

lim inf
n→∞ ĉ(ϕn, an) ≥

∫
X

c̄j(x)ϕ(dx).(4.4)
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Finally, as c̄j(· ) is nondecreasing and (by Assumption 2.2(e1))

lim
j→∞

c̄j(x) = lim inf
n→∞ c(x, an) ≥ c(x, a),

letting j →∞ in (4.4), we get (by monotone convergence)

lim inf
n→∞ ĉ(ϕn, an) ≥

∫
X

c(x, a)ϕ(dx) = ĉ(ϕ, a).(4.5)

This completes the proof of (ii).
To prove (iii) we will first state some general preliminary facts in which X stands

for an arbitrary Borel space, and X̂ := P(X).

Lemma 4.3. Let {un} and {µn} be sequences in Cb(X) and X̂, respectively, such
that

(a) un → u uniformly on X, and
(b) µn → µ weakly.

Then

lim
n→∞

∫
undµn =

∫
udµ.

Proof. By (a), the function u is in Cb(X), and so, by (b),∫
udµn →

∫
udµ.(4.6)

Therefore, as un ≤‖ un − u ‖ +u we get

lim sup
n→∞

∫
undµn ≤

∫
udµ.(4.7)

Similarly, (4.6) and the inequality un ≥ − ‖ un − u ‖ +u yield

lim inf
n→∞

∫
undµn ≥

∫
udµ.

The latter fact and (4.7) give the lemma.
Lemma 4.4. Let u and un (n ∈ N) be measurable functions on X, and let {µn}

be a sequence in X̂. If µn converges setwise to µ, i.e.,

µn(B)→ µ(B) ∀B ∈ B(X),(4.8)

and u and {un} are bounded below, then
(a) lim inf

∫
udµn ≥

∫
udµ, and

(b) lim inf
∫
undµn ≥

∫
(lim inf un)dµ. Therefore,

(c) if {un} is a bounded sequence of measurable functions such that un → u, then
lim
∫
undµn =

∫
udµ.

Proof. (a) As u is bounded below, we have that u + N ≥ 0 for some constant
N . Thus, without loss of generality, we may assume that u is nonnegative. Moreover,
by (4.8), part (a) holds for indicator functions u = IB of Borel subsets B of X and
also of course for “simple” functions u (that is, finite linear combinations of indicator
functions of Borel sets). Now choose an arbitrary measurable function u ≥ 0, and let
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{vk} be a sequence of simple functions such that vk(x) ↑ u(x) for all x ∈ X. Then,
for each k,

lim inf
n→∞

∫
udµn ≥ lim inf

n→∞

∫
vkdµn =

∫
vkdµ,

and letting k →∞, we obtain (a).
(b) This part follows from (a) and an argument as in (4.3)–(4.5). That is, define

uj := infn≥j un and note that∫
undµn ≥

∫
ujdµn for each j and n ≥ j.

Hence, by (a),

lim inf
n→∞

∫
undµn ≥

∫
ujdµ for each j,

and letting j →∞, we get (b).
(c) Applying (b) to both un and −un, we get (c).
The following result is a special case of Proposition 2.3(a) in [12].

Lemma 4.5. Let {µn} be a sequence in X̂ and suppose that
(a) µn → µ weakly, and
(b) there is an integer N and a finite measure γ on X such that µn(· ) ≤ γ(· ) for

all n ≥ N .
Then µn → µ setwise.

For an example of a sequence {µn} that satisfies part (a) in Lemma 4.5 but not
part (b), see Remark 3.3 in [8], for instance.

Lemma 4.6. Under Assumption 2.3(a), the stochastic kernel q̂ in (2.17) is weakly
continuous; that is, if (ϕn, an)→ (ϕ, a), then∫

Y

v(y)q̂(dy|ϕn, an)→
∫

Y

v(y)q̂(dy|ϕ, a) ∀v ∈ Cb(Y).(4.9)

If in addition Assumption 2.3(b) holds, then

q̂(· |ϕn, an)→ q̂(· |ϕ, a) setwise.(4.10)

Proof. Choose an arbitrary function v in Cb(Y), and let

v′(x′) :=

∫
Y

v(y)Q(dy|x′) ∀x′ ∈ X.

By (2.15), v′(· ) is in Cb(X), and, therefore, by (2.14), the function

v′′(x, a) :=

∫
X

∫
Y

v(y)Q(dy|x′)P (dx′|x, a)(4.11)

is in Cb(X × A). Suppose now that (ϕn, an) → (ϕ, a) and use (4.11) and (2.17) to
write ∫

Y

v(y)q̂(dy|ϕn, an) =

∫
X

v′′(x, an)ϕn(dx).(4.12)
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Thus, since Assumption 2.3(a) yields that

v′′(· , an)→ v′′(· , a) uniformly on X,

from (4.12) and Lemma 4.3 we get (4.9).
To obtain (4.10) observe that (2.17) and Assumption 2.3(b) together give

q̂(· |ϕn, an) =

∫
X

∫
X

Q(· |x′)P (dx′|x, an)ϕn(dx)

≤
∫

X

Q(· |x′)β(dx′) =: γ(· )(4.13)

for all n ≥ N , and for some integer N = Nϕ,a. Hence, as the measure γ in (4.13)
is finite, from (4.13), (4.9), and Lemma 4.5 we obtain the setwise convergence in
(4.10).

From these lemmas we can now prove (iii), that is, Condition 4.1(c), as follows.
Proof of (iii). Suppose that (ϕn, an)→ (ϕ, a) and choose an arbitrary function u

in Cb(X). Then, by (2.18),∫
X̂

u(ϕ′)P̂ (dϕ′|ϕn, an) =

∫
Y

u [H(ϕn, an, y)] q̂(dy|ϕn, an),(4.14)

and by Assumption 2.4(a)

u [H(ϕn, an, y)]→ u [H(ϕ, a, y)] ∀y ∈ Y.

This fact, combined with (4.14), (4.10), and Lemma 4.4(c), yields Condition
4.1(c).

As was already mentioned (after Condition 4.2), from (i), (ii), and (iii) we obtain
Theorem 2.5.

5. Proof of Theorem 3.4. For each finite n ∈ N, the Bellman equation (2.20)
becomes

V ∗
n (ϕ) = min

a∈A

[
ĉ(ϕ, a) + α

∫
X̂

V ∗
n (ϕ′)P̂n(dϕ′|ϕ, a)

]
(5.1)

with X̂ := P(X). Thus to prove Theorem 3.4 it suffices to show that V ∗
∞ satisfies (5.1),

i.e.,

V ∗
∞(ϕ) = min

a∈A

[
ĉ(ϕ, a) + α

∫
X̂

V ∗
∞(ϕ′)P̂∞(dϕ′|ϕ, a)

]
,(5.2)

because then the desired conclusion follows from the “uniqueness of solutions” in
Theorem 2.5(a).

Now, to prove (5.2), let

u(ϕ) := lim inf
n→∞ V ∗

n (ϕ) and u(ϕ) := lim sup
n→∞

V ∗
n (ϕ).

We wish to show that

u(ϕ) = u(ϕ) = V ∗
∞(ϕ) ∀ϕ ∈ X̂.(5.3)

To prove this, let us first note the following.
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Lemma 5.1. As n→∞, the following hold.
(a) ‖q̂n(· |ϕ, a)−q̂∞(· |ϕ, a)‖TV → 0 for each (ϕ, a) in X̂×A, where ‖· ‖TV denotes

the total variation norm.
(b) ‖Hn(ϕ, a, y)(· )−H∞(ϕ, a, y)(· )‖TV → 0 for all (ϕ, a, y) in X̂×A×Y, where

Hn is the filtering function in (3.5), (3.6).

(c) P̂n(· |ϕ, a)→ P̂∞(· |ϕ, a) weakly for each (ϕ, a).

(d) Furthermore, for each pair (ϕ, a) in X̂×A, there exists an integer N = Nϕ,a
and a finite measure γ = γϕ,a on B(X̂) such that P̂n(·|ϕ, a) ≤ γ(·) for all
n ≥ N .

(e) The convergence in (c) holds setwise.

Proof. (a) For each n ∈ N∞, let Pn(· |x, a) and Qn(· |x) be as in (3.3) and (3.4);
that is,

Pn(B|x, a) =

∫
B

gξ(s− Fn(x, a))λ1(ds)

and

Qn(C|x) =

∫
C

gη(s′ −Gn(x))λ2(ds′).

As gξ(s−Fn(x, a))→ gξ(s−F∞(x, a)) for all (x, a, s), it follows from Scheffé’s theorem
that

‖Pn(· |x, a)− P∞(· |x, a)‖TV → 0 ∀(x, a) ∈ X×A.(5.4)

Similarly, as gη(s′ −Gn(x))→ gη(s′ −G∞(x)), we have

‖Qn(· |x)−Q∞(· |x)‖TV → 0 ∀x ∈ X.(5.5)

Therefore, by (2.17),

q̂n(· |ϕ, a) =

∫
X

∫
X

Qn(· |x′)Pn(dx′|x, a)ϕ(dx)

=

∫
X

∫
X

[Qn(·|x′)−Q∞(·|x′)]Pn(dx′|x, a)ϕ(dx)

+

∫
X

∫
X

Q∞(·|x′)[Pn(dx′|x, a)− P∞(dx′|x, a)]ϕ(dx)

+ q̂∞(·|ϕ, a),

and then a straightforward calculation using (5.4) and (5.5) yields (a).

(b) By (3.5) and (3.6), to prove (b) it suffices to show that, for all (ϕ, a, y),

σn(ϕ, a, y)(B) =

∫
X

[∫
B

gη(y −Gn(x′))Pn(dx′|x, a)
]
ϕ(dx)

converges to σ∞(ϕ, a, y)(B) in the total variation norm. To do this, observe that, for
all B ∈ B(X),



366 ONÉSIMO HERNÁNDEZ-LERMA AND ROSARIO ROMERA∣∣∣∣
∫
B

gη(y −Gn(x′))Pn(dx′|x, a)−
∫
B

gη(y −G∞(x′))P∞(dx′|x, a)
∣∣∣∣

≤ ‖gη‖ ‖Pn(· |x, a)−P∞(· |x, a)‖TV +

∫
X

|gη(y−Gn(x′))−gη(y−G∞(x′))|P∞(dx′|x, a)

→ 0 as n→∞,
and the latter convergence is, of course, uniform in B ∈ B(X). This clearly implies

‖σn(ϕ, a, y)(· )− σ∞(ϕ, a, y)(· )‖TV → 0 as n→∞,
and (b) follows.

(c) Choose an arbitrary function u in Cb(X̂). Then, by (2.18),∫
X̂

u(ϕ′)P̂n(dϕ′|ϕ, a) =

∫
Y

u [Hn(ϕ, a, y)] q̂n(dy|ϕ, a).(5.6)

Now observe that the integrand u[Hn(ϕ, a, y)] is bounded by ‖u‖ for all n. Therefore,
(c) follows from (5.6) together with parts (a) and (b), and Lemma 4.4(c).

(d) Fix an arbitrary pair (ϕ, a) in X̂ × A. By part (a) and the Remark 2.6(c),
there is an integer N = Nϕ,a and a finite measure q∗ = q∗N,ϕ,a on Y such that

q̂n(·|ϕ, a) ≤ q∗(·) ∀ n ≥ N.(5.7)

For notational ease, let

P̂n(·) := P̂n(·|ϕ, a), q̂n(·) := q̂n(·|ϕ, a), Hn(y) := Hn(ϕ, a, y).

Moreover, for each Borel set D ⊂ X̂ let

∆n(D) := {y ∈ Y |Hn(y) ∈ D},
so that, replacing u in (5.6) with the indicator function ID, we get

P̂n(D) =

∫
Y

ID[Hn(y)]q̂n(dy) = q̂n[∆n(D)].(5.8)

We will now use (2.22) and (2.23) to show that Γ := {P̂n, n ≥ n} has a finite upper
envelope, which will complete the proof of (d). Let ρu be the set function

ρu(D) := sup
n≥N

P̂n(D),

and (as in (2.23)) let γu be the upper envelope of Γ, i.e.,

γu(D) := sup

{ ∞∑
k=1

ρu(Dk)|{Dk} ⊂ B(X̂) is a partition of D

}

for each D ∈ B(X̂). Note that, by (5.8) and (5.7),

ρu(D) ≤ sup
n≥N

q∗[∆n(D)] ≤ q∗

 ⋃
n≥N

∆n(D)


 ≤ q∗(Y ) <∞.(5.9)
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Moreover, writing
⋃
n≥N ∆n(D) as a union of disjoint sets ∆′

n(D), we have

ρu(D) ≤ q∗
[ ∞⋃
n=N

∆n(D)

]
=

∞∑
n=N

q∗[∆′
n(D)].

Therefore, for any partition {Dk} ⊂ B(X̂) of D,

∞∑
k=1

ρu(Dk) ≤
∞∑
k=1

∞∑
n=N

q∗[∆′
n(Dk)]

=

∞∑
n=N

∞∑
k=1

q∗[∆′
n(Dk)]

=

∞∑
n=N

q∗[∆′
n(D)]

≤ q∗(Y ) <∞ (by (5.9)).

Hence, as the partition {Dk} was arbitrary, it follows that γu(D) is bounded above

by q∗(Y ) <∞ for any D in B(X̂); thus γu is a finite measure, which can be taken as
the measure γ = γϕ,a in (d).

(e) This is a consequence of (c), (d), and Lemma 4.5.
We now go back to the proof of (5.3). First note that using the interchange of

infima we get from (5.1) that

inf
n≥k

V ∗
n (ϕ) = min

a∈A

[
ĉ(ϕ, a) + α · inf

n≥k

∫
X̂

V ∗
n (ϕ′)P̂n(dϕ′|ϕ, a)

]
.

Therefore, taking the lim inf in both sides of (5.1) and using Lemmas 5.1(e) and
4.4(b), we obtain

u(ϕ) ≥ min
a∈A

[
ĉ(ϕ, a) + α

∫
X̂

u(ϕ′)P̂∞(dϕ′|x, a)
]
.

Therefore, by a standard dynamic programming argument (see, for instance, Lemma
4.2.7 in [10])

u(ϕ) ≥ V ∗
∞(ϕ) ∀ϕ ∈ X̂.(5.10)

To complete the proof of (5.3), we next show that

u(ϕ) ≤ V ∗
∞(ϕ) ∀ϕ ∈ X̂,(5.11)

which, together with (5.10), yields (5.3). To obtain (5.11) we see from (5.1) that

V ∗
n (ϕ) ≤ ĉ(ϕ, a) + α

∫
X̂

V ∗
n (ϕ′)P̂n(dϕ′|ϕ, a)(5.12)

for all (ϕ, a) in X̂ × A. Furthermore, by Lemma 5.1(e), P̂n(· |ϕ, a) converges setwise

to P̂∞(· |ϕ, a), and in addition (by the inequality (8.3.33) in [11], p.52), the sequence
V ∗
n (ϕ) is uniformly bounded by Cŵ(ϕ)/(1−β), where C and β := ᾱσ̄ are the constants

in Assumption 2.2(f) and Proposition 3.3, respectively. It follows that the extended
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Fatou lemma, Lemma 8.3.7(b) in [11], is applicable to (5.12), so that taking the lim
sup as n→∞, we get

u(ϕ) ≤ ĉ(ϕ, a) + α

∫
X̂

u(ϕ′)P̂∞(dϕ′|ϕ, a).

This implies that

u(ϕ) ≤ min
a∈A

[
ĉ(ϕ, a) + α

∫
X̂

u(ϕ′)P̂∞(dϕ′|ϕ, a)
]
,

which in turn, by Lemma 4.2.7 in [10], for instance, yields (5.11).

6. Concluding remarks. As was already mentioned, the results in Theorem 2.5
are essentially well known except for the fact that c(x, a) is allowed to be unbounded
and for the generality of the PO system (1.5). However, to our knowledge, the proof
itself is new, even for the case of a bounded cost function c(x, a), that is, when w(· ) ≡ 1
in Assumption 2.2(f). Similarly, parts (a) and (b) in Lemma 5.1, which concern the
total variation norm, are new.

On the other hand, Theorem 2.5 includes the important case in which the state
space X and the observation set Y are countable, as occurs in many applications
[4, 6, 7, 18, 20, 21, 24, . . . ]. In such a case, the filtering function H turns out to be
similar to (3.5) with

σ(ϕ, a, y)(x′) = Q(y|x′)
∑
x

P (x′|x, a)ϕ(x)

(compare with (3.6)), and so Assumptions 2.2, 2.3, and 2.4 can be simplified in the
obvious manner.
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[8] J. González-Hernández and O. Hernández-Lerma, Envelopes of sets of measures, tightness,
and Markov control processes, Appl. Math. Optim., 40 (1999), pp. 377–392.

[9] O. Hernández-Lerma, Adaptive Markov Control Processes, Springer-Verlag, New York, 1989.
[10] O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes: Basic

Optimality Criteria, Springer-Verlag, New York, 1996.
[11] O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control

Processes, Springer-Verlag, New York, 1999.
[12] O. Hernández–Lerma and J. B. Lasserre, Fatou’s lemma and Lebesgue’s convergence the-

orem for measures, J. Appl. Math. Stochastic Anal., 13 (2000), pp. 137–146.
[13] O. Hernández-Lerma and S. I. Marcus, Adaptive control of Markov processes with incom-

plete state information and unknown parameters, J. Optim. Theory Appl., 52 (1987), pp.
227–241.



LIMITING CONTROL OF PARTIALLY OBSERVABLE SYSTEMS 369

[14] O. Hernández-Lerma and S. I. Marcus, Nonparametric adaptive control of discrete-time
partially observable stochastic systems, J. Math. Anal. Appl., 137 (1989), pp. 312–334.

[15] N. Hilgert and O. Hernández-Lerma, Limiting optimal discounted-cost control of a class of
time-varying stochastic systems, Systems Control Lett., 40 (2000), pp. 37–42.

[16] N. Hilgert, R. Senoussi, and J. P. Vila, Nonparametric estimation of time-varying autore-
gressive nonlinear processes, C.R. Acad. Sci. Paris (Sér. 1), 323 (1996), pp. 1085–1090.

[17] A. Hordijk and A. A. Yushkevich, Blackwell optimality in the class of all policies in Markov
decision chains with a Borel state space and unbounded rewards, Math. Methods Oper.
Res., 50 (1999), pp. 421–448.

[18] D. E. Lane, A partially observable model of decision making by fishermen, Oper. Res., 37
(1989), pp. 240–254.

[19] H.-J. Langen, Convergence of dynamic programming models, Math. Oper. Res., 6 (1981), pp.
493–512.

[20] J. A. Loewe, Markov Decision Chains with Partial Information, Ph.D. thesis, Department of
Mathematics and Computer Science, Leiden University, Leiden, The Netherlands, 1995.

[21] G. E. Monahan, A survey of partially observable Markov decision processes: Theory, models,
and algorithms, Manage. Sci., 28 (1982), pp. 1–16.

[22] A. Müller, How does the value function of a Markov decision process depend on the transition
probability?, Math. Oper. Res., 22 (1997), pp. 872–885.

[23] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York,
1971.

[24] U. Rieder, Structural results for partially observed control models, Z. Oper. Res., 35 (1991),
pp. 473–490.

[25] W. J. Runggaldier and L. Stettner, Approximations of Discrete Time Partially Observed
Control Problems, Applied Mathematics Monographs CNR 6, Giardini, Pisa, 1994.

[26] M. Schäl, Conditions for optimality in dynamic programming and for the limit of n-stage
optimal policies to be optimal, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975),
pp. 179–196.

[27] C. Striebel, Optimal Control of Discrete Time Stochastic Systems, Lecture Notes in Econom.
and Math. Systems 110, Springer-Verlag, Berlin, 1975.

[28] A. A. Yushkevich, Reduction of a controlled Markov model with incomplete data to a problem
with complete information in the case of Borel state and control spaces, Theory Probab.
Appl., 21 (1976), pp. 153–158.

[29] S. T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester,
UK, 1991.

[30] O. Hernández-Lerma and J. B. Lasserre, Order-Bounded Sequences of Measures,
manuscript, 1996.

[31] K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin, 1980.
[32] R. Cavazos-Cadena and O. Hernández-Lerma, Recursive adaptive control of Markov de-

cision processes with the average reward criterion, Appl. Math. Optim., 23 (1991), pp.
193–207.

[33] T. E. Duncan, B. Pasik-Duncan, and L. Stettner, Adaptive control of discrete time Markov
processes by the large deviations method, Appl. Math. (Warsaw), 27 (2000), pp. 265–285.

[34] M. K. Ghosh and A. Bagchi, Stochastic games with average payoff criterion, Appl. Math.
Optim., 38 (1998), pp. 283–301.

[35] O. Hernández-Lerma, R. Montes-de-Oca, and R. Cavazos-Cadena, Recurrence conditions
for Markov decision processes with Borel state space: A survey, Ann. Oper. Res., 28 (1991),
pp. 29–46.



LIE ALGEBRAIC OBSTRUCTIONS TO Γ-CONVERGENCE OF
OPTIMAL CONTROL PROBLEMS∗

ARIELA BRIANI† AND FRANCO RAMPAZZO‡

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. 370–392

Abstract. We investigate the possibility of describing the “limit problem” of a sequence of
optimal control problems (P)(bn), each of which is characterized by the presence of a time dependent
vector valued coefficient bn = (bn1 , . . . , bnM ). The notion of “limit problem” is intended in the sense
of Γ-convergence, which, roughly speaking, prescribes the convergence of both the minimizers and
the infimum values. Due to the type of growth involved in each problem (P)(bn) the (weak) limit of
the functions (b2n1

, . . . , b2nM )—beside the limit (b1, . . . , bM ) of the (bn1
, . . . , bnM )—is crucial for the

description of the limit problem. Of course, since the bn are L2 maps, the limit of the (b2n1
, . . . , b2nM )

may well be a (vector valued) measure µ = (µ1, . . . , µM ). It happens that when the problems
(P)(bn) enjoy a certain commutativity property, then the pair (b, µ) is sufficient to characterize the
limit problem.

This is no longer true when the commutativity property is not in force. Indeed, we construct
two sequences of problems (P)(bn) and (P)(b̃n) which are equal except for the coefficient bn(·) and

b̃n(·), respectively. Moreover, both the sequences (bn, b2n) and (b̃n, b̃2n) converge to the same pair
(b, µ). However, the infimum values of the problems (P)(bn) tend to a value which is different from
the limit of the infimum values of the (P)(b̃n). This means that the mere information contained in
the pair (b, µ) is not sufficient to characterize the limit problem. We overcome this drawback by
embedding the problems in a more general setting where limit problems can be characterized by
triples of functions (B0, B, γ) with B0 ≥ 0.

Key words. Γ-convergence, optimal control problems, Lie brackets

AMS subject classifications. 49J15, 49J45, 93B29

PII. S0363012999363560

1. Introduction. The general goal in the various theories of variational conver-
gence consists in singling out a notion of limit problem (P) for a sequence of minimum
problems (Pn). Loosely speaking, this means that both the minimizers (provided they
exist) of the problems (Pn) and the corresponding minimum values should converge
(in some sense) to the minimizers and the minimum value of (P), respectively.

In this paper we shall deal with the case where the minimum problems (Pn) have
the form of the optimal control problems (P)(bn) considered below. More precisely,
the dependence on n follows by the fact that the dynamics of these problems contain
n-dependent time functions bn. We are motivated to study this particular problem
essentially for two reasons. The first one is related to the general problem of homoge-
nization (see, e.g., [BLP78], [LPV85], [SP80]). More specifically, for a control system
one could think to the case where the dynamic contains a quite irregular time depen-
dent coefficient. This would motivate the interest in looking for suitable topologies
such that the approximation of this coefficient with regular functions would provide
a “good” approximation of the given optimal control problem.

The second reason why we are studying the particular class of problems specified
below is twofold. On one hand, this class of problems is general enough to display
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the pathology related to Lie brackets of the involved vector fields (see below). On
the other hand, the relatively simple structure of these problems allows one to avoid
unessential technicalities which would obscure the nature of the question at issue.

Referring to the appendix for some basic tools of the general issue of variational
convergence, let us specify the class of optimal control problems we are going to deal
with.

Let g0, g1, . . . , gM be smooth vector fields, and let l, ki, hi be given real functions.
We shall consider sequences of optimal control problems of the form
(P)(bn)


ẋ = g0(t, x) +

M∑
i=1

gi(x)bni(t)ui(t), x(0) = x0,

min
u

{
J(x, u) =

∫ T

0

(
l(t, x) +

M∑
i=1

ki(t, x)bni(t)ui(t) +

M∑
i=1

h2
i (x)u

2
i (t)

)
dt

}
,

where (bn)n∈N is a sequence of R
M -valued, time dependent coefficients.

We will investigate the Γ-limit (see the appendix) of problems (P)(bn) when

lim
n→∞ bni(·) = bi(·) weakly in L2(0, T ),

lim
n→∞ b2ni(·) = µi(·) weakly∗ inM([0, T ])

(1.1)

for i = 1, . . . ,M (where L2(0, T ) and M([0, T ]) denote the space of 2-integrable
functions and the space of Borel measures, respectively).

We shall assume the following set of hypotheses on the data.
(Hg0) The function g0 : (0, T ) × R

N → R
N is continuous. Moreover, for every

compact subset Q ⊂ R
N there exists a continuous function γ0(t) such that, for every

t ∈ [0, T ] and for every x, y ∈ Q, one has

|g0(t, x)− g0(t, y)| ≤ γ0(t)|x− y|.

(Hg1) For each i = 1, . . . ,M the vector fields gi from R
N into R

N are of class C2,
and the trajectories of the equations ẋ = gi(x) exist globally.

(Hb) For each n ∈ N , bn(t) = (bn1
(t), . . . , bnM (t)) ∈ L2(0, T ; RM ).

(Hu) The controls u(t) = (u1(t), . . . , uM (t)) belong to L2(0, T ; RM ).
(Hl) The function l : [0, T ] × R

N → [0,∞] is a Borel function, and for every
compact subset Q ⊂ R

N there exists an L1 function η(t) such that, for every t ∈ [0, T ]
and for every x, y ∈ Q,

|l(t, x)− l(t, y)| ≤ η(t) |x− y| .

Moreover, the function l(t, 0) belongs to L1(0, T ).
(Hk) For each i = 1, . . . ,M , ki : [0, T ] × R

N → [0,∞] is a continuous function.
There exists a constant C > 0 such that, for each t ∈ [0, T ] and for each y ∈ R

N

|ki(t, y)| ≤ C, i = 1, . . . ,M.(1.2)

Moreover, there exists a constant Lk > 0 such that, for each t ∈ [0, T ] and for each
y, z ∈ R

N ,

|ki(t, y)− ki(t, z)| ≤ Lk|y − z|, i = 1, . . . ,M.(1.3)
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(Hh) For each i = 1, . . . ,M , hi : R
N → [0,∞] is a Borel function, and for every

compact subset Q ⊂ R
N there exists a constant Lh such that

|hi(x)− hi(y)| ≤ Lh |x− y| , i = 1, . . . ,M

for every x, y ∈ Q. Moreover, we assume the following coercivity hypothesis. There
exists a constant K > 0 such that, for every x ∈ R

N ,

M∑
i=1

h2
i (x)u

2
i ≥ K |u|2

for every u ∈ L2(0, T ).
Remark 1.1. Some of these hypotheses can be weakened further. For example,

in view of section 5, the constants C and Lk in (1.2), (1.3) may be replaced by two
functions in L1(0, T ). Moreover, at the cost of some technical complications in the
computation of the Γ-limit in Definition 2.3 below, the maps l, hi, and ki may be
allowed to depend on n as well.

Let us begin by remarking that some authors (see, e.g., [BC89], [BF93], [Fr98])
studied this problem when the maps g1, . . . , gM , h1, . . . , hM are constant and ki = 0,
i = 1, . . . ,M . In particular, in [BF93], [Fr98] one studies the limit of these problems
when the L2 structural parameters bn(·) = (bn1

, . . . , bnM )(·) converge, say, weakly,
to an L2 map b(·) = (b1, . . . , bM )(·). It turns out that in order to single out the
limit problem one needs to know the (weak) limit µ = (µ1, . . . , µM )(·) of the maps
b2n = (b2n1

, . . . , b2nM )(·) as well. Let us recall that this limit, when it exists, can well

be different from b2(·). (Actually, one has µ ≥ b2.) Moreover, in general, it is not an
L1 function. Actually, it is a measure on [0, T ]. The main point established in the
quoted papers consists in the fact that the pair (b, µ) does single out the limit problem.
This result relies upon a crucial assumption, namely, the fact that the gi and the hi
are independent of x, which, in turn, allows one to regard the limit equation and
the limit payoff as relations in measure. On the contrary, as soon as the gi actually
depend on x—and a certain commutativity assumption (see below) is not verified—
the measure-theoretical approach does not work, as shown by the simple example in
section 3.

In this paper we shall study the limit of problem (P)(bn) when both the gi and
the hi can depend on x and the ki do not vanish.

Our aim is threefold. To begin with, in section 2 we assume a commutativity
hypothesis, which generalizes the case where the gi are constant. Namely, we assume
that [gi, gj ] = 0 for all i, j = 1, . . . ,M (plus the fact that the ki and hi are constant),
where [gi, gj ] denotes the Lie bracket of the fields gi and gj . It is remarkable that,
under this assumption, one can prove the same result as in the case where the gi are
x-independent. In other words, the limit problem of the (P)(bn) is still singled out by
the limit (b, µ) of the pairs (bn, b

2
n). This limit is denoted by Φ−1(Q(b,µ)), for it is

the preimage of a simpler problem (Q)(b,µ) via a diffeomorphism Φ, which, in turn, is
determined by the (commutative) fields gi. The result in this section allows one to
get a geometric insight into the results in [BC89], [BF93], [Fr98] as well, for, while
the property of “being independent of x” is not chart-invariant, commutativity has
an intrinsic meaning.

Second, in section 3 we present an example that reveals the crucial difference
between the case with vanishing Lie brackets and the general case. Actually, in
this example (the Lie brackets do not vanish and) two sequences ((bn, b

2
n))n∈N and
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((b̃n, b̃
2
n))n∈N converge to the same pair (b, µ), while the corresponding problems

(P)(bn) and (P)(b̃n) converge to different limit problems. Hence, provided a limit
problem exists (in some possibly extended sense), in order to characterize it one
needs some “extra information” beside that contained in the assignment of the pair
(b, µ).

The construction of an extended setting for problems with no commutativity as-
sumptions is, in fact, the third aim of the paper. We pursue this objective in section 4
by redefining the minimum problems in the space of the graphs. Within this extended
setting every minimum problem is identified by a triple of functions (B0, B, γ) defined
on [0, 1], this triple replacing the role of the pair (b, µ). The map B0, whose square
root is the derivative of time t with respect to a pseudotime parameter s in the interval
[0, 1], assumes values greater than or equal to zero. A particular case is represented
by the original problems (P)(bn), which are identified with problems corresponding to
triples of the form (B0n , Bn, B

2
n) with B0n strictly greater than zero almost everywhere

(a.e.) in [0, 1] and Bn
.
= bnB0n . On the other hand, the extra information needed

in order to single out the limit problem is provided by the restriction of γ to the
subintervals of [0, 1], where B0 is equal to zero.

Last, in section 5 we prove some statements aiming to compose the (apparent)
discrepancy between the case with vanishing Lie brackets—which is treated in section
2 in terms of the original time t—and the general case—which is addressed in section
4 in an extended framework. The key points consist in a projection of the set of triples
(B0, B, γ) onto the set of the pairs (b, µ) and in the consequent partition of the set
of triples. Roughly speaking, when the commutativity hypothesis holds, all extended
problems in a class of this partition correspond to a unique problem, namely, the one
singled out by the (unique) projection (b, µ) of the triples in the class.

For the sake of self-consistency we conclude the paper with an appendix, where
some basic facts from the general theory of Γ-convergence are briefly recalled.

Let us point out that a reader interested only in the case with vanishing Lie
brackets may read just section 2. On the other hand, the construction of the extended
setting for the general case, which is performed in section 4, is self-contained and
independent of the antecedent material of the paper.

Notation. We will write Lp(0, T ; RM ) to denote the space of p-integrable func-
tions from [0, T ] into R

M endowed with the usual norm ‖·‖p. Moreover,M([0, T ]; RM )
and BV ([0, T ]; RM ) will denote the space of R

M -valued Borel measure on [0, T ] and
the space of R

M -valued functions with bounded variation on [0, T ], respectively. If
M = 1, we write Lp(0, T ),M([0, T ]), BV ([0, T ]) instead of Lp(0, T ; R),M([0, T ]; R),
BV ([0, T ]; R), respectively.

If µ ∈M([0, T ]), µa and µs stand for the absolutely continuous and the singular
part of µ with respect to the Lebesgue measure dt, respectively. If µ1 and µ2 are a
vector measure and a scalar measure on [0, T ], respectively, we write µ1 << µ2 to
mean that µ1 is absolutely continuous with respect to µ2. Moreover, we denote the
derivative of µ1 with respect to µ2 (in the sense of the Radon–Nikodym theorem) by
dµ1

dµ2
. Finally, by suppµ we mean the support of the measure µ.

2. Null Lie brackets. We assume here the commutativity condition (HC) below,
which, in particular, states that all Lie brackets [gi, gj], i, j = 1, . . . ,M , are identically
equal to zero. This hypothesis is crucial in order to prove a result of Γ-convergence
(see the appendix for the definition of Γ-limit) analogous to the one proved in [Fr98],
where the vectors multiplying the control were assumed x-independent. This fact
allows one to get a geometric insight into the question, since the case with constant gi
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is nothing but a particular occurrence of the commutativity condition. We will see in
the next sections that such a result does not hold when the commutativity assumption
is not assumed.

Commutativity condition (HC). For every i, j = 1, . . . ,M the Lie bracket

[gi, gj](x) = Dgj(x)gi(x)−Dgi(x)gj(x)

(where Dg(x) denotes the derivative of g at x) is identically equal to zero. Moreover,
the maps hi and ki are constant. (See Remark 2.12 below for a comment on this
latter condition.)

In order to define the Γ-limit, we introduce a suitable coordinate transformation
which is induced by the fields g1, . . . , gM . This transformation is made possible by
the crucial commutativity assumption (HC). Let us begin by adding the auxiliary

equations zi(t) =
∫ t
0
bni(s)ui(s)ds, i = 1, . . . ,M . Then the state equation of (P)(bn)

reads as (
ż
ẋ

)
= g̃0(t, x) +

M∑
i=1

g̃i(x)bni(t)ui(t),

where

g̃0 : [0, T ]× R
N → R

M × R
N ,

(t, x) �→




0M
g1

0 (t, x)
.
.

gN0 (t, x)


 ,

and, for every i = 1, . . . ,M ,

g̃i : R
N → R

M × R
N ,

x �→




ei
g1
i (x)
.
.

gNi (x)


 ,

0M and ei being the zero vector and the ith (column) vector of the canonical basis in
R
M , respectively.

In the extended state space R
M × R

N , problem (P)(bn) is now formulated as
(P)(bn)



(
ż
ẋ

)
= g̃0(t, x) +

M∑
i=1

g̃i(x)bni(t)ui(t), (z(0), x(0)) = (0, x0),

min
u

{
Jn((z, x), u) =

∫ T

0

(
l(t, x) +

M∑
i=1

kibni(t)ui(t) +

M∑
i=1

h2
i u

2
i (t)

)
dt

}
.

(Notice that we use the same notation, namely, (P)(bn), to mean both the problem in
R
N and the corresponding one in R

M × R
N .)

Let us set

Φ1(z, x) = z,
Φ2(z, x) = exp(−zMgM) ◦ · · · ◦ exp(−z1g1)x
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(where exp(sg)x stands for the value at time s of the solution of the Cauchy problem
ẏ(s) = g(y(s)), y(0) = x), and let us consider the map Φ defined by(

z
y

)
= Φ(z, x)

.
=

(
Φ1(z, x)
Φ2(z, x)

)
.

We shall also use the notations (z, x(z, y)) and (z, y(z, x)) instead of Φ−1(z, y) and
Φ(z, x), respectively. Notice that, since the maps gi are of class C2, Φ is a local
diffeomorphism. Actually, Φ is a global diffeomorphism.

Let us define the vector fields ǧ0 : (0, T ) × R
M × R

N → R
M × R

N and ǧi :
R
M × R

N → R
M × R

N , i = 1, . . . ,M , by setting

ǧ0(t, z, y)
.
= DΦ(z, x) g̃0(t, x),

ǧi(z, y)
.
= DΦ(z, x) g̃i(x),

where (z, x) = Φ−1(z, y). Notice that ǧ0 and ǧi are the expressions of g̃0 and g̃i,
respectively, in the new coordinate (z, y).

Proposition 2.1. The first components of the vector field ǧ0 : (0, T ) × R
M ×

R
N → R

M × R
N are equal to zero, that is,

ǧ0(t, z, y) =

(
0M

g�0(t, z, y)

)
,

where the (column) vector field g�0(t, z, y) is given by g�0(t, z, y) = DxΦ2(z, x)g̃0(t, x)
with (z, x) = Φ−1(z, y). In particular, ǧ0 verifies (Hg0) (with N replaced by M +N).
Moreover, one has, for i = 1, . . . ,M ,

ǧi(z, y) =

(
ei
0N

)
,

where 0N stands for the (column) zero vector of R
N .

A proof of this trivial proposition can be found in [BR91].
By means of this coordinate change, problem (P)(bn) is transformed into the

problem

(Q)(bn)



(

ż
ẏ

)
= ǧ0(t, z, y) +

M∑
i=1

ǧibni(t)ui(t), (z(0), y(0)) = (0, x0),

min
u

{
J̌n((z, y), u)

}
,

J̌n((z, y), u) =

∫ T

0

(
l(t, x(z, y)) +

M∑
i=1

kibni(t)ui(t) +

M∑
i=1

h2
i u

2
i (t)

)
dt,

which, thanks to Proposition 2.1, displays the following, particularly simple, form:

(Q)(bn)




ż1(t) = bn1
(t)u1(t),

.

.
żM (t) = bnM (t)uM (t),

ẏ(t) = g�0(t, z, y),

min
u

{
J̌n((z, y), u)

}
.
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Remark 2.2. By saying that “(P)(bn) is transformed into (Q)(bn)” we mean the
following.

(i) A trajectory-control pair ((z, y), u) is admissible for the problem (Q)(bn) if and
only if the trajectory-control pair ((z, x), u)

.
= (Φ−1(z, y), u) is admissible for (P)(bn).

(ii) For each trajectory-control pair ((z, y), u), if ((z, x), u)
.
= (Φ−1(z, y), u), then

Jn((z, x), u) = J̌n(Φ(z, x), u)

for every u ∈ L2(0, T ; RM ).
In particular, a trajectory-control pair ((z�, x�), u�) is optimal for (P)(bn) if and

only if ((z�, y�), u�) is optimal for (Q)(bn), where y� = Φ2(z
�, x�).

In order to provide a representation of the Γ-limit of problems (P)(bn) we shall be
concerned with the set of data pairs

A =
{
(b, µ) ∈ L2(0, T ; RM )×M([0, T ]; RM ) : µ ≥ b2

}
,

where µ = (µ1, . . . , µM ), b = (b1, . . . , bM ), and the inequality has to be interpreted as
µi ≥ b2i for all i = 1, . . . ,M (in the measure-theoretical sense). In particular, we shall
consider the subset As ⊂ A defined by

As =
{
(b, µ) ∈ A : µ = b2

}
,

which we call the subset of simple data pairs of A. (We recall that b2 denotes the
vector (b21, . . . , b

2
M ).)

Definition 2.3. Let (b, µ) ∈ A, and let us set σ =
∑M
i=1 µ

s
i . We consider the

variational problem

(Q)(b,µ) min
((z,y),u)

{
J̌ ((z, y), u) : ż << dt+ σ, ẏ = g�0(t, z, y)

}
,

where the minimum is searched over the trajectory-control pairs ((z, y), u) in BV ([0, T ]; RM×
R
N )× L2(0, T ; RM ) and the cost functional J̌ is defined by

J̌ ((z, y), u)

.
=

∫ T

0

[
l(t, w) +

M∑
i=1

(
kiż

a
i (t) + h2

i u
2
i (t) + h2

i

(bi(t)ui(t)− żai (t))
2

(µai (t)− b2i (t))

)]
dt

+

∫
Ωs\{0,T}

M∑
i=1

(
h2
i

∣∣∣∣dżsidσ
∣∣∣∣
2

+ ki

∣∣∣∣dżsidσ
∣∣∣∣
)
dσ

+
M∑
i=1

(
h2
i

|zi(0+)− zi(0
−)|2

σ({0}) + ki
∣∣zi(0+)− zi(0

−)
∣∣)

+

M∑
i=1

(
h2
i

|zi(T )− zi(T
−)|2

σ({T}) + ki
∣∣zi(T+)− zi(T

−)
∣∣) ,

where we have set w = x(z, y) and Ωs = suppσ. (See section 1 for the notations in
the above formula.)

Remark 2.4. We adopt here the convention (already used in [BC89], [BF93],
[Fr98]) according to which the fractions appearing in the definition of J̌ are zero as
soon as their denominators are zero.
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Remark 2.5. If one has b2i = µi for i = 1, . . . ,M , then the limit problem (Q)(b,µ)

reduces to the standard form

(

ż
ẏ

)
= ǧ0(t, z, y) +

M∑
i=1

ǧi(z, y)bi(t)ui(t), (z(0), y(0)) = (0, x0),

min
u

{
J̌((z, y), u)

}
,

J̌((z, y), u) =

∫ T

0

(
l(t, x(z, y)) +

M∑
i=1

kibi(t)ui(t) +

M∑
i=1

h2
i u

2
i (t)

)
dt.

Definition 2.6. Let us rewrite problem (Q)(b,µ) in the form

(Q)(b,µ) min
{
F̌ ((z, y), u) : (z, y) ∈ BV ([0, T ]; RM × R

N ), u ∈ L2(0, T ; RM )
}
,

where F̌ ((z, y), u)
.
= J̌ ((z, y), u)+χ{ż<<dt+σ , ẏ=g	0(t,w)}. We define problem Φ−1((Q)(b,µ))

as follows:

Φ−1((Q)(b,µ)) min{F̌ (Φ((z, x)), u) : (z, x) ∈ BV ([0, T ]; RM × R
N ),u ∈ L2(0, T ; RM )}.

The next result states that problems (P)(bn) converge to the variational problem
Φ−1((Q)(b,µ)). For the basic facts concerning the Γ-convergence, see the appendix and
the references therein.

Theorem 2.7. If the (bn, b
2
n) converge to (b, µ) as in (1.1), then the problems

(P)(bn) Γ-converge to Φ−1((Q)(b,µ)).
Proof. In view of Lemma 2.8 below we have to prove only that the (Q)(bn)

Γ-converge to (Q)(b,µ). Now the optimal control problems (Q)(bn) verify hypothe-
ses (7.1)–(7.5) in [Fr98]. Moreover, assumption (1.1) here implies (7.17) and (7.18)
therein. Hence, in view of the results in [Fr98], problems ((Q)(bn))n∈N Γ-converge to
the problem (Q)(b,µ) introduced in Definition 2.3.

Lemma 2.8. If the sequence of problems ((Q)(bn))n∈N Γ-converges to (Q)(b,µ),
then the sequence ((P)(bn))n∈N Γ-converges to Φ−1((Q)(b,µ)).

Proof. To begin with, for each n ∈ N we set

F̌n((z, y), u)
.
= J̌n((z, y), u) + χČn((z, y), u),

where Čn is the set of admissible trajectory-control pairs for (Q)(bn) (see the ap-
pendix). By assumption we have (see Definition A.3 in the appendix)

Γ(N,U−, Y −) lim
n→∞ F̌n((z, y), u) = F̌ ((z, y), u).(2.1)

Now (see Remark 2.2)

Fn((z, x), u)
.
= Jn((z, x), u) + χCn((z, x), u)

= J̌n(Φ(z, x), u) + χČn(Φ(z, x), u)) = F̌n(Φ(z, x), u),

where Cn is the set of admissible trajectory-control pairs for (P)(bn). Hence, by (2.1),

Γ(N,U−, Y −) lim
n→∞Fn((z, x), u)

= Γ(N,U−, Y −) lim
n→∞ F̌n(Φ(z, x), u) = F̌ (Φ(z, x), u),
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which proves the lemma.
Theorem 2.7 says that the Γ-limit of a sequence of problems (P)(bn) has the form

Φ−1((Q)(b,µ)). Conversely, we have the following.
Theorem 2.9. For each problem Φ−1((Q)(b,µ)) with (b, µ) ∈ A, there exists a

sequence of problems ((P)(bn))n∈N which Γ-converges to Φ−1((Q)(b,µ)).
In order to prove this theorem, we need the following result.
Lemma 2.10. For each (b, µ) ∈ A (with M = 1) there exists a sequence (bn)n∈N ∈

L2(0, T ) such that bn → b weakly in L2(0, T ) and b2n → µ weakly∗ in M([0, T ]).
In the case where µ is an L∞-function we can sharpen the above result as follows.
Lemma 2.11. If (b, µ) ∈ A (with M = 1) and µ ∈ L∞(0, T ), then there exists

a sequence (bn)n∈N ∈ L2(0, T ) such that bn → b weakly in L2(0, T ) and b2n → µ
weakly∗ in L∞(0, T ).

We omit the proofs of both Lemmas 2.10 and 2.11, for they are mostly based on
the same arguments as in the proof of Theorem 3.2 in [BR93].

Proof of Theorem 2.9. In view of Lemma 2.10, for each (b, µ) ∈ L2(0, T ; RM ) ×
M([0, T ]; RM ) such that (b, µ) ∈ A there exist sequences (bni)n∈N in L2(0, T ) such
that bni → bi weakly in L2(0, T ) and b2ni → µi weakly∗ inM([0, T ]) for i = 1, . . . ,M .
Hence, in view of Theorem 2.7, the sequence of problems ((P)(bn))n∈N Γ-converges to
Φ−1((P)(b,µ)).

Remark 2.12. By the above arguments it is clear that we could replace hypothesis
(HC) with the following more general assumption (GHC), which, on one hand, does
not assume that the functions ki and hi are constant and, on the other hand, involves
these functions in the zero-Lie bracket condition.

Generalized commutativity condition (GHC). For every α, β = 1, . . . , 2M

[γα, γβ] = 0,

where the vector fields γδ are defined on R
N+2 by

γδ =




g1
i

.

.
gNi
kδ
0




when δ = 1, . . . ,M , and

γδ =




0
.
.
0
0
hδ




when δ = M + 1, . . . , 2M .

3. Nonvanishing Lie brackets: An example. In the previous section it has
been shown that whenever the vector fields commute the Γ-limit of problems (P)(bn)

for (bn, b
2
n) converging to (b, µ) does exist. However, this is no longer true whenever

some Lie bracket is not vanishing, as shown in the example below. In the next sections
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we will provide a theoretical framework from which it will be clear that, in general,
there exist infinitely many limit problems corresponding to the pair (b, µ).

In order to get rid of the suspicion that having a state’s dimension larger than
the control’s dimension might matter with the convergence question, the state in this
example is one-dimensional.

Let N = 1, M = 2, and consider the state equation{
ẋ(t) = bn1

(t)u1(t) + a(x(t))bn2
(t)u2(t),

x(0) = 0,

where a(x) is a bounded C2 function coinciding with the identity map in the interval
[−4, 4]. Hence g1(x) coincides with the constant 1, and g2(x) = a(x). Let us assume
(Hb), (Hu), T = 1, and let us consider the cost functional

Jbn(x, u) =

∫ 1

0

(|u(t)|2 + bn1
(t)u1(t) + a(x(t))bn2

(t)u2(t)
)
dt

(
=

∫ 1

0

|u(t)|2 dt+ x(1)

)
.

If we set h1(x) = 1, h2(x) = 1, k1(t, x) = 1, k2(t, x) = a(x), and l(t, x) = 0, the
hypotheses in section 2 turns out to be satisfied.

Since [g1, g2](0) = −1, neither the commutativity condition (HC) nor its general-
ization (GHC) are fulfilled.

Let us consider the two sequences of coefficients

(bn1
(t), bn2

(t))
.
=
(√

2n, 0
)
I[1− 1

n
,1− 1

2n ]
(t) +

(
0,
√

2n
)
I[1− 1

2n
,1](t),

(
b̃n1

(t), b̃n2
(t)
)
.
=
(
0,
√

2n
)
I[1− 1

n
,1− 1

2n ]
(t) +

(√
2n, 0

)
I[1− 1

2n
,1](t),

where I[a,b] = 1 if t ∈ [a, b] and I[a,b] = 0 if t /∈ [a, b]. Let us observe that

(bn1
(t), bn2

(t))→ (0, 0) weakly in L2(0, T ),

(
b̃n1

(t), b̃n2
(t)
)
→ (0, 0) weakly in L2(0, T ),

(
b2n1

(t), b2n2
(t)
)→ (δ1, δ1) weakly∗ inM([0, T ]),

(
b̃2n1

(t), b̃2n2
(t)
)
→ (δ1, δ1) weakly∗ inM([0, T ]),

where δ1 denotes the Dirac measure at T = 1. Hence the two sequences fulfill the con-
vergence assumption (1.1) with the same limit (b1, b2) = (0, 0) and (µ1, µ2) = (δ1, δ1).
Yet the corresponding sequences ((P)(bn))n∈N and ((P)(b̃n))n∈N cannot converge to
the same Γ-limit. Indeed, if we implement the control

(un1 (t), un2 (t)) =

(
−
√
n

2
I[1− 1

n ,1− 1
2n ]

(t), 0

)
+
(
0,
√
n I[1− 1

2n ,1]
(t)
)

in the system driven by the (bn), we obtain a trajectory xn verifying

xn(1) = −1

2
exp(2−1/2).
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Thus

Jbn(xn, un) = K
.
= −1

2
exp(2−1/2) +

3

4

(
< −1

4

)
.

On the contrary, if we consider (P)(b̃n), a simple application of the Pontryagin maxi-
mum principle shows that

(ûn1 (t), ûn2 (t)) =

(
−1

2
b̃n1

, 0

)

is an optimal control. The corresponding optimal trajectory x̂n solves

˙̂xn(t) = −1

2
b̃2n1

, x̂n(0) = 0.

Hence

−1

4
= Jb̃n(x̂n, ûn) = min

u
{Jb̃n(x, u)}.

In particular, one has

lim inf
n→∞

(
inf
u
{Jbn(x, u)}

)
≤ K < −1

4
= lim inf

n→∞

(
min
u
{Jb̃n(x, u)}

)
.

Hence, although the (bn1
, bn2

) and (b̃n1
, b̃n2

) converge to the same (b, µ) in the sense
of (1.1), in view of Theorem A.2 in the appendix the Γ-limit of the (P)(bn) and (P)(b̃n)

are necessarily different.

4. Nonvanishing Lie brackets: An extended setting. In this section we
still assume hypotheses (Hg0), (Hg1), (Hl), (Hk), and (Hh), but we do not assume
the commutativity hypothesis (HC) made in section 2. The previous example shows
that in order to determine the limit problem it is not enough to assume that bn → b
weakly in L2(0, T ; RM ) and b2n → µ weakly∗ inM([0, T ]; RM ). In fact, due to the non-
commutativity of the vector fields gi (i = 1, . . . ,M), some extra information—related
to the choice of the particular sequence (bn, b

2
n) approximating (b, µ)—is needed. It

turns out that this extra information can be represented neatly by first embedding
the problem in the (t, x)-space and then reparameterizing time with a nondecreasing
map whose derivative is zero for those values of t where µ is concentrated. In par-
ticular, this embedding allows one to keep track of the particular sequence (bn, b

2
n)

approximating (b, µ).
Let us begin with some definitions.
Definition 4.1. The set of data triples is defined as

A .
=

{
(B0, B, γ) : B0 : [0, 1]→ R

+ ∪ {0} , B : [0, 1]→ R
M ,

γ : [0, 1]→ (R+ ∪ {0})Mare Borel functions in L∞(0, T ; RM ) :

γi ≥ B2
i for all i = 1, . . . ,M and

∫ 1

0

B2
0(s)ds = T

}
.

The subset ANI of nonimpulsive data triples is defined as

ANI .
= {(B0, B, γ) ∈ A : B0 > 0 a.e. on [0, 1]}.
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The subset of simple data triples is defined as

As .
=
{
(B0, B, γ) ∈ A : γi = B2

i a.e. on [0, 1] , i = 1, . . . ,M
}
.

We will denote the vector (B2
1 , . . . , B

2
M ) by B2.

For each triple (B0, B, γ) ∈ A let us consider the space-time optimal control
problem

(P)(B0,B,γ)




y′(s) = g0(s, y)B
2
0(s) +

M∑
i=1

gi(y)Vi(s), y(0) = y0,

min
U,V

{
Ĵ(y, U, V )

}
,

Ĵ(y, U, V ) =

∫ 1

0

(
l(s, y)B2

0(s) +

M∑
i=1

ki(s, y)Vi(s) +

M∑
i=1

h2
i (y)U

2
i (s)

+

M∑
i=1

h2
i (y)

(Bi(s)Ui(s)− Vi(s))
2

(γi(s)−B2
i (s))

)
ds,

where U ∈ L2(0, 1; RM ) and V ∈ L2(0, 1; RM ).
Remark 4.2. When (B0, B, γ) ∈ As, that is, γi = B2

i , i = 1, . . . ,M , the optimal
control problem (P)(B0,B,γ)

reduces to the following standard form:

(P)(B0,B,B
2)




y′(s) = g0(s, y)B
2
0(s) +

M∑
i=1

gi(y)Bi(s)Ui(s), y(0) = y0,

min
U

{
Ĵ(y, U)

}
,

Ĵ(y, U) =

∫ 1

0

(
l(s, y)B2

0(s) +

M∑
i=1

ki(s, y)Bi(s)Ui(s) +

M∑
i=1

h2
i (y)U

2
i (s)

)
ds.

We shall show that the class of problems (P)(b)—where (P)(b) stands for a problem
like (P)(bn) when bn is replaced by b—can be put into one-to-one correspondence with
the class of space-time problems {(P)(B0,B,B2) : (B0, B,B

2) ∈ As ∩ ANI}. Then
we shall give sufficient conditions for the Γ-convergence of a sequence of problems
(P)(B0n ,Bn,B

2
n) to a problem (P)(B0,B,γ)

. Last, we shall see that every such problem is
the Γ-limit of a suitable sequence of problems (P)(B0n ,Bn,B

2
n).

Definition 4.3. Given (B0, B, γ) ∈ A, let us define α(B0, B, γ)
.
= (b, µ) by

setting the following.

(i) t(s)
.
=

∫ s

0

B2
0(u)du,

and, whenever there exists δ > 0 such that B0 > 0 a.e. on [s− δ, s+ δ] ∩ [0, 1],

bi(t(s))
.
=

Bi(s)

B0(s)
(i = 1, . . . ,M).



382 ARIELA BRIANI AND FRANCO RAMPAZZO

(ii) For each Borel subset E ⊆ [0, T ]

µi(E)
.
=

∫
I

γi(s)ds (i = 1, . . . ,M)

when E = t(I).
Remark 4.4. (a) The function b(·) is well defined. Indeed, the set of values of t

such that t−1 is not a singleton is at most countable.
(b) For each (B0, B, γ) ∈ A the pair (b, µ) = α(B0, B, γ) is in A; in particular, if

(B0, B,B
2) ∈ ANI ∩ As, then α(B0, B,B

2) = (b, b2) ∈ As.
(c) The definition of µ is equivalent to∫

[0,T ]

φ(t)dµ =

∫ 1

0

〈γi(s), φ(t(s))〉ds for all φ ∈ C([0, T ]; RM ),(4.1)

where 〈·, ·〉 denotes the scalar product in R
M .

(d) The map α is not injective, unless it is restricted to ANI ∩ As. Let us show
that it is surjective. Indeed, for every (b, µ) let us set

s(t) =




0 t = 0,
t+

∫
]0,t]

dµ

T +
∫
]0,T ]

dµ
0 < t < T,

1 t = T,

and let us define t(s) as the unique nondecreasing continuous map such that t◦s(τ) = τ
for all τ ∈ [0, T ]. Correspondingly, let us set B2

0(s) = t′(s), Bi(s) = bi(t(s))B0(s),
s ∈ [0, 1], i = 1, . . . ,M . Finally, let us choose γi(s) such that∫ s2

s1

γi(s)ds =

∫
t(s1,s2)

dµi, i = 1, . . . ,M,

for each subinterval (s1, s2) of [0, 1]. Then α(B0, B, γ) = (b, µ). We will call this data
triple the canonical preimage of (b, µ). Let us notice that for every (b, µ), α−1(b, µ)
turns out to be the class of data triples in A such that

(B0, B, γ), (B̃0, B̃, γ̃) ∈ α−1(b, µ) ⇔




B0 = B̃0 a.e. ,

B = B̃ a.e. ,
γi(s) = γ̃i(s) for a.e. s ∈ [0, 1] \ ∪Ij
and

∫
Ij

γi(s)ds =

∫
Ij

γ̃i(s)ds for all j,

where {Ij} is the (countable) family of (disjoint) subintervals of [0, 1] such that B0 =

B̃0 = 0 on each Ij .
In the following two theorems we establish a one-to-one correspondence between

the class of problems (P)(b), b ∈ L2(0, T ; RM ), and the class of problems (P)(B0,B,γ)
,

(B0, B, γ) ∈ ANI ∩ As (i.e., B2 = γ and B0 > 0). Before stating these results let us
notice that α is one-to-one from ANI ∩ As onto As.

Theorem 4.5. Let b and u satisfy (Hb) and (Hu), and let x(·) be the correspond-
ing solution of the state equation of (P)(b)


ẋ = g0(t, x) +

M∑
i=1

gi(x)bi(t)ui(t),

x(0) = x0.

(4.2)
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Let (B0, B,B
2) = α−1(b, b2), and set U(s)

.
= [u ◦ t(s)]B0(s). Let y be the solution of

the state equation of (P)(B0,B,B
2)


y′(s) = g0(s, y)B

2
0(s) +

M∑
i=1

gi(y)Bi(s)Ui(s),

y(0) = y0.

(4.3)

Then

y(s) = x(t(s)) for all s ∈ [0, 1].

Conversely, let (B0, B,B
2) ∈ As ∩ ANI , U ∈ L2(0, 1; RM ), and let y(·) be the corre-

sponding solution of (4.3). Setting (b, b2) = α(B0, B,B
2), let us define

ui(t)
.
=

Ui(s(t))

B0(s(t))
, i = 1, . . . ,M.

If x(·) is the solution of (4.2) corresponding to these bi and ui, then

x(t) = y(s(t)) for all t ∈ [0, T ].

Proof. The proof of this theorem relies essentially on the uniqueness properties
of (4.2) and (4.3). For this reason we omit it.

An analogous result holds for the payoffs J and Ĵ .
Theorem 4.6. Consider b, u, x,B0, B, U , and y as in the first part of Theorem

4.5, and set

J(x, u) =

∫ T

0

(
l(t, x) +

M∑
i=1

ki(t, x)bi(t)ui(t) +

M∑
i=1

h2
i (x)u

2
i (t)

)
dt,

Ĵ(y, U) =

∫ 1

0

(
l(s, y)B0(s) +

M∑
i=1

ki(s, y)Bi(s)Ui(s) +

M∑
i=1

h2
i (y)U

2
i (s)

)
ds.

Then Ĵ(y, U) = J(x, u). Conversely, if B0, B, U, y and b, u, x are as in the second
part of Theorem 4.5, then J(x, u) = Ĵ(y, U).

Proof. In view of Theorem 4.5 the proof of this theorem is straightforward.
When the problems (P)(b) and (P)(B0,B,B

2) are related as in the previous re-
sult, we say that they are isomorphic. In view of Theorems 4.5 and 4.6 the map
(P)(b) �→ (P)(B0,B,B

2) with α(B0, B,B
2) = (b, b2) establishes a one-to-one corre-

spondence between the class of problems {(P)(b) , b ∈ L2(0, T ; RM )} and the subset
{(P)(B0,B,γ)

, (B0, B, γ) ∈ As ∩ ANI} ⊂ {(P)(B0,B,γ)
, (B0, B, γ) ∈ A} . This one-to-

one correspondence can be regarded as an embedding of the original class of problems
{(P)(b) : b ∈ L2(0, T ; RM )} in the larger class {(P)(B0,B,γ)

, (B0, B, γ) ∈ A}. In
this extended setting we are now able to provide a convergence result, so giving an
answer to the question raised with the example in section 3. In other words, we are
going to replace the assumptions on the sequence ((P)(bn))n∈N with hypotheses on
the sequence of isomorphic problems (P(B0n ,Bn,B

2
n))n∈N . And assigning the limit of

the triples (B0n , Bn, B
2
n), we actually provide the extra information whose lack was

revealed by the example of section 3.
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Here is the main result.
Theorem 4.7. Let (B0n , Bn, B

2
n) ∈ As ∩ ANI and (B0, B, γ) ∈ A verify

lim
n→∞B0n(·) = B0(·) a.e. on [0, 1],(4.4)

lim
n→∞Bn(·) = B(·) weakly in L1(0, 1; RM ),(4.5)

lim
n→∞B2

n(·) = γ(·) weakly in L1(0, 1; RM ).(4.6)

Then problems P(B0n ,Bn,B
2
n) Γ-converge to problem (P)(B0,B,γ)

.
Remark 4.8. In the previous statement one possibly has α(B0n

, Bn, B
2
n) = (bn, b

2
n)

with bn ∈ L2(0, T ; RM ). So, in particular, Theorem 4.7 can be regarded as a conver-
gence result concerning the original problems (P)(bn).

Proof of Theorem 4.7. Thanks to the performed rescaling of the problem, we can
exploit the general results proved by Buttazzo and Cavazzuti in [BC89]. Actually,
hypotheses (Hg0), (Hg1), (Hl), (Hk), (Hh), and (4.4)–(4.6) imply (3.6)–(3.10) and
(3.12)–(3.15) in [BC89], respectively. Hence Propositions 3.2 and 3.3 of [BC89] state
that (P)(B0,B,γ)

is the Γ-limit of the P(B0n ,Bn,B
2
n).

Similarly to what has been done in the case where the Lie brackets vanish, we
now prove that each problem (P)(B0,B,γ)

with (B0, B, γ) ∈ A is indeed the Γ-limit
of a sequence of problems of the form P(B0n ,Bn,B

2
n) with B0n > 0 (which, up to

the introduced one-to-one correspondence, means that (P)(B0,B,γ)
is the Γ-limit of

problems (P)(bn) with (bn, b
2
n) = α(B0n , Bn, B

2
n)).

Theorem 4.9. For every (B0, B, γ) ∈ A, the problem (P)(B0,B,γ)
is the Γ-limit

of a suitable sequence (P(B0n ,Bn,B
2
n))n∈N with (B0n , Bn, B

2
n) ∈ As ∩ ANI .

Proof. By Lemma 2.11 for each (B0, B, γ) ∈ A there is a sequence ((B0, Bn, B
2
n))n∈N

(∈ As) such that Bni
→ Bi weakly in L2(0, 1) and B2

ni
→ γi weakly in L1(0, 1) for

i = 1, . . . ,M .
Moreover, by setting

B0n(s) =

√
T

T + 1
n

(
B2

0(s) +
1

n

)
,

we find that the triples (B0n , Bn, B
2
n) (belong to As ∩ ANI and) verify (4.4)–(4.6).

Hence one concludes by Theorem 4.7.

5. Revisiting sections 2 and 3 in the light of the extended setting. On
one hand, sections 2 and 3 reveal a crucial discrepancy between the case when all the
brackets [gi, gj ] vanish identically and the general case. On the other hand, in section
4 we have introduced an extended setting in order to state a convergence result in the
general case. In this section we are going to revisit both the positive result of section
2 and the counterexample of section 3 in light of the theory developed in section 4.
Let us recall that the map α : A → A induces a one-to-one correspondence between
the subset ANI ∩ As ⊂ A and As ⊂ A.

Null Lie brackets. In Theorem 5.1 below we show—under the commutativ-
ity hypothesis (HC) in section 2—that when problems (P)(B0n,Bn,B

2
n) Γ-converge to

a problem (P)(B0,B,γ)
, then the space-projected problems (P)(bn) with (bn, b

2
n) =

α(B0n , Bn, B
2
n) Γ-converge to the projected limit Φ−1((Q)(b,µ)), where (b, µ) = α(B0, B, γ).
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The most relevant point of this theorem consists in the fact that two sequences
(B0n , Bn, B

2
n), (B̃0n , B̃n, B̃

2
n) converging to two different triples (B0, B, γ), (B̃0, B̃, γ̃)

such that (b, µ) = α(B0, B, γ) = α(B̃0, B̃, γ̃) give rise to problems (P)(bn) and (P)(b̃n)

Γ-converging to the same limit problem Φ−1((Q)(b,µ)). In particular, this explains
why as soon as all the brackets vanish there is in fact no need of the extended setting.

Theorem 5.1. Let us assume the hypotheses of section 2 (in particular, the
commutativity hypothesis (HC)). Given (B0, B, γ) ∈ A, let us consider any sequence
(B0n , Bn, B

2
n) ∈ ANI ∩ As such that the B0n

are equibounded and

lim
n→∞B0n

(·) = B0(·) a.e. on [0, 1],(5.1)

lim
n→∞Bn(·) = B(·) weakly in L1(0, 1; RM ),(5.2)

lim
n→∞B2

n(·) = γ(·) weakly in L1(0, 1; RM )(5.3)

(so that, by Theorem 4.7, (P)(B0n,Bn,B
2
n) Γ-converges to (P)(B0,B,γ)

). Then, setting

(bn, b
2
n) = α(B0n , Bn, B

2
n) and (b, µ) = α(B0, B, γ), one has that the problems (P)(bn)

Γ-converge to Φ−1((Q)(b,µ)).
Proof. In view of Theorem 2.7, we have to prove only that

bn → b weakly in L2(0, T ; RM ),(5.4)

b2n → µ weakly∗ inM([0, T ]; RM ).(5.5)

We begin by observing that hypotheses (5.1)–(5.3) imply

lim
n→∞B2

0n
(·) = B2

0(·) a.e. on (0, 1),

lim
n→∞Bn(·)B0n(·) = B(·)B0(·) weakly in L1(0, 1; RM ),

and

lim
n→∞B2

n(·) = γ(·) weakly in L1(0, T ; RM ).

Set

tn(s) =

∫ s

0

B2
0n

(u)du and t(s) =

∫ s

0

B2
0(u)du.

Since the tn tend to t pointwise and each tn is increasing, the tn tend to t uniformly
on [0,1]. Hence, for each ϕ ∈ C([0, T ]; RM ),

lim
n→∞

∣∣∣∣∣
∫ T

0

〈b2n(t), ϕ(t)〉dt−
∫

[0,T ]

ϕ(t)dµ

∣∣∣∣∣
= lim
n→∞

∣∣∣∣
∫ 1

0

〈B2
n(s), ϕ(tn(s))〉ds−

∫ 1

0

〈γ(s), ϕ(t(s))〉ds
∣∣∣∣ = 0,
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which proves (5.5).
In order to prove (5.4), let us observe that for any function ϕ ∈ C∞

c (0, T ; RM )

lim
n→∞

∣∣∣∣∣
∫ T

0

〈bn(t), ϕ(t)〉dt−
∫ T

0

〈b(t), ϕ(t)〉dt
∣∣∣∣∣

= lim
n→∞

∣∣∣∣
∫ 1

0

〈Bn(s)B0n
(s), ϕ(s)〉ds−

∫ 1

0

〈B(s)B0(s), ϕ(s)〉ds
∣∣∣∣ = 0.

Since the Bn are uniformly bounded in L2(0, T ; RM ), (5.4) follows by the density of
C∞
c (0, T ; RM ) in L2(0, T ; RM ).

A compactness result. We now examine the converse situation, where a se-
quence (bn)n∈N is given such that ((bn, b

2
n))n∈N converges—with some regularity—to

(b, µ) ∈ A. We do not assume here that the Lie brackets vanish. It turns out that
a subsequence of the corresponding triples (B0n , Bn, B

2
n) converges to an element

(B0, B, γ) ∈ α−1(b, µ).
Theorem 5.2. Assume the hypotheses of section 2, with the exclusion of the

commutativity hypothesis (HC). Let T = {ti, i ∈ N}, a (countable) subset of [0, T ],
and let (b, µ) ∈ A and (bn)n∈N be given such that

(i) µ = b2 + µτ with µτ a (positive) measure concentrated in T ;
(ii) for each n ∈ N , bn ∈ C([0, T ] \ T ; RM ), and

bn(·)→ b(·) uniformly on the compact subsets of [0, T ] \ T ,(5.6)

bn → b weakly in L2(0, T ; RM ),

b2n → µ weakly∗ in M([0, T ]; RM ).(5.7)

(So, if the commutative hypothesis (HC) is in force, (P)(bn)Γ-converges to (P)(b,µ).)
Then, setting (B0n , Bn, B

2
n)

.
= α−1(bn, b

2
n), there exists a subsequence (B̌0n , B̌n, B̌

2
n)

and a data triple (B0, B, γ) ∈ α−1(b, µ), such that the problems (P)(B̌0n ,B̌n,B̌
2
n) Γ-

converge to (P)(B0,B,γ)
.

The proof of this theorem relies essentially on the following lemma.
Lemma 5.3. Assume the hypotheses of Theorem 5.2. Let us set

s(t)
.
=




0, t = 0,
t+

∫
]0,t]

dµ

T +
∫
]0,T ]

dµ
, 0 < t < T,

1, t = T,

sn(t)
.
=

∫ t
0
(1 + |bn|2(s))ds∫ T

0
(1 + |bn|2(s))ds

,

and let us define tn(s) and t(s) as the inverse of sn(t) and the unique nondecreasing
continuous map such that t ◦ s(τ) = id[0,T ], respectively. Then tn(·) and t(·) are
equi-Lipschitz continuous and

lim
n→∞ tn(s) = t(s)(5.8)
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uniformly on [0, 1]. Moreover, setting B0(s)
.
=
√
t′(s), one has

B0(s) = 0 for all s ∈ int(t−1(T ))(5.9)

and

B0n
(s)→ B0 a.e. on [0, 1].(5.10)

Proof. Since t−1(T ) = ∪ti∈T t−1(ti), we immediately obtain (5.9). Let us observe
that hypothesis (5.7) implies that

lim
n→∞ sn(t) = s(t) a.e. on [0, T ]

(see, e.g., Proposition 7.19 in [Fo84]).
Actually, by the continuity of s(t) on [0, T ] \ T , one has

lim
n→∞ sn(t) = s(t) for all t ∈ [0, T ] \ T .

Moreover, by the monotonicity of the sn(·) and of s(·), it follows that

lim
ε→0

lim
n→∞ (sn(t+ ε)− sn(t− ε)) = s(t+)− s(t−),

which yields

lim
n→∞ tn(s) = t(s) uniformly on [0, 1].(5.11)

Since B2
0n

= t′n ≥ 0 for every n, there exists a subsequence, still denoted with
(B0n)n∈N , such that

B2
0n

= t′n → 0 a.e. on int(t−1(T )).

The convergence of B0n to B0 on the set int(t−1(T )) is proved. In order to conclude,
let us prove this convergence for every s ∈ [0, 1] \ t−1(T ). Indeed, by (5.6) and (5.11)
one has

lim
n→∞B2

0n
(s) = lim

n→∞ t′n(s) = lim
n→∞

1

ṡ(tn(s))
= lim
n→∞

∫ T
0

(1 + bn(u)
2)du

1 + b2n(tn(s))

=
T +

∫
[0,T ]

dµ

1 + b2(t(s))
=B2

0(s).

The lemma is proved.
Proof of Theorem 5.2. By Theorem 4.7 in section 4 we have to prove only

that the there exists a subsequence (B̌0n , B̌n, B̌
2
n) of (B0n , Bn, B

2
n) and a data triple

(B0, B, γ) ∈ α−1(b, µ) such that

lim
n→∞ B̌0n

(·) = B0(·) a.e. on [0, 1],(5.12)

lim
n→∞ B̌n(·) = B(·) weakly in L1(0, 1; RM ),(5.13)
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lim
n→∞ B̌2

n(·) = γ(·) weakly in L1(0, 1; RM ).(5.14)

Let us define B0 as in Lemma 5.3, which yields (5.12).
Moreover, since the Bn are equibounded, there is a subsequence (B̃n)n∈N of

(Bn)n∈N converging to a map B weakly in L1(0, 1; RM ).
By Ascoli–Arzela’s theorem there exists a subsequence (φn)n∈N of

φ̃n(s)
.
=

∫ s

0

B̃n(σ)2dσ

converging to a Lipschitz continuous map φ. Then the subsequence B̌2
n(s)

.
= dφn(s)

ds

converges weakly∗ in L∞(0, T ; RM ) to γ(s)
.
= dφ(s)

ds , which implies (5.14).

We claim that (B0, B, γ) ∈ α−1(b, µ). Indeed, B̌0n
(s) tends to B0(s) for every s

such that B0 > 0 a.e. on [s − δ, s + δ] for a sufficiently small δ. Moreover, thanks
to (5.11) and hypothesis (5.6), bn(tn(s)) converges to b(t(s)) for every such point s.
Since B̌n(s) tends a.e. to B(s), (i) in the definition of the mapping α (Definition 4.3)
turns out to be satisfied. Finally, in view of (5.14) and (4.1), (ii) in the definition of
α holds true as well.

Revisiting the example of section 3. Let us conclude by framing the example
of section 3 in the extended setting. This will clarify that the distinct limiting behavior
of problems (P)(bn) and problems (P)(b̃n) arises from the fact that the corresponding
triples (B0n , Bn, B

2
n), (B̃0n , B̃n, B̃

2
n) converge to different limits.

Let us recall that the state equation and the cost functional were given by{
ẋ(t) = bn1

(t)u1(t) + a(x(t))bn2
(t)u2(t),

x(0) = 0

and

Jn(x, u) =

∫ 1

0

(|u(t)|2 + bn1
(t)u1(t) + a(x(t))bn2

(t)u2(t)
)
dt

(
=

∫ 1

0

|u(t)|2dt+ x(1)

)
,

respectively. The problem of minimizing Jn(x, u) over the controls u ∈ L2(0, T ) was
denoted by (P)(bn) and (P)(b̃n) when the parameters were identified with

(bn1
(t), bn2

(t)) =
(√

2n, 0
)
I[1− 1

n
,1− 1

2n ]
(t) +

(
0,
√

2n
)
I[1− 1

2n
,1](t)

and (
b̃n1

(t), b̃n2
(t)
)

=
(
0,
√

2n
)
I[1− 1

n
,1− 1

2n ]
(t) +

(√
2n, 0

)
I[1− 1

2n
,1](t),

respectively. Following the construction performed in section 4, let us compute the
isomorphic problems P(B0,Bn,B2

n) and P(B̃0,B̃n,B̃2
n) with (B0, Bn, B

2
n) = α−1(bn, b

2
n)

and (B̃0, B̃n, B̃
2
n) = α−1(b̃n, b̃

2
n). In both cases the optimal control problem turns out

to have the form{
y′(s) = Bn1

(s)U1(s) + a(y(s))Bn2
(s)U2(s) , y(0) = 0,

min
U
{Ĵn(y, U)},

Ĵn(y, U) =

∫ 1

0

(|U(s)|2 +Bn1
(s)U1(s) + a(y(s))Bn2

(s)U2(s)
)
ds
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with the parameters B identified with

B0n
(s) =

√
3 I[0, 13 (1− 1

n )]
+

√
3

1 + 2n
I[ 1

3 (1− 1
n ),1]

,

Bn(s) = (Bn1
(s), Bn2

(s))

=

(√
6n

1 + 2n
, 0

)
I[ 1

3 (1− 1
n ), 13 (2− 1

2n )]
+

(
0,

√
6n

1 + 2n

)
I[ 1

3 (2− 1
2n ),1]

,

and

B̃0n(s) =
√

3 I[0, 13 (1− 1
n )]

+

√
3

1 + 2n
I[ 1

3 (1− 1
n ),1]

,

B̃n(s) = (B̃n1
(s), B̃n2

(s))

=

(
0,

√
6n

1 + 2n

)
I[ 1

3 (1− 1
n ), 13 (2− 1

2n )]
+

(√
6n

1 + 2n
, 0

)
I[ 1

3 (2− 1
2n ),1]

,

respectively. In order to find the Γ-limit of problems P(B0,Bn,B2
n) and P(B̃0,B̃n,B̃2

n), we

need to compute the limits appearing in hypotheses (4.4), (4.5), and (4.6).
For the data triples (B0, Bn, B

2
n), we obtain

lim
n→∞B0n(s) = B0(s)

.
=
√

3 I[0,1/3] a.e. [0, 1],

lim
n→∞Bn1

(s) = B1(s)
.
=
√

3 I[1/3,2/3] in L1(0, 1),

lim
n→∞Bn2

(s) = B2(s)
.
=
√

3 I[2/3,1] in L1(0, 1),

lim
n→∞B2

n1
(s) = B2

1(s) = 3 I[1/3,2/3] in L1(0, 1),

lim
n→∞B2

n2
(s) = B2

2(s) = 3 I[2/3,1] in L1(0, 1),

while, for the data triples (B̃0, B̃n, B̃
2
n), we have

lim
n→∞ B̃0n(s) = B̃0(s)

.
=
√

3 I[0,1/3] a.e. [0, 1],

lim
n→∞ B̃n1

(s) = B̃1(s)
.
=
√

3 I[2/3,1] in L1(0, 1),

lim
n→∞ B̃n2

(s) = B̃2(s)
.
=
√

3 I[1/3,2/3] in L1(0, 1),

lim
n→∞ B̃2

n1
(s) = B̃2

1(s) = 3 I[2/3,1] in L1(0, 1),

lim
n→∞ B̃2

n2
(s) = B̃2

2(s) = 3 I[1/3,2/3] in L1(0, 1).

Let us remark that the limits of (B0, Bn, B
2
n) and (B̃0, B̃n, B̃

2
n) are different. This

explains why problems (P)(bn) and (P)(b̃n) in the example cannot converge to the
same limit problem. More precisely, in view of Theorem 4.7, problems P(B0,Bn,B2

n)

and P(B̃0,B̃n,B̃2
n) Γ-converge to the optimal control problems{

y′(s) = B1(s)U1(s) + a(y(s))B2(s)U2(s), y(0) = 0,

min
U
{Ĵ(y, U)},

Ĵ(y, U) =

∫ 1

0

(|U(s)|2 +B1(s)U1(s) + a(y(s))B2(s)U2(s)
)
ds
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and {
y′(s) = B̃1(s)U1(s) + a(y(s))B̃2(s)U2(s), y(0) = 0,

min
U
{Ĵ(y, U)},

Ĵ(y, U) =

∫ 1

0

(|U(s)|2 + B̃1(s)U1(s) + a(y(s))B̃2(s)U2(s)
)
ds,

respectively.

Appendix. Basic tools from Γ-convergence applied to control theory.
Since the work of Wijsman [Wi64], [Wi66], many different concepts of convergence for
sequences of functionals and operators have been appearing in the literature. These
concepts were especially designed to approach the limit of sequences of variational
problems. Each type of variational problem (minimization, maximization, min-max,
etc.) has been associated to a particular concept of convergence.

In the case of the minimization problem, the first concept of convergence was the
so-called epiconvergence. The epiconvergence of a sequence of functionals is equivalent
to set-convergence of the corresponding epigraphs.

In turn, this concept was placed in the general framework of Γ-convergence theory
by De Giorgi. The theory of Γ-convergence aims to deduce the asymptotic behavior
of the solutions of a sequence of variational problems from the asymptotic behavior of
the corresponding functionals. Typical examples of applications of Γ-convergence are
the theories of homogenization, of singular perturbations, and of the limit behavior
of elliptic problems with various obstacles. (We refer, e.g., to the books of Attouch
[At84], Bensoussan, Lions, and Papanicolau [BLP78], Sanchez-Palencia [SP80], Dal
Maso [DM93], and Buttazzo [Bu89].)

In this paper we have studied the Γ-convergence of sequences of optimal control
problems. Let us sketch the general framework of this branch of the theory of Γ-
convergence. For each n ∈ N let Cn ⊆ Y × U denote the set of admissible trajectory-
control pairs defined by

Cn
.
= {(y, u) ∈ Y × U : An(y) = Bn(u)} ,

where An and Bn map Y and U , respectively, in a third topological space V . Corre-
spondingly, let us consider the optimal control problems

(Pn) min {Jn(y, u) : (y, u) ∈ Cn} ,
where Jn is a real operator defined on Y × U .

Setting Fn(y, u) = Jn(y, u) + χCn(y, u) (where χE is 1 on E and +∞ on (Y ×
U) \ E), let us rephrase problems (Pn) as follows:

(Pn) min {Fn(y, u) : (y, u) ∈ Y × U} .
We will say that (yn, un) is an optimal pair for the problem (Pn) if

Fn(yn, un) = min
Y×U

Fn.

Via Theorem A.2 below, the theory of Γ-convergence provides a notion of the
limit problem guaranteeing the following property. If (yn, un) is an optimal pair of



LIE ALGEBRAIC OBSTRUCTION TO Γ-CONVERGENCE 391

(Pn), or simply a minimizing sequence, and if (yn, un) tends to (y, u) in Y ×U , then
(y, u) is an optimal pair for the limit problem (P).

Theorem A.2 below provides a notion of Γ-limit problem (P) such that this prop-
erty holds. In order to state this theorem, we recall the definition of the multiple
Γ-limit operator (see [BDM82]). We shall denote the “sup” and the “inf” operators
by Z(+) and Z(−), respectively.

Definition A.1. Let X and W be two topological spaces, and let Fn : X×W → R

be a sequence of functions. For every x ∈ X, w ∈ W , and α, β, γ ∈ {+,−}, let us
define the Γ-limit of the Fn by setting

Γ(Nα, Xβ ,W γ) lim
n→∞Fn(w, x) = Z(β)

(xn)∈S(x)

Z(γ)
(wn)∈S(w)

Z(−α)
k∈N

Z(α)
n≥k

Fn(wn, xn),

where S(x) and S(w) denote the sets of all sequences xn → x in X and wn → w in
W , respectively. When the Γ-limit does not depend on the sign + or − , this sign is
omitted. For example, if

Γ(N+, X−,W+) lim
n→∞Fn(w, x) = Γ(N+, X+,W+) lim

n→∞Fn(w, x),

their common value will be indicated by Γ(N+, X,W+) limn→∞ Fn(w, x).

In particular,

Γ(N,U−, Y −) lim
n→∞Fn(y, u) = inf

(un)∈S(u)
inf

(yn)∈S(y)
lim
n→∞Fn(yn, un).

Theorem A.2. Let Y and U be two topological spaces, and let Fn: Y × U → R

be a sequence of functions. For each n ∈ N , let (yn, un) be a minimum point for Fn
or simply a pair such that

lim
n→∞Fn(yn, un) = lim

n→∞[ inf
Y×U

Fn].

Assume that the (yn, un) converge to (y, u) in Y × U and there exists

F (y, u)
.
= Γ(N,U−, Y −) lim

n→∞Fn(yn, un).(A.1)

Then

(i) (y, u) is a minimum point for F on Y × U ;
(ii) limn→∞[infY×U Fn] = minY×U F (y, u).

(For the proof see [BDM82, Proposition 2.1, p. 388].)

Note that if Fn(y, u)
.
= F (u), then the Γ-limit F (y, u) in (A.1) coincides with the

so-called relaxed functional F (see, e.g., [Bu89]).

The above theorem motivates the following definition of the Γ-limit problem.

Definition A.3. When (A.1) is verified we say that the problem

(P) min {F (y, u) : (y, u) ∈ Y × U}

is the Γ-limit of problems (Pn).
See, e.g., [BDM82], [BC89], [BF93], [BF95], and [Fr98] for the explicit calculation

of the Γ-limits in various interesting situations.
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CONVERGENCE OF THE OPTIMAL FEEDBACK POLICIES IN A
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Abstract. We consider a Markov chain based numerical approximation method for a class
of deterministic nonlinear optimal control problems. It is known that methods of this type yield
convergent approximations to the value function on the entire domain. These results do not easily
extend to the optimal control, which need not be uniquely defined on the entire domain. There
are, however, regions of strong regularity on which the optimal control is well defined and smooth.
Typically, the union of these regions is open and dense in the domain. Using probabilistic methods,
we prove that, on the regions of strong regularity, the Markov chain method yields a convergent
sequence of approximations to the optimal feedback control. The result is illustrated with several
examples.

Key words. optimal control, numerical approximation, rate of convergence, Markov chain
approximation, feedback controls, finite difference approximation
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1. Introduction. In this paper, we prove that an efficient Markov chain based
numerical approximation method for a general class of nonlinear optimal control prob-
lems yields feedback controls which converge (on most of the domain) to the optimal
feedback control for the problem that is being approximated. We consider an infinite
time horizon problem on a finite domain in R

n with deterministic dynamics which
are affine in the control variable. The running cost L(x, u) is quadratic in the control
variable u and is fully nonlinear in the state variable x, and there is no exit cost.
Any problem in this class can be reduced by a simple change of variables to one with
dynamics of calculus of variations type, and we find it convenient in our analysis to
consider that form.

In general, one cannot explicitly evaluate either the value function or the optimal
control, so accurate numerical approximation methods are needed. The quantity of
interest for applications is typically the optimal control, and considerations of robust-
ness in implementation make it important to have the optimal control in feedback
form. Furthermore, for many recent applications, including robust control [3] and
problems in computer vision [11, 20], approximations to the optimal feedback control
and to the closely related gradient of the value function are needed. Given the fact
that the control need not be uniquely defined, however, almost all of the literature
focuses on approximating the value function, which, under our assumptions, is well
defined and Lipschitz on the entire domain.
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A natural class of numerical methods, first described by Kushner [18], involves re-
placing the limit control problem with an approximating problem whose state variable
takes values on a finite grid. The deterministic dynamics are replaced by a Markov
chain so that movement in an arbitrary direction can be approximated by appropriate
probabilities of jumping to neighboring gridpoints. As the underlying grid is refined,
the value function for the Markov chain control problem becomes an increasingly good
approximation to the value function for the limit problem.

As we noted earlier, the optimal feedback control for the limit problem is not
uniquely defined at all points, and this makes it difficult to construct an approximate
optimal control on the entire domain. However, there are large subsets of the domain,
called regions of strong regularity, on which it is uniquely defined, smooth, and in
feedback form. Our main theorem states that the numerical method described in [5]
yields a convergent sequence of approximations to the limit optimal feedback control
in the regions of strong regularity.

We remark that our proof is applicable to a larger class of control problems than
the one considered here. The quadratic structure of the running cost is not essential
and can be replaced by suitable smoothness and convexity conditions. We restrict our
attention to the quadratic case in order to streamline the presentation. Furthermore,
the class of problems that we consider is important in that the infima in the discrete
dynamic programming equation (DPE) can be evaluated analytically, eliminating the
need for computationally intensive numerical minimizations.

To our knowledge, there are no other general results of this type. Almost all of the
literature, both probabilistic [5, 18, 19] and analytic using viscosity solution methods
[1, 8], is dedicated to proving convergence of the value functions on the entire domain,
and convergence of the controls does not follow naturally from those proofs. That
is not surprising, since our proof strongly exploits smoothness properties which hold
only in the regions of strong regularity. Some results regarding the convergence of
controls in the Markov chain approximation method have been obtained in [12], but
the situation there is quite specialized and is restricted to one dimension. In general,
one dimensional problems are qualitatively easier to deal with because the control
can point only in two directions, while the number of possible directions for n ≥ 2
is uncountable. In fact, for the present problem, the following startling result can be
shown for the case where n = 1. For any point x at which the limit problem is regular
and for a sufficiently refined grid, the optimal feedback control for the approximating
problem is exactly equal to the limit value! This follows from the fact that identical
one dimensional quadratic equations for the gradients of the limit and prelimit value
functions can be obtained from the DPEs (2.3) and (3.5) by solving for the optimal
feedback policies in terms of the respective gradients. Although this observation has
limited practical value, it does serve as a powerful reminder of the unique nature of
one dimensional problems.

In our development, we draw liberally on ideas presented by Fleming in [14].
There, a similar problem is considered with a small variance Brownian motion per-
turbation of the deterministic dynamics taking the place of the Markov chain ap-
proximations in our problem. In a future paper, we will apply the present result to
obtain a full asymptotic expansion of the limit value function in the regions of strong
regularity, analogous to the expansion obtained in [14]. Using this expansion, we
will present a new numerical method which, under some additional assumptions, will
be proved to yield approximations which are second order accurate in the regions of
strong regularity.
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The outline of this paper is as follows. In section 2, we state our assumptions, in-
troduce the limit optimal control problem, and define the regions of strong regularity
on which our results will hold. Section 3 is dedicated to defining the approximating
optimal control problems and their associated Markov chain dynamics, while in sec-
tion 4 we establish some preliminary convergence results. The main theorem is stated
and proved in section 5, and we conclude in section 6 with computational examples.
We end this section with some notation. Let R

n be an n-dimensional Euclidian
space, and let Z

n be the subset of R
n consisting of n-tuples of integers. For vec-

tors x, y ∈ R
n, 〈x, y〉 is the scalar product, ‖x‖ = √〈x, x〉 is the Euclidean norm,

‖x‖1 = Σni=0|xi| is the l1-vector norm, and |x| = (|x1|, . . . , |xn|) is the componen-
twise absolute value. For a process X(·) taking values in R

n and for S < +∞,
‖X(·)‖S =

∫ S
0
‖X(t)‖dt is the integrated l2-norm, and ||| X(·) |||S = sup0≤t≤S ‖X(t)‖

is the uniform l2-norm. For any two subsets A and A′ of R
n, d(A,A′) denotes mini-

mum Euclidean distance between Ā and Ā′, while Bε(A) is the open ball of radius ε
around A.
For a smooth function f mapping R

n to R, Dif(x) =
∂
∂xi

f(x), and the gradient

is Df(x) = (D1f(x), . . . , Dnf(x)). For h > 0, the operators D
h,± are finite difference

approximations to the gradient operator. So the ith component of Dh,+f(x) is

Dh,+i f(x) =
f(x+ hei)− f(x)

h
,

while the ith component of Dh,−f(x) is

Dh,−i f(x) =
f(x)− f(x− hei)

h
.

The positive part of a scalar is a+ = max(a, 0), and its negative part is a− =
−min(a, 0). For a vector, the positive and negative parts are taken componentwise,
so that x± = (x±1 , . . . , x

±
n ).

2. Deterministic control problem. In this section we describe a deterministic
optimal control problem on a bounded domain with zero exit cost. Since our goal is
to obtain the solution to this problem as the limit of numerical approximations, we
will refer to it as the limit problem. Let G ⊂ R

n be open with compact closure,
and assume that G satisfies uniform interior and exterior cone conditions (see [5] for
definitions). Let b and c be C∞ functions from R

n to R, and let a be a C∞ function
from R

n to the space of symmetric positive definite n × n matrices. Notice that a
is uniformly positive definite on G. Assume that c(x) ≥ c0 > 0 on G. For a control
u0(t) which is in L2([0, S];Rn) for all S < +∞ and for an initial condition x ∈ G, we
define X0(t) by the dynamics

X0(t) = x+

∫ t
0

u0(s)ds,(2.1)

up to the time when it exits from the domain G. We define the exit time τ0 = inf[t :
X0(t) /∈ G]. For the running cost

L(x, u) =
1

2

〈
(u− b(x)), a−1(x)(u− b(x))

〉
+ c(x),

we define the payoff functional

J0(x, u0) =

∫ τ0
0

L(X0(t), u0(t))dt.
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The problem is to minimize the payoff by choosing a suitable control. Define the value
function

V 0(x) = inf
u0

J0(x, u0),

where the infimum is over controls u0 which are in L2([0, S];Rn) for all S < +∞.
We employ the underscore notation here to indicate trajectories which are obtained
from an arbitrary control. The same notations, without the underscores, will be used
later to refer to trajectories which are obtained through the application of an optimal
control.

We note that our analysis subsumes a much larger class of deterministic control
problems. Namely, any problem with smooth dynamics which depend affinely on the
control variable u and with a cost structure of the type described above can be made
to fit within our framework by a simple change of variables.

The dynamics in (2.1) involve an open loop control u0(t), which is defined for
all t > 0. It is generally desirable, from the point of view of robustness and for
convenience of implementation, to consider controls which can be represented in the
feedback form

X0(t) = x+

∫ t
0

u0(X0(s))ds.(2.2)

A key feature of the regions of strong regularity is that the optimal open loop controls
for all initial conditions in a region of strong regularity correspond to a unique smooth
feedback function u0(x). That is the quantity that we wish to approximate.

The following lemma allows us to regard the limit control problem as one with a
finite time horizon and a compact control space, when it is convenient to do so. Thus
it follows from [2, Theorem 6.1] that V 0 is the unique nonnegative viscosity solution
on G to the DPE

inf
u

[〈u,DV 0(x)〉+ L(x, u)
]
= 0(2.3)

with the continuous boundary condition V 0(x) = 0 on ∂G. See [1] and [15] for a
thorough account of the relationship between viscosity solutions of Hamilton–Jacobi
PDEs and the value functions for various types of optimal control problems.

Lemma 2.1. V 0(x) is bounded and uniformly Lipschitz on G, and there exists
T < +∞ such that every optimal trajectory exits from G by time T −1. Furthermore,
there exists U0 < +∞ such that the norm of every optimal open loop control is bounded
by U0 for each 0 ≤ t ≤ T − 1.

Proof. We begin by observing that the fact that a(x) is uniformly positive definite
implies that it is possible to move with unit velocity in any direction with bounded
running cost. It follows immediately from this observation that the value function
V 0(x) is bounded uniformly by a finite multiple of supx∈G d(x, ∂G). Furthermore,
the principle of optimality thus implies for all x, y ∈ G the relation V 0(x) ≤ V 0(y) +
C‖y − x‖ for some fixed C < +∞, and this gives a uniform Lipschitz property.
To obtain the bound on the optimal controls, it suffices to find U0 < +∞ such that

any control u0(t) which has norm exceeding U0 on some measurable set A ⊂ [0,+∞)
can be replaced by one with a smaller maximum norm, resulting in a lower cost.
Since the running cost L(x, u) is uniformly convex in the control variable u, we can
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accomplish this for U0 sufficiently large by constructing a modified control ũ0(t) as
follows. Let

s(t) =

∫ t
0

[
IAc(r) +

1

2
IA(r)

]
dr,

where IA′(·) is the indicator function for a set A′. Now define

ũ0(t) = u0(s(t))IAc(s(t)) +
1

2
u0(s(t))IA(s(t)).

This results in following the same trajectory at a slower speed, and a straightforward
calculation indicates that it yields a lower cost.
It turns out that V 0 is smooth on most of the domain G. Let Q be a relatively

open subset of Ḡ. We call Q a region of strong regularity if the following hold.
1. For each initial condition x ∈ Q, there is a unique optimal open loop control,
and the corresponding trajectory is contained in Q up to its exit time. The
optimal trajectory meets ∂G nontangentially.

2. V 0 ∈ C∞(Q).
3. There is a unique u0 ∈ C∞(Q) such that the optimal control can be repre-
sented in feedback form and is given by u0(x) for each x ∈ Q.

For a discussion of the classical method of characteristics and its application to proving
the existence of regions of strong regularity for the present problem, see the appendices
in [14] and [16]. At least in the case where ∂G is of class C∞, the union of the regions
of strong regularity is open and dense in the domain [16]. Detailed information on the
structure of the singularity sets for closely related problems can be found in [13], [7],
and [6]. Since V 0 is a classical solution to the DPE (2.3) on the regions of strong
regularity, the optimal feedback control can be explicitly evaluated there:

u0(x) = −a(x)DV 0(x) + b(x).(2.4)

Let B0 be a subset of Ḡ such that B̄0 ⊂ Q, and consider a nested sequence of three
regions of strong regularity B, N , and Q such that

B̄0 ⊂ B ⊂ B̄ ⊂ N ⊂ N̄ ⊂ Q.

The main convergence results will be stated in terms of uniform limits on the set B0.
We assume the following.
Assumption 2.2. The boundary section Q∩∂G is parallel to one of the coordinate

hyperplanes. Furthermore, the minimum distance in the outward normal direction
from Q ∩ ∂G to ∂G/Q is equal to δ̃ > 0.
The foregoing assumption is a significant restriction in that it limits our results to

regions Q such that Q∩ ∂G is flat and such that ∂G does not make an acute angle at
any of the extremal points of Q∩ ∂G. We suspect that the assumption about Q∩ ∂G
being flat can be relaxed. With regard to acute angles at the corners, we note that
Assumption 2.2 does not preclude ∂G itself from making an acute angle, and it does
not even preclude showing that the optimal controls converge for points arbitrarily
close to such a corner. It does, however, restrict our uniform convergence estimates
to regions which are bounded away from such corners.
It is convenient to have u0(x) defined and Lipschitz on all of R

n, so we abuse
notation by extending u0(x) to R

n and changing its values on the complement of N̄ .
Let δ > 0 be such that δ < d(N, ∂Q ∩ G) and such that δ ≤ δ̃, where δ̃ is as in
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G

Q

N

δ̃

δ

Fig. 1. Region for smooth extension of u0.

Assumption 2.2; see Figure 1. We can define a Lipschitz function ũ0(x) on Bδ(N̄)
by setting ũ0(x) = u0(x) on Bδ(N̄) ∩ G and by extending it to be constant across
the boundary section Q ∩ ∂G. Now let φ(x) be a C∞ function on R

n taking values
in [0, 1] such that φ(x) = 1 on Bδ/2(N̄) and φ(x) = 0 outside of Bδ(N̄). Such a
function can be constructed by standard methods using a smooth convolution kernel
[17, Theorem 0.17]. We can now redefine u0(x) to be equal to φ(x)ũ0(x) on Bδ(N̄)
and zero everywhere else. This new u0(x) is Lipschitz on R

n and satisfies (2.4) on
the region N . Furthermore, ‖u0(x)‖ ≤ U0 for each x ∈ R

n, where U0 < +∞ is the
bound from Lemma 2.1.

For any x ∈ N , let X0
x(t) be the trajectory obtained by applying the optimal

feedback control u0 with initial condition x. Since we use the extended version of
u0, we can define X0

x(t) by (2.2) for all t ≥ 0. Let τ0
x be the first exit time of X

0
x(t)

from G, and let z0
x be its exit location. Notice that the definition of regions of strong

regularity implies that z0
x ∈ N for each x ∈ N and that τ0

x is also the first exit time
from the interior of N . We will often suppress the initial conditions in the subscripts
of these notations.

Lemma 2.3. For each sufficiently small ε > 0, there exists η > 0 such that the
following holds. Let X be a trajectory with initial condition in N , and let τN and
zN be its exit time and location from the interior of N . If ||| X −X0

x |||T ≤ η holds
for some x ∈ N , then τN ≤ τ0

x + ε. If, in addition, x ∈ B, then it also follows that
|τN − τ0

x | ≤ ε and ‖zN − z0
x‖ ≤ ε.

Proof. We first consider the case x ∈ N . Recall from Lemma 2.1 the bounds T
and U0 on the exit times and on the optimal controls, respectively. Given the way
we extended u0 beyond N and given the nontangential exit property for the regions
of strong regularity, we have that

X0
x(t) ∈ Bδ/2(N)/G

for all τ0
x ≤ t ≤ τ0

x +∆, where ∆ = min(1, δ/2U
0). Furthermore, there is 0 < γ ≤ δ/2

such that the component of Ẋ0
x(t) in the outward normal direction away from the

boundary segment Q ∩ ∂G is at least equal to γ for τ0
x ≤ t < τ0

x +∆. On account of
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the second part of Assumption 2.2, it follows that

d(X0
x(t), G) ≥ γ(t− τ0

x)

for τ0
x ≤ t < τ0

x +∆; see Figure 1. Thus, if ||| X −X0
x |||T < γε, then τN ≤ τ0

x + ε. For
the remainder of this proof, we consider only those η such that η ≤ γε, so we may
assume that τN ≤ τ0

x + ε.

G

N

B

X0(t)

d(B, ∂N ∩G)

Fig. 2. Regions of strong regularity.

Suppose now that x ∈ B. To establish the lower bound for τN , we begin by
observing that the nontangential exit property for regions of strong regularity implies

d(X0
x(t), ∂N ∩G) ≥ d(B, ∂N ∩G)− εU0

for all 0 ≤ t ≤ τ0
x + ε; see Figure 2. Thus, if ε > 0 is sufficiently small and if

||| X −X0
x |||T < d(B, ∂N ∩G)− εU0,

then it follows that X(τN ) ∈ ∂G. We observe that τ0
y ≤ Cd(y, ∂G) holds for any

y ∈ G, where C = supx∈G V
0(x)/c0 and c0 > 0 is the lower bound on the running

cost. Thus, if ||| X −X0
x |||T < ε/C, then the previous display implies

τ0
x ≤ τN + Cd(X0

x(τN ), ∂G) ≤ τN + ε.

We have shown that |τN − τ0
x | ≤ ε is satisfied for sufficiently small η > 0. Now we

observe that

‖zN − z0
x‖ ≤ ‖X(τN )−X0

x(τN )‖+ ‖X0
x(τN )−X0

x(τ
0
x)‖

≤ η + U0|τN − τ0
x |.

Thus we can use the above argument to select a possibly smaller η > 0 such that
|τN − τ0

x | < (ε− η)/U0 and so establish the bound ‖zN − z0
x‖ ≤ ε.

The following lemma deals with the continuity of the trajectories with respect
to the initial condition. It will be useful in establishing uniformity in the pathwise
convergence results of section 4.
Lemma 2.4. Let xk ∈ B be such that xk → x ∈ B, and let T be as in Lemma

2.1. Then

||| X0
xk
−X0

x |||T , ‖u0(X0
xk
)− u0(X0

x)‖T , |τ0
xk
− τ0

x |, and ‖z0
xk
− z0

x‖
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all converge to zero as k →∞.

Proof. Since the vector field u0 is globally Lipschitz, the convergence of ||| X0
xk
−X0

x |||T
to zero can be established by a routine application of Gronwall’s inequality to the dy-
namics in (2.2). Given that, the remaining parts of the lemma follow from the uniform
continuity of the feedback control u0 and from Lemma 2.3.

3. Markov chain approximations. We employ the method of approximating
Markov chains developed by Kushner [18] to compute approximate solutions to the
deterministic optimal control problem described above. For an up-to-date treatment
of this subject, see the book of Kushner and Dupuis [19]. Our approximation is essen-
tially the one used by Boué and Dupuis in [5]. In order to numerically approximate
the value function V 0 and the optimal control u0, we need to define a process which
takes values on a finite lattice and which approximates the continuous dynamics. We
circumvent the problem of only being able to move in the lattice directions by in-
troducing jump probabilities which give rise to arbitrary mean velocities. The value
function corresponding to this process, with the same cost structure as above, satisfies
on the lattice a DPE analogous to (2.3). Thus it is possible to numerically compute
the value function and the optimal feedback control for the approximating problem.
We will show that, at least in the compact set B0, these are good approximations to
V 0 and u0.

Let h > 0 be a discretization parameter, and define the discrete domain Gh =
hZ
n ∩G. For any A ⊂ R

n, we define Ah = hZ
n ∩ Ao, where Ao is the interior of A.

We consider limits as h → 0 with the h chosen such that the hyperplane in which
the boundary section Q ∩ ∂G lies lines up with the lattice Z

h (see Assumption 2.2).
We will construct a continuous time controlled jump Markov process on Gh which
approximates the deterministic dynamics in (2.2). This process will give rise to the
same DPE obtained in [5] by using a discrete time Markov chain. For our purposes,
however, it is more convenient to work with a continuous time jump Markov process.

Let uh be any feedback control on Gh, and extend uh to be equal to u0 on Z
h/Gh.

Let Xh be the Markov process with controlled generator given by

Lhuf = 〈u+, Dh,+f〉 − 〈u−, Dh,−f〉(3.1)

for any smooth function f mapping R
n to R. See section 1 for the notation in this

definition. The stochastic dynamics corresponding to this generator will be called the
h-dynamics. As in the description of the limit problem, we employ the underscore
notation to indicate objects which are obtained from the application of an arbitrary
possibly suboptimal feedback control.

Since we consider only feedback controls, it is straightforward to construct Xh, as
in section 4.3 of [19] and in [9]. We define a sequence of independent and identically
distributed exponential random fields parameterized by u with mean values specified
as follows:

∆t
h
(u) =

{ h
‖u‖1

, u �= 0,
h, u = 0.

Suppose that after m− 1 jumps, Xh(s) is defined for 0 ≤ s ≤ t and that Xh(t) = x.
Then we take Xh(s) = x for all t ≤ s < t + η, where the waiting time η is the
exponential random variable obtained by evaluating the mth random field with the
parameter value u = uh(Xh(s)). If u = 0, then Xh(t + η) = x, but otherwise it is
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conditionally distributed according to the jump probabilities

ph(x, y|u) =
{

u±
i

‖u‖1
if y = x± hei,

0 otherwise.

It is easy to verify that the mean velocity of Xh at time t conditioned on Xh(t) = x
is equal to uh(x), so this is a consistent approximation to the limit dynamics in (2.2).
We consider the semimartingale decomposition of Xh. For a given feedback con-

trol uh and fixed initial condition x ∈ Gh, we write
Xh(t) = Y h(t) +mh(t),(3.2)

where the stochastic process Y h is defined with probability one (w.p.1) by

Y h(t) = x+

∫ t
0

uh(Xh(s))ds.

The consistency of the jump dynamics guarantees that mh(t) is a martingale with
mean zero. Furthermore, the variance of mh(t) is controlled by the parameter h.
That is the content of the following lemma.
Lemma 3.1. Fix h > 0, and let uh be any feedback control which satisfies

‖uh(x)‖ ≤ K < +∞ for all x ∈ hZ
n. Then the bound

Ex‖mh(σ)‖2 ≤ hKExσ

holds for any bounded stopping time σ.
Proof. The triple (mh, Xh, Y h) is Markov and measurable with respect to the

σ-algebra generated by Xh. We consider its generator L̃h. Since mh = Xh − Y h, we
have

L̃hf = 〈uh,+(Xh), Dh,+f〉 − 〈uh,−(Xh), Dh,−f〉 − 〈uh(Xh), Df〉
for any smooth function of the form f(m,x, y) = f(m). Given the fact that mh(t)
takes values in a bounded set for bounded values of t ≥ 0, the general theory of piece-
wise deterministic processes [9, Theorem 5.5] implies that for any smooth function f
on R

n, for any initial condition x ∈ G, and for any bounded stopping time σ,

Ex

[
f(mh(σ))− f(0)−

∫ σ
0

L̃hf(mh(t))dt
]
= 0.(3.3)

Taking f(m) = ‖m‖2, we use (3.3) and the fact that for this choice of f ,
|L̃hf(mh(s))| ≤ 2h‖uh(Xh(s))‖1

to obtain

Ex‖mh(σ)‖2 ≤ 2hEx
∫ σ

0

‖uh(Xh(s))‖1ds.

Given the bound on ‖uh‖, this completes the proof.
We now formulate the discrete approximation to the optimal control problem

discussed in section 2. Define the value function

V h(x) = inf
uh

Ex

∫ τh
0

L(Xh(t), uh(Xh(t)))dt,(3.4)
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where the exit time is τh = inf[t : Xh(t) /∈ Gh], and the infimum is over feedback
controls uh. Using standard methods [19, section 4.3] it can be shown that V h is the
unique solution on Gh to the DPE

inf
u

[〈
u+, Dh,+V h(x)

〉
−
〈
u−, Dh,−V h(x)

〉
+ L(x, u)

]
= 0(3.5)

with zero boundary condition on hZ
n/Gh. It is straightforward to verify that (3.5) is

equivalent to

V h(x) = inf
u


∑
y∈Rn

ph(x, y|u)V h(y) + ∆th(u)L(x, u)

(3.6)

for x ∈ Gh, and that the minimizing values of u are the same for these two equations.
As suggested by the form of (3.6), the fixed point and an optimal feedback control can
be found numerically using either Jacobi or Gauss–Seidel iteration schemes. We note
that (3.6) is the DPE for a different approximating control problem, where a discrete
time Markov chain is used to approximate the deterministic dynamics. That is the

approach taken in [5], where the time step ∆t
h
(u) is used to interpolate the Markov

chain into continuous time. As discussed in [5], the choice of one-sided transition
probabilities and of a control dependent time step facilitates rapid convergence of the
iterative schemes used to solve (3.6), and the required infima at each step can be
evaluated analytically.
The DPE (3.5) gives rise to an optimal feedback control uh on Gh. It is convenient

at this point to abuse notation and to redefine uh to be equal to u0 on hZ
n/Nh. Then,

for each initial condition x ∈ Nh, there is a unique process Xhx defined for all t ≥ 0
which is optimally controlled by uh until it exits from Nh. We define the exit time
τhx,N = inf[t : X

h
x (t) /∈ Nh] and the exit location zhx,N = Xhx (τ

h
x,N ). Recall that N

h is

defined to be hZ
n∩No, where No is the interior of N . Let mhx be the martingale part

of the decomposition for Xhx given by (3.2). As in the limit problem, we will often
suppress the initial conditions in the subscripts of all of these notations.
The following remark and lemma simplify some of the analysis by allowing us to

consider a compact domain and a compact control space.
Remark 3.2. We extended u0(x) to all of R

n in such a way that it is equal to zero
off of the neighborhood Bδ(N). Thus the same is now true of uh(x). Consequently,
for all initial conditions x ∈ N , the trajectories X0

x and Xhx never leave the closed
neighborhood Bδ+h(N).
Lemma 3.3. There exists a compact set U ⊂ R

n such that the extended optimal
feedback controls u0(x) and uh(x) take values in U for all h > 0 and for all x ∈ R

n

on which they are defined. Furthermore, the value functions V 0(x) and V h(x) are
bounded, uniformly in h and x.

Proof. Recall from Lemma 2.1 that we obtained U0 < +∞ such that ‖u0(x)‖ ≤
U0 for all x ∈ R

n. From the DPE (3.5), it follows that for x ∈ Gh, each component of
uh(x) either is equal to zero or is given by a bounded linear functional of Dh,±V h(x).
Thus, in order to find the set U , it suffices to establish a bound on Dh,±V h(x) which
is uniform for all h > 0 and x ∈ Gh.
Without loss of generality, we consider the case of bounding Dh,+i V h(x). The

principle of optimality implies that the minimal cost starting at x ∈ Gh can be no
larger than the minimal cost starting at x + hei plus the expected cost of getting
from x to x+hei under any suboptimal control. The fact that a is uniformly positive
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definite while b and c are bounded implies that there exists a constant K < ∞
such that L(x, u) ≤ K whenever ‖u‖ = 1. Taking u = hei, we obtain V h(x) ≤
V h(x+ hei) +KExη, where the waiting time η is exponential with mean h. Thus we
have shown V h(x) ≤ V h(x+hei)+hK. The reverse inequality is established by using

x+hei as the initial condition, and it follows that |Dh,+i V h(x)| < K. That concludes
the proof for the optimal controls. A uniform bound on the value functions V h(x)
follows from the above argument and from the boundedness of the domain G. Along
with the bound on V 0(x) from Lemma 2.1, this finishes the proof.

4. Preliminary convergence results. The main results of this section are
contained in Lemma 4.1. It states that in the region of strong regularity B, the
optimal trajectories, open loop controls, exit times, and exit locations converge in
probability, uniformly with respect to initial conditions. Since the limit objects are
deterministic, we are able to use convergence in distribution arguments to establish
the desired convergence in probability. Uniformity with respect to initial conditions
is a consequence of the continuity properties in Lemma 2.4.
Lemma 4.1. Let T be the bound on the exit times from Lemma 2.1. For every

ε > 0, there exists h0 > 0 such that

(i) Px
[||| Xhx −X0

x |||T > ε
]
< ε,

(ii) Px
[‖uh(Xhx )− u0(X0

x)‖T > ε
]
< ε,

(iii) Px
[
τhx,N > τx + ε

]
< ε

holds for all 0 < h ≤ h0 and for all initial conditions x ∈ Nh, and such that

(iv) Px
[|τhx,N − τ0

x | > ε
]
< ε,

(v) Px
[‖zhx,N − z0

x‖ > ε
]
< ε

holds for all 0 < h ≤ h0 and for all initial conditions x ∈ Bh.
We will use the following convergence result [5]. In fact, we will repeat part of

the argument to prove this theorem in our proof of Lemma 4.1, but the exposition is
made more transparent by assuming convergence of the value functions.
Theorem 4.2. (i) Let xh ∈ Gh for h > 0 be such that xh → x ∈ Ḡ as h → 0.

Then V h(xh) → V 0(x) as h → 0. (ii) For any ε > 0, there exists h0 > 0 such that
|V h(x)− V 0(x)| < ε for all 0 < h ≤ h0 and all x ∈ Gh.

Proof. Part (i) is proved, in a somewhat more general setting, as Theorem 5.4
in [5]. If part (ii) is false, then there are ε > 0 and a sequence xh ∈ Gh with
h → 0 such that |V h(xh) − V 0(xh)| > ε for each h. Since Ḡ is compact and V 0 is
uniformly continuous on Ḡ, we can extract a subsequence such that xh → x ∈ Ḡ and
|V h(xh)− V 0(x)| > ε/2 for each h, which contradicts part (i) of the theorem.
To facilitate treating the optimal trajectories and controls in the framework of

convergence in distribution, we adopt some standard definitions. We treat the pro-
cesses Xh as random variables taking values in D([0,∞);Rn), the space of Rn-valued
functions that are continuous from the right and have limits on the left. With the
Skorokhod metric, D([0,∞);Rn) is a complete separable metric space [4], and con-
vergence of a sequence in D([0,∞);Rn) is equivalent to convergence of that sequence



404 PAUL DUPUIS AND ADAM SZPIRO

in D([0, S];Rn) for each S < +∞. If a sequence in D([0,∞);Rn) converges to a con-
tinuous function under the Skorokhod metric, then it also converges in the uniform
norm ||| · |||S for each S < +∞.
We also consider the space of relaxed controls. A relaxed control is an element of

R(U×[0,∞)), the space of all Borel measures ν on U×[0,∞) such that ν(Rn×[0, S]) =
S for each S ≤ +∞, where U ⊂ R

n is the compact control set from Lemma 3.3. This
space can be metrized as a complete separable metric space with a metric such that
νk → ν if and only if the restriction of νk to U × [0, S] converges weakly to the
restriction of ν to U × [0, S] for all S ≤ +∞ [19, section 9.5]. The second marginal
of any measure ν ∈ R(U × [0,∞)) is a Lebesgue measure, so the decomposition
ν(du×dt) = νt(du)dt holds, where νt is a probability measure for each t ≥ 0. If ν is a
random variable, then this decomposition can be done so that it holds almost surely
and so that for all t ≥ 0, νt is a random variable. We note that the following version
of Fatou’s lemma holds [4, Theorems 5.1 and 5.3]. If νk → ν, then

lim inf
k→∞

∫
U×[0,S]

fdνk ≥
∫
U×[0,S]

fdν(4.1)

for any S < +∞ and for any continuous nonnegative function f on the space U ×
[0,∞).
For h > 0 and for each t ≥ 0, let νht = δuh(Xh(t)), where δu is the probability

measure on U that places unit mass at the point u, and uh is the optimal feedback
control for the prelimit problem with parameter h. The corresponding optimal relaxed
control is the measure valued random variable given by νh(A×A′) =

∫
A′ ν

h
t (A)dt for

Borel sets A ⊂ U and A′ ⊂ [0,∞). In terms of the optimal relaxed control measures,
the inequality

V h(x) ≥ Ex

∫
U×[0,τh

N
]

L(Xh(t), u)νh(du× dt)(4.2)

holds for each x ∈ Nh. Equality may not hold in (4.2) because it is possible to have
Xh(τhN ) /∈ ∂G; for equality to hold, we would need to add ExV

h(Xh(τhN )) ≥ 0 to
the right-hand side of expression (4.2). For initial conditions in the region of strong
regularity N , we can similarly define ν0 to be the measure in R(U × [0,∞)) with first
marginals ν0

t = δu0(X0(t)). Since ν
0 is not a random variable, an analogue to (4.2)

holds for V 0 without the expectation:

V 0(x) =

∫
U×[0,τ0]

L(X0(t), u)ν0(du× dt).(4.3)

Notice that the inequality in (4.2) is replaced by equality in (4.3) because τ0 is the
exit time of X0 from G. The proof of the following lemma is nearly identical to the
proof of Lemma 5.3 in [5]. The only necessary modification is to use the martingale
estimate from Lemma 3.1 in place of an analogous estimate obtained by applying a
standard conditioning argument to the discrete time processes in [5].
Lemma 4.3. For h > 0, let xh ∈ Nh be such that xh → x ∈ N̄ as h→ 0. Then,

using these initial conditions, the random variables (Xh, νh) are tight. Furthermore,
for any subsequence along which the limit

(Xh, νh)→ (X, ν)
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holds in the sense of distributions,

X(·) = x+

∫ ·

0

∫
U

u νs(du)ds(4.4)

is valid w.p.1.
Given the tightness from Lemma 4.3 and the convergence of the value functions

from Theorem 4.2, we can use the uniqueness of optimal trajectories in regions of
strong regularity for the limit problem to prove that the optimal trajectories and
controls converge in distribution to the appropriate limit quantities. That is the
conclusion of the next lemma.
Lemma 4.4. Let xh ∈ Nh be such that xh → x ∈ N̄ as h→ 0. Then, using these

initial conditions, the limit (Xh, νh)→ (X0, ν0) holds in the sense of distributions as
h→ 0.

Proof. We consider the τhN as random variables taking values in the compactified
space [0,∞]. Then Lemma 4.3 implies that the random variables (Xh, νh, τhN ) are
tight. Thus, given the continuity of the process in expression (4.4), for any subse-
quence there is a further subsequence along which the weak convergence (Xh, νh, τhN )→
(X, ν, τ̃) holds for some limit random variable taking values in

C([0,∞);Rn)×R(U × [0,∞))× [0,∞].
We will show that for any such limit, (X, ν) is w.p.1 equal to (X0, ν0).
By the Skorokhod representation theorem [10], we can consider a probability

space on which the convergence is w.p.1. Since the limit trajectory X is continuous,
the convergence Xh → X is uniform on compact intervals. Thus it is easy to verify
that w.p.1 τ̃ ≥ τN , where τN is the first exit time of X(t) from the interior of N .
We obtain the following series of inequalities, each line of which is explained after the
display:

V 0(x) = lim
h→0

V h(xh)

≥ lim
h→0

Exh

∫
U×[0,τh

N
)

L(Xh(t), u)νh(du× dt)

≥ Ex

∫
U×[0,τ̃)

L(X(t), u)ν(du× dt)

≥ Ex

∫
U×[0,τ

N
)

L(X(t), u)ν(du× dt)

≥ Ex

∫ τN
0

L(X(t), Ẋ(t))dt

≥ V 0(x).

The first line is due to part (i) of Theorem 4.2; the second line comes from the
representation in (4.2); the third line is obtained by applying (4.1) along with the
standard version of Fatou’s lemma; the fourth line uses the fact that w.p.1 τ̃ ≥ τN ;
the fifth line follows from Jensen’s inequality and the relation (4.4); and the final line
is a consequence of the definition of V 0(x).
Evidently, all of the inequalities in the previous display are in fact equalities.

Thus, given the uniqueness of optimal trajectories in the regions of strong regularity,
the last line implies that w.p.1, X(t) = X0(t) for 0 ≤ t ≤ τN = τ0. Recall that for
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equality to occur in Jensen’s inequality with a strictly convex function, the probability
measure must be a point mass. Thus equality in the fifth line implies that w.p.1 νt =
ν0
t for almost every (a.e.) 0 ≤ t ≤ τ0. It remains to show that w.p.1, X(t) = X0(t)
and νt = ν0

t for a.e. τ
0 ≤ t ≤ T .

Since ||| Xh −X0 |||τ0 converges to zero w.p.1 it follows that ‖Xh(τ0)−X0(τ0)‖
converges to zero w.p.1 and hence in probability. Thus we can use the optimality of
Xh, along with a uniform Lipschitz type bound on the V h (see Lemma 3.3) and the
lower bound on the running cost, to conclude that τhN − τ0 is small with arbitrarily
high probability. Since the optimal controls are bounded, it follows that with high
probability ‖Xh(t)−X0(t)‖ is arbitrarily small up to time τ0∨τhN . Furthermore, since
uh = u0 outside ofN , Gronwall’s inequality implies that if ‖Xh(τ0∨τhN )−X0(τ0∨τhN )‖
is small, if Xh(t) stays uniformly close to its mean after the stopping time τ0 ∨ τhN ,
and if Xh does not return to N after it exits, then ‖Xh(t) − X0(t)‖ is small for all
τ0 ∨ τhN ≤ t ≤ T . This event occurs with arbitrarily high probability, so we conclude
that X(t) = X0(t) w.p.1 for all τ0 ≤ t ≤ T . The verification of the needed fact that
with high probability Xh does not return to N after it exits uses the observation
that the extended optimal controls u0 and uh point away from the region N near the
boundary section N ∩ ∂G and that the h-dynamics are one sided, so that whenever
Xh exits from N at a point in N ∩ ∂G (which happens with high probability), it
reaches the region where uh = 0 before returning to N ; see Figure 1. Finally, νt = ν0

t

for a.e. τ0 ≤ t ≤ T follows from the above argument since uh = u0 outside of N and
u0 is uniformly Lipschitz on R

n.

Proof of Lemma 4.1. Suppose that part (i) of the lemma is false. Then there
exists ε > 0 along with a sequence xh ∈ Bh with h→ 0 such that

P
[||| Xhxh −X0

xh |||T > ε
] ≥ ε

for each h. Using the continuity of X0 as a function of its initial condition from
Lemma 2.4, we can extract a subsequence such that xh → x ∈ B̄ and

P
[||| Xhxh −X0

x |||T > ε/2
] ≥ ε

for each h. This is a contradiction, since the convergence in distribution of Xhxh to the
deterministic limit X0

x in Lemma 4.4 implies that ||| Xhxh −X0
x |||T → 0 in probability.

Parts (iii)–(v) follow from part (i) and from Lemma 2.3.

The proof of part (ii) is slightly more subtle because we need to parlay the con-
vergence of relaxed control measures from Lemma 4.4 into a statement about the
convergence in L2([0, T ];Rn) of the controls uh(Xh(t)). Consider a sequence of initial
conditions xh ∈ Bh such that xh → x ∈ B̄ as h → 0. Using Lemma 4.4 and the
Skorokhod representation theorem, we consider a probability space on which νh → ν0

w.p.1. Since ν0(du × dt) = δu0(X0(t))(du)dt and ν
h(du × dt) = δuh(Xh(t))(du)dt, the

w.p.1 convergence νh → ν0 implies
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∫ T
0

‖uh(Xh(t))− u0(X0(t))‖2dt =
∫
U×[0,T ]

‖u− u0(X0(t))‖2νh(du× dt)

−→
∫
U×[0,T ]

‖u− u0(X0(t))‖2ν0(du× dt)

=

∫ T
0

‖u0(X0(t))− u0(X0(t))‖2dt

= 0,

where the limit in the second line holds as h → 0 w.p.1. Thus, switching from
the Skorokhod space back to the original random variables, we can conclude that
‖uh(Xh)− u0(X0)‖T converges to zero in probability for any sequence of initial con-
ditions xh ∈ Bh such that xh → x ∈ B̄ as h → 0. Now, as in the proof of part (i),
this implies the convergence asserted by the lemma.

It is useful to identify the suboptimal processes obtained by applying the limit
optimal feedback control u0 in the h-dynamics. For an initial condition in Nh, let
Xh,0 be the process obtained by taking uh = u0 in section 3, and let mh,0 and
Y h,0 be the corresponding martingale and bounded variation parts indicated by the
decomposition (3.2). Finally, define the exit time τh,0N = inf[t : Xh,0(t) /∈ Nh] and the
exit location zh,0N = Xh,0(τh,0N ).

Lemma 4.5. Let T be the bound on the exit times from Lemma 2.1. For every
ε > 0, there exists h0 > 0 such that

(i) Px
[||| Xh,0x −X0

x |||T > ε
]
< ε,

(ii) Px

[
τh,0x,N > τx + ε

]
< ε

holds for all 0 < h ≤ h0 and for all initial conditions x ∈ Nh, and such that

(iii) Px

[
|τh,0x,N − τ0

x | > ε
]
< ε,

(iv) Px

[
‖zh,0x,N − z0

x‖ > ε
]
< ε

holds for all 0 < h ≤ h0 and for all initial conditions x ∈ Bh.
Proof. For an initial condition x ∈ Bh, let Zh(t) = Xh,0(t) − X0(t). Then by

(3.2) we have

Zh(t) =

∫ t
0

[
u0(Xh,0(s))− u0(X0(s))

]
ds+mh,0(t)

holding w.p.1 for any t < +∞. Thus, if K is the uniform Lipschitz constant for u0,
then for any 0 ≤ σ < +∞

‖Zh(t)‖ ≤
∫ t

0

K‖Zh(s)‖ds+ ||| mh,0(t) |||σ



408 PAUL DUPUIS AND ADAM SZPIRO

holds w.p.1 for each 0 ≤ t ≤ σ. We can apply a version of Gronwall’s inequality [10,
Theorem A.6.4] to get the w.p.1 bound

||| Xh,0(t)−X0(t) |||σ ≤ ||| mh,0(t) |||σeKσ.(4.5)

Now, letting σ = T in (4.5) and applying Lemma 3.1 with a standard submartingale
inequality, we obtain part (i) of the lemma. Parts (ii)–(iv) follow directly from part
(i) and from Lemma 2.3.

5. Convergence of the feedback controls. The main results of this paper are
Theorem 5.5 and Corollary 5.6. They state that in the set B0, the optimal feedback
controls uh(x) for the approximating control problems converge uniformly to u0(x),
the optimal feedback control for the limit problem. Once we establish the analogous
convergence of the approximate gradients Dh,±V h(x) to DV 0(x), we will be able to
use the uniqueness of the optimal control u0(x) to prove Theorem 5.5. Thus most of
this section is devoted to establishing the following lemma.
Lemma 5.1. Let xh ∈ Bh0 be such that xh → x ∈ B̄0 as h→ 0. Then, as h→ 0,

Dh,±V h(xh)→ DV 0(x).

There are two main steps in the proof of Lemma 5.1. First, we obtain the con-
vergence of Dh,±V h(x) to DV 0(x) in a neighborhood of B ∩ ∂G. Then we use rep-
resentations of V 0(x) and V h(x) in terms of integrals along optimal trajectories to
obtain the convergence of the Dh,±V h(x) to DV 0(x) on the interior of the smaller
region B0. Our arguments are very similar in spirit to those used in the proof of [14,
Lemma 5.5]. It is useful in what follows to define a compact notation for the running
cost under a feedback control u(x) by

Lu(x) = L(x, u(x)).(5.1)

The following lemma establishes a geometric bound on the difference between V h and
V 0 on the set B.
Lemma 5.2. For any m > 0, there exists h0 > 0 such that

(1−m)V 0(x) ≤ V h(x) ≤ (1 +m)V 0(x)

holds for all 0 < h ≤ h0 and for all x ∈ Bh.
Proof. We prove this lemma in two steps, first considering the upper bound on

V h(x) and then the lower bound.
Upper bound. Let µ > m, and put W 0 = (1 + µ)V 0. It follows from the DPE

(2.3) that

〈u0,+, Dh,+W 0〉 − 〈u0,−, Dh,−W 0〉+ L̃u0 = 0(5.2)

holds on N , where the modified cost L̃u0(x) is defined on N by

L̃u0 = (1 + µ)Lu0 + 〈u0, DW 0〉 − 〈u0,+, Dh,+W 0〉+ 〈u0,−, Dh,−W 0〉.
Note that since Lu0(x) ≥ c0 > 0 and W 0(x) is smooth, L̃u0(x) ≥ Lu0(x) for h > 0
sufficiently small and for all x ∈ N . Since the generator in (5.2) corresponds to
applying the feedback control u0 in the h-dynamics, we can use a standard verification
argument to establish for all x ∈ Bh the representation

W 0(x) = Ex

[∫ τh,0
N

0

L̃u0(Xh,0)dt+W 0(zh,0N )

]
.(5.3)
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We use part (ii) of Lemma 4.5 to obtain the uniform integrability of τh,0N needed for
the right-hand side of (5.3) to be finite.
For x ∈ Bh, we define

V h,0(x) = Ex

[∫ τh,0
N

0

Lu0(Xh,0)dt+ V h(zh,0N )

]
.(5.4)

Since the feedback control u0 is suboptimal in the control problem with the h-
dynamics, it follows from the strong Markov property that V h(x) ≤ V h,0(x) for
all x ∈ Bh. Thus it suffices to establish the bound V h,0(x) ≤ (1 +m)V 0(x).
Let K be the bound on V h(x) from Lemma 3.3. Then the following series of

inequalities holds for all sufficiently small h > 0 and for all x ∈ Bh:

V h,0(x) ≤ W 0(x) + Ex

[
V h(zh,0N )−W 0(zh,0N )

]

≤ (1 + µ)V 0(x) + ExV
h(zh,0N )

≤ (1 + µ)V 0(x) +KPx

[
zh,0N ∈ G

]
.

(5.5)

The first line uses the representations (5.3) and (5.4), along with the fact that
L̃u0(x) ≥ Lu0(x) for all x ∈ N ; the second line uses the definition of W 0(x) and the
nonnegativity of W 0(x) for all x ∈ G; and the third line uses the fact that V h(x) = 0
for all x ∈ ∂G.
We now turn our attention to bounding the final term in the last display. Let

ε > 0 be equal to d(B, ∂N∩G), so that zh,0N ∈ G implies that zh,0N is at least a distance
of ε away from z0 ∈ B; see Figure 3 before Lemma 5.3. Choose 0 < δ < ε/2 such that
once an optimal trajectory for the limit problem with initial condition x ∈ B gets to
within δ of the boundary ∂G, it can travel no further than distance ε/2 before exiting.
The existence of such a δ > 0 is guaranteed by the nontangential exit property for
the regions of strong regularity. Finally, let 0 < η < δ < ε/2 be chosen so that the
conclusions of Lemma 2.3 hold. We obtain the following series of inequalities holding
for all x ∈ Bh, each line of which is explained after the display:

Px

[
zh,0N ∈ G

]
≤ Px

[
‖zh,0N − z0‖ > ε

]

≤ Px

[
||| Xh,0 −X0 |||τh,0

N
∧T ≥ η

]

≤ Px

[
||| mh,0(t) |||τh,0

N
∧T ≥ ηe−K

′T
]

≤ (ηe−K
′T )−2Ex

[
‖mh,0(τh,0N ∧ T )‖2

]

≤ hCExτ
h,0
N

≤ hc−1
0 CV h,0(x).

(5.6)

The first line is a consequence of the fact that zh,0N ∈ G can occur only if ‖zh,0N −z0‖ > ε;
the second line follows from the choice of δ and η; the third line follows from (4.5)
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with K ′ equal to the Lipschitz constant for u0(x); the fourth line is obtained by a
standard submartingale inequality; the fifth line follows from Lemma 3.1 with C a
composite finite constant; and the last line is a consequence of the definition of V h,0

and of the lower bound c0 on the running cost. We can combine the last lines of (5.5)
and (5.6) to obtain the bound

(1− hc−1
0 CK)V h,0(x) ≤ (1 + µ)V 0(x)

for sufficiently small h > 0 and for all x ∈ Bh. Since V h(x) ≤ V h,0(x), we complete
the proof of the upper bound by taking h > 0 sufficiently small so that (1 + µ)/(1−
hc−1

0 CK) ≤ 1 +m.
Lower bound. Let µ < m, and this time put W 0 = (1−µ)V 0. It follows from the

DPE (2.3) that the relation

〈uh, DV 0〉+ Luh − φh = 0

holds on Nh for some nonnegative function φh. This, in turn, implies that

〈uh,+, Dh,+W 0〉 − 〈uh,−, Dh,−W 0〉+ L̃huh = 0,(5.7)

where L̃huh(x) is defined on N
h by

L̃huh = (1− µ)Luh − (1− µ)φh

+ 〈uh, DW 0〉 − 〈uh,+, Dh,+W 0〉+ 〈uh,−, Dh,−W 0〉.
Since Luh(x) ≥ c0 > 0 and W

0(x) is smooth, the nonnegativity of φh(x) implies that
Luh(x) ≥ L̃huh(x) for h > 0 sufficiently small and for all x ∈ Nh. The generator in
(5.7) corresponds to applying the feedback control uh in the h-dynamics, so we can
use a standard verification argument to establish for all x ∈ Bh the representation

W 0(x) = Ex

[∫ τhN
0

L̃huh(X
h)dt+W 0(zhN )

]
.(5.8)

We use part (iii) of Lemma 4.1 to obtain the uniform integrability of τhN needed for the
right-hand side to be finite. The strong Markov property implies the representation

V h(x) = Ex

[∫ τhN
0

Luh(X
h)dt+ V h(zhN )

]
.(5.9)

Thus the following series of inequalities holds for all sufficiently small h > 0 and for
all x ∈ Bh:

V h(x) ≥ W 0(x) + Ex
[
V h(zhN )−W 0(zhN )

]
≥ (1− µ)V 0(x)− sup

y∈Gh

∣∣V h(y)− V 0(y)
∣∣Px [zhN /∈ ∂G]

= (1− µ)V 0(x)− oh(1)Px
[
zhN /∈ ∂G] .

(5.10)

The first line follows from the representations (5.8) and (5.9), along with the fact
that Luh(x) ≥ L̃huh(x) for all x ∈ Nh; the second line uses the definition of W 0(x),
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the nonnegativity of V 0(x) for all x ∈ G, and the fact that V h(x) = V 0(x) = 0 for
all x ∈ ∂G; finally, the third line uses part (ii) of Theorem 4.2, and the oh(1) term
converges to zero as h→ 0, uniformly for all x ∈ Bh.
Let ε > 0 be equal to d(B, ∂N ∩G)/2. Notice that any trajectory with an initial

condition x ∈ B must travel a distance of at least 2ε if it is to exit N at a point which
is not in ∂G; see Figure 3. Let K ≥ supu∈U ‖u‖ be such that ε/K ≤ T . Then, given
the semimartingale decomposition in (3.2), zhN ∈ ∂G will follow if τhN < ε/K ≤ T
and if ||| mh |||τh

N
∧T < ε. By Chebyshev’s inequality and by the lower bound c0 on the

running cost, for each x ∈ Bh we have

Px
[
τhN ≥ ε/K

] ≤ (ε/K)−1Exτ
h
N

≤ (εc0/K)
−1V h(x).

As in (5.6), we can use a standard submartingale inequality and Lemma 3.1 to verify
that

Px

[
||| mh |||τh

N
∧T ≥ ε

]
≤ hCV h(x)

for all x ∈ Bh, where C is a finite constant. Thus, for a composite constant C ′, we
conclude that

Px
[
zhN /∈ ∂G] ≤ C ′V h(x)

for all x ∈ Bh. Combining this last bound with (5.10), we obtain

(1 + oh(1))V
h(x) ≥ (1− µ)V 0(x)

for all h > 0 sufficiently small and for all x ∈ Bh. By taking h > 0 sufficiently
small so that (1− µ)/(1 + oh(1)) ≥ 1−m on Bh, we complete the proof of the lower
bound.

G

N

B

d(B, ∂N ∩G)

•(i)

•(ii)

Fig. 3. Boundary points.

We are now able to prove that the approximations Dh,±V h(x) converge uniformly
to the gradient DV 0(x) at appropriate points x near the boundary of B. The two
cases in the following lemma are illustrated in Figure 3.
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Lemma 5.3. For ε > 0 there exists h0 > 0 such that for all 0 < h ≤ h0 and for
each i = 1, . . . , n,

|Dh,+i V h(x)−DiV
0(x)| ≤ ε (resp., |Dh,−i V h(x)−DiV

0(x)| ≤ ε)

for each x ∈ R
n such that either (i) x ∈ ∂G and x+ hei ∈ Bh (resp., x− hei ∈ Bh),

or (ii) x ∈ Bh and x+ hei ∈ ∂G (resp., x− hei ∈ ∂G).
Proof. For simplicity, we treat only case (i) with x ∈ ∂G and x+hei ∈ Bh. Given

the smoothness of DiV
0, the other cases follow easily from the same argument. Fix

ε > 0, and let K be the uniform Lipschitz constant for V 0(x). Then by Lemma 5.2,
there exists h0 > 0 such that∣∣∣∣V h(x+ hei)− V 0(x+ hei)

V 0(x+ hei)

∣∣∣∣ ≤ ε

2
K−1(5.11)

for all 0 < h ≤ h0 and for all x ∈ R
n satisfying condition (i). For such x and h, put

y = x+hei. Then, using (5.11) along with the fact that V
0(x) and V h(x) satisfy zero

boundary conditions on ∂G, we obtain

|Dh,+i V h(x)−Dh,+i V 0(x)| =
∣∣∣∣V h(y)− V 0(y)

h

∣∣∣∣
=

∣∣∣∣V 0(y)

h

∣∣∣∣
∣∣∣∣V h(y)− V 0(y)

V 0(y)

∣∣∣∣
≤ K

∣∣∣∣V h(y)− V 0(y)

V 0(y)

∣∣∣∣
≤ ε/2.

(5.12)

Now let h0 > 0 be sufficiently small so that

|Dh,+i V 0(x)−DiV
0(x)| ≤ ε/2

for all 0 < h ≤ h0 and x ∈ B̄. Then the result follows from (5.12).
The first step in extending the result of Lemma 5.3 to the interior of B0 is to

establish a representation for DV 0(x) in terms of an integral of the gradient in x of
the running cost L(x, u) along the optimal trajectories. The proof we give for this
representation in the next lemma is fairly simple because it involves only deterministic
trajectories. An analogous argument, involving stochastic trajectories, will be used
to establish the convergence of Dh,±V h(x) to DV 0(x) in the proof of Lemma 5.1.
We also note that the representation in Lemma 5.4 can be obtained by the classical
method of characteristics [13]. Recall the notation Lu(x) = L(x, u(x)) for a feedback
control u(x).
Lemma 5.4. The representation

DV 0(x) =

∫ τ0x
0

DLu0(X0
x)dt+DV 0(z0

x)(5.13)

holds for all initial conditions x ∈ B̄0.
Proof. We fix x ∈ B̄0 and establish the representation separately for each com-

ponent DiV
0(X) of the gradient DV 0(x). Without loss of generality, assume that
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x + hei ∈ N for all sufficiently small h > 0. Since Dh,+i V 0(x) → DiV
0(x) as h → 0,

we can establish the representation by proving separately the upper bound

lim sup
h→0

Dh,+i V 0(x) ≤
∫ τ0x

0

DiLu0(X0
x)dt+DiV

0(z0
x)

and the lower bound

lim inf
h→0

Dh,+i V 0(x) ≥
∫ τ0x

0

DiLu0(X0
x)dt+DiV

0(z0
x).

Upper bound. Let τ̂h be the minimum of τ
0
x and the first exit time from N of the

shifted trajectory X0
x(t) + hei, and let ẑh = X0

x(τ̂h). Using the fact that X
0
x(t) + hei

is a suboptimal trajectory for the initial condition x+ hei, we obtain the relations

Dh,+i V 0(x) ≤ 1

h

[∫ τ̂h
0

L(X0
x + hei, u

0(X0
x))dt+ V 0(ẑh + hei)

−
∫ τ̂h

0

L(X0
x, u

0(X0
x))dt− V 0(ẑh)

]

=

∫ τ̂h
0

Dh,+i Lu0(X0
x)dt+Dh,+i V 0(ẑh).

Lemma 2.3 implies that |τ̂h− τ0
x | and ‖ẑh− z0

x‖ both converge to zero as h→ 0, so we
can apply the Lebesgue dominated convergence theorem to obtain the upper bound.

Lower bound. This time, let τ̂h be the minimum of τ
0
x+hei

and the first exit time
from N of the shifted trajectory X0

x+hei
(t)− hei, and let ẑh = X0

x+hei
(τ̂h). Using the

fact that X0
x+hei

(t) − hei is a suboptimal trajectory for the initial condition x, we
obtain the relations

Dh,+i V 0(x) ≥ 1

h

[∫ τ̂h
0

L(X0
x+hei , u

0(X0
x+hei))dt+ V 0(ẑh)

−
∫ τ̂h

0

L(X0
x+hei − hei, u

0(X0
x+hei))dt− V 0(ẑh − hei)

]

=

∫ τ̂h
0

Dh,−i Lu0(X0
x+hei)dt+Dh,−i V 0(ẑh).

By Lemma 2.4, ||| X0
x+hei

−X0
x |||T converges to zero as h → 0. Thus Lemma 2.3

implies that |τ̂h− τ0
x | and ‖ẑh−z0

x‖ both converge to zero as h→ 0, and we can apply
the Lebesgue dominated convergence theorem to obtain the lower bound.
We can now use the representation for DV 0(x) obtained in Lemma 5.4 to prove

Lemma 5.1. In fact, the proofs are essentially analogous. The primary difference
is that the trajectories which arise in the proof of Lemma 5.1 are stochastic, so the
analysis of the limits as h→ 0 is more involved.

Proof of Lemma 5.1. We give a detailed argument only for the convergence
Dh,+i V h(xh) → DiV

0(x). Fix x ∈ B̄0, and let x
h ∈ Bh0 be such that x

h → x as
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h→ 0. As usual, we prove separately the upper bound

lim sup
h→0

Dh,+i V h(xh) ≤ DiV
0(x)

and the lower bound

lim inf
h→0

Dh,+u V h(xh) ≥ DiV
0(x).

Upper bound. Let τ̂h be the minimum of τ
h
xh,N and the first exit time from the

interior of N of the shifted trajectory Xhxh(t) + hei, and let ẑh = Xhxh(τ̂h). Using the
fact that the trajectory Xhxh(t) + hei results when the suboptimal feedback control
ũh(·) = uh(· − hei) is applied in the h-dynamics with initial condition x

h + ei, we
obtain the relations

Dh,+i V h(xh) ≤ 1

h
Ehx

[∫ τ̃h
0

Lũh(X
h
xh + hei)dt+ V h(z̃h + hei)

−
∫ τ̃h

0

Luh(X
h
xh)dt− V h(z̃h)

]

= Exh

[∫ τ̂h
0

Dh,+i Luh(X
h
xh)dt+Dh,+i V h(ẑh)

]
.

In light of the representation (5.13), this implies that we can establish the upper
bound by showing that

Exh

∣∣∣∣∣
∫ τ̂h

0

Dh,+i L(Xhxh , u
h(Xhxh))dt−

∫ τ0x
0

DiL(X
0
x, u

0(X0
x))dt

∣∣∣∣∣(5.14)

and

Exh
∣∣∣Dh,+i V h(ẑh)−DiV

0(z0
x,N )

∣∣∣(5.15)

both converge to zero as h → 0. Recall from Remark 3.2 and Lemma 3.3 that the
pair (Xh, uh(Xh)) takes values in a compact set for all initial conditions and for all
h ≥ 0. Thus the smoothness of L implies that we can use the triangle inequality to
bound the quantity in (5.14) by a constant times

Exh
[‖Xhxh −X0

x‖T + ‖uh(Xhxh)− u0(X0
x)‖T + |τ̂h − τ0

x |+ hT
]
.(5.16)

By combining parts (i) and (ii) of Lemma 4.1 with Lemma 2.4, we can establish that
the first two terms in (5.16) converge to zero as h→ 0. Uniform integrability of the τ̂h
follows from the strong Markov property and from the fact that Lemmas 2.3 and 2.4
together imply that τ̂h ≤ T with positive probability, uniformly in h. Thus, since
τ̂h → τ0

x in probability, the third term in (5.16) converges to zero as h→ 0, and this
implies that the expression in (5.14) converges to zero as h→ 0.
Applying the triangle inequality to (5.15), we find that it is bounded by

Exh
[
|Dh,+i V h(ẑh)−DiV

0(ẑh)|+ |DiV 0(ẑh)−DiV
0(z0
x)|
]
.(5.17)
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Combining part (i) of Lemma 4.1 with Lemmas 2.3 and 2.4, we conclude that ẑh
converges to z0

x in probability. The continuity result in Lemma 2.4 and the fact that B
is a region of strong regularity imply that the set {z0

y : y ∈ B̄0} is compactly contained
in B, so the probability of ẑh satisfying the conditions of Lemma 5.3 increases to one
as h→ 0. Thus we can use Lemma 5.3 and the smoothness of DiV 0 to conclude that
each of the terms in (5.17) converges to zero as h → 0. That, in turn, implies that
(5.14) converges to zero as h→ 0 and completes the proof of the upper bound.

Lower bound. This time, we let τ̂h be the minimum of τ
h
x+hei

and the first exit

time from N of the shifted trajectory Xhx+hei(t) − hei, and we let ẑh = Xhx+hei(τ̂h).
As in the proof of the upper bound, we obtain

Dh,+i V h(xh) ≥ Exh

[∫ τ̂h
0

Dh,−i Luh(X
h
xh+hei

)dt+Dh,−i V h(ẑh)

]
.

See also the analogous relation which appears in the proof of the lower bound for
Lemma 5.4. Just as in the proof of the upper bound, we show that the right-hand
side of the above expression converges to DiV

0(x) as h → 0. Notice that we need
xh+he1 ∈ Bh in order to apply Lemma 4.1. Since xh ∈ B0, this condition is satisfied
for all sufficiently small h > 0.
Theorem 5.5. Let xh ∈ Bh0 be such that xh → x ∈ B̄0 as h → 0. Then, as

h→ 0,

uh(xh)→ u0(x).

Proof. For each u ∈ U , we define

F 0(u) = 〈u,DV 0(x)〉+ L(x, u)

and

Fh(u) = 〈u+, Dh,+V h(xh)〉 − 〈u−, Dh,−V h(xh)〉+ L(xh, u).

Recall from Lemma 3.3 that the optimal controls u0 and uh take values in the compact
set U . Thus there exists ũ ∈ U such that in a subsequence, uh(xh)→ ũ as h→ 0. It
suffices to show that ũ = u0(x). Since x is in a region of strong regularity, it follows
from the DPE (2.3) that the unique minimizer of F 0(u) is given by u0(x). Similarly,
the DPE (3.5) implies that uh(xh) is a minimizer of Fh(u). Also, notice that F 0(u)
is a continuous function of u and that Lemma 5.1 implies that Fh(u) converges to
F 0(u) for each u ∈ U . Thus we obtain the following relations:

F 0(u0(x)) = lim
h→0

Fh(u0(x)) ≥ lim
h→0

Fh(uh(xh)) = F 0(ũ).

Since u0(x) is the unique minimizer of F 0, it follows that ũ = u0(x). That completes
the proof of the theorem.
Corollary 5.6. For any ε > 0, there exist h0 > 0 such that

‖uh(x)− u0(x)‖ < ε

for all 0 < h ≤ h0 and for all x ∈ Bh0 .
Proof. Since u0(x) is uniformly continuous on B̄0, the result follows from Theo-

rem 5.5 and a standard argument by contradiction.
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Fig. 4. (a) Exact solution; (b) approximate control.

6. Computational examples. In this section, we present examples of approxi-
mations obtained by numerically solving the DPE (3.5) for the Markov chain optimal
control problem. The fixed point of that equation is taken as the approximation to the
value function V 0(x), and the infimizing feedback control is taken as an approximate
feedback control for the limit problem. The solution of (3.5) is obtained by using
either Jacobi or Gauss–Seidel iteration in the equivalent equation (3.6), and we note
that the infima at each step can be evaluated analytically [5]. When the Gauss–Seidel
method is used, we observe in our examples that the number of iterations required to
find the fixed point is essentially independent of the parameter h.

Example 1. Our first example is a minimum escape time problem on the unit
square G = [−1, 1]× [−1, 1] in R

2 with running cost

L(x, u) =
1

4
‖u‖2 + 1.

The domain can be decomposed into four regions of strong regularity on which the
value function is smooth and on which there is a smooth optimal feedback control.
This decomposition and the optimal values are indicated in Figure 4(a). Arrows indi-
cate the direction of the optimal velocity field. Figure 4(b) displays the values of the
first component of the feedback control uh(x) for h = 0.05. We see that the disconti-
nuities in the optimal control are resolved very sharply by our approximation scheme.
In Table 1, we indicate errors in the approximations to the controls. The L1 errors
reported there are for the entire domain, while the L∞ errors are for points inside
the regions of strong regularity and a distance of at least 0.1 from the discontinuities.
We also indicate the number of iterations required for the Gauss–Seidel method to
achieve a residual of less than 10−8, our standard tolerance. We see that the errors in
the optimal controls become machine zero on the regions of strong regularity, which
is in part a consequence of the fact that the value function is linear in those regions.
Additionally, the optimal controls appear to converge in L1 on the entire domain.
Without detailed assumptions about the structure of the regions of strong regularity,
our results do not necessarily predict that type of convergence. However, since we
know for the present problem that the complement of the regions of strong regularity
has Lebesgue measure zero, convergence in L1 on the entire domain is, in fact, ex-
pected. Finally, similar error values are indicated in the second part of Table 1 for
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Table 1
Escape time problem errors.

n = 2 n = 3
h Iter L1 L∞ RSR Iter L1 L∞ RSR
0.2 8 1.74 e − 00 5.91 e − 01 9 4.36 e − 00 5.91 e − 01
0.1 8 1.01 e − 00 8.77 e − 02 17 2.77 e − 00 8.77 e − 02
0.05 8 5.43 e − 01 1.92 e − 03 17 1.55 e − 00 1.92 e − 03
0.025 8 2.80 e − 01 2.31 e − 13 17 8.22 e − 01 3.94 e − 13

the escape time problem on the unit cube in R
3.

Example 2. Our next example involves a value function which is obtained by
perturbing the value function for the escape time problem in R

2. We take care to
modify the value function and the cost structure in such a way that we obtain a new
problem with smooth data and with a solution that can be evaluated analytically. To
that end, we introduce the C∞ double bump function defined by

χ(ξ) =




e−λ((ξ−m)2−σ2)−2

, ξ ∈ [m− σ,m+ σ],

e−λ((−ξ−m)2−σ2)−2

, ξ ∈ [−m− σ,−m+ σ],
0 otherwise,

where we use the parameter values m = 0.7, σ = 0.5, and λ = 0.07. Now we define a
mollifier by

Φ(x, y) = χ(x+ y)χ(x− y)

for all (x, y) in the unit square, and then we define the value function V 0(x, y) by
multiplying the value function for the escape time problem by 1 + Φ(x, y). The
resulting function has the same regions of strong regularity as indicated in Figure
4(a), and it maintains the linear structure in a neighborhood of the discontinuities.
In a similar spirit, we define

a(x, y) =

[
1 0
0 1

]
+ 3 sin(2πx)2

[
2 5
5 18

]
Φ(x, y)

and

b(x, y) =

[
0
0

]
+ 5

[
x

y sin((x2 + y2)1/2 − 1/2)
]
Φ(x, y),

so that a(x, y) is the identity and b(x, y) is the zero vector in a neighborhood of the
discontinuities. Now we define c(x, y) on the regions of strong regularity by

c(x, y) = (1/2)
〈
DV 0(x, y), a(x, y)DV 0(x, y)

〉
−
〈
b(x, y), DV 0(x, y)

〉
.

Our use of a mollifier in defining all of the relevant functions ensures that the cost
function c(x, y) extends smoothly to c(x, y) = 1 at the discontinuities, and it turns
out that V 0(x) solves the limit control problem for the indicated cost structure.
The optimal trajectories for this problem are indicated in Figure 5(a), while tra-

jectories computed using the approximate optimal controls with h = 0.025 are shown
in Figure 5(b). Clearly, the controls computed with our algorithm yield an excellent
approximation to the optimal trajectories. In Table 2, we exhibit error values for the
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(a) (b)

Fig. 5. (a) Characteristics; (b) approximate characteristics.

Table 2
Perturbed escape time problem errors.

h Iter L1 L∞ RSR
0.1 10 5.83 e − 01 2.66 e − 01
0.05 12 3.24 e − 01 1.59 e − 01
0.025 12 1.72 e − 01 8.94 e − 02
0.0125 12 8.93 e − 02 4.84 e − 02
0.00625 12 4.55 e − 02 2.54 e − 02

approximations to the optimal control with the L1 errors being on the entire domain
and the L∞ errors being for points a distance of at least 0.1 from the discontinuities.
Evidently, both measures of the error are approximately proportional to h, and it is
also worth noting that the number of iterations required for the Gauss–Seidel proce-
dure to converge to the fixed point is essentially constant. In Figure 6, we display
an approximation to the first component of the optimal control with h = 0.05 and
the errors in the approximation to the control for h = 0.05. The discontinuities are
resolved very sharply, and we can see that the errors are uniformly small within the
regions of strong regularity

Example 3. Our final example is an application to the problem of finding geodesics
on a surface, suggested in [20]. Given a surface z(x, y) on the unit square in R

2, the
problem is to find the shortest path along the surface from a given point to the
boundary. It is shown in [20, section 16.5] that the solution to this problem can be
obtained from our optimal control problem with running cost specified by

a(x, y) =

[
1 + z2

y zxzy
zxzy 1 + z2

x

]
, b(x, y) =

[
0
0

]
,

and

c(x, y) = (1/2)(1 + z2
x + z2

y).

Geodesics are obtained by following the optimal trajectories from points on the interior
of the unit square to the boundary. In Figure 7(a), we show several approximate
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Fig. 6. (a) Approximate control; (b) control error.
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Fig. 7. (a) Geodesics; (b) value function.

geodesics computed using our algorithm for the sinusoidal surface

z(x, y) = (1/4) sin

(
7π

4
x

)
sin

(
7π

4
y

)
.

The approximate controls are computed on a grid with spacing h = 0.05, and the
trajectories are integrated by a simple Euler method with linear interpolation. In
Figure 7(b), we show the value function computed with h = 0.05 for the corresponding
control problem, illustrating the fairly complex structure of the regions of strong
regularity. Since we do not know the exact solution for this problem, it is not possible
for us to present a numerical measure of accuracy for the approximate geodesics in
Figure 7(a). However, Theorem 5.5 guarantees that for initial conditions in a region of
strong regularity, the approximations will converge to the correct geodesics as h→ 0.
Being that a more refined grid does not result in discernible changes to the paths
indicated in Figure 7(a), we conclude that these are, in fact, good approximations to
the exact geodesic curves.
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ON A BOUNDARY CONTROL APPROACH TO DOMAIN
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Abstract. In this paper, we propose a domain embedding method associated with an optimal
boundary control problem with boundary observations to solve elliptic problems. We prove that
the optimal boundary control problem has a unique solution if the controls are taken in a finite
dimensional subspace of the space of the boundary conditions on the auxiliary domain.

Using a controllability theorem due to J. L. Lions, we prove that the solutions of Dirichlet (or
Neumann) problems can be approximated within any prescribed error, however small, by solutions
of Dirichlet (or Neumann) problems in the auxiliary domain taking an appropriate subspace for such
an optimal control problem. We also prove that the results obtained for the interior problems hold
for the exterior problems. Some numerical examples are given for both the interior and the exterior
Dirichlet problems.

Key words. domain embedding methods, optimal control

AMS subject classifications. 93B05, 93B07, 93B40, 65N30, 65P05, 65R20
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1. Introduction. The embedding or fictitious domain methods, which were de-
veloped especially in the seventies (see [6], [2], [34], [35], [28], or [14]), have been
a very active area of research in recent years because of their appeal and potential
for applications in solving problems in complicated domains very efficiently. In these
methods, complicated domains ω, where solutions of problems may be sought, are
embedded into larger domains Ω with simple enough boundaries so that solutions
in these embedded domains can be constructed more efficiently. The use of these
embedding methods is now commonplace for solving complicated problems arising in
science and engineering. To this end, it is worth mentioning the domain embedding
methods for Stokes equations (Borgers [5]), for fluid dynamics and electromagnetics
(Dinh et al. [12]), and for the transonic flow calculation (Young et al. [36]).

In [3], an embedding method is associated with a distributed optimal control
problem. There the problem is solved in an auxiliary domain Ω using a finite element
method on a fairly structured mesh which allows the use of fast solvers. The auxiliary
domain Ω contains the domain ω, and the solution in Ω is found as a solution of
a distributed optimal control problem such that it satisfies the prescribed boundary
conditions of the problem in the domain ω. The same idea is also used in [10],
where a least squares method is used. In [13], an embedding method is proposed
in which a combination of Fourier approximations and boundary integral equations
is used. Essentially, there a Fourier approximation for a particular solution of the
inhomogeneous equation in Ω is found, and then the solution in ω for the homogeneous
equation is sought using the boundary integral methods.
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In recent years, progress in this field has been substantial, especially in the use of
the Lagrange multiplier techniques. In this connection, the works of Girault, Glowin-
ski, Hesla, Joseph, Kuznetsov, Lopez, Pan, and Périaux (see [15], [16], [17], [18], and
[19]) should be cited.

There are many problems for which an exact solution on some particular domains
may be known or computed numerically within a good approximation very efficiently.
In these cases, an embedding domain method associated with a boundary optimal
control problem allows one to find solutions of the problems very efficiently in com-
plicated domains. Specifically, the particular solution of the inhomogeneous equation
can be used to reduce the problem to solving a homogeneous equation in ω subject to
appropriate conditions on the boundary of the domain ω. This solution in the com-
plicated domain ω can be obtained via an optimal boundary control problem where
one finds the solution of the same homogeneous problem in the auxiliary domain Ω
that would satisfy appropriate boundary conditions on the domain ω. We mention
that the boundary control approach already has been used by Mäkinen, Neittaanmäki,
and Tiba for optimal shape design and two-phase Stefan-type problems (see [29], [32]).
Moreover, recently there has been enormous progress in shape optimization using the
fictitious domain approaches. We can cite here, for instance, the works of Daňková,
Haslinger, Klarbring, Makinen, Neittaanmäki, and Tiba (see [9], [22], [23], and [33])
among many others.

In section 2, an optimal boundary control problem involving an elliptic equation
is formulated. In this formulation, the solution on the auxiliary domain Ω is sought
such that it satisfies the boundary conditions on the domain ω. In general, such an
optimal control problem leads to an ill posed problem, and, consequently, it may not
have a solution.

Using a controllability theorem of J. L. Lions, it is proved here that the solutions
of the problems in ω can be approximated within any specified error, however small, by
the solutions of the problems in Ω for appropriate values of the boundary conditions.
In section 3, it is shown that the optimal control problem has a unique solution in
a finite dimensional space. Consequently, considering a family of finite dimensional
subspaces with their union dense in the whole space of controls, we can approximate
the solution of the problem in ω with the solutions of the problems in Ω using finite
dimensional optimal boundary control problems. Since the values of the solutions
in Ω are approximately calculated on the boundary of the domain ω, we study the
optimal control problem with boundary observations in a finite dimensional subspace
in section 4. In section 5, we extend the results obtained for the interior problems to
the exterior problems. In section 6, we give some numerical examples for both bounded
and unbounded domains. The numerical results are presented to show the validity
and high accuracy of the method. Finally, in section 7 we provide some concluding
remarks. There is still a large room for further improvement and numerical tests. In
future works, we will apply this method in conjunction with fast algorithms (see [4],
[7], [8]) to solve other elliptic problems in complicated domains.

2. Controllability. Let ω, Ω ∈ N (1),1 (i.e., the maps defining the boundaries of
the domains and their derivatives are Lipschitz continuous) be two bounded domains
in RN such that ω̄ ⊂ Ω. Their boundaries are denoted by γ and Γ, respectively.

In this paper, we use domain embedding and the optimal boundary control ap-
proach to solve the elliptic equation

Ay = f in ω,(2.1)
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subject to either Dirichlet boundary conditions

y = gγ on γ(2.2)

or Neumann boundary conditions

∂y
∂nA(ω) = hγ on γ,(2.3)

where ∂
∂nA(ω) is the outward conormal derivative associated with A.

We assume that the operator A is of the form

A = −
N∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
a0

with aij ∈ C(1),1(Ω̄), a0 ∈ C(0),1(Ω̄), a0 ≥ 0 in Ω, and there exists a constant c > 0

such that
∑N

i,j=1 aijξiξj ≥ c(ξ2
1 + · · ·+ ξ2

N ) in Ω for any (ξ1, . . . , ξN ) ∈ RN . Also, we

assume that f ∈ L2(Ω), gγ ∈ L2(γ), and hγ ∈ H−1(γ).
For later use, we define the following. A function y ∈ H1/2(ω) is called a solution

of the Dirichlet problem (2.1)–(2.2) if it satisfies (2.1) in the sense of distributions and
the boundary conditions (2.2) in the sense of traces in L2(γ). A function y ∈ H1/2(ω)
is called a solution of the Neumann problem (2.1), (2.3) if it satisfies (2.1) in the sense
of distributions and the boundary conditions (2.3) in the sense of traces in H−1(γ)
(see [27, Chap. 2, section 7]).

The Dirichlet problem (2.1)–(2.2) has a unique solution which depends continu-
ously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |gγ |L2(γ)}.(2.4)

If there exists a constant c0 > 0 such that a0 ≥ c0 in ω, then the Neumann problem
(2.1), (2.3) has a unique solution which depends continuously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |hγ |H−1(γ)}.(2.5)

If a0 = 0 in ω, then the Neumann problem (2.1), (2.3) has a solution if∫
ω

f +

∫
γ

hγ = 0.(2.6)

In this case, the problem has a unique solution in H1/2(ω)/R and

inf
r∈R
|y + r|H1/2(ω) ≤ C{|f |L2(ω) + |hγ |H−1(γ)}.(2.7)

We also remark that the solution of problem (2.1)–(2.2) can be viewed (see [27,
Chap. 2, section 6]) as the solution of the problem

y ∈ H1/2(ω) :
∫
ω
yA∗ψ =

∫
ω
fψ − ∫

γ
gγ

∂ψ
∂nA∗ (ω)

for any ψ ∈ H2(ω), ψ = 0 on γ,
(2.8)

and that a solution of problem (2.1), (2.3) is also solution of the problem

y ∈ H1/2(ω) :
∫
ω
yA∗ψ =

∫
ω
fψ +

∫
γ
hγψ

for any ψ ∈ H2(ω), ∂ψ
∂nA∗ (ω) = 0 on γ,

(2.9)
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where A∗ is the adjoint operator of A given by

A∗ = −
N∑

i,j=1

∂

∂xi

(
aji

∂

∂xj

)
+ a0.

Evidently, the above results also hold for problems in the domain Ω.
We consider in the following only the cases in which the above problems have

unique solutions, i.e., the Dirichlet problems, and we assume in the case of the Neu-
mann problems that there exists a constant c0 > 0 such that a0 ≥ c0 in Ω.

Below we use the notations and the notions of optimal control from Lions [26].
First, we study the controllability of the solutions of the above two problems (defined
by (2.1)–(2.3)) in ω with the solutions of a Dirichlet problem in Ω. Let

U = L2(Γ)(2.10)

be the space of controls. The state of the system for a control v ∈ L2(Γ) is given by
the solution y(v) ∈ H1/2(Ω) of the following Dirichlet problem:

Ay(v) = f in Ω,
y(v) = v on Γ.

(2.11)

In the case of the Dirichlet problem (2.1)–(2.2), the space of observations is taken
to be

H = L2(γ),(2.12)

and the cost function is given by

J(v) =
1

2
|y(v)− gγ |2L2(γ),(2.13)

where v ∈ L2(Γ) and y(v) is the solution of problem (2.11). For the Neumann problem
given by (2.1) and (2.3), the space of observations is taken to be

H = H−1(γ),(2.14)

and the cost function is given by

J(v) =
1

2

∣∣∣∣ ∂y(v)

∂nA(ω)
− hγ

∣∣∣∣
2

H−1(γ)

.(2.15)

Remark 2.1. Since y(v) ∈ H1/2(Ω) and Ay(u) = f ∈ L2(Ω), we have y(v) ∈
H2(D) for any domain D which satisfies ω̄ ⊂ D ⊂ D̄ ⊂ Ω (see [30, Chap. 4,
section 1.2, Theorem 1.3], for instance). Therefore, y(v) ∈ H3/2(γ) with the same

values on both the sides of γ. Also, ∂y(v)
∂nA(ω) ∈ H1/2(γ), ∂y(v)

∂nA(Ω−ω̄) ∈ H1/2(γ), and
∂y(v)

∂nA(ω) +
∂y(v)

∂nA(Ω−ω̄) = 0. Consequently, the above two cost functions make sense.

Proposition 2.1. A control u ∈ L2(Γ) satisfies J(u) = 0, where the control
function is given by (2.13), if and only if the solution of (2.11) for v = u, y(u) ∈
H1/2(Ω) satisfies

Ay(u) = f in Ω− ω̄,
y(u) = y on γ,

∂y(u)
∂nA(Ω−ω̄) +

∂y
∂nA(ω) = 0 on γ,

(2.16)
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and

y(u) = y in ω,(2.17)

where y is the solution of the Dirichlet problem defined by (2.1) and (2.2) in the
domain ω. The same result holds if the control function is given by (2.15) and y is
the solution of the Neumann problem (2.1) and (2.3).

Proof. Let y(u) ∈ H1/2(Ω) be the solution of problem (2.11) corresponding to an
u ∈ L2(Γ) such that J(u) = 0 with the control function given by (2.13). Consequently,
y(u) verifies (2.1) in the sense of distributions and the boundary condition (2.2) in the
sense of traces. It gives y(u) = y in ω. Since y(u) satisfies (2.11) in Ω− ω̄ in the sense
of distributions, then, evidently, y(u) is a solution of the equation in (2.16). From
(2.17) and Remark 2.1, we obtain that y(u) also satisfies the two boundary conditions
of (2.16). The reverse implication is evident.

The same arguments also hold for the Neumann problem defined by (2.1) and
(2.3) and the control function given by (2.15).

Since (2.16) is not a properly posed problem, it follows from the above proposition
that the optimal control might not exist. However, J. L. Lions proves in [26, Chap.
2, section 5.3, Theorem 5.1] a controllability theorem which can be directly applied
to problem (2.11). We mention this theorem below.

Lions’s controllability theorem. The set { ∂z0(v)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈

L2(Γ)} is dense in H−1(γ), where z0(v) ∈ H1/2(Ω− ω̄) is the solution of the problem

Az0(v) = 0 in Ω− ω̄,
z0(v) = v on Γ,
z0(v) = 0 on γ.

Now, we can easily prove the following lemma.

Lemma 2.2. For any g ∈ L2(γ), the set { ∂z(v)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈ L2(Γ)} is

dense in H−1(γ), where z(v) ∈ H1/2(Ω− ω̄) is the solution of the problem

Az(v) = f in Ω− ω̄,
z(v) = v on Γ,
z(v) = g on γ.

(2.18)

Proof. Let z ∈ H1/2(Ω− ω̄) be the solution of the problem

Az = f in Ω− ω̄,
z = 0 on Γ,
z = g on γ.

Using z0(v) = z(v) − z in the Lions controllability theorem, we get that the

set { ∂(z(v)−z)
∂nA(Ω−ω̄) ∈ H−1(γ) : v ∈ L2(Γ)} is dense in H−1(γ). Hence the lemma

follows.
The following theorem proves controllability of the solutions of problems in ω by

the solutions of Dirichlet problems in Ω. In the proof of this theorem below, we use
the spaces Ξs introduced in Lions and Magenes [27, Chap. 2, section 6.3]. For the
sake of completeness, we give definitions of these spaces Ξs.

Let ρ(x) be a function in D(Ω̄) which is positive in Ω and vanishes on Γ. We also
assume that for any x0 ∈ Γ, the limit

lim
x→x0∈Γ

ρ(x)

d(x,Γ)



426 L. BADEA AND P. DARIPA

exists and is positive, where d(x,Γ) is the distance from x ∈ Ω to the boundary Γ.
Then, for s = 0, 1, 2, . . ., the space Ξs is defined by

Ξs(Ω) = {u : ρ|α|Dαu ∈ L2(Ω), |α| ≤ s}.

With the norm

||u||Ξs(Ω) =
∑
|α|≤s

||ρ|α|Dαu||L2(Ω),

the space Ξs(Ω) is a Hilbert space, and

Ξ0(Ω) = L2(Ω), Hs(Ω) ⊂ Ξs(Ω) ⊂ L2(Ω), and D(Ω) is dense in Ξs(Ω).

Now, for a positive noninteger real s = k+θ with k the integer part of s and 0 < θ < 1,
the space Ξs is, as in the case of the spaces Hs, the intermediate space

Ξs(Ω) = [Ξk+1(Ω),Ξk(Ω)]1−θ.

Finally, for negative real values −s, s > 0, the space Ξ−s(Ω) is the dual space of
Ξs(Ω), (Ξs(Ω))′.

Theorem 2.3. The set {y(v)|ω : v ∈ L2(Γ)} is dense, using the norm of H1/2(ω),

in {y ∈ H1/2(ω) : Ay = f in ω}, where y(v) ∈ H1/2(Ω) is the solution of the Dirich-
let problem (2.11) for a given v ∈ L2(Γ).

Proof. Let us consider y ∈ H1/2(ω) such that Ay = f in ω, and a real number
ε > 0. We denote the traces of y on γ by y = g ∈ L2(γ) and ∂y

∂nA(ω) = h ∈ H−1(γ).

From the previous lemma, it follows that there exists vε ∈ L2(Γ) such that the solution
z(vε) ∈ H1/2(Ω− ω̄) of problem (2.18) satisfies∣∣∣∣ ∂z(vε)

∂nA(Ω− ω̄)
+ h

∣∣∣∣
H−1(γ)

< ε.

Let y(vε) be the solution of the Dirichlet problem (2.11) corresponding to vε, and let
us define

yε =

{
y on ω,
z(vε) on Ω− ω̄.

Then (y(vε)− yε) ∈ H1/2(Ω) and satisfies in the sense of distributions the equation

A(y(vε)− yε) =
∂z(vε)

∂nA(Ω−ω̄) + h in Ω

and the boundary conditions

y(vε)− yε = 0 on Γ.

Consider, as in Remark 2.1, a fixed domain D such that ω̄ ⊂ D ⊂ D̄ ⊂ Ω. Then,

for any ψ ∈ D(Ω), we have
∫
Ω
A(y(vε) − yε)ψ =

∫
γ
( ∂z(vε)

∂nA(Ω−ω̄) + h)ψ ≤ | ∂z(vε)
∂nA(Ω−ω̄) +

h|H−1(γ)|ψ|H1(γ) ≤ C(D)|ψ|H3/2(D)ε ≤ C(D)|ψ|Ξ3/2(Ω)ε, where C(D) depends only
on the domain D. Therefore,

|A(y(vε)− yε)|Ξ−3/2(Ω) ≤ C(D)ε.
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Taking into account the continuity of the solution on the data (see Lions and Magenes
[27, Chap. 2, section 7.3, Theorem 7.4]), we get

|y(vε)− yε|H1/2(Ω) ≤ C(D)ε.

Below, the controllability of the solutions of the Dirichlet and the Neumann prob-
lems (given by (2.1), (2.2), and (2.1), (2.3), respectively) in ω by Neumann problems
in Ω is discussed.

Now as a set of controls we can take the space

U = H−1(Γ),(2.19)

and for a v ∈ H−1(Γ), the state of the system is the solution y(v) ∈ H1/2(Ω) of the
problem

Ay(v) = f in Ω,
∂y(v)

∂nA(Ω) = v on Γ.
(2.20)

We remark that

i : {y(v) ∈ H1/2(Ω) : v ∈ L2(Γ), y(v) solution of problem (2.11)} →
{y(w) ∈ H1/2(Ω) : w ∈ H−1(Γ), y(w) solution of problem (2.20)},

i(y(v)) = y(w)⇔ y(v) = y(w) in Ω
(2.21)

establish a bijective correspondence. Consequently, Proposition 2.1 also holds if the
space of controls there is changed to H−1(Γ) and the states y(v) of the system are
solutions of problem (2.20). Theorem 2.3 in this case becomes the following theorem.

Theorem 2.4. The set {y(v)|ω : v ∈ H−1(Γ)} is dense, using the norm of

H1/2(ω), in {y ∈ H1/2(ω) : Ay = f in ω}, where y(v) ∈ H1/2(Ω) is a solution of the
Neumann problem (2.20) for a given v ∈ H−1(Γ).

3. Controllability with finite dimensional spaces. Let {Uλ}λ be a family
of finite dimensional subspaces of the space L2(Γ) such that, given (2.10) as a space
of controls with the Dirichlet problems, we have⋃

λ

Uλ is dense in U = L2(Γ).(3.1)

For a v ∈ L2(Γ) we consider the solution y′(v) ∈ H1/2(Ω) of the problem

Ay′(v) = 0 in Ω,
y′(v) = v on Γ.

(3.2)

We fix a Uλ. The cost functions J defined by (2.13) and (2.15) are differentiable and
convex. Consequently, an optimal control

uλ ∈ Uλ : J(uλ) = inf
v∈Uλ

J(v)(3.3)

exists if and only if it is a solution of the equation

uλ ∈ Uλ : (y(uλ), y
′(v))L2(γ) = (gγ , y

′(v))L2(γ) for any v ∈ Uλ,(3.4)

when the control function is (2.13), and

uλ ∈ Uλ :

(
∂y(uλ)

∂nA(ω)
,
∂y′(v)
∂nA(ω)

)
H−1(γ)

=

(
hγ ,

∂y′(v)
∂nA(ω)

)
H−1(γ)

for any v ∈ Uλ,(3.5)
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when the control function is (2.15). Above, y(uλ) is the solution of problem (2.11)
corresponding to uλ, and y′(v) is the solution of problem (3.2) corresponding to v. If
yf ∈ H2(Ω) is the solution of the problem

Ayf = f in Ω,
yf = 0 on Γ,

(3.6)

then, for a v ∈ L2(Γ), we have

y(v) = y′(v) + yf ,(3.7)

where y(v) and y′(v) are the solutions of problems (2.11) and (3.2), respectively.
Therefore, we can rewrite problems (3.4) and (3.5) as

uλ ∈ Uλ : (y′(uλ), y
′(v))L2(γ) = (gγ − yf , y

′(v))L2(γ)(3.8)

for any v ∈ Uλ, and

uλ ∈ Uλ :

(
∂y′(uλ)

∂nA(ω)
,
∂y′(v)
∂nA(ω)

)
H−1(γ)

=

(
hγ − ∂yf

∂nA(ω)
,
∂y′(v)
∂nA(ω)

)
H−1(γ)

(3.9)

for any v ∈ Uλ, respectively. Next, we prove the following lemma.
Lemma 3.1. For a fixed λ, let ϕ1, . . . , ϕnλ , nλ ∈ N, be a basis of Uλ, and let y′(ϕi)

be the solution of problem (3.2) for v = ϕi, i = 1, . . . , nλ. Then {y′(ϕ1)|γ ,. . .,y′(ϕnλ)|γ}
and {∂y′(ϕ1)

∂nA(ω) |γ, . . . ,
∂y′(ϕnλ )

∂nA(ω) |γ} are linearly independent sets.

Proof. From Remark 2.1, we have y′(v) ∈ H2(D) for any domain D which satisfies
ω̄ ⊂ D ⊂ D̄ ⊂ Ω, and, consequently, y′(v) ∈ H3/2(γ) for any v ∈ L2(Γ). Assume that
for ξ1, . . . , ξnλ ∈ R we have ξ1y

′(ϕ1) + · · ·+ ξnλy
′(ϕnλ) = 0 on γ. Then

y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on γ,(3.10)

and therefore, y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on ω. This implies that

∂y′(ξ1ϕ1+···+ξnλϕnλ )

∂nA(Ω−ω̄) = 0 on γ.(3.11)

From (3.10) and (3.11), we get y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on Ω− ω̄, and therefore,
ξ1ϕ1 + · · ·+ ξnλϕnλ = y′(ξ1ϕ1 + · · ·+ ξnλϕnλ) = 0 on Γ, or ξ1 = · · · = ξnλ = 0. The
second part of the statement can be proved using similar arguments.

The following proposition proves the existence and uniqueness of the optimal
control when the states of the system are the solutions of the Dirichlet problems.

Proposition 3.2. Let us consider a fixed Uλ. Then problems (3.8) and (3.9)
have unique solutions. Consequently, if the boundary conditions of Dirichlet problems
(2.11) lie in the finite dimensional space Uλ, then there exists a unique optimal con-
trol of problem (3.3) corresponding to either the Dirichlet problem (2.1), (2.2) or the
Neumann problem (2.1), (2.3).

Proof. For a given λ, let Vλ denote the subspace of L2(γ) generated by {y′(ϕi)|γ}1≤i≤nλ ,
where {ϕi}1≤i≤nλ is a basis of Uλ, and y′(ϕi) is the solution of problem (3.2) with
v = ϕi. Since the norms |ξ1ϕ1 + · · · + ξnλϕnλ |L2(Γ) in Uλ, and |ξ1y′(ϕ1) + · · · +
ξnλy

′(ϕnλ)|L2(γ) in Vλ are equivalent to the norm (ξ2
1 + · · ·+ξ2

nλ
)1/2, the above lemma

then implies that there exist two positive constants c and C such that

c|v|L2(Γ) ≤ |y′(v)|L2(γ) ≤ C|v|L2(Γ) for any v ∈ Uλ.
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Consequently, from the Lax–Milgram lemma we get that (3.8) has a unique solution.
A similar reasoning proves that (3.9) also has a unique solution. This time we use the
norm equivalence

c|v|L2(Γ) ≤
∣∣∣∣ ∂y′(v)
∂nA(Ω− ω̄)

∣∣∣∣
H−1(γ)

≤ C|v|L2(Γ) for any v ∈ Uλ

in the Lax–Milgram lemma.
The following theorem proves the controllability of the solutions of the Dirichlet

and Neumann problems in ω by the solutions of the Dirichlet problems in Ω.
Theorem 3.3. Let {Uλ}λ be a family of finite dimensional spaces satisfying

(3.1). We associate the solution y of the Dirichlet problem (2.1), (2.2) in ω with
problem (3.3), in which the cost function is given by (2.13). Also, the solution y of
the Neumann problem (2.1), (2.3) is associated with problem (3.3), in which the cost
function is given by (2.15). In both cases, there exists a positive constant C, and for
any given ε > 0 there exists Uλε such that

|y(uλε)|ω − y|H1/2(ω) < Cε,

where uλε ∈ Uλε is the optimal control of the corresponding problem (3.3) with λ = λε,
and y(uλε) is the solution of problem (2.11) with v = uλε .

Proof. Let us consider an ε > 0 and y ∈ H1/2(ω) as the solution of problem (2.1),
(2.2). From Theorem 2.3, there exists vε ∈ L2(Γ) such that y(vε) ∈ H1/2(Ω), the
solution of problem (2.11) with v = vε, satisfies |y−y(vε)|ω|H1/2(ω) < ε. Consequently,
there exists a constant C1 such that

|gγ − y(vε)|L2(γ) < C1ε.(3.12)

Since ∪λUλ is dense in L2(Γ), there exist λε and vλε ∈ Uλε such that |vε−vλε |L2(Γ) < ε,
and then there exists a positive constant C2 such that

|y(vε)− y(vλε)|L2(γ) < C2ε.(3.13)

From (3.12) and (3.13) we get

|gγ − y(vλε)|L2(γ) < C3ε

and, consequently,

|gγ − y(uλε)|L2(γ) < C4ε,

where uλε ∈ L2(Γ) is the unique optimal control of problem (3.3) on Uλε with the
cost function given by (2.13). Therefore,

|y(uλε)|ω − y|H1/2(ω) < Cε.

A similar reasoning can be made for the solution y ∈ H1/2(ω) of problem (2.1),
(2.3).

Using the basis ϕ1, . . . , ϕnλ of the space Uλ, we define the matrix

Πλ = ((y′(ϕi), y
′(ϕj))L2(γ))1≤i,j≤nλ(3.14)

and the vector

lλ = ((gγ − yf , y
′(ϕi))L2(γ))1≤i≤nλ .(3.15)
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Then problem (3.8) can be written as

ξλ = (ξλ,1, . . . , ξλ,nλ) ∈ Rnλ : Πλξλ = lλ.(3.16)

Consequently, using Theorem 3.3, the solution y of problem (2.1), (2.2) can be
obtained within any prescribed error by setting the restriction to ω of

y(uλ) = ξλ,1y
′(ϕ1) + · · ·+ ξλ,nλy

′(ϕnλ) + yf ,(3.17)

where ξλ = (ξλ,1, . . . , ξλ,nλ) is the solution of algebraic system (3.16). Above, yf is the
solution of problem (3.6), and y′(ϕi) are the solutions of problems (3.2) with v = ϕi,
i = 1, . . . , nλ.

An algebraic system (3.16) is also obtained in the case of problem (3.9). This
time the matrix of the system is given by

Πλ =

((
∂y′(ϕi)

∂nA(ω)
,
∂y′(ϕj)

∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

,(3.18)

and the free term is

lλ =

((
hγ − ∂yf

∂nA(ω)
,
∂y′(ϕi)

∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

.(3.19)

Therefore, using Theorem 3.3, the solution y of problem (2.1), (2.3) can be estimated
by (3.17). Also, yf is the solution of problem (3.6), and y′(ϕi) are the solutions of
problems (3.2) with v = ϕi, i = 1, . . . , nλ.

The case of the controllability with finite dimensional optimal controls for states
of the system given by the solution of a Neumann problem is treated in a similar way.
As in the previous section, the space of the controls is U , given in (2.19), and the state
of the system y(v) ∈ H1/2(Ω) is given by the solution of Neumann problem (2.20) for
a v ∈ H−1(Γ).

Let {Uλ}λ be a family of finite dimensional subspaces of the space H−1(Γ) such
that ⋃

λ

Uλ is dense in U = H−1(Γ).(3.20)

This time, the function y′(v) ∈ H1/2(Ω) appearing in (3.4), (3.5), (3.8), and (3.9)
is the solution of the problem

Ay′(v) = 0 in Ω,
∂y′(v)

∂nA(Ω) = v on Γ
(3.21)

for a v ∈ H−1(Γ). Also, yf ∈ H2(Ω) appearing in (3.7), (3.8), and (3.9) is the solution
of the problem

Ayf = f in Ω,
∂yf

∂nA(Ω) = 0 on Γ.
(3.22)

With these changes, Lemma 3.1 also holds in this case, and the proof of the following
proposition is similar to that of Proposition 3.2.
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Proposition 3.4. For a given Uλ, the problems (3.8) and (3.9) have unique
solutions. Consequently, if the boundary conditions of Neumann problems (2.20) lie in
the finite dimensional space Uλ, then there exists a unique optimal control of problem
(3.3), corresponding to either Dirichlet problem (2.1), (2.2) or Neumann problem (2.1),
(2.3).

A proof similar to that given for Theorem 3.3 can also be given for the following
theorem.

Theorem 3.5. Let {Uλ}λ be a family of finite dimensional spaces satisfying
(3.20). We associate the solution y ∈ H1/2(ω) of problem (2.1), (2.2) with problem
(3.3), in which the cost function is given by (2.13). Also, the solution y of problem
(2.1), (2.3) is associated with problem (3.3), in which the cost function is given by
(2.15). In both cases, there exists a positive constant C, and for any given ε > 0 there
exists λε such that

|y(uλε)|ω − y|H1/2(ω) < Cε,

where uλε ∈ Uλε is the optimal control of the corresponding problem (3.3) with λ = λε,
and y(uλε) is the solution of problem (2.20) with v = uλε .

Evidently, in the case of the controllability with solutions of Neumann problem
(2.20) we can also write algebraic systems (3.16) using a basis ϕ1, . . . , ϕnλ of a given
subspace Uλ of the space U = H−1(Γ). As in the case of the controllability with solu-
tions of the Dirichlet problem (2.11), these algebraic systems have unique solutions.

Theorems 3.3 and 3.5 prove the convergence of the embedding method associated
with the optimal boundary control. An error analysis would be desirable, but it would
go beyond the scope of this paper.

Remark 3.1. We have defined yf as a solution of problems (3.6) or (3.22) in order

to have y(v) = y′(v)+ yf or ∂y(v)
∂nA(Ω) = ∂y′(v)

∂nA(Ω) +
∂yf

∂nA(Ω) , respectively, on the boundary

Γ. In fact, we can replace y(v) by y′(v) + yf in the cost functions (2.13) and (2.15)
with yf ∈ H2(Ω) satisfying only

Ayf = f in Ω,(3.23)

and the results obtained in this section still hold.
Indeed, the two sets {y(v) = y′(v) + yf ∈ H1/2(Ω) : v ∈ L2(Γ)} corresponding

to yf given by (3.23) and (3.6), y′(v) being the solution of (3.2), are identical to
the set {y(v) ∈ H1/2(Ω) : v ∈ L2(Γ)}, y(v) being the solution of (2.11). Also, the
two sets {y(v) = y′(v) + yf ∈ H1/2(Ω) : v ∈ H−1(Γ)} corresponding to yf given by
(3.23) and (3.22), y′(v) being the solution of (3.21), are identical to the set {y(v) ∈
H1/2(Ω) : v ∈ H−1(Γ)}, y(v) being the solution of (2.20).

4. Approximate observations in finite dimensional spaces. In solving
problems (3.8), (3.9), we require an appropriate interpolation which makes use of
the values of y′(v) computed only at some points on the boundary γ. We show below
that using these interpolations, i.e., observations in finite dimensional subspaces, we
can obtain the approximate solutions of problems (2.1), (2.2) and (2.1), (2.3).

As in the previous sections, we first deal with the case when the states of the
system are given by the Dirichlet problem (2.11). Let Uλ be a fixed finite dimensional
subspace of U = L2(Γ) with the basis ϕ1, . . . , ϕnλ .

Let us assume that for problem (2.1), (2.2), we choose a family of finite dimen-
sional spaces {Hµ}µ such that⋃

µ

Hµ is dense in H = L2(γ).(4.1)
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Similarly, for problem (2.1), (2.3) we choose the finite dimensional spaces {Hµ}µ such
that ⋃

µ

Hµ is dense in H = H−1(γ).(4.2)

The subspace Hµ given in (4.1) and (4.2) is a subspace of H given in (2.12) and (2.14),
respectively.

An appropriate choice of Hµ is made based on the problem to be solved as dis-
cussed above. For a given ϕi, i = 1, . . . , nλ, we consider below the solution y′(ϕi) of
problem (3.2) corresponding to v = ϕi, and we approximate its trace on γ by y′µ,i.

Also, the approximation of ∂y′(ϕi)
∂nA(ω) on γ is denoted by

∂y′
µ,i

∂nA(ω) .

Since the system (3.16) has a unique solution, the determinants of the matrices
Πλ given in (3.14) and (3.18) are nonzero. Consequently, if |y′(ϕi) − y′µ,i|L2(γ) or

| ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω) |H−1(γ) are small enough, then the matrices

Πλµ = ((y′µ,i, y
′
µ,j)L2(γ))1≤i,j≤nλ(4.3)

and

Πλµ =

((
∂y′µ,i

∂nA(ω)
,

∂y′µ,j

∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

(4.4)

have nonzero determinants. In this case, each of the algebraic systems

ξλµ = (ξλµ,1, . . . , ξλµ,nλ) ∈ Rnλ : Πλµξλµ = lλµ(4.5)

has a unique solution. In this system, the free term is

lλµ = ((gγµ − yfµ, y
′
µ,i)L2(γ))1≤i≤nλ(4.6)

if the matrix Πλµ is given by (4.3) and

lλµ =

((
hγµ − ∂yfµ

∂nA(ω)
,

∂y′µ,i

∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

(4.7)

if the matrix Πλµ is given by (4.4). Above, we have denoted by gγµ and hγµ some

approximations in Hµ of gγ and hγ , respectively. Also, yfµ and
∂yfµ

∂nA(ω) are some

approximations of yf and
∂yf

∂nA(ω) in the corresponding Hµ of L2(γ) and H−1(γ),

respectively, with yf ∈ H2(Ω) satisfying (3.23).
The solution y of problems (2.1), (2.2) and (2.1), (2.3) can be approximated with

the restriction to ω of

y(uλµ) = ξλµ,1y
′(ϕ1) + · · ·+ ξλµ,nλy

′(ϕnλ) + yf ,(4.8)

where ξλ = (ξλµ,1, . . . , ξλµ,nλ) is the solution of appropriate algebraic system (4.5).
For a vector, ξ = (ξ1, . . . , ξnλ), we use the norm |ξ| = max1≤i≤nλ |ξi|, and the

corresponding matrix norm is denoted by || · ||. From (3.17) and (4.8) we have

|y(uλ)− y(uλµ)|H1/2(ω) ≤ Cλ|ξλ − ξλµ|,(4.9)
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where Cλ depends only on the basis in Uλ. From

||Π−1
λ −Π−1

λµ || ≤
||Π−1

λ ||||Πλ −Πλµ||
1/||Π−1

λ || − ||Πλ −Πλµ||
and algebraic systems (3.16) and (4.5), we have ξλ = Π−1

λ lλ and ξλµ = Π−1
λµ lλµ and

we get that there exists Cλ > 0, depending on the basis in Uλ, such that

|ξλ − ξλµ| ≤ Cλ (||Πλ −Πλµ||+ |lλ − lλµ|) .(4.10)

In the case of matrices (3.14) and (4.3) and the free terms (3.15) and (4.6), we have

||Πλ −Πλµ|| ≤ Cλ max
1≤i≤nλ

|y′(ϕi)− y′µ,i|L2(γ),

|lλ − lλµ| ≤ Cλ

(|gγ − gγµ|L2(γ)(4.11)

+ |yf − yfµ|L2(γ)

)
+ C max

1≤i≤nλ
|y′(ϕi)− y′µ,i|L2(γ).

Instead, if we take matrices (3.18) and (4.4) and the free terms (3.19) and (4.7), then
we get

||Πλ −Πλµ|| ≤ Cλ max
1≤i≤nλ

∣∣∣∣ ∂y′(ϕi)

∂nA(ω)
− ∂y′µ,i

∂nA(ω)

∣∣∣∣
H−1(γ)

,

|lλ − lλµ| ≤ Cλ

(
|hγ − hγµ|H−1(γ) +

∣∣∣∣ ∂yf

∂nA(ω)
− ∂yfµ

∂nA(ω)

∣∣∣∣
H−1(γ)

)
(4.12)

+ C max
1≤i≤nλ

| ∂y
′(ϕi)

∂nA(ω)
− ∂y′µ,i

∂nA(ω)
|H−1(γ),

where C is a constant and Cλ depends on the basis in Uλ.
For states of the system given by the Neumann problem (2.20), Uλ is a subspace

of U = H−1(Γ). The material presented above for the case of the Dirichlet problems
in Ω is applicable to the case of the Neumann problems in Ω, except for the difference
that this time y′(ϕi) are the solutions of problems (3.21) with v = ϕi, i = 1, . . . , nλ.

In both cases (i.e., when the control is affected via Dirichlet and Neumann prob-
lems), we obtain the following theorem from Theorems 3.3 and 3.5 and (4.9)–(4.12).

Theorem 4.1. Let {Uλ}λ be a family of finite dimensional spaces, either satis-
fying (3.1) if we consider problem (2.11), or satisfying (3.20) if we consider problem
(2.20). Also, we associate problem (2.1), (2.2) or (2.1), (2.3) with a family of spaces
{Hµ}µ satisfying (4.1) or (4.2), respectively. Then, for any ε > 0, there exists λε such
that the following hold.

(i) If the space Hµ is taken such that |y′(ϕi)− y′µ,i|L2(γ), i = 1, . . . , nλε , are small
enough, y is the solution of problem (2.1)–(2.2), and y(uλεµ) is given by (4.8), in
which ξλµ is the solution of the algebraic system (4.5) with the matrix given by (4.3)
and the free term given by (4.6), then the algebraic system (4.5) has a unique solution
and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(
|gγ − gγµ|L2(γ) + |yf − yfµ|L2(γ) + max

1≤i≤nλ
|y′(ϕi)− y′µ,i|L2(γ)

)
.

(ii) If the space Hµ is taken such that | ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω) |H−1(γ), i = 1, . . . , nλε , are

small enough, y is the solution of problem (2.1)–(2.3), and y(uλεµ) is given by (4.8) in
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which ξλµ is the solution of the algebraic system (4.5) with the matrix given by (4.4)
and the free term given by (4.7), then the algebraic system (4.5) has a unique solution
and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(
|hγ − hγµ|H−1(γ) +

∣∣∣ ∂yf
∂nA(ω) − ∂yfµ

∂nA(ω)

∣∣∣
H−1(γ)

+ max
1≤i≤nλ

∣∣∣ ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω)

∣∣∣
H−1(γ)

)
,

where C is a constant and Cλε depends on the basis of Uλε .

Remark 4.1. Since the matrices Πλµ given by (4.3) and (4.4) are assumed to

be nonsingular, it follows that {y′µ,i}i=1,...,nλ and { ∂y′
µ,i

∂nA(ω)}i=1,...,nλ are some linearly

independent sets in L2(γ) and H−1(γ), respectively. Consequently, if mµ is the di-
mension of the corresponding subspace Hµ, then nλ ≤ mµ.

5. Exterior problems. In this section, we consider the domain ω ⊂ RN of
problems (2.1), (2.2) and (2.1), (2.3) as the complement of the closure of a bounded
domain, and it lies on only one side of its boundary. The same assumptions are
made on the domain Ω of problems (2.11) and (2.20), and, evidently, ω ⊂ Ω. In
order to retain continuity and to prove that the solutions of the problems in ω can
be approximated by the solutions of problems in Ω, we have to specify the spaces
in which the problems have solutions and also their correspondence with the trace
spaces.

Since the domain Ω− ω̄ is bounded, Lions’s controllability theorem does not need
to be extended to unbounded domains. Moreover, we see that the boundaries γ and
Γ of the domains ω and Ω are bounded, and, consequently, we can use finite open
covers of them (as for the bounded domains) to define the traces.

In order to avoid the use of the fractional spaces of the spaces in ω and Ω, we
simply remark that if the controls in the Lions controllability theorem are taken in
H1/2(Γ) instead of L2(Γ), then a similar proof of it gives the following.

The set { ∂z0(v)
∂nA(Ω−ω̄) ∈ H−1/2(γ) : v ∈ H1/2(Γ)} is dense in H−1/2(γ), where

z0(v) ∈ H1(Ω− ω̄) is the solution of the problem

Az0(v) = 0 in Ω− ω̄,
z0(v) = v on Γ,
z0(v) = 0 on γ.

Now we associate to the operator A the symmetric bilinear form

a(y, z) =

N∑
i,j=1

∫
Ω

aij
∂y

∂xi

∂z

∂xj
+

∫
Ω

a0yz for y, z ∈ H1(Ω),

which is continuous on H1(Ω) ×H1(Ω). Evidently, a is also continuous on H1(ω) ×
H1(ω). Now if f ∈ L2(ω), taking the boundary data gγ ∈ H1/2(γ) and hγ ∈ H−1/2(γ),
then problems (2.1), (2.2) and (2.1), (2.3) can be written in the variational form

y ∈ H1(ω) : a(y, z) =
∫
ω
fz for any z ∈ H1

0 (ω),
y = gγ on γ,

(5.1)
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and

y ∈ H1(ω) : a(y, z) =

∫
ω

fz +

∫
γ

hγz for any z ∈ H1(ω),(5.2)

respectively. Similar equations can also be written for problems (2.11) and (2.20).

Therefore, if there exists a constant c0 > 0 such that a0 ≥ c0 in Ω, then the bilinear
form a is H1(Ω)-elliptic, i.e., there exists a constant α > 0 such that α|y|2H1(Ω) ≤
a(y, y) for any y ∈ H1(Ω). It follows from the Lax–Milgram lemma that problems
(2.11) and (2.20) have unique weak solutions in H1(Ω). Naturally, problems (2.1),
(2.2) and (2.1), (2.3) in ω also have unique weak solutions given by the solutions of
problems (5.1) and (5.2), respectively.

We know that there exist an isomorphism and homeomorphism of H1(Ω)/H1
0 (Ω)

onto H1/2(Γ) (see Theorem 7.53, p. 216, in [1], or Theorem 5.5, p. 99, and Theorem
5.7, p. 103, in [30]), i.e., there are two constants k1, k2 > 0 such that we have the
following.

• For any y ∈ H1(Ω), there exists v ∈ H1/2(Γ) such that y = v on Γ and
| v |H1/2(Γ)≤ k1 | y |H1(Ω).

• For any v ∈ H1/2(Γ), there exists y ∈ H1(Ω) such that y = v on Γ and
| y |H1(Ω)≤ k2 | v |H1/2(Γ).

Using this correspondence, we can easily prove the continuous dependence of the
solutions on data. For instance, for problems (2.1), (2.2) and (2.1), (2.3) we have

|y|H1(ω) ≤ C{|f |L2(ω) + |gγ |H1/2(γ)}

and

|y|H1(ω) ≤ C{|f |L2(ω) + |hγ |H−1/2(γ)},

respectively.

Therefore, if there exists a constant c0 > 0 such that a0 ≥ c0 in Ω, then we can
proceed in the same manner and obtain similar results for the exterior problems to
those obtained in the previous sections for the interior problems. Evidently, in this
case we take

U = H1/2(Γ)(5.3)

as a space of the controls for problem (2.11), in place of that given in (2.10), and the
space of controls for problem (2.20) is taken as

U = H−1/2(Γ),(5.4)

in place of the space given in (2.19).

If a0 = 0 in Ω, the domain being unbounded, then the problems might not have
solutions in the classical Sobolev spaces (see [11]), and we have to introduce the
weighted spaces which take into account the particular behavior of the solutions at
infinity.

For domains inR2, we use the weighted spaces introduced in [24], [25], specifically,

W 1(Ω) = {v ∈ D′(Ω) : (1 + r2)−1/2(1 + log
√
1 + r2)−1v ∈ L2(Ω), ∇v ∈ (L2(Ω))2},
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where D′(Ω) is the space of the distributions on Ω, and r denotes the distance from
the origin. The norm on W 1(Ω) is given by

| v |W 1(Ω)=
(
| (1 + r2)−1/2(1 + log

√
1 + r2)−1v |2L2(Ω) + | ∇v |2(L2(Ω))2

)1/2

.

For domains in RN , N ≥ 3, appropriate spaces, introduced in [21] and used in [20],
[31], are

W 1(Ω) = {v ∈ D′(Ω) : (1 + r2)−1/2v ∈ L2(Ω), ∇v ∈ (L2(Ω))N}
with the norm

| v |W 1(Ω)=
(
| (1 + r2)−1/2v |2L2(Ω) + | ∇v |2(L2(Ω))N

)1/2

.

We remark that the space H1(Ω) is continuously embedded in W 1(Ω), and the two
spaces coincide for the bounded domains. We use W 1

0 (Ω) to denote the closure of
D(Ω) in W 1(Ω).

Concerning the space of the traces of the functions in W 1(Ω), we notice that, the
boundary Γ being bounded, these traces lie in H1/2(Γ). This fact immediately follows
from considering a bounded domain D ⊂ Ω such that Γ ⊂ D and from taking into
account that W 1(D) and H1(D) are identical.

Assuming that

(1 + r2)1/2(1 + log
√
1 + r2)f ∈ L2(Ω) if N = 2,

(1 + r2)1/2f ∈ L2(Ω) if N ≥ 3,

and using the spaces W 1 in place of the spaces H1, we can rewrite the problems (5.1)
and (5.2) and also similar equations for problems (2.11) and (2.20).

For N = 2, the bilinear form a(y, z) generates on W 1
0 (Ω) an equivalent norm

with that induced by W 1(Ω) (see [24]). Also, the bilinear form a(y, z) generates on
W 1(Ω)/R a norm which is equivalent to the standard norm.

For N ≥ 3, the previously introduced norm on W 1(RN ) is equivalent to that
generated by the bilinear form a(., .) (see [21]). Now if we extend the functions in
W 1

0 (Ω) with zero in RN − Ω, we get that the bilinear form a(y, z) also generates on
W 1

0 (Ω) a norm equivalent to that induced by W 1(Ω). Moreover, using the fact that
the domain Ω is the complement of a bounded set, it can be proved that the bilinear
form a(y, z) generates in W 1(Ω) a norm equivalent to the above introduced norm.

Therefore, we can conclude that, in the case of a0 = 0 on Ω, the exterior problems
have unique solutions in the spaces W 1 if N ≥ 3. If N = 2, the Dirichlet problems
have unique solutions in W 1, and the Neumann problems have unique solutions in
W 1/R.

Using the fact that the spaces W 1(D) and H1(D) coincide on the bounded do-
mains D, the continuous embedding of H1(Ω) in W 1(Ω), and the homeomorphism
and isomorphism between H1/2(Γ) and H1(Ω)/H1

0 (Ω), we can easily prove that there
exist a homeomorphism and isomorphism between H1/2(Γ) and W 1(Ω)/W 1

0 (Ω). Con-
sequently, we get the following continuous dependence on the data of the solution y
of problem (2.1), (2.2):

|y|W 1(ω) ≤ C{|(1 + r2)1/2(1 + log
√
1 + r2)f |L2(ω) + |gγ |H1/2(γ)} if N = 2,
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and

|y|W 1(ω) ≤ C{|(1 + r2)1/2f |L2(ω) + |gγ |H1/2(γ)} if N ≥ 3.

For the problem (2.1), (2.3), we have

inf
s∈R
|y+s|W 1(ω) ≤ C{|(1+r2)1/2(1+log

√
1 + r2)f |L2(ω)+|hγ |H−1/2(γ)} if N = 2,

and

|y|W 1(ω) ≤ C{|(1 + r2)1/2f |L2(ω) + |hγ |H−1/2(γ)} if N ≥ 3.

Therefore, we can prove in a manner similar to the previous sections that when
a0 = 0 on Ω and N ≥ 3, the solutions of the Dirichlet and Neumann problems in ω can
be approximated with solutions of both the Dirichlet and the Neumann problems in
Ω. Naturally, the controls are taken in the appropriate space (5.3) or (5.4). If a0 = 0
on Ω and N = 2, the solutions of the Dirichlet problems in ω can be approximated
with solutions of the Dirichlet problem in Ω. The Neumann problems do not have
unique solutions.

Since y(v) and gγ lie in H1/2(γ) in the case of problem (2.1), (2.2), and ∂y(v)
∂nA(ω)

and hγ lie in H−1/2(γ) when we solve (2.1), (2.3), the natural choices for the space
of observations are

H = H1/2(γ)(5.5)

and

H = H−1/2(γ),(5.6)

respectively. Even if the convergence is assured for these spaces, their norms are
numerically estimated with much difficulty. However, noticing that the inclusions
H1/2(γ) ⊂ L2(γ) ⊂ H−1/2(γ) ⊂ H−1(γ) are continuous, we can take the spaces
of observations, as in the case of the bounded domains, given in (2.12) and (2.14).
We mentioned earlier the need to avoid the use of the fractional Sobolev spaces for
unbounded domains because of the lack of work on this subject (to the best of our
knowledge), especially concerning the continuous dependence of the solution on the
data of the problem. In the next section, we give a numerical example where the
space of the controls is taken as for the bounded domains and the obtained results
are accurate.

6. Numerical results. In this section, we choose some specific Uλ and Hµ.
Hence we drop the subscripts λ and µ. First, we summarize the results obtained in
the previous sections on the algebraic system we need to solve to obtain solutions,
within a prescribed error, of problems (2.1), (2.2) or (2.1), (2.3), using the solutions
of problems (2.11) or (2.20).

We recall that if, for both the bounded and unbounded domains, there exists a
constant c0 > 0 such that the coefficient a0 of the operator A satisfies a0 ≥ c0 in
Ω, then the solutions of problems (2.1), (2.2) or (2.1), (2.3) can be approximated by
the solutions of both problems (2.11) and (2.20). If a0 = 0 in Ω, then the solutions
of problems (2.1), (2.2) can be approximated by the solutions of problems (2.11)
for both the bounded and the unbounded domains, and if also N ≥ 3, then by the
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solutions of problems (2.20) for unbounded domains only. If a0 = 0 in Ω with the
domains unbounded, then the solutions of problems (2.1), (2.3) can be obtained from
the solutions of problems (2.11) and also from the solutions of (2.20) if N ≥ 3.

Actually, we have to solve the algebraic system (4.5), which is rewritten as

ξ ∈ Rn : Πξ = l.(6.1)

Some remarks on the computing of the elements of the matrix Π and the free term l
are made below.

• Depending on the problem in Ω, we choose the space of controls U and a
finite dimensional subspace of it, U ⊂ U . Let ϕ1, . . . , ϕn, n ∈ N, be the basis
of U , and let y′(ϕi), i = 1, . . . , n be the corresponding solutions of problems
(3.2) or (3.21) if the problem in Ω is (2.11) or (2.20), respectively.
• If the problem in ω is (2.1), (2.2), then we calculate the values of y′(ϕi),
i = 1, . . . , n, at the mesh points on γ. For the problem (2.1), (2.3) we calculate

the values of ∂y′(ϕi)
∂na(ω) , i = 1, . . . , n, at the mesh points on γ.

• Using the computed values of y′(ϕi) or ∂y′(ϕi)
∂na(ω) , i = 1, . . . , n, at the mesh

points on γ, we compute the elements of the matrix Π which are some inner
products either in H = L2(γ) when we solve the problem (2.1), (2.2) or in
H = H−1(γ) when we solve the problem (2.1), (2.3). The finite dimensional
subspace H ⊂ H depends on the numerical integration method that we use.
We remark that the matrix Π is symmetric and full.
• The elements of the free term l are also some inner products in the space
of observations H. We use a solution yf of (3.23) and the boundary data of
the problem in ω (i.e., gγ or hγ if the problem is (2.1), (2.2) or (2.3), (2.1),
respectively) in these inner products.
• For problem (2.1), (2.2), the matrix Π and the free term l are given by (4.3)
and (4.6), respectively. Also, for problem (2.1), (2.3) the matrix Π and the
free term l are given in (4.4) and (4.7), respectively. In these equations, y′i
and

∂y′
i

∂nA(ω) are some approximations in H of y′(ϕi) and
∂y′(ϕi)
∂nA(ω) , respectively.

These approximations arise from the use of numerical integration on γ and

numerical values of y′(ϕi) and
∂y′(ϕi
∂nA(ω) at the mesh points on γ. These values

can be found either by evaluating an algebraic expression or by interpolation.
Indeed, when the finite element method or any other method is used with
a mesh over Ω which does not fit with the boundary γ, the values of the
functions yf and y′(ϕi), i = 1, . . . , n at some mesh points in γ are found by
interpolation.

Finally, if ξ = (ξ1, . . . , ξn) is the solution of algebraic system (6.1) and y is the
solution of the problem we solve, then its approximation is the restriction to ω of

ξ1y
′(ϕ1) + · · ·+ ξny

′(ϕn) + yf .(6.2)

We recall that the matrices Πλ given in (3.14) and (3.18) are nonsingular, and
therefore, each of the problems (3.16) has a unique solution. Also, algebraic systems
(6.1) have unique solutions if their matrices and free terms are good approximations
in H of the matrix and the free term of the algebraic systems (3.16), respectively.
Also, from Remark 4.1 we must take n ≤ m, n being the dimension of U and m
the dimension of H. However, as we recall from section 2, the problem in infinite
dimensional space may not have a solution. Consequently, for very large n, we might



BOUNDARY CONTROL TO DOMAIN EMBEDDING METHODS 439

obtain algebraic systems (3.16) that are almost singular. These algebraic systems can
be solved by an iterative method such as the conjugate gradient method. However,
we applied the Gauss elimination method in order to find out whether the algebraic
system is singular or nonsingular. This is done by checking the diagonal elements
during the elimination phase.

In the following two subsections, we give some numerical examples for both in-
terior and exterior problems in which the solutions of the problems in Ω are found
either directly by a formula, or by a method using a mesh over Ω.

6.1. Interior problems.
Example 6.1. The first numerical test refers to the Dirichlet problem

−∆y = f in ω,
y = gγ on γ,

(6.3)

where ω ⊂ R2 is a square centered at the origin with sides parallel to the axes and of
length of 2 units. The approximate solution of this problem is given by the solution
of the Dirichlet problem

−∆y(v) = f in Ω,
y(v) = v on Γ,

(6.4)

in which the domain Ω is the disc centered at the origin with radius equal to 2.
The solutions of the homogeneous Dirichlet problems in Ω are found by the Poisson
formula

y(v)(z) =
1

2πr

∫
|ζ|=r

v(ζ)
r2 − |z|2
|z − ζ|2 dSζ .(6.5)

The circle Γ is discretized with n equidistant points, and U ⊂ U ≡ L2(Γ) is taken
as the space of the piecewise constant functions. Naturally, an element ϕi in the basis
of H is a function defined on Γ which takes the value 1 between the nodes i and i+1
and vanishes in the rest of Γ. The square γ is also discretized with m equidistant
points, and H ⊂ H ≡ L2(γ) is taken as the space of the continuous piecewise linear
functions. Evidently, the inclusions in (3.1) and (4.1) are dense because the union of
the spaces (over some sequence of mesh size approaching zero) of continuous piecewise
linear or piecewise constant functions is dense in L2.

The values of the integrals in the Poisson formula at the points on γ are calculated
using the numerical integration with three nodes. The integrals in the inner products
in L2(γ) are calculated using an exact formula when H is the space of the continuous
piecewise linear functions. In particular, if we have on γ two continuous piecewise
linear functions y1 and y2 such that

y1(x) = mk
1(x− xk) + yk

1 ,
y2(x) = mk

2(x− xk) + yk
2

(6.6)

for x ∈ [xk, xk+1], k = 1 . . . ,m, then

∫
γ

y1y2 = h

m∑
k=1

[
yk
1y

k
2 +

h2

3
mk

1m
k
2 +

h

2
(mk

1y
k
2 +mk

2y
k
1 )

]
,(6.7)

where h = xk+1 − xk is the mesh size on γ.
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Table 6.1
Relative errors for the interior Dirichlet problem.

n errd errb

80 .36692E-07 .15956E-06
72 .46271E-08 .41101E-07
60 .14682E-09 .25103E-08
45 .12475E-08 .54357E-08
40 .64352E-12 .11638E-07
36 .67121E-12 .11648E-06
30 .12371E-05 .33923E-05
24 .39543E-12 .19851E-04
18 .10609E-03 .43901E-03
12 .29916E-10 .54208E-02
10 .94618E-02 .17096E-01

All computations below have been performed in fifteen digit arithmetics (double
precision).

In the first example, we choose the exact solution to be u(x1, x2) = x2
1 + x2

2.
Hence gγ(x1, x2) = x2

1 +x2
2, and f = −4. We have taken yf = 2x2

1 as a solution of the
inhomogeneous equation in Ω. It has been compared with the computed one at 19
equidistant points on a diagonal of the square: (-1.4,-1.4),. . .,(0,0),. . .,(1.4,1.4). Below
errd denotes the maximum of the relative errors between the exact and the computed
solutions at these 19 considered points in the domain ω. A similar error only on the
boundary γ is denoted by errb.

Table 6.1 shows errors errd and errb against n, the number of the equidistant
points on Γ which is the dimension of the finite dimensional space U . Recall that Γ
is boundary of the embedding domain Ω. All these computations use a mesh size of
0.1 on γ. It corresponds to m = 80, the number of equidistant points on γ, which
is the dimension of the finite dimensional space H. The smallest diagonal element
during the Gauss elimination method is of the order 10−17 for n = 80 and n = 72,
and of the order 10−14 for n = 60. It is greater than 10−10 for n = 10, . . . , 45. We
should mention that in the cases when n > 60, where the last pivot is very small, we
notice an increase in error. In all these cases the error errb, which can be calculated
for any example even when the exact solution is not known, is a good indicator of the
computational accuracy.

In the above example, the right-hand side f of the equation in ω is given by an
exact algebraic formula, and it was extended in Ω by the same formula. Moreover, we
have had for this simple example an exact solution yf of the inhomogeneous equation
in Ω, which could be exactly evaluated at the mesh points of the boundary γ of the
domain ω. Also, the solutions of the homogeneous problems in Ω, given by the above
Poisson formula, could be evaluated directly at these mesh points. In the following
example we study the effect of various extensions of f in Ω on the computed solutions
in ω. Therefore, in this example, the solution of the problem in Ω could be computed
only at some nodes of a regular mesh over Ω, and their values at the mesh points on
γ are calculated by interpolation.

Example 6.2. This example concerns the Dirichlet problem

∆y − σ2y = f in ω,
y = gγ on γ,

(6.8)
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where ω ⊂ R2 is bounded by the straight lines x1 = −π/2, x1 = π/2, and x2 = −1.5
and the curve y = 0.5 + cos(x + π/2). We approximate the solution of this problem
by a solution of the Dirichlet problem

∆y(v)− σ2y(v) = f in Ω,
y(v) = v on Γ,

(6.9)

in which the domain Ω is the disc centered at the origin with the radius of 2.3 (see
Figure 6.1 (a)). We have taken σ2 = 0.75 in numerical computations.

We approximate the functions f and v by the discrete Fourier transforms

f(r, θ) =

n/2−1∑
k=−n/2

fk(r)e
ikθ,

v(θ) =

n/2−1∑
k=−n/2

vke
ikθ.

(6.10)

Then the solution of problem (6.9),

y(v) = yf + y′(v),(6.11)

can also be written as a discrete Fourier transform

yf (r, θ) =

n/2−1∑
k=−n/2

yk(r)e
ikθ,

y′(v)(r, θ) =
n/2−1∑

k=−n/2

y′k(r)e
ikθ,

(6.12)

where the Fourier coefficients yk(r) and y′k(r) are given by

yk(r) = −
∫ r

0

ρKk(σr)Ik(σρ)fk(ρ)dρ−
∫ R

r

ρIk(σr)Kk(σρ)fk(ρ)dρ

+
Ik(σr)

Ik(σR)

∫ R

0

ρKk(σR)Ik(σρ)fk(ρ)dρ,(6.13)

y′k(r) =
Ik(σr)

Ik(σR)
vk.

Above, R is the radius of the disc, and Ik and Kk are the modified Bessel functions
of the first and second kinds, respectively. We recall that y′(v) and yf in (6.11) are
the solutions of problems (3.2) and (3.6), respectively. A fast algorithm is proposed
in [4], which, using (6.13) and the fast Fourier transforms, evaluates yf and y′(v) in
(6.12) at the nodes of a mesh on the disc Ω with n equidistant nodes in tangential
direction and l equidistant nodes in the radial direction.

It is worth noting from (6.10) that the finite dimensional space of controls U is the
space of real periodic functions defined on [0, 2π] which can be written as a Fourier
transform with the terms −n/2, . . . , 0, . . . , n/2 − 1. On the other hand, we have
U = L2(Γ) = L2(0, 2π), and since the functions in L2(0, 2π) can be approximated
by discrete Fourier transforms, we get that (3.1) holds with U as the above finite
dimensional spaces. Since the controls v are real functions, it follows from (6.10)
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Fig. 6.1. (a) Domains, (b) exact solution.
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Fig. 6.2. Extension of f by (a) the formula in the domain ω, (b) zero.

that vi = v̄−i for i = 1, . . . , n/2 − 1 and v0 is real provided we choose v−n/2 ∈
R. Consequently, a basis of U is given by the functions: ϕ0 which has the Fourier
coefficient v0 = 1, the other ones being zero, ϕ−n/2 which has the Fourier coefficient
v−n/2 = 1, the other ones being zero, and ϕj , −n/2 + 1 ≤ j ≤ n/2 − 1, j �= 0, have
the Fourier coefficients vj = 1 + i, v−j = 1− i with the rest being zero.

The boundary γ is discretized with m equidistant points, and, as in the previous
example, H is taken to be the space of the piecewise linear functions. The integrals in
the inner products in L2(γ) are calculated by the same formulae (6.7). We recall that
the values of yf and y′(ϕ) at the mesh points of the boundary γ were obtained by
interpolation of function values at mesh points on Ω. Assuming that the point (r, θ)
lies between the four mesh nodes (r1, θ1), (r2, θ1), (r1, θ2), (r2, θ2), we have linearly
interpolated in radial direction first the values corresponding to (r1, θ1) and (r2, θ1),
and then the values corresponding to (r1, θ2), (r2, θ2). Using the two obtained values,
we have made a linear interpolation in the tangential direction.

For numerical purposes, we have taken f(x1, x2) = (2 + x1(1 − σ2))ex1 + (2 +
x2(1 − σ2))ex2 and gγ(x1, x2) = x1e

x1 + x2e
x2 in (6.8). Then problem (6.8) has the

exact solution y(x1, x2) = x1e
x1 +x2e

x2 , which is shown in Figure 6.1 (b). In order to
assess the effect of various extensions of the function f outside of ω on the numerical
results, we have taken for this example only two types of extensions: (i) extending f
using the above formula in ω; (ii) extending f by zero (see Figure 6.2).

Tables 6.2 through 6.5 show the arithmetic mean of the absolute errors between
the exact and the computed solutions against various values of n (the number of the
nodes in tangential direction, i.e., the number of nodes on Γ) and δr (the mesh size in
radial direction), while keeping the number of mesh points on γ fixed at m = 360 for
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Table 6.2
Errors on γ − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.15555E+00 0.15571E+00 0.15577E+00 0.15577E+00
16 0.25622E-01 0.25530E-01 0.25505E-01 0.25500E-01
32 0.58700E-02 0.55274E-02 0.55131E-02 0.55146E-02
64 0.26025E-02 0.13450E-02 0.12478E-02 0.12411E-02
128 0.12901E-02 0.56973E-03 0.36080E-03 0.35200E-03

Table 6.3
Errors in ω − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.98198E-01 0.92264E-01 0.89501E-01 0.88875E-01
16 0.33058E-01 0.31403E-01 0.30967E-01 0.30862E-01
32 0.83707E-02 0.69124E-02 0.65851E-02 0.65232E-02
64 0.38456E-02 0.18422E-02 0.14402E-02 0.13976E-02
128 0.30019E-02 0.95631E-03 0.40010E-03 0.34864E-03

Table 6.4
Errors on γ − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.20670E+00 0.20546E+00 0.20347E+00 0.20331E+00
16 0.32825E-01 0.33941E-01 0.34529E-01 0.35906E-01
32 0.67604E-02 0.69137E-02 0.79452E-02 0.83573E-02
64 0.39507E-02 0.19624E-02 0.24754E-02 0.26836E-02
128 0.14346E-02 0.78505E-03 0.13167E-02 0.13784E-02

Table 6.5
Errors in ω − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.15520E+00 0.15211E+00 0.15156E+00 0.15206E+00
16 0.30860E-01 0.27219E-01 0.25270E-01 0.25012E-01
32 0.72434E-02 0.54336E-02 0.52230E-02 0.51386E-02
64 0.40250E-02 0.19991E-02 0.15890E-02 0.15415E-02
128 0.33861E-02 0.15554E-02 0.10941E-02 0.10286E-02

all these computations. The results in Tables 6.2 and 6.3 have been obtained with the
extension of f in Ω made with the formula in ω, and the results in Tables 6.4 and 6.5
have been obtained with the extension made by zero. In Tables 6.2 and 6.4, we show
the errors computed on the boundary γ by taking the average over m = 360 boundary
points. On the other hand, we show in Tables 6.3 and 6.5 the errors computed in the
domain ω by taking the average over all mesh points in ω.

We notice in these tables that errors on the boundary γ are of the same order as in
the domain ω, and the extension of the function f outside of ω with the formula in ω
gives smaller errors than the extension by zero. It may be worth noting here that the
errors for this example are higher than those for the previous example (see Table 6.1)
because the values of yf and y(ϕi) on the boundary γ were found by interpolation
in this example and by an exact algebraic expression in the previous example. Thus
interpolation error is one of the possible sources of larger error in these tables for this
example. Figure 6.3 shows absolute errors at the mesh nodes in the domain ω when
n = 128 and δr = 0.01 for the two extensions of f .
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Fig. 6.3. Errors in the domain when f is extended by (a) the formula in the domain ω, (b) zero.

6.2. Exterior problems. Below, we show the performance of the method on
two exterior problems.

Example 6.3. We solve the same problem as defined by (6.3) in Example 6.1
except that the domain ω is now the exterior of a square centered at the origin with
sides parallel to the axes and of length of 2 units. For this problem, we consider
exterior Dirichlet problem (6.4) with the embedding domain Ω as the exterior of a
disc with its center at the origin and radius 0.99 unit.

Similar to Example 6.1, the solutions of the homogeneous Dirichlet problems in
Ω are found by the Poisson formula

y(v)(z) =
−1
2πr

∫
|ζ|=r

v(ζ)
r2 − |z|2
|z − ζ|2 dSζ .(6.14)

The spaces U , U , H, and H are the same as in Example 6.1, and the integrals on the
boundary γ use the same formula (6.7).

The problem in ω we have numerically solved has had gγ(x1, x2) = x1x2 and
f = 0. Evidently, we take yf = 0. In this case, we do not know the exact solution
of the problem, but we recall from previous examples that the error on the boundary
γ was very close to that in domain ω. Hence Table 6.6 shows the maximum relative
errors between the exact prescribed data and the computed solutions on boundary
γ against various values of n (the number of the nodes in tangential direction, i.e.,
number of nodes on Γ) while keeping the number of mesh points on γ fixed at m = 120
(corresponding to a mesh size of 1/15 on γ) for all these computations.

We found that the smaller diagonal element during the Gauss elimination method
is of the order 10−15 for n = 120 and of the order 10−14 for n = 118, and it is greater

Table 6.6
Errors obtained for the exterior Dirichlet problem.

n errb

120 0.10995E-03
118 0.93472E-04
116 0.24253E-05
115 0.38082E-03
110 0.33003E-02
100 0.55797E-01
90 0.18828E+00
60 0.21087E+00
30 0.77558E+00
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Fig. 6.4. (a) Domains, (b) exact solution.

than 10−12 for n = 30, . . . , 116. We see in Table 6.6 that for n > 116, the error
increases when the pivots in the Gauss elimination method become very small.

Example 6.4. Here we solve the same problem as defined by (6.8) in Example 6.2
except that the domain ω now is the open complement of the domain bounded by the
straight lines x1 = −π/2, x1 = π/2, and x2 = −1.5 and the curve y = 0.5 + cos(x).
For this problem, the embedding domain Ω is taken to be the exterior of a disc with
its center at the origin and radius 1.3 unit (see Figure 6.4, (a)).

We approximate the solution of this problem by a solution of the exterior Neu-
mann problem

∆y(v)− σ2y(v) = f in Ω,
∂y(v)

∂nA(Ω) = v on Γ,
(6.15)

where Γ is the inner boundary of the embedding domain Ω. Similar to Example 6.2,
we have taken σ2 = 0.75 in numerical computations.

As before, functions f and v are approximated by the discrete Fourier transforms
(6.10). Then the solution of problem (6.15) admits representation given by (6.11) and
(6.12) except that the Fourier coefficients yk(r) and y′k(r) are now given by

yk(r) = −
∫ r

R

ρKk(σr)Ik(σρ)fk(ρ)dρ−
∫ ∞

r

ρIk(σr)Kk(σρ)fk(ρ)dρ

− Kk(σr)

Kk−1(σR) +Kk+1(σR)

∫ ∞

R

ρ[Ik−1(σR) + Ik+1(σR)]Kk(σρ)fk(ρ)dρ,(6.16)

y′k(r) =
Kk(σr)

Kk−1(σR) +Kk+1(σR)

2

σ
vk.

Above, R is the radius of the disc whose complement is the domain Ω, and Ik and
Kk are the modified Bessel functions of first and second kinds, respectively. In order
to compute the solution of problem (6.15) at mesh points of the domain Ω with
n equidistant nodes in the tangential direction and l equidistant nodes in the radial
direction, we use the algorithm proposed in [4]. This algorithm uses (6.16) and the fast
Fourier transforms to compute yf and y′(v) in (6.12). For numerical computations,
the domain Ω is considered to be the annulus with the radii R and R∞, where R∞ is
chosen very large so that its effect is minimal on the accuracy of the solutions.

The spaces U and H are the same as in Example 6.2. Also, the values of yf and
y′(ϕ) at the mesh points of the boundary γ were obtained by interpolating the values
of the function at mesh points on Ω.
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Fig. 6.5. Extension of f by (a) the formula in the domain ω, (b) zero.

For numerical purposes in this example, we have considered (6.8) with f(x1, x2) =

[4(x2
1 + x2

2 − x1 − x2)− 2 + σ2]e−x2
1−x2

2+x1+x2 and gγ(x1, x2) = e−x2
1−x2

2+x1+x2 . This

problem has the exact solution y(x1, x2) = e−x2
1−x2

2+x1+x2 (it lies in H1(ω) and satis-
fies the equation and the boundary conditions of problem (6.8)), which is plotted in
Figure 6.4 (b).

Numerical computations show that |y(r)| ≤ 0.104E − 16 for r > 7, where r is
the distance of the point from the origin. Hence we have taken R∞ = 7 in these
computations. As in Example 6.2, we have extended f outside of ω in two different
ways: (i) by the above formula, and (ii) by zero. These extensions are plotted in
Figure 6.5. We have takenm = 360, the number of the mesh points on the boundary γ.

The error tables are similar to those in Example 6.2. Tables 6.7 and 6.8 correspond
to the case when the extension of f in Ω is made with the formula in ω, and Tables 6.9
and 6.10 correspond to the extension made by zero. In Tables 6.7 and 6.9, we show
the arithmetic mean of the absolute errors computed on the boundary γ by taking the
average over m = 360 boundary points. On the other hand, we show in Tables 6.8 and
6.10 the errors computed in the domain ω by taking the average over all mesh points
in ω. It is worth noting in these tables that, this time, the errors on the boundary γ
are less than those in the domain ω, and the two extensions of f give solutions with

Table 6.7
Errors on γ − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.13247E-01 0.13231E-01 0.13233E-01 0.13233E-01
16 0.25712E-02 0.25628E-02 0.25500E-02 0.25496E-02
32 0.59286E-03 0.58076E-03 0.57869E-03 0.57859E-03
64 0.18186E-03 0.15977E-03 0.15536E-03 0.15462E-03
128 0.63343E-04 0.51301E-04 0.45571E-04 0.45775E-04

Table 6.8
Errors in ω − f extended with the formula in ω.

n/δr 0.1 0.05 0.02 0.01

8 0.29115E-02 0.28034E-02 0.26385E-02 0.26264E-02
16 0.11901E-02 0.10997E-02 0.10582E-02 0.10493E-02
32 0.66451E-03 0.62745E-03 0.61610E-03 0.61432E-03
64 0.56566E-03 0.54864E-03 0.54777E-03 0.54815E-03
128 0.60927E-03 0.53842E-03 0.53886E-03 0.53988E-03
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Table 6.9
Errors on γ − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.13045E-01 0.13030E-01 0.13016E-01 0.13016E-01
16 0.26982E-02 0.26937E-02 0.27057E-02 0.26834E-02
32 0.61089E-03 0.61377E-03 0.63730E-03 0.64057E-03
64 0.17974E-03 0.15425E-03 0.16077E-03 0.16632E-03
128 0.63717E-04 0.52191E-04 0.53991E-04 0.57498E-04

Table 6.10
Errors in ω − f extended by zero.

n/δr 0.1 0.05 0.02 0.01

8 0.28435E-02 0.27346E-02 0.25635E-02 0.25483E-02
16 0.11929E-02 0.11024E-02 0.10533E-02 0.10487E-02
32 0.67268E-03 0.64000E-03 0.63015E-03 0.63105E-03
64 0.58007E-03 0.56682E-03 0.56861E-03 0.57090E-03
128 0.60658E-03 0.55784E-03 0.56152E-03 0.56343E-03
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Fig. 6.6. Errors in the domain when f is extended by (a) the formula in the domain ω, (b) zero.

errors of the same order. In Figure 6.6, we have plotted the absolute error at the
mesh nodes in the domain ω when n = 128 and δr = 0.01 for these two extensions
of f .
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Abstract. This paper is concerned with optimal control of linear backward stochastic differential
equations (BSDEs) with a quadratic cost criteria, or backward linear-quadratic (BLQ) control. The
solution of this problem is obtained completely and explicitly by using an approach which is based
primarily on the completion-of-squares technique. Two alternative, though equivalent, expressions
for the optimal control are obtained. The first of these involves a pair of Riccati-type equations, an
uncontrolled BSDE, and an uncontrolled forward stochastic differential equation (SDE), while the
second is in terms of a Hamiltonian system. Contrary to the deterministic or stochastic forward case,
the optimal control is no longer a feedback of the current state; rather, it is a feedback of the entire
history of the state. A key step in our derivation is a proof of global solvability of the aforementioned
Riccati equations. Although of independent interest, this issue has particular relevance to the BLQ
problem since these Riccati equations play a central role in our solution. Last but not least, it
is demonstrated that the optimal control obtained coincides with the solution of a certain forward
linear-quadratic (LQ) problem. This, in turn, reveals the origin of the Riccati equations introduced.
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1. Introduction. A backward stochastic differential equation (BSDE) is an Ito
stochastic differential equation (SDE) for which a random terminal condition on the
state has been specified. The linear version of this type of equation was first introduced
by Bismut [4] as the adjoint equation in the stochastic maximum principle (see also
[3, 17, 20]). General nonlinear BSDEs, introduced independently by Pardoux and
Peng [16] and Duffie and Epstein [9], have received considerable research attention
in recent years due to their nice structure and wide applicability in a number of
different areas, especially in mathematical finance (see, e.g., [7, 10, 11, 13, 15, 19]).
For example, the Black–Scholes formula for options pricing can be recovered via a
system of forward-backward stochastic differential equations (FBSDEs). In this case,
the random terminal condition is related to the price of the underlying stock at a
given terminal date. Unlike a (forward) SDE, the solution of a BSDE is a pair of
adapted processes (x(·), z(·)). The additional term z(·) may be interpreted as a risk-
adjustment factor and is required for the equation to have adapted solutions. This
restriction of solutions to the class of adapted processes is necessary if the insights
gained from the study of BSDEs are to be useful in applications. Adapted processes
depend on past and present information but do not rely (clairvoyantly) on future
knowledge. This is natural in virtually all applications; for example, the replicating
portfolio for a contingent claim may depend at any particular time on past and present
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stock prices but not, quite naturally, on future stock prices. For recent accounts on
BSDE theory and applications, the reader is referred to the books [15, 19].

Since a BSDE is a well-defined dynamic system, it is very natural and appealing,
first at the theoretical level, to consider the optimal control of the BSDE. As for appli-
cations, optimally controlled BSDEs promise to have a great potential. For example,
an optimal control problem of a linear BSDE comes out in the process of solving a
forward stochastic linear-quadratic (LQ) control problem in [6]. Moreover, controlled
BSDEs are expected to have important applications in mathematical finance. For in-
stance, a situation in which funds may be injected or withdrawn from the replication
process of a contingent claim so as to achieve some other goal may be viewed quite
naturally as an optimal BSDE control problem. However, the study on controlled BS-
DEs is quite lacking in literature. To our best knowledge there are only a few papers
dealing with optimal control of BSDEs, including [18] and [8], which establish local
and global maximum principles, respectively, and [11], in which a controlled BSDE
with linear state drift is studied.

This paper is concerned with optimal control of a linear BSDE with a quadratic
cost criteria, namely, a stochastic backward linear-quadratic (BLQ) problem. It is
well known that LQ control is one of the most important classes of optimal control,
and the solution of this problem has had a profound impact on many engineering
applications. Stochastic forward LQ theory has been well established, especially with
the recent development on the so-called indefinite stochastic LQ control [1, 5, 6, 14].
However, stochastic BLQ control remains an almost completely unexplored area. An
attempt was made in [8], where a special stochastic BLQ problem without state
cost was considered. An optimal control was derived, using the maximum principle
obtained in the paper, under the assumption that a certain SDE admits a solution.
This SDE, while it resembles the Riccati equation, is not exactly of Riccati type since
it is not symmetric, and its solvability is hard to verify in general.

The main contribution of this paper is a complete solution of a general BLQ
problem. As it turns out, the optimal control can no longer be expressed as a linear
feedback of the current state as in the deterministic or stochastic forward case. Rather,
it depends, in general, on the entire past history of the state pair (x(·), z(·)). It will
be shown that this dependence is linear, and explicit formulas for the optimal control
and the optimal cost in terms of a pair of Riccati equations, a Lyapunov equation,
an uncontrolled BSDE, and an uncontrolled SDE are established. The basic idea
is to first establish a lower bound to the optimal cost via the completion-of-squares
technique and then to construct a control that achieves exactly this lower bound. A
key part of our derivation is a proof of existence and uniqueness of solutions of the
Riccati equations mentioned above. Although this issue is one which has independent
interest, the proof of global solvability presented in this paper has direct relevance to
the BLQ problem since these Riccati equations play a central role in our analysis.

It is interesting to remark that our original approach to solving the BLQ problem
was inspired by [15, 12], where an (uncontrolled) BSDE is viewed as a controlled
forward SDE. Extending this idea, we can show that the optimal control of the BLQ
problem is the limit of a sequence of square integrable processes, obtained by solving
a family of forward LQ problems. During this procedure, the key Riccati equations,
along with other related equations, come out very naturally. What is more interesting
is that once these equations are in place, one may forget about the forward formulation
and limiting procedure, which is rather complicated, and instead use these equations
directly along with the completion-of-squares technique to obtain the optimal control
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for the original BLQ problem. Nevertheless, the forward formulation still represents
an alternative and insightful approach to the backward control problem, and for this
reason, an outline of this procedure is also presented in this paper.

The outline of this paper is as follows. In section 2, we formulate the BLQ
problem. In section 3, we present the main result of the paper (with its proof deferred
to section 5). In addition, we compare the solution of the stochastic BLQ problem
with that of the deterministic case. A key ingredient in our analysis is the existence
and uniqueness of solutions of certain Riccati equations, an issue which is addressed
in section 4. A proof of the main result is carried out in section 5. In section 6,
we explain, in a rather informal way, the origin of the key Riccati equations, and we
present an alternative approach to the BLQ problem. In particular, we show that the
optimal BLQ control, established in section 3, coincides with the limit of the solutions
of a family of forward LQ problems. Finally, section 7 concludes the paper.

2. Problem formulation. We assume throughout that (Ω, F , {F}t≥0, P ) is a
given and fixed complete filtered probability space and that W (·) is a scalar-valued
Brownian motion on this space. (Our assumption that W (·) is scalar-valued is for
the sake of simplicity. No essential difficulties are encountered when extending our
analysis to the case of vector-valued Brownian motions). In addition, we assume that
Ft is the augmentation of σ{W (s) 0 ≤ s ≤ t} by all the P -null sets of F .

Throughout this paper, we denote the set of symmetric n× n matrices with real
elements by Sn. If M ∈ Sn is positive (semi)definite, we write M > (≥) 0. Let
X be a given Hilbert space. The set of X-valued continuous functions is denoted
by C(0, T ; X). If N(·) ∈ C(0, T ; Sn) and N(t) > (≥) 0 for every t ∈ [0, T ], we
say that N(·) is positive (semi)definite, which is denoted by N(·) > (≥) 0. Suppose
η : Ω → R

n is an FT -random variable. We write η ∈ L2
FT (Ω; R

n) if η is square inte-
grable (i.e., E|η|2 <∞). Consider now the case when f : [0, T ]×Ω→ R

n is an {Ft}t≥0

adapted process. If f(·) is square integrable (i.e., E ∫ T
0
|f(t)|2 dt <∞), we shall write

f(·) ∈ L2
F (0, T ; R

n); if f(·) is uniformly bounded (i.e., ess sup(t, w)∈[0, T ]×Ω |f(t)| <
∞), then f(·) ∈ L∞

F (0, T ; R
n). If f(·) has (P -almost surely (a.s.)) continuous sam-

ple paths and E supt∈[0, T ] |f(t)|2 < ∞, we write f(·) ∈ L2
F (0, T ; C(0, T ; R

n)); if
ess supw∈Ω supt∈[0, T ] |f(t)| < ∞, then f(·) ∈ L∞

F (0, T ; C(0, T ; R
n)). These defini-

tions generalize in the obvious way to the case when f(·) is R
n×m—or Sn—valued.

Finally, in cases where we are restricting ourselves to deterministic Borel measurable
functions f : [0, T ]→ R

n, we shall drop the subscript F in the notation; for example,
L∞(0, T ; R

n).

Consider the BSDE{
dx(t) = {A(t)x(t) +B(t)u(t) + C(t)z(t)} dt+ z(t) dW (t),

x(T ) = ξ,
(2.1)

where u(·) is the control process. The class of admissible controls for (2.1) is

U = L2
F (0, T ; R

m).(2.2)

Later, we shall state assumptions on the coefficients A(·), B(·), C(·), and the terminal
condition ξ so as to guarantee the existence of a unique solution pair (x(·), z(·)) ∈
L2
F (Ω;C(0, T ; R

n)) × L2
F (0, T ; R

n) of the BSDE (2.1) for every admissible control
u(·) ∈ U . We refer to such a three-tuple (x(·), z(·); u(·)) as an admissible triple. The



LQ CONTROL OF BSDEs 453

cost associated with an admissible triple (x(·), z(·); u(·)) is given by

J(ξ;u(·)) :=E
1

2

[
x(0)′Hx(0)

+

∫ T

0

(x(t)′Q(t)x(t) + z(t)′S(t)z(t) + u(t)′R(t)u(t)) dt

]
.

(2.3)

The BLQ control problem can be stated as follows:


minJ(ξ;u(·))
subject to

u(·) ∈ U ,
(x(·), z(·); u(·)) satisfies (2.1).

(2.4)

Throughout this paper, we shall assume the following:
Assumption (A1).



A, C ∈ L∞(0, T ; R
n×n),

B ∈ L∞(0, T ; R
n×m),

Q, S ∈ L∞(0, T ; Sn), Q, S ≥ 0,
R ∈ L∞(0, T ;Sm), R > 0,
H ∈ Sn, H ≥ 0,
ξ ∈ L2

FT (Ω; R
n).

In particular, Assumption (A1) is sufficient to guarantee the existence of a unique
solution pair (x(·), z(·)) ∈ L2

F (Ω;C(0, T ; R
n)) × L2

F (0, T ; R
n) of (2.1) for every ad-

missible control u(·) ∈ U ; see [19, Chapter 7].
3. Main result. Before we present the main result of the paper, which gives

a complete solution to the above BLQ problem, let us see how one would solve the
deterministic BLQ problem. This corresponds to ξ ∈ R

n being deterministic, C = 0,
S = 0, and an admissible class Ud = L2(0, T ; R

n). The other parameters satisfy
(A1), while the cost and dynamics are given by

Jd(ξ;u(·)) := 1

2
x(0)′Hx(0) +

1

2

∫ T

0

(x(t)′Q(t)x(t) + u(t)′R(t)u(t)) dt,{
ẋ(t) = A(t)x(t) +B(t)u(t),

x(T ) = ξ,

respectively. By reversing time,

τ = T − t, t ∈ [0, T ],

we obtain an equivalent forward LQ problem that can be solved using a standard
(Riccati) approach (see, e.g., [19, Chapter 6, section 2]). In particular, this gives us
the following result.

Proposition 3.1 (deterministic BLQ problem). The optimal cost and optimal
feedback control for the deterministic BLQ problem are

J∗
d (ξ) =

1

2
ξ′ Z(T ) ξ,(3.1)

u(t) = R(t)−1B(t)′Z(t)x(t),(3.2)
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respectively, where Z(·) is the unique solution of the Riccati equation{
Ż(t) + Z(t)A(t) +A(t)′Z(t) + Z(t)B(t)R(t)−1B(t)′Z(t)−Q(t) = 0,

Z(0) = H,
(3.3)

and x(·) is the unique solution of the differential equation{
ẋ(t) = (A(t) +B(t)R(t)−1B(t)′Z(t))x(t),

x(T ) = ξ.

It is important to recognize that the above time reversal technique cannot be
extended to the stochastic BLQ problem, (2.4), as it would destroy the adaptiveness
which is essential in the model. In particular, a control obtained in this way will not,
in general, be {Ft}t≥0-adapted and hence is not admissible.

It turns out that the solution to (2.4) is more involved. In the remainder of
this section, we present two alternative expressions (which are later shown to be
equivalent) for the solution of the optimal BLQ control. The first one is analogous
to the solution to the deterministic BLQ problem just presented. It gives an explicit
formula via a pair of Riccati equations, a Lyapunov equation, an uncontrolled BSDE,
and an uncontrolled SDE.

First, consider the following Riccati-type equation:


Σ̇(t)−A(t)Σ(t)− Σ(t)A(t)′ − Σ(t)Q(t)Σ(t)

+B(t)R(t)−1B(t)′ + C(t)Σ(t) (S(t)Σ(t) + I)
−1

C(t)′ = 0,

Σ(T ) = 0.

(3.4)

The existence and uniqueness of a solution to this equation will be addressed in section
4; see Theorem 4.5. Letting Σ(·) be the solution to (3.4), we define the following
equations:



Ż(t) + Z(t)A(t) +A(t)′Z(t)

+Z(t)[B(t)R(t)−1B(t)′

+C(t)Σ(t)(I + S(t)Σ(t))−1C(t)′]Z(t)−Q(t) = 0,

Z(0) = H,

(3.5)

{
Ṅ(t) +N(t)(A(t) + Σ(t)Q(t)) + (A(t) + Σ(t)Q(t))′N(t)−Q(t) = 0,

N(0) = 1
2{H(I +Σ(0)H)−1 + (I +HΣ(0))−1H},(3.6)




dh(t) = {(A(t) + Σ(t)Q(t))h(t) + C(t)(I +Σ(t)S(t))−1 η(t)} dt
+η(t) dW (t),

h(T ) = −ξ.
(3.7)

The first equation (3.5) is again a Riccati-type equation. It is a generalization of
the Riccati equation (3.3) associated with the deterministic problem. The second
equation is a Lyapunov equation, while the third is a linear BSDE. Based on the
solutions Z(·) and (h(·), η(·)) to (3.5) and (3.7), respectively, we finally introduce




dq(t) = {−[A(t) +B(t)R(t)−1B(t)′Z(t) + C(t)(I +Σ(t)S(t))−1Σ(t)C(t)′Z(t)]′ q(t)
+Z(t)C(t)(I +Σ(t)S(t))−1η(t)}dt+ {(Z(t)− S(t))(I +Σ(t)S(t))−1η(t)
+(I + Z(t)Σ(t))(I + S(t)Σ(t))−1C(t)′(I + Z(t)Σ(t))−1(Z(t)h(t)− q(t))} dW (t),

q(0) = 0.

(3.8)
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The existence and uniqueness of the solutions of (3.5)–(3.8) will be discussed in section
4. It should be noted that (3.4), (3.6), (3.7), and (3.8) play no role in the solution of
the deterministic BLQ problem.

Theorem 3.2. The BLQ problem (2.4) is uniquely solvable. Moreover, the control

u(t) = R(t)−1B(t)′(Z(t)x(t) + q(t))(3.9)

is optimal, where Z(·) and q(·) are the solutions of (3.5) and (3.8), respectively. The
optimal state trajectory (x(·), z(·)) is the unique solution of the BSDE


dx(t) = {(A(t) +B(t)R(t)−1B(t)′Z(t))x(t)

+C(t)z(t) +B(t)R(t)−1 B(t)′ q(t)} dt+ z(t) dW (t),

x(T ) = ξ,

(3.10)

and the optimal cost is

J∗(ξ) := E
1

2

{
ξ′N(T )ξ +

∫ T

0

{η(t)′[(S(t)Σ(t) + I)−1S(t)−N(t)]η(t)

−2η(t)′(I + S(t)Σ(t))−1C(t)′N(t)h(t)
}
dt

}
,(3.11)

where N(·) is the unique solution of (3.6).
Remark 3.1. If we compare the two optimal controls, (3.2) and (3.9), for the

deterministic and stochastic BLQ problems, respectively, we see that the latter in-
volves an additional random nonhomogeneous term q(·). This addition disqualifies
(3.9) from a feedback control of the current state, contrary to the deterministic BLQ
(see Proposition 3.1) or stochastic forward LQ (see [5]) cases. The reason is because
q(·) depends on (h(·), η(·)), which in turn depends on ξ, the terminal condition of
part of the state variable, x(·). This is one of the major distinctive features of the
stochastic BLQ problem. On the other hand, when ξ is nonrandom, C = 0 and S = 0,
the optimal control (3.9) reduces to the solution (3.2) of the deterministic problem.
In this case, it is easy to see (by the uniqueness of the solutions of (3.7)) that η(t) ≡ 0.
This implies, in turn, that q(t) ≡ 0, and hence the optimal control (3.9) agrees with
the solution (3.2) of the deterministic problem. In addition, since

N(t) =
1

2
[Z(t)(I +Σ(t)Z(t))−1 + (I + Z(t)Σ(t))−1Z(t)]

(see Proposition 4.8), it follows that N(T ) = Z(T ) and the optimal cost (3.11) reduces
to (3.1) for the deterministic problem. Through the above comparison, we can also
see that the fundamental difference between the solutions to the deterministic and
stochastic BLQ problems lies in the introduction of (3.4).

Although for the stochastic BLQ problem the optimal control is no longer a
feedback of the current state, it is indeed a linear state feedback of the entire past
history of the state process (x(·), z(·)). This conclusion is a consequence of the second
form of the optimal control we will present, which is in terms of the Hamiltonian
system:{

dx(t) = {A(t)x(t)−B(t)R(t)−1B(t)′y(t) + C(t)z(t)}dt+ z(t)dW (t),

x(T ) = ξ,
(3.12)

{
dy(t) = {−A(t)′y(t)−Q(t)x(t)}dt+ {−C(t)′y(t)− S(t)z(t)}dW (t),

y(0) = −Hx(0).
(3.13)
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Notice that the combination of (3.12)–(3.13) does not qualify as a conventional FBSDE
as defined in, say, [19, 15]. The subtle difference is that the forward and backward
variables in (3.12)–(3.13) are directly related at the initial time, while those in the
FBSDE are related at the terminal time. Moreover, one cannot transform between
these two types of equations by reversing the time, due to the required adaptiveness.
In what follows, we shall refer to any three-tuple of processes

(x(·), z(·), y(·)) ∈ L2
F (Ω; C(0, T ; R

n))× L2
F (0, T ; R

n)× L2
F (Ω; C(0, T ; R

n)),

which satisfies (3.12)–(3.13) as a solution of the Hamiltonian system (3.12)–(3.13).
Theorem 3.3. The Hamiltonian system (3.12)–(3.13) has a unique solution

(x(·), z(·), y(·)). Moreover, the BLQ problem (2.4) is uniquely solvable with the opti-
mal control

u(t) = −R(t)−1B(t)′y(t),(3.14)

and (x(·), z(·)) as the corresponding optimal state process. The optimal cost is (3.11).
Remark 3.2. If (3.14) is optimal, then (3.12)–(3.13) are exactly the corresponding

state equation and adjoint equation; see [8]. This is the reason why we call (3.12)–
(3.13) the Hamiltonian system.

Theorem 3.3 shows that the optimal control is linear in the process y(·). The
following simple result further reveals that the optimal control is a linear feedback of
the past and current values of the state process (x(·), z(·)).

Proposition 3.4. Let y(·) be the process obtained from the Hamiltonian system
(3.12)–(3.13). Then

y(t) = Φ(t)

{
−Hx(0) +

∫ t

0

Φ(s)−1[Q(s)x(s) + C(s)′S(s)z(s)] ds

−
∫ t

0

Φ(s)−1S(s)z(s)dW (s)

}
,

where Φ(·) is the unique solution of the matrix SDE{
dΦ(t) = −A(t)′Φ(t)dt− C(t)′Φ(t)dW (t),

Φ(0) = I.

Proof. This is an immediate consequence of the variation-of-constant formula; see
[19, p. 47, Theorem 6.14].

Proofs of Theorems 3.2 and 3.3 are deferred to section 5.

4. Riccati equations. Before proving the main result formulated in the previ-
ous section, in this section we first study the existence and uniqueness of solutions to
(3.4)–(3.8), mainly focusing on the Riccati equations (3.4) and (3.5).

To start, let us first consider the two equations


Σ̇(t)−A(t)Σ(t)− Σ(t)A(t)′ − Σ(t)Q(t)Σ(t)

+B(t)R(t)−1B(t)′ + C(t)Σ(t)(S(t)Σ(t) + I)−1C(t)′ = 0,

Σ(T ) = M,

(4.1)




Ṗ (t) + P (t)A(t) +A(t)′P (t)

−P (t)(B(t)R(t)−1B(t)′ + C(t)(S(t) + P (t))−1C(t)′)P (t) +Q(t) = 0,

P (T ) = M−1,

(4.2)
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where M is a given symmetric n × n matrix in (4.1) and a nonsingular symmetric
n× n matrix in (4.2). It will be seen from what follows that (4.2) is introduced as a
means of dealing with the solvability of (4.1).

Proposition 4.1. Let M be a symmetric n × n matrix. If the Riccati equation
(4.1) is solvable, then the solution is unique.

Proof. Suppose that Σ1(·), Σ2(·) ∈ C(0, T ; Sn) are two solutions of (4.1). Since
Σ1(·) and Σ2(·) are continuous, it follows that ∆(·) := Σ1(·) − Σ2(·) is uniformly
bounded. It is easy to show that ∆(·) is a solution of the equation




∆̇(t) = (A(t) + Σ1(t)Q(t))∆(t) + ∆(t) (A(t) + Σ1(t)Q(t))′ −∆(t)Q(t)∆(t)

−C(t)[I − Σ2(t)(S(t)Σ2(t) + I)−1S(t)]∆(t)(S(t)Σ1(t) + I)−1C(t)′,

∆(T ) = 0.

Integrating both sides of this equation from t to T , it follows from the uniform bound-
edness of ∆(·) and all the coefficients that there is a constant 0 < K <∞ such that

‖∆(t)‖ ≤ K

∫ T

t

‖∆(s)‖ ds.

Hence, by Gronwall’s inequality, it follows that Σ1(t) − Σ2(t) = 0 for all t ∈
[0, T ].

Next we prove the existence of solutions to (4.1). We first consider the case when
S = 0. In this case, the Riccati equations (4.1) and (4.2) become




Σ̇(t)−A(t)Σ(t)− Σ(t)A(t)′ + C(t)Σ(t)C(t)′

−Σ(t)Q(t)Σ(t) +B(t)R(t)−1B(t)′ = 0,

Σ(T ) = M,

(4.3)




Ṗ (t) + P (t)A(t) +A(t)′P (t) +Q(t)

−P (t)(B(t)R(t)−1B(t)′ + C(t)P (t)−1C(t)′)P (t) = 0,

P (T ) = M−1.

(4.4)

Proposition 4.2. Let M ≥ 0 be a given symmetric n × n matrix. Then the
Riccati equation (4.3) is uniquely solvable. Moreover,

(i) if M > 0, then the solution Σ(·) > 0, and

(ii) if M ≥ 0, then the solution Σ(·) ≥ 0.

Proof. Case 1: M > 0. Consider first the case when Q(t) > 0 for almost every
(a.e.) t ∈ [0, T ]. Then (4.3) is a standard Riccati equation (arising in deterministic
LQ control) and is uniquely solvable with the solution Σ(·) > 0 (see, e.g., [2, 19]).
Suppose now that we have only Q(·) ≥ 0. Define Qi := Q + (1/i) I for i ∈ Z

+. Let
Σi(·) be the unique positive definite solution of (4.3) when Q is replaced by Qi. Note
first that Σi(·) is uniformly bounded. To see this, consider the Lyapunov equation

{
˙̄Σ(t) = A(t)Σ̄(t) + Σ̄(t)A(t)′ − C(t)Σ̄(t)C(t)′ −B(t)R(t)−1B(t)′,

Σ̄(T ) = M.
(4.5)

Since (4.5) is a linear ordinary differential equation (ODE) with bounded coefficients,
it follows that it has a unique solution Σ̄(·) which is uniformly bounded. For any
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i ∈ Z
+, let ∆̄i(·) := Σ̄(·) − Σi(·). It is easy to show that ∆̄i(·) is a solution of the

Riccati equation




˙̄∆i(t) = Ai(t)∆̄i(t) + ∆̄i(t)Ai(t)
′ − C(t)∆̄i(t)C(t)′

+ ∆̄i(t)Qi(t)∆̄i(t)− Σ̄(t)Qi(t)Σ̄(t),

∆̄(T ) = 0,

(4.6)

where Ai(t) := A(t) + Σi(t)Qi(t). This is again a standard Riccati equation which
has a unique solution ∆̄i(·) ≥ 0. Therefore, 0 ≤ Σi(·) ≤ Σ̄(·), so Σi(·) is uniformly
bounded, as claimed. Next, observe that Σi(·) is nondecreasing in i. To see this,
suppose that j < i. Then ∆(·) := Σi(·) − Σj(·) is the unique solution of the Riccati
equation{

∆̇(t) = Ā(t)∆(t) + ∆(t)Ā(t)′ − C(t)∆(t)C(t)′ +∆(t)Qi(t)∆(t)− ( 1
j − 1

i )Σj(t) Σj(t),

∆(T ) = 0,

where Ā := A + ΣjQi. As before, ∆(·) is positive semidefinite, and hence Σi(·) ≥
Σj(·). Since {Σi(·)}i≥1 is a nondecreasing, uniformly bounded sequence of functions,
it follows that there is a function Σ(·) (which is not necessarily continuous) such that
Σi(t) ↑ Σ(t) for every t ∈ [0, T ] as i ↑ ∞. Therefore, Σ(t) is symmetric, and Σ(t) > 0
for every t ∈ [0, T ]. Finally, we show that Σ(·) is continuous and is a solution of (4.3).
Observe first that by virtue of (4.3), the relation

Σi(t) = M −
∫ T

t

(A(s)Σi(s) + Σi(s)A(s)
′ − C(s)Σi(s)C(s)′

+Σi(s)Qi(s)Σi(s)−B(s)R(s)−1B(s)′) ds

holds. Since Σi(t) ↑ Σ(t) for every t ∈ [0, T ] as i ↑ ∞, it follows from the bounded
convergence theorem that

Σ(t) = M −
∫ T

t

(A(s)Σ(s) + Σ(s)A(s)′ − C(s)Σ(s)C(s)′

+Σ(s)Q(s)Σ(s)−B(s)R(s)−1B(s)′) ds.

Therefore, Σ(·) ∈ C(0, T ; Sn) is a solution of (4.3), and Σ(·) > 0. Uniqueness follows
from Proposition 4.1.

Case 2: M ≥ 0. In this case, the one difference, when applying the argument
above, is that Σ(t) ≥ 0 instead of Σ(t) > 0 for all t ∈ [0, T ].

Proposition 4.3. Let M > 0 be a given symmetric n × n matrix. Then the
Riccati equation (4.4) is uniquely solvable with the solution P (·) > 0.

Proof. We begin by proving existence. By Proposition 4.2, (4.3) is uniquely
solvable with the solution Σ(·) > 0. It follows that Σ(·)−1 is well defined, symmetric,
and positive definite. By evaluating d

dt (Σ(t)Σ(t)
−1) = 0, it can be shown that P (·) :=

Σ(·)−1 ∈ C(0, T, Sn) is a solution of (4.4).

To prove uniqueness, let Pi(·), i = 1, 2, be solutions of (4.4). Since (4.4) involves
Pi(·)−1, Pi(t) is invertible for every t ∈ [0, T ], and Pi(·)−1 is differentiable. Since
Pi(·)−1 is a solution of (4.3), the uniqueness property of (4.3) implies that P1(·) =
P2(·).
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Now we proceed to the general case when S ≥ 0. We begin by proving global solv-
ability of the Riccati equation (4.2) when M > 0. The following notions, introduced
in [5], play an important role in our analysis. Let

K̂ := {K ∈ L∞(0, T ; Sn) K(t), K(t)−1 > 0,

a.e. t ∈ [0, T ], and K(·)−1 ∈ L∞(0, T ; Sn)}.

For every K ∈ K̂, the Riccati equation


Ṗ (t) + P (t)A(t) +A(t)′P (t)

−P (t)(B(t)R(t)−1B(t)′ + C(t)K(t)−1C(t)′)P (t) +Q(t) = 0,

P (T ) = M−1

(4.7)

is a standard Riccati equation which is uniquely solvable, with the solution P (·) > 0.
Therefore, the mapping ψ : K̂ → C(0, T ; Sn), where P = ψ(K) is the solution of
(4.7) associated with K, is well defined. A sufficient condition for unique solvability
of the Riccati equation (4.2) is the existence of K ∈ K̂ such that

S + ψ(K) ≥ K;(4.8)

see [5, Theorem 4.6]. Hence we have the following result.
Theorem 4.4. Let M > 0 be a given symmetric n× n matrix. Then the Riccati

equation (4.2) has a unique solution P (·) ∈ C(0, T ; Sn). Moreover, P (·) > 0.
Proof. Let P̄ (·) ∈ C(0, T ; Sn) denote the solution of the Riccati equation (4.4).

It follows from Proposition 4.3 that P̄ ∈ K̂ and P̄ = ψ(P̄ ). Moreover, since S ≥ 0, it
is clear that (4.8) is satisfied with K = P̄ , and hence (4.2) is uniquely solvable (with
solution P (·) ∈ C(0, T ; Sn)). To see that P (t) ≥ P̄ (t) > 0 for all t ∈ [0, T ], observe
that x′P (t)x is the optimal cost associated with the optimal control problem [5]


minu(·), v(·) E

∫ T

t
{x(s)′Q(s)x(s) + u(s)′R(s)u(s) + v(s)′S(s)v(s)} ds+ x(T )′M−1x(T )

subject to

dx(s) = {A(s)x(s) +B(s)u(s) + C(s)v(s)} ds+ v(s) dW (s), s ∈ [t, T ],
x(t) = x,

(u(·), v(·)) ∈ L2F (0, T ; R
m)× L2F (0, T ; R

n),

(4.9)

while x′P̄ (t)x is the optimal cost associated with

minu(·), v(·) E

∫ T

t
{x(s)′Q(s)x(s) + u(s)′R(s)u(s)} ds+ x(T )′M−1x(T )

subject to

dx(s) = {A(s)x(s) +B(s)u(s) + C(s)v(s)} ds+ v(s) dW (s), s ∈ [t, T ],
x(t) = x,

(u(·), v(·)) ∈ L2F (0, T ; R
m)× L2F (0, T ; R

n).

(4.10)

Since S ≥ 0, it follows that x′P (t)x ≥ x′P̄ (t)x for all (t, x) ∈ [0, T ]×R
n, from which

the result follows.
Remark 4.1. A special case of Theorem 4.4 is proved in [12, Theorem 4.2] under

an additional assumption (inequality (4.3) in [12]).
Theorem 4.5. Let M ≥ 0 be a given symmetric n× n matrix. Then the Riccati

equation (4.1) is uniquely solvable. Moreover,
(i) if M > 0, then the solution Σ(·) > 0, and
(ii) if M ≥ 0, then the solution Σ(·) ≥ 0.
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Proof. We consider the issue of existence for the cases M > 0 and M ≥ 0
separately. Uniqueness follows immediately from Proposition 4.1.

Case 1: M > 0. Let P (·) denote the solution of the Riccati equation (4.2).
By Theorem 4.4, it follows that P (t) > 0 for all t ∈ [0, T ]. Therefore, P (t)−1

is well defined. Using the fact that d
dt (P (t)−1P (t)) = 0 and (S(t) + P (t))−1 =

P (t)−1(S(t)P (t)−1 + I)−1, it can be shown that Σ(·) := P (·)−1 is a solution of (4.1).
Clearly, Σ(t) > 0 for all t ∈ [0, T ].

Case 2: M ≥ 0. Let Mi := M + (1/i)I and Σi(·), Pi(·) denote the solutions of
(4.1) and (4.2), respectively, corresponding to Mi > 0. Then Σi(·) = Pi(·)−1 > 0.
Since x′Pi(t)x is the optimal cost for the optimal control problem


minu(·), v(·) E
∫ T
t
{x(s)′Q(s)x(s) + u(s)′R(s)u(s) + v(s)′S(s)v(s)} ds+ x(T )′M−1

i x(T )

subject to

dx(s) = {A(s)x(s) +B(s)u(s) + C(s)v(s)} ds+ v(s) dW (s), s ∈ [t, T ],

x(t) = x,

(u(·), v(·)) ∈ L2
F (0, T ; R

m)× L2
F (0, T ; R

n),

it follows that 0 < Pi(t) ≤ Pj(t) for all i < j, and hence 0 < Σj(t) ≤ Σi(t). There-
fore, Σi(t) is a monotonically decreasing sequence that is bounded below and hence
converges; that is, Σi(t) ↓ Σ(t) ≥ 0 for all t ∈ [0, T ]. On the other hand,

Σi(t) = M +
1

i
I −

∫ T

t

{A(s)Σi(s) + Σi(s)A(s)
′

−B(s)R(s)−1B(s)′ − C(s)Σi(s)[S(s)Σi(s) + I]−1C(s)′ +Σi(s)Q(s)Σi(s)} ds.
Hence it follows from the bounded convergence theorem that

Σ(t) = M −
∫ T

t

{A(s)Σ(s) + Σ(s)A(s)′

−B(s)R(s)−1B(s)′ − C(s)Σ(s)[S(s)Σ(s) + I]−1C(s)′ +Σ(s)Q(s)Σ(s)} ds,
so Σ(·) is a solution of (4.1).

The above theorem implies, in particular, that (3.4) is uniquely solvable. Now we
are in the position to prove the unique solvability of the Riccati equation (3.5).

Corollary 4.6. Let Σ(·) denote the solution of (3.4). Then the Riccati equation
(3.5) is uniquely solvable. Moreover,

(i) if H > 0, then the solution Z(·) > 0, and
(ii) if H ≥ 0, then the solution Z(·) ≥ 0.
Proof. By making the time reversing transformation

τ = T − t, t ∈ [0, T ],

the Riccati equation (3.5) is equivalent to


Ż(t)− Z(t)A(t)−A(t)′Z(t)− Z(t)
[
B(t)R(t)−1B(t)′

+C(t)Σ(t)(I + S(t)Σ(t))−1C(t)′
]
Z(t) +Q(t) = 0,

Z(T ) = H.

(4.11)

We now show that (4.11) is a special case of the Riccati equation (4.1). To see this,
let Σi(·) and Pi(·) denote the solutions of (4.1) and (4.2) when M = (1/i)I. Since

Σ(t)(I + S(t)Σ(t))−1 = lim
i↑∞

Σi(t)(I + S(t)Σi(t))
−1 = lim

i↑∞
(S(t) + Pi(t))

−1,
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which implies, in particular, that B(t)R(t)−1B(t)′ +C(t)Σ(t)(I +S(t)Σ(t))−1C(t)′ is
symmetric, and

Q(t) = (Q(t)
1
2 ) I−1 (Q(t)

1
2 )′,

it follows that (4.11) is an equation of the form (4.1). Therefore, Theorem 4.5 applies,
and (3.5) is uniquely solvable.

Now we have proved the unique solvability of the two Riccati equations (3.4)
and (3.5). The unique solvability of (3.7) and (3.8), with the solutions (h(·), η(·)) ∈
L2
F (Ω;C(0, T ; R

n))×L2
F (0, T ; R

n) and q(·) ∈ L2
F (Ω;C(0, T ; R

n)), is evident as they
are linear BSDE/SDE with bounded linear coefficients and square integrable nonho-
mogeneous terms; see, e.g., [19, Theorem 2.2, p. 349] and [19, Theorem 6.14, p. 47].
Finally, the unique solvability of the Lyapunov equation (3.6) is well known.

Next let us study the asymptotic behavior of some equations with respect to the
terminal condition of those equations, which is important in proving the main results,
Theorems 3.2 and 3.3. Let M > 0 be a symmetric n × n matrix. Consider the
following equations parameterized by M :


Ṗ (t) + P (t)A(t) +A(t)′P (t)

−P (t)[B(t)R(t)−1B(t)′ + C(t)(S(t) + P (t))−1C(t)′]P (t) +Q(t) = 0,

P (T ) = M−1,

(4.12)




Σ̇(t)−A(t)Σ(t)− Σ(t)A(t)′ − Σ(t)Q(t)Σ(t)

+B(t)R(t)−1B(t)′ + C(t)Σ(t)(S(t)Σ(t) + I)−1C(t)′ = 0,

Σ(T ) = M,

(4.13)




dh(t) = {(A(t) + Σ(t)Q(t))h(t) + C(t)(I +Σ(t)S(t))−1 η(t)} dt
+η(t) dW (t),

h(T ) = −ξ.
(4.14)

Notice that the Σ(·) appearing on the right-hand side of (4.14) is the solution to (4.13)
which depends on M ; hence (4.14) and (3.7) are different.

Proposition 4.7. Let Mi (i ∈ Z
+) and M be symmetric, n × n, positive

semidefinite matrices. Let Σi(·), (hi(·), ηi(·)) and Σ(·), (h(·), η(·)) be solutions of
(4.13)–(4.14), corresponding to Mi and M , respectively. If Mi → M , then Σi(·) →
Σ(·), uniformly on [0, T ], and (hi(·), ηi(·)) → (h(·), η(·)) in L2

F (Ω; C(0, T ; R
n)) ×

L2
F (0, T ; R

n), as i ↑ ∞.
Proof. Since every convergent sequence is bounded, there exists 0 < M̄ ∈ Sn

such that Mi ≤ M̄ and M ≤ M̄ . Therefore, Σ(·) ≤ Σ̄(·) and Σi(·) ≤ Σ̄(·), where Σ̄(·)
is the solution of (4.1) corresponding to M̄ . It follows that if ∆i(·) := Σi(·) − Σ(·),
then ‖∆i(t)‖ ≤ C for every t ∈ [0, T ] uniformly in i, where C < ∞ is a constant
independent of i. As in the proof of Proposition 4.1, it can be shown that

∆i(t) := (Mi −M)−
∫ T

t

{[A(s) + Σ(s)Q(s)]∆i(s) + ∆i(s)[A(s) + Σ(s)Q(s)]′

+∆i(s)Q(s)∆i(s)− C(s)[I − Σi(s)(S(s)Σi(s) + I)−1S(s)]∆i(s)(S(s)Σ(s) + I)−1C(s)′} ds.
Since ‖∆i(t)‖ ≤ C, uniformly in i, it follows that

‖∆i(t)‖ ≤ ‖Mi −M‖+K

∫ T

t

‖∆i(s)‖ ds,
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where K < ∞ is a constant independent of i. From Gronwall’s inequality, it follows
that ‖∆i(t)‖ ≤ ‖Mi −M‖ eKT , so ∆i(·)→ 0 as i ↑ ∞, uniformly on [0, T ].

To show convergence of (hi(·), ηi(·)) to (h(·), η(·)), observe that


d(h(t)− hi(t)) = [(A(t) + Σ(t)Q(t))(h(t)− hi(t))

+ C(t)(I +Σ(t)S(t))−1(η(t)− ηi(t))

+ (Σ(t)− Σi(t))Q(t)hi(t)

− C(t)(I +Σ(t)S(t))−1(Σ(t)− Σi(t))S(t)(I +Σi(t)S(t))
−1ηi(t)] dt

+ (η(t)− ηi(t))dW (t),

h(T )− hi(T ) = 0.

Since (h(·) − hi(·), η(·) − ηi(·)) is the (unique) solution of a linear BSDE, it follows
from [19, Theorem 2.2, p. 349] that

E sup
t∈[0, T ]

|h(t)− hi(t)|2 + E

∫ T

0

|η(t)− ηi(t)|2 dt,

≤ K1E

∫ T

0

|(Σ(t)− Σi(t))Q(t)hi(t)

−C(t)(I +Σ(t)S(t))−1(Σ(t)− Σi(t))S(t)(I +Σi(t)S(t))
−1ηi(t)|2 dt,

≤ K2 ‖Σ(·)− Σi(·)‖2 E

∫ T

0

(|hi(t)|2 + |ηi(t)|2) dt

for some constants K1, K2 < ∞ (which are independent of i). Finally, since Σi(·)
is uniformly bounded in i, it can be shown (following the proof of [19, Theorem 2.2,

p. 349]) that E
∫ T
0
|hi(t)|2 dt and E

∫ T
0
|ηi(t)|2 dt are bounded, uniformly in i. Our

result follows from the fact that Σi(·)→ Σ(·) as i ↑ ∞.
Before we conclude this section, we present a representation result for the solution

of the Lyapunov equation (3.6).
Proposition 4.8. The solution of the Lyapunov equation (3.6) is

N(t) =
1

2
[Z(t)(I +Σ(t)Z(t))−1 + (I + Z(t)Σ(t))−1Z(t)].(4.15)

Proof. Case 1: H > 0. In this case Z(t) > 0 for every t ∈ [0, T ]; see Corollary
4.6. Therefore, Z(t)−1 is well defined and (4.15) is equivalent to:

N(t) = (Z(t)−1 +Σ(t))−1.(4.16)

Thus it suffices to show that the right-hand side of (4.16) is a solution of (3.6). By
evaluating d

dt{Z(t)Z(t)−1} = 0, it is easy to show that


d
dt{Z(t)−1} = A(t)Z(t)−1 + Z(t)−1A(t)′

+B(t)R(t)−1B(t)′ + C(t)Σ(t)(I + S(t)Σ(t))−1C(t)′ − Z(t)−1Q(t)Z(t)−1,

Z(0)−1 = H−1.

Therefore, N(t)−1 = Z(t)−1 +Σ(t) is the solution of the ODE:


d

dt
{N(t)−1} = (A(t) + Σ(t)Q(t))N(t)−1 +N(t)−1(A(t) + Σ(t)Q(t))′

−N(t)−1Q(t)N(t)−1,

N(0)−1 = H−1 +Σ(0).
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Finally, by evaluating d
dt{N(t)N(t)−1} = 0, it is easy to show that the right-hand

side of (4.16) (and hence that of (4.15)) is a solution of (3.6).

Case 2: H ≥ 0. Let Z(·), Zi(·) (i ∈ Z
+) be the solutions of (3.5) corresponding

to H and Hi := H + (1/i)I > 0, respectively, where the Σ(·) in the coefficients of
(3.5) is the solution to (3.4). Let

Ni(t) =
1

2
[Zi(t)(I +Σ(t)Zi(t))

−1 + (I + Zi(t)Σ(t))
−1Zi(t)].(4.17)

It follows from Case 1 that Ni(·) is the unique solution of the Lyapunov equation

{
Ṅi(t) +Ni(t)(A(t) + Σ(t)Q(t)) + (A(t) + Σ(t)Q(t))′Ni(t)−Q(t) = 0,

Ni(0) =
1
2{Hi(I +Σ(0)Hi)

−1 + (I +HiΣ(0))
−1Hi}.

On the other hand, we know from the continuity of solutions of linear ODEs with
respect to initial conditions that Ni(·)→ N(·), where N(·) is the solution of the ODE
(3.6). Therefore, to prove that N(·) has the representation (4.15), we need only show
that Zi(·)→ Z(·) since this will imply that the right-hand side of (4.17) converges to
the right-hand side of (4.15). However, it follows from the fact that (3.5) is a special
case of (3.4) (see the proof of Corollary 4.6) and the convergence properties of (3.4)
(Proposition 4.7) that Zi(·)→ Z(·) as i ↑ ∞. This proves our result.

5. Proofs of Theorems 3.2 and 3.3. In this section we give proofs of the
main results of the paper, Theorems 3.2 and 3.3. The basic idea is first to find a
lower bound of the cost function (2.3) (see Lemma 5.1), and then to identify a control
which achieves exactly this lower bound (see Proposition 5.3).

To obtain a lower bound of (2.3), we use the completion-of-squares technique.
Consider (4.12)–(4.14) parameterized by M > 0. It has been shown in section
4 that these three equations have unique solutions PM (·) > 0,ΣM (·) > 0, and
(hM (·), ηM (·)) ∈ L2

F (Ω;C(0, T ; R
n)) × L2

F (0, T ; R
n), respectively, for every M > 0,

and ΣM (t) = PM (t)−1 for all t ∈ [0, T ].

Let (x(·), z(·)) be the solution of the BSDE (2.1) corresponding to a control
u(·) ∈ U . Applying Ito’s formula to (x(t) + hM (t))′PM (t)(x(t) + hM (t)), we obtain

d{(x+ hM )′PM (x+ hM )}
= {(x+ hM )′ (PMBR−1B′PM + PMC(S + PM )−1C ′PM −Q) (x+ hM )

+2(x+ hM )′ PM (ΣMQhM + C(ΣMS + I)−1ηM − CηM )

+(z + ηM )′PM (z + ηM ) + 2(z + ηM )′C ′PM (x+ hM ) + 2u′B′PM (x+ hM )} dt
+{· · · } dW.

Integrating both sides with respect to t and taking expectations, we arrive at

0 = (x(0) + hM (0))′PM (0)(x(0) + hM (0))

+E

∫ T

0

{(x+ hM )′(PMBR−1B′PM + PMC(S + PM )−1C ′PM −Q)(x+ hM )

+2(x+ hM )′ PM (ΣMQhM + C(ΣMS + I)−1ηM − CηM )

+(z + ηM )′PM (z + ηM ) + 2(z + ηM )′C ′PM (x+ hM ) + 2u′B′PM (x+ hM )} dt.(5.1)
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Adding (5.1) to the right-hand side of (2.3), we obtain (after some manipulation)

J(ξ;u(·)) = 1
2
[x(0) + (ΣM (0)H + I)

−1hM (0)]′[H + PM (0)][x(0) + (ΣM (0)H + I)
−1hM (0)]

+
1

2
hM (0)

′(HΣM (0) + I)
−1HhM (0) + E

∫ T

0

{h′MQhM + η′M (SΣM + I)−1SηM} dt

+E
1

2

∫ T

0

{[u+R−1B′PM (x+ hM )]
′R[u+R−1B′PM (x+ hM )]

+[z + (I +ΣMS)−1ηM +ΣM (I + SΣM )
−1C′PM (x+ hM )]

′

×(S + PM )[z + (I +ΣMS)−1ηM +ΣM (I + SΣM )
−1C′PM (x+ hM )]} dt.(5.2)

In deriving this expression, we have used the fact that ΣM (t) = PM (t)−1 together
with the following simple relations:

[H + PM (0)]−1PM (0) = [ΣM (0)H + I]−1,

PM (0)− PM (0)(H + PM (0))−1PM (0) = [HΣM (0) + I]−1H,

z + ηM + (I +ΣMS)−1ΣM (C ′PM (x+ hM )− SηM )

= z + (I +ΣMS)−1ηM +ΣM (I + SΣM )−1C ′PM (x+ hM ).

Since H + PM (0) > 0, R > 0, and S + PM > 0, it follows from (5.2) that

J(ξ;u(·)) ≥hM (0)′[HΣM (0) + I]−1HhM (0)

+ E

∫ T

0

{h′
MQhM + η′M (SΣM + I)−1SηM}dt

(5.3)

for any u(·) ∈ U . Note that the right-hand side of (5.3) depends on ΣM (·) and
(hM (·), ηM (·)) (but does not depend on PM (·)). Therefore, it is well defined even
when M = 0. Thus we have the following result.

Lemma 5.1. We have

J(ξ;u(·)) ≥h(0)′[HΣ(0) + I]−1Hh(0)

+ E

∫ T

0

{h′Qh+ η′(SΣ+ I)−1Sη}dt ∀u(·) ∈ U ,
(5.4)

where Σ(·) and (h(·), η(·)) are the solutions of (3.4) and (3.7), respectively.
Proof. Letting M → 0 in (5.3) and appealing to Proposition 4.7, we obtain the

result.

Lemma 5.1 provides a lower bound on the cost function (2.3). Now we are to find
a control that achieves this lower bound. To this end, recall the Hamiltonian system
(3.12)–(3.13).

Proposition 5.2. The Hamiltonian system (3.12)–(3.13) has a unique solution
(x(·), z(·), y(·)). Moreover, the following relations are satisfied:




x(t) = Σ(t)y(t)− h(t),

z(t) = −Σ(t)(S(t)Σ(t) + I)−1C(t)′y(t)− (Σ(t)S(t) + I)−1η(t),

x(0) = −(Σ(0)H + I)−1h(0),

(5.5)

where Σ(·) and (h(·), η(·)) are the solutions of (3.4) and (3.7), respectively.
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Proof. We begin by proving existence. Consider the following SDE:


dȳ(t) = [−(A(t) + Σ(t)Q(t))′ȳ(t) +Q(t)h(t)] dt

+[−(I + S(t)Σ(t))−1C(t)′ȳ(t) + S(t)(I +Σ(t)S(t))−1η(t)] dW (t),

ȳ(0) = H(Σ(0)H + I)−1h(0).

(5.6)

Since (5.6) is a linear SDE with bounded coefficients and square integrable nonhomo-
geneous terms, it follows that it has a unique solution ȳ(·). On the other hand, we
can define

x̄(t) := Σ(t)ȳ(t)− h(t).(5.7)

By applying Ito’s formula to (5.7), we obtain


dx̄(t) = [A(t)x̄(t)−B(t)R(t)−1B(t)′ȳ(t)

+C(t)(−(Σ(t)S(t) + I)−1η(t)− Σ(t)(I + S(t)Σ(t))−1C(t)′ȳ(t))] dt

+[−(Σ(t)S(t) + I)−1η(t)− Σ(t)(I + S(t)Σ(t))−1C(t)′ȳ(t)] dW (t),

x̄(0) = −(Σ(0)H + I)−1h(0).

(5.8)

Substituting

z̄(t) := −(Σ(t)S(t) + I)−1η(t)− Σ(t)(I + S(t)Σ(t))−1C(t)′ȳ(t)(5.9)

into (5.8) and noting (from (5.7)) that x̄(T ) = ξ, it follows that{
dx̄(t) = [A(t)x̄(t)−B(t)R(t)−1B(t)′ȳ(t) + C(t)z̄(t)] dt+ z̄(t) dW (t),

x̄(T ) = ξ.
(5.10)

On the other hand, it follows from (5.9) that

−C(t)′ȳ(t)− S(t)z̄(t)

= S(t)(Σ(t)S(t) + I)−1η(t)

+[S(t)Σ(t)− (S(t)Σ(t) + I)](S(t)Σ(t) + I)−1C(t)′ȳ(t)
= S(t)(Σ(t)S(t) + I)−1η(t)− (S(t)Σ(t) + I)−1C(t)′ȳ(t).(5.11)

Finally, substituting (5.7) and (5.11) into (5.6) and noting (from (5.8)) the initial
value of x̄(0), it follows that ȳ(t) is a solution of the differential equation{

dȳ(t) = {−A(t)′ȳ(t)−Q(t)x̄(t)}dt+ {−C(t)′ȳ(t)− S(t)z̄(t)}dW (t),

ȳ(0) = −Hx̄(0).
(5.12)

That is, (x̄(·), z̄(·), ȳ(·)) is a solution of the system of equations (5.10), (5.12) and
hence a solution of the Hamiltonian system (3.12)–(3.13). In addition, by virtue of
(5.7), (5.8), and (5.9), the relations (5.5) are satisfied.

To prove uniqueness, suppose that (x1(·), z1(·), y1(·)) and (x2(·), z2(·), y2(·)) are
solutions of (3.12)–(3.13). It follows that (x(·), z(·), y(·)) := (x1(·) − x2(·), z1(·) −
z2(·), y1(·)− y2(·)) is a solution of the Hamiltonian system{

dx(t) = {A(t)x(t)−B(t)R(t)−1B(t)′y(t) + C(t)z(t)}dt+ z(t)dW (t),

x(T ) = 0,
(5.13)

{
dy(t) = {−A(t)′y(t)−Q(t)x(t)}dt+ {−C(t)′y(t)− S(t)z(t)}dW (t),

y(0) = −Hx(0).
(5.14)
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By Ito’s formula, we have

d{x(t)′y(t)} = { − x(t)′Q(t)x(t)− y(t)′B(t)R(t)−1B(t)′y(t)− z(t)′S(t)z(t)}dt
+ {· · · }dW (t).

Integrating both sides from 0 to T and taking expectations, we obtain

x(0)′Hx(0) = −E
∫ T

0

(x(t)′Q(t)x(t) + y(t)′B(t)R(t)−1B(t)′y(t) + z(t)′S(t)z(t))dt.

Since H, Q(·), R(·), and S(·) are all positive semidefinite (see (A1)), it follows that

E

∫ T

0

(x(t)′Q(t)x(t) + y(t)′B(t)R(t)−1B(t)′y(t) + z(t)′S(t)z(t))dt = 0.

Finally, since R(·) > 0, it follows that

B(t)′y(t) = 0, a.e. t ∈ [0, T ], P -a.s..

Substituting this into (5.13), it follows that (x(·), z(·)) is the solution of the linear
BSDE: {

dx(t) = {A(t)x(t) + C(t)z(t)}dt+ z(t)dW (t),

x(T ) = 0,

and the uniqueness of solutions for linear BSDEs implies that (x(·), z(·)) ≡ 0. Sub-
stituting (x(·), z(·)) ≡ 0 into (5.14), it follows that y(·) is a solution of linear SDE{

dy(t) = −A(t)′y(t)dt− C(t)′y(t)dW (t),

y(0) = −Hx(0).

Hence it follows from the uniqueness again that y(·) ≡ 0. This proves our
result.

Remark 5.1.We have shown, in fact, that (x(·), z(·), y(·)) is the solution of the
Hamiltonian system (3.12)–(3.13) if and only if y(·) is the solution of (5.6), x(·) is the
solution of (5.8), and z(·) satisfies (5.9). This means that we may use the Hamiltonian
system (3.12)–(3.13) or (5.6), (5.8), and (5.9) interchangeably to describe the processes
y(·), x(·), and z(·). This is an important observation which simplifies much of our
subsequent analysis.

Proposition 5.3. Let (x(·), z(·), y(·)) be the solution of the Hamiltonian system
(3.12)–(3.13), and let u(·) be given by

u(t) = −R(t)−1B(t)′y(t).(5.15)

Then (x(·), z(·)) is the solution of the BSDE (2.1) corresponding to (5.15) and

J(ξ;u(·)) =h(0)′[HΣ(0) + I]−1Hh(0)

+ E

∫ T

0

{h′Qh+ η′(SΣ+ I)−1Sη} dt
(5.16)

is the associated cost.
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Proof. Let (x(·), z(·), y(·)) be the solution of the Hamiltonian system (3.12)–
(3.13), and let u(·) be given by (5.15). It follows from Remark 5.1 that y(·) is also the
unique solution of the SDE (5.6). Regarding y(·) in this way, it follows that (x(·), z(·))
(as determined from (3.12)–(3.13)) is also the solution of BSDE (2.1) when u(·) is given
by (5.15).

To determine the cost associated with the control (5.15), we shall use the fact
that y(·) is also the unique solution of the linear SDE (5.6). By Ito’s formula, it can
be shown that

d{y′ Σ y} = {−y′[ΣQΣ+BR−1B′ + C(ΣS + I)−1ΣSΣ(SΣ+ I)−1C ′]y
−2η′(SΣ+ I)−1SΣ(SΣ+ I)−1C ′y + 2y′ΣQh

+η′(SΣ+ I)−1SΣS(ΣS + I)−1η} dt+ {· · · } dW.

Therefore,

E

∫ T

0

{y′[ΣQΣ+BR−1B′ + C(ΣS + I)−1ΣSΣ(SΣ+ I)−1C ′] y

+2η′(SΣ+ I)−1SΣ(SΣ+ I)−1C ′y − 2y′ΣQh} dt
= h(0)′(I +HΣ(0))−1HΣ(0)H(I +Σ(0)H)−1h(0)

+E

∫ T

0

η′(SΣ+ I)−1SΣS(ΣS + I)−1η dt.(5.17)

On the other hand, the cost associated with the control (5.15) can be obtained by
substituting (5.5) and (5.15) into (2.3). By doing this, we obtain

J(ξ;u(·)) = h(0)′(I +HΣ(0))−1H(I +Σ(0)H)−1h(0)

+E

∫ T

0

{η′(I + SΣ)−1S(I +ΣS)−1η + h′Qh

+y′[ΣQΣ+BR−1B′ + C(ΣS + I)−1ΣSΣ(SΣ+ I)−1C ′] y
+2η′(SΣ+ I)−1SΣ(SΣ+ I)−1C ′y − 2y′ΣQh} dt.

Hence it follows from (5.17) that

J(ξ;u(·)) = h(0)′(I +HΣ(0))−1(H +HΣ(0)H)(I +Σ(0)H)−1h(0)

+E

∫ T

0

{h′Qh+ η′(SΣ+ I)−1(S + SΣS)(I +ΣS)−1η} dt

= h(0)′[HΣ(0) + I]−1Hh(0) + E

∫ T

0

{h′Qh+ η′(SΣ+ I)−1Sη} dt,

which is precisely the expression (5.16).

Proof of Theorem 3.3. The unique solvability of the Hamiltonian system (3.12)–
(3.13) has been proved in Proposition 5.2. The optimality of (5.15) follows from the
fact that the cost (5.16) associated with the control (5.15) is equal to a lower bound
to the optimal cost; see Lemma 5.1. The expression (3.11) for the optimal cost can
be obtained by applying Ito’s formula to h(t)′N(t)h(t). By doing this, we obtain the
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relation

h(0)′H(I +Σ(0)H)−1h(0) + E

∫ T

0

{h′Qh+ η′(SΣ+ I)−1Sη} dt

= Eξ′N(T )ξ + E

∫ T

0

{η(t)′[(S(t)Σ(t) + I)−1S(t)−N(t)]η(t)

−2η(t)′(I + S(t)Σ(t))−1C(t)′N(t)h(t)} dt.(5.18)

This yields the optimal cost (3.11). Finally, we are able to conclude that the control
(5.15) is unique because the BLQ problem (2.4) is a (strictly) convex optimization
problem. The set of admissible triples (x(·), z(·), u(·)) associated with (2.1) is a
convex set, and the cost (2.3) is a strictly convex function on this set.

Now we proceed to prove Theorem 3.2. First we have the following lemma.
Lemma 5.4. Let (x(·), z(·), y(·)) be the solution of the Hamiltonian system

(3.12)–(3.13), and let q(·) be the solution of the SDE (3.8). Then

y(t) = −Z(t)x(t)− q(t).(5.19)

Proof. Let (x(·), z(·), y(·)) denote the solution of the Hamiltonian system (3.12)–
(3.13). We have already shown that x(·) = x̄(·), where x̄(·) is the solution of the SDE
(5.8); see also Remark 5.1. Therefore, we can prove (5.19) by showing that

y(t) = −Z(t)x̄(t)− q(t).(5.20)

Let y(·), x̄(·), and Z(·) be solutions of (5.6), (5.8), and (3.5), respectively. Also, let
us assume for the time being that q(·) is the unique solution of the SDE




dq(t) = {−[A(t) +B(t)R(t)−1B(t)′Z(t)

+ C(t)(I +Σ(t)S(t))−1Σ(t)C(t)′Z(t)]′ q(t)

+ Z(t)C(t)(I +Σ(t)S(t))−1η(t)}dt+ {(Z(t)− S(t))(I +Σ(t)S(t))−1η(t)

+ (I + Z(t)Σ(t))(I + S(t)Σ(t))−1C(t)′y(t)} dW (t),

q(0) = 0.

(5.21)

(Note that (3.8) and (5.21) differ only in their diffusion terms. It will be shown later
that (3.8) and (5.21) have the same solution. In the meantime, however, it will be
easier to work with (5.21)). Finally, by virtue of (5.5), y(·) is also the unique solution
of the SDE


dy(t) = {−A(t)′y(t)−Q(t)x̄(t)} dt

+{S(t)(I +Σ(t)S(t))−1η(t)− (I + S(t)Σ(t))−1C(t)′y(t)} dW (t),

y(0) = H(Σ(0)H + I)−1h(0).

(5.22)

With q(·) denoting the solution of (5.21), it is easy to show (using Ito’s formula) that




d{y(t) + Z(t)x̄(t) + q(t)}
= [A(t) +B(t)R(t)−1B(t)′Z(t) + C(t)(I +Σ(t)S(t))−1Σ(t)C(t)′Z(t)]′

×(y(t) + Z(t)x̄(t) + q(t)) dt,

y(0) + Z(0)x̄(0) + q(0) = 0.

(5.23)
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Hence it follows from the uniqueness of solutions of linear SDEs that

y(t) + Z(t)x(t) + q(t) = y(t) + Z(t)x̄(t) + q(t) = 0 ∀ t ∈ [0, T ], P -a.s.,(5.24)

where q(·) is the solution of (5.21). Finally, substituting (5.7) into (5.24), it is easy
to show that

y(t) = (I + Z(t)Σ(t))−1(Z(t)h(t)− q(t)).(5.25)

Substituting (5.25) into (5.21), it follows that q(·) is the unique solution of both (5.21)
and (3.8).

Proof of Theorem 3.2. It follows immediately from Proposition 5.3 and Lemma
5.4.

Finally, it is important to recognize that the expressions for the optimal control,
as presented in Theorems 3.3 and 3.2, are equivalent expressions of the same process;
that is, this does not contradict the uniqueness of optimal controls for (2.4).

6. Origin of idea: Forward formulation. In section 5, we obtained the so-
lution of the BLQ problem (2.4) by showing that the control (3.14) or (3.9) achieves
a lower bound to the cost function. In showing this result, (3.4)–(3.8), especially
the Riccati equations (3.4) and (3.5), play a crucial role. In other words, once these
equations are in place, then the whole derivation, albeit quite tedious, is essentially
in the same spirit as the completion-of-squares technique commonly used in tackling
forward LQ problems. However, the reader may be puzzled about how these (rather
complicated) equations were obtained in the first place. This section serves to unfold
the origin of those equations by presenting an alternative and intuitively appealing
approach to the BLQ problem (2.4). The idea is basically inspired by [15, 12], where
an (uncontrolled) BSDE is regarded as a controlled forward SDE. Here we go one step
further to show that the BLQ problem can also be viewed as a (constrained) forward
LQ problem, and that the solution (5.15) of the BLQ problem and the relationships
(5.5) coincide with the limiting solution of a sequence of unconstrained forward LQ
problems. In this process, the Riccati equations (3.4) and (3.5), along with other
related equations, come out very naturally. It should be noted that our aim in this
section is to highlight the origin of (3.4)–(3.8) as well as (5.5), and hence the material
in this section will be presented in an informal way. For this reason, certain conver-
gence results required in this derivation, for example, are taken for granted, although
they can be verified rigorously using standard techniques from stochastic analysis,
the details of which are left to the interested reader. (As a matter of fact, the first
version of this paper was written rigorously using the forward formulation, but then
we went for the current version finding that the presentation would be much simpler
once all the necessary equations were identified.) Finally, for the sake of notational
convenience, we shall assume throughout this section that S = 0. The extension to
the case S ≥ 0 can be obtained in a similar way.

Forward LQ problem.
Consider the following SDE:{

dx(t) = {A(t)x(t) +B(t)u(t) + C(t)v(t)}dt+ v(t) dW (t),

x(0) = x0.
(6.1)

We assume throughout that x0 ∈ R
n and (u(·), v(·)) ∈ Ū , where

Ū = L2
F (0, T ; R

m)× L2
F (0, T ; R

n).
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For every i ∈ Z
+ let

J(x0, u(·), v(·); i)

:= E
1

2
{x0′Hx0 +

∫ T

0

(x(t)′Q(t)x(t) + u(t)′R(t)u(t)) dt+ i |x(T )− ξ|2}.(6.2)

The family of LQ problems, parameterized by i, is defined by


minx0, (u(·), v(·)) J(x0, u(·), v(·); i)
subject to

(u(·), v(·)) ∈ Ū , x0 ∈ R
n,

(x0, x(·), u(·), v(·)) satisfies (6.1).
(6.3)

Comparing (6.3) with the BLQ problem (2.4), it is clear that the control v(·) replaces
the process z(·) in the BSDE, while the terminal condition x(T ) = ξ in (2.4) is
replaced by a penalty term in the cost of the forward problem (6.3). One fundamental
difference between (2.4) and (6.3) should be recognized. In the BLQ problem (2.4),
the initial condition x(0) and the process z(·) are part of the state process (x(·), z(·));
that is, once u(·) has been chosen, the pair (x(·), z(·)) (and hence x(0)) is uniquely
determined. On the other hand, the pair (u(·), v(·)) and the initial condition x(0) are
decision variables in the forward problem (6.3). This additional degree of freedom is
possible because the forward problem (6.3) does not involve a terminal condition on
the state x(·). We shall show that the optimal solution of the BLQ problem (2.4), as
stated in Theorems 3.3 and 3.2, can be obtained by solving the forward problem (6.3)
and letting i ↑ ∞.

Completion of squares. The solution of the forward problem (6.3) can be obtained
by using a completion-of-squares approach via the Riccati equation studied in [5]. In
particular, let Pi(·) and (hi(·), ηi(·)) be the unique solutions of the following equations:


Ṗi(t) + Pi(t)A(t) +A(t)′Pi(t)

−Pi(t)[B(t)R(t)−1B(t)′ + C(t)Pi(t)
−1C(t)′]Pi(t) +Q(t) = 0,

Pi(T ) = i I,

(6.4)

{
dhi(t) = {(A(t) + Pi(t)

−1Q(t))hi(t) + C(t) ηi(t)} dt+ ηi(t) dW (t),

hi(T ) = −ξ.
(6.5)

Note that (6.5) is introduced to cope with the linear term E{ iξx(T )} in the terminal
cost part of (6.2). Evaluating Σi(t) := Pi(t)

−1, it turns out that Σi(·) is a solution of
the Riccati equation


Σ̇i(t) = A(t)Σi(t) + Σi(t)A(t)

′ − C(t)Σi(t)C(t)′

+Σi(t)Q(t)Σi(t)−B(t)R(t)−1B(t)′,

Σi(T ) =
1
i I.

(6.6)

(The above explains the origin of the key equations (4.1), (4.2), and (4.14).) Applying
Ito’s formula to (x(t) + hi(t))

′Pi(t)(x(t) + hi(t)), it can be shown that

0 = (x(0) + hi(0))
′Pi(0)(x(0) + hi(0))

+E

∫ T

0

{(x+ hi)
′(PiBR−1B′Pi + PiCP−1

i C ′Pi +Q)(x+ hi) + 2(x+ hi)
′ΣiQhi

+(z + ηi)
′Pi(z + ηi) + 2(z + ηi)

′C ′Pi(x+ hi) + 2u′B′Pi(x+ hi)} dt.
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Adding this to the right-hand side of the cost (6.2), we obtain (after some manipula-
tion) that

J(x0, u(·), v(·); i) = 1

2
hi(0)

′(HΣi(0) + I)−1Hhi(0) + E
1

2

∫ T

0

hi(t)
′Q(t)hi(t) dt

+
1

2
[x0 + (I +Σi(0)H)−1hi(0)]

′[H + Pi(0)][x
0 + (I +Σi(0)H)−1hi(0)]

+E
1

2

∫ T

0

[(u+R−1B′Pi(x+ hi))
′R(u+R−1B′Pi(x+ hi))

+(v +ΣiC
′Pi(x+ hi) + ηi)

′Pi(v +ΣiC
′Pi(x+ hi) + ηi)] dt.(6.7)

It is interesting to observe that the expression (6.7) for the cost of the forward LQ
problem is similar to the expression (5.2) for the backwards LQ cost. Nevertheless,
they are fundamentally different in that (u(·), v(·)) and x(0) are free to be chosen in
(6.7), while x(0) and z(·) are uniquely determined in (5.2) once u(·) has been chosen.
Clearly, the optimal cost for the forward LQ problem (6.3) is

J∗
i (ξ) =

1

2
hi(0)

′(HΣi(0) + I)−1Hhi(0) + E
1

2

∫ T

0

hi(t)
′Q(t)hi(t) dt,(6.8)

which is obtained when


ui(t) = −R(t)−1B(t)′Pi(t)(xi(t) + hi(t)),
vi(t) = −Σi(t)C(t)′Pi(t)(xi(t) + hi(t))− ηi(t),
x0
i = −(I +Σi(0)H)−1hi(0),

(6.9)

where xi(·) ∈ L2
F (Ω; C(0, T ; R

n)), the optimal state trajectory, is the unique solution
of the SDE



dxi(t) = {A(t)xi(t)−B(t)R(t)−1B(t)′Pi(t)(xi(t) + hi(t))

−C(t)Pi(t)
−1C(t)′Pi(t)(xi(t) + hi(t))− C(t)ηi(t)} dt

−{Pi(t)−1C(t)′Pi(t)(xi(t) + hi(t)) + ηi(t)} dW (t),

xi(0) = x0
i .

(6.10)

Limiting solution: i ↑ ∞. Let yi(·) be defined by the relation

yi(t) := Pi(t)(xi(t) + hi(t)).(6.11)

It follows that

xi(t) = Σi(t)yi(t)− hi(t),(6.12)

where xi(·) is the solution of (6.10). It is easy to show that


dxi(t) = {A(t)xi(t)−B(t)R(t)−1B(t)′yi(t)

+ C(t)(−Σi(t)C(t)′yi(t)− ηi(t))} dt
+{−Σi(t)C(t)′yi(t)− ηi(t)} dW (t),

xi(0) = x0
i

(6.13)




dyi(t) = {−(A(t) + Σi(t)Q(t))′yi(t) +Q(t)hi(t)} dt
− C(t)′yi(t) dW (t),

yi(0) = H(Σi(0)H + I)−1hi(0).

(6.14)
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Substituting (6.11) into (6.6), (6.8)–(6.10) and letting i ↑ ∞, we obtain


u(t) = −R(t)−1B(t)′y(t),

x(t) = Σ(t)y(t)− h(t),

v(t) = −Σ(t)C(t)′y(t)− η(t),

x0 = −(I +Σ(0)H)−1h(0)

(6.15)

and

J∗(ξ) =
1

2
h(0)′(HΣ(0) + I)−1Hh(0) + E

1

2

∫ T

0

h(t)′Q(t)h(t) dt

= E
1

2

{
ξ′N(T )ξ −

∫ T

0

(η′Nη + 2h′NCη) dt

}
,(6.16)

where


Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)′ − C(t)Σ(t)C(t)′

+Σ(t)Q(t)Σ(t)−B(t)R(t)−1B(t)′,

Σ(T ) = 0,

(6.17)

{
Ṅ(t) +N(t)(A(t) + Σ(t)Q(t)) + (A(t) + Σ(t)Q(t))′N(t)−Q(t) = 0,

N(0) = 1
2{H(I +Σ(0)H)−1 + (I +HΣ(0))−1H},(6.18)

{
dh(t) = {(A(t) + Σ(t)Q(t))h(t) + C(t) η(t)} dt+ η(t) dW (t),

h(T ) = −ξ,(6.19)




dx(t) = {A(t)x(t)−B(t)R(t)−1B(t)′y(t)

+ C(t)(−Σ(t)C(t)′y(t)− η(t))} dt
+{−Σ(t)C(t)′y(t)− η(t)} dW (t),

x(0) = x0,

(6.20)

{
dy(t) = {−(A(t) + Σ(t)Q(t))′y(t) +Q(t)h(t)} dt− C(t)′y(t) dW (t),

y(0) = H(Σ(0)H + I)−1h(0),
(6.21)

the second equality in (6.16) being obtained by using the identity (5.18). The Hamil-
tonian system (3.12)–(3.13) is obtained by substituting (6.15) into (6.20)–(6.21), to-
gether with the observation that

x(T ) = Σ(T )y(T )− h(T ) = ξ.

The optimal control (3.14), the optimal cost (3.11), and the relations (5.5) are recov-
ered in (6.15)–(6.16). Hence the solution of the optimal BLQ control problem (2.4)
as outlined in Theorem 3.3 coincides with the limiting solution of a family (6.3) of
forward LQ problems. Theorem 3.2 can be recovered simply by applying the trans-
formation as outlined in Lemma 5.4.

On the other hand, it is not surprising that the forward approach recovers the
solution of the BLQ problem. In particular, it is clear that if

J(x0, u(·), v(·)) = E
1

2

{
x0′Hx0 +

∫ T

0

(x(t)′Q(t)x(t) + u(t)′R(t)u(t)) dt

}
,(6.22)
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then the problem


J∗ := minx0, (u(·), v(·)) J(x0, u(·), v(·))
subject to

E 1
2 |x(T )− ξ|2 = 0,

(u(·), v(·)) ∈ Ū , x0 ∈ R
n,

(x0, x(·), u(·), v(·)) is admissible for (6.1)

(6.23)

is equivalent to the BLQ problem (2.4). Moreover, the solution of (6.23) can be
obtained by using a penalty function approach which coincides precisely with the
unconstrained problem (6.3). This provides an alternative approach to (2.4), which,
as mentioned, was our original idea for solving the BLQ problem. The details are left
to the interested readers.

7. Conclusion. In this paper, the optimal control for the BLQ control problem
is derived explicitly in terms of a pair of Riccati equations, a forward SDE, and a
BSDE. Moreover, this optimal control coincides with the solution of a constrained
forward LQ problem and is the limiting solution of a family of unconstrained forward
LQ problems. A key part of our derivation is a proof of the existence and uniqueness
of solutions of the Riccati equations. Although of independent interest, this proof of
global solvability has direct relevance to the BLQ problem since the Riccati equations
play a central role in the analysis.

An outstanding open problem to study is the BLQ problem where all the coef-
ficients are random. In this case, the Riccati equations (3.4) and (3.5) both become
(nonlinear) BSDEs (rather than ODEs as in this paper), the solvability of which is
very challenging to prove.

Acknowledgments. The authors would like to thank the two anonymous ref-
erees for their careful reading and constructive comments that led to an improved
version of the paper.
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Abstract. In this paper the flatness [M. Fliess, J. Lévine, P. Martin, and P. Rouchon, Internat.
J. Control, 61 (1995), pp. 1327–1361, M. Fliess, J. Lévine, P. Martin, and P. Rouchon, IEEE Trans.
Automat. Control, 44 (1999), pp. 922–937] of heavy chain systems, i.e., trolleys carrying a fixed length
heavy chain that may carry a load, is addressed in the partial derivatives equations framework. We
parameterize the system trajectories by the trajectories of its free end and solve the motion planning
problem, namely, steering from one state to another state. When considered as a finite set of
small pendulums, these systems were shown to be flat [R. M. Murray, in Proceedings of the IFAC
World Congress, San Francisco, CA, 1996, pp. 395–400]. Our study is an extension to the infinite
dimensional case.

Under small angle approximations, these heavy chain systems are described by a one-dimensional
(1D) partial differential wave equation. Dealing with this infinite dimensional description, we show
how to get the explicit parameterization of the chain trajectory using (distributed and punctual)
advances and delays of its free end.

This parameterization results from symbolic computations. Replacing the time derivative by
the Laplace variable s yields a second order differential equation in the spatial variable where s is a
parameter. Its fundamental solution is, for each point considered along the chain, an entire function
of s of exponential type. Moreover, for each, we show that, thanks to the Liouville transformation,
this solution satisfies, modulo explicitly computable exponentials of s, the assumptions of the Paley–
Wiener theorem. This solution is, in fact, the transfer function from the flat output (the position of
the free end of the system) to the whole state of the system. Using an inverse Laplace transform, we
end up with an explicit motion planning formula involving both distributed and punctual advances
and delays operators.

Key words. wave equation, delay systems, flatness, motion planning

AMS subject classification. 99C20

PII. S0363012900368636

Introduction. The notion of flatness [3, 4] has proven to be relevant in many
problems where motion planning problems have been solved [10, 5]. The existence
of a flat output is the key to explicit formulas that can be implemented as open-
loop controllers. Many systems of engineering interest are flat. So far the dynamics
under consideration have been nonlinear ordinary differential equations, constant of
varying delay equations, or even partial differential equations. In these cases the open-
loop controller expression involved algebraic computations, punctual advances and
delays [11, 6, 12], distributed advance and delay operators [12, 5, 14, 16], composition
of functions [15], etc. In this paper we use both distributed and punctual advances
and delays operators.

The heavy chain systems under consideration in this paper are defined by a trolley
carrying a fixed length heavy chain to which a load may be attached. The dynamics
are studied in a fixed vertical plane. When approximated as a finite set of small
pendulums, such heavy chain systems were shown to be flat (see [13]). Their trajec-
tories can be explicitly parameterized by the trajectories of their free ends. These
parameterizations involve numerous derivatives (twice as many as the number of pen-
dulums). When this number goes to infinity, the derivative order goes to infinity as

∗Received by the editors February 24, 2000; accepted for publication (in revised form) February
26, 2001; published electronically July 19, 2001.

http://www.siam.org/journals/sicon/40-2/36863.html
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well, yielding series expansions. This makes these relations difficult to handle and to
use in practice.

In order to overcome these difficulties, we consider infinite dimensional descrip-
tions of heavy chain systems. Around the stable vertical steady-state and under the
small angle assumption, the dynamics are described by second order ordinary differ-
ential equations (dynamics of the load at position y(t)) coupled with one-dimensional
(1D) wave equations (dynamics of the chain X(x, t)), where wave speed depends on x,
the spatial variable along the chain length.

This combined ordinary and partial differential equation description turns out to
be a significant shortcut to an explicit motion planning formula. Instead of an infinite
number of derivatives, the explicit parameterization of the trajectories involves a small
number of both distributed and punctual advances and delays. The controllability
of such hybrid systems could be analyzed via Hilbert’s uniqueness method [8, 9], as
done in [7]. The work presented here is also a constructive proof of the controllability
of these systems in the sense that it provides the open-loop control for steering the
system from any given state to any other state. In a real application it should be used
as a feedforward term complemented by a closed-loop controller using the energy
method as proposed in [2].

In the case of a single homogeneous heavy chain as depicted in Figure 1.1 (see
section 1 for details), our explicit parameterization shows that the general solution of

∂

∂x

(
gx

∂X

∂x

)
− ∂2X

∂t2
= 0

is given by the integral

X(x, t) =
1

2π

∫ π

−π
y(t+ 2

√
x/g sin θ) dθ,(0.1)

where t �→ y(t) is any smooth-enough time function: X(0, t) = y(t) corresponds then
to the free end position; the control u(t) = X(L, t) is the trolley position.

For the general cases, we show here that relationships similar to (0.1) exist. They
are expressed by (2.2) and (3.2). The structure is similar, but the moving averages
involve weights (i.e., kernels) depending on the mass distribution. More precisely,
given any mass distribution along the chain and any punctual mass at x = 0, we
prove that there is a one-to-one correspondence between the trajectory of the load t �→
y(t) = X(0, t) and the trajectory of the whole system (namely, the cable and the
trolley): t �→ X(x, t) and t �→ u(t) = X(L, t). This correspondence yields the explicit
parameterization of the trajectories: X(x, ·) = Axy, where {Ax} is a set of operators
including time derivations, advances, and delays. In other words, (x, t) �→ (Axy)(t)
verifies the system equations for any smooth function t �→ y(t). For each x, the
operator Ax admits compact support. Thus it is possible to steer the system from
any initial point to any other point in finite time.

This parameterization results from symbolic computations. Replacing the time
derivative by the Laplace variable s yields a second order differential equation in x
with s as a parameter. For each x, its fundamental solution Ax is an entire function of
s of exponential type. Furthermore, for each x we show, thanks to the Liouville trans-
formation, that s �→ Ax(s) satisfies the assumptions of the Paley–Wiener theorem,
modulo explicitly computable exponentials of s.

The paper is organized as follows.
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x=0

x=L

X(x,t)

u(t)=X(L,t)

0

Fig. 1.1. The homogeneous chain without any load.

1. In section 1 we consider the case of a homogeneous chain without any load.
Although it is the easiest case by far, it is explanatory, and it helps in under-
standing the meaning and control interest of our results.

2. In section 2 we address the case of an inhomogeneous chain without any
load. The problem of the singularity at x = 0 of the second order differential
equation receives special treatment. We prove the flatness of this system by
Theorem 1.

3. In section 3 we solve the general problem of an inhomogeneous chain carry-
ing a punctual load. By contrast with the previous case, the corresponding
second order differential is not singular. Flatness of this system is proven by
Theorem 2.

1. The homogeneous chain without any load. The computations are simple
and explicit and summarize the goal of this paper.

Consider a heavy chain in stable position as depicted in Figure 1.1. Under the
small angle approximation it is ruled by the dynamics1


∂

∂x

(
gx

∂X

∂x

)
− ∂2X

∂t2
= 0,

X(L, t) = u(t),

(1.1)

where x ∈ [0, L], t ∈ R, X(x, t)−X(L, t) is the deviation profile, g is the gravitational
acceleration, and the control u is the trolley position.

Thanks to the classical mapping y = 2
√

x
g , we get

y
∂2X

∂y2
(y, t) +

∂X

∂y
(y, t)− y

∂2X

∂t2
(y, t) = 0.

1This model was used in the historical work of D. Bernoulli on a heavy chain system where the
zero-order Bessel functions appear for the first time; see [18, pp. 3–4].
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Use Laplace transform of X with respect to the variable t (denoted by X̂ and with
zero initial conditions, i.e., X(., 0) = 0 and ∂X

∂t (., 0) = 0) to get

y
∂2X̂

∂y2
(y, s) +

∂X̂

∂y
(y, s)− ys2X̂(y, s) = 0.

Less classically, the mapping z = ısy gives

z
∂2X̂

∂z2
(z, s) +

∂X̂

∂z
(z, s) + zX̂(z, s) = 0.(1.2)

This is a Bessel equation. Its solution writes in terms of J0 and Y0 the zero-order

Bessel functions. Using the inverse mapping z = 2ıs
√

x
g , we get

X̂(x, s) = A J0(2ıs
√

x/g) +B Y0(2ıs
√

x/g).

Since we are looking for a bounded solution at x = 0, we have B = 0. Then

X̂(x, s) = J0(2ıs
√

x/g)X̂(0, s),(1.3)

where we can recognize the Clifford function C′ (see [1, p. 358]). Using Poisson’s
integral representation of J0 [1, formula 9.1.18],

J0(z) =
1

2π

∫ π

−π
exp(ız sin θ) dθ,

we have

J0(2ıs
√

x/g) =
1

2π

∫ π

−π
exp(2s

√
x/g sin θ) dθ.

In terms of Laplace transforms, this last expression is a combination of delay operators.
Turning (1.3) back into the time-domain, we get

X(x, t) =
1

2π

∫ π

−π
y(t+ 2

√
x/g sin θ) dθ(1.4)

with y(t) = X(0, t).
Relation (1.4) means that there is a one-to-one correspondence between the

(smooth) solutions of (1.1) and the (smooth) functions t �→ y(t). For each solu-
tion of (1.1), set y(t) = X(0, t). For each function t �→ y(t), set X by (1.4) and u
as

u(t) =
1

2π

∫ π

−π
y(t+ 2

√
L/g sin θ) dθ(1.5)

to obtain a solution of (1.1).
Finding t �→ u(t), steering the system from the steady-state X ≡ 0 at t = 0 to

the other one X ≡ D at t = T becomes obvious. Our analysis shows that T must be
larger than 2∆, where ∆ = 2

√
L/g is the travelling time of a wave between x = L

and x = 0. It consists only in finding t �→ y(t) that is equal to 0 for t ≤ ∆ and to D
for t > T −∆ and in computing u via (1.5).
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Fig. 1.2. Steering from 0 to 3L/2 in finite time T = 4∆. Regularly time-spaced positions of the
heavy chain system are represented. The Matlab simulation code can be obtained from the second
author via email.

0
0

yu

Fig. 1.3. The steering control, trolley position u, and the “flat output,” the free end y.

Figure 1.2 illustrates computations based on (1.4) with

y(t) =



0 if t < ∆,

3L
2

(
t−∆
T−2∆

)2 (
3− 2

(
t−∆
T−2∆

))
if ∆ ≤ t ≤ T −∆,

3L
2 if t > T −∆,

where the chosen transfer time T equals 4∆. For t ≤ 0 the chain is vertical at position
0. For t ≥ T the chain is vertical at position D = 3L/2.

Plots of Figure 1.3 show the control [0, T ]  t �→ u(t) required for such motion.
Notice that the support of u̇ is [0, T ], while the support of ẏ is [∆, T − ∆]. To be
consistent with the small angle approximation, the horizontal acceleration of the end
point ÿ must be much smaller than g. In our computations the maximum of |ÿ| is
chosen rather large, 9g/16. This is just for tutorial reasons. In practice, a reasonable
transition time is T = 5∆ yielding |ÿ| ≤ g/4.

2. The inhomogeneous (i.e., variable section) chain without any load.
Formula (1.4) can be extended to a heavy chain with variable section and carrying
no load (see Figure 2.1). Such an extension deserves special consideration because of
the singularity of the partial differential system at x = 0.
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Such a system is governed by the equations


∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0,

X(L, t) = u(t),

(2.1)

where x ∈ [0, L], t ∈ R, and u is the control. The tension of the chain is τ(x) with
τ(0) = 0 and τ(x) = gx+O(x2), while τ ′(x)/g > 0 is the mass distribution along the
chain. Furthermore, we assume that there exists a > 0 such that τ(x) ≥ ax ≥ 0.

Theorem 1. Consider (2.1) with [O,L]  x �→ τ(x) a smooth increasing function
with τ(0) = 0 and τ ′ > 0. There is a one-to-one correspondence between the solutions
[0, L]×R  (x, t) �→ (X(x, t), u(t)) that are C3 in t and the C3 functions R  t �→ y(t)
via the formulas

X(x, t) =
L1/4√g

2π3/2(τ(x)τ ′(x))1/4

√
G(2

√
τ(x)/g)

∫ π

−π
y
(
t+KG(2

√
τ(x)/g) sin θ

)
dθ

+
1

(τ(x)τ ′(x)/g)1/4

∫ 2
√

τ(x)
ag

−2
√

τ(x)
ag

K(G(2
√

τ(x)/g), ξ) ẏ (t+ ξ) dξ,

u(t) =X(L, t)

(2.2)

with

y(t) = X(0, t),

where the constant K and the functions G and K are defined by the function τ via
formulas (2.15) and (2.29).

The proof of this result is organized as follows.

1. A simple time-scaling simplifies the system. We shift from X to Y.
2. Symbolic computations where time derivatives are replaced by the Laplace

variable s are performed.
3. The solution Y (x, s) is factorized as Y (x, s) = Y (0, s)A(x, s). A partial dif-

ferential system is derived for A(x, s).
4. A Liouville transformation is performed.
5. In these new coordinates the preceding transformed equation is compared to

an equation that we have already solved in section 1, namely, the equation
of a single homogeneous chain. We denote by D(x, s) the difference between
these two solutions.

6. D(x, s) is proven to be an entire function of s and of exponential type.
7. A careful study of the Volterra equation satisfied by D(x, s) shows that, for

each x, the restriction to D(x, s)/s to the imaginary axis is in L2.
8. Thanks to the Paley–Wiener theorem, we prove that, for each x,D(x, s)/s can

be represented as a compact sum (discrete and continuous) of exponentials
in s.

9. Gathering all the terms of A(x, s), we get an expression involving the Bessel
function J0 (the solution for a homogeneous chain) and exponentials in s
multiplied by s. This gives (2.2).
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X(x,t)

x=L

x=0

u(t)=X(L,t)

Fig. 2.1. The inhomogeneous chain without any load.

Proof. Simple change of coordinates Let2 Y (x, t) = X (τ(x)/g, t).

2One may easily show the following result: if Y satisfies

∂

∂x

(
xτ ′ ◦ τ−1(gx)∂Y

∂x

)
− ∂2Y

∂t2
= 0,(2.3)

then X(x, t) = Y (τ(x)/g, t) satisfies

∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0.(2.4)

To show this, denote ◦ the composition operator with respect to the first variable. ThusX = Y ◦(τ/g).
Then

∂

∂x

(
τ
∂X

∂x

)
=

∂

∂x

(
ττ ′/g

∂Y

∂x
◦ (τ/g)

)
.(2.5)

On the other hand, a factorization of (2.3) gives

∂2Y

∂t2
=

∂

∂x

((
τ/gτ ′

∂Y

∂x
◦ (τ/g)

)
◦ τ−1(gx)

)
=

∂

∂x

(
τ−1(gx)

) ∂

∂x

(
ττ ′/g

∂Y

∂x
◦ (τ/g)

)
◦ τ−1(gx).

So by using (2.5)

∂

∂x

(
τ−1(gx)

) ∂

∂x

(
τ
∂X

∂x

)
◦ τ−1(gx) = ∂2Y

∂t2
.

Yet
∂

∂x

(
τ−1(gx)

)
=

g

τ ′ ◦ τ−1(gx) ,
so

∂

∂x

(
τ
∂X

∂x

)
◦ τ−1(gx) = 1

g
τ ′ ◦ τ−1(gx)∂

2Y

∂t2
,

or, equivalently,

∂

∂x

(
τ
∂X

∂x

)
=
τ ′

g

∂2Y

∂t2
◦ (τ/g) = τ ′

g

∂2X

∂t2
,

which gives the conclusion.
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Now (2.1) gives

∂

∂x

(
τ1(x)

∂Y

∂x

)
− ∂2Y

∂t2
= 0,(2.6)

where τ1(x) = xτ ′(τ−1(gx)).
Symbolic computations. Replacing the time derivation by s gives

∂

∂x

(
τ1(x)

∂Y

∂x

)
− s2Y = 0.(2.7)

Factorization. It is very easy to check that Y (x, s) = Y (0, s)A(x, s) is the solution
of (2.7), provided that A(x, s) is solution of the following partial differential system:


∂

∂x

(
τ1(x)

∂A

∂x

)
− s2A = 0,

A(0, s) = 1.

(2.8)

Existence of a solution. System (2.8) admits a smooth solution that is an entire
function of exponential type in s. This solution reads

A(x, s) =
∑
i≥0

s2i

i!
fi(x),(2.9)

where 


f0 = 1,

fi(x) =

∫ x

0

1

τ1(l)

∫ l

0

ifi−1(s)ds dl.
(2.10)

It is very easy to check that, formally,
∑
i≥0

s2i

i! fi(x) is solution of (2.8): since

∂

∂x

(
τ1(x)

∂

∂x
fi(x)

)
= ifi−1(x),

we can write 


∂

∂x


τ1(x)

∂

∂x

∑
i≥0

s2i

i!
fi(x)


 = s2

∑
i≥0

s2i

i!
fi(x),

∑
i≥0

s2i

i!
fi(0) = f0(0) = 1.

(2.11)

Now let us address the convergence by proving that for all i

|fi(x)| ≤ 1

i!

(x

a

)i
.(2.12)

Suppose that (2.12) is true for a given i. (It is obviously the case for i = 0.) Let us
inductively prove that it is also true for i+ 1. From (2.10) we get

|fi+1(x)| ≤
∫ x

0

li+1

τ1(l)aii!
dl.
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Yet τ ′ ≥ a, so τ1(x) ≥ ax ≥ 0, and then

|fi+1(x)| ≤
∫ x

0

li

ai+1i!
dl

≤ 1

(i+ 1)!

(x

a

)i+1

,

which is (2.12) at rank i+ 1.

So, gathering (2.9) and (2.12) and using 1
(i!)2 ≤ 22i

(2i)! , we get

A(x, s) ≤
∑
i≥0

s2ixi

(i!)2ai
≤
∑
i≥0

s2i22ixi

(2i)!ai
≤ exp

(
2s

√
x

a

)
.(2.13)

This proves that, for each x, s �→ A(x, s) is an entire function of s of exponential type.
Liouville transformation. The Liouville transformation

(x,A) �→ (z, u)

(see, e.g., [19, p. 110]) turns equations of the form

d

dx

(
p(x)

dA

dx

)
+ (λr(x)− q(x))A = 0

with p(x) > 0 into

d2u

dz2
+ (ρ2 − h(z))u = 0,

where ρ is depending only on λ and can be considered as a parameter.
Here

p(x) = τ1(x), λ = −s2, r(x) = 1, q(x) = 0, x ∈ [0, L],

and the transformation is defined for each x > 0. Nevertheless, it can be extended to
x = 0 because around 0, τ1(x) ≈ gx with g > 0. It turns (2.8) into

d2u

dz2
−K2s2u = h̄(z)u(2.14)

with

z =
1

K

∫ x

0

√
1

τ1
≡ G(2

√
x), K =

1

π

∫ L

0

√
1

τ1
,(2.15)

u(z, s) = (τ1(x))
1/4

A(x, s),(2.16)

h̄(z) =
F ′′(z)
F (z)

with F (z) ≡ (τ1(x))
1/4

.(2.17)

Notice that since τ1(x) ≥ ax with a > 0,
∫ x
0
1/τ1 is a smooth function of

√
x, and

thus G is well defined and invertible. Similar arguments imply that h̄ is, in fact, a
function of z2. Thus h̄(z) = h(z2), and we have the following Laurent series around
0:

h̄(z) = h(z2) =
−1
4z2

+O(1).
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Comparison to a simpler solution. We know from [1, formula 9.1.49, p. 362] that

u0(z, s) = (Lg)1/4
√

z

π
J0(iKsz)(2.18)

satisfies

d2u0

dz2
−K2s2u0 =

(−1
4z2

)
u0.(2.19)

According to the Laurent series of h̄, we compare the solutions of (2.14), namely,
u(z, s), and (2.19), namely, u0(z, s). Let D(z, s) = u(z, s)− u0(z, s). We deduce from
(2.14) and (2.19) that

d2D

dz2
−K2s2D =

(
h(z2) +

1

4z2

)
u0 + h(z2)D.(2.20)

Since z = G(2
√
x) with G smooth and invertible, we have from (2.9) and (2.16)

u(z, s) = (Lg)1/4
√

z

π
+O(z5/2).

Then it is easy to check that for each s, D is a C1 function of z around 0 withD(0, s) =
0 and D′(0, s) = 0. Equation (2.20) can be turned into the following integral equation
(see [19, p. 111]):

D(z, s) =
1

Ks

∫ z

0

sinh(Ks(z − t))

(
h(z2) +

1

4t2

)
u0(t, s)dt

+
1

Ks

∫ z

0

sinh(Ks(z − t))h(t2)D(t, s)dt.

(2.21)

Proving that C  s �→ D(z, s) is an entire function of exponential type. We al-
ready know that A(x, s) and thus u(z, s) (by (2.16)) are entire functions of exponential
type in s. On the other hand, for each z, s �→ u0(z, s) is also an entire function of s
of exponential type as J0 is. This gives the conclusion.

Proving that iR  s �→ D(z, s)/s belongs to L2. For each z, we need only an
estimation of D(z, iw) as w tends to ∞. For the sake of simplicity, we consider here
w �→ D(z, iw) for w > 0 large enough. The case w < 0 is similar. Classically (see, for
instance, [19, p. 112]), let M(z, w) = sup0≤ζ≤z |D(ζ, iw)|. Using (2.21), we will get
an estimation of M(z, w). This gives

KwM(z, w) ≤ I1(z, w) + I2(z, w)(2.22)

with

I1(z, w) =

∫ z

0

∣∣∣∣h(t2) + 1

4t2

∣∣∣∣ |u0(t, iw)| dt,

I2(z, w) =

∫ z

0

∣∣h(t2)∣∣ |D(t, iw)| dt.

We know that

0 ≤ z ≤ π, |u0(t, iw)| ≤ (Lg)1/4
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since J0 is bounded by 1 on the real axis. We know also that h(t2)+1/4t2 is bounded
on [0, π]. Thus the integral I1 is bounded by a constant K1 > 0, independent of
z ∈ [0, π] and w,

I1(z, w) ≤ K1.(2.23)

Next, to majorate I2 we split it into

I2(z, w) =

∫ γ/w

0

∣∣h(t2)∣∣ |D(t, iw)| dt︸ ︷︷ ︸
I′2(z,w)

+

∫ z

γ/w

∣∣h(t2)∣∣ |D(t, iw)| dt
︸ ︷︷ ︸

I′′2 (z,w)

,

where γ > 0 is a parameter we will choose afterwards. A simple but quite tedious
computation gives (using J0(z) = 1− 1

4z
2 + ◦(z2))

D(z, s) =
√
z cs2z2(1 + µ(s2z2)),

where c is a constant and µ is a smooth function such that µ(0) = 0. Using this last
expression in I ′2, we get

I ′2(z, w) ≤
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

,(2.24)

where b > 0 is such that
∣∣h(t2)∣∣ ≤ b/(4t2) for all t ∈]0, π]. On the other hand, it is

easy to check that

I ′′2 (z, w) ≤
bw

4γ
M(z, w).(2.25)

Gathering (2.24) and (2.25), we get

I2(z, w) ≤
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)
+

bw

4γ
M(z, w).(2.26)

Thanks to the majorations (2.23) and(2.26), we get

KwM(z, w) ≤ K1 +
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)
+

bw

4γ
M(z, w).

This majoration is valid for z ∈]0, π], w > 0, and γ > 0 such that γ/w ≤ z. Now we
take

γ =
b

2K
.

Thus for each z > 0 and each w > γ/z, we have

(K − b/4γ)wM(z, w) ≤ K1 +
√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

.

Since K − b/4γ = K/2, we have

1

2
KwM(z, w) ≤ K1 +

√
w
bc

6
γ3/2

(
1 + sup

|ξ|≤γ2

|µ(ξ)|
)

.(2.27)
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Thus there exists C0 > 0 such that for each z ∈]0, π] and for every w > γ/z,

|D(z, iw)| ≤ C0√|w| .(2.28)

Since D(z, 0) ≡ 0, we deduce for each z > 0 that s �→ D(z, s)/s remains an entire
function of s (of exponential type), and the above majoration says that iR  s �→
D(z, s)/s belongs to L2.

Using the Paley–Wiener theorem. The Paley–Wiener theorem [17, p. 375] ensures

that, for any z ∈ [0, π], there exists [−G−1(z)√
a

, G
−1(z)√
a

]  t �→ K(z, t) in L2 such that

D(z, s)/s =

∫ G−1(z)√
a

−G−1(z)√
a

K(z, ξ) exp (sξ)dξ.(2.29)

The integral bounds results from the following facts.
1. Via (2.16), 2

√
x = G−1(z), and (2.13), we have

∀s ∈ C, |(u(z, s)| ≤ N(z) exp

(
|s| G

−1(z)√
a

)

for some N(z) > 0.
2. A well-known property on J0 implies that

∀s ∈ C, |(u0(z, s)| ≤ N0(z) exp(|s| zK)

for some N0(z) > 0.

3. Since τ1x ≥ ax, (2.15) implies that zK < G−1(z)√
a

.

4. Thus

∀s ∈ C, |D(z, s)| = |u(z, s)− u0(z, s)| ≤ (N(z)+N0(z)) exp

(
|s| G

−1(z)√
a

)
.

Conclusion.

(u(z, s)− u0(z, s))/s =

∫ G−1(z)√
a

−G−1(z)√
a

K(z, ξ) exp (sξ)dξ.

This gives

u(z, s) =
(Lg)1/4√

π

√
zJ0(iKsz) +

∫ G−1(z)√
a

−G−1(z)√
a

sK(z, ξ) exp(sξ)dξ.

Pulling back this relation in the (x,A) coordinates, we deduce using (2.16) that

A(x, s) =
(Lg)1/4√

π

1

(τ1(x))1/4

√
G(2
√
x)J0(iKsG(2

√
x))

+
1

(τ1(x))1/4

∫ 2
√

x
a

−2
√

x
a

sK(G(2
√
x), ξ) exp (sξ)dξ.
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Then we quickly get Y (x, s) = Y (0, s)A(x, s). This gives in the time domain

Y (x, t) =
(Lg)1/4√

π

1

(τ1(x))1/4

√
G(2
√
x)

1

2π

∫ π

−π
Y (0, t+KG(2

√
x) sin θ)dθ

+
1

(τ1(x))1/4

∫ 2
√

x
a

−2
√

x
a

K(G(2
√
x), ξ)

[
∂

∂t
Y (0, t+ ξ)

]
dξ.

Then substituting

X(x, t) = Y (τ(x)/g, t) ,

Y (0, t) = X(0, t),

∂Y

∂t
(0, t) =

∂X

∂t
(0, t),

we get

X(x, t) =
L1/4√g

2π3/2(τ(x)τ ′(x))1/4

√
G(2

√
τ(x)/g)

∫ π

−π
y(t+KG(2

√
τ(x)/g) sin θ)dθ

+
1

(τ(x)τ ′(x)/g)1/4

∫ 2
√

τ(x)
ag

−2
√

τ(x)
ag

K(G(2
√

τ(x)/g), ξ) ẏ (t+ ξ) dξ

(2.30)

with y(t) = X(0, t).
Remark. In the case of a homogeneous chain, we can substitute

τ(x) = gx, τ ′(x) = g, τ1(x) = gx = τ(x),

K =
2

π

√
L

g
, z = G(2

√
x) = π

√
x

L
,K = 0,

and (2.30) reads

X(x, t) =
1

2π

∫ π

−π
y

(
t+ 2

√
x

g
sin θ

)
dθ,

which is indeed identical to (1.4).

3. The inhomogeneous chain with punctual load. The system of Figure 3.1
consists of a heavy chain with a variable section carrying a punctual load m. Small
deviations X(x, t) − u(t) from the vertical position are described by the partial dif-
ferential system 



∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g

∂2X

∂t2
= 0,

∂2X

∂t2
(0, t) = g

∂X

∂x
(0, t),

X(L, t) = u(t),

(3.1)

where u is the control. The tension in the chain writes τ(x): τ(0) = mg, and τ ′(x)/g >
0 is the mass distribution along the chain.
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X(x,t)

x=L

x=0

u(t)=X(L,t)

Fig. 3.1. The inhomogeneous (variable section) chain with punctual load.

Theorem 2. Consider (3.1) with [0, L]  x �→ τ(x) a smooth increasing function
with τ(0) = m. There is a one-to-one correspondence between the solutions [0, L]×R 
(x, t) �→ (X(x, t), u(t)) that are C3 in t and the C3 functions R  t �→ y(t) via the
following formulas:




X(x, t) = φ(x) [y(t+ θ(x)) + y(t− θ(x))] + ψ(x) [ẏ(t+ θ(x))− ẏ(t− θ(x))]

+

∫ x

0

B(x, ξ)[y(t+ θ(ξ)) + y(t− θ(ξ))] dξ,

u(t) = X(L, t)

(3.2)

with

y(t) = X(0, t),

θ(x) =

∫ x

0

√
τ ′

gτ
,

ψ(x) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4 1

2

√
τ(0)

gτ ′(0)
,

φ(x) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4

. . .

×
[
1 +

1

8

√
τ(0)

τ ′(0)

((√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)
(x)−

(√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)
(0)

+ · · ·+ 1

4

∫ x

0

(√
τ ′

τ
+

τ ′′

τ ′

√
τ

τ ′

)2 √
τ ′

τ

)]
,
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B(x, ξ) a smooth function of x, and ξ defined by the function τ via formula (3.15).

Correspondence (3.2) defines a family of linear operatorsAx with compact support
such that, for any C3 time function, X(x, t) = Axy|t is automatically the solution
of (3.1) with u(t) = X(L, t) and X(0, t) = y(t).

The proof relies on the following points.

1. Symbolic computations where the time derivation is replaced by the Laplace
variable s are performed. This yields a second order differential equation with
nonconstant coefficients in the space variable x.

2. The solution X(x, s) is factorized as X(x, s) = X(0, s)A(x, s). A partial
differential system is derived for A(x, s).

3. The study of s �→ A(x, s) is simplified by a Liouville transformation (x,A) �→
(z, u).

4. The solution A(x, s) of this differential equation is proven to be an entire
function of s and of exponential type. (Volterra expansion and majoring
series arguments are used.)

5. A careful study of the Volterra equation of the second kind satisfied by A
shows that modulo some functions (exponentials of s, depending on x and
explicitly calculated), for each x, the restriction of A(x, s) to the imaginary
axis is in L2.

6. Thanks to the Paley–Wiener theorem and the last two properties of A, we
prove that, for each x, A can be represented as a compact sum (discrete and
continuous) of exponentials in s. This gives (3.2).

Proof. Symbolic computation. Replacing the time derivation by s gives




∂

∂x

(
τ(x)

∂X

∂x

)
− τ ′(x)

g
s2X = 0,

s2X(0, s) = gX ′(0, s).
(3.3)

We do not consider the other boundary condition since u is the control and can be
obtained explicitly from X via u(t) = X(L, t).

Factorization. It is very easy to check thatX(x, s) = X(0, s)A(x, s) is the solution
of (3.3), provided that A(x, s) is the solution of the following partial differential
system:




∂

∂x

(
τ(x)

∂A

∂x

)
− τ ′(x)

g
s2A = 0,

A(0, s) = 1,

gA′(0, s) = s2.

(3.4)

Liouville transformation. This time we perform a Liouville transformation (al-
ready used in section 2)

(x,A) �→ (z, u)

with

p(x) = τ(x), λ = −s2

g
, r(x) = τ ′(x), q = 0, x ∈ [0, L].
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The new variables (z, u) are defined by the following formulas:

z =
1

K

∫ x

0

√
τ ′

τ
, 0 ≤ z ≤ π, K =

1

π

∫ L

0

√
τ ′

τ
,(3.5)

u(z, s) = (τ(x)τ ′(x))1/4A(x, s).(3.6)

System (3.4) is turned into

d2u

dz2
+ (ρ2 − h(z))u = 0 with

du

dz
(0) = (a+ bρ2), u(0) = 1,(3.7)

where

ρ = ı
K√
g
s, ı =

√−1,

h(z) =
f ′′(z)
f(z)

with f(z) = (τ(x)τ ′(x))1/4,

a =
f ′(0)
f(0)

, b =
1

K

√
τ(0)

τ ′(0)
.

Proving that C  ρ �→ u(z, ρ) is an entire function of exponential type. We claim
that, for each z, ρ �→ u(z, ρ) is an entire function of exponential type.

Denote by W (z, ρ) the 2× 2 matrix solution of

dW

dz
=

(
0 1

h(z)− ρ2 0

)
W

with W (0, ρ) = I. Since

u(z, ρ) =
(
1 0

)
W (z, ρ)

(
1

a+ bρ2

)
,

it suffices to prove that W is entire in ρ and of exponential type. Using the classi-
cal fixed point technique, W can be expressed as an absolutely convergent series of
iterated integrals (Volterra expansion)

W (z, ρ) =
∑
i≥0

Wi(z, ρ)

with

W0(z, ρ) = I, Wi+1(z) =

∫ z

0

(
0 1

h(σ)− ρ2 0

)
Wi(σ, ρ) dσ.(3.8)

For each i > 0, Wi(z, ρ) is a polynomial in ρ2 of degree i with coefficients depending
on z. Thus we have ∑

0≤i≤k
Wi(z, ρ) =

∑
0≤j≤k

W j,k(z) ρ2j .

From step k to k + 1, we add to W j,k(z) the coefficient of ρ2j in Wk+1, say, Wj,k+1,
to obtain W j,k+1(z):

W j,k+1(z) = W j,k(z) +Wj,k+1(z).
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Let α = sup[0,π] |h|. Then the absolute value of each entry of Wi(z, ρ) is bounded
by the corresponding entries in the following majoring series Mi(z, ρ) defined by the
induction (to be compared to (3.8)):

M0(z, ρ) = I, Mi+1(z) =

∫ z

0

(
0 1

α+ ρ2 0

)
Mi(σ, ρ) dσ.(3.9)

As for W , we can define M =
∑
i≥0 Mi and, for each k > 0, the matrices M j,k

andMj,k+1 satisfying∑
0≤i≤k

Mi(z, ρ) =
∑

0≤j≤k
M j,k(z) ρ2j , M j,k+1(z) = M j,k(z) +Mj,k+1(z).

Standard matrix computations show that

M(z, ρ) = I +
∑
i>0

z2i

(2i)!

(
(ρ2 + α)i 0

0 (ρ2 + α)i

)

+
∑
i>0

z2i+1

(2i+ 1)!

(
0 (ρ2 + α)i

(ρ2 + α)i+1 0

)
.

That is,

M(z, ρ) =

(
cosh(z

√
ρ2 + α) sinh(z

√
ρ2 + α)/

√
ρ2 + α

sinh(z
√

ρ2 + α)
√

ρ2 + α cosh(z
√

ρ2 + α)

)
.(3.10)

For each j, the matrices M j,k =
∑
j≤l≤k−1Mj,l converge as k tends to ∞. Denote

byM j the limit. By construction,M =
∑
j≥0 M j(z) ρ2j , and this series has an infinite

radius of convergence in ρ, since, for each z, the functions ρ �→ cosh(z
√

ρ2 + α),

ρ �→ sinh(z
√

ρ2 + α)/
√

ρ2 + α, and ρ �→ sinh(z
√

ρ2 + α)
√

ρ2 + α are entire functions
of ρ2.

But, for each i, j, and k, the matrices M j,k andMj,k+1, whose entries are always
nonnegative, dominate the absolute values of the entries of W j,k andWj,k+1, respec-
tively. Thus for each j, the matrices W j,k =

∑
j≤l≤k−1Wj,l converge as k tends to

∞. Denote by W j the limit. By construction, W =
∑
j≥0 W j(z)ρ2j , and this series

has an infinite radius of convergence in ρ, since M has one. In other words, W is an
entire function of ρ. Moreover, the entries of M are upper bounds of the entries of W .
Thus W is of exponential type in ρ: for each z ∈ [0, π], there exists E > 0 such that

∀ρ ∈ C, |W (z, ρ)| ≤ E exp(z|ρ|).

We have proven that, for each z ∈ [0, π], u(z, ρ) is an entire function of ρ of exponential
type with

∀ρ ∈ C, |u(z, ρ)| ≤ b(z) exp(z|ρ|)

for some b(z) > 0 well-chosen.

Proving that “a part” of R  ρ �→ u(z, ρ) belongs to L2. In general, R  ρ �→
u(z, ρ) does not belong to L2. Thus the Paley–Wiener theorem does not apply directly.
Removing some appropriate terms, the remaining is in L2.



492 NICOLAS PETIT AND PIERRE ROUCHON

Let

v(z, ρ) = u(z, ρ) + bρ sin(ρz)−
(
1 +

b
∫ z
0
h

2

)
cos(ρz).(3.11)

In the following we prove that this entire function of exponential type is such that R 
ρ �→ v(z, ρ) belongs to L2.

From the Volterra equation of the second kind satisfied by u (see [19, p. 111]),

u(z, ρ) =

(
cos(ρz) + (a− bρ2)

sin(ρz)

ρ

)
+

1

ρ

∫ z

0

sin(ρ(z − ζ)) h(ζ) u(ζ, ρ) dζ,

we quickly derive a similar equation satisfied by v,

v(z, ρ) = φ(z, ρ) +
1

ρ

∫ z

0

sin(ρ(z − ζ)) h(ζ) v(ζ, ρ) dζ,

where φ = φ1 − bφ2 with

φ1(z, ρ) =a
sin(ρz)

ρ
+

1

ρ

∫ z

0

sin(ρ(z − ζ))h(ζ) cos(ρζ)

(
1 + (b/2)

∫ ζ

0

h

)
dζ,

φ2(z, ρ) = cos(ρz)

∫ z

0

h/2 +

∫ z

0

sin(ρ(z − ζ))h(ζ) sin(ζ) dζ.

Clearly, there exists D1 > 0 such that for all z ∈ [0, π] and ρ ∈ R,

|φ1(z, ρ)| ≤ D1

1 + |ρ|
(h is bounded). With 2 sin(ρ(z − ζ)) sin(ζ) = cos(ρ(z − 2ζ))− cos(ρz), we have

φ2(z, ρ) =

∫ z

0

cos(ρ(z − 2ζ))h(ζ) dζ.

The integration by part (by assumption τ is C4 thus h is C1)∫ z

0

cos(ρ(z − 2ζ))h(ζ) dζ =
h(0) + h(z)

2ρ
sin(ρz) +

1

2ρ

∫ z

0

sin(ρ(z − 2ζ))h′(ζ) dζ

shows that for large |ρ|, φ2 tends to zero at least as 1/|ρ|. Thus there exists D2 > 0
such that for all z ∈ [0, π] and ρ ∈ R,

|φ2(z, ρ)| ≤ D2

1 + |ρ| .

This proves that v satisfies

v(z, ρ) = φ(z, ρ) +
1

ρ

∫ z

0

sin(ρ(z − ζ))h(ζ)v(ζ, ρ) dζ(3.12)

with |φ(z, ρ)| ≤ D/(1 + |ρ|) for all z ∈ [0, π] and ρ ∈ R. (D > 0 is a well-chosen
constant independent of z and ρ.)
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This last inequality gives the desired conclusion by the following classical compu-
tation (see [19, p. 112], for instance).

Let β(z, ρ) = sup0≤ζ≤z |v(ζ, ρ)|. By (3.12) we have for each z1 and z2 in [0, π], z1 ≤
z2

|v(z1, ρ)| ≤ D

1 + |ρ| +
αz1β(z2, ρ)

|ρ| ≤ D

1 + |ρ| +
απ

|ρ| β(z2, ρ).

(Remember that α = sup[0,π] |h|.) In particular, when z1 = z2 = z, we have

β(z, ρ)

(
1− απ

|ρ|
)
≤ D

1 + |ρ| .(3.13)

Finally, for |ρ| ≥ 2απ , β(z, ρ) ≤ 2D/(1 + |ρ|). This proves that R  ρ �→ v(z, ρ)
belongs to L2.

Using the Paley–Wiener theorem. At last, the Paley–Wiener theorem ensures
that the Fourier transform of ρ �→ v(z, ρ) has a compact support included in [−z, z]
since for all ρ ∈ C, |v(z, ρ)| ≤ N exp(z|ρ|) for some constant N > 0. This means that,
for each z ∈ [0, π], there exists [−z, z]  ζ �→ K(z, ζ) in L2([−z, z]) such that

v(z, ρ) =

∫ +z

−z
K(z, ζ) exp(ıζρ) dζ.

Since v is an even function of ρ, K is also an even function of ζ. Thus we have, finally,

v(z, ρ) =

∫ +z

0

K(z, ζ)(exp(ıζρ) + exp(−ıζρ)) dζ.(3.14)

Conclusion. Pulling back this last relation in the (x,A) coordinates, noticing
that ρ = ıKs/

√
g, that exp(−θs) is the Laplace transform of the θ-delay operator,

and that u(0, ρ) is, up to a constant, the Laplace transform of X(0, t), we deduce after
some standard but tedious computations formulae (3.2). The new function B(x, ξ) is
related to K(z, ζ) via

K

√
τ(ξ)

τ ′(ξ)
B(x, ξ) =

(
τ(0)τ ′(0)
τ(x)τ ′(x)

) 1
4

K
(√

g

K
θ(x),

√
g

K
θ(ξ)

)
.(3.15)

At last,

A(x, s) = ϕ(x) (exp θ(x)s+ exp θ(x)s) + ψ(x)s (exp θ(x)s− exp θ(x)s)

+

∫ x

0

K(x, ζ)(exp(θ(ζ)s) + exp(−θ(ζ)s)) dζ,

so X(x, s) = X(0, s)A(x, s) when turned back into the time-domain does give formu-
lae (3.2).

4. Conclusion. We have shown that, around the stable vertical position, heavy
chain systems with or without load, with constant or variable section, are “flat”: the
trajectories of these systems are parameterizable by the trajectories of their free ends.
Relations (1.4), (2.2), and (3.2) show that such parameterizations involve operators
of compact supports.
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It is surprising that such parameterizations can also be applied around the inverse
and unstable vertical position. For the homogenous heavy chain, we have only to
replace g by −g to obtain a family of smooth solutions to the elliptic equation (singular
at x = 0)

∂

∂x

(
gx

∂X

∂x

)
+

∂2X

∂t2
= 0

by the integral

X(x, t) =
1

2π

∫ π

−π
y(t+ 2ı

√
x/g sin θ) dθ,

where y is now a holomorphic function in R× [−2√L/g,+2
√

L/g] that is real on the
real axis. This parameterization can still be used to solve the motion planning problem
in spite of the fact that the Cauchy problem associated to this elliptic equation is not
well-posed in the sense of Hadamard.

Acknowledgments. The authors are indebted to Michel Fliess and Philippe
Martin for fruitful discussions relative to the Paley–Wiener theorem, series expansions,
majoring series arguments, and Liouville transformations.
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Abstract. A generalization of Zubov’s theorem on representing the domain of attraction via the
solution of a suitable partial differential equation is presented for the case of perturbed systems with
a singular fixed point. For the construction it is necessary to consider solutions in the viscosity sense.
As a consequence, maximal robust Lyapunov functions can be characterized as viscosity solutions.
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1. Introduction. The domain of attraction of an asymptotically stable fixed
point has been one of the central objects in the study of continuous dynamical systems.
In the late 1960’s there was a particular surge of activity with a number of papers by
Coleman [8], [9], Wilson [25], and Bhatia [6] analyzing properties of the domains. One
of the celebrated results of that era was what came to be known as Zubov’s method
[26], which asserts that the domain of attraction of an asymptotically stable fixed
point x∗ of

ẋ = f(x) , x ∈ R
n,

may be characterized by solutions v of the partial differential equation

Dv(x) · f(x) = −h(x)(1− v(x))
√
1 + ‖f(x)‖2 .(1.1)

Namely, under suitable assumptions on h, the set v−1([0, 1)) is equal to the domain
of attraction. These results are presented in several books; see [11] or [14]. For
the case of real-analytic systems a constructive procedure is presented in [11] that
allows for the approximation of the domain of attraction. This method was extended
and simplified in [24], where again a constructive approach for the case of analytic
systems is presented. The construction was extended to the case of asymptotically
stable periodic orbits in [2].

In recent years much effort has been devoted to the development of numerical
methods for the approximation of domains of attractions. Zubov’s method also lends
itself to the construction of such schemes; see [24], [13] and the paper [1], which
considers a particular application.
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Italy (camilli@axcasp.caspur.it).
‡Fachbereich Mathematik, J. W. Goethe-Universität, Postfach 11 19 32, 60054 Frankfurt a.M.,

Germany (gruene@math.uni-frankfurt.de).
§Zentrum für Technomathematik, Universität Bremen, 28334 Bremen, Germany (fabian@

math.uni-bremen.de).

496



A GENERALIZATION OF ZUBOV’S EQUATION 497

In this paper our aim is to generalize Zubov’s basic result by incorporating per-
turbations into the setup. That is, we consider systems of the form

ẋ = f(x, a)

with the property that the fixed point (which we take to be zero) is not perturbed
under all perturbations. Under a local stability assumption, which guarantees that it
is reasonable to consider domains of attraction we are interested in the set of points
that is attracted to the fixed point regardless of the perturbation considered. This
is what we call the robust domain of attraction. This subset of the domain of the
unperturbed system ẋ = f(x, a0) is also studied in [18], [19], where, in particular,
an approximation scheme for the robust domain of attraction is presented based on
ideas of optimal control. In this paper we concentrate on proving an existence and
uniqueness result for a Zubov-type equation and examining properties of the solutions
that can be obtained. Numerical aspects and actual examples are presented in [7].

In section 2 we begin defining robust domains of attraction for the class of systems
under consideration and state some fundamental properties. In section 3 we define
the generalization of (1.1) suitable for our case and discuss the question of solvability
of this equation. For this we turn to the methodology of viscosity solutions. We
refer to [3] for an introduction to this theory in the context of optimal control. Using
viscosity solutions, we obtain an existence and uniqueness result for the generalized
equation. In sections 4 and 5 we note some properties of the constructed solutions.
In particular, the solutions can be interpreted as robust Lyapunov functions for the
perturbed system, and via suitable choices of the parameters this Lyapunov function
can be guaranteed to be globally Lipschitz, or smooth, at least, on subsets of the robust
domain of attraction. Finally, in section 6 we provide a simple example illustrating
our results.

2. The robust domain of attraction. Let ϕ(t, x0, a) be the solution of{
ẋ(t) = f(x(t), a(t)) , t ∈ [0,∞) ,
x(0) = x0,

(2.1)

where a(·) ∈ A = L∞([0,+∞), A) and A is a compact subset of R
m. Throughout

the paper the map f is taken to be continuous and bounded in R
n × A and locally

Lipschitz in x uniformly in a ∈ A. Furthermore, we assume that the fixed point x = 0
is singular; that is, f(0, a) = 0 for any a ∈ A.

We assume that the singular point 0 is uniformly locally exponentially stable for
the system (2.1), i.e.,

(H1)
there exist constants C, σ, r > 0 such that ‖ϕ(t, x0, a)‖ ≤ Ce−σt‖x0‖
for any x0 ∈ B(0, r) and any a ∈ A.

We now define the following sets which describe domains of attraction for the
equilibrium x = 0 of the system (2.1).
Definition 2.1. For the system (2.1) satisfying (H1) we define the robust domain

of attraction as

D = {x0 ∈ R
n : ϕ(t, x0, a)→ 0 as t→ +∞ for any a ∈ A}

and the uniform robust domain of attraction by

D0 =

{
x0 ∈ R

n :
there exists a function β(t)→ 0 as t→∞
such that ‖ϕ(t, x0, a)‖ ≤ β(t) for all t > 0, a ∈ A

}
.
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C

B

Z

[-1,0]’

Fig. 2.1. Sketch for Example 2.1.

In order to obtain a different characterization of D0, we introduce the following
“first hitting time” defined by t(x, a) := inf{t > 0 : ϕ(t, x, a) ∈ B(0, r)}. Note that
by the assumption on B(0, r) there exists T > 0 independent of x and a such that
ϕ(t, x, a) ∈ B(0, r) for any t ≥ t(x, a) + T .
Lemma 2.2. Assume (H1); then the robust domains of attraction D and D0

satisfy

D = {x ∈ R
n : t(x, a) < +∞ for any a ∈ A} ,

D0 =

{
x ∈ R

n : sup
a∈A
{t(x, a)} < +∞

}
.

Proof. This is immediate from Definition 2.1.
Before we begin analyzing some of the properties of D and D0, let us give an

example that shows that for general nonlinear systems they are different.
Example 2.1. Let n = 2 and y0 = [−1 , 0 ]′. We fix two discs around y0 given by

B := B(y0, 1/2) and C := B(y0, 3/4) and let Z := {x = [x1, x2] ∈ R
2 : x1 > −1};

see Figure 2.1.
Fix a C∞ function h : R

2 → R such that

h ≥ 0 , h|B ≡ 1 , h|Cc ≡ 0 .

Fix any f : R
2 → R

2 such that f|B ≡ 0, f(0) = 0, and such that the set Z \ clB is
contained in the domain of attraction of x∗ = 0 for the system ẋ = f(x). We may
assume, furthermore, that for the first component function of f (denoted by f1) we
have f1(x) > 0 on the annulus C \ clB. Now consider the system

ẋ = f(x) + h(x)

[
(x1 + 1)2 + x22 + 1− a2

a

]
=: g(x, a) ,

where a ∈ [−1, 1]. It is easy to see that for x0 ∈ B it holds that the first component
of the solution ϕ1(t, x0, a) is strictly increasing as long as ϕ(t, x0, a) ∈ B. We even
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have that for any x0 ∈ B ∩ clZ and any a ∈ A there is a time T = T (x0, a) such
that ϕ(T, x0, a) /∈ B. Also, by our assumption on f , h, and the construction of g, the
first component of the solutions is strictly increasing on C \ clB. As a consequence,
y0 ∈ D. On the other hand, for y0 we have that for any time t > 0 and any ε > 0
there is some a ∈ A with ‖y0 − ϕ(t, y0, a)‖ < ε by [12, Chap. 3, Theorem 6] as 0 is
contained in the convex hull of {g(y0, a) : a ∈ A}. Hence t(y0, a) is unbounded over
A, and so y0 /∈ D0.

In the following proposition we present some relevant properties of the (uniform)
robust domain of attraction. Several of these bear a striking resemblance to those of
the domain of attraction of an asymptotically stable fixed point of a time-invariant
system; compare [11, Chap. IV]. It will frequently be convenient to consider the
reachable set at time T from an initial condition x0 ∈ R

n defined by

R(x0, T0) := {x ∈ R
n : ∃ 0 ≤ t ≤ T0, a ∈ A such that x = ϕ(t, x0, a)} .

Note that by the boundedness of f it is immediate that the reachable set from a
bounded set of initial conditions S given by

R(S, T ) :=
⋃
x∈S
R(x, T )

is bounded for any T ≥ 0.
Proposition 2.3. Consider system (2.1) and assume (H1); then the following

hold.
(i) clB(0, r) ⊂ D0.
(ii) D0 is an open, connected, invariant set. D is a pathwise connected, invariant

set.
(iii) supa∈A{t(x, a)} → +∞ for x→ x0 ∈ ∂D0 or ‖x‖ → ∞.
(iv) D ⊂ clD0.
(v) clD0 = clD is an invariant set.
(vi) D0, D are contractible to 0.
(vii) If for some a0 ∈ A f(·, a0) is of class C1, then D0 is C1-diffeomorphic to R

n.
(viii) If for every x ∈ ∂D0 there exists a ∈ A such that ϕ(t, x, a) ∈ ∂D0 for all

t ≥ 0, then D = D0.
(ix) If for all x ∈ D the set {f(x, a) : a ∈ A} is convex, then D0 = D.
Proof.
(i) This is a consequence of the exponential bound in (H1), which can easily be

shown to extend to clB(0, r).
(ii) Let x0 ∈ D0 and T0 = supa∈A{t(x0, a)}. Then there exists T such that
ϕ(t, x0, a) ∈ B(0, r/2C) for any a ∈ A, t ≥ T . Let δ be such that if ‖x0−x‖ ≤
δ, then ‖ϕ(t, x0, a)− ϕ(t, x, a)‖ ≤ r/2C for any t ≤ T and any a ∈ A. Then
ϕ(t, x, a) ∈ B(0, r) for t ≥ T and a ∈ A. Therefore, x ∈ D0, and it follows
that D0 is open. By definition from each x ∈ D0 (x ∈ D) there exists a
trajectory ϕ(·, x, a) entering B(0, r). This shows connectedness. To prove
invariance assume that for some x ∈ D0, a1 ∈ A there exists a t > 0 such
that y := ϕ(t, x, a1) �∈ D0. This implies supa∈A{t(y, a)} = ∞. But clearly,
supa∈A{t(x, a)} ≥ supa∈A{t(y, a)}, contradicting the choice of x. A similar
argument works for D.

(iii) Let xn → x0 ∈ ∂D0 and set Tn = supa∈A{t(xn, a)}. If we assume that
Tn is bounded and we take r′ < r, we can find T such that, for any n,
ϕ(t, xn, a) ∈ B(0, r′) for any t ≥ T and for any a ∈ A.
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For any ε > 0, there exists δ > 0 such that if ‖x′ − x′′‖ ≤ δ, ‖ϕ(t, x′, a) −
ϕ(t, x′′, a)‖ ≤ ε for any t ≤ T , for any a ∈ A. Thus, setting ε = r − r′
and choosing n sufficiently large such that ‖xn − x0‖ ≤ δ, we obtain that
ϕ(t, x0, a) ∈ B(0, r) for any t ≥ T and for any a ∈ A. Hence x0 ∈ D0, which
is a contradiction. The assertion is clear for ‖xn‖ → ∞, as our assumptions
exclude solutions exploding in backward time.

(iv) The statement follows from an application of [20, Lemma III.2], which states
that if x ∈ D \D0 or, equivalently, if supa∈A{t(x, a)} =∞, while t(x, a) <∞
for every a ∈ A, then x ∈ ∂D, as in every neighborhood of x there exists a
point y and a control ay such that t(y, ay) =∞.

(v) If for some x ∈ clD0 and a ∈ A we have ϕ(t, x, a) �∈ clD0, then by con-
tinuous dependence on initial conditions we have that D0 is not invariant,
contradicting (i). The equality of the two sets is an immediate consequence
of (iv).

(vi) This follows by regarding the flow of ẋ = f(x, a0) for some a0 ∈ A.
(vii) In the proof we follow the outline given in [19]. Recall that a paracompact

manifold M with the property that every compact subset of M has an open
neighborhood that is diffeomorphic to R

n is itself diffeomorphic to R
n; see

[17, Lemma 3]. Let K ⊂ D0 be compact and consider a neighborhood U of
K with B(0, r) ⊂ U ⊂ D0. Choose a relatively compact neighborhood U2 of
K with B(0, r/2) ⊂ clU2 ⊂ U and fix a C∞ function h : R

n → [0, 1] with
h|U2

≡ 1 and h|Uc ≡ 0. Now consider the system

ẋ = h(x)f(x, a0)

with associated flow ψ(t, x). It is clear that for some T large enough we have
K ⊂ ψ(−T,B(0, r/4)) ⊂ U . This proves the assertion as ψ(−T,B(0, r/4)) is
diffeomorphic to B(0, r/4), which is in turn diffeomorphic to R

n.
(viii) By the pathwise connectedness of D we have that D ∩ ∂D0 �= ∅ if D �= D0.

This contradicts our assumption.
(ix) Clearly, we need only show D ⊂ D0. Assume that x ∈ D and there exist

sequences ak ∈ A, Tk → ∞ such that ‖ϕ(Tk, x, ak)‖ > r > 0 for all k ∈ N.
By standard constructions there exists a subsequence (for which we use the
index k again) which converges uniformly on compact time intervals to a
solution y(t) of the differential inclusion

ẏ(t) ∈ f(y(t), A) .

Now by convexity of f(y(t), A), t ≥ 0, and Filippov’s lemma [15, p. 267] there
exists a control a ∈ A such that y(t) = ϕ(t, x, a). By assumption there exists
a t0 such that ‖ϕ(t0, x, a)‖ < r/C. As ϕ(t0, x, ak) → ϕ(t0, x, a), this implies
for all k large enough the inequality ‖ϕ(t, x, ak)‖ < r for t ≥ t0, which is a
contradiction.

3. Zubov’s method for robust domains of attraction. It is our aim to show
that the appropriate generalization of Zubov’s equation (1.1) is given by

inf
a∈A
{−Dv(x)f(x, a)− (1− v(x))g(x, a)} = 0, x ∈ R

n.

In this section we show the existence of a unique solution under a suitable “boundary
condition” in the equilibrium x = 0. This solution will turn out to characterize the
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uniform robust domain of attraction D0. Before turning to this equation, we introduce
two optimal value functions and show certain properties of these functions.

Consider the following nonnegative, extended value function V : R
n → R∪{+∞}

by

V (x) = sup
a∈A

∫ +∞

0

g(ϕ(t, x, a), a(t))dt(3.1)

and its transformation via the Kruzkov transform

v(x) = 1− e−V (x).(3.2)

The function g : R
n×A→ R is supposed to be continuous and satisfies the following.

(H2)

(i) For any a ∈ A, g(0, a) = 0 and g(x, a) > 0 for x �= 0.

(ii) There exists a constant g0 > 0 such that infx	∈B(0,r), a∈A g(x, a) ≥ g0.
(iii) For every R > 0 there exists a constant LR such that

‖g(x, a)− g(y, a)‖ ≤ LR‖x− y‖ for all ‖x‖, ‖y‖ ≤ R, and all a ∈ A.

Since g is nonnegative, it is immediate that V (x) ≥ 0 and v(x) ∈ [0, 1] for
all x ∈ R

n. Furthermore, standard techniques from optimal control (see, e.g., [3,
Chapter III]) imply that V and v satisfy the dynamic programming principle; i.e., for
each t > 0 we have

V (x) = sup
a∈A

{∫ t

0

g(ϕ(τ, x, a), a(τ))dτ + V (ϕ(t, x, a))

}
(3.3)

and

v(x) = sup
a∈A
{(1−G(x, t, a)) +G(x, t, a)v(ϕ(t, x, a))}(3.4)

with

G(x, t, a) := exp

(
−
∫ t

0

g(ϕ(τ, x, a), a(τ))dτ

)
.(3.5)

The relation between V and v is immediate; we have

V (x) = 0 ⇔ v(x) = 0 ,
V (x) ∈ (0,+∞) ⇔ v(x) ∈ (0, 1) ,
V (x) = +∞ ⇔ v(x) = 1 .

(3.6)

In the next proposition we investigate the relation between D0 and V (and thus
also v) and the continuity of V and v.
Proposition 3.1. Assume (H1) and (H2). Then the following hold.
(i) V (x) < +∞ if and only if x ∈ D0.
(ii) V (0) = 0 if and only if x = 0.
(iii) V is continuous on D0.
(iv) V (x)→ +∞ for x→ x0 ∈ ∂D0 and for ‖x‖ → ∞.
(v) v(x) < 1 if and only if x ∈ D0.
(vi) v(0) = 0 if and only if x = 0.
(vii) v is continuous on R

n.



502 FABIO CAMILLI, LARS GRÜNE, AND FABIAN WIRTH

(viii) v(x)→ 1 for x→ x0 ∈ ∂D0 and for ‖x‖ → ∞.
Proof. (i) To show that V (x0) < +∞ for x0 ∈ D0, observe that by Lemma 2.2

for each x0 ∈ D0 there exists T0 > 0 such that ϕ(t, x0, a) ∈ B(0, r) for all t ≥ T0 and
all a ∈ A. Also, the closure of the reachable set clR(x0, T0) is compact. Thus for any
a ∈ A∫ +∞

0

g(ϕ(t), a(t))dt ≤
∫ T0

0

g(ϕ(t), a(t))dt+ Lr

∫ +∞

T0

‖ϕ(t)‖dt

≤ T0 sup
x∈R(x0,T0),a∈A

g(x, a) + LrC

∫ +∞

T0

e−σtrdt ≤ C̃

with C̃ independent of a ∈ A, and therefore, V (x0) < +∞.
Now let x0 �∈ D0. Then there exists a sequence an ∈ A such that t(x0, an) tends

to ∞. Then for any n ∈ N∫ +∞

0

g(ϕ(t), an(t))dt ≥
∫ t(x0,an)

0

g(ϕ(t), an(t))dt ≥ g0t(x0, an) ,

where g0 > 0 is defined as in (H2) (ii). It follows that V (x) = +∞.
(ii) The proof follows immediately from (3.1), (H2) (i), and f(0, a) = 0.
(iii) Observe that

|V (x)− V (y)| =
∣∣∣∣sup
a∈A

∫ +∞

0

g(ϕ(t, x, a), a(t))dt− sup
a∈A

∫ +∞

0

g(ϕ(t, y, a), a(t))dt

∣∣∣∣
≤ sup

a∈A

∫ +∞

0

|g(ϕ(t, x, a), a(t))− g(ϕ(t, y, a), a(t))| dt .(3.7)

We first prove that V is continuous on B(0, r/C).
Fix some x0 ∈ B(0, r/C). Then (H1) and (H2) (iii) imply∫ +∞

0

g(ϕ(t, x0, a), a(t))dt ≤ Lr
∫ +∞

0

‖ϕ(t, x0, a)‖dt

≤ LrC
∫ +∞

0

e−σt‖x0‖dt ≤ C1‖x0‖.

Fix ε > 0. From (H1) we can conclude that there exists T > 0 such that
C1‖ϕ(t, x, a)‖ ≤ ε/4 for all t ≥ T and all x ∈ B(0, r/C). Abbreviate L = Lr/C . Then
by Lipschitz continuity of f there exists a δ > 0 such that ‖ϕ(t, x0, a)−ϕ(t, y0, a)‖ <
ε/(2LT ) for all t ∈ [0, T ] and all y0 ∈ B(0, r/C) with ‖x0 − y0‖ < δ.

Putting this together yields for every a ∈ A∫ +∞

0

|g(ϕ(t, x0, a), a(t))− g(ϕ(t, y0, a), a(t))| dt

≤
∫ T

0

L ‖ϕ(t, x0, a)− ϕ(t, y0, a)‖ dt+ C1‖ϕ(T, x0, a)‖+ C1‖ϕ(T, y0, a)‖
≤ ε/2 + ε/4 + ε/4 ≤ ε ,

which by (3.7) implies continuity.
For x0 ∈ D0 we can use openness of D0 in order to conclude that there exists

an open neighborhood N of x0 and T > 0 such that ϕ(t, y0, a) ∈ B(0, r/C) for all
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y0 ∈ N , all a ∈ A, and all t ≥ T . Thus (3.3) and the continuity on B(0, r/C) imply
continuity in x0.

(iv) The proof follows immediately from Proposition 2.3 (iii) since D0 is open and
g(x) ≥ g0 > 0 for x outside B(0, r) as assumed in (H2).

(v) and (vi) follow immediately from (3.6), (i), and (ii); (vii) follows from (3.6),
(iii), and (iv); and (viii) follows from (3.6) and (iv).

We now turn to the formulation of suitable partial differential equations for which
V and v form solutions. Since in general these functions will not be differentiable, we
have to work with a more general solution concept, namely, viscosity solutions.

Let us recall the definition of viscosity solutions. (For more details about this
theory we refer to [3].)
Definition 3.2. Given an open subset Ω of R

n and a continuous function H :
Ω×R×R

n → R, we say that a lower semicontinuous (l.s.c.) function u : Ω→ R (resp.,
an upper semicontinuous (u.s.c.) function v : Ω → R) is a viscosity supersolution
(resp., subsolution) of the equation

H(x, u,Du) = 0, x ∈ Ω,(3.8)

if for all φ ∈ C1(Ω) and x ∈ argminΩ(u− φ) (resp., x ∈ argmaxΩ(v − φ)) we have

H(x, u(x), Dφ(x)) ≥ 0
(
resp., H(x, v(x), Dφ(x)) ≤ 0

)
.

A continuous function u : Ω → R is said to be a viscosity solution of (3.8) if u is a
viscosity supersolution and a viscosity subsolution of (3.8).

Remark 3.1. It is not difficult to see (cf. [3, Lemma II.1.7]) that the set of
derivatives Dφ(x) for x ∈ argminΩ(u− φ) coincides with the set

D−u(x) := {p ∈ R
n |u(x)− u(y)− p(x− y) ≥ −o(‖x− y‖) for all y ∈ R

n}
and that the set of derivatives Dφ(x) for x ∈ argmaxΩ(v − φ) equals

D+v(x) := {p ∈ R
n | v(x)− v(y)− p(x− y) ≤ o(‖x− y‖) for all y ∈ R

n}.
Hence one can alternatively define viscosity solutions via the sets D− and D+, the so
called sub- and superdifferentials. Note that if a function w : Ω→ R is differentiable
in some x ∈ Ω, the equality D+w(x) = D−w(x) = {Dw(x)} follows; hence for smooth
functions viscosity solutions coincide with classical solutions.

Recalling that V is locally bounded in D0 and v is locally bounded on R
n, the

following proposition follows from an easy application of the dynamic programming
principles (3.3) and (3.4); cf. [3, Chapter III].
Proposition 3.3. V is a viscosity solution of

inf
a∈A
{−DV (x)f(x, a)− g(x, a)} = 0, x ∈ D0,(3.9)

and v is a viscosity solution of

inf
a∈A
{−Dv(x)f(x, a)− (1− v(x))g(x, a)} = 0, x ∈ R

n.(3.10)

Observe that (3.10) is the straightforward generalization of the classical Zubov
equation (1.1) [26] multiplied by −1, which is necessary in order to obtain the proper
sign for viscosity sub- and supersolutions. Equation (3.9), however, shows that also
our “auxiliary function” V can be characterized as the solution of a suitable PDE.
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In order to get a uniqueness result, we use the following super- and suboptimality
principles. Our approach is closely related to that of Soravia [21, 22]; we quote the
following result from [21].
Theorem 3.4 (see [21, Theorem 3.2 (i)]). Consider the equation

sup
a∈A
{−Du(x)f(x, a)− h(x, a) + k(x, a)u(x)} = 0 .(3.11)

Then if u is a u.s.c. subsolution of (3.11), then it satisfies the lower optimality principle

u(x) = inf
a∈A

inf
t≥0

[∫ t

0

exp

(
−
∫ s

0

k(ϕ(r), a(r))dr

)
h(ϕ(s), a(s))ds

+ exp

(
−
∫ t

0

k(ϕ(t), a(t))ds

)
u(ϕ(t))

]
.

Recalling the definition of G from (3.5), we see that this result has immediate
applications for (3.9), (3.10).
Proposition 3.5.
(i) Let w be an l.s.c. supersolution of (3.10) in R

n; then for any x ∈ R
n

w(x) = sup
a∈A

sup
t≥0
{(1−G(x, t, a)) +G(x, t, a)w(ϕ(t))} .(3.12)

(ii) Let W be an l.s.c. supersolution of (3.9) in D0; then for any x ∈ D0

W (x) = sup
a∈A

sup
t≥0

{∫ t

0

g(ϕ(s), a(s))ds+W (ϕ(t))

}
.(3.13)

(iii) Let u be a u.s.c. subsolution of (3.10) in R
n, and let ũ : R

n → R be a
continuous function with u ≤ ũ. Then for any x ∈ R

n and any T ≥ 0

u(x) ≤ sup
a∈A

inf
t∈[0,T ]

{(1−G(x, t, a)) +G(x, t, a)ũ(ϕ(t))} .(3.14)

(iv) Let U be a u.s.c. subsolution of (3.9) in D0, and let Ũ : D0 → R be a contin-
uous function with U ≤ Ũ . Then for any x ∈ D0 and any T ≥ 0

U(x) ≤ sup
a∈A

inf
t∈[0,T ]

{∫ t

0

g(ϕ(s), a(s))ds+ Ũ(ϕ(t))

}
.(3.15)

Proof. If w is an l.s.c. supersolution of (3.10), then it follows by multiplication by
−1 and an application of the definition that −w is a u.s.c. subsolution of

sup
a∈A
{−Du(x)f(x, a) + (1 + u(x))g(x, a)} = 0, x ∈ R

n .(3.16)

This implies that we can directly apply Theorem 3.4 for the special case h ≡ −g, k ≡ g
to obtain that −w satisfies

−w(x) = inf
a∈A

inf
t≥0

[
−
∫ t

0

exp

(
−
∫ s

0

g(ϕ(r), a(r))dr

)
g(ϕ(s), a(s))ds

− exp

(
−
∫ t

0

g(ϕ(t), a(t))ds

)
w(ϕ(t))

]
.



A GENERALIZATION OF ZUBOV’S EQUATION 505

Now the assertion follows upon multiplication by −1 and using the fact that∫ t

0

G(ϕ(s), s, a(s))g(ϕ(s), a(s))ds = 1−G(x, t, a) .

(ii) follows by insertion of k ≡ 0, h ≡ −g in (3.11).
For the proof of (iii) we follow the ideas of [21] with minor modifications. Let

u : R
n → R be a u.s.c. subsolution of (3.10), let ũ : R

n → R be a continuous function
with u ≤ ũ, and define u∗ := −u and ũ∗ := −ũ. Again, a straightforward verification
of the definition shows that u∗ is an l.s.c. viscosity supersolution of

sup
a∈A
{−Dw(x)f(x, a) + (1 + w(x))g(x, a)} = 0, x ∈ R

n.(3.17)

From this equation it is easy to see that the auxiliary function ū : R
n+2 → R given

by ū(x, r, s) = e−su∗(x) + r is an l.s.c. supersolution of

sup
a∈A

{−e−sDxv(x, r, s)f(x, a) +Drv(x, r, s)e
−sg(x, a)−Dsv(x, r, s)g(x, a)

}
= 0

for x ∈ R
n, r, s ∈ R.

We now introduce a change of variables by choosing ρ : R→ R+ smooth, bounded,
and such that 0 < ρ̇ ≤M and ρ(s)→ 0 as s→ −∞. Now consider the function

U(z) = U(x, r, s) := ρ(ū(x, r, s)) = ρ(e−su∗(x) + r) .

By the rules for changes of variables (cf. [3, Proposition II.2.5]) it can be shown that
U is an l.s.c. supersolution of

sup
a∈A
{−Dzu(z)F (z, a)} = 0 , z ∈ R

n+2 ,(3.18)

where the underlying dynamics is given by

ż =


 ẋṙ
ṡ


 = F (z(t), a(t)) =


 f(ϕ(t), a(t))
−e−s(t)g(ϕ(t), a(t))
g(ϕ(t), a(t))


 .(3.19)

Note that the solution to this system corresponding to an initial value z = (x, 0, 0) is
given by

z(t) =

[
ϕ(t, x, a), (G(t, x, a)− 1),

∫ t

0

g(ϕ(s), a(s))ds

]′
.(3.20)

In order to apply results from [21, Appendix] we need that F satisfies a global
Lipschitz condition. Since this is not true in general, we localize the problem by
considering for k ∈ N the family of smooth functions ζk : R

n+2 → R with 0 ≤ ζk ≤ 1,
ζk ≡ 1 in B(0, k) ⊂ R

n+2, ζk ≡ 0 in B(0, k + 1)c, |Dζk| ≤ 2, and setting Fk = ζkF .
Then from (3.18) we can conclude that for each k ∈ N the function U is also a

supersolution of

sup
a∈A
{−Dzu(z)Fk(z, a)} = 0 ,

as the multiplication with the nonnegative function ζk does not affect the inequality
that a supersolution has to fulfill.



506 FABIO CAMILLI, LARS GRÜNE, AND FABIAN WIRTH

Now consider the continuous function φ : R
n+2 → R , φ(z) = φ(x, s, r), x ∈

R
n, s, r ∈ R,

φ(z) = ρ(e−sũ∗(x) + r) .

Since U ≥ 0 (by the choice of ρ), we obtain for any fixed λ > 0 that U is also a
supersolution of

λu+min

{
sup
a∈A
{−Dzu(z)Fk(z, a)} , u− (1 + λ)φ

}
= 0.(3.21)

This equation has a unique continuous viscosity solution and it can be shown [21,
Appendix] that this solution is given by the value function

V λ
k (z) := inf

a∈A
sup
t≥0
e−λtφ(zk(t)),

where zk(·) solves żk(t) = Fk(zk(t), a(t)), zk(0) = z. By the usual comparison theorem
for semicontinuous viscosity solutions (see, e.g., [3, Chapter V]), we obtain U ≥ V λ

k

for each λ > 0 and each k ∈ N. Hence letting λ→ 0 yields for all k ∈ N and all T > 0
the inequality

ρ(e−su∗(x) + r) = U(z) ≥ inf
a∈A

sup
t∈[0,T ]

φ(zk(t)).

By the boundedness of f the reachable set R(x, T ) is bounded for each x ∈ R
n, T > 0.

Hence for each z = (x, 0, 0) ∈ R
n+2 and each T > 0 there exists a k ∈ N such that

z(t) ∈ B(0, k) for all a ∈ A and all t ∈ [0, T ]. Furthermore, on B(0, k) the trajectories
z(·) and zk(·) coincide, and thus we can conclude by (3.20) and by the definition of φ
that

ρ(u∗(x)) = U(x, 0, 0) ≥ inf
a∈A

sup
t∈[0,T ]

φ(z(t))

= inf
a∈A

sup
t∈[0,T ]

ρ ((G(x, t, a)− 1) +G(x, t, a)ũ∗(ϕ(t))) .

Using the monotonicity of ρ, we obtain

u∗(x) ≥ inf
a∈A

sup
t∈[0,T ]

{(G(x, t, a)− 1) +G(x, t, a)ũ∗(ϕ(t))} ,

and hence

u(x) ≤ sup
a∈A

inf
t∈[0,T ]

{(1−G(x, t, a)) +G(x, t, a)ũ(ϕ(t))}

holds for each T ≥ 0, which shows (iii).
Assertion (iv) is proved analogously.
We can now apply these principles to the generalized version of Zubov’s equation

(3.10).
Proposition 3.6. Let w be a bounded l.s.c. supersolution of (3.10) on R

n with
w(0) ≥ 0. Then w ≥ v for v as defined in (3.2).
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Proof. First observe that the lower semicontinuity of w and the assumption
w(0) ≥ 0 imply that for each ε > 0 there exists a δ > 0 such that

w(x) ≥ −ε for all x ∈ R
n with ‖x‖ ≤ δ.(3.22)

Furthermore, the upper optimality principle (3.12) implies

w(x0) ≥ sup
a∈A

inf
t≥0
{1 +G(x0, t, a)(w(ϕ(t, x0, a))− 1)} .(3.23)

Now we distinguish two cases.
(i) x0 ∈ D0. In this case we know that for each a ∈ A we have ϕ(t, x0, a)→ 0 as

t→∞. Thus from (3.22) and (3.23), and using the definition of v, we can conclude

w(x0) ≥ sup
a∈A

{
lim
t→∞(1−G(x0, t, a))

}
= v(x0) ,

which shows the claim.
(ii) x0 �∈ D0. In this case by (3.6) and Proposition 3.1(v) it is sufficient to show

that w(x0) ≥ 1. By the definition of D0 we know that for each T > 0 that there exists
aT ∈ A such that t(x0, aT ) > T , which implies G(x0, T, aT ) ≤ exp(−Tg0), which
tends to 0 as T → ∞. Thus, denoting the bound on |w| by M > 0, the inequality
(3.23) implies

w(x0) ≥ (1− exp(−Tg0))− exp(−Tg0)M

for every T > 0, and hence w(x0) ≥ 1.
Proposition 3.7. Let u be a bounded u.s.c. subsolution of (3.10) on R

n with
u(0) ≤ 0. Then u ≤ v for v defined in (3.2).

Proof. By the upper semicontinuity of u and u(0) ≤ 0 we obtain that for every
ε > 0 there exists a δ > 0 with u(x) ≤ ε for all x ∈ R

n with ‖x‖ ≤ δ. Thus for each
ε > 0 we find a bounded and continuous function ũε : R

n → R with

ũε(0) < ε and u ≤ ũε.(3.24)

Now the lower optimality principle (3.14) implies for every t ≥ 0 that

u(x0) ≤ sup
a∈A
{1 +G(x0, t, a)(ũε(ϕ(t, x0, a))− 1)} .(3.25)

Again, we distinguish two cases.
(i) x0 ∈ D0. In this case ‖ϕ(t, x0, a)‖ → 0 as t → ∞ uniformly in a ∈ A. Hence

for each ε > 0 there exists tε > 0 such that

ũε(ϕ(tε, x0, a)) ≤ ε and |G(x0, tε, a)−G(x0,∞, a)| ≤ ε

for all a ∈ A. Thus from (3.24) and (3.25), and using the definition of v, we can
conclude

u(x0) ≤ sup
a∈A
{1− (1− ε)G(x0, tε, a)} ≤ v(x0) + ε(1− v(x0)) + ε ,

which shows the claim since v is bounded and ε > 0 was arbitrary.
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(ii) x0 �∈ D0. In this case by (3.6) and Proposition 3.1(v) it is sufficient to show
that u(x0) ≤ 1. By (i) we know that u(y) ≤ v(y) < 1 for each y ∈ D0; hence,
analogous to (3.24) for each ε > 0, we can conclude the existence of a continuous ũε
with u ≤ ũε and ũε(y) ≤ 1 + ε for each y ∈ D0. Since u is bounded by assumption,
we may choose ũε such that Mε := supx∈Rn ũε(x) <∞. If Mε ≤ 1 for some ε > 0, we
are done. Otherwise, fix ε > 0 and consider a sequence tn →∞. Then (3.25) implies
that there exists a sequence an ∈ A with

u(x0)− ε ≤ 1 +G(x0, tn, an)(ũε(ϕ(tn, x0, an))− 1).

If ϕ(tn, x0, an) ∈ D0, we know that ũε(ϕ(tn, x0, an)) ≤ 1 + ε, and since G ≤ 1, we
obtain u(x0)− ε ≤ 1 + ε. If ϕ(tn, x0, an) �∈ D0, then G(x0, tn, an) ≤ exp(−g0tn); thus

1 +G(x0, tn, an)(ũε(ϕ(tn, x0, an))− 1) ≤ 1 + exp(−g0tn)(Mε − 1).

Thus for each n ∈ N we obtain

u(x0) ≤ 2ε+ 1 + exp(−g0tn)(Mε − 1) ,

which for n → ∞ implies u(x0) ≤ 1 + 2ε. This proves the assertion since ε > 0 was
arbitrary.

Using these propositions, we can now formulate an existence and uniqueness the-
orem for the generalized version of Zubov’s equation (3.10).
Theorem 3.8. Consider the system (2.1) and a function g : R

n × A → R such
that (H1) and (H2) are satisfied. Then (3.10) has a unique bounded and continuous
viscosity solution v on R

n satisfying v(0) = 0.
This function coincides with v from (3.2). In particular, the characterization

D0 = {x ∈ R
n | v(x) < 1} holds.

Proof. This is immediate from Propositions 3.6 and 3.7.
For the sake of completeness we state the following analogous result for (3.9),

which is proved with the same techniques, using (3.13) and (3.15) instead of (3.12)
and (3.14). Observe that this result corresponds to the one in [4].
Theorem 3.9. Consider the system (2.1) and a function g : R

n × A → R.
Assume (H1) and (H2). Let O ⊂ R

n be an open set containing the origin, and let
U : O → R be a positive and continuous function which is a viscosity solution of (3.9)
on O and satisfies U(0) = 0 and U(x)→∞ for x→ ∂O and for |x| → ∞.

Then U coincides with V from (3.1), and O = D0. In particular, the function
V from (3.1) is the unique positive continuous viscosity solution of (3.9) on D0 with
V (0) = 0.

For practical purposes, Theorem 3.8 might be inconvenient since we have to com-
pute (or verify) a solution of (3.10) on the whole R

n. The following fact can be
exploited to show that this is not always necessary.

Remark 3.2. The optimality principles (i) and (iii) of Proposition 3.5 also hold
if we have viscosity sub- or supersolutions of (3.10), which are defined only on some
proper open subset O ⊂ R

n, except that in this case the “inf” and “sup” over the time
t is taken only up to the first time when the trajectory under consideration leaves O.
More precisely, (3.12) becomes

w(x) = sup
a∈A

sup
t∈[0,τx(a)]

{(1−G(x, t, a)) +G(x, t, a)w(ϕ(t))} ,(3.26)

and (3.14) becomes

u(x) ≤ sup
a∈A

inf
t∈[0,τx(a)]

{(1−G(x, t, a)) +G(x, t, a)ũ(ϕ(t))} ,(3.27)
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where τx(a) := inf{t ≥ 0 |ϕ(t, x, a) �∈ O}. We refer to [22] for a proof using the same
arguments as in the R

n case combined with a localization technique.
Using these “nonglobal” optimality principles, we are now able to state nonglobal

versions of the Propositions 3.6 and 3.7.
Proposition 3.10. Consider some open set O ⊂ R

n. Let w : clO → R be
a bounded l.s.c. supersolution of (3.10) on O with w(0) ≥ 0 and w(x) ≥ 1 for all
x ∈ ∂O. Then w ≥ v|O for v as defined in (3.2).

Proof. The proof follows with the same techniques as the proof of Proposition 3.6
using (3.26) instead of (3.12).

In contrast to Proposition 3.10, we have to strengthen the assumption of Propo-
sition 3.7 in order to get the corresponding nonglobal result.
Proposition 3.11. Consider some open set O ⊂ R

n. Let u : clO → R be a
bounded continuous subsolution of (3.10) on O with u(0) ≤ 0 and u(x) = 1 for all
x ∈ ∂O. Then u ≤ v|O for v as defined in (3.2).

Proof. It is sufficient to show that D0 ⊆ O since in this case we get v|∂O ≡ 1 and
thus obtain the assertion with the same techniques as in the proof of Proposition 3.7
using (3.27) instead of (3.14).

In order to show D0 ⊆ O, assume that D0 �⊆ O. Then we obtain

r0 := sup{r > 0 | {x ∈ R
n | v(x) ≤ r} ⊂ O} < 1.

We set S := {x ∈ R
n | v(x) ≤ r0}. Note that from the optimality principle (3.4)

we immediately obtain that v is strictly decreasing along each trajectory ϕ(t, x0, a);
hence ϕ(t, x0, a) ∈ intS ⊆ O for all t > 0, a ∈ A. By definition of r0 there exists
x0 ∈ ∂O with v(x0) = r0 and u(x0) = 1; hence by continuity of u there exists ε > 0
and η > 0 such that u(x) > r0 + ε for all x ∈ O ∩ B(x0, η). Fixing some arbitrary
a∗ ∈ A and some τ > 0 sufficiently small, we set x1 := ϕ(τ, x0, a

∗) ∈ O ∩ B(x0, η).
Then ϕ(t, x1, a) ∈ intS ⊆ O for all t ≥ 0, a ∈ A; i.e., the trajectory never reaches
∂O, implying that (3.27) coincides with (3.14). (Note that by continuity of u we can
choose ũ = u.) Thus we obtain

r0 + ε ≤ u(x1) ≤ sup
a∈A

inf
t∈[0,T ]

{(1−G(x, t, a)) +G(x, t, a)u(ϕ(t, x1, a))}

for all T > 0. Since u is continuous with u(0) ≤ 0 and ϕ(t, x1, a) → 0 as t → ∞, we
obtain by letting T →∞

r0 + ε ≤ u(x1) ≤ lim
t→∞ sup

a∈A
{(1−G(x, t, a))} = v(x1) ≤ r0,

which is a contradiction and hence shows D0 ⊆ O.
From these propositions we can now easily deduce the following theorem. It shows

that we can restrict ourselves to a proper open subset O of the state space and still
obtain our solution v, provided D0 ⊆ O. Conversely, if D0 �⊆ O, then no viscosity
solution v with v(x) = 1 for all x ∈ ∂O can exist.
Theorem 3.12. Consider the system (2.1) and a function g : R

n × A → R.
Assume (H1) and (H2). Let O ⊂ R

n be an open set containing the origin, and let
v : clO → R be a bounded and continuous function which is a viscosity solution of
(3.10) on O and satisfies v(0) = 0 and v(x) = 1 for all x ∈ ∂O.

Then v coincides with the restriction v|O of the function v from (3.2). In partic-
ular, the characterization D0 = {x ∈ O | v(x) < 1} holds.

Proof. The proof follows immediately from Propositions 3.10 and 3.11.
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4. Further properties of the solution. In this section we collect several prop-
erties of the solution v of Zubov’s equation from Theorem 3.8. In particular, we show
that this solution is a robust Lyapunov function on D0 and that additional assump-
tions on g ensure Lipschitz continuity of v.
Theorem 4.1. The function v is a robust Lyapunov function for the system

(2.1). More precisely, we have

v(ϕ(t, x0, a(·)))−v(x0) ≤
[
1− exp

(
−
∫ t

0

g(ϕ(τ), a(τ))dτ

)]
(v(ϕ(t, x0, a(·)))−1) < 0

for all x0 ∈ D0 \{0} and all a(·) ∈ A. In particular, each sublevel set of v is positively
invariant.

Proof. The dynamic programming principle (3.4) implies

v(x) ≥ 1−exp
(∫ t

0

g(ϕ(τ, x, a), a(τ))dτ

)
+exp

(∫ t

0

g(ϕ(τ, x, a), a(τ))dτ

)
v(ϕ(t, x, a))

for each a ∈ A. This immediately yields the assertion.
Remark 4.1.
(i) If v is differentiable in some point 0 �= x0 ∈ D0, this yields the more familiar

inequality

sup
a∈A
Dv(x0)f(x, a) ≤ (v(x0)− 1)g(x, a) < 0,

which, in fact, can also be directly derived from (3.10).
(ii) It follows immediately from Proposition 3.5 (ii) that any viscosity supersolu-

tion w of (3.10) with w(0) = 0 is a robust Lyapunov function on its sublevel
set {x ∈ R

d |w(x) < 1}.
Now we investigate regularity properties for the function v. In general, we cannot

expect this function to be differentiable. A suitable choice of g, however, guarantees
Lipschitz continuity. We start by investigating this for the function V defined in (3.1).
Proposition 4.2. Assume (H1) and (H2) and that f(·, a) is locally Lipschitz

continuous uniformly in a; i.e., for any R > 0 there exists a constant MR such that

‖f(x, a)− f(y, a)‖ ≤MR‖x− y‖ for all x, y ∈ B(0, R), a ∈ A .
Assume, furthermore, that there exists a neighborhood N of the origin such that for
all x, y ∈ N the inequality

|g(x, a)− g(y, a)| ≤ Kmax{‖x‖, ‖y‖}s‖x− y‖
holds for some K > 0 and s > Mr/σ with r > 0, σ > 0 as in (H1). Then V is locally
Lipschitz in D0.

Proof. Let S ⊂ D0 be compact. According to (H2), there exists a time T > 0 such
that ϕ(t, x, a) ∈ N ∩B(0, r) for all t ≥ T, x ∈ S, a ∈ A. Furthermore, the set R(S, T )
is bounded, and we may choose R > 0 large enough so that R(S, T ) ⊂ B(0, R). Now
fix x, y ∈ S. Analogously to the proof of Proposition 3.1(iii), we obtain

|V (x)− V (y)| ≤ sup
a∈A

∫ +∞

0

|g(ϕ(t, x, a), a(t))− g(ϕ(t, y, a), a(t))| dt

≤ sup
a∈A

∫ T

0

|g(ϕ(t, x, a), a(t))− g(ϕ(t, y, a), a(t))| dt
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+ sup
a∈A

∫ +∞

T

|g(ϕ(t, x, a), a(t))− g(ϕ(t, y, a), a(t))| dt

≤
∫ T

0

LRe
MRt‖x− y‖dt

+

∫ +∞

T

Kmax{‖ϕ(T )‖, ‖y(T )‖}sCse−sσ(t−T )eMrt‖x− y‖dt

≤
(
LR
eMRT − 1

MR
+KrsCseσT

e(Mr−sσ)T

sσ −Mr

)
︸ ︷︷ ︸

=LS

‖x− y‖ .

This shows the assertion.
Obviously, this result immediately carries over to v on D0. In order to obtain

Lipschitz continuity of v on the rest of R
n, it is convenient to consider a generalization

of the transformation (3.2) by defining

vδ(x) := 1− exp(−δV (x))
for δ > 0. Observe that this results in the equation

inf
a∈A
{−f(x, a)Dv(x)− δ(1− v(x))g(x, a)} = 0, x ∈ R

n.(4.1)

Thus this transformation is equivalent to an appropriate choice of g in (3.10). Observe
that for δ → 0 the function vδ converges to 0 on D0 and is equal to 1 outside D0.
Note that this convergence to a piecewise constant function is a typical behavior of
discounted optimal value functions, see, e.g., [10].

In the opposite case, i.e., for sufficiently large δ > 0, the following result holds for
vδ.
Proposition 4.3. Assume that f(·, a) and g(·, a) are globally Lipschitz continu-

ous in R
n, with constants Lf , Lg > 0 independent of a ∈ A, and assume that there

exists a neighborhood N of the origin such that for all x, y ∈ N the inequality

|g(x, a)− g(y, a)| ≤ Kmax{‖x‖, ‖y‖}s‖x− y‖
holds for some K > 0 and s > Lf/σ with σ > 0 given by (H1). Then the function vδ
is Lipschitz continuous in R

n for all δ > 0 sufficiently large.
Proof. Let L0 denote the Lipschitz constant of V on B(0, r) guaranteed by Propo-

sition 4.2. For x ∈ D0, define Tx = sup{t(x, a) : a ∈ A} and observe that V (x) ≥ g0Tx,
where g0 > 0 is given by (H2). If x, y ∈ D0, then for any ε > 0, there exists a control
a ∈ A such that

|V (x)− V (y)| ≤
∫ Tx∨Ty

0

|g(ϕ(t, x, a), a(t))− g(ϕ(t, y, a), a(t))|dt
+|V (ϕ(Tx ∨ Ty, x, a))− V (ϕ(Tx ∨ Ty, y, a))|+ ε

≤
∫ Tx∨Ty

0

Lg exp(Lf t)‖x− y‖dt+ L0‖x− y‖ exp(Lf (Tx ∨ Ty)) + ε
≤ (L0 + Lg/Lf ) exp(LfV (x)/g0)‖x− y‖+ ε.

So we see that V is locally Lipschitz continuous in D0 with a constant of the form
L exp(LfV (x)/g0).
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Let φ ∈ C1(Rn) be such that vδ(x)− φ has a local maximum at x0 ∈ D0, where
we may assume that vδ(x0) − φ(x0) = 0 and φ(x) ≤ 1,∀x ∈ R

n. Then V − ψ has a
local maximum at x0 for ψ(x) = − ln(1− φ(x))/δ.

It follows that

|Dφ(x0)| ≤ δ|Dψ(x0)| exp(−δV (x)) ≤ Lδ exp((Lf/g0 − δ)V (x)).

Hence, letting δ ≥ Lf/g0 and recalling that vδ ≡ 1 in R
n\D0, we have that |Dφ(x0)| ≤

δL for any x ∈ R
n and for any φ ∈ C1(Rn) such that vδ(x)− φ has a local maximum

at x. This implies that vδ is Lipschitz continuous in R
n with Lipschitz constant δL,

cf. [5, Lemma 2.10].

5. Smooth solutions. It is always of interest to know whether for a given
stability property there are Lyapunov functions with certain regularity properties. In
[16] it is shown that under the condition of global uniform asymptotic stability, that
is, under the condition D0 = R

n in our terminology, there exists a C∞ Lyapunov
function V : R

n → R such that

DV (x)f(x, a) ≤ −α1(‖x‖)(5.1)

for some class K∞ function α1. Furthermore, there exist class K∞ functions α2, α3

such that

α2(‖x‖) ≤ V (x) ≤ α3(‖x‖).(5.2)

(As usual in stability theory, we call a function α : [0,∞)→ [0,∞) of class K∞ if it is
continuous, strictly increasing, unbounded, and satisfies α(0) = 0). By [23, Theorems
1 and 2, Proposition 3] it follows that if we add the assumption that f(x,A) be convex
for all x ∈ R

n, then there exists a C∞ Lyapunov function V on D0 (which is in this
case equal to D by Proposition 2.3 (iii)). Assuming that ω : D → R≥0 is continuous
and satisfies ω(x) = 0 if and only if x = 0, and that ω(xn) → ∞ for any sequence
{xn} with limxn ∈ ∂D or lim ‖xn‖ = ∞, then V can be chosen in such a manner
that it has the properties (5.1), (5.2), where ‖x‖ has to be replaced by ω(x). It is of
interest, and therefore the topic of our last section, to know whether we are able to
reproduce these functions via our approach.

We first treat the case of global stability.
Lemma 5.1. Assume that system (2.1) is globally uniformly asymptotically stable

at 0; then g(x, a) can be chosen such that the corresponding solutions V of (3.9) and v
of (3.10) are C∞. Furthermore, for any smooth Lyapunov function V satisfying (5.1)
and (5.2) there exists a function g : R

n → R such that V is the corresponding solution
of (3.9).

Proof. By [16, Theorem 2.9, Remark 4.1] there exists a C∞ Lyapunov function
V : R

n → R for (2.1). Now define v(x) = 1− e−V (x) as before, and

g(x, a) := g(x) := − sup
a∈A
Dv(x)f(x, a)

1− v(x)(5.3)

= − sup
a∈A
e−V (x)DV (x)f(x, a)

e−V (x)
= − sup

a∈A
DV (x)f(x, a) .

It is clear that the function g thus defined satisfies condition (i) of (H2). By (5.1)
we have g(x) ≥ α1(‖x‖), which implies (ii). The third condition is implied by the
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Lipschitz continuity of f and smoothness of V . A straightforward computation yields
that V and v are the respective (unique) solutions of (3.9) and (3.10).

The second statement is clear by the previous construction.
It is now tempting to try to copy this argument for the nonglobal case by utilizing

the smooth maximal Lyapunov functions defined on the domain of attraction which
are obtained in [23]. In this way one might hope to construct smooth Lyapunov
functions that are representable as suitable solutions of (3.9), respectively, (3.10).
This approach, however, has one problem. It is by no means clear that g as defined in
the proof of Lemma 5.1 can be continuously extended to R

n so that (H2) is satisfied.
We can, however, reconstruct smooth solutions on any subset of D0 that is bounded
away from ∂D0.
Proposition 5.2. Assume (H1), (H2), and that f(x,A) is convex for all x ∈ R

n.
Let B ⊂ D0 satisfy dist(B, ∂D0) > 0; then there exists a function g : R

n → R such
that the corresponding solution v of (3.10) is C∞ on a neighborhood of B.

Proof. Let V denote a smooth Lyapunov function for system (2.1) defined on D.
Let U be an open neighborhood of B contained in D0, and define g|U by (5.3). Then
g can be extended to a continuous function on R

n satisfying (H2). The corresponding
unique solution v of (3.10) is C∞ on U .

6. Example. In this section we illustrate our results by a simple example, where
we explicitly verify a (nonsmooth) solution of the generalized version of Zubov’s equa-
tion (3.10). Consider the system

ẋ1 = −x1 + ax21,
ẋ2 = −x2 + ax22

with x = (x1, x2)
T ∈ R

2 and A = [−1, 1]. We claim that for g(x, a) = ‖x‖2 = x21 + x22
the function v defined by

v(x) =

{
1− e−V (x), x ∈ (−1, 1)2,
1, x �∈ (−1, 1)2,

where V : (−1, 1)2 → R is given by

V (x) =

{ − ln(1− x1)− ln(1− x2)− x1 − x2, x1 ≥ −x2,
− ln(1 + x1)− ln(1 + x2) + x1 + x2, x1 ≤ −x2,

solves (3.10).
Note that by Theorem 3.12 it suffices to verify (3.10) on (−1, 1)2, since v|(−1,1)2

satisfies the assumptions of this theorem with O = (−1, 1)2.
Using Remark 3.1, we identify the set of possible derivatives of functions φ such

that v − φ has a local extremum for x ∈ (−1, 1). First note that v is smooth on
(−1, 1)2 \D1, where D1 is the diagonal {x ∈ (−1, 1)2 |x1 = −x2}. In this region Dφ
must coincide with Dv, which is computed to be

Dv(x) =

{
(x1(1− x2)e+x1+x2 , x2(1− x1)e+x1+x2), x ∈ (−1, 1)2, x1 > −x2,
(x1(1 + x2)e

−x1−x2 , x2(1 + x1)e
−x1−x2), x ∈ (−1, 1)2, x1 < −x2.

On D1 (setting x = (y,−y)T ) one verifies that the superdifferential D+v is empty,
while the subdifferential D−v satisfies

D−v(y,−y) = {θp1 + (1− θ)p2 | θ ∈ [0, 1]},
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where

p1 = (+y(y + 1), +y(y − 1)) ,

p2 = (−y(y − 1), −y(y + 1)) .

Using these computations, we obtain that on (−1, 1)2 (3.10) becomes

min
a∈[−1,1]

{−ex1+x2(1− a)(x31 + x32 − x1x32 − x31x2)} = 0 for x1 > −x2,

min
a∈[−1,1]

{e−x1−x2(1 + a)(x31 + x
3
2 + x

3
1x2 + x1x

3
2)} = 0 for x1 < −x2,

and

min
a∈[−1,1]

{2(1− a+ 2θa)y4)} ≥ 0 for x1 = −x2 =: y.

It turns out that in the first case the minimizer is a = 1, and in the second case it
is a = −1, while in the third case it is a = 1 for θ ∈ [0, 1/2), a = −1 for θ ∈ (1/2, 1],
and any a ∈ [−1, 1] for θ = 1/2. In all cases we see that the desired (in)equalities are
satisfied, which, in particular, shows that D0 = (−1, 1)2.
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Introduction. A two person zero sum repeated game with lack of information
on both sides (Aumann and Maschler (1995)) is a multistage game where the payoff
function depends on two parameters and where each player knows only one of the
parameters (see section 1).

Mertens and Zamir (1971–1972) have shown that the sequence of the values con-
verges when the length of the game grows to infinity, to the unique solution of the
following system of functional equations with unknown v:{

v(p, q) = Cavp∈∆(K) [min(u, v)] (p, q) (S1) ,
v(p, q) = V exq∈∆(L) [max(u, v)] (p, q) (S2) .

(S)

In this system, K and L are two finite sets, ∆(K) is the unit simplex of RK , ∆(L)
is the unit simplex of RL, and u is the value of the average game (that is, the game
where the players do not use their information). For a function ϕ and a convex set
C, CavC [ϕ] (resp., V exC [ϕ]) is the smallest concave function on C greater than ϕ
(resp., the greatest convex function on C smaller than ϕ).

In fact, Mertens and Zamir (1977) also studied the “functional equations” (S) in
a general framework without reference to game theoretical tools: u is not necessarily
the value of a game, and ∆(K) and ∆(L) are replaced by any convex-compact sets C
and D in finite dimension. Remark that when u does not depend on the first variable,
the unique solution of (S) is V exD [u]. The example of Kruskal (1969) shows that
the convexification operator does not conserve the continuity for any convex compact
set D. (That is, V exD [u] is not always continuous even if u is continuous.) This
implies that the Mertens–Zamir system does not always admit a continuous solution

∗Received by the editors January 24, 2000; accepted for publication (in revised form) March 7,
2001; published electronically July 25, 2001.
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for arbitrary convex compact sets C and D. In a recent work (Laraki (2001a)), we
studied necessary and sufficient conditions on the geometry of a convex-compact set
X in order that the convexification operator on X conserves the continuity (resp.,
uniformly the Lipschitz property). In Laraki (2001b), we studied the existence of a
continuous solution for (S) when C and D are in the class of convex-compact sets
characterized in Laraki (2001b). This is the class of convex-compact sets X such that
the convexification operator on X conserves the continuity.

In this paper we will consider the existence of a Lipschitz solution for (S) in a
general framework. In Laraki (2001a) we proved that when X is a polytope in a
normed real vector space, then the convexification operator conserves uniformly the
Lipschitz property. We showed that in finite dimension, being a polytope is also a
necessary condition to preserve uniformly the Lipschitz property. Hence it is natural
to ask if (S) admits a Lipschitz solution when C and D are two polytopes in a normed
real vector space and u is Lipschitz.

The main contributions of this paper are

• a new characterization (P1 and P2, below) equivalent to (S) in a very general
framework;
• a new simple proof for the convergence of the discounted values of the re-
peated game with incomplete information on both sides by providing a game
interpretation of P1 and P2 (section 2);

• the same idea allows us to show that (S) admits a Lipschitz solution (where
C and D are two polytopes in a normed vector space and u is Lipschitz) by
using an auxiliary (stochastic) game called the “splitting game” (introduced
by Sorin (2000)) (see sections 3–4).

A function f(p, q) is concave-convex if it is concave in p and convex in q.

More precisely, we prove that the limit of the discounted values is the unique
continuous concave-convex function, v(p, q), satisfying the following variational in-
equalities.

• P1: For all q0, if [p0, v (p0, q0)] is an extreme point of (the hypograph) of
v (·, q0) , then v (p0, q0) ≤ u(p0, q0).
• P2: For all q0, if [q0, v (p0, q0)] is an extreme point of (the epigraph) of v (q0, ·) ,
then v (p0, q0) ≥ u(p0, q0).

In section 2.1 we will show that any accumulation point, v, of the family of the
discounted values {vλ} satisfies P1 and P2. This very simple proof translates the
following intuitive idea: if p0 is an extreme point of v(·, q0), then “ asymptotically”
Player 1 must not use his information, and then Player 2 can guarantee asymptotically
(just by not using his information) u(p0, q0). This implies that v(p0, q0) ≤ u(p0, q0).

In section 2.2 we deduce the uniqueness of a continuous solution by proving a
comparison theorem.

In section 3 we study the existence of a Lipschitz solution by using the splitting
game.

Finally, we prove the equivalence with Mertens–Zamir’s system in a very general
framework (section 4).

1. Preliminary results. We recall here the framework of zero sum repeated
games with incomplete information (Aumann and Maschler (1995)).

I and J are two finite sets, X = ∆(I) (the set of probabilities on I), and Y =
∆(J).

(
Ak,l

)
k∈K,l∈L is a family of I × J-matrices (I rows and J columns).
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Definition 1. For each p ∈ ∆(K) and q ∈ ∆(L), the game form GF (p, q) is as
follows.

• At stage 0, k is chosen according to the probability p and announced to Player
1 only; l is chosen according to the probability q and announced to Player 2
only.
• At stage 1, Player 1 chooses a move i1 ∈ I, Player 2 chooses a move j1 ∈ J ,
and the couple (i1, j1) is told to both players. The payoff is A

k,l
i1,j1

but is not
announced.
• Inductively, at stagem, knowing the past history hm = (i1, j1, . . . , im−1, jm−1),
Player 1 chooses a move im ∈ I, Player 2 chooses a move jm ∈ J , and the
new history hm+1 = (hm, im, jm) is told to both players.The payoff is A

k,l
im,jm

and is not announced.
• Both players know the above description (public knowledge).

We denote by Σ (resp., Υ) the set of behavioral strategies of Player 1 (resp.,
Player 2).

Several games are associated to this game form and differ only in the way the
stream of payoffs is evaluated. We will be interested in the λ -discounted gameGλ(p, q)
(0 < λ < 1), where, if the play is (k, l, (i1, j1), . . . , (in, jn), . . .), Player 2 gives Player

1 the amount
∑∞
m=1 λ(1− λ)m−1Ak,limjm . The stage payoff being uniformly bounded,

the payoff function is jointly continuous and bilinear on Σ×Υ. Hence (Sion (1958))
this game has a value vλ(p, q).

Notations.

• Let u(p, q) be the value of the one shot average game G(p, q) with matrix

payoff Ai,j(p, q) =
∑
k∈K pkqlAk,lij . Then u is a Lipschitz function on ∆(K)×

∆(L) with constant ‖A‖∞ = maxk,l,i,j

∥∥∥Ak,li,j∥∥∥ .
• Let us call a function f(p, q) concave in p and convex in q a saddle function.
• Let F be the set of saddle Lipschitz functions on ∆(K)×∆(L) with constant
‖A‖∞.

• Fix (p, q) ∈ ∆(K)×∆(L) initial probabilities and (x, y) ∈ XK×Y L one stage
strategies of the players. Then, for all (i, j) ∈ I × J , we define:
x(i) =

∑
k∈K pkxk(i) (the total probability of playing i),

y(j) =
∑
l∈L q

lyl(j) (the total probability of playing j),

p(i): the conditional probability over K knowing i given by pk(i) = pkxk(i)
x(i) ,

q(j): the conditional probability over L knowing j given by ql(j) = plyl(j)
y(j) ,

Ax,y(p, q) =
∑
k,l,i,j p

kqlxk(i)yl(j)Ak,li,j .

Then we have the following property (see Mertens, Sorin and Zamir (1994)).

Proposition 1. vλ is in F and satisfies the following recursive formula:

vλ(p, q) = max
x∈XK

min
y∈Y l


λAx,y(p, q) + (1− λ)

∑
i∈I,j∈J

x(i)y(j)vλ (p(i), q(j))


 .

2. The convergence of vλ. We prove in this section that the asymptotic value,
v = limλ→0 vλ, exists and is the unique saddle continuous function on ∆(K)×∆(L)
satisfying P1 and P2. In the first subsection we give a game theoretical interpretation
of these properties by proving that any accumulation point of vλ satisfies P1 and P2.
In the second subsection we prove uniqueness via a comparison theorem.
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2.1. Existence. We want to express mathematically the fact that if p0 is an
extreme point of v(·, q0), then “asymptotically” Player 1 must not use his information.
We will follow the operator approach of Rosenberg and Sorin (2001) to study repeated
games with incomplete information. (We use here some of their notations.)

Define for 0 ≤ λ ≤ 1 an operator T (λ, ·) which associates to a function f ∈ F the
function T (λ, f) defined by

T (λ, f)(p, q) = max
x∈XK

min
y∈Y L


λAx,y(p, q) + (1− λ)

∑
i,j

x(i)y(j)f (p(i), q(j))




= min
y∈Y L

max
x∈XK


λAx,y(p, q) + (1− λ)

∑
i,j

x(i)y(j)f (p(i), q(j))


 .

Denote by Xλ(f)(p, q) (resp., Yλ(f)(p, q)) the set of optimal strategies of Player 1
(resp., Player 2) in the above one shot game.

We introduce NR1
p, the set of nonrevealing strategies of Player 1, i.e., the set

of x ∈ XK such that the conditional probability distribution on K induced by x is
constant (thus equal to p), which is the case if and only if, for all k �= k′ such that
p(k)p(k′) > 0, xk = xk

′
. NR2

q is defined in the same way.
For a function g defined on ∆(K), p is an extreme point of g if g(p) = αg(p1) +

(1− α) g(p2) with p = αp1 + (1− α) p2 and 0 < α < 1 implies p1 = p2 = p.
Because the family {vλ} is uniformly Lipschitz, there exist v ∈ F and (λn) → 0

such that vλn converges uniformly to v. Such a v is called an accumulation point of
the family {vλ} .

We have the following properties.
Proposition 2 (see Rosenberg and Sorin (2001)).
(i) vλ = T (λ, vλ).

For all v, an accumulation point of {vλ} , we have the following.
(ii) v = T (0, v).
(iii) If p0 is an extreme point of v(·, q0), then X0(v)(p0, q0) ⊂ NR1

p0 .
(iv) If q0 is an extreme point of v(p0, ·), then Y0(v)(p0, q0) ⊂ NR2

q0 .
Proof. (i) and (ii) are consequences of Proposition 1, the definition and the con-

tinuity of T .
For (iii), let x∗ ∈ X0(v)(p0, q0). Then we have

v(p0, q0) = min
y∈Y L


∑
i,j

x∗(i)y(j)v (p0(i), q0(j))




≤ min
y∈Y

[∑
i

x∗(i)v (p0(i), q0)

]

≤
∑
i

x∗(i)v (p0(i), q0) .

But, as v (·, q0) is concave, we have
v(p0, q0) =

∑
i

x∗(i)v (p0(i), q0) .

Since p0 is an extreme point of v (·, q0), we deduce that p0(i) = p0 for all i. Thus
x∗ ∈ NR1

p0 .
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Let us recall the basic variational inequalities P1 and P2 for a function v.
• P1: For all q0 ∈ ∆(L), if p0 ∈ ∆(K) is an extreme point of v (·, q0), then
v (p0, q0) ≤ u(p0, q0).

• P2: For all p0 ∈ ∆(K), if q0 ∈ ∆(L) is an extreme point of v (q0, ·), then
v (p0, q0) ≥ u(p0, q0).

Proposition 3. Any accumulation point v of {vλ} satisfies P1 and P2.
Proof. Let p0 be an extreme point of v(·, q0).
Denote Ex,y [f ] (p0, q0) =

∑
i∈I,j∈J x(i)y(j)f (p0(i), q0(j)) . Then, we have

vλn(p0, q0)
= max
x∈XK

min
y∈Y l

[λn [Ax,y(p0, q0)− Ex,y [vλn ] (p0, q0)] + Ex,y [vλn ] (p0, q0)]

= max
x∈Xλn (vλn )(p0,q0)

min
y∈Y l

[λn [Ax,y(p0, q0)− Ex,y [vλn ] (p0, q0)] + Ex,y [vλn ] (p0, q0)]

≤ max
x∈Xλn (vλn )(p0,q0)

min
y∈Y

[
λn
[
Ax,y(p0, q0)−

∑
i∈I x(i)vλn (p0(i), q0)

]
+
∑
i∈I x(i)vλn (p0(i), q0)

]
.

Thus

max
x∈Xλn (vλn )(p0,q0)

min
y∈Y

(
λn

[
Ax,y(p0, q0)−

∑
i∈I

x(i)vλn(p0(i), q0)

]

+
∑
i∈I

x(i)vλn(p0(i), q0)− vλn(p0, q0)

)
≥ 0.

But vλn concave yields∑
i∈I

x(i)vλn (p0(i), q0)− vλn(p0, q0) ≤ 0,

so that

max
x∈Xλn (vλn )(p0,q0)

min
y∈Y

λn

[
Ax,y(p0, q0)−

∑
i∈I

x(i)vλn (p0(i), q0)

]
≥ 0.

Since λn > 0, this gives

max
x∈Xλn (vλn )(p0,q0)

min
y∈Y

[
Ax,y(p0, q0)−

∑
i∈I

x(i)vλn (p0(i), q0)

]
≥ 0.

Now let X∗(v)(p0, q0) be the set of accumulation points of Xλn(vλn)(p0, q0). Since the
correspondence (λ, f)→ Xλ(f) is upper-semicontinuous, we deduce that

X∗(v)(p0, q0) ⊂ X0(v)(p0, q0).

But p0 is an extreme point of v(·, q0); thus by (iii) in Proposition 2 we deduce that

X0(v)(p0, q0) ⊂ NR1
p0 .

Hence, letting n→∞ and using the uniform convergence of vλn to v, we deduce that

max
x∈NR1

p0

min
y∈Y


∑
k,l

pk0q
l
0x
kAk,ly − v (p0, q0)


 ≥ 0.
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Thus

max
x∈X

min
y∈Y


∑
k,l

pk0q
l
0xA

k,ly − v (p0, q0)


 ≥ 0,

which implies that

u (p0, q0) ≥ v (p0, q0) .

Hence v satisfies P1 and, similarly, P2.

2.2. Uniqueness. To show uniqueness, we use a comparison result and basically
follow the idea of Mertens and Zamir (1971–72, 1977).
Proposition 4. (maximum principle). Let v1 and v2 be two saddle continuous

functions satisfying P1 and P2, respectively. Then v1 ≤ v2.
Proof. Let δ = maxp,q [v1(p, q)− v2(p, q)] . We will show that δ ≤ 0. Let

C = Argmaxp,q [v1(p, q)− v2(p, q)]. C is a nonempty compact set.
We first prove the following.
Lemma 2. If (p0, q0) is an extreme point of the convex-hull of C, then p0 is an

extreme point of v1 (·, q0) and q0 is an extreme point of v2 (p0, ·) .
Proof. Assume that v1(p0, q0) = αv1(p1, q0) + (1− α) v1(p2, q0) with p0 = αp1 +

(1− α) p2 and 0 < α < 1.
Since v2 is concave in p, we have

αv2(p1, q0) + (1− α) v2(p2, q0) ≤ v2(p0, q0),

so that

α [v1(p1, q0)− v2(p1, q0)] + (1− α) [v1(p2, q0)− v2(p2, q0)]
≥v1(p0, q0)− v2(p0, q0) = δ.

Since v1(p, q)−v2(p, q) ≤ δ for all (p, q) , we necessarily have equality. Hence (pi, q0) ∈
C for i = 1, 2, which is a contradiction.

Now we continue with the proof of the proposition.
Consider an extreme point (p0, q0) of the convex hull of C. By the previous

lemma, P1, and P2, we deduce that v1(p0, q0) ≤ u(p0, q0) and v2(p0, q0) ≥ u(p0, q0).
Thus δ = v1(p0, q0)− v2(p0, q0) ≤ u(p0, q0)− u(p0, q0) = 0.
Theorem 3. vλ converges uniformly to the unique continuous saddle function

on ∆(K)×∆(L) satisfying P1 and P2.
Proof. The proof follows from the existence result (Proposition 3) and the com-

parison result (Proposition 4).

3. The general case: Existence via the splitting game. Here H is a Lips-
chitz function on C ×D, where C and D are two polytopes in a normed real vector
space.

We want to study the existence of a Lipschitz solution to the functional equations
with unknown Ψ: {

Ψ(c, d) = Cavc∈C [min(H,Ψ)] (c, d),
Ψ(c, d) = V exd∈D [max(H,Ψ)] (c, d).

In section 4 we will prove in a more general framework that this system is equivalent
to the properties P1[H,C,D] and P2[H,C,D], below. Thus the comparaison theo-
rem implies the uniqueness of a continuous solution. Here we use the same proof as
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for a repeated game with incomplete information to prove the existence of a Lips-
chitz solution to the functional equations by considering an auxiliary stochastic game
introduced by Sorin (2000) called the splitting game.
Definition 4. For each (c0, d0) ∈ C × D, the splitting game SG(c0, d0) is a

zerosum stochastic game, described as follows.
• At stage 1 Player 1 chooses a probability Pc0 on C centered at c0 and Player
2 chooses a probability Qd0 on D centered at d0. Then c1 is selected according
to Pc0 , and d1 is selected according to Qd0 . Finally, h1 = (c0, d0, c1, d1) is
announced to both players. The stage payoff (from Player 2 to Player 1) is
H(c1, d1).

• Inductively, at stage m+ 1, knowing the past history hm, Player 1 chooses a
probability Pcm on C centered at cm, and Player 2 chooses a probability Qdm
on D centered at dm. Then cm+1 follows the low Pcm , and dm+1 follows Qdm .
Finally, hm+1 = (hm, cm+1, dm+1) is announced to both players. The stage
payoff is H(cm+1, dm+1).

We consider the discounted evaluation
∑∞
m=1 λ(1− λ)m−1H(cm, dm), where 0 <

λ < 1, and we call SGλ the associated (discounted) splitting game.
Proposition 5. SGλ(c, d) has a value Vλ(c, d).
Vλ is a saddle function on C ×D and satisfies the following recursive equation:

Vλ(c, d) = max
P∈∆C(c)

min
Q∈∆D(d)

[∫
C×D

[
λH(c̃, d̃) + (1− λ)Vλ(c̃, d̃)

]
dP (c̃)dQ(d̃)

]

= min
Q∈∆D(d)

max
P∈∆C(c)

[∫
C×D

[
λH(c̃, d̃) + (1− λ)Vλ(c̃, d̃)

]
dP (c̃)dQ(d̃)

]
,

where ∆C(c) is the set of probabilities on C, centered at c, and ∆D(d) is the set of
probabilities on D, centered at d.

Moreover, there exists a norm on C×D with respect to which the family (Vλ) has
the same Lipschitz constant as H.

Proof. Let UL be the space of real valued functions on C ×D which are upper-
semicontinuous–lower-semicontinuous, bounded by ‖H‖∞ . This space is complete for
uniform convergence.

Let Φ be the splitting operator from UL to itself (Laraki (2001b)) defined by

Φ [f ] (c, d) = max
P∈∆C(c)

min
Q∈∆D(d)

[∫
C×D

f(c̃, d̃)dP (c̃)dQ(d̃)

]

= min
Q∈∆D(d)

max
P∈∆C(c)

[∫
C×D

f(c̃, d̃)dP (c̃)dQ(d̃)

]
.

f → Φ [λH + (1− λ)·] is contracting; hence it admits a fixed point Vλ ∈ UL. It is
standard and easy to show that both players can guarantee Vλ in the splitting game
(see Mertens–Sorin–Zamir (1994)).

By Laraki (2001b) we deduce that Vλ is a saddle function.
Now, since C and D are polytopes, by Laraki (2001b) we deduce that there

exists an equivalent norm on C × D (‖‖C×D) with respect to which the splitting
operator conserves the Lipschitz constant. Hence, if M is the Lipschitz constant of H
with respect to ‖‖C×D, then the operator f → Φ [λH + (1− λ)·] associates to an M -
Lipschitz function anM -Lipschitz one. By the completeness of the space of uniformly
Lipschitz functions, we deduce that the last operator admits a unique M -Lipschitz
fixed point (which is Vλ, of course).
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Definition 5. A function ϕ on C ×D satisfies
• P1 [H,C,D] if for all d0 ∈ D, if c0 ∈ C is an extreme point of ϕ (·, d0) in C,
then ϕ (p0, q0) ≤ H(p0, q0);

• P2[H,C,D] if for all c0 ∈ C, if d0 ∈ D is an extreme point of ϕ (c0, ·) in D,
then ϕ (p0, q0) ≥ H(p0, q0).

Proposition 6. Vλ converges uniformly to the unique saddle continuous function
V satisfying P1 [H,C,D] and P2 [H,C,D]. In addition, for some equivalent norm
depending (only) on C and D, V is Lipschitz with the same constant of Lipschitz as
H.

Proof. The proof here is exactly the same proof as in section 2.

4. Equivalence with Mertens–Zamir’s system. Here C and D are two
convex-compact sets in a metric real vector space endowed with a locally convex
topology.
Lemma 6. For all lower-semicontinuous bounded functions ϕ on D, there exists a

unique lower-semicontinuous convex function (say, ψ) on D satisfying the following.
(α) ψ ≤ ϕ;
(β) If d0 is an extreme point of ψ, then ψ(d0) ≥ ϕ(d0).

This function is V exD [ϕ].
Proof. For a function f on D, Epi(f) is the epigraph of f :

Epi(f) = {(d, r) ∈ D ×BbbR : r ≥ f(d)}.
The property (β) and the fact that ϕ is bounded and lower-semicontinuous implies

that Epi(ψ) ⊂ Epi(ϕ). Since Epi(ψ) is convex (since ψ is convex), we deduce that
Epi(ψ) ⊂ co [Epi(ϕ)] = Epi(V exD(ϕ)). Hence ψ ≥ V exD [ϕ] .

The property (α) and the fact that ψ is convex implies that ψ ≤ V exD [ϕ] .
The fact that (V exD [ϕ]) satisfies (α) and (β) and is lower-semicontinuous is

clear.
Proposition 7. Let H and ψ be two upper-semicontinuous–lower-semicontinuous

bounded functions on C ×D. Then the following hold.
(i) ψ is concave on C and satisfies P1 [H,C,D]⇔ ψ = CavC [min (H,ψ)] .
(ii) ψ is convex on D and satisfies P2 [H,C,D]⇔ ψ = V exD [max (H,ψ)] .
Proof. Let us prove (ii) (the proof of (i) is similar).
It is clear that if ψ = V exD [max (H,ψ)], then the following hold.
• ψ is convex on D.
• If d0 is an extreme point of ψ (c0, ·), then ψ(c0, d0) = max [H,ψ] (c0, d0) ≥
H(c0, d0).

Now suppose that ψ is convex on D and satisfies P2 [H,C,D] . Let c0 ∈ C
and put ϕ (·) = max (H,ψ) (c0, ·). Then it is clear that ψ satisfies (α) and (β) and
is convex. By the last lemma we deduce that ψ = V exD [ϕ] . Hence ψ = V exD
[max (H,ψ)] .

5. Concluding remarks.
• In fact, the last proposition can be deduced implicitly from the proof of
Proposition 18 in Rosenberg and Sorin (2001). Our contribution is (a) how
to extract properties P1 and P2 from the discounted games, and (b) their
use to prove the existence of a Lipschitz solution of (S).

• The proof for the finitely repeated game (the study of lim vn) is much more
complicated and needs all the machinery of the operator approach in Rosen-
berg and Sorin (2001). Since the goal in this paper is to give some new ideas
with simple proofs, we omit this question.
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• In fact, Mertens and Zamir (1971–1972) studied the asymptotic value in a
more general framework where the private information received by the players
is dependent. (The probability over the types is not necessarily the product
of the marginals.) It is easy to see that our proof holds also in this case, but
for clarity (because the formulation of the problem is very technical) we cover
only the independent case.
• We remark that if the splitting operator does not conserve uniformly the
Lipschitz property, then the familly (Vλ) will not be uniformly Lipschitz.
Hence our proof does not apply directly in this case.
• In Laraki (2001b) we study the regularity properties of the splitting operator,
and we address the problem of the existence of a continuous solution for the
Mertens–Zamir system when C and D are in the class of convex-compact sets
satisfying some necessary geometric conditions. (This class strictly contains
the polytopes.)

Acknowledgment. My gratitude goes to Sylvain Sorin for supervising and mo-
tivating this work by his useful comments and advice.
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Abstract. A piecewise deterministic Markov process (PDP) is a continuous time Markov pro-
cess consisting of continuous, deterministic trajectories interrupted by random jumps. The tra-
jectories may be controlled with the object of minimizing the expected costs associated with the
process. A method of representing this controlled PDP as a discrete time decision process is pre-
sented, allowing the value function for the problem to be expressed as the fixed point of a dynamic
programming operator. Decisions take the form of trajectory segments. The expected costs may
then be minimized through a dynamic programming algorithm, rather than through the solution of
the Bellman–Hamilton–Jacobi equation, assuming the trajectory segments are numerically tractable.
The technique is applied to the optimal capacity expansion problem, that is, the problem of planning
the construction of new production facilities to meet rising demand.
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1. Introduction. In this paper a technique for minimizing expected costs as-
sociated with piecewise deterministic Markov processes (PDPs) is developed. Such
processes may be described as continuous time Markov processes consisting of con-
tinuous, deterministic trajectories interrupted by random jumps. A comprehensive
definition and theoretical development of these processes can be found in Davis [4].
Many problems in operations research can be naturally expressed in this framework;
hence there is a great deal of interest in optimization problems associated with these
processes.

A PDP is usually defined on a state space E ⊂ �p partitioned into a bound-
ary Eδ and interior Eo, although the state space definition in [4] is somewhat more
general. We let E denote the Borel subsets of E, and we will let P(E) be the space
of probability measures on the measurable space (E, E), endowed with the topology
of weak convergence. Under suitable regularity conditions a PDP can be uniquely
determined by a vector field f : E → �p, an intensity function λ : E → �+, and
stochastic kernels qo : Eo → P(E) and qδ : Eδ → P(E). Between jumps the PDP
x̂(t) obeys dx̂(t)/dt = f(x̂(t)), and jumps occur at rate λ(x) when the process is at
state x, independently of the process history. If a jump occurs at x ∈ Eo, the pro-
cess is transferred immediately to a new state given randomly by probability measure
qo(dx | x). If the process reaches the boundary at x ∈ Eδ, the process is transferred
immediately to a new state given randomly by probability measure qδ(dx | x). We
will always assume that qo(Eo | x) = 1 and qδ(Eo | x) = 1.

A controlled PDP is defined when the quadruple (f, λ, qo, qδ) is allowed to depend
on a control parameter u. In addition, cost is assumed at a rate lo(x, u) when the
process is at x ∈ Eo and control u is applied, and a discrete cost lδ(x, u) is assumed
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when the process reaches the boundary at x ∈ Eδ and control u is applied. A control
policy Φ is equivalent to a specification for each x ∈ E of an open loop continuous
time control function to be applied from x until the next jump (Vermes [11]).

If we define JΦ(x) to be the expected cost under control policy Φ from initial
state x, possibly under geometric discounting, the value function is then defined as

J∗(x) = inf
Φ

JΦ(x),

where the infimum is taken over all admissible control policies. The object is to find,
if it exists, a control policy whose expected cost achieves this infimum.

In the existing literature the value function for this problem is typically given as a
solution to a Bellman–Hamilton–Jacobi (BHJ) equation. In [11] a limiting form of the
BHJ equation is given as a necessary and sufficient optimality condition. In Dempster
and Ye [9] a generalized BHJ equation, expressed in terms of the generalized Clarke
gradient (Clarke [3]), is given as a necessary and sufficient optimality condition. In
Soner [10] a viscosity solution approach to the BHJ equation is proposed, and, more
recently, the viscosity solution to the BHJ equation has been developed in Davis and
Farid [8], which has advantages with respect to the availability of numerical methods
for solution.

In this paper we use an approach similar to that introduced by Davis [5] and
developed in [9] and Davis [6], in which the problem is reformulated in terms of an
imbedded discrete time process, in which a stage consists of the intrajump determin-
istic portion of the process. The principal difference is that in the approach proposed
in this article the problem remains in the discrete time domain up to and including
the solution algorithm. The concept of a continuously applied control parameter will
play no role. Instead, a discrete time decision process is defined in which a decision
consists of the selection of a trajectory segment, in this way constructing the deter-
ministic trajectory in a piecewise fashion. This means that the BHJ equation plays
no role. Ultimately, the value function is calculable as a fixed point of a dynamic
programming operator in discrete time. Here we do not admit direct control over the
cost function and the jump rate, unlike the other models cited in the above litera-
ture, although in principle the methodology could be extended to incorporate the cost
function and the jump rate into the action space.

Apart from the more limited control, this allows a more uniform approach to
the calculation of optimal policies and a weakening of regularity conditions. For the
generalized BHJ equation in [9], conditions are imposed which guarantee that the
value function is Lipschitz, which excludes many problems of practical importance
(see [6]). The viscosity solution approach allows milder assumptions. In [8] the state
space is required to be bounded, and the cost rate and jump rate are assumed to be
bounded and uniformly continuous. In comparison, in this article the state space need
not be bounded, the jump rate is bounded but not necessarily uniformly continuous,
and the cost rate may be lower semicontinuous and need not be bounded. In fact,
conditions are placed only on suitably defined integrals of the cost rate (see section
2). As for the trajectory, in the context of the BHJ equation the vector field f is
generally assumed to be Lipschitz. In the approach presented here there is no explicit
vector field and no other restrictions other than that the path can be constructed in a
piecewise manner from trajectories selected from a compact set. This admits a wider
variety of control structures, including certain types of impulse controls.

In section 2, we define a discrete time decision process imbedded in the PDP and
obtain conditions under which the resulting transition measure will be continuous
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on the state-action product space. In section 3, we discuss some results for discrete
time decision processes from Bertsekas and Shreve [1] which may be applied to the
problem under consideration here. In addition, with some additional assumptions we
show that the dynamic programming operator is a contraction mapping. In section
4 we show how this may be applied to the capacity expansion problem considered in
Davis et al. [7]. Section 5 contains some concluding remarks and possible extensions
of this work.

2. Reduction of a PDP to a discrete time process. Let E ⊂ �p be a state
space containing a boundary Eδ. Let Eo = E − Eδ be the interior of E. Possibly,
Eδ = ∅, the empty set. We also have the intensity function and stochastic kernels
(λ, qo, qδ) as defined in section 1, all assumed to be Borel measurable mappings.

Then let IT be a time scale interval [0, T ] if T <∞ and [0,∞) if T =∞. Let A
be an action space consisting of a family of continuous trajectories α : IT → �p with
α(0) = 0. It will be assumed that A is a compact metric space in which convergence
implies pointwise convergence. We define

B(x, α) = inf{t ∈ IT : x+ α(t) ∈ Eδ},

which is the time taken for the trajectory x+ α(t) to reach the boundary, and let

tf (x, α) = min{B(x, α), T},

adopting the convention that inf ∅ = ∞. For each x ∈ E let Ax ⊂ A be a subset of
trajectories available at state x, which gives the state-action space

Γ = {(x, α) ∈ E ×A : α ∈ Ax}.

We assume that x + α(t) ∈ E when t ≤ tf (x, α) for all (x, α) ∈ Γ. Generally, the
following condition will be satisfied:

(A.1) x+α(t) = x+α(B(x, α))∀ t ≥ B(x, α), t ∈ IT , when (x, α) ∈ Γ and B(x, α) <∞,

which implies that a trajectory comes to rest upon reaching the boundary. In addition,
(A.1) implies x+α(B(x, α)) ∈ Eδ for all (x, α) ∈ Γ and that the only admissable action
when x ∈ Eδ is α ≡ 0.

We can define iteratively the continuous time process {x̂(t) ∈ E : t ≥ 0} and the
imbedded discrete time decision process {(x̂n, α̂n) ∈ Γ : n ≥ 0} with the associated
event time process {t̂n ≥ 0 : n ≥ 0}. Suppose we have state x̂n ∈ Eo, decision
α̂n ∈ Axn , and time t̂n. The process then follows the trajectory

x̂(t) = x̂n + α̂n(t− t̂n), t ≥ t̂n,(2.1)

until time t̂n + tf (x̂n, α̂n), unless a random jump occurs along the trajectory before
then, say, at time t′ ∈ (t̂n, t̂n + tf (x̂n, α̂n)), in which case (2.1) holds until t′. These
jumps occur at rate λ(x) when the process is in state x ∈ Eo, independently of the
process history. If such a jump occurs at state x′, then the new state x̂n+1 ∈ Eo
is given randomly by the distribution qo(dx | x′), and we set t̂n+1 = t′. If no jump
occurs before t̂n + tf (x̂n, α̂n) then set t̂n+1 = t̂n + tf (x̂n, α̂n). In this case, if the
process has reached the boundary at state x′ ∈ Eδ (i.e., B(x̂n, α̂n) < ∞), then the
new state x̂n+1 ∈ Eo is given randomly by the distribution qδ(dx | x′). Otherwise,
if the end of the trajectory segment α̂n has been reached before the boundary (i.e.,



528 ANTHONY ALMUDEVAR

B(x̂n, α̂n) = ∞, T < ∞), then set x̂n+1 = x̂n + α̂n(t̂n+1 − t̂n). A new decision
α̂n+1 ∈ Ax̂n+1

is then made. An initial state and decision (x̂0, α̂0) ∈ Γ is specified,

with t̂0 = 0. If x̂0 ∈ Eδ, we will set t̂1 = t̂0 = 0, α̂0 ≡ 0, and x̂1 will be determined by
qδ(dx | x̂0). Then x̂k ∈ Eo for k ≥ 1.

This defines the transition measure Q : Γ→ P(E) for the process (x̂n, α̂n), where
Q(K | x, α) is the probability that x̂n+1 ∈ K given that trajectory α̂n = α is selected
at state x̂n = x. Assuming (A.1) holds, this is given explicitly by

Q(K | x, α) =
∫ tf (x,α)

0

qo(K | x+ α(t))λ(x+ α(t)) exp(−Λ(t, x, α)) dt

+ qδ(K | x+ α(B(x, α))) exp(−Λ(B(x, α), x, α))I{B(x, α) <∞}

+ I{x+ α(T ) ∈ K} exp(−Λ(T, x, α))I{B(x, α) =∞, T <∞},(2.2)

where

Λ(t, x, α) =

∫ t

0

λ(x+ α(w)) dw.

Here, I{S} is the indicator function of set S. Since we assume qo(Eo | x) = 1 and
qδ(Eo | x) = 1, we necessarily have Q(Eo | x, α) = 1 for (x, α) ∈ Γ. Note also that if
x ∈ Eδ, we have α ≡ 0, tf (x, α) = B(x, α) = 0, and Q(K | x, α) = qδ(K | x). It will
be useful to know when the transition measure is continuous with respect to weak
convergence on Γ (with E×A assuming the product topology). We prove below that
Q will be continuous under the following assumptions:

(B.1) qo(dx | x) is continuous on Eo with respect to weak convergence.
(B.2) qδ(dx | x) is continuous on Eδ with respect to weak convergence.
(B.3) λ is continuous on E, λ ≤Mλ for some Mλ <∞.
(B.4) The setsB1 = {(x, α) ∈ Γ : B(x, α) <∞} andB2 = {(x, α) ∈ Γ : B(x, α) =∞}

are both closed.
(B.5) B(x, α) is continuous on B1.
Remark. If a nontrivial boundary is present, a special condition is typically nec-

essary for the continuity of Q to hold. Generally, some assumption which governs the
behavior of the trajectory near the boundary is required. Informally, these assump-
tions typically require that if a trajectory approaches the boundary, it does so in some
direct manner. In [11] the minimum velocity in the direction normal to the boundary
is bounded away from 0. This condition is weakened in [8] to require only that where
the boundary is approachable it is approachable nontangentially. Assumptions (B.4)
and (B.5) are used here to govern trajectory behavior near the boundary. They will
not be natural to many problems and are not satisfied by the capacity expansion prob-
lem considered in [7]. However, we show in section 4 how a reasonable redefinition of
the problem can force (B.4) and (B.5) to hold.

Theorem 2.1. If assumptions (A.1) and (B.1)–(B.5) hold, then Q(dx | x, α) is
continuous on Γ with respect to weak convergence.

Proof. Let γ = {(xn, αn) : n ≥ 1} be a convergent sequence in Γ with limit
(x0, α0). We then have

lim
n→∞xn + αn(t) = x0 + α0(t) ∀t ∈ IT ,
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and hence by (B.3)

lim
n→∞λ(xn + αn(t)) = λ(x0 + α0(t)) ∀t ∈ IT .(2.3)

By (B.3) λ is bounded, so applying the dominated convergence theorem gives

lim
n→∞Λ(t, xn, αn) = Λ(t, x0, α0) ∀t ∈ IT .(2.4)

Next, recall that if {µn : n ≥ 1} is any sequence of probability measures in P(E), an
equivalent definition of weak convergence of the sequence to a probability measure µ0

is

lim inf
n→∞ µn(K) ≥ µ0(K) ∀ open sets K

(see, for example, Theorem 29.1 in Billingsley [2]), so it suffices to show that

lim inf
n→∞ Q(K | xn, αn) ≥ Q(K | x0, α0) ∀ open sets K ∈ E ,(2.5)

for each convergent sequence γ. Since B1 and B2 are closed, we may assume that
γ ⊂ B1 or γ ⊂ B2. We now examine separately the three following cases.

Case 1: T =∞, γ ⊂ B2. In this case we have

Q(K | xn, αn) =
∫ ∞

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt.

By (B.1), (2.3), and (2.4) we may assert for open K

lim inf
n→∞ qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn))
≥ qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0));(2.6)

hence (2.5) holds by Fatou’s lemma.
Case 2: T <∞, γ ⊂ B2. In this case we have

Q(K | xn, αn) =
∫ T

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt
+ I{xn + αn(T ) ∈ K} exp(−Λ(T, xn, αn))(2.7)

for all n ≥ 0. Using an argument similar to that used for Case 1, we have

lim inf
n→∞

∫ T

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

≥
∫ T

0

qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0)) dt(2.8)

for all open sets K ∈ E . Then

lim inf
n→∞ I{xn + αn(T ) ∈ K} ≥ I{x0 + α0(T ) ∈ K}

for open K ∈ E , which, when combined with (2.4), (2.7), and (2.8), gives (2.5) for
Case 2.
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Case 3: γ ⊂ B1. In this case we necessarily have tf (xn, αn) = B(xn, αn), n ≥ 0,
so that

Q(K | xn, αn) =
∫ B(xn,αn)

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt
+ qδ(K | xn + αn(B(xn, αn))) exp(−Λ(B(xn, αn), xn, αn))

for all n ≥ 0. By assumption (B.5) B(xn, αn) →n B(x0, α0). Then, using (2.6), we
have

lim inf
n→∞ qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn))I{t ≤ B(xn, αn)}

≥ qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0))I{t < B(x0, α0)}

for open K ∈ E , so by Fatou’s lemma

lim inf
n→∞

∫ B(xn,αn)

0

qo(K | xn + αn(t))λ(xn + αn(t)) exp(−Λ(t, xn, αn)) dt

≥
∫ B(x0,α0)

0

qo(K | x0 + α0(t))λ(x0 + α0(t)) exp(−Λ(t, x0, α0)) dt(2.9)

for all open sets K ∈ E . By assumption (A.1) we must have

lim
n→∞xn + αn(B(xn, αn)) = x0 + α0(B(x0, α0)),

and by assumption (B.2)

lim inf
n→∞ qδ(K | xn + αn(B(xn, αn))) ≥ qδ(K | x0 + α0(B(x0, α0)))

for all open sets K ∈ E . We then have

lim
n→∞λ(xn + αn(t))I{t ≤ B(xn, αn)} = λ(x0 + α0(t))I{t ≤ B(x0, α0)},

except possibly at t = B(x0, α0). The sequence {B(xn, αn) : n ≥ 1} is bounded
since B1 is closed. Then with assumption (B.3) the dominated convergence theorem
applies, giving

lim
n→∞Λ(B(xn, αn), xn, αn) = Λ(B(x0, α0), x0, α0),

so that

lim inf
n→∞ qδ(K | xn + αn(B(xn, αn))) exp(−Λ(B(xn, αn), xn, αn))

≥ qδ(K | x0 + α0(B(x0, α0))) exp(−Λ(B(x0, α0), x0, α0))

for all open sets K ∈ E , which with (2.9) gives (2.5) for Case 3, which completes the
proof.

With respect to assumption (B.5), assumption (A.1) is sufficient to guarantee
the lower semicontinuity of B(x, α) on B1, as shown in Lemma 2.2 below, but upper
semicontinuity must be verified separately.

Lemma 2.2. If assumption (A.1) holds, B(x, α) is lower semicontinuous on B1.
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Proof. Suppose that γ = {(xn, αn) : n ≥ 1} is a convergent sequence in B1 with
limit (x0, α0) ∈ B1. We show that

lim inf
n→∞ B(xn, αn) ≥ B(x0, α0)(2.10)

for any such sequence. Suppose there exists an infinite subsequence {(xnk , αnk) : k ≥
1} and a β < B(x0, α0) such that B(xnk , αnk) ≤ β for all k ≥ 1. Then

lim
k→∞

xnk + αnk(B(x0, α0)) = x0 + α0(B(x0, α0)),(2.11)

and by assumption (A.1) and the fact that B(xnk , αnk) ≤ β < B(x0, α0), k ≥ 1, we
must have

lim
k→∞

xnk + αnk(B(x0, α0)) = lim
k→∞

xnk + αnk(β)

= x0 + α0(β).(2.12)

However, (2.11) and (2.12) are contradictory since x0 + α0(B(x0, α0)) ∈ Eδ, but
x0 + α0(β) ∈ Eo; hence any convergent sequence must satisfy (2.10).

Finally, we assume there is a nonnegative expected cost g : Γ → �+ associated
with each stage. This cost may be specified by letting CT be the family of measur-
able functions c : IT → �+. The cost of a stage is then determined by a mapping
ho : Γ→ CT which represents the rate at which cost is assumed at a time t after
decision α is made from state x. We may also have a boundary cost hδ(x), x ∈ Eδ,
assumed when the process reaches the boundary at x. Then if W(x,α) is the random
time spent in the stage, the cost assumed in the stage given W(x,α) = w is

H(x,α)(w) =

∫ w

0

ho(t | x, α) dt+ hδ(x+ α(B(x, α)))I{w = B(x, α), B(x, α) <∞}.

Then g is given by

g(x, α) = E[H(x,α)(W(x,α))](2.13)

=

∫ tf (x,α)

0

ho(t | x, α) exp(−Λ(t, x, α)) dt
+ hδ(x+ α(B(x, α))) exp(−Λ(B(x, α), x, α))I{B(x, α) <∞}.(2.14)

In the following discussion any regularity condition will be placed on g directly.

3. Optimization for lower semicontinuous costs. We give a general defini-
tion (following [1]) of a stochastic discrete time decision process {(x̂n, α̂n) : n ≥ 0},
where x̂n and α̂n are elements of a state space and action space E and A, both as-
sumed to be Borel spaces. Let P(E) and P(A) be the space of all probability measures
on the Borel sets of E and A, respectively, endowed with the topology of weak con-
vergence. For each x ∈ E we assume that there is a set of available actions Ax ⊂ A.
We then have state-action space

Γ = {(x, α) ∈ E ×A : α ∈ Ax},

where E × A is endowed with the product topology (and is also a Borel space). We
assume there is a stochastic kernel Q(dx | x, α) which is a Borel measurable mapping
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from Γ to P(E). Finally, we have a lower semianalytic cost function g : Γ → �+.
Define a policy

Φ = {φ̃n : n ≥ 0}

as a sequence of stochastic kernels φ̃n(dy | x0, α0, . . . , xn−1, αn−1, xn) which are uni-
versally measurable mappings from (×nΓ)× E to P(A) satisfying

φ̃n(Axn | x0, α0, . . . , xn−1, αn−1, xn) = 1,

and let Π be the class of all such policies. For a given policy Φ ∈ Π the process
(x̂n, α̂n) can then be defined iteratively by considering a current state x̂n and the
process history {(x̂k, α̂k) : k = 0, . . . , n− 1}. Decision α̂n is then given randomly by
the distribution φ̃n(dy | x̂0, α̂0, . . . , x̂n−1, α̂n−1, x̂n), and then state x̂n+1 is given ran-
domly by the distribution Q(dx | x̂n, α̂n). We are given an initial state x̂0. Then a cost
of
∑
n g(x̂n, α̂n) is assumed. (We do not consider at this point geometric discounting.)

Define

JΦ(x) = E

[ ∞∑
n=0

g(x̂n, α̂n) | x̂0 = x

]
,

which denotes the expected cost assumed by the process under policy Φ with initial
state x̂0 = x. If φ̃n is parametrized by xn only, then Φ is a Markov policy. Let Π1

be the class of all mappings φ : E → A with φ(x) ∈ Ax for all x ∈ E. We will be
interested primarily in nonrandomized stationary Markov policies, that is, policies for
which there is some φ ∈ Π1 such that for all n ≥ 0, φ̃n(dy | xn) is a point mass at
φ(xn). (In this case we will simply write φ̃n(dy | xn) = φ(xn).)

We then define the problem:
(P) minimize JΦ(x) over all policies Φ ∈ Π for each x ∈ E.
Define the value function

J∗(x) = inf
Φ∈Π

JΦ(x), x ∈ E.

For universally measurable J : E → �+ define the operator T mapping J to TJ : E → �+

by

(TJ)(x) = inf
α∈Ax

(
g(x, α) +

∫
E

J(x′)Q(dx′|x, α)
)

(3.1)

for all x ∈ E. For φ ∈ Π1, define the operator Tφ mapping universally measurable
J : E → �+ to TφJ : E → �+ by

(TφJ)(x) = g(x, φ(x)) +

∫
E

J(x′)Q(dx′ | x, φ(x))

for all x ∈ E. Letting J0 ≡ 0, define the sequence

Jk+1 = TJk, k ≥ 0.(3.2)

(The sequence is well defined, since if J is lower semianalytic, so is TJ . See [1, Section
8.2].)
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It is easy to verify that g ≥ 0 implies that T is monotone in the sense that
TJ2 ≥ TJ1 if J2 ≥ J1. Then J1 ≥ J0, and hence J2 = TJ1 ≥ TJ0 = J1. By extending
this argument we conclude that {Jk} is increasing, so that the limit

J∞ = lim
k→∞

Jk(3.3)

exists.
The model defined in this section is a lower semicontinuous model with positive

cost according to the definition given in [1, Definition 8.7, p. 208] if the following
conditions hold:

(C.1) A is compact.
(C.2) Γ is a closed subset of E ×A.
(C.3) g(x, α) is lower semicontinuous on Γ.
(C.4) The transition measure Q(dx | x, α) is weakly continuous on Γ.
We summarize some results from [1, Proposition 8.6, Corollary 9.4.1, Proposition

9.8, Corollary 9.17.2, Proposition 9.18, pp. 209, 221, 225, 235, 236] in the following
theorem.

Theorem 3.1. Under assumptions (C.1)–(C.4), the following hold.
(i) If J ∈ J is lower semicontinuous, then so is TJ (from proof of Proposition

8.6).
(ii) J∗ is lower semianalytic, and J∗ = TJ∗ (Corollary 9.4.1, Proposition 9.8).
(iii) There exists a Borel measurable nonrandomized stationary Markov policy

Φ∗ such that JΦ∗ = J∗ (Corollary 9.17.2).
(iv) J∗ = J∞, where J∞ is lower semicontinuous (Corollary 9.17.2).
(v) There exists a sequence {φk ∈ Π1 : k ≥ 0}, where φk is universally mea-

surable, such that TφkJk = TJk, k ≥ 0. Each sequence {φk(x)}, x ∈ E, has an
accumulation point. If φ∗ ∈ Π1 is universally measurable and φ∗(x) is an accumula-
tion point of {φk(x)} when J∗(x) < ∞, then Φ∗ = (φ∗, φ∗, . . .) is an optimal policy
(Proposition 9.18).

Suppose the state space E contains a measurable set EK such that once the
process enters EK it does not leave and it assumes no further cost. Let JK be the
set of all J : E → �+ with J(x) = 0 for all x ∈ EK . We must then have JΦ ∈ JK
for any policy Φ. Furthermore, suppose there is some r > 0 such that from any state
the probability of subsequently entering EK is at least r for all (x, α) ∈ Γ. Under
these assumptions, it is shown below that T is a contraction mapping on JK ; hence
there is at most one fixed point of T in JK . This can be summarized by the following
assumptions:

(D.1) ∃r > 0 such that Q(EK | x, α) ≥ r for all (x, α) ∈ Γ.
(D.2) Q(EK | x, α) = 1 for all x ∈ EK , α ∈ A.
(D.3) g(x, α) = 0 for all x ∈ EK , α ∈ A.
Theorem 3.2. Suppose (D.1)–(D.3) hold. Then T is a contraction mapping of

universally measurable J ∈ JK to JK with contraction constant 1− r.
Proof. By (D.2), (D.3), and the definition of T , if J(x) = 0 on EK for universally

measurable J , then TJ ∈ JK .
If J1, J2 ∈ JK are universally measurable, then for any φ ∈ Π1 we have

‖TφJ2 − TφJ1‖ = sup
x∈E

∣∣∣∣
∫
E

J2(x
′)Q(dx′ | x, φ(x))−

∫
E

J1(x
′)Q(dx′ | x, φ(x))

∣∣∣∣
≤ sup
x∈E

∫
E

|J2(x
′)− J1(x

′)|Q(dx′ | x, φ(x))
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≤ sup
x∈E

∫
E−EK

|J2(x
′)− J1(x

′)|Q(dx′ | x, φ(x))
≤ sup
x∈E
‖J2 − J1‖(1−Q(EK | x, φ(x)))

≤ ‖J2 − J1‖(1− r)

since |J2(x)− J1(x)| = 0 when x ∈ EK . For ε > 0 we may select φ so that

TφJ1 ≤ TJ1 + ε,

and then

TJ2 − TJ1 ≤ TJ2 − TφJ1 + ε

≤ TφJ2 − TφJ1 + ε

≤ ‖J2 − J1‖(1− r) + ε.

This holds for all ε > 0, so TJ2 − TJ1 ≤ ‖J2 − J1‖(1− r). A similar argument gives
TJ1 − TJ2 ≤ ‖J2 − J1‖(1− r), completing the proof.

The model discussed in this section is directly applicable to the imbedded discrete
time decision process introduced in section 2. Using the notation of that section,
if E and Eo are measurable subsets of �p and if A can be defined as a compact
metric space, then E and A are both Borel spaces; then it remains to verify that Γ is
closed. It must then be verified that the transition measure (2.2) is continuous on Γ,
possibly through Theorem 2.1. Then the cost g must be lower semicontinuous on Γ.
Under these conditions, assumptions (C.1)–(C.4) hold and Theorem 3.1 applies, and
the optimum expected cost may be calculated through the dynamic programming
algorithm (3.2)–(3.3). An optimal policy may be obtained as the limit defined in
Theorem 3.1(v).

With respect to the process of section 2, assumption (D.1) will hold under various
circumstances. Geometric discounting may be introduced by adding to E a kill state
∆ and assuming that the process jumps to ∆ at some fixed rate. If λ is bounded and
B(x, α) is bounded away from 0, then assumption (D.1) will be satisfied. Alternatively,
there may be some target set which the state-action space is constrained to reach in
one stage within some bounded time, barring a jump. If the process remains in this
set with no further costs, then assumption (D.1) will be satisfied.

4. The capacity expansion problem. We now consider the optimal capacity
expansion problem considered by Davis et al. [7]. We suppose that for a certain
commodity there is a demand rate d which increases in time according to a compound
Poisson process with constant rate λ > 0. Suppose there are enough plants to supply
the commodity at rate s. At any time a decision to build a new plant may be made,
which requires a total cost of C. Let y be the amount already invested in the plant
being currently built. If no plant is currently being built, then y = 0. The rate of
investment will then be ẏ ∈ [0, c], where c represents the maximum possible investment
rate. Once a plant is completed, capacity s is increased by L units. We let z = s−d. If
z > 0, then there is overcapacity, and if z < 0, there is undercapacity. Let h : � → �+

represent the rate at which cost is assumed due to overcapacity or undercapacity z
with h(0) = 0.

The problem is to derive a policy, giving the investment rate at any state, which
minimizes the total expected cost under geometric discounting. In [7] a technique
for solving the BHJ equation for this problem is given. It should be noted that an
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optimal solution does not necessarily exist. Examples are given in [7] of a problem
in which for certain values of z it is ε-optimal to build the current plant to within
a small amount β of completion, with the expected cost function improving as β
approaches 0, but not optimal to complete it. This suggests introducing as a control
constraint the requirement that a plant be completed if it is within some fixed amount
of completion. It will be shown below that this constraint forces assumptions (B.4)
and (B.5) to hold. It is also shown in [7] that any optimal policy will specify either
maximum investment rate c or minimum investment rate 0.

We need to specify Eδ, Eo, A,Γ, λ, qo, qδ, g as defined in section 2. The state space
will be

E = [0, C]×�,
Eo = [0, C)×�,
Eδ = E − Eo.

Then we interpret (y, z) ∈ E as the state at which the current plant has y currently
invested and z = s− d. As in [7], we will suppose that the investment rate is either 0
or c. Hence from a starting point (y, z) the decision will consist of determining how
much to invest in the current plant at rate c. The action space A is then the family
of parametric curves α : [0,∞)→ �2 of the form

α(t) =

{
(ct, 0), 0 ≤ t < a/c,
(a, 0), a/c ≤ t,

(4.1)

for a ∈ [0, C]. Thus we have T = ∞. The trajectories in (4.1) are homeomorphic
to the interval [0, C], so that A will subsequently be represented by [0, C]. We let β
be a positive constant less than C. The action space will be constrained so that if
y ∈ (C − β,C], the project must be completed at rate c, and if y ∈ [0, C − β], then
an amount a ≤ C − β − y or a = C − y may be invested. Hence we have state-action
space

Γ = Γ1 ∪ Γ2,

Γ1 = {(y, z, a) ∈ E × [0, C] : y + a = C},
Γ2 = {(y, z, a) ∈ E × [0, C] : y + a ≤ C − β}.

We introduce geometric discounting by adding to E a kill state ∆ to which the process
jumps at a rate η > 0. At this state no further costs are assumed. We can then define
the overall jump intensity as λ(y, z) ≡ λ+ η. If the magnitude of any demand jump
equals in distribution some nonnegative random variable Z, let PZ(· | y, z) be the
probability measure of the random vector equal in distribution to (y, z − Z) ∈ E.
Then

qo(K | y, z) = λ

λ+ η
PZ(K | y, z) + η

λ+ η
I{∆ ∈ K}, (y, z) ∈ Eo,

and

qδ(K | y, z) = I{(0, z + L) ∈ K}, (y, z) ∈ Eδ,

for any K ∈ E , the Borel subsets of E. Then q0 and qδ are continuous on Eo and
Eδ, respectively. We also have B(y, z, a) <∞ in Γ1 and B(y, z, a) =∞ in Γ2, which
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are both closed sets. Assumptions (B.1)–(B.4) of Theorem 2.1 are then satisfied.
Furthermore, B(y, z, a) = a/c on Γ1 so that assumption (B.5) of Theorem 2.1 is
satisfied. Since assumption (A.1) also holds, we may conclude that the transition
measure Q defined in (2.2) is continuous on Γ.

For state (y, z) and decision a we can then calculate the immediate stage cost g,

g(y, z, a) =
h(z) + c

λ+ η
(1− exp(−(λ+ η)(a/c)))

for (y, z, a) ∈ Γ1 and

g(y, z, a) =
h(z)

λ+ η
+

c

λ+ η
(1− exp(−(λ+ η)(a/c)))

for (y, z, a) ∈ Γ2. If h(z) is lower semicontinuous, then so is g on Γ. Then assump-
tions (C.1)–(C.4) are satisfied so that Theorem 3.1 applies and algorithm (3.2)–(3.3)
becomes

J0(y, z) ≡ 0,(4.2)

Jk+1(y, z) = inf
a

(
g(y, z, a) +

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a)

)
(4.3)

for all (y, z) ∈ E, k ≥ 0, where the infimum is taken over a ∈ [0, C − β − y]∪ {C − y}
if y ≤ C − β, and over the singleton {C − y} if y > C − β. Since at any state (C, z)
the process transfers immediately to (0, z+L), we may set Jk(C, z) = Jk(0, z+L) for
all k ≥ 1, z ∈ �. Note that Jk(∆) = 0.

As an example, we will apply this algorithm to a case considered in [7], in which
jumps in demand consist of one unit with probability one. The integral in (4.3)
becomes

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a) =

∫ a/c

0

Jk(y + ct, z − 1)λ exp(−(λ+ η)t) dt

+ Jk(0, z + L) exp(−(λ+ η)(a/c))

for (y, z, a) ∈ Γ1, and

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a) =

∫ a/c

0

Jk(y + ct, z − 1)λ exp(−(λ+ η)t) dt

+ Jk(y + a, z − 1)
λ

λ+ η
exp(−(λ+ η)(a/c))

for (y, z, a) ∈ Γ2. Then let

Jak+1(y, z) = g(y, z, a) +

∫
E

Jk(y
′, z′)Q(dy′, dz′ | y, z, a)

for all (y, z, a) ∈ Γ, k ≥ 0. If L is an integer, then we may confine attention to a
semigrid on E by constraining z to be an integer. We will discretize the problem
by considering only states {(Ci/n, z) : i = 0, 1, . . . , n} for some large n. Choose
β = C(i∗/n) for some positive integer i∗ < n. Then (4.3) can be calculated for a
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given Jk numerically. To reduce the number of calculations necessary we can evaluate
the discretized version of (4.3) using backwards recursion by setting

Jk+1(C − β, z) = min{J0
k+1(C − β, z), Jβk+1(C − β, z)},

Jk+1(C(1− i/n), z) = min{Vwait, Vgo}, i = i∗ + 1, . . . n,

where

Vwait =
h(z) + λJk(C(1− i/n), z − 1)

λ+ η
,(4.4)

Vgo =

(
C

h(z) + c

nc
+ Jk+1(C(1− (i− 1)/n), z)

)
exp(−(λ+ η)C/(nc))

+ λ/(λ+ η)Jk(C(1− i/n), z − 1)(1− exp(−(λ+ η)C/(nc))).(4.5)

Intuitively, when the process is in state (C−β, z) there are only two options available:
completing the project or waiting. So we calculate the expected cost for each option
and set Jk+1(C −β, z) to be the smaller value. Then consider state (C −β−C/n, z).
Again, there are two choices: either proceeding to point (C − β, z) or waiting. Then
Vwait in (4.4) with i = i∗+1 represents the expected cost of waiting. If the choice is to
proceed, the assumption is that the process reaches state (C − β, z) with probability
exp(−(λ + η)C/(nc)) and then assumes the optimal choice there. Otherwise, the
process jumps to point (C − β − C/n, z − 1) or ∆, with probabilities λ/(λ + η) and
η/(λ + η), respectively. For this choice Vgo in (4.5) with i = i∗ + 1 represents the
expected cost. Then set Jk+1(C − β − C/n, z) to be the smaller of these two values.
Continue in this manner, decreasing y by C/n, until Jk+1 is calculated for state (0, z),
and then repeat this algorithm for all values of z. Then Jk+1 is used to calculate Jk+2

in the same manner, continuing in this way until convergence is achieved.
This algorithm was applied to a set of parameters L = 1, C = 1, c = 1, λ = 0.8,

η = 0.05, and h(z) = 1.5|z| on the range 10 ≤ z ≤ 10 with n = 50 and β = 3/50. Note
that to calculate Jk+1(y, z) the values of Jk(y, z−1) and Jk(0, z+1) are required; hence
the range over which Jk can be calculated will decrease by one unit in each direction
of z with each iteration. In [7] this is dealt with by setting appropriate boundary
conditions. We do the same here with the constraint Jk(y,−10) = 250, k ≥ 0. This
quantity is roughly the expected cost when construction continues indefinitely from
state (0,−10). We also assumed that it will be optimal to wait at all states (y, 10).
These constraints allow the calculation of Jk on the entire range of interest.

It was found that the optimal policy could be expressed by the quantities w(z),
z = −10,−9 . . . , 10, where it will be optimal to construct as long as y < 1−w(z). The
quantities found were w(z) = 0 for z = −10, . . . ,−1 ; w(z) = 1 for z = 4, . . . , 10; and
w(0) = 0.06, w(1) = 0.06, w(2) = 0.22, and w(3) = 0.62. Note that 0.06 = β. The
same example calculated in [7] gives w(1) = 0.0158, w(2) = 0.2225, and w(3) = 0.6612.
Also in [7], for z = 0 it was found that the expected cost improved as w(0)→ 0, but it
was not optimal to set w(0) = 0. Accordingly, the algorithm proposed here calculated
w(0) = β. Similarly, where w(1) = 0.0158 ≤ β in [7], w(1) by the above algorithm
was found to be β. The other values were the same using both methods. Convergence
was achieved by 50 iterations.

It should be noted that the solution techniques used in [7] require some prior
assumption about the form of the optimal policy. Two classes of policy are considered:
the “invest until complete” (IUC) policy and the “follow realized demand” (FRD)
policy. For an IUC policy there is nonincreasing w(z) ∈ [0, C] such that construction
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takes place when y ≥ 1−w(z). Essentially, a plant is completed once started under this
policy. For an FRD policy there is nondecreasing w(z) ∈ [0, C] such that construction
takes place as long as y < 1−w(z). (The optimal policy calculated in this section is an
FRD policy.) Necessary and sufficient optimality conditions are developed separately
for each class and are then investigated separately. No such distinction has to be
made in the technique presented in this paper.

5. Concluding remarks. The problem of minimum cost piecewise determin-
istic processes under a broad class of controls was considered with the objective of
verifying the existence of an optimal control and with proposing a unified approach to
a numerical solution. The approach is fundamentally different from other discussions
of this problem in the literature in that the control problem is presented as a discrete
time decision process in which a decision consists of the selection of a trajectory seg-
ment from a compact space. The BHJ equation plays no role. If the action space
is numerically tractable, a straightfoward fixed point algorithm based on a dynamic
programming operator can be used to calculate the optimal control.

In the BHJ equation method the velocity field is commonly assumed to be Lipschitz-
continuous. This means that a solution to the BHJ equation could also be constructed
from a sequence of trajectory segments taken from a suitably defined compact space,
making the theory presented here applicable also to control models treated in the lit-
erature cited above (although one would need to establish some smoothness conditions
on an optimal trajectory as a necessary condition). The solution methodology, how-
ever, is more natural for problems in which the trajectory segments are parametrizable
in finite dimensions, although the infinite dimension control could be approximated
with splines. It is important to note that the discrete time decision process also ad-
mits more coarse varieties of control. For example, we may define piecewise linear
control policies, which would have the effect of allowing control to be exerted only at
regular time intervals.

It is anticipated that further work in this area will result in an expansion of
the definition of the action space to include some control over jump rate and cost
function. This would make the range of applicable models similar to that of methods
based on the BHJ equation. It would also be of some value to allow trajectory time
lengths to vary and hence be subject to control. This would significantly expand the
classes of admissible control structures. A more complete treatment of, for example,
impulse-type controls would then be possible.
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Abstract. Nonnegative linear systems, which have traditionally been investigated within the
state-space framework, have been recently introduced and analyzed by means of the behavioral
approach. In a couple of recent papers [J. W. Nieuwenhuis, Linear Algebra Appl., 281 (1998),
pp. 43–58, M. E. Valcher, Linear Algebra Appl., 319 (2000), pp. 147–162], several general definitions
and results about nonnegative behaviors, as well as a complete analysis of nonnegativity property
for autonomous behaviors, have been presented. In this contribution, by focusing our interest again
on autonomous behaviors, we explore the nonnegative realization problem by deriving an extended
set of necessary and sufficient (geometric) conditions for an autonomous behavior to be nonnegative
realizable. In the scalar case, in particular, necessary and sufficient conditions for nonnegative
realizability, which refer to the set of zeros of any polynomial involved in the kernel description of
the behavior, are provided. Finally, a comparison between the nonnegative realizability property,
here investigated, andK-realizability, addressed in [H. Maeda and S. Kodama, IEEE Trans. Circuits,
Systems I Fund. Theory Appl., CAS-281 (1981), pp. 39–47] is carried on.

Key words. autonomous behavior, most powerful unfalsified model (MPUM), nonnegative
behavior, state-space realization, proper (polyhedral) cones left invariant by a linear transformation,
nonnegative realization
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1. Introduction. Since the early seventies positive linear systems have attracted
the interest of several researchers, both from a mathematical and from an engineering
background. In fact, on the one hand, the theory of positive linear systems is deep
and elegant and relies on a family of nice results that essentially draw on the cele-
brated Perron–Frobenius theorem [2]. On the other hand, concrete applications of
this seemingly abstract theory arise in various fields, like econometrics, bioengineer-
ing, chemistry, and, generally speaking, in every context where the variables involved
are intrinsically nonnegative. A fundamental reference for the elementary definitions
and results of positive system theory, as well as a good source of examples where
positive system modeling mostly finds interesting applications, is [13]. A very good
and recent reference is [6].

A few years ago, there was a first attempt to develop a general theory of a pos-
itive linear system within the behavioral framework [17]. In a very nice paper [15],
Nieuwenhuis has introduced the notion of nonnegative discrete behavior (whose tra-
jectories are defined on the time axis Z+), based on the notion of most powerful un-
falsified behavior [9, 24], and later given some preliminary results, mostly concerned
with behaviors which are one-dimensional (namely, with trajectories in (R)Z+) and
autonomous, or two-dimensional (with trajectories in (R2)Z+) and controllable. More
recently, these definitions and results have stimulated a special interest in autonomous
behaviors [20], thus leading to a rather complete characterization of nonnegative au-
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tonomous behaviors, mostly based on geometric tools, like invariant cones, and on
some new entities, as the nonnegative part of a behavior.

In this contribution, we aim to further extend our analysis of nonnegative au-
tonomous behaviors by addressing what undoubtedly has been, and still is, the most
challenging problem in positive system theory: the nonnegative realization problem
[1, 4, 14]. In fact, the question we aim to answer is: given a nonnegative autonomous
behavior B ⊆ (Rq)Z+ , under what conditions does there exist a nonnegative (au-
tonomous) state-space model

x(t+ 1) = Ax(t),

w(t) = Cx(t), t ∈ Z+,

with A and C nonnegative matrices, such that B can be characterized as the set of
all trajectories w which are obtained from the above model, corresponding to the set
of all possible initial conditions x(0)?

As we will see, the above question finds quite an exhaustive answer. In fact, after
having obtained a rather wide set of equivalent geometric conditions for the problem
solvability, by resorting to some key results [1, 4, 11] about the nonnegative realizabil-
ity of strictly proper transfer functions, we will derive, in the scalar case, a complete
spectral characterization of those autonomous behaviors which are nonnegative real-
izable.

The paper is organized as follows: section 2 summarizes up the basic definitions
and results about (linear, left shift-invariant, complete) behaviors whose trajectories
are defined on Z+ and take values in R

q. Also, the fundamental definitions required
to introduce positive behaviors are recalled. In section 3, the nonnegativity property
for autonomous systems, in the behavioral approach, is recalled, and necessary and
sufficient conditions for an autonomous behavior to be nonnegative are presented [20].
Some of these conditions are stated in slightly different terms with respect to [20] in
order to obtain more suitable statements for the following analysis. Moreover, some
new conditions have been introduced. Finally, a necessary spectral condition, derived
in [20] for the nonnegativity of a scalar autonomous behavior, is here strengthened,
and proved to be also sufficient.

Section 4 analyzes the nonnegative realization problem for autonomous behaviors
and, in section 5, a complete spectral characterization of scalar autonomous behaviors
which are nonnegative realizable is given. To conclude the paper, a quick comparison
with the notion of nonnegative realizability (K-realizability) previously introduced
for scalar autonomous behaviors in [14] is carried on.

Throughout the paper we let R
n
+ denote the nonnegative orthant, namely, the set

of nonnegative vectors in the n-dimensional Euclidean space R
n. A set K ⊂ R

n is said
to be a cone if all finite nonnegative linear combinations of elements of K belong to
K. A cone K is convex if it contains, with any two points, the line segment between
them, namely, αv1 + (1− α)v2 ∈ K, for every α ∈ [0, 1] and every pair of vectors v1

and v2 in K. A convex cone K is solid if it contains an open set (a ball) of R
n, and it

is pointed if K ∩ {−K} = {0}. A closed, pointed, solid convex cone is called a proper
cone. A cone K is said to be polyhedral if it can be expressed as the set of nonnegative
linear combinations of a finite set of generating vectors. This amounts to saying that
a positive integer r and r vectors in R

n, v1,v2, . . . ,vr, can be found, such that K
coincides with the set of nonnegative combinations of v1,v2, . . . ,vr. In this case, we
adopt the notation K := Cone(v1,v2, . . . ,vr). This notation can be extended to the
case when the vectors v1,v2, . . . ,vr are replaced by matrices M1,M2, . . . ,Mr (with
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the same number of rows). In this case, by Cone(M1,M2, . . . ,Mr) we mean the set
of nonnegative combinations of the columns of M1,M2, . . . ,Mr. Also, the extensions
of the previous definitions to an arbitrary real vector space, on which it has been
introduced some topology, are straightforward. The dual of a cone K in R

n is denoted
by K∗ and is defined as

K∗ := {v : wTv ≥ 0 ∀ w ∈ K}.
For further details we refer to [2].

If A is an n × n real matrix, we denote by σ(A) its spectrum and by ρ(A) its
spectral radius, i.e., ρ(A) := max{|λ| : λ ∈ σ(A)}. For every λ ∈ σ(A), the degree of λ
in A, deg λ, is the size of the largest diagonal block in the Jordan canonical form of A
which contains λ (i.e., the multiplicity of λ as a zero of ψA(z), the (monic) minimal
polynomial of A).

Given A ∈ R
n×n and a cone K ⊆ R

n, we say that A leaves K invariant (K is
A-invariant) if AK ⊆ K. If A = [aij ] is a matrix (in particular, a vector), we write

• A ≥ 0 (A nonnegative) if aij ≥ 0 for all i, j;
• A > 0 (A nonzero nonnegative) if aij ≥ 0 for all i, j, and ahk > 0 for at least

one pair (h, k);
• A� 0 (A positive) if aij > 0 for all i, j.

Given any polynomial r(z) ∈ R[z], we denote by λR the greatest (if any) non-
negative real zero of r, namely, λR := max{λ ∈ R+ : r(λ) = 0}. We say that λR
is

• dominant if for any other zero of r, λ, we have |λ| ≤ λR and the multiplicity
of λ is not greater than the multiplicity of λR as a zero of r;

• strictly dominant if for any other zero of r, λ �= λR, we have |λ| < λR.
In the paper, all (discrete) sequences will be defined on the set Z+ of nonnegative

integers. The right (forward) and the left (backward) shift operators on (Rq)Z+ , the
set of sequences defined on Z+ and taking values in R

q, are defined as

τ : (Rq)Z+ → (Rq)Z+ : (v0,v1,v2, · · ·) �→ (0,v0,v1, · · ·),
σ : (Rq)Z+ → (Rq)Z+ : (v0,v1,v2, · · ·) �→ (v1,v2,v3, · · ·).

As we will deal with sets of sequences (our behaviors) which are left shift-invariant,
we can restrict our attention to the left shift operator σ. For every positive integer i,
the ith power of σ is naturally defined by composition as σi = σ◦σ◦ · · · ◦σ (i times).

Also, we can further extend the set of shift operators. Indeed, to every polynomial
matrix R(z) =

∑L
i=0Riz

i ∈ R[z]p×q we can associate the polynomial matrix operator

R(σ) =
∑L
i=0Riσ

i (from (Rq)Z+ to (Rp)Z+), mapping every sequence {w(t)}t∈Z+

into the sequence {R(σ)w(t)}t∈Z+ , where R(σ)w(t) = R0w(t) + R1w(t + 1) + · · · +
RLw(t+ L) for every t ∈ Z+. It can be proved that R(σ) describes an injective map
if and only if R is a right prime matrix, and a surjective map if and only if R is of
full row rank.

2. Identifiability issues and nonnegativity property for a complete be-
havior. Before proceeding, we briefly summarize some basic definitions and results
about behaviors whose trajectories have support in Z+. Further details on the subject
can be found in [15, 18, 22].

In this paper, by a dynamic system we mean a triple Σ = (Z+,R
q,B), where Z+

represents the time set, R
q is the signal alphabet, namely, the set where the system

trajectories take values, and B ⊆ (Rq)Z+ is the behavior, namely, the set of trajectories
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which are compatible with the system laws. A behavior B ⊆ (Rq)Z+ is said to be
linear if it is a vector subspace (over R) of (Rq)Z+ and left shift-invariant if σB ⊆ B.
A linear left shift-invariant behavior B ⊆ (Rq)Z+ is complete if for every sequence
w̃ ∈ (Rq)Z+ the condition w̃|S ∈ B|S for every finite set S ⊂ Z+ implies w̃ ∈ B,
where w̃|S denotes the restriction to S of the trajectory w̃ and B|S the set of all
restrictions to S of behavior trajectories.

Linear left shift-invariant complete behaviors are kernels of polynomial matri-
ces in the left shift operator σ, which amounts to saying that the trajectories w =
{w(t)}t∈Z+ of B can be identified with the set of solutions in (Rq)Z+ of a system of
difference equations

R0w(t) +R1w(t+ 1) + · · ·+RLw(t+ L) = 0, t ∈ Z+,(2.1)

with Ri ∈ R
p×q, and hence described by the equation

R(σ)w = 0,(2.2)

where R(z) :=
∑L
i=0Riz

i belongs to R[z]p×q. In what follows, a behavior B described
as in (2.2) will be denoted, for short, as B = ker(R(σ)). Also, we will restrict our
attention to linear, left shift-invariant, and complete behaviors B ⊆ (Rq)Z+ , and we
will refer to them simply as behaviors.

Definition 2.1. A behavior B ⊆ (Rq)Z+ is said to be autonomous if there exists
m ∈ Z+ such that if w1,w2 ∈ B, and w1|[0,m] = w

2|[0,m], then w
1 = w2.

As is well known, a behavior B = ker(R(σ)) with R ∈ R[z]p×q is autonomous
if and only if it is a finite-dimensional vector subspace of (Rq)Z+ , or, equivalently, if
and only if R has full column rank q [22]. Any autonomous behavior can always be
described as the kernel of a nonsingular square matrix, which is uniquely determined
up to a left unimodular factor. So, in what follows, we will steadily assume that R(z)
is nonsingular square. The determinant of R(z) (which is, of course, independent
of the specific square representation, except for a multiplicative nonzero constant) is
known as the characteristic polynomial of B, and its zeros as the characteristic values
of B [17]. For the sake of simplicity, we will also assume that detR(z) is a monic
polynomial.

We now address certain identifiability issues which are fundamental in order to
introduce the notion of positive behavior. Such concepts are only marginally touched
upon here. For further details we refer the interested reader to [9, 15].

Definition 2.2. Let w1,w2, . . . ,wm be m trajectories in (Rq)Z+ . A behavior
B ⊆ (Rq)Z+ is said to be the most powerful unfalsified model (MPUM) explaining
w1,w2, . . . ,wm, if the following hold.

• w1,w2, . . . ,wm belong to B.
• For any other behavior B̄ having w1,w2, . . . ,wm among its trajectories, we

have B ⊆ B̄.
For every choice of the trajectoriesw1,w2, . . . ,wm, the MPUM explainingw1,w2,

. . . ,wm, denoted by B(w1,w2, . . . ,wm), exists and represents the smallest (linear left
shift-invariant and complete) behavior including w1,w2, . . . ,wm.

A behavior B ⊆ (Rq)Z+ is said to be identifiable if there exists a finite number of
its trajectories, say, w1,w2, . . . ,wm, such that B ≡ B(w1,w2, . . . ,wm). Under the
linearity, left shift-invariance and completeness assumptions we steadily adopt, every
behavior is, indeed, identifiable.

By resorting to the notion of identifiability, Nieuwenhuis proposed in [15] the
following definition of nonnegative behavior.
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Definition 2.3. A behavior B ⊆ (Rq)Z+ is said to be nonnegative if there exist
m ∈ N and nonnegative trajectories w1,w2, . . . ,wm such that B ≡ B(w1,w2, . . . ,
wm).

3. Nonnegative autonomous behaviors. A fundamental result we will re-
sort to in the following analysis is the fact that every autonomous behavior can be
“realized” by means of a state-space model [12, 23]. Indeed, if B ⊆ (Rq)Z+ is an au-
tonomous behavior, then there exist n ∈ N and real matrices A ∈ R

n×n and C ∈ R
q×n

such that

B =
{
w ∈ (Rq)Z+ : ∃ x(0) such that x(t+ 1) = Ax(t), w(t) = Cx(t), t ∈ Z+

}
.

The pair (A,C) is an n-dimensional realization of B. Those realizations of B for which
n is minimal are called minimal. Minimal realizations of an autonomous behavior B
are those realizations of B which are observable [20, 23].

The correspondence between kernel descriptions and state-space representations
of an autonomous behavior has been explored in [12], where a certain number of
algorithms have also been presented. A major role in this contribution is played by
the relationship between the spectral properties of these two representations, namely,
between the characteristic polynomial of B and the characteristic polynomial of any
matrix A appearing in the state space descriptions of B. Such a relationship is
described in the following lemma.

Lemma 3.1. Let B = ker(R(σ)), with R(z) ∈ R[z]q×q nonsingular square, be an
autonomous behavior, and let (A,C) be an n-dimensional realization of B. Then the
following hold.

• detR |det(zIn −A), and therefore {λ : detR(λ) = 0} ⊆ σ(A).
• If (A,C) is a minimal realization of B, then detR and det(zIn −A) coincide,

and hence {λ : detR(λ) = 0} = σ(A).
Proof. As is well known [7, 12], if (A,C) is an n-dimensional realization of B

and [V (z) R̄(z) ] is a minimal left annihilator of the Popov–Belevich–Hautus (PBH)
observability matrix (also known as the matrix of the Hautus observability test [10])
[ zIn−AC ], then (1) R̄ is a nonsingular square matrix with det R̄ |det(zIn −A), and (2)
B = ker(R̄(σ)). Since R and R̄ provide two nonsingular square kernel representations
of the same behavior, it follows that R̄ = UR for some unimodular factor U . This
proves the first part of the result. On the other hand, if (A,C) is a minimal, and hence
observable realization, then [ zIn−AC ] is right prime, and hence det R̄ and det(zIn−A)
coincide.

Of course, if λ is an eigenvalue of A which is not a characteristic value of B (i.e.,
is not a zero of detR), it must be an eigenvalue of the unobservable system alone [10].

Now we need to introduce a few important sets that will turn out to be useful in
providing a complete characterization of both nonnegativity and, later, of nonnegative
realizability. To this end, we need to consider a general (not necessarily autonomous)
n-dimensional state space model with m inputs and p outputs:

x(t+ 1) = Ax(t) +Bu(t),(3.1)

w(t) = Cx(t), t ∈ Z+.(3.2)

Such a system is denoted, for the sake of brevity, by means of the triple (A,B,C).

Definition 3.2 (see [3, 16]). Given an n-dimensional state space model (A,B,C)
with m inputs and p outputs, the reachable cone of the system (or, equivalently, of
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the pair (A,B)) is the cone

R(A,B) := Cone{B,AB,A2B, . . .},(3.3)

where the “upper bar” over the word “Cone” denotes the closure operation, while the
observable cone of the system (of the pair (A,C)) is the cone

S(C,A) := {x ∈ R
n : CAtx ≥ 0 ∀ t ≥ 0}

=
(
Cone{CT , ATCT , (AT )2CT , . . .})∗ ,(3.4)

where the symbol ∗ denotes the “dual” of the indicated cone.
Of course, both the reachable cone and the observable cone are always convex

closed and, in general, infinitely generated. The reachable cone is solid if and only if
the pair (A,B) is reachable (in the standard sense, i.e., rank [B AB . . . An−1B ] =
n); meanwhile, the observable cone is pointed if and only if the pair (A,C) is observ-
able. Finally, the observable cone of the system (A,B,C) and the reachable cone of
the dual system (AT , CT , BT ) are dual cones. All these results have been proved in
[16] for the continuous time case, but their discrete time version is immediate.

Finally, we introduce the “positive part” of a behavior.
Definition 3.3 (see [20]). Given a behavior B ⊆ (Rq)Z+ , we call the positive

part of B and denote it by B+, the set of all nonnegative trajectories in B, namely,

B+ := B ∩ (Rq+)
Z+ .(3.5)

Given any behavior B ⊆ (Rq)Z+ , its positive part, B+, is a convex and pointed
cone in (Rq)Z+ , and it is closed (with respect to the topology of the pointwise conver-
gence). Also, B+ is left shift-invariant, meaning that w ∈ B+ implies σw ∈ B+.

By referring to a minimal realization of B, we can provide an efficient charac-
terization of the nonnegativity property for autonomous behaviors, which refers to
the aforementioned entities: the reachable cone, the observable cone, and the positive
part of a behavior. The equivalence of most of the statements has been proved in [20].
There are some new statements, but their equivalence to at least one of the known
statements is immediate.

Theorem 3.4 (see [20]). Let B ⊆ (Rq)Z+ be an autonomous behavior, let B+

be its positive part, and let (A,C) be an n-dimensional and minimal realization of B.
The following facts are equivalent:

(1) B is a nonnegative behavior;
(2) there exists a positive integer m and some matrix X0 ∈ R

n×m such that
(2a) (A,X0) is a reachable pair, and
(2b) CAtX0 ≥ 0 for every t ≥ 0;

(3) there exists a positive integer m and some matrix B ∈ R
n×m such that

(3a) (A,B,C) is a minimal realization of its transfer matrix W (z) := C(zIn
−A)−1B, and

(3b) the Markov coefficients of W (z), i.e., the coefficients Wt of the power
series expansion

∑
t≥0Wt z

−t of W (z), are all nonnegative matrices;

(4) there exists a positive integer m and some matrix B ∈ R
n×m such that the

reachable cone R(A,B) is proper and included in the observable cone S(C,A);
(5) there exists a proper A-invariant cone K ⊂ R

n included in S(C,A);
(6) the observable cone S(C,A) is a proper cone;
(7) B is the smallest (linear, left shift-invariant, and complete) behavior having

B+ as its positive part;
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(8) B+ generates an n-dimensional real vector space in (Rq)Z+ (equivalently, B+

is a proper left shift-invariant cone in (Rq)Z+).

Remarks. For a more exhaustive discussion on the previous set of characteriza-
tions, we refer the interested reader to [20]. Here we aim to introduce only a few
specific comments which are relevant for the following analysis.

(i) It is well known that an autonomous behavior B ⊆ (Rq)Z+ is a finite-dimension-
al vector subspace of (Rq)Z+ , whose dimension coincides with the dimension of a min-
imal realization of B. In fact, it is easily seen that, under the minimality (namely,
observability) assumption on the pair (A,C), there exists a bijective correspondence
between the set of behavior trajectories and the (vector) space R

n of initial conditions
x(0). In particular, there exists a bijective correspondence between the positive part
of a behavior B, B+, and the observable cone S(C,A), which is just the set of initial
conditions corresponding (by means of (A,C)) to the trajectories of B+. Thus the
above theorem states that the nonnegativity of B corresponds to the fact that such a
cone S(C,A) is a solid one, or, in a sense, is “dense” in R

n, just as the nonnegativity
of B means that the set B+ is rich enough to carry on all the information about B.
In order to better understand this fact, the interested reader may refer to [20], where
a few examples have been given.

(ii) Notice that for the special case of scalar autonomous behaviors, nonnegativity
reduces (see Theorem 12 in [15]) to the possibility of determining one single nonneg-
ative trajectory w ∈ B such that B = B(w). As a consequence, in the scalar case,
the matrix X0 (equivalently, the matrix B), if it exists, can always be assumed to be
a simple column vector.

(iii) By Theorem 3.4, an autonomous behavior B, having (A,C) as an n-dimension-
al and minimal realization, is nonnegative if and only if there exists a proper A-
invariant cone K included in the observable cone S(C,A). As is well known [2], an
n × n matrix A leaves a proper cone invariant if and only if it satisfies the following
two conditions (known as the Perron–Schaefer conditions):

(a) the spectral radius of A, ρ(A), is an eigenvalue of A;
(b) any other eigenvalue λ of A whose modulus |λ| is equal to ρ(A) satisfies the

inequality deg λ ≤ deg ρ(A) (and hence the size of the largest Jordan block
corresponding to λ in the Jordan form of A is not bigger than the largest
Jordan block corresponding to ρ(A)).

This amounts to saying that ρ(A) is the greatest nonnegative real zero of ψA(z),
the minimal polynomial of A, and is dominant as a zero of ψA. (If A is cyclic,
then ψA(z) = det(zIn − A) and hence the same properties hold true in terms of the
characteristic polynomial of A.)

This important characterization represents a necessary condition for an autonom-
ous behavior to be nonnegative. In the scalar case, by resorting to different arguments,
we can prove that this condition also becomes sufficient. Indeed, we have also seen
that an autonomous behavior B, having (A,C) as a minimal (and n-dimensional)
realization, is nonnegative if and only if the observable cone S(C,A) is proper. When
B is scalar autonomous, and hence C is a row vector, we can resort to (the discrete
time version of) a result due to Ohta, Maeda, and Kodama (Theorem 3 in [16])
stating that, under the observability assumption on the pair (A,C), the cone S(C,A)
is proper if and only if the n×nmatrix A satisfies the Perron–Schaefer conditions. This
important characterization allows us to obtain a complete spectral characterization of
nonnegative scalar autonomous behaviors (which strengthens both the general result
for the nonscalar case and Proposition 4.2 in [20]). It turns out that the nonnegativity
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property for a scalar autonomous behavior B depends only on the properties of the
maximum modulus characteristic values of B.

Proposition 3.5. Let B = ker (r(σ)), with r(z) = zn+rn−1z
n−1+· · ·+r0 ∈ R[z],

be a scalar autonomous behavior. B is a nonnegative behavior if and only if the
following two conditions hold true:

(i) r(z) has a positive real root λR whose modulus is greater than or equal to the
modulus of any other root of r(z), namely, λR ≥ |λ| for any other λ such that
r(λ) = 0;

(ii) any root λ of r(z), with |λ| = λR, has multiplicity µ(λ) not greater than the
multiplicity µ(λR) of λR.

Proof. Let (A,C) be a minimal (and hence observable) realization of B. Since B is
scalar, then, by resorting to the aforementioned result by Ohta, Maeda, and Kodama,
we get that B is a nonnegative behavior if and only if A satisfies the Perron–Schaefer
conditions. But since A is cyclic (i.e., ψA(z) = det(zI −A)) and r(z) = det(zIn−A),
the Perron–Schaefer conditions are equivalent to (i) and (ii).

4. Nonnegative realizability and equivalent characterizations. By fol-
lowing [15], we adopt the following, quite natural, definition of nonnegative realizable
autonomous behavior.

Definition 4.1 (see [15]). An autonomous behavior B ⊆ (Rq)Z+ is said to be
nonnegative realizable if there exists a realization of B, say, (A+, C+), with A+ and
C+ nonnegative matrices.

Nonnegative realizability admits a wide set of equivalent characterizations that
strictly remind us of those obtained for nonnegativity and make use of the same
distinguished sets: the reachable cone, the observable cone, and the positive part of
the behavior.

Theorem 4.2. Let B ⊆ (Rq)Z+ be an autonomous behavior, let B+ be its positive
part, and let (A,C) be an n-dimensional and minimal realization of B. The following
facts are equivalent:

(1) B is a nonnegative realizable behavior;
(2) there exists a positive integer m and some matrix X0 ∈ R

n×m such that
(2a) the reachable cone of the pair (A,X0) is proper and polyhedral, and
(2b) CAtX0 ≥ 0 for every t ≥ 0;

(3) there exists a positive integer m and some matrix B ∈ R
n×m such that

(3a) (A,B,C) is a minimal realization of its transfer matrix W (z) := C(zIn
−A)−1B,

(3b) the Markov coefficients of W (z), i.e., the coefficients Wt of the power
series expansion

∑
t≥0Wt z

−t of W (z), are all nonnegative matrices,
and

(3c) the reachable cone of the pair (A,B) is proper polyhedral;
(4) there exists a positive integer m and some matrix B ∈ R

n×m such that
the reachable cone of the pair R(A,B) is proper polyhedral and included in
S(C,A);

(5) there exists an A-invariant proper polyhedral cone K ⊂ R
n included in S(C,A);

(6) the set B+ includes a proper polyhedral left shift-invariant cone.
Proof. (1) ⇒ (2). Let (A+, C+) be an m-dimensional nonnegative realization of

B, and let T be a nonsingular square matrix that reduces the pair to the standard
nonobservable form [10]:

T−1A+T =

[
A11 0
A21 A22

]
, C+T = [C1 0 ](4.1)
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with (A11, C1) an observable pair. The pair (A11, C1) provides an observable and
hence minimal (see comments at the beginning of section 3) realization of B. So, it
entails no loss of generality, assuming A11 = A and C1 = C. Partition the nonsingular
matrix T−1 as

T−1 =

[
T1

T2

] }n,
}m− n.

We aim to show that by choosing X0 = T1 we satisfy both (2a) and (2b). Of course,
the reachable cone generated by the pair (A+, Im) coincides with R

m
+ = Cone(Im) and

hence is a proper polyhedral cone. Consequently, the reachable cone generated by the
pair (T−1A+T, T

−1) coincides with Cone(T−1) and is, in turn, a proper polyhedral
cone. Since

Cone{T−1, T−1A+, T
−1A2+, . . .} = Cone

{
T−1,

[
A 0
A21 A22

]
T−1,

[
A 0
A21 A22

]2
T−1, . . .

}

= Cone

{[
T1
T2

]
,

[
A 0
A21 A22

][
T1
T2

]
,

[
A2 0
∗ A222

][
T1
T2

]
, . . .

}
,

where ∗ denotes an unspecified element, it follows that

Cone
{
T1, AT1, A

2T1, . . .
}

is polyhedral, too. But this is just the reachability cone of the pair (A, T1), and hence
(2a) holds. This first part of the proof has been inspired by the proof of Theorem 2.1
in [1]. Finally, it remains to show that (2b) holds. By the nonnegativity of the pair
(A+, C+) we have, for every t ≥ 0,

0 ≤ C+A
t
+ = (C+T )(T

−1A+T )
tT−1 = [C 0 ]

[
A 0
A21 A22

]t [
T1

T2

]
.

This ensures that CAtX0 = CAtT1 ≥ 0 for every t ≥ 0.
(2) ⇔ (3). As (A,C) is a minimal realization for the autonomous behavior B,

and hence is an observable pair, the equivalence of (2) and (3) is straightforward.
(2) ⇒ (4) ⇒ (5). This part of the proof is obvious.
(5) ⇔ (6). We have remarked earlier that B+ coincides with the set of behavior

trajectories generated by the state-space model

x(t+ 1) = Ax(t), w(t) = Cx(t), t ∈ Z+,

corresponding to initial conditions, x(0), belonging to S(C,A). Due to the minimal-
ity of the state-space representation, there exists a bijective correspondence between
trajectories of B+ and initial conditions in S(C,A). This ensures that B+ includes
the proper polyhedral cone generated by the m trajectories w1,w2, . . . ,wm if and
only if S(C,A) includes the proper polyhedral cone generated by x1

0,x
2
0, . . . ,x

m
0 , the

initial conditions corresponding to w1,w2, . . . ,wm. Finally, the A-invariance of the
cone in S(C,A) is, of course, the corresponding property of the left shift-invariance
of the cone in B+.

(5) ⇒ (1). The proof is very similar to (one part of) the proof of Theorem 2.2
in [1]. Let P be a (full row rank) matrix with n rows, such that K = Cone(P ). The
A-invariance of K ensures the existence of some nonnegative matrix A+ such that
AP = PA+. Set C+ := CP . Condition K ⊆ S(C,A) ensures, in particular, that



NONNEGATIVE REALIZATION OF AUTONOMOUS BEHAVIORS 549

CP ≥ 0, and hence C+ is nonnegative. We aim to show that the pair (A+, C+)
provides a nonnegative realization of B. In fact, by exploiting the fact that P is of
full row rank, and hence the fact that for every vector x0 there exists some x̄0 such
that x0 = P x̄0, we get

w ∈ B ⇔ ∃ x0 such that w(t) = CAtx0 ∀t ∈ Z+

⇔ ∃ x̄0 such that w(t) = CAtP x̄0 = CPAt+x̄0 = C+A
t
+x̄0 ∀t ∈ Z+.

This completes the proof.
Remarks. (i) It is immediately seen from the above theorem that every nonneg-

ative realizable behavior is nonnegative. Simple examples can be given showing that
the converse is not true in general (see Example 1, below).

(ii) Conditions (4) and (5) strictly remind us of analogous characterizations ob-
tained for the nonnegative realizability of a strictly proper rational transfer function
[1, 14]. In fact, if w(z) is a strictly proper rational transfer function and (A,B,C)
is an n-dimensional and minimal realization of w(z), then w(z) admits a nonnega-
tive realization if and only if there exists an A-invariant proper polyhedral cone K
satisfying

R(A,B) ⊆ K ⊆ S(C,A).
(iii) Notice that the proof of (5)⇒ (1) does not make explicit use of the minimality

assumption on the realization (A,C). In fact, it holds also for an arbitrary realization
of B. As a matter of fact, (1) ⇒ (5) also could be proved for an arbitrary realization
by suitably adapting the proof of Theorem 1 in [11]. So, the equivalence of points (1)
and (5) holds true for any realization (A,C).

(iv) It is immediately apparent from the proofs of (1) ⇒ (2) and (5) ⇒ (1)
that when an autonomous behavior is nonnegative realizable, then the size of its
minimal nonnegative realization coincides with the minimal number of extremal edges
a proper polyhedral cone K ⊆ R

n satisfying (5) possibly exhibits. (Notice that a
proper polyhedral cone is, in particular, solid, and hence the number of its extremal
edges is at least n.) A more straightforward proof could be obtained by suitably
adapting that of Theorem 3 in [14].

(v) If B is nonnegative realizable, then, by point (5) of the previous theorem, the
matrix A appearing in a minimal realization of B leaves a proper polyhedral cone K
invariant. As a consequence [19, 21], A satisfies the following three conditions:

(a) the spectral radius of A, ρ(A), is an eigenvalue of A,
and, when ρ(A) �= 0,

(b) λ ∈ σ(A) with |λ| = ρ(A) implies deg λ ≤ deg ρ(A) =: m; namely, the size of
the largest Jordan block corresponding to λ in the Jordan form of A is not
bigger than the largest Jordan block corresponding to ρ(A);

(c) λ ∈ σ(A) with |λ| = ρ(A) implies that λ/ρ(A) is a root of unity.
As it happened for the nonnegativity property, we will see that, in the scalar case, this
set of necessary conditions turns out to be sufficient also and can be tested directly
on the kernel representation of the behavior.

Example 1. Consider the scalar autonomous behavior B = ker (r(σ)), where
r(z) = (z − 1)(z − eiθ)(z − e−iθ) and θ/π is not rational. Of course, by Proposition
3.5, B is nonnegative. A minimal realization of B is given by the pair

A =


 0 1 0
0 0 1
1 −(2 cos θ + 1) 2 cos θ + 1


 , C = [ 1 0 0 ] .

So, by the previous remark, B cannot be nonnegative realizable.



550 MARIA ELENA VALCHER

(vi) In Theorem 3.4, the nonnegativity property proves to be equivalent to the fact
that S(C,A) is a proper cone or, alternatively, to the fact that B+ is a proper cone in
(Rq)Z+ . In this respect, nonnegative realizability entails slightly weaker constraints on
the sets S(C,A) and B+ with respect to what we would expect. Indeed, it is equivalent
to the fact that S(C,A) includes a proper polyhedral cone or, alternatively, to the
fact that B+ includes a proper polyhedral cone (in (Rq)Z+). As a matter of fact, we
have the following result.

Corollary 4.3. Given an autonomous behavior B ⊆ (Rq)Z+ , let B+ be its
positive part, and let (A,C) be an n-dimensional and minimal realization of B. The
following facts are equivalent:

(i) B+ generates a proper polyhedral cone in (Rq+)
Z+ ;

(ii) the observable cone S(C,A) is a proper polyhedral cone.
If either of the above equivalent conditions is satisfied, then B is a nonnegative real-
izable behavior.

Proof. (i) ⇔ (ii). See (5) ⇔ (6) in the previous theorem. (Notice that, as
previously remarked, S(C,A) is A-invariant, while B+ is left shift-invariant.)

The final result follows from the fact that point (5) of Theorem 4.2 holds for
K = S(C,A) (equivalently, (6) of Theorem 4.2 holds . . . ), and hence B is positive
realizable.

Notice that, in the scalar case, necessary and sufficient conditions for the reachable
cone to be proper polyhedral have been given in [5]. So, by resorting to the duality
relation existing between the reachable cone of a system and the observable cone
of the dual system, we can translate the results of Theorems 1 and 2 in [5], thus
obtaining a set of conditions on the matrix A for the properness and polyhedrality
of the cone S(C,A). This way, we get a set of sufficient spectral conditions for a
scalar autonomous behavior to be nonnegative realizable. Necessary and sufficient
spectral conditions for a scalar autonomous behavior to be nonnegative realizable will
be derived in the next section.

Example 2 (example on p. 373 in [5]). Consider the scalar autonomous behavior
B = ker (r(σ)), where r(z) = (z−λ1)(z−λ2)(z−λ3), and λ1, λ2, and λ3 are distinct
real zeros. Suppose also that λ1 is positive and that the three zeros are ordered by
decreasing order, so that λ1 > λ2 > λ3. A minimal realization of B is given by the
pair

A =


λ1

λ2

λ3


 , C = [ 1 1 1 ] .

We consider the same cases analyzed in [5] and make use of their results as far as the
polyhedrality of the interested cones is concerned:

(a) λ1 > 0, while λ2, λ3 < 0, and λ3 �= −λ1. Then, as stated in the example,

Cone{CT , (AT )CT , (AT )2CT , . . .}

is proper polyhedral and hence, a fortiori,

Cone{CT , (AT )CT , (AT )2CT , . . .}

and its dual, S(C,A).
(b) λ1 > λ2 > λ3 > 0. In this case, S(C,A) not polyhedral. However, B is

trivially nonnegative realizable ((A,C) is, indeed, a nonnegative realization!).
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(c) λ1 > λ2 > 0, λ3 < 0 and λ3 �= −λ1. In this case

Cone{CT , (AT )CT , (AT )2CT , . . .}
is not proper polyhedral, while

Cone{CT , (AT )CT , (AT )2CT , . . .},
and hence also its dual, S(C,A), are proper polyhedral cones.

So, in all the above situations, B is nonnegative realizable.
To conclude the section, it may be interesting to show how the characterization

given by Nieuwenhuis in Theorem 15 of [15] for the nonnegative realizability of a scalar
autonomous behavior can be easily obtained as an immediate corollary of Theorem
4.2. Indeed, if B = ker (r(σ)), with r(z) ∈ R[z], is a scalar autonomous behavior, it
entails no loss of generality assuming that r(z) is monic, and hence can be represented
as r(z) = zn + rn−1z

n−1 + · · · + r0. A minimal realization of B is given by the
(observable) pair

A =




0 1 0
0 0 1 0

. . .
. . .
. . . 0

1
−r0 −r1 −r2 −rn−1



, C = [ 1 0 . . . 0 ]

(with A in companion form [10]). The operator P introduced in [15] and acting on
the vectors of R

n as follows,

P : R
n → R

n

:



v1
v2
...
vn


 �→




v2
v3
...

−∑n−1
i=0 rivi


 ,

corresponds, in fact, to the (left) product by the matrix A, namely, P (v) = Av for
every v ∈ R

n. Since C = [ 1 0 . . . 0 ], it is easily seen that condition (5) in
Theorem 4.2 becomes equivalent to the fact that there exists a proper polyhedral
A-invariant cone K ⊆ R

n
+, or, in other words, a polyhedral cone K ⊆ R

n
+ such that

P (K) ⊆ K. In fact, if K = Cone(P ) is an A-invariant proper polyhedral cone in R
n,

condition K ⊆ S(C,A) implies, in particular, that CAtP ≥ 0 for t = 0, 1, . . . , n − 1,
which, for the specific choice of the pair (A,C), means


1

1
. . .

1


P ≥ 0.

So, P ≥ 0 and K ⊆ R
n
+. Conversely, if K = Cone(P ) is an A-invariant proper

polyhedral cone in R
n
+, and hence P ≥ 0, then A-invariance ensures that AP = PA+

for some A+ ≥ 0. Consequently,

CAtP = CPAt+ = [ 1 0 . . . 0 ]PAt+ ≥ 0 ∀ t ≥ 0.



552 MARIA ELENA VALCHER

This ensures that K = Cone(P ) ⊆ S(C,A). This way we have proved the following
result.

Proposition 4.4 (see [15]). Let B = ker (r(σ)), with r(z) = zn + rn−1z
n−1 +

· · ·+ r0 ∈ R[z], be a scalar autonomous behavior, and let P be the operator acting on
the vectors of R

n as follows:

P : R
n → R

n

:



v1
v2
...
vn


 �→




v2
v3
...

−∑n−1
i=0 rivi


 .

B is a nonnegative realizable behavior if and only if there exists a proper polyhedral
cone K ⊆ R

n
+ such that P (K) ⊆ K.

5. The nonnegative realizability problem for scalar autonomous be-
haviors. In the previous section, we have provided geometric conditions which are
necessary and sufficient for the nonnegative realizability of an autonomous behavior.
By focusing our attention to the scalar case, we aim now to provide a complete spectral
characterization of those scalar autonomous behaviors B which admit a nonnegative
realization. Not unexpectedly, such a characterization is, again, completely based on
the properties of the maximum modulus characteristic values of B.

As a first step, by suitably applying both the results of the previous sections and
the fundamental result (Theorem 4.1 and Corollary 4.1) obtained in [1], we can prove
that nonnegative scalar autonomous behaviors, having a strictly dominant nonnega-
tive real characteristic value, are nonnegative realizable.

Theorem 5.1. Let B = ker(r(σ)), with r(z) ∈ R[z] monic of degree n, be an au-
tonomous nonnegative behavior. If λR, the maximum nonnegative real characteristic
value of B, is strictly dominant, then B is nonnegative realizable.

Proof. Let (A,C) be an n-dimensional and minimal realization of B. Since
B is nonnegative and scalar, then (see the remarks after Theorem 3.4) there exists
some column vector b such that R(A, b) is a proper cone included in S(C,A), or,
equivalently, there exists b such that (A, b, C) is a minimal realization of the transfer
function with nonnegative Markov coefficients, W (z) := C(zIn −A)−1b. Notice that,
since (A, b, C) is minimal, the poles of W (z) coincide with the eigenvalues of A and
hence (see Lemma 3.1) with the zeros of r(z). So we have a strictly proper transfer
function, w(z), with nonnegative Markov coefficients and a positive real pole which
is strictly dominant. This ensures, by Theorem 4.1 and Corollary 4.1 in [1], that
w(z) admits a nonnegative realization or, in other words, that there exists a proper
polyhedral A-invariant cone K, satisfying

R(A, b) ⊆ K ⊆ S(C,A).
This ensures, in particular, that condition (5) of Theorem 4.2 is satisfied, and hence
B is nonnegative realizable.

Notice that Theorem 5.1 assumes that the given scalar behavior is nonnegative.
Such an assumption is by no means restrictive, as we have previously underlined that
nonnegativity is a necessary condition for an autonomous behavior to be nonnegative
realizable. On the other hand, in the specific scalar case we are addressing, such a
property can be tested, due to the spectral characterization given in Proposition 3.5.
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We aim now to provide a way for testing whether an arbitrary scalar autonomous
nonnegative behavior is nonnegative realizable or not. Our proof has been inspired
by [4, 11] and is based on the following technical lemma, which is easily proved along
the same lines of the proof of Lemma 2 in [11].

Lemma 5.2 (see [11]). Let A and C be an n×n real matrix and a q×n real matrix,
respectively, and let p be any positive integer. There exists a proper (polyhedral) A-
invariant cone included in the observable cone S(C,A) if and only if there exists a
proper (polyhedral) Ap-invariant cone included in the observable cone S(C,Ap).

Theorem 5.3. Let B = ker(r(σ)), with r(z) ∈ R[z] monic of degree n, be
an autonomous nonnegative behavior. B is nonnegative realizable if and only if the
following conditions hold true:

(i) r(z) has a positive real dominant root λR, which amounts to saying that λR ≥
|λ| for any other λ such that r(λ) = 0 and any root λ, with |λ| = λR, has
multiplicity µ(λ) not greater than the multiplicity µ(λR) of λR;

(ii) for any root λ of r(z) with |λ| = λR, we have that λ/λR is a root of unity.
Proof. Let (A,C) be an n-dimensional and minimal realization of B. If B is

nonnegative realizable, then, as we previously remarked, A leaves a proper polyhedral
cone invariant and hence satisfies the following three conditions:

(a) the spectral radius of A, ρ(A), is an eigenvalue of A,
and, when ρ(A) �= 0,

(b) λ ∈ σ(A) with |λ| = ρ(A) implies deg λ ≤ deg ρ(A) =: m, namely, the size of
the largest Jordan block corresponding to λ in the Jordan form of A is not
bigger than the largest Jordan block corresponding to ρ(A);

(c) λ ∈ σ(A) with |λ| = ρ(A) implies λ/ρ(A) is a root of unity.
Since the given realization is a minimal one (and hence det(zIn − A) = r(z)) and,
being in the scalar case, the matrix A is necessarily cyclic (namely, it exhibits one
Jordan block for every eigenvalue), the above conditions on the Jordan form of A can
be easily translated in terms of the polynomial r(z), thus getting (i) and (ii).

Conversely, suppose that conditions (i) and (ii) hold, and let p be a positive
integer such that for any root λ of r(z) with |λ| = λR, λ/λR is a pth root of unity. Let
Bp be the scalar autonomous behavior having the pair (Ap, C) as an (n-dimensional)
realization. We make the following observations:

• As B is nonnegative, there exists a proper A-invariant cone included in
S(C,A). By the previous lemma, then, there exists a proper Ap-invariant
cone included in the observable cone S(C,Ap), and hence Bp is nonnegative.

• By the assumption on p, the matrix Ap has a strictly dominant nonnegative
real eigenvalue.
• Since the pair (A,C) is minimal and hence observable, then the pair (Ap, C) is

either observable or, if not, ρ(A)p cannot be the eigenvalue of the unobservable
system alone. In fact, by the observability of the pair (A,C) there exists a
nonzero vector v such that Av = ρ(A)v while Cv �= 0. But then, the state-
space model (Ap, C) corresponding to the initial condition x(0) = v provides
the (nontrivial) output trajectory

w(t) = C(Ap)tv = CAptv = ρ(A)ptCv ∈ Bp.

This ensures that ρ(A)p cannot be the eigenvalue of the unobservable system
alone, and hence if we let rp(z) be the monic polynomial providing a kernel
description of Bp, we have that rp(z) has a zero of maximum modulus in
ρ(A)p.
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So we have that Bp := ker(rp(σ)) is nonnegative, and its characteristic polynomial,
rp(z), has ρ(A)

p as a strictly dominant nonnegative real zero. This ensures, by The-
orem 5.1, that Bp is nonnegative realizable. So, finally, by putting together Theorem
4.2 and Lemma 5.2, we obtain that B is nonnegative realizable too.

Remark. Notice that, with respect to the traditional nonnegative realization prob-
lem, here we have obtained a much more favorable situation. In fact, the solutions
presently available of the nonnegative realization problem for proper rational transfer
functions [1, 4, 8, 11] assume, as a steady assumption, the nonnegativity of the im-
pulse response of the system. This is, of course, a necessary condition for the problem
solution; however, up to now, no algorithm has been obtained to check this condi-
tion. The nonnegativity constraint on the impulse response is here replaced by the
nonnegativity assumption on the scalar autonomous behavior. This property, how-
ever, in the scalar case, has been completely captured in terms of spectral conditions.
Indeed, as stated in Proposition 3.5, B is a nonnegative behavior if and only if the
so-called “extended Perron–Schaefer conditions” hold true. Even more, nonnegative
realizability has, in turn, obtained a complete spectral characterization in the scalar
case. So, it seems that, at least in the scalar autonomous case, the properties here
considered can be practically checked.

As we did for nonnegativity in [20], given a scalar autonomous behavior B, we
can find the largest behavior B∗ included in B which is nonnegative realizable. In
fact, assume that B = ker (r(σ)), with r(z) (monic) in R[z], is a scalar autonomous
behavior. Consider the set {λ ∈ R+ : r(λ) = 0} and, in case it is nonempty, set

λR := max{λ ∈ R+ : r(λ) = 0},
and let µ(λ) denote the multiplicity of λ as a zero of r(z). Set, also,

p1(z) :=
∏

λ:r(λ)=0
|λ|>λR

(z − λ)µ(λ),

p2(z) :=
∏

λ:r(λ)=0,|λ|=λR
|λ|/λR a root of unity, µ(λ)>µ(λR)

(z − λ)µ(λ)−µ(λR),

p3(z) :=
∏

λ:r(λ)=0,|λ|=λR
|λ|/λR not a root of unity

(z − λ)µ(λ),

and correspondingly define

r∗(z) :=
r(z)

p1(z)p2(z)p3(z)
.

Then B∗ := ker (r∗(σ)) is the largest nonnegative realizable behavior included in B.
For the sake of brevity, we skip the boring details of the proof.

6. Comparisons with the K-realizability notion. To conclude the paper,
it is worthwhile to further deepen our analysis and make a quick comparison with
a set of nice results presented in a celebrated paper by Maeda and Kodama. In
[14] a different notion of realizability, called K-realizability, has been analyzed and
characterized for scalar autonomous behaviors (as a matter of fact, for the set of
solutions of a scalar linear time-invariant and homogeneous difference equation. The
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paper was written in 1981, before the publication of Willems’ papers). This was the
only type of nonnegative realizability addressed in the literature until the paper by
Nieuwenhuis [15].

Let B be a scalar autonomous behavior, and let B+ be its positive part. B is
said to be K-realizable if there exists a nonnegative autonomous state-space model

x(t+ 1) = Ax(t),
w(t) = Cx(t), t ∈ Z+

(which is not necessarily a realization of B!!!), such that B+ coincides with the set of
all (nonnegative) trajectories produced by the nonnegative state-space model (A,C),
corresponding to nonnegative initial conditions. In formulas

B+ ≡ {w ∈ B : ∃ x(0) ≥ 0 such that w(t) = CAtx(0) ∀ t ≥ 0}.(6.1)

In the general case, a K-realizable behavior is not necessarily nonnegative realizable.
Example 3. Consider the scalar autonomous behavior B = ker(r(σ)), with r(z) =

(z + 2)(z − 1). Of course, by Proposition 3.5, B is not nonnegative, as the maximum
modulus zero of r is a negative one, and henceforth is not even nonnegative realizable.
The positive part of B+, by Theorem 4.3 in [20], coincides with the positive part of
B∗ := ker(σ − 1) and hence is

B+ =
{
{w(t)}t≥0 = {c}t≥0 : c ≥ 0

}
.

It is immediately apparent that the nonnegative system A = C = 1 makes condition
(6.1) satisfied, and hence B is K-realizable.

Under the nonnegativity assumption, however, K-realizable behaviors are always
nonnegative realizable. In fact, upon resorting to the results obtained in [20] and in
this paper, we can suitably translate into “behavioral terms” the results of Theorem
2 in [14].

Theorem 2 (from [14]). Suppose that B is a scalar autonomous behavior and that
B+ generates an n-dimensional vector space in R

Z+ (equivalently, by Theorem 3.4, B
is a nonnegative behavior). Let (A,C) be a minimal (and n-dimensional) realization
of B. Then B is K-realizable if and only if the observable cone S(C,A) is proper
polyhedral.

Notice that, in the original statement, S(C,A) is required only to be polyhedral.
However, the nonnegativity assumption on B ensures (see, again, Theorem 3.4) that
the observable cone is proper. So, by comparing Corollary 4.3 with the previous re-
sult, we obtain that under the nonnegativity assumption on the scalar autonomous
behavior (which, by the way, is a necessary condition for nonnegative realizability),
K-realizability is equivalent to the polyhedrality of S(C,A) and hence implies non-
negative realizability. The converse, however, as it has been shown in Example 2, is
not true.
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Abstract. This paper is concerned with stochastic linear-quadratic (LQ) problems in infinite
time horizon with control-dependent diffusions and indefinite cost weighting matrices. The classical
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a frequency characteristic. The equivalence is established among the unique solvability of the LQ
problem, the solvability of the associated stochastic Riccati equation, the coercivity of some bilinear
form in the Hilbert space of the admissible controls, and the uniformly positive definiteness of the
frequency characteristic matrix.

Key words. indefinite stochastic linear-quadratic control, frequency characteristic, stochastic
Riccati equation, bilinear form, stability, solvability

AMS subject classifications. 93E20, 93C80, 93D15

PII. S0363012900373756

1. Introduction. Linear-quadratic (LQ) control, pioneered by Kalman [9], is
one of the most fundamental and useful tools in modern engineering and has developed
into a major research field in control theory. In the LQ literature it is typically
assumed (for a minimization problem) that the cost function has positive semidefinite
weighting matrices for the control and the state. In fact, the positive semidefiniteness
of the control cost matrix is necessary for the well-posedness of the deterministic LQ
problem (see, e.g., [21, Chapter 6, Proposition 2.4]).

However, it was found in [4] for the first time that a stochastic LQ problem with
an indefinite control cost may still be well-posed. This phenomenon, which occurs
only when the diffusion term depends on the control, has to do with the deep nature
of the uncertainty involved. By and large, in a stochastic environment the uncertainty
or risk is costly, and this uncertainty/risk cost, which can be evaluated precisely via
a stochastic Riccati equation, must be taken into consideration when one exercises
the control. This, in turn, gives rise to a meaningful or well-posed LQ problem even
when the control cost matrix is indefinite (and, in particular, negative definite).

Starting from [4], there have been extensive research efforts devoted to indefinite
stochastic LQ control, and a systematic theory is being established; refer to [1, 2,
5, 6, 11, 20, 21]. In addition, computational algorithms to solve the problem were
developed in [1, 20]. On the other hand, the theory provides a nice framework for
many applications, especially in finance, as many finance problems can be formulated
as stochastic LQ problems which are inherently indefinite [10, 22].

In the research on indefinite LQ problems so far, however, there is one important
and deep issue that has not been addressed, i.e., what are the precise relations among
the parameters of the problem (namely, the linear coefficient matrices in the dynamics
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and the weighting matrices in the cost) so as to make a well-posed and solvable LQ
problem? In [4], it was shown that the well-posedness and solvability of an LQ control
problem boil down to certain conditions in terms of a Riccati equation, but it is
hard to translate the conditions into ones that directly relate the parameters of the
original LQ problem, due to the difficulty and complexity of the Riccati equation. For
example, in [4] the following question was posed: if the control cost is allowed to be
negative, then how negative can it be so that the LQ problem is still well-posed and
solvable? An answer was given in [4], nevertheless only implicitly via the solution
to the Riccati equation, which was not really an “answer” in that it was not easily
verifiable. Another possible way of addressing the issue is to reformulate the stochastic
LQ problem as a (minimizing) optimization problem of a bilinear form in a Hilbert
space—the space of all admissible controls. From this perspective, whether or not the
control cost is positive is not important in order for the LQ problem to be well-posed
and solvable; what is important is that all the parameters must be given in such a
way that the resulting infinite dimensional optimization problem is convex (see, e.g.,
[21, Chapter 6, Theorem 4.2]). This approach gives a deeper and more abstract view
of the original LQ problem, but again the difficulty lies in interpreting the abstract
convexity condition by the parameters of the LQ problem.

In the classical control literature there is a so-called frequency domain approach
that describes the input-output or control-state relation via the Fourier transformation
and uses some frequency characteristics to characterize the underlying LQ problem.
For the deterministic finite-dimensional systems, Yakubovich [17] systematically es-
tablished the frequency theory in both nondegenerate and degenerate forms. These
results were later extended to infinite dimensions in [18, 19, 15, 16]. For the stochastic
case, Dokuchaev [7] introduced a frequency characteristic for a certain (definite) LQ
problem under the solvability of a linear matrix equation. However, in [7] the diffu-
sion coefficient does not depend on the control variable, and the controls are taken
as deterministic functions; hence the results and their derivations are very much par-
allel to the deterministic case. On the other hand, Ugrinovskii [14] established, via
the frequency domain approach, the equivalence between the solvability of a matrix
inequality and the nonnegativity of the aforementioned bilinear form in the control
space. However, no frequency characteristic that can be computed explicitly through
the parameter matrices of the LQ problem has been given in [14] to characterize the
well-posedness/solvability of the original stochastic LQ problem. (For more details
see Remark 7.3 below.)

In this paper, we introduce a new frequency characteristic for the indefinite
stochastic LQ problem. This characteristic, which reduces to the one studied in
[7] when the diffusion is control-independent, is a complex matrix that can be cal-
culated directly from the given parameters of the LQ problem. Then we establish
the equivalence of the following statements: (1) the LQ problem is solvable and has
a unique optimal control; (2) the stochastic Riccati equation has a unique solution
such that the induced feedback control is stabilizing; (3) the associated optimization
problem of the bilinear form is coercive; and (4) the frequency characteristic matrix is
uniformly positive definite. This way we completely characterize the solvability of the
indefinite LQ problem via the frequency characteristic introduced, and we establish
a grand unification of different approaches in dealing with the LQ problem. One of
the implications of the above equivalence is that it is the overall coordination of all
the parameters of the problem, rather than the positive definiteness of individual cost
matrices, that is essential to the solvability of the LQ problem. This is the underlying
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reason for the seemingly surprising phenomenon that one may solve a stochastic LQ
problem even when the cost matrices are indefinite. An interesting by-product is that,
by comparing and equating the frequency characteristics, the stochastic LQ problem
is shown to be equivalent to a problem without a diffusion term but with different
cost weighting matrices. In other words, the diffusion part of the problem can be
transferred to the overall cost, which in turn implies that the uncertainty is nothing
but a part of the cost. One can then clearly figure out how negative a control or state
cost can be so as to make a meaningful LQ problem.

The remainder of the paper is organized as follows. In section 2 the indefinite
stochastic LQ problem is formulated, and some preliminaries, including the important
issue of stabilizability, are presented. In section 3 a frequency characteristic is intro-
duced. Section 4 gives a link between the frequency characteristic and the bilinear
form. Section 5 is devoted to the relationship between the stochastic Riccati equa-
tion and the LQ problem, while section 6 is devoted to that between the frequency
characteristic and the LQ problem. In section 7 all the results obtained are unified to
establish a grand equivalence theorem. Finally, section 8 concludes the paper.

2. Problem formulation and preliminaries. Let (Ω,F ,P;Ft) be a given
standard filtered probability space with a standard scalar Brownian motion w(t) on
[0,+∞) (with w(0) = 0). The Brownian motion is assumed to be one-dimensional
only for simplicity; there is no essential difficulty with the multidimensional case.
Consider the controlled Itô differential equation{

dx(t) = [Ax(t) + Bu(t)]dt + [Cx(t) + Du(t)]dw(t),

x(0) = x0 ∈ R
n,

(2.1)

where A, B, C, and D are real matrices of sizes n × n, n × m, n × n, and n × m,
respectively. The associated cost functional is

J(x0;u(·)) = E

∫ +∞

0

[x(t)TQx(t) + 2u(t)TSx(t) + u(t)TRu(t)] dt,(2.2)

where Q and R are real symmetric matrices and S is a real matrix of appropriate
sizes.

Throughout this paper, the superscript “T” denotes the transpose of a matrix,
while “*” denotes the adjoint of a (complex) matrix (i.e., the complex conjugate of
the transpose). For a matrix or vector X = (xij), we define its norm by |X| =

(
∑
i,j |xij |2)

1
2 . Moreover, we denote by ‖ · ‖H the underlying norm in a Hilbert space

H. Set

L2
F (Rk) �




φ(·) : [0,+∞)× Ω 	→ R
k| φ(·) is Ft-adapted, measurable,

and E

∫ +∞

0

|φ(t, ω)|2 dt < +∞,
(2.3)

which is a Hilbert space with the inner product E
∫ +∞
0

φ(t)Tψ(t) dt for φ(·), ψ(·) ∈
L2
F (Rk). Define U(x0) ⊂ L2

F (Rm), the set of admissible controls (at x0), as the
collection of such u(·) ∈ L2

F (Rm) that the corresponding solution x(·) ≡ x(·;x0, u(·))
of (2.1) satisfies x(·) ∈ L2

F (Rn). In this case, (u(·), x(·)) is called an admissible pair
(at x0).

The (indefinite) stochastic LQ optimal control problem can be stated as follows.
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Problem (LQ). For a given x0 ∈ R
n, find u(·) ∈ U(x0) so that the cost functional

(2.2) is minimized.
We call the LQ problem under consideration in this paper indefinite in the sense

that we do not impose any positive/positive semi- definiteness for the cost matrices
Q and R. However, as it turns out, being indefinite does not rule out the possibility
that the bilinear form of the stochastic LQ problem is “positive definite” so that the
problem admits an optimal control (see Theorem 7.1). In fact, this is exactly the
distinctive feature of the stochastic problem that motivates this paper to characterize
the solvability of an indefinite stochastic LQ problem.

Since now the problem is indefinite, the infimum of the cost functional (2.2) could
be negatively infinite. If it holds that

inf
u(·)∈U(x0)

J(x0;u(·)) > −∞,(2.4)

then we say that Problem (LQ) is well-posed at x0 ∈ R
n. If there exists a ū(·) ∈ U(x0)

such that

J(x0; ū(·)) = inf
u(·)∈U(x0)

J(x0;u(·)) > −∞,(2.5)

then we say that Problem (LQ) is solvable at x0 ∈ R
n. In this case, we call the control

ū(·) an optimal control and the pair (ū(·), x̄(·)) an optimal pair. If there is only one
optimal control satisfying (2.5), then Problem (LQ) is called uniquely solvable at
x0 ∈ R

n.
Compared with optimality, an almost equally important term, due to the infinite

time horizon, is the stability/stabilizability.
Definition 2.1. The system (2.1) with a given admissible control u(·) is called

(mean-square) stable at a given initial state x0 ∈ R
n, if limt→+∞ E|x(t)|2 = 0, where

x(·) is the corresponding state trajectory. The system (2.1) is called (mean-square)
stabilizable if there exists a feedback control u(·) = Kx(·) with a constant matrix K,
such that the corresponding solution x(·) of the system (2.1), for any initial state
x0 ∈ R

n, satisfies limt→+∞ E|x(t)|2 = 0. In this case, the matrix K is called a
(mean-square) stabilizing feedback operator, and the feedback control u(·) = Kx(·) is
called a (mean-square) stabilizing control.

The following standard assumption is imposed throughout this paper.
Assumption (A1). The system (2.1) is stabilizable.
Remark 2.1. It is easy to see that Assumption (A1) implies the stabilizability of

the pair (A,B) in the deterministic sense.
Remark 2.2. It follows from Theorems 4.1 and 4.2 of [13] that Assumption (A1)

is equivalent to the nonemptiness of the admissible control set U(x0) at any x0. This
is a very deep result, as the nonemptiness of U(x0) is a rather weak statement. It also
shows that (A1) is almost a minimum assumption.

Under Assumption (A1), we can further assume, without loss of generality, that
the uncontrolled system of (2.1) (i.e., the system (2.1) with u(t) ≡ 0) is (mean-square)
stable at any initial x0. Indeed, let K be a stabilizing feedback operator, and put
u(·) = Kx(·) + v(·) in (2.1). Then (2.1) is turned to

dx(t) = [A1x(t) + Bv(t)]dt + [C1x(t) + Dv(t)]dw(t), x(0) = x0,(2.6)

where A1 = A + BK and C1 = C + DK. So the system (2.6) with v(t) ≡ 0 is stable
at any x0.
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Based on the above argument, we assume the following throughout this paper.
Assumption (A2). The uncontrolled system of (2.1) is stable at any initial x0.
Remark 2.3. Similar to Remark 2.1, Assumption (A2) implies that the matrix A

is Hurwitz (i.e., the real parts of all the eigenvalues of A are strictly negative).
Lemma 2.1. For any u(·) ∈ U(x0), E|x(t)|2 is uniformly continuous on [0,+∞)

and limt→+∞ E|x(t)|2 = 0.
Proof. By Itô’s formula, X(t) � E[x(t)x(t)T ] satisfies the differential equation

d

dt
X(t) = AX(t) + X(t)AT + CX(t)CT + Y (t),(2.7)

where

Y (t) � E[Bu(t)x(t)T + x(t)u(t)TBT + Du(t)x(t)TCT

+ Cx(t)u(t)TDT + Du(t)u(t)TDT ].
(2.8)

It follows from u(·) ∈ U(x0) that, for some constant k > 0,

∫ ∞

0

|Y (t)| dt ≤ k[‖u(·)‖2L2
F (Rm) + ‖x(·)‖2L2

F (Rn)] < +∞.(2.9)

On the other hand, by Assumption (A2), the solution to the homogeneous version of
(2.7),

d

dt
X(t) = AX(t) + X(t)AT + CX(t)CT ,(2.10)

is exponentially stable, i.e., there exist numbers c, ε > 0 such that |X(t)| ≤ c|x0|2e−εt.
Hence it can be easily verified by the variation-of-constant formula along with (2.9)
that E[x(t)x(t)T ] = X(t) is uniformly continuous. This also leads to limt→+∞ E[x(t)x
(t)T ] = 0 since x(·) ∈ L2

F (Rn).
Lemma 2.2. U(x0) = L2

F (Rm) for any x0 ∈ R
n.

Proof. It suffices to prove that for any u(·) ∈ L2
F (Rm), the corresponding solution

x(·) of (2.1) satisfies x(·) ∈ L2
F (Rn). By Itô’s formula, X(t) � E[x(t)x(t)T ] satisfies

the matrix-valued differential equation (2.7). It has been shown in the proof of Lemma
2.1 that there exist c1, ε1 > 0 such that the fundamental solution matrix (with a size
of n2 × n2) of the linear ODE (2.10), denoted by M(t) � (mij(t)), satisfies

|M(t)| =

∑

i,j

|mij(t)|2



1
2

≤ c1e
−ε1t ∀t ∈ [0,+∞).(2.11)

By Young’s inequality there exists a constant c2 > 0 (independent of t ∈ [0,+∞))
such that Y (t) defined by (2.8) satisfies

|Y (t)| ≤ ε1

2c1
|X(t)|+ c2E|u(t)|2 ∀t ∈ [0,+∞).(2.12)

Hence, using the variation-of-constant formula, it follows from (2.11) and (2.12) that
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the solution X(·) to (2.7) satisfies

|X(t)| ≤ c1e
−ε1t|X(0)|+ c1

∫ t

0

e−ε1(t−s)|Y (s)| ds

≤ c1e
−ε1t|X(0)|+ c1c2

∫ t

0

e−ε1(t−s)E|u(s)|2 ds

+
ε1

2

∫ t

0

e−ε1(t−s)|X(s)| ds.

Integrating from 0 to j ∈ [0,+∞) and employing Fubini’s theorem, we obtain∫ j

0

|X(t)| dt ≤ c1
ε1
|X(0)|+ c1c2

∫ j

0

∫ t

0

e−ε1(t−s)E|u(s)|2 ds dt

+
ε1

2

∫ j

0

∫ t

0

e−ε1(t−s)|X(s)| ds dt

≤ c1
ε1

[
|X(0)|+ c2

∫ +∞

0

E|u(t)|2 dt

]
+

1

2

∫ j

0

|X(t)| dt.

Noticing the arbitrariness of j and the fact that

‖x(·)‖2L2
F (Rn) =

∫ +∞

0

TrX(t) dt,

we have, for some constant k > 0,

‖x(·)‖L2
F (Rn) ≤ k[|x0|+ ‖u(·)‖L2

F (Rm)].(2.13)

This completes the proof.
In view of Lemma 2.2, from now on we shall use U(x0) and L2

F (Rm) interchange-
ably.

3. Frequency characteristic. Since A is a Hurwitz matrix (see Remark 2.3),
the complex matrix-valued function

g(λ) � (iλI −A)−1(3.1)

is well defined for any λ ∈ R.
Now introduce the following matrix equation with the unknown Θ being a sym-

metric matrix:

Θ = Q +
1

2π

∫ +∞

−∞
CT g(−λ)TΘg(λ)C dλ.(3.2)

This is a linear algebraic equation whose solvability is interesting in its own right. We
shall study the solvability of this equation at the end of this section.

Suppose that (3.2) is solvable with a solution Θ. Define a complex matrix-valued
function

Φ̂(λ) �R +
1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλD + BT g(−λ)TΘg(λ)B

+ BT g(−λ)T
[
ST +

1

2π
CT

∫ +∞

−∞
g(−λ)TΘg(λ) dλD

]

+

[
S +

1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλC

]
g(λ)B ∀λ ∈ R.

(3.3)
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The above Φ̂(λ) is called the frequency characteristic of Problem (LQ), which can be
computed explicitly through the given parameters of the original stochastic LQ prob-
lem. Note that when C = 0 and D = 0, by Proposition 3.1(i) below, this frequency
characteristic coincides with that in the deterministic case (see [16],[17],[18],[19]):

Φ̂(λ) � R + BT g(−λ)TQg(λ)B + BT g(−λ)TST + Sg(λ)B ∀λ ∈ R.(3.4)

Let us now turn to the solvability of (3.2). First we investigate the scalar case.
Example 3.1. Consider Problem (LQ), where the state and control variables are

both scalar. It is easy to verify that the solution x(·) to the uncontrolled system

(2.1) satisfies Ex(t)2 = e(2A+C2)tx2
0. By the stability assumption (A2), we must have

2A + C2 < 0. On the other hand, (3.2) reduces to

Θ = Q +
1

2π

∫ +∞

−∞

C2

λ2 + A2
dλ ·Θ = Q− C2

2A
Θ.

This equation has a unique solution

Θ =
Q

1 + C2

2A

=
2AQ

2A + C2
.

It is interesting to note that Θ and Q always have the same signs. Moreover, Θ ≥ Q
if and only if Q ≥ 0.

For the general multidimensional case, we are now giving equivalent algebraic
conditions for (3.2) to have solutions and a unique solution, respectively. First, with
an n × n matrix X = (xij) we associate the n2-dimensional column vector vec X
defined by

vec X � (x11, . . . , xn1, x12, . . . , xn2, . . . , x1n, . . . , xnn)T .

Next, recall that for two n × n matrices X = (xij) and Y = (yij) we define the
Kronecker product, denoted by X ⊗ Y , by

X ⊗ Y �




x11Y · · · x1nY
... · · · ...

xn1Y · · · xnnY


 .

Theorem 3.1. Equation (3.2) admits solutions if and only if

rank (Γ vec Q) = rank Γ,

where the n2 × n2 matrix Γ is given by

Γ � I − 1

2π

∫ +∞

−∞
(CT g(λ)T )⊗ (CT g(−λ)T )dλ.

Moreover, (3.2) admits a unique solution if and only if Γ is nonsingular.
Proof. Vectorizing both sides of (3.2) and noting the general formula vec (XY Z) =

(ZT ⊗X)vec Y (see p. 254, Lemma 4.3.1 of [8]), we have

vec Θ = vec Q +
1

2π

∫ +∞

−∞
(CT g(λ)T )⊗ (CT g(−λ)T )dλ vec Θ.
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The desired results follow immediately.
The following proposition further gives two easily verifiable sufficient conditions

for the unique solvability of (3.2).
Proposition 3.1. Equation (3.2) admits a unique solution Θ in either of the

following two cases.
(i) C = 0 (in which case Θ = Q).
(ii) A and C satisfy

1

2π

∫ +∞

−∞
|CT g(−λ)T ||g(λ)C| dλ < 1.

Proof. Case (i) is straightforward. For (ii), denote by Sn the space of n × n
symmetric matrices. Define a mapping T : Sn 	→ Sn as follows:

T Θ � Q +
1

2π

∫ +∞

−∞
CT g(−λ)TΘg(λ)C dλ ∀Θ ∈ Sn.

The conclusion then follows immediately from the contraction mapping theor-
em.

It should be noted that the case C = 0 is typically encountered in financial
applications (see, e.g., [10, 22]).

4. Frequency characteristic and bilinear form. It is well known that an
optimal LQ problem can be formulated as an optimization problem of a bilinear form
in a Hilbert space. This formulation, in turn, gives insight on the LQ problem from
the viewpoint of convex analysis in infinite dimensions. This section establishes the
relation between the frequency characteristic and the bilinear form.

Define the bounded bilinear operators Φ and Γ on L2
F (Rm) and R

n, respectively,
as

Φ(u(·), v(·)) �E

∫ +∞

0

[x(t; 0, u(·))TQx(t; 0, v(·)) + u(t)TSx(t; 0, v(·))

+ x(t; 0, u(·))TST v(t) + u(t)TRv(t)] dt ∀u(·), v(·) ∈ U(0),

(4.1)

and

Γ(x0) � E

∫ +∞

0

x(t;x0, 0)TQx(t;x0, 0) dt.(4.2)

Further, define the bounded bilinear operator Ψ on L2
F (Rm)× R

n by

Ψ(u(·), x0) � E

∫ +∞

0

[x(t; 0, u(·))TQx(t;x0, 0) + u(t)TSx(t;x0, 0)] dt.(4.3)

The boundedness of the operators Φ, Γ, and Ψ follows from (2.13).
Then, the cost functional (2.2) can be represented as

J(x0;u(·)) = Φ(u(·), u(·)) + 2Ψ(u(·), x0) + Γ(x0).(4.4)

Clearly, the first term on the right-hand side of (4.4), namely, the bilinear operator
Φ, is crucial in determining the well-posedness and solvability of the optimization
problem. To link the bilinear form introduced above to the frequency characteristic,
we need to first recall the Fourier transformation on Hilbert spaces.
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Let Z � L2(Ω,F ,P; Rk) be the Hilbert space equipped with the inner product∫
Ω
φ(ω)Tψ(ω)P( dω) for any φ, ψ ∈ Z. For φ(·) ∈ L2(−∞,+∞;Z), define its Fourier

transformation as

φ̃(λ) =
1√
2π

∫ ∞

−∞
e−iλtφ(t) dt ∀λ ∈ R.(4.5)

If we denote

φ̃α(λ) =
1√
2π

∫ α

−α
e−iλtφ(t) dt ∀λ ∈ R,(4.6)

then obviously we have

‖φ̃α(·)− φ̃(·)‖L2(−∞,+∞;Z) → 0(4.7)

as α→ +∞.
Now we turn to our system (2.1). For any x(·) ∈ L2

F (Rn), we set x(t) =
0 for t < 0. We augment u(·) ∈ U(0) in a similar way. In other words, we
have the natural embedding L2

F (Rn) ⊂ L2(−∞,∞;L2(Ω,F ,P; Rn)) and U(0) ⊂
L2(−∞,∞;L2(Ω,F ,P; Rm)).

The following result, which represents the bilinear form through the frequency
characteristic, plays a central role in this paper.

Proposition 4.1. Assume that the matrix equation (3.2) is solvable with a
solution Θ. Then

Φ(u(·), u(·)) = E

∫ +∞

−∞
ũ(λ)∗Φ̂(λ)ũ(λ) dλ,(4.8)

where Φ and Φ̂(λ), λ ∈ R, are defined by (4.1) and (3.3), respectively.
Proof. For u(·) ∈ U(0), the system (2.1) with x0 = 0 yields∫ α

0

e−iλt[Ax(t) + Bu(t)] dt +

∫ α

0

e−iλt[Cx(t) + Du(t)] dw(t)

=

∫ α

0

e−iλt dx(t) = iλ

∫ α

0

e−iλtx(t) dt + e−iλαx(α).

It follows that

x̃α(λ) = (iλ−A)−1

[
Bũα(λ) + fα(λ)− 1√

2π
e−iλαx(α)

]
,(4.9)

where

fα(λ) =
1√
2π

∫ α

0

e−iλt[Cx(t) + Du(t)] dw(t), g(λ) = (iλI −A)−1.

Now, for any symmetric matrix H,

E[x̃α(λ)∗Hx̃α(λ)] = E
{

[g(λ)Bũα(λ)]∗Hg(λ)Bũα(λ)

− 2√
2π

Re{[g(λ)Bũα(λ)]∗Hg(λ)e−iλαx(α)}

+
1

2π
[g(λ)e−iλαx(α)]∗Hg(λ)e−iλαx(α)

+ [g(λ)fα(λ)]∗Hg(λ)fα(λ)
}
.

(4.10)
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Hence, for β > 0,∫ β

−β
E[x̃α(λ)∗Hx̃α(λ)] dλ =

∫ β

−β
E[ũα(λ)∗BT g(−λ)THg(λ)Bũα(λ)] dλ

+

∫ β

−β
E{[g(λ)fα(λ)]∗Hg(λ)fα(λ)} dλ + ρ(α, β),

(4.11)

where ρ(α, β) includes all the remainder terms. Noting that ‖x(α)‖L2(Ω,F,P;Rn) → 0
as α→ +∞ due to Lemma 2.1, that |g(λ)| is uniformly bounded due to the stability
of (2.1), and that |g(λ)Bũα(λ)| is uniformly bounded due to (4.7), we conclude that
ρ(α, β) converges to zero uniformly in β as α→ +∞.

By Itô’s formula, we have

∫ β

−β
E{[g(λ)fα(λ)]∗Hg(λ)fα(λ)} dλ

=

∫ α

−α
E

{
[Cx(t) + Du(t)]T

[
1

2π

∫ β

−β
g(−λ)THg(λ) dλ

]
[Cx(t) + Du(t)]

}
dt.

(4.12)

Letting α → +∞ and β → +∞ in (4.11) and (4.12) and appealing to Parseval’s
equality, we obtain

E

∫ +∞

0

x(t)THx(t) dt =
1

2π
E

∫ +∞

−∞
x̃(λ)∗Hx̃(λ) dλ

=
1

2π
E

∫ +∞

−∞
ũ(λ)∗BT g(−λ)THg(λ)Bũ(λ) dλ

+
1

2π
E

∫ +∞

0

[Cx(t) + Du(t)]T
(∫ +∞

−∞
g(−λ)THg(λ) dλ

)
[Cx(t) + Du(t)]dt.

(4.13)

Similarly, it follows from (4.7), (4.9), and Lemma 2.1 that

E

∫ +∞

0

u(t)TSx(t) dt =
1

2π
E

∫ +∞

0

ũ(λ)∗Sg(λ)Bũ(λ) dλ.(4.14)

Finally, Parseval’s equality yields

E

∫ +∞

0

u(t)TRu(t) dt =
1

2π
E

∫ +∞

−∞
ũ(λ)∗Rũ(λ) dλ.(4.15)

Combining (4.13), (4.14), and (4.15) and noting that Θ satisfies (3.2), we arrive at
(4.8).

Theorem 4.1. If there exists some constant σ > 0 such that

Φ̂(λ) ≥ σI ∀λ ∈ R,(4.16)

then

Φ(u(·), u(·)) ≥ σE

∫ +∞

0

|u(t)|2 dt ∀u(·) ∈ L2
F (Rm).(4.17)
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As a consequence, Problem (LQ) is uniquely solvable at any initial state x0 ∈ R
n.

Proof. It follows from (4.8) that

Φ(u(·), u(·)) ≥ σE

∫ +∞

−∞
ũ(λ)∗ũ(λ) dλ = σ‖u(·)‖2L2

F (Rm).

This coercivity of the bilinear form Φ further implies (see, e.g., [18, Lemma 1] or [21,
Chapter 6, Theorem 4.2]) that Problem (LQ) is uniquely solvable at any initial state
x0.

5. Riccati equation and LQ control. The Riccati equation is the primary
approach in dealing with LQ problems. In this section we present the equivalent
relation between the unique solvability of Problem (LQ) and the solvability of the
following stochastic algebraic Riccati equation (SARE) introduced in [1]:




ATP + PA + CTPC + Q

− (ST + PB + CTPD)(R + DTPD)−1(S + BTP + DTPC) = 0,

R + DTPD > 0.

(5.1)

It should be noted that the second (positive definiteness) constraint in (5.1) is
part of the equation and must be satisfied by any solution. This in turn gives rise to
additional difficulty in solving the equation.

To cope with the possible singularity of R + DTPD, we need to employ the
notion of the pseudoinverse of a matrix. To be specific, for any matrix M , there
exists a unique matrix M† satisfying the following properties:

MM†M = M, M†MM† = M†, (M†M)T = M†M, (MM†)T = MM†.(5.2)

M† is called the Moore–Penrose pseudoinverse (see [12]) of M . When M is nonsin-
gular, the pseudoinverse coincides with the usual inverse, i.e., M† = M−1.

The generalized version of the SARE (5.1), when the matrix R+DTPD is allowed
to be singular, is the following generalized algebraic Riccati equation (GARE), which
was first introduced in [2]:


M(P )− L(P )TN (P )†L(P ) = 0,

[I −N (P )†N (P )]L(P ) = 0,

N (P ) ≥ 0,

(5.3)

where 

M(P ) � ATP + PA + CTPC + Q,

N (P ) � R + DTPD,

L(P ) � S + BTP + DTPC.

(5.4)

Lemma 5.1. If Problem (LQ) is solvable at any x0 ∈ R, then the GARE (5.3)
has a solution P = PT satisfying

inf
u(·)∈U(x0)

J(x0;u(·)) = xT0 Px0.(5.5)
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Proof. This is shown in the proof of [2, Theorem 4.1].
Theorem 5.1. Problem (LQ) is uniquely solvable at any initial state x0 ∈ R

n

if and only if the SARE (5.1) has one and only one such solution P = PT that the
associated feedback operator

K̃ � −(R + DTPD)−1[S + BTP + DTPC](5.6)

is (mean-square) stabilizing.
Proof. The “if” part is an immediate consequence of [2, Theorems 2.1, 4.1]. We

now prove the “only if” part. By Lemma 5.1, the GARE (5.3) admits a solution P =
PT satisfying (5.5). Let u(·) ∈ U(x0) be any admissible control, and let x(·) ∈ L2

F (Rn)
be the corresponding state trajectory. By applying Itô’s formula to x(t)TPx(t) and
integrating from 0 to +∞, and then by combining it with the cost functional (2.2),
we obtain

J(x0;u(·)) =xT0 Px0

+ E

∫ +∞

0

{x(t)TM(P )x(t) + 2u(t)TL(P )x(t) + u(t)TN (P )u(t)} dt.

(5.7)

First, we show that

N (P ) �= 0.(5.8)

In fact, if N (P ) = 0, then the GARE (5.3) is reduced to

M(P ) = 0, L(P ) = 0, N (P ) = 0.

Hence it follows from (5.7) that

J(x0;u(·)) = 0 ∀u(·) ∈ L2
F (Rm),

which implies that any u(·) ∈ L2
F (Rm) is optimal. This contradicts the assumption

of the unique solvability of Problem (LQ), which proves (5.8).
Next we prove that N (P ) is nonsingular. Indeed, if N (P ) �= 0 is singular, then

there is a symmetric matrix V with V V T = V TV = I such that

N (P ) = V

(
Σ 0
0 0

)
V T ,(5.9)

where Σ is a positive definite diagonal matrix of order r with 0 < r < m. Moreover,

N (P )† = V

(
Σ−1 0

0 0

)
V T .(5.10)

Define v(·) � V Tu(·). It follows from (5.7) and the GARE (5.3) that

J(x0;u(·)) = xT0 Px0 + E

∫ +∞

0

{
x(t)TL(P )TV

(
Σ−1 0

0 0

)
V TL(P )x(t)

+ 2v(t)TV TL(P )x(t) + v(t)T
(

Σ 0
0 0

)
v(t)

}
dt

= xT0 Px0 + E

∫ +∞

0

|(Σ 1
2 0)r×mv(t) + (Σ− 1

2 0)r×mV TL(P )x(t)|2 dt.

(5.11)
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Note that in equating the cross term of v(t) and x(t) in the last equality above,
we have used the second equality of (5.3) as well as (5.9)–(5.10). In view of (5.5),
u(·) ∈ L2

F (Rm) is an optimal control of Problem (LQ) at x0 ∈ R
n if and only if the

integrand on the right-hand side of (5.11) is zero, i.e.,

u(·) = V v(·) ≡ V

(
vr(·)

vm−r(·)
)

= −V
(

(Σ−1 0)r×mV TL(P )x(·)
vm−r(·)

)
,(5.12)

where vm−r(·) ∈ L2
F (Rm−r). With the above control, the dynamics (2.1) is reduced

to {
dx(t) = [A1x(t) + B1vm−r(t)]dt + [C1x(t) + D1vm−r(t)]dw(t),

x(0) = x0 ∈ R
n,

(5.13)

where 


A1 � A−BN (P )†L(P ), C1 � C −DN (P )†L(P ),

B1 � −BV

(
0r×(m−r)

I(m−r)×(m−r)

)
, D1 � −DV

(
0r×(m−r)

I(m−r)×(m−r)

)
.

The above argument shows that any vm−r(·) ∈ L2
F (Rm−r) applied to the system

(5.13), as long as the corresponding state x(·) ∈ L2
F (Rn), provides an optimal control

for the original Problem (LQ) via (5.12). Now we are going to show that there are more
than one such vm−r(·). First note that at this point we cannot directly conclude the
stabilizability of system (5.13) from that of system (2.1) because (5.13) is “smaller”
than (2.1) in the sense that the admissible controls for (5.13) are confined to the
form specified by (5.12). To get around this, let (ū(·), x̄(·)) ∈ L2

F (Rm) × L2
F (Rn)

be an optimal pair for the original Problem (LQ) at an initial x0, which exists by

assumption, and let v̄(·) ≡ ( v̄r(·)
v̄m−r(·)

)
= V T ū(·). Then it follows from (5.12) that

ū(·) = −V
(

(Σ−1 0)r×mV TL(P )T x̄(·)
v̄m−r(·)

)
,

where v̄m−r(·) ∈ L2
F (Rm−r). This implies that x̄(·) ∈ L2

F (Rn) is the trajectory
to (5.13) under the admissible control v̄m−r(·) ∈ L2

F (Rm−r). Therefore, the set of
admissible controls for (5.13) is nonempty at any initial state x0. By Theorems 4.1
and 4.2 in [13], the SARE

AT1 P + PA1 + CT
1 PC1 + I

− (PB1 + CT
1 PD1)(I + DT

1 PD1)
−1(BT

1 P + DT
1 PC1) = 0

admits a solution P1 = PT
1 such that

K̃ � −(I + DT
1 P1D1)

−1[BT
1 P1 + DT

1 P1C1]

is a stabilizing feedback operator. In other words, system (5.13) is stabilizable. Using
the same argument as that in the proof of Lemma 2.2, we can show that the state x(·)
of (5.13) corresponding to the control vm−r(·) = Kx(·)+ξ(·), where ξ(·) ∈ L2

F (Rm−r)
is arbitrary, must satisfy x(·) ∈ L2

F (Rn). This implies that the original Problem (LQ)
has more than one optimal control, which is a contradiction. Therefore, N (P ) must
be nonsingular. The desired results then follow from the fact that in this case the two
Riccati equations, SARE (5.1) and GARE (5.3), coincide, and the optimal feedback
operator given in (5.12) degenerates to (5.6). Finally, the uniqueness of such a solution
P to (5.1) that (5.6) is stabilizing follows from [2, Theorem 2.3].
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6. Frequency characteristic and LQ control. In this section, to close the
loop of equivalence we establish the relationship between the frequency characteristic
and LQ control. Throughout the section we assume that the matrix equation (3.2) is
solvable.

Proposition 6.1. The cost functional (2.2) can be represented as

J(x0;u(·)) = E

∫ +∞

−∞
{ũ(λ)∗Φ̂(λ)ũ(λ) + 2 Re[ũ(λ)∗Ψ̂(λ)x0]} dλ + Γ(x0),(6.1)

where

Ψ̂(λ) �
[
BT g(−λ)TΘ +

1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλC + S

]
g(λ).(6.2)

Proof. Similar to the argument in section 4, it follows from (4.7), (4.9), and
Lemma 2.1 that

E

∫ +∞

0

x(t; 0, u(·))TΘx(t;x0, 0) dt = E

∫ +∞

−∞
ũ(λ)∗BT g(−λ)TΘg(λ)x0 dλ

+
1

2π
E

∫ +∞

0

[Cx(t; 0, u(·)) + Du(t)]T
∫ +∞

−∞
g(−λ)TΘg(λ) dλCx(t;x0, 0) dt.

Moreover, for any matrix H ∈ R
m×n,

E

∫ +∞

0

u(t)THx(t;x0, 0) dt = E

∫ +∞

−∞
ũ(λ)∗Hg(λ)x0 dλ.

Therefore,

E

∫ +∞

0

x(t; 0, u)TQx(t;x0, 0) dt

= E

∫ +∞

−∞
ũ(λ)∗

[
BT g(−λ)TΘ +

1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλC

]
g(λ)x0 dλ.

We can then conclude from (4.3) that

Ψ(u(·), x0)

= E

∫ +∞

−∞
ũ(λ)∗

[
BT g(−λ)TΘ +

1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλC + S

]
g(λ)x0 dλ.

(6.3)

The desired result therefore follows from (4.1)–(4.4), (4.8), and (6.3).
Next, based on the frequency characteristic, we construct an auxiliary stochastic

LQ problem that does not have a diffusion part but is equivalent to the original
stochastic LQ problem. To do this, define

Q1 � Θ, S1 � S +
1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλC,

R1 � R +
1

2π
DT

∫ +∞

−∞
g(−λ)TΘg(λ) dλD.

(6.4)
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Construct the following LQ problem with the cost functional

J̄(x0;u(·)) = E

∫ +∞

0

[x(t)TQ1x(t) + 2u(t)TS1x(t) + u(t)TR1u(t)] dt,(6.5)

subject to the dynamics 


d

dt
x(t) = Ax(t) + Bu(t),

x(0) = x0 ∈ R
n,

(6.6)

where the admissible control set is L2
F (Rm).

From the way we constructed the LQ problem (6.5)–(6.6), it is clear that the
problem has the same frequency characteristic as that of the original Problem (LQ).
By an analogous argument to those in section 4 and the above in this section, it holds
that

J̄(x0;u(·)) = E

∫ +∞

−∞
{ũ(λ)∗Φ̂(λ)ũ(λ) + 2 Re[ũ(λ)∗Ψ̂(λ)x0]} dλ + Γ1(x0),(6.7)

where

Γ1(x0) � E

∫ +∞

0

x(t;x0, 0)TQ1x(t;x0, 0) dt(6.8)

for the solution x(·;x0, 0) of (6.6) with u(·) = 0.
Lemma 6.1. The LQ problem (2.1)–(2.2) is uniquely solvable at any x0 if and

only if the LQ problem (6.5)–(6.6) is uniquely solvable at any x0.
Proof. In view of (6.1) and (6.7), J(x0;u(·)) and J̄(x0;u(·)) differ by a term which

does not depend on the control variable u(·). The result then follows.
Remark 6.1. Lemma 6.1 is of significant implications on its own. It suggests

that the original Problem (LQ) is in fact equivalent to the auxiliary LQ problem
(6.5)–(6.6) whose diffusion part in the dynamics is absent while the cost parameters
are modified. More specifically, one can transfer the diffusion part (corresponding
to the uncertainty/risk) of a stochastic system to the cost part. The new cost can
be precisely calculated according to (6.4), which in turn draws the boundary of the
possible indefiniteness of the original LQ problem. See Example 7.1 below for more
details.

Lemma 6.2. If the LQ problem (6.5)–(6.6) is uniquely solvable at any initial state
x0 ∈ R

n, then R1 > 0, and the Riccati equation

ATP + PA + Q1 − [BTP + S1]
TR−1

1 [BTP + S1] = 0(6.9)

admits a solution P1 with the matrix

A−BR−1
1 [BTP1 + S1](6.10)

being Hurwitz.
Proof. This follows from Theorem 5.1, in view of the fact that the LQ problem

(6.5)–(6.6) is a special case of the original Problem (LQ).
Lemma 6.3. Assume that the LQ problem (6.5)–(6.6) is uniquely solvable at any

initial state x0 ∈ R
n. Then

Φ̂(λ) = [I + E(λ)∗]R1[I + E(λ)],(6.11)
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where

E(λ) � R−1
1 [BTP1 + S1](iλ−A)−1B.(6.12)

Moreover, it holds that

I + E(λ) = [I −G(λ)B]−1(6.13)

with

G(λ) � R−1
1 [BTP1 + S1]{iλ−A + BR−1

1 [BTP1 + S1]}−1.(6.14)

Proof. It follows from (3.3) and (6.4) that

Φ̂(λ) = R1 + BT (−iλ−AT )−1Q1(iλ−A)−1B

+ BT (−iλ−AT )−1ST1 + S1(iλ−A)−1B ∀λ ∈ R.
(6.15)

By Lemma 6.2, the Riccati equation (6.9) admits a unique solution P1. First we
calculate

− (−iλ−AT )−1ATP1(iλ−A)−1 − (−iλ−AT )−1P1A(iλ−A)−1

= P1(iλ−A)−1 + iλ(−iλ−AT )−1P1(iλ−A)−1

+ (−iλ−AT )−1P1 − iλ(−iλ−AT )−1P1(iλ−A)−1

= P1(iλ−A)−1 + (−iλ−AT )−1P1.

Consequently,

(−iλ−AT )−1Q1(iλ−A)−1

= (−iλ−AT )−1(BTP1 + S1)
TR−1

1 (BTP1 + S1)(iλ−A)−1

− (−iλ−AT )−1(ATP1 + P1A)(iλ−A)−1

= (−iλ−AT )−1(BTP1 + S1)
TR−1

1 (BTP1 + S1)(iλ−A)−1

+ P1(iλ−A)−1 + (−iλ−AT )−1P1.

(6.16)

Plugging (6.16) in (6.15), we get (6.11).
By Lemma 6.2, the matrix

π(λ) � iλ−A + BR−1
1 (BTP1 + S1)

is nonsingular for all λ ∈ R, which in turn implies that G(λ) in (6.14) is well defined.
Now we compute

E(λ)G(λ)B

= R−1
1 (BTP1 + S1)(iλ−A)−1BR−1

1 (BTP1 + S1)π(λ)−1B

= R−1
1 (BTP1 + S1)(iλ−A)−1[iλ−A + BR−1

1 (BTP1 + S1)]π(λ)−1B

−R−1
1 (BTP1 + S1)π(λ)−1B

= E(λ)−G(λ)B.

Thus

[I + E(λ)][I −G(λ)B] = I + E(λ)−G(λ)B − E(λ) + G(λ)B = I,
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which yields (6.13).
Theorem 6.1. If Problem (LQ) is uniquely solvable at any x0, then there exists

some constant σ > 0 such that

Φ̂(λ) ≥ σI ∀λ ∈ R.(6.17)

Proof. It follows from (6.10) that there exists a constant k > 0 satisfying

|[iλ−A + BR−1
1 (BTP1 + S1)]

−1| ≤ k ∀λ ∈ R.

Hence there exists a k1 > 0 such that

|G(λ)| ≤ k1 ∀λ ∈ R.

For any u ∈ C
m (the set of m-dimensional complex vectors), let

v(λ) � [I + E(λ)]u = [I −G(λ)B]−1u ∀λ ∈ R.

Then it holds that

|u| = |[I −G(λ)B]v(λ)| ≤ (1 + k1|B|)|v(λ)|.

Hence it follows from (6.11) that

u∗Φ̂(λ)u = |R 1
2
1 [I + E(λ)]u|2 = |R 1

2
1 v(λ)|2

≥ k2
2|v(λ)|2 ≥

(
k2

1 + k1|B|
)2

u∗u ∀λ ∈ R, ∀u ∈ C
m,

where k2 > 0 is the minimum eigenvalue of the positive-definite matrix R
1
2
1 . This

completes the proof.

7. Synthesis. In this section, based on the results in the previous sections, we
establish a grand unification of four statements for Problem (LQ) from different as-
pects: the LQ problem itself, the Riccati equation, the bilinear form, and the frequency
characteristic.

Theorem 7.1. Assume that the matrix equation (3.2) is solvable. Then the
following statements are equivalent.

(I) Problem (LQ) is uniquely solvable at any initial state x0 ∈ R
n.

(II) The SARE (5.1) admits only one such solution P such that PT = P and

K̃ � −(R + DTPD)−1[S + BTP + DTPC](7.1)

is a (mean-square) stabilizing feedback operator.
(III) There exists a constant σ > 0 such that

Φ(u(·), u(·)) ≥ σE

∫ +∞

0

|u(t)|2 dt ∀u(·) ∈ L2
F (Rm).(7.2)

(IV) There exists a constant σ > 0 such that

Φ̂(λ) ≥ σI ∀λ ∈ R.(7.3)

Proof. We have the following loop of implications.
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(I) =⇒ (IV): Theorem 6.1; (IV) =⇒ (III) =⇒ (I): Theorem 3.1; (I) ⇐⇒ (II):
Theorem 5.1.

Remark 7.1. The assumption of the solvability of the matrix equation (3.2) is
not necessary for the equivalence between (I) and (II).

Remark 7.2. When (I) or (II) holds true, the unique optimal feedback control of
Problem (LQ) is

ū(t) = −(R + DTPD)−1[S + BTP + DTPC]x̄(t), t ≥ 0.

Remark 7.3. In [14], it was proved that the bilinear form Φ ≥ 0 if and only if
there exists a symmetric matrix H such that the following inequality holds:

2 RexTH(Ax + Bu) + (Cx + Du)TH(Cx + Du) + F (x, u) ≥ 0 ∀u ∈ R
m, x ∈ R

n,

where F (x, u) = xTQx+ 2uTSx+ uTRu. It was further mentioned in [14, Remark 2]
that Φ can be estimated by a certain frequency-type inequality derived in [3], which is

precisely as follows. Let h1(t) and h2(t) be functions such that
∫ +∞
0
|hk(t)|2 dt < +∞

and hk(t) = 0 for t < 0 (k = 1, 2). The frequency inequality in [3] is the estimate∫ +∞

0

E

[∫ t

0

h1(t− τ)u(τ) dτ +

∫ t

0

h2(t− τ)u(τ)dw(τ)

]
u(t) dt

≥
∫ +∞

−∞
[ReH1(iλ)−G]E|û(iλ)|2 dλ ∀u(·) ∈ L2

F (Rm),

where H1(iλ) �
∫ +∞
0

h1(t)e
iλt dt and û(iλ) �

∫ +∞
0

u(t)eiλt dt. Clearly, the above
inequality is hard to verify via the original parameters of Problem (LQ).

Example 7.1. Continue with Example 3.1, where it has been shown that Θ =
2AQ

2A+C2 . We can then calculate the parameters in (6.4) as

Q1 = Θ =
2AQ

2A + C2
,

R1 = R +
1

2π

∫ +∞

−∞

D2Θ

λ2 + A2
dλ = R− D2Θ

2A
= R− D2Q

2A + C2
,

S1 = S − CDQ

2A + C2
.

The frequency characteristic is

Φ̂(λ) =
2A

λ2 + A2

[
B2Q

2A + C2
−B

(
S − CDQ

2A + C2

)]
+ R− D2Q

2A + C2
.

Consequently, the underlying LQ problem is uniquely solvable if and only if the pa-
rameters satisfy the following:



R− D2Q

2A + C2
> 0 if

B2Q

2A + C2
−B

(
S − CDQ

2A + C2

)
≤ 0,

2

A

[
B2Q

2A + C2
−B

(
S − CDQ

2A + C2

)]
+ R− D2Q

2A + C2
> 0

if
B2Q

2A + C2
−B

(
S − CDQ

2A + C2

)
> 0.
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Next let us look at a two-dimensional example.
Example 7.2. Consider a two-dimensional LQ problem with the following data

in the system dynamics,

A =

(−1 1
0 −1

)
, B =

(
1 0
0 1

)
, C =

(
0 0
0 0

)
, D =

(
1 0
0 0

)
,

and with the cost weighting matrices

Q =

(
4 0
0 −1

)
, S =

(
0 0
0 0

)
, R =

(−1 0
0 3

)
.

Note that both Q and R are indefinite in this example. It is clear that the uncon-
trolled system (2.1) is mean-square stable. Moreover, Θ = Q, and the corresponding
frequency characteristic is

Φ̂(λ) =

(
1 0
0 3

)
+

1

(1 + λ2)2

(
4(1 + λ2) 4(1− iλ)
4(1 + iλ) 4− (1 + λ2)

)
≥ I ∀λ ∈ R,

where the last inequality is obtained by directly evaluating the eigenvalues. Therefore,
it follows from Theorem 7.1 that this LQ problem is uniquely solvable at any initial
state, and the SARE (5.1) admits a unique solution.

8. Concluding remarks. In this paper we applied the frequency domain ap-
proach to the indefinite stochastic LQ problems. We introduced a new frequency
characteristic and explored its links to the underlying LQ problem, the stochastic
Riccati equation, and the bilinear form. It turned out that there are intrinsic equiv-
alence relations among them. The frequency characteristic introduced is expressed
explicitly through the parameters of the LQ problem and is easy to compute. More
importantly, it gives new insights into the internal structure of an LQ problem and
explains the fundamental reason why a stochastic LQ control problem can be indefi-
nite.
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Abstract. The generalized problem of Bolza with a C2-Hamiltonian is considered. Necessary
and sufficient conditions are obtained, respectively, in terms of the accessory problem, the existence
of conjoined basis, and the existence of a solution to a Riccati equation with boundary conditions.
No strengthened Legendre–Clebsch condition is required. When applied to a general optimal control
problem, these results include and generalize known results.
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1. Introduction. Consider the generalized problem of Bolza,

(P) minimize J(x) = �(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))dt,

over all absolutely continuous functions (arcs)x(·) ∈W 1,1[0, 1] satisfying

φ(x(0), x(1)) = 0,(1.1)

where � : R
n × R

n → R, L : [0, 1] × R
n × R

n → R ∪ {+∞}, and φ : R
n × R

n →
R
r, r ≤ 2n. The norm in W 1,s[0, 1] is ‖x‖1,s := |x(0)|+ ‖ẋ(·)‖s. An arc is said to be

admissible if it satisfies (1.1).
The Hamiltonian corresponding to the problem is

H(t, x, p) := sup{〈p, v〉 − L(t, x, v) : v ∈ R
n}.(1.2)

The problem (P) was introduced by R. T. Rockafellar. It is more general than
it appears to be, due to the fact that L is allowed to take the value +∞. While
this problem subsumes diverse constrained problems (e.g., calculus of variations and
optimal control problems), it is distinguished from the classical setting by the lack
of regularity of L. Nevertheless, the Hamiltonian itself may actually be well behaved
for certain classes of problems. This was the reason for the program of studying the
problem (P) from the point of view of the Hamiltonian H. In fact, existence theory
involving conditions on H was obtained by Rockafellar [9], and first-order necessary
conditions in terms of the Hamiltonian inclusions were developed by Clarke in [3]
and [4]. Sufficiency criteria for optimality of zero, first and second order were derived
in [14] and [16] for the case where H(t, ·, ·) is not necessarily concave-convex. There,
one state endpoint is assumed to be fixed, and the second-order sufficiency criterion

∗Received by the editors July 9, 1999; accepted for publication (in revised form) February 9, 2001;
published electronically August 29, 2001.

http://www.siam.org/journals/sicon/40-2/35872.html
†Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027 (zeidan@

math.msu.edu). A part of this research was supported by the National Science Foundation under
grant DMS-0072598.

577



578 VERA ZEIDAN

assumes that H(t, ·, ·) is C1+(C1,1), that is, has a Lipschitz gradient, and is phrased in
terms of a certain Riccati inequality. However, the question of second-order necessary
conditions in terms of the Hamiltonian remains an open question. By analogy with the
classical calculus of variations setting, these conditions are expected to be expressed
in terms of

(i) the accessory problem,
(ii) the coupled point theory,
(iii) a conjoined basis with appropriate boundary conditions, and
(iv) a certain Riccati-type equation with appropriate boundary conditions.

As opposed to the classical setting, these conditions must be phrased in terms of the
Hamiltonian, which can be “nice” even when L is “bad.”

Now consider the optimal control problem

(C) minimize J(x, u) := �(x(0), x(1)) +

∫ 1

0

g(t, x(t), u(t))dt subject to




ẋ(t) = f(t, x(t), u(t)) almost everywhere (a.e.),

u(t) ∈ U a.e.,

φ(x(0), x(1)) = 0,

(1.3)

where x(·) ∈ W 1,1[0, 1] and u(·) is measurable, � and φ are as in the problem (P),
f : [0, 1] × R

n × R
m → R

n, and g : [0, 1] × R
n × R

m → R. A pair (x, u) is called
admissible if x(·) ∈W 1,1[0, 1], u(·) is measurable and (x, u) satisfies (1.3). An arc x is
called admissible if there exists a measurable u for which (x, u) is admissible.

We shall assume the following.

(A)



• f and g are (L × B)-measurable and continuous in (x, u),

• U is closed,

• � is lower semicontinuous.

The Hamiltonian associated with (C) is

H(t, x, p) := sup{p · f(t, x, u)− g(t, x, u) | u ∈ U}.(1.4)

The program of studying the problem (C) from the point of view of the “true”
Hamiltonian H is one step further along than that for (P). In fact, in addition to the
existence theory of [9], the first-order necessary conditions in [4], and the sufficiency
criteria up to the second order in [14] and [15] for the case where only one state
endpoint varies, necessary conditions for (C) were obtained in [2, Theorem 5.1] in
terms of the Riccati equation (R) and (3.17). However, these conditions were derived
for W 1,1-weak minimality and for the case where the initial state variable is fixed
and the final one is free. There, a triplet (x̄, ū, p̄) satisfying the first-order necessary
conditions is considered. It is assumed that ∇2� is Lipschitz and ∇2

(x,p)H is Lipschitz

at (x̄, p̄) from L∞ to L1 (see Definition 2.2). The result states that if the Riccati
equation (R) and the boundary condition (3.17) have on ]tc, t] for some tc ∈ (0, 1), a
solution that does not extend to tc, and if the strengthened Legendre–Clebsch condition
(SL) holds near tc and for t < tc,

(SL) for some λ > 0, Hpp(t, x̄(t), p̄(t)) ≥ λI a.e.,
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and if

sup
t∈[tc−λ,tc]

∣∣∇2
(x,p)H(t, x̄(t), p̄(t))

∣∣ <∞,(1.5)

then (x̄, ū) is not a W 1,1-weak local minimum for (C). These assumptions (see Lemma
5.4 and Remark 5.2) imply that the problem (C) resembles the classical calculus of
variations setting, which is quite restrictive. Also the question of necessary conditions
of types (i)–(iii) remains open.

The aim of this paper is to complete the program of studying the problems (P)
and (C) from the point of view of the “true” Hamiltonian. This is accomplished by
answering the open necessity and sufficiency questions of types (i), (iii), and (iv).
Conditions of type (ii) will be handled in a separate paper.

The paper is divided as follows. In section 2, preliminary results are derived
concerning the W 1,s- and Ls-weak local optimality notions used in the manuscript
and the connection with the classical ones. In the same section we recall known results
on the connection between (P) and (C) and on the notion of M -controllability.

For the problem (P), necessary conditions in terms of the Hamiltonian H are
obtained in section 3 for W 1,s-local optimality. The first condition takes the form of
the accessory problem. The novelty of its proof lies in associating to (P) an optimal
control problem (CH) that inherits the optimality of (P). The accessory problem for
(CH) is what we call the accessory problem of (P). As a consequence and by means
of the results in [17], we obtain necessary conditions of types (iii) and (iv) for the
case when the endpoint costs and constraints are separable. In section 4 we develop
a sufficiency optimality criterion in (P) for general endpoints conditions and another
one when the endpoints cost and constraint are separable. This latter enjoys the
distinction that it is as close as possible to the necessary conditions developed in
section 3.

In section 5 we apply the results of sections 3 and 4 to the optimal control problem
(C) to obtain necessary and sufficient conditions. Indeed, the necessary conditions
are derived under two different sets of conditions depending on whether we write (C)
in the framework of (P) or (CH). Neither of the two sets requires the strengthened
Legendre–Clebsch conditions (SL). Hence, when specialized to the case considered
in [2], our results are much more general. More specifically, part (1)(ii) of Theorem 5.2
of this paper extends [2, Theorem 5.1] to the case where the Hessians ∇2� and ∇2H
are not necessarily Lipschitz, (1.5) is not satisfied, or the strengthened Legendre–
Clebsch (SL) does not hold. This latter is replaced by a normality condition which
is automatically satisfied when (SL) holds. Example 5.1 shows that the normality
condition can be satisfied when (SL) fails, and hence it illustrates the utility of our
generalization. Furthermore, part (1) of Theorem 5.2 applies equally to all W 1,s-weak
local minimum for s ∈ [1,∞]. Moreover, part (2) of Theorem 5.2 applies to all Ls-
weak local minimum for s ∈ [1,∞]. In addition to necessary conditions in terms of
the Riccati equation (R), Theorem 5.2 develops necessary conditions in terms of the
accessory problem (Theorem 3.3) and a conjoint basis for (3.14)–(3.15) (Theorem 3.9).

In this paper we assume that H(t, ·, ·) and H(t, ·, ·) are C2. This assumption is
appropriate for certain classes of optimal control problems (see, e.g., [2]). Further-
more, the results of this paper will serve as a principal stepping stone for a subsequent
paper where this regularity assumption on H and H is weakened.

2. Preliminary results. The following three notions of local optimality apply
to both problems (P) and (C).
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Definition 2.1. In (P) (resp., in (C)), an admissible arc x̄ is said to be
(i) a strong local minimum if there exists ε > 0 such that for any admissible arc

x satisfying ‖x− x̄‖∞ < ε we have J(x) ≥ J(x̄) (resp., J(x, u) ≥ J(x̄, ū)),
(ii) a W 1,s-weak local minimum for 1 ≤ s ≤ ∞ if there exists ε > 0 such that for

any admissible arc x for which ‖x − x̄‖1,s is defined and ‖x − x̄‖1,s < ε, we
have J(x) ≥ J(x̄) (resp., J(x, u) ≥ J(x̄, ū)).

Clearly, if x̄ is a strong local minimum, then x̄ is a W 1,s-weak local minimum
for all s ∈ [1,∞]. If for s ∈ [1,∞] x̄ is a W 1,s-weak local minimum, then it is a
W 1,∞-weak local minimum.

In the control context the notion of strong local minimality coincides with the
classical notion. On the other hand, the following classical notions of Ls-weak local
minima are known for (C).

Definition 2.2. Let s ∈ [1,∞]. An admissible pair (x̄, ū) for (C) is a classically
Ls-weak local minimum if for some ε > 0

J(x, u) ≥ J(x̄, ū)

for all admissible pairs (x, u) satisfying

‖x− x̄‖∞ + ‖u− ū‖s < ε.

We shall need the following notions. A function K on [0, 1] × R
k is (L × B)-

measurable if it is measurable with respect to the σ-algebra generated by products of
Lebesgue sets in [0, 1] and Borel sets in R

k.
For z̄ ∈ L∞[0, 1] we give these definitions.
Definition 2.3. Let K : [0, 1]×R

k → R be (L×B)-measurable. For 1 ≤ s ≤ ∞,
we say that K is continuous at z̄ from L∞ to Ls if the map z(·) → K(·, z(·)) from
L∞ to Ls is continuous at z̄. The function K is said to be Lipschitz near z̄ from L∞

to Ls if the map z(·)→ K(·, z(·)) is Lipschitz near z̄ from L∞ to Ls.
Definition 2.4. Let x̄ ∈ L∞, ȳ ∈ Ls for s ∈ [1,∞], and let K : [0, 1]×R

r×R
s →

R. The function K is said to be continuous at (x̄, ȳ) from L∞ × Ls to Ls if the map
(x(·), y(·))→ K(·, x(·), y(·)) is continuous at (x̄, ȳ) from L∞ × Ls → Ls.

We say that K is Lipschitz near (x̄, ȳ) from L∞×Ls to Ls if the map (x(·), y(·))→
K(·, x(·), y(·)) from L∞ × Ls to Ls is Lipschitz near (x̄, ȳ).

It is clear that the Lipschitz property of K yields the corresponding continuity
property of K. However, as we shall see below, the continuity of the gradient ∇zK
yields the Lipschitz condition on K.

Lemma 2.5. Let K(t, ·) be C1, and let z̄ ∈ L∞. Assume that ∇zK(·, z̄(·)) is Ls

for some s in [1,∞]. If ∇zK is continuous at z̄ from L∞ to Ls, then K is Lipschitz
near z̄ from L∞ to Ls.

Proof. The continuity at z̄ of ∇zK from L∞ to Ls yields the existence of δ > 0
such that for all z : ‖z − z̄‖∞ < δ we have

‖∇zK(·, z(·))−∇zK(·, z̄(·))‖s < 1.

Then, for all z and z′ with ‖z − z̄‖∞ < δ, ‖z′ − z̄‖∞ < δ, the mean value theorem
implies that for almost all t there exists z̃t satisfying |z̃t − z̄(t)| < δ and

|K(t, z(t))−K(t, z′(t))| ≤ |∇zK(t, z̃t)| · |z(t)− z′(t)|
≤ |∇zK(t, z̃t)−∇zK(t, z̄(t))| · ‖z − z′‖∞

+ |∇zK(t, z̄(t))| · ‖z − z′‖∞.
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Since ∇zK(·, z̄(·)) is Ls, by the Minkowski inequality we get

‖K(·, z(·))−K(·, z′(·))‖s ≤ (1 + ‖∇zK(·, z̄(·))‖s)‖z − z′‖∞.

Therefore, the result follows.
The next result shows that, under natural hypotheses on the dynamics f , the

W 1,s-weak local minimality in (C) implies the classical Ls-weak local minimality.
This implication will play an important role in developing the results of this paper.
The converse is shown to hold under more restrictive hypotheses on f and is not
needed for this paper.

Lemma 2.6. Let (A) be satisfied, and let (x̄, ū) be an admissible pair for (C) such
that ū ∈ Ls for s ∈ [1,∞].

(a) Assume that (x̄, ū) is a W 1,s-weak local minimum for (C). If f is continuous
at (x̄, ū) from L∞ × L∞ to Ls, then (x̄, ū) is a classically L∞-weak local minimum
for (C). If f is continuous at (x̄, ū) from L∞ × Ls to Ls, then (x̄, ū) is a classically
Ls-weak local minimum for (C).

(b) Conversely, let (x̄, ū) be an Ls-weak local minimum for (C). Assume that the
map x(·)→ f(·, x(·), u(·)) is continuous at x̄(·) from L∞ to Ls uniformly in u(·) ∈ Ls

with u(t) ∈ U a.e., and that there exists m > 0 such that for all u(·) ∈ Ls such that
u(t) ∈ U a.e.,

‖f(·, x̄(·), u(·))− f(·, x̄(·), ū(·))‖s ≥ m‖u− ū‖s.
Then (x̄, ū) is a W 1,s-weak local minimum for (C).

Proof. For (a), let ε > 0 be such that for any admissible pair (x, u) for which
‖x− x̄‖1,s is defined and ‖x− x̄‖1,s < ε, we have J(x, u) ≥ J(x̄, ū). If f is continuous
at (x̄, ū) from L∞×L∞ to Ls, there exists δ0 > 0 such that for ‖(x, u)−(x̄, ū)‖∞ < δ0
we have ‖f(·, x(·), u(·))− f(·, x̄(·), ū(·))‖s < ε

2 . Set

ε̄ := min
{ε
2
, δ0

}
.

Now let (x, u) be admissible for (C) with

‖x− x̄‖∞ + ‖u− ū‖∞ < ε̄;

it follows that

‖x− x̄‖1,s ≤ |x(0)− x̄(0)|+ ‖f(·, x(·), u(·))− f(·, x̄(·), ū(·))‖s < ε,

whence

J(x, u) ≥ J(x̄, ū),

proving that (x̄, ū) is classically L∞-weak local minimum. On the other hand, if f
is continuous at (x̄, ū) from L∞ × Ls to Ls, then there exists δ0 > 0 such that for
‖x− x̄‖∞ < δ0 and ‖u− ū‖s < δ0 we have ‖f(·, x(·), u(·))− f(·, x̄(·), ū(·))‖s < ε

2 . Set
ε̄ := min{ ε2 , δ0}, and let (x, u) be admissible for (C) with

‖x− x̄‖∞ + ‖u− ū‖s < ε̄.

Then ‖x − x̄‖1,s < ε. Thus J(x, u) ≥ J(x̄, ū); that is, (x̄, ū) is a classically Ls-weak
local minimum.
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For (b), the Ls-weak local minimality of (x̄, ū) for (C) yields the existence of ε > 0
such that J(x, u) ≥ J(x̄, ū) for all admissible pairs (x, u) satisfying

‖x− x̄‖∞ + ‖u− ū‖s < ε.

By the continuity assumption on f , there exists δ0 > 0 such that for ‖x− x̄‖∞ < δ0,

‖f(·, x(·), u(·))− f(·, x̄(·), u(·))‖s < εm

4

for all u(·) ∈ Ls with u(t) ∈ U a.e., where m is the constant in the assumption.
Define ε̄ = min{mε

4 , ε2 , δ0}. Let (x, u) be admissible for (C) with ‖x − x̄‖1,s < ε̄.
Then ‖x− x̄‖∞ < ε

2 , and

‖f(·, x(·), u(·))− f(·, x̄(·), ū(·))‖s < mε

4
.

It results that

mε

4
> ‖f(·, x̄(·), u(·))− f(·, x̄(·), ū(·)) + f(·, x(·), u(·))− f(·, x̄(·), u(·))‖s

≥ ‖f(·, x̄(·), u(·))− f(·, x̄(·), ū(·))‖s − ‖f(·, x(·), u(·))− f(·, x̄(·), u(·))‖s

> m‖u− ū‖s − mε

4
.

Thus ‖u − ū‖s < ε
2 , whence J(x, u) ≥ J(x̄, ū), and, therefore, (x̄, ū) is a W 1,s-weak

local minimum for (C).
Let x̄ ∈ C[0, 1] and ε > 0 be given. Define

T (x̄; ε) := {(t, x) ∈ [0, 1]× R
n : |x− x̄(t)| < ε}.(2.1)

We say that an arc x(·) ∈ T (x̄; ε) when (t, x(t)) ∈ T (x̄; ε) for all t.
There are several ways to write (C) in the form of (P). Below we exhibit a general

one. Set

LC(t, x, v) :=

{
inf{g(t, x, u) ∣∣ v = f(t, x, u) and u ∈ U} if (t, x) ∈ T (x̄; ε),

+∞ otherwise .
(2.2)

Clearly, LC(t, x, v) = +∞ when {u : v = f(t, x, u), u ∈ U} = ∅. Furthermore, even
if LC(t, x, v) is finite, it can be discontinuous or nonsmooth. To problem (C) we can
associate the following generalized Bolza problem:

(PC) minimize JC(x) := �(x(0), x(1)) +

∫ 1

0

LC(t, x(t), ẋ(t))dt subject to

φ(x(0), x(1)) = 0.

The Hamiltonian corresponding to (PC) on T (x̄; ε)× R
n is

HC(t, x, p) := sup{〈p, v〉 − LC(t, x, v) : v ∈ R
n}

= sup
u∈U
{〈p, f(t, x, u)〉 − g(t, x, u)}

= H(t, x, p),
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the Hamiltonian corresponding to (C).
Remark 2.1. The first two assumptions in (A) imply that LC , defined by (2.2),

is (L × B)-measurable. Indeed, define a set-valued map by

Γ(t, x, v) := {u ∈ U : v = f(t, x, u)}.(2.3)

By [3, Proposition 3.1.2], Γ(·) is measurable and closed. Using [1, Theorem 8.2.11], it
follows that LC is (L × B)-measurable.

Remark 2.2. Since
∫ 1

0
LC(t, x(t), ẋ(t))dt ≤ ∫ 1

0
g(t, x(t), u(t))dt for all (x, u) ad-

missible for (C), it results that if x̄ is a strong or a W 1,s-weak local minimum for
(PC), and if there exists ū such that (x̄, ū) is admissible for (C) and

LC(t, x̄(t), ˙̄x(t)) = g(t, x̄(t), ū(t)) a.e.,

then it follows that (x̄, ū) is, respectively, a strong, W 1,s-weak local minimum for (C).
For the converse, an extra hypothesis is needed. Assume the following.

(Ā)



• For (t, x) ∈ T (x̄; ε) and v ∈ f(t, x, U),

the infimum in (2.2) is attained,

• LC is lower semicontinuous in (x, v).

With minor modification of the proof of the equivalence theorem in [9], we obtain
the following.

Theorem 2.7 (see [9]). If assumptions (A) and (Ā) are satisfied, then for all
arcs x(·) in T (x̄; ε) that are admissible for (PC) we have that JC(x) is well defined.
Furthermore, if JC(x) < +∞, then

JC(x) = min
u(·) measurable

{J(x, u) | ẋ(t) = f(t, x(t), u(t)) a.e., and u(t) ∈ U a.e.}.

That is, x̄ is strong, or, for some s ∈ [1,∞], a W 1,s-weak local minimum for (PC) iff
there exists a control ū corresponding to x̄ such that (x̄, ū) is, respectively, strong, or
a W 1,s-weak local minimum for (C).

In applications it is important to have more verifiable conditions guaranteeing
(Ā). We shall use the following assumption.

(B) For every bounded set V ⊆ R
n, the following set is bounded: {u ∈ U |

∃ (t, x, v) ∈ T (x̄; ε)× V : v = f(t, x, u)}.
Remark 2.3. Assumptions (A) and (B) yield assumption (Ā)(i). Furthermore,

we have

LC(t, x, v) =

{
inf{g(t, x, u) : u ∈ Γ(t, x, v)} if (t, x) ∈ T (x̄; ε) and Γ(t, x, v) �= φ,

+∞ otherwise,

where Γ is given by (2.3). From (A) it follows that Γ(t, ·, ·) is upper semicontinuous
and from (A) and (B) it results that Γ(t, x, v) is compact. Thus, using [1, Theorem
1.4.16(ii)] we obtain that LC(t, ·, ·) is lower semicontinuous. Therefore, (A) and (B)
imply (Ā). When U is compact, (B) holds automatically.

In the rest of this section we present notions of controllability and normality that
we shall use throughout this paper. For given L1-matrix functions A(·) : [0, 1]→ R

n×n

and R(·) : [0, 1]→ R
n×m, consider the linear system

η̇(t) = A(t)η(t) +R(t)v(t) a.e.,(2.4)
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where v(·) ∈ L∞[0, 1].
Definition 2.8. Let M be in R

r×2n, and let [a, b] be an interval in [0, 1]. The
system (2.4) is M-controllable on [a, b] when for all β ∈ R

r there exist vβ(·) ∈ L∞[a, b]
and η(·) ∈W 1,1[a, b] such that (η, vβ) solves (2.4) on [a, b] and satisfies

M

(
η(a)

η(b)

)
= β.

(When r = 0, this condition is satisfied trivially.)
The M -controllability on [a, b] amounts to saying that

Im Λ = R
r,

where

Λ

(
α

v(·)

)
:= M

[
I

Zb(a)

]
α+M

[
0

I

]∫ b

a

Zb(τ)R(τ)v(τ)dτ,

and Zb(·) is defined by −Ż(t) = Z(t)A(t) a.e., Z(b) = I; here I is the n× n-identity
matrix.

When b = 1, we denote Z1 by Z.
Remark 2.4. The M -controllability on [a, b] of the system (2.4) is known to be

equivalent to its M-normality; that is, (y, γ) ≡ 0 is the only solution on [a, b] to


ẏ(t) = −AT (t)y(t) a.e.,(
y(a)

−y(b)

)
= MT γ,

RT (t)y(t) = 0 a.e.

(2.5)

When the endpoints of η in (2.4) are separated, then for some r0 × n-matrix
M0 and r1 × n-matrix M1 we have M = [M0

0
0
M1

]. In this case, the M -normality is
denoted by (M0 : M1)-normality and the vector γ in (2.5) takes the form γ = (γ0

γ1
),

where γ0 ∈ R
r0 and γ1 ∈ R

r1 .

3. Necessary conditions for (P). In this section we present the first part
of the main results of this paper. It concerns deriving three types of second-order
necessary conditions for (weak or strong) optimality in the generalized problem of
Bolza (P). The key feature resides in the fact that all these conditions are phrased
in terms of the Hamiltonian H given in (1.2). The first condition takes the form of
the accessory problem, that is, the nonnegativity of a certain quadratic functional. It
plays a fundamental role in obtaining the other two.

Let z̄ := (x̄, p̄) ∈ W 1,1[0, 1] be given. Throughout the paper we denote by Φ̄(t)
the evaluation Φ(t, z̄(t)) and by Φx and Φp the partial derivatives of Φ with respect
to x and p, respectively. Elements in R

n are considered to be column vectors, and
gradients of real-valued maps evaluated at a point are considered row vectors. The
notation Bn(x0; ε) refers to the ball in R

n centered at x0 of radius ε. When x0 = 0,
we write Bn(ε).

In this section we assume that � and φ are C1 on B2n((x̄(0), x̄(1)); ε) and L is
(L × B)-measurable. Set

M̄ := ∇φ(x̄(0), x̄(1)).
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In stating our main results, we will refer to the following assumptions concerning (P).
There exists ε > 0 such that the following hold.

(L) L(t, x, ·) is convex and lower semicontinuous for (t, x) ∈ T (x̄; ε).

(H1)



• ∀ t, H(t, ·) is C1 on B2n(z̄(t); ε),

• H̄(·) and ∇zH(·) are integrable,

• ∇zH is continuous at z̄ from L∞ to L1.

(Hs
p) Hp is continuous at z̄ from L∞ to Ls.

(H2)




• ∀ t, H(t, ·) is C2 on B2n(z̄(t); ε),

• H̄(·), ∇zH(·), ∇2
zH(·) are integrable,

• ∇2
zH is continuous at z̄ from L∞ to L1,

• � and φ are C2 on B2n((x̄(0), x̄(1)); ε),

• M̄ is of full rank.

When s = 1, (Hs
p) is included in (H1)(iii). From Lemma 2.5, (H2)(iii) yields (H1) (iii).

Hence (H2) implies (H1). Also, if we have that ∇zHp is continuous from L∞ to Ls

and ∇zHp(·) ∈ Ls, by Lemma 2.5 we get that (Hs
p) holds true.

The last condition in (H2) holds trivially in the free-endpoints case, where r = 0.
Definition 3.1. Let z̄ := (x̄, p̄) ∈ W 1,1[0, 1] at which (H1) holds. The arc z̄

is called a normal extremal for (P) if for some γ̄ ∈ R
r, it satisfies the Hamiltonian

equations and the transversality conditions



− ˙̄p

T
(t) = H̄x(t) a.e.,

˙̄x
T
(t) = H̄p(t) a.e.,

(p̄T (0),−p̄T (1)) = ∇�(x̄(0), x̄(1)) + γ̄T M̄.

(3.1)

Note that when the matrix M̄ is of full rank, at most one vector γ̄ ∈ R
r can

satisfy (3.1).
Clarke showed in [3] that when problem (P) is calm, L(t, ·, ·) satisfies certain

assumptions including (L), and when H satisfies the strong Lipschitz condition
∃ K(·) ∈ L1[0, 1], ∃ ε > 0 : ∀ p ∈ R

n, ∀ (t, y1), and (t, y2) ∈ T (x̄; ε), one has
|H(t, y1, p)−H(t, y2, p)| ≤ K(t)(1 + |p|)|y1 − y2|,

then a necessary condition for the strong minimality of x̄ is the existence of p̄ ∈
W 1,1[0, 1] satisfying the Hamiltonian inclusions and the transversality conditions, and
thus, if H(t, ·, ·) is C1 near z̄ := (x̄, p̄), then z̄ satisfies (3.1). The result in [3] was
generalized by Clarke in [4] and also by Loewen and Rockafellar in [6]. When x̄
is an W 1,∞-weak local minimum for (P), it is proved that there exists an arc p̄ ∈
W 1,1[0, 1] satisfying the Euler equations and the transversality conditions. Under
extra hypotheses, and if H(t, ·, ·) is C1 near z̄ := (x̄, p̄), these conditions are equivalent
to (3.1), as was proved by Rockafellar in [10].
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Definition 3.2. For a given normal extremal (x̄, p̄) with associated γ̄, the ac-
cessory problem corresponding to (P) at (x̄, p̄, γ̄) is defined to be

(AP) minimize J2(η, v) :=
1

2

〈
Γ

(
η(0)

η(1)

)
,

(
η(0)

η(1)

)〉

+
1

2

∫ 1

0

{〈H̄pp(t)v(t), v(t)〉 − 〈H̄xx(t)η(t), η(t)〉
}
dt

over (η, v) ∈W 1,1[0, 1]× L∞[0, 1] solution of

η̇(t) = H̄px(t)η(t) + H̄pp(t)v(t) a.e.,(3.2)

M̄

(
η(0)

η(1)

)
= 0,

where Γ := ∇2(�+ φT γ̄)|(x̄(0),x̄(1)).

Necessary conditions for (P) involving the accessory problem are given by the
following result.

Theorem 3.3. Assume that z̄ := (x̄, p̄) ∈ W 1,1[0, 1] satisfy (H2) and (L), and
form together with γ̄ ∈ R

r a normal extremal for (P). Suppose that for s ∈ [1,∞], x̄
is a W 1,s-weak local minimum with (Hs

p) satisfied. Then either the minimum value

of the accessory problem is zero or else the M̄ -controllability of (3.2) fails on [0, 1].

Let Z : [0, 1]→ R
n×n denote the fundamental matrix of the system

{ −Ż(t) = Z(t)H̄px(t) a.e.,

Z(1) = I = identity matrix in R
n×n.

(3.3)

Remark 3.1. From Definition 2.8, system (3.2) is not M̄ -controllable on [0, 1],
meaning that Im Λ is a proper linear subspace of R

r, where A(t) := H̄px(t), R(t) :=
H̄pp(t), and Zb := Z. Hence there exists γ ∈ R

r, γ �= 0 satisfying

γT M̄

[
I

Z(0)

]
= 0

and

γT M̄

[
0

I

]
Z(t)H̄pp(t) = 0, t ∈ [0, 1] a.e.

This is equivalent to saying that there exists (y, γ) �≡ 0 a solution on [0, 1] of
(2.5), where the equivalence is revealed by setting y(t) := ZT (t)M̄T

Rγ. M̄R is the
r×n-matrix in the partition M̄ = (M̄L M̄R). Hence, if the system (3.2) is M̄ -normal,
then the accessory problem must have a zero minimum value. This is the case, for
instance, if we have that H̄pp(t) is positive definite and M̄ is of full rank, since in this
case (y, γ) ≡ 0 is the only solution to the corresponding system (2.5).

The proof of Theorem 3.3, which we present later, will involve the following
variational problem.
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(CH) minimize JC(x, p) := �(x(0), x(1)) +

∫ 1

0

{〈p(t), ẋ(t)〉 −H(t, x(t), p(t))}dt

subject to

ẋT (t) = Hp(t, x(t), p(t)) a.e.,

φ(x(0), x(1)) = 0,

where x(·) ∈W 1,1[0, 1], p(·) ∈ L∞[0, 1], and H is the Hamiltonian given by (1.2).
Note that the problem (CH) is an optimal control problem, where x(·) is the

state and p(·) is the control. Hence the optimality notions of strong and W 1,s-weak
local minima introduced in section 2 and the corresponding classical notions given in
Definition 2.2 apply to (CH).

It is known that the objective function JC(x, p), when unconstrained, has no
local minima nor maxima. However, as we shall see below, when constrained as in
(CH), JC(x, p) admits a (local) minimum whenever the generalized Bolza problem
(P) does.

Proposition 3.4. Assume that there exists z̄ := (x̄, p̄) ∈ W 1,1[0, 1] × L∞[0, 1]
that satisfy (L), (H1), and (3.1)(ii). Then, for x near x̄, J(x) is well defined (possibly
+∞), and if x̄ is a strong, W 1,s-weak local minimum for (P) for some s ∈ [1,∞],
then (x̄, p̄) is, respectively, a strong, or W 1,s-weak local minimum for (CH).

Proof. From the definition of H in (1.2) and hypothesis (H1)(i) it follows that
H(t, x, ·) is convex and lower semicontinuous for all (t, x) ∈ T (x̄; ε). Then, by (L) we
obtain, for (t, x, v) ∈ T (x̄; ε)× R

n,

L(t, x, v) = sup{〈p, v〉 −H(t, x, p) | p ∈ R
n},(3.4)

whence, by (H1)(ii)–(iii) and Lemma 2.5 it results that there exist δ̄ > 0 (δ̄ < ε) and
γ such that for ‖z − z̄‖∞ < δ̄, ∫ 1

0

|H(t, z(t))|dt ≤ γ.(3.5)

Then by the (L × B)-measurability of L we get that for x ∈ W 1,1[0, 1] satisfying
‖x− x̄‖∞ < δ̄ ∫ 1

0

L(t, x(t), ẋ(t))dt ≥
∫ 1

0

〈p̄(t), ẋ(t)〉dt− γ,

and thus J(x) is well defined (possibly +∞) near x̄. Using (3.4) again, it follows that
for such x

J(x) := �(x(0), x(1)) +

∫ 1

0

L(t, x(t), ẋ(t))dt

= �(x(0), x(1)) +

∫ 1

0

sup
p∈Rn

{〈p, ẋ(t)〉 −H(t, x(t), p)}dt.

The convexity of H(t, x, ·) and (3.1)(ii) yield that

J(x̄) = �(x̄(0), x̄(1)) +

∫ 1

0

{〈p̄(t), ˙̄x(t)〉 − H̄(t)}dt

= JC(x̄, p̄).
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Furthermore, for any (x, p) that is admissible for (CH) with ‖x− x̄‖∞ < δ̄ we have

J(x) = JC(x, p).

Therefore, assume there exists ε0 > 0 such that

J(x) ≥ J(x̄)

for all arcs x(·) that are admissible for (P) and satisfying ‖x−x̄‖∞ < ε0, or ‖x−x̄‖1,s <
ε0, for some s ∈ [1,∞]. Then, for all (x, p) admissible in (CH) with ‖x− x̄‖∞ < ε̄, or
‖x− x̄‖1,s < ε̄, respectively, we have

JC(x, p) = J(x) ≥ J(x̄) = JC(x̄, p̄),

where ε̄ = min{δ̄, ε0}.
Combining Lemma 2.6 and Proposition 3.4, we obtain the connection between

optimality in (P) and classical optimality in (CH).
Corollary 3.5. Assume that z̄ := (x̄, p̄) satisfy the conditions of Proposition

3.1. Then the following hold.
(i) If x̄ is a strong local minimum for (P), then (x̄, p̄) is a classically L∞-weak

local minimum for (CH). If, in addition, for all t, H(t, ·) is C1 on Bn(x̄(t); ε)×R
n,

then (x̄, p̄) is a strong local minimum for (CH).
(ii) If, for s ∈ [1,∞], x̄ is a W 1,s-weak local minimum for (P) and (Hs

p) holds,
then (x̄, p̄) is a classically L∞-weak local minimum for (CH). If, in addition, H(t, ·)
is C1 on Bn(x̄(t); ε) × R

n and Hp is continuous at (x̄, p̄) from L∞ × Ls to Ls, then
(x̄, p̄) is a classically Ls-weak local minimum for (CH).

The next result shows that if system (3.2) is M̄ -controllable (see Definition 2.8)
and (x̄, p̄) is a classically L∞-weak local minimum for the optimal control problem
(CH), then the adjoint variable q(·) corresponding to (x̄, p̄) in the weak version of the
Pontryagin maximum principle applied to (CH) coincides with p̄.

Lemma 3.6. Assume that (x̄, p̄, q, γ) satisfy the weak version of the Pontryagin
maximum principle applied to (CH). If the system (3.2) is M̄ -controllable, M̄ is of
full rank, and (x̄, p̄) satisfy (3.1), then the problem (CH) is normal and (q, γ) = (p̄, γ̄),
up to scalar multiplication.

Proof. Let (x̄, p̄, q, γ) satisfy the weak version of the maximum principle corre-
sponding to (CH). Then there exists λ0 ≥ 0 such that λ0, γ, and q are not all zero,
and

−q̇(t) = H̄xp(t)q(t)− λ0[H̄xp(t)p̄(t)− H̄x(t)] a.e.,

H̄pp(t)[q(t)− λ0p̄(t)] = 0 a.e.,

(qT (0),−qT (1)) = λ0∇�(x̄(0), x̄(1)) + γT M̄.

If λ0 = 0, then (q, γ) satisfies system (2.5), where A = H̄xp and R = H̄pp. By the
M̄ -controllability of the system (3.2) and Remark 2.4 we get that q ≡ 0 and γ = 0.
Since λ0, γ, and q are not all zero, we conclude that λ0 �= 0.

Now, assume λ0 = 1, and use in the above equations that (x̄, p̄) satisfy (3.1); we
obtain

−(q̇(t)− ˙̄p(t)) = H̄xp(t)(q(t)− p̄(t)) a.e.,

H̄pp(t)(q(t)− p̄(t)) = 0 a.e.,

(qT (0)− p̄T (0),−(qT (1)− p̄T (1))) = (γT − γ̄T )M̄.
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Using the M̄ -controllability, it follows that q ≡ p̄. The full rank condition on M̄ yields
that γ = γ̄.

In order to prove Theorem 3.3, we shall establish the following result, which
says that the necessary conditions given by Theorem 3.3 are in fact necessary for the
L∞-weak local minimality of (x̄, p̄) in (CH).

Theorem 3.7. Assume that (x̄, p̄) ∈ W 1,1[0, 1] satisfies (H2). If (x̄, p̄) is a
classically L∞-weak local minimum for (CH), then the conclusions of Theorem 3.3
are satisfied.

To prove Theorem 3.7 we intend to calculate the second variation of the optimal
control problem (CH). For achieving this goal, one could attempt to apply known
second-order necessary conditions. However, all known results (see [8], [12], and the
references therein) require the dynamics and the integrand to be at least twice direc-
tionally differentiable. Since Hp(t, ·, ·) is only C1 and is involved in both the dynamics
and the integrand of (CH), those results cannot be applied here. Nevertheless, as we
shall see below in the proof of Theorem 3.7, the second variation of (CH) can be
derived by taking its special structure into consideration. We shall need the following
result, which says that the M̄ -controllability of system (3.2) allows us to associate
with each pair (η, v) solving that system, an admissible family (x(·, α), p(·, α))α∈(−δ,δ)

for the problem (CH) which includes (x̄, p̄) at α = 0 and has a first derivative with
respect to α at α = 0 equal to (η, v).

Proposition 3.8. Assume (H2) to hold at the admissible pair z̄ = (x̄, p̄) and
that the system (3.2) is M̄ -controllable. Then, for every (η, v) ∈W 1,1[0, 1]×L∞[0, 1]
satisfying system (3.2) and its boundary conditions, there exists an admissible family
(x(·;α), p(·;α))α∈(−δ,δ) for (CH) such that (x(t; ·), p(t; ·)) is C1, ( ∂x∂α ,

∂p
∂α ) is contin-

uous at 0 from R to L∞, and
(i) x(t; 0) = x̄(t), p(t; 0) = p̄(t) ∀ t ∈ [0, 1],
(ii) ∂x

∂α (t; 0) = η(t), ∂p
∂α (t; 0) = v(t) ∀ t ∈ [0, 1].

Proof. Let β1, . . . , βr be r linearly independent vectors in R
r. By the M̄ -

controllability of system (3.2), there exist functions v1, . . . , vr ∈ L∞[0, 1] and η1, . . . , ηr
in W 1,1[0, 1] satisfying


η̇j(t) = H̄px(t)ηj(t) + H̄pp(t)vj(t) a.e.,

M̄

(
ηj(0)

ηj(1)

)
= βj .

(3.6)

Define on [0, 1]× R× R
r

p(t;α, λ) := p̄(t) + αv(t) +

r∑
j=1

λjvj(t).(3.7)

Consider the system {
ẋT (t) = Hp(t, x(t), p(t, α, λ)),

x(0) = x̄(0) + αη(0) +
∑r

j=1 λjηj(0).
(3.8)

Clearly, when (α, λ) = (0, 0), system (3.8) has x̄ as the solution. Hypothesis (H2) and
Lemma 2.5 yield that for

F (t, x, α, λ) := Hp(t, x, p(t, α, λ))
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F and ∇(x,α,λ)F are Carathéodory on some tube T (x̄, (0, 0); ε0) for ε0 ≤ ε. Hence, by
the embedding theorem of differential equations [11, II.4.11], it results that there exists
δ̄ > 0 (δ̄ < ε0) such that for (α, λ) ∈ Br+1(δ̄) and for x0 ∈ Bn(x̄(0); δ̄), the system
(3.8)(i) has a unique solution x(·;x0, α, λ) in W 1,1[0, 1] satisfying x(0;x0, α, λ) = x0.
Furthermore, on Bn(x̄(0); δ̄)×Br+1(δ̄), x(t, ·, ·, ·) has a derivative that is continuous,
L∞-uniformly in t. However, by (3.8)(ii), there exists δ0 > 0 (δ0 ≤ δ̄) such that
for (α, λ) ∈ Br+1(δ0), the unique solution to (3.8) x(t;α, λ) := x(t;xα,λ, α, λ), where
xα,λ := x̄(0) + αη(0) +

∑r
j=1 λjηj(0), has a derivative with respect to (α, λ) that is

continuous at 0 from R
r+1 to L∞.

Differentiate the system (3.8) with respect to (α, λ) and use (3.2), (3.6), and (3.7)
to get




∂x

∂α
(·; 0, 0) = η(·), ∂p

∂α
(·; 0, 0) = v(·),

∂x

∂λj
(·; 0, 0) = ηj(·), ∂p

∂λj
(·; 0, 0) = vj(·) ∀ j = 1, . . . , r.

(3.9)

Define G : B(δ0)×Br(δ0)→ R
r by

(α, λ)→ G(α, λ) := φ(x(0;α, λ), x(1;α, λ)).

We have G(0, 0) = 0, ∂G(0,0)
∂λj

= M̄(ηj(0)
ηj(1)

) = βj , and thus ∂G
∂λ (0, 0) is nonsingular. By

the implicit function theorem, there exist δ < δ0 and a C1-function λ(·) : B(δ)→ R
r

with λ(0) = 0, λ(B(δ)) ⊂ B(δ0), and

φ(x(0;α, λ(α)), x(1;α, λ(α))) = 0.(3.10)

Differentiating (3.10) with respect to α at α = 0 and using (3.9), (3.6), and the fact
the (η, v) satisfies (3.2), we get

∑r
j=1 λ̇j(0)βj = 0, which yields λ̇j(0) = 0 for all j.

Now, set on [0, 1]× (−δ, δ)

p(t;α) := p(t;α, λ(α)),

x(t;α) := x(t;α, λ(α)).

Using (3.7) and (3.9), we obtain the result of this proposition.
We are now ready to prove Theorem 3.7. As we shall see in the proof, the map

α→ JC(x(·;α), p(·;α))

is twice differentiable at 0, even though the functions defining JC(x, p) are not them-
selves twice differentiable.

Proof of Theorem 3.7. Let (x̄, p̄) satisfy (3.1).
Assume that system (3.2) is M̄ -controllable and that (x̄, p̄) provides a classically

L∞-weak local minimum for (CH). Thus (x̄, p̄) must satisfy the weak version of the
Pontryagin maximum principle. By Lemma 3.6, we deduce that (CH) is normal, and
the adjoint variable corresponding to (x̄, p̄) is p̄.

Let (η, v) satisfy system (3.2) and its boundary conditions. Then, by Proposi-
tion 3.8, there exists a family (x(·;α), p(·;α))α∈(−δ,δ) that is admissible for (CH) and
satisfies the conditions stated in Proposition 3.8. In particular, using Lemma 2.5, it
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follows that there exist γ > 0(γ ≤ δ) and µ > 0 such that, for almost all t and for
α, α′ ∈ (−γ, γ),

|(x(t, α), p(t, α))− (x(t;α′), p(t, α′))| ≤ µ|α− α′|.(3.11)

Thus choose γ small enough so that (x̄, p̄) is optimal for JC on T (x̄, p̄;µγ). Hence, by
setting H(t;α) := H(t, x(t;α), p(t;α)) and JC(α) := JC(x(·;α), p(·;α)), we get that
α = 0 is a minimum for JC(α) over (−γ, γ). On the other hand, hypothesis (H2) and
Lemma 2.5 yield that there exists a neighborhood of 0, (−γ̄, γ̄), where H,Hp, and Hx

are Lipschitz from R to L1 and Hp(t; ·) is bounded by an integrable function of t. Set
γ0 := min(γ, γ̄). Thus, for α ∈ (−γ0, γ0), we have

JC(α) := �(x(0;α), x(1;α)) +

∫ 1

0

{Hp(t;α)p(t;α)−H(t;α)}dt

= �(x(0;α), x(1;α)) +

∫ 1

0

{Hp(t;α)(p(t;α)− p̄(t)) + ẋT (t;α)p̄(t)−H(t;α)}dt

= �(x(0;α), x(1;α)) + p̄T (1)x(1;α)− p̄T (0)x(0;α)

+

∫ 1

0

{Hp(t;α)(p(t;α)− p̄(t))−H(t;α)− ˙̄p
T
(t)x(t;α)}dt.

We shall show that JC(·) is twice differentiable at 0. Since on (−γ0, γ0), x and p
are Lipschitz from R to L∞ (see (3.11)), H and Hp are Lipschitz near 0 from R to
L1, Hp(t; ·) is bounded by an L1-function of t, and � is Lipschitz, it follows from the
dominated convergence theorem and (3.1)(iii) that for ᾱ ∈ (−γ0, γ0) and for xα = ∂x

∂α ,

pα = ∂p
∂α , we have

J
′
C(ᾱ) = (∇�(x(0; ᾱ), x(1; ᾱ))−∇�(x̄(0), x̄(1))− γ̄T M̄)

(
xα(0; ᾱ)

xα(1; ᾱ)

)

+

∫ 1

0

{
(Hpx(t; ᾱ)xα(t; ᾱ) + Hpp(t; ᾱ)pα(t; ᾱ))

T (p(t; ᾱ)− p̄(t))

− (Hx(t; ᾱ) + ˙̄p
T
(t))xα(t; ᾱ)

}
dt.

Using (3.1), system (3.2), and Proposition 3.8, we obtain

J
′
C(0) = 0.

Let us calculate J
′′
C(0). For h ∈ (−γ0, γ0) and i ∈ {1, . . . , r} we have

φi(x(0;h), x(1;h)) = 0;

hence

∇φi(x(0;h), x(1;h))
[

xα(0;h)

xα(1;h)

]
= 0.

Thus, by the mean value theorem applied to each partial derivative ∂xjφ
i and

∂xj �, where j = 1, . . . , 2n, it results that there exist hij and h̃j in between 0 and h
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such that, for h̃j ,

M̄ =




M̄1

...
M̄r


 and xα =




x1
α
...
xnα




we have

−M̄ i

h

(
xα(0;h)

xα(1;h)

)
=

[∇φi(x(0;h), x(1;h))− M̄ i

h

](
xα(0;h)
xα(1;h)

)

=

n∑
j=1

xjα(0;h)∇∂xjφi(x(0, hij), x(1, hij))
(

xα(0;h
i
j)

xα(1;h
i
j)

)

+
2n∑

j=n+1

xj−n
α (1;h)∇∂xjφi(x(0, hij), x(1, hij))

(
xα(0;h

i
j)

xα(1;h
i
j)

)

and

∂xj �(x(0;h), x(1;h))− ∂xj �(x̄(0), x̄(1))

h
= ∇∂xj �(x(0; h̃j), x(1; h̃j))

(
xα(0; h̃j)

xα(1; h̃j)

)
,

whence

lim
h→0

(∇�(x(0;h), x(1;h))−∇�(x̄(0), x̄(1))− γ̄T M̄)

h

(
xα(0;h)

xα(1;h)

)

=

〈
Γ

(
η(0)

η(1)

)
,

(
η(0)

η(1)

)〉
,

where Γ := ∇2(�+ φT γ̄)|(x̄(0),x̄(1)).
On the other hand, from (H2) and the Lipschitz property of x and p in h obtained

in Proposition 3.8, it results that the integrand∫ 1

0

{(Hpx(t;h)xα(t;h) + Hpp(t;h)pα(t;h))
T (p(t;h)− p̄(t))

h

− (Hx(t;h)−Hx(t; 0))

h
xα(t;h)}dt

is bounded by an integrable function. Therefore, by the dominated convergence the-
orem we get

J
′′
C(0) := lim

h→0

J
′
C(h)

h
=

〈
Γ

(
η(0)

η(1)

)
,

(
η(0)

η(1)

)〉

+

∫ 1

0

{vT (t)H̄px(t)η(t) + vT (t)H̄pp(t)v(t)− ηT (t)H̄xx(t)η(t)

− ηT (t)H̄xp(t)v(t)}dt

= 2J2(η, v).
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Now, since min{JC(α) : α ∈ (−γ0, γ0)} = JC(0) and J
′
C(0) = 0,

J
′′
C(0) ≥ 0.

Therefore, the proof of the theorem is complete.
Proof of Theorem 3.3. Let s ∈ [1,∞], and let x̄ be W 1,s-weak local minimum

for (P) with (Hs
p) satisfied. Consider z̄ = (x̄, p̄) as in the theorem. Then, by Corol-

lary 3.5, it results that (x̄, p̄) provides a classically L∞-weak local minimum for (CH).
Therefore, by Theorem 3.7 the proof is complete.

Now, for the rest of this section, assume that the endpoints cost and constraint
in (P) are separable; that is,

�(x, y) := �0(x) + �1(y),

φ(x, y) :=

(
φ0(x)
φ1(y)

)
,

where φi : R
n → R

ri for i = 0, 1, and r0 + r1 = r.
In this case, the matrices M̄ and Γ in the accessory problem (AP) take the form

M̄ =

[
M̄0 0

0 M̄1

]
and Γ =

[
Γ0 0

0 Γ1

]
,

where

M̄0 := ∇φ0(x̄(0)), M̄1 = ∇φ1(x̄(1)),

Γ0 := ∇2(�0 + φT0 γ̄0)
∣∣
x=x̄(0)

, Γ1 = ∇2(�1 + φT1 γ̄1)
∣∣
x=x̄(1)

,

and (
γ0

γ1

)
:= γ.

Here M̄0 ∈ R
r0×n, M̄1 ∈ R

r1×n, γ0 ∈ R
r0 , and γ1 ∈ R

r1 .
Note that when no final constraint is present, that is, when φ1 : R

n → {0}, then
M̄1 is automatically of full rank.

Without loss of generality we assume that M̄0 and M̄1 are in fact orthogonal
projections in R

n. This can easily be done by taking, instead of M̄i, the orthogonal
projections

M̄T
i (M̄iM̄

T
i )−1M̄i, i = 0, 1,

where the M̄i’s are of full rank, by (H2)(v).
When system (3.2) is (M̄0 : M̄1)-normal, the optimality of (η, v) in (AP) yields

the existence of an arc q and vectors γ0 and γ1 satisfying on [0, 1]{
η̇(t) = A(t)η(t) +R(t)q(t) a.e.,

−q̇(t) = AT (t)q(t) + P (t)η(t) a.e.,
(3.12)
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q(0) = Γ0η(0) + M̄0γ0,

−q(1) = Γ1η(1) + M̄1γ1,

where

A(t) := H̄px(t), R(t) := H̄pp(t), and P (t) := H̄xx(t).(3.13)

Consider (U1, V1) the solution of the matrix system corresponding to (3.12),{
U̇(t) = A(t)U(t) +R(t)V (t) a.e.,

−V̇ (t) = AT (t)V (t) + P (t)U(t) a.e.,
(3.14)

with final conditions {
U(1) = I − M̄1,

V (1) = −Γ1(I − M̄1)− M̄1.
(3.15)

The following result states that the existence of a conjoined basis on [0, 1] for
(3.14) and (3.15) with certain initial conditions is necessary for the optimality in (P)
or in (CH).

Theorem 3.9. Let z̄ := (x̄, p̄) satisfy the conclusions of Theorem 3.3. If, in
addition, for all c ∈ (0, 1) the system (3.2) is (M̄0 : I)-normal on [0, c] and (I : M̄1)-
normal on [c, 1], then (U1, V1) satisfies

(i) UTV = V TU on [0, 1],
(ii) det U(t) �= 0 on (0, 1),
(iii) UT (0)(Γ0U(0)− V (0)) ≥ 0 on K := {α : M̄0U(0)α = 0},

and
(iv) V (1) + Γ1(I − M̄1) + M̄1 = 0.
Proof. From the normality hypotheses it follows that the accessory problem (AP)

has a minimum value equal to zero. Thus by [17, Theorem 4.1] the result of the
theorem follows.

An immediate consequence of the above theorem is an important result on nec-
essary conditions concerning the Riccati equation.

Corollary 3.10. Under the conditions of Theorem 3.9, there exists on (0, 1) a
symmetric absolutely continuous solution W of

(R) Ẇ (t) +AT (t)W (t) +W (t)A(t) +W (t)R(t)W (t) + P (t) = 0

satisfying 


lim
t→1

W (t)U1(t) = −Γ1(I − M̄1)− M̄1,

UT
1 (0) lim

t→0+
(Γ0 −W (t))U1(t) ≥ 0,

on K := {α | M̄0U1(0)α = 0}.

(3.16)

Remark 3.2. When the final state endpoint is free, M̄1 = 0 and (3.15) yield that
U1(1) = I. In this case the function W in Corollary 3.10 is defined on (0, 1], and
(3.16)(i) reduces to

W (1) = −Γ1.(3.17)
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If also the initial condition is fixed, then (3.16)(ii) is trivially satisfied, and thus (3.16)
becomes simply (3.17).

By symmetry, we could define (U0, V0) as the solution of (3.14), and instead of
(3.15),

U(0) = I − M̄0,

V (0) = Γ0(I − M̄0) + M̄0.

Then necessary conditions for (P) and (CH) parallel to Theorem 3.9 and Corollary 3.10
could be phrased in terms of (U0, V0).

The following example illustrates the utility of the results in this section.

Example 3.1. Define on [0, 1]× R× R the function

L(t, x, v) :=




x3 +
v2

(t− 1
2 )

2/3
if t �= 1

2
,

x3 if t =
1

2
and v = 0,

+∞ if t =
1

2
and v �= 0.

Consider the problem

(P0) minimize − 5

3
25/3x2(1) +

∫ 1

0

L(t, x(t), ẋ(t))dt

subject to x(0) = 0.

The Hamiltonian corresponding to (P0) is

H(t, x, p) = sup
v∈R

{pv − L(t, x, v)} = −x3 +
p2

4

(
t− 1

2

)2/3

.

Take x̄ ≡ 0 and p̄ ≡ 0. Then L satisfies (L), and H satisfies hypotheses (H2) and (Hs
p)

for all s ∈ [1,∞]. Here, M̄0 = I, M̄1 = 0. For γ̄ =
(
0
0

)
, (x̄, p̄) with γ̄ form a normal

extremal for (P0). In this problem, A(t) ≡ 0, R(t) = 1
2 (t− 1

2 )
2/3, and P (t) = 0. Since

the system ẏ(t) ≡ 0 and (t − 1
2 )

2/3y(t) ≡ 0 admits only y ≡ 0 as a solution on any
interval [a, b] ⊂ [0, 1], the normality assumptions in Theorem 3.9 are satisfied.

The Riccati equation (R) and the boundary condition (3.17) are equivalent here
to

Ẇ (t) +
1

2

(
t− 1

2

)2/3

W 2(t) = 0 and W (1) =
10

3
25/3.(3.18)

The solution is W (t) = − 10
3(t− 1

2 )5/3
, which exists on ( 1

2 , 1] and not on (0, 1]. Hence

the conclusion of Corollary 3.10 fails. Therefore, by Corollary 3.10, x̄ ≡ 0 is not a
W 1,s-weak local minimum for (P0), for any s ∈ [1,∞].
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4. Sufficient conditions for (P). In this section we first derive for the gen-
eralized problem of Bolza (P) a sufficiency criterion for strong local optimality. The
conditions therein involve the “Weierstrass-type” condition, and the Riccati equation
(R) of Corollary 3.10 whose coefficients are given by (3.13), together with the (joint)
boundary conditions

Γ +

[ −W (0) 0

0 W (1)

]
> 0 on

{
(α, β) : M̄

(
α
β

)
= 0

}
,(4.1)

where Γ = ∇2(�+ γ̄Tφ)|(x̄(0),x̄(1)).
This result extends the corresponding results in [14] and [16] to the case when

both endpoints of x vary (i.e., φ(x(0), x(1)) = 0).
Theorem 4.1. Assume that L is (L × B)-measurable and that, for a vector

γ̄ ∈ R
r, z̄ := (x̄, p̄) is a normal extremal for (P) at which (H2) holds true. Suppose

that
(i) L(t, x̄(t), ˙̄x(t) + v)−L(t, x̄(t), ˙̄x(t)) ≥ 〈p̄(t), v〉 for almost all t ∈ [0, 1] and for

all v ∈ R
n;

(ii) there exists a symmetric absolutely continuous solution on [0, 1] to the Riccati
equation (R) with the boundary conditions (4.1).

Then J(x) is well defined (possibly +∞) near x̄, and x̄ provides a strict strong local
minimum for (P). Furthermore, there exist ε̄ > 0 and δ̄ > 0 such that for all admissible
arcs x satisfying ‖x− x̄‖∞ < δ̄ we have

J(x)− J(x̄) ≥ ε̄‖x− x̄‖22.

Proof. Define L̄(t, x, v) := sup{〈p, v〉 − H(t, x, p) : p ∈ R
n}. By hypothesis

(H2) and Lemma 2.5, it results that there exist δ̄ > 0 (δ̄ < ε) and γ such that for
‖z − z̄‖∞ < δ̄, (3.5) is satisfied. Hence, for x ∈W 1,1[0, 1] with ‖x− x̄‖∞ < δ̄,

∫ 1

0

L̄(t, x(t), ẋ(t))dt ≥
∫ 1

0

〈p̄(t), ẋ(t)〉dt− γ.

Since

L(t, x, v) ≥ L̄(t, x, v),

we conclude that J(x) is well defined (possibly +∞) near x̄.
Now, by the embedding theorem of differential equations there exist ε0 > 0 and

W̄ on [0, 1] such that

˙̄W +AT W̄ + W̄A+ W̄RW̄ + P = −ε0I for t ∈ [0, 1] a.e.

and

Γ +

( −W̄ (0) 0

0 W̄ (1)

)
> ε0I on

{
(α, β) : M̄

(
α
β

)
= 0

}
.(4.2)

Set

p(t, x) := p̄(t) + W̄ (t)(x− x̄(t)),
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and

F (x(·)) :=

∫ 1

0

{
H(t, x(t), p(t, x(t)))− H̄(t)(4.3)

+ 〈 ˙̄p(t), x(t)− x̄(t)〉 − 〈 ˙̄x(t), W̄ (t)(x(t)− x̄(t))〉

+
1

2
〈x(t)− x̄(t), ˙̄W (t)(x(t)− x̄(t))〉

}
dt,

where x(·) is continuous. We have that F is twice Gateaux differentiable near x̄ with
first and second derivatives in the direction h(·):

δF (x(·);h(·)) =

∫ 1

0

〈Hx(t, x(t), p(t, x(t))) +Hp(t, x(t), p(t, x(t)))W̄ (t)

+ ˙̄p
T
(t)− ˙̄x

T
(t)W̄ (t) + (x(t)− x̄(t))T ˙̄W (t), h(t)〉dt,

and

δ2F (x(·);h(·)) =

∫ 1

0

〈{Hxx(t, x(t), p(t, x(t))) +Hxp(t, x(t), p(t, x(t)))W̄ (t)

+ W̄ (t)Hpx(t, x(t), p(t, x(t))) + W̄ (t)Hpp(t, x(t), p(t, x(t)))W̄ (t)

+ ˙̄W (t)}h(t), h(t)〉dt.
Also, using (3.1) and the definition of W̄ , it results that, for all continuous h(·),

F (x̄(·)) = 0, δF (x̄(·);h(·)) = 0, and

δ2F (x̄(·);h(·)) = −ε0

∫ 1

0

|h(t)|2dt.

Hypothesis (H2) yields that there exists δ0 > 0 such that for all continuous x(·) and
h(·) satisfying ‖x− x̄‖∞ < δ0 we have

δ2F (x(·);h(·)) ≤ −ε0

2

∫ 1

0

|h(t)|2dt.

Therefore, by [18, Theorem 40 A], for all continuous x(·) : ‖x− x̄‖∞ < δ0, we have

F (x(·))− F (x̄(·)) ≤ −ε0

4
‖x− x̄‖22.(4.4)

Now define

Q(t, x) := 〈p̄(t), x− x̄(t)〉+ 1

2
〈x− x̄(t), W̄ (t)(x− x̄(t))〉.(4.5)

Let ‖x− x̄‖∞ < δ0 with x admissible for (P). Then, using (4.3), (4.5), (1.2), and
condition (i) of the theorem, we obtain∫ 1

0

{(L(t, x(t), ẋ(t))− L(t, x̄(t), ˙̄x(t))}dt

≥ F (x̄(·))− F (x(·)) +
∫ 1

0

d

dt
{Q(t, x(t))}dt.
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Thus, from (4.4) and (4.5) and by integrating the last term, we get

J(x)− J(x̄) ≥ �(x(0), x(1))− �(x̄(0), x̄(1))

+ 〈p̄(1), x(1)− x̄(1)〉+ 1

2
〈x(1)− x̄(1), W̄ (1)(x(1)− x̄(1))〉

− 〈p̄(0), x(0)− x̄(0)〉 − 1

2
〈x(0)− x̄(0), W̄ (0)(x(0)− x̄(0))〉

+
ε0

4
‖x− x̄‖22.

Consider the problem

minimize f(x, y) := �(x, y)− �(x̄(0), x̄(1))

+ 〈p̄(1), y − x̄(1)〉+ 1

2
〈y − x̄(1), W̄ (1)(y − x̄(1))〉

− 〈p̄(0), x− x̄(0)〉 − 1

2
〈x− x̄(0), W̄ (0)(x− x̄(0))〉

over φ(x, y) = 0.
Using (3.1)(iii) it follows that

∇f(x̄(0), x̄(1)) + γ̄T M̄ = 0.

Furthermore, (4.2) is equivalent to saying that

∇2(f + ḡTφ)

∣∣∣∣
(x̄(0),x̄(1))

> 0 on

{
(α, β) : M̄

(
α

β

)
= 0

}
.

Hence, by standard sufficiency criterion for the finite dimensional optimization prob-
lem (e.g., [7, p. 307]), we conclude that (x̄(0), x̄(1)) is a local minimum for f(x, y) over
φ(x, y) = 0. Thus there exists δ̄ ≤ δ0 such that for any admissible x with ‖x−x̄‖∞ < δ̄
we have

J(x)− J(x̄) ≥ ε̄‖x− x̄‖22,
where ε̄ := ε0

4 .
Remark 4.1. When the endpoints cost and constraint are separable, we have

Γ = [Γ0

0
0
Γ1

] and M̄ = [ M̄0

0
0
M̄1

], and in this case, the boundary conditions (4.1) become




Γ0 −W (0) > 0 on {α �= 0
∣∣M̄0α = 0},

Γ1 +W (1) > 0 on {α �= 0
∣∣M̄1α = 0}.

(4.6)

Note that in this setting the proof of Theorem 4.1 remains valid when (4.6)(ii) is
replaced by

W (1) = −Γ1 − βM̄1

for some β. In fact, by the embedding theorem of differential equations, a solution of
(R) satisfying (4.6)(i) and the above condition leads to a solution of (R) satisfying
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(4.6). By symmetry, we can replace in Theorem 4.1 condition (4.6)(i) by W (0) =
Γ0 + βM̄0.

In the remainder of this section we study the connection between the sufficiency
criterion presented in Theorem 4.1 and the necessary conditions obtained in section
3 in terms of the accessory problem (i.e., Theorem 3.3), the existence of a conjoined
basis (i.e., Theorem 3.9), and a solution to the Riccati equation (R) with boundary
conditions (3.16) (i.e., Corollary 3.10). Our study below works for any L1-matrix
functions A(·), R(·), and P (·) from [0, 1] to R

n×n and matrices Γ ∈ R
n×n and M̄ ∈

R
r×2n and not only for the choice given by (3.13) through the data of the problem

(P).
Define

J2(η, v) :=
1

2

〈
Γ

(
η(0)

η(1)

)
,

(
η(0)

η(1)

)〉
+

1

2

∫ 1

0

{〈R(t)v(t), v(t)〉 − 〈P (t)η(t), η(t)〉}dt.

In [17, Theorem 5.1] it is shown that the existence of a solution to (R) in [0, 1]
satisfying condition (4.1), which is condition (ii) of Theorem 4.1, is in fact sufficient
for the coercivity in η of the quadratic form J2; that is, for some γ0 > 0,

J2(η, v) ≥ γ0

2

∫ 1

0

|η(t)|2dt(4.7)

for all (η, v) satisfying (2.4) and the boundary conditions M̄
(
η(0)
η(1)

)
= 0. Condition

(4.7) is a natural strengthening of the necessary condition in Theorem 3.3. However,
for the general case of joint boundary conditions on the state, the existence of a
solution to R and (4.1) is sufficient but not necessary for the coercivity of J2(η, v).
This latter condition or its equivalent ones are the best to be used in the sufficiency
criteria, since the gap between necessary and sufficient conditions would be minimal.
This can also be said about the natural strengthenings of the necessary conditions
given by Theorem 3.9 and Corollary 3.10.

Now consider the case of separable state endpoints and costs conditions. Hence
we have

M̄ =

[
M̄0 0

0 M̄1

]
and Γ =

[
Γ0 0

0 Γ1

]
.

It is important to find out whether in this case the existence of a solution to (R)
on [0, 1] satisfying (4.6) is only sufficient for the coercivity in (4.7) or that the two
conditions are rather equivalent. As we shall see below, under a certain controllability
assumption, they are indeed equivalent. Observe that the coercivity of J2 is in η and
not in v, due to the lack of the strengthened Legendre–Clebsch hypothesis. However,
under the latter hypothesis this result is known. It is worth mentioning that in [17,
Theorem 5.2] a result parallel to Theorem 4.2 is obtained for the positivity of J2 in η
and not for its coercivity.

Theorem 4.2. Assume that the system (2.4) is either (I : M̄1)-normal on [c, 1]
for all c ∈ [0, 1) or (M̄0 : I)-normal on [0, c] for all c ∈ (0, 1]. Then the following are
equivalent.

(1) J2(η, v) is coercive in η for all (η, v) solving (2.4) and M̄0η(0) = M̄1η(1) = 0.
(2) There exists a solution (U, V ) of (3.14) satisfying

(i) UTV = V TU on [0, 1],
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(ii) det U(t) �= 0 on [0, 1],
(iii) UT (0)[Γ0U(0)− V (0)] > 0 on {α �= 0 | M̄0U(0)α = 0}, and
(iv) UT (1)[Γ1U(1) + V (1)] > 0 on {α �= 0 | M̄1U(1)α = 0}.

(3) There exists a symmetric absolutely continuous solution W on [0, 1] of (R)
satisfying (4.6).

Proof. By taking W = V U−1 it follows that condition (2) implies (3). Also
from [17, Theorem 5.1], condition (3) implies (1). Thus it remains to show that
condition (1) implies condition (2). Assume that (2.4) is (I : M̄1)-normal on [c, 1] for
all c ∈ [0, 1). By symmetry, a similar argument holds when the (M̄0 : I)-normality
occurs. From [17, Theorem 5.5], condition (1) implies that the solution (U1, V1) of
(3.14) and (3.15) satisfies conditions 2(i), 2(iii),

detU(t) �= 0 on [0, 1),

and

UT (1)[Γ1U(1) + V (1)] = 0.

By [5, Theorem 3.1.2(v)], there exists δ0 > 0 such that for all δ ∈ (0, δ0], the
matrix

Uδ := (I − M̄1) + δ(−Γ1(I − M̄1)− M̄1)(4.8)

is invertible. Consider the system (3.14) with boundary conditions{
U(1) = Uδ,

V (1) = V1(1) + δ(Γ1Γ1(I − M̄1) + I).
(4.9)

Since for δ = 0 the system (3.14) and (4.9) has (U1, V1) as a solution on [0, 1] and
since from (4.9) we have

UT (1)[V (1) + Γ1U(1)] = δI + δ2S̄

for S̄ = [(I − M̄1)Γ1 + M̄1][Γ1M̄1 − I], then by the embedding theorem, there exists
δ1 > 0 (δ1 < δ0) such that for all δ ∈ (0, δ1] there exists a solution (Uδ(·), Vδ(·)) of
(3.14) and (4.9) satisfying parts (i), (iii), and (iv) of condition (2).

It remains to show that for some δ ∈ (0, δ1] the solution to (3.14) and (4.9) also
satisfies part (ii) of condition (2). Note that since Uδ, given by (4.8), is invertible,
then for each δ ∈ (0, δ1] there exists tδ ∈ [0, 1) (minimal) such that det Uδ(t) �= 0 on
(tδ, 1). Now suppose that our claim is not true; then there exists tm ∈ [0, 1) (minimal)
such that

detU1/m(t) �= 0 on (tm, 1] and det U1/m(tm) = 0.

Using (4.9) it follows that (U1/m, V1/m) −→
m→∞ (U1, V1). However, since U1 is invertible

on [0, 1), we conclude that tm → 0. Let αm ∈ R
n with |αm| = 1 and

U1/m(tm)αm = 0.(4.10)

By passing to a convergent subsequence, say, αm −→
m→∞ α, and upon taking the limit

in (4.10), it results that

U1(0)α = 0 and |α| = 1.
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This contradicts that det U1(0) �= 0. Therefore, the proposition is proved.
Note that in this setting, condition (ii) of Theorem 4.1 can be replaced by any

of the equivalent conditions in Theorem 4.2, as long as the normality assumption of
the theorem holds. Another consequence of this theorem is the following connection
between condition (ii) of Theorem 4.1, that is, condition (3) of Theorem 4.2, and the
necessary conditions in Theorem 3.9 and Corollary 3.10.

Corollary 4.3. Assume that system (2.4) is (I : M̄1)-normal on [c, 1] for
all c ∈ [0, 1). Then each of the three equivalent conditions of Theorem 4.2 is also
equivalent to each of the following conditions.

(a) The solution (U1, V1) of (3.14) and (3.15) satisfies (i) UTV = V TU, (ii) det
U(t) �= 0 on [0, 1), (iii) UT (0)(Γ0U(0) − V (0)) > 0 on {α �= 0 | M̄0U(0)α = 0}, and
V (1) + Γ1(I − M̄1) + M̄1 = 0.

(b) There exists a symmetric solution W to (R) on [0, 1) satisfying (4.6)(i) and

lim
t→1−

W (t)U1(t) = −Γ1(I − M̄1)− M̄1.

Proof. From [17, Theorem 5.2] we know that conditions (a) and (b) above are
equivalent. Also, in the proof of Theorem 4.2 we showed the following implications:

(1)⇒ condition (a)⇒ (2)⇒ (3)⇒ (1),

which proves the corollary.
Remark 4.2. The above result states that in Theorem 4.1 we can replace condition

(ii) by either of conditions (a) or (b) of Corollary 4.3, since they imply the (I :
M̄1)-normality required. Hence Corollary 4.3 shows that the sufficiency criterion of
Theorem 4.1 is obtained as natural strengthening of the necessary conditions in either
Theorem 3.9 or Corollary 3.10.

5. Application to optimal control problems. In this section we consider the
optimal control problem (C) defined in the introduction. First, we intend to apply the
results of the previous section to the generalized Bolza (PC) problem defined in section
2 and associated with (C), and hence sufficient conditions for strong local minimality
in (C) will be obtained. Next, we plan to derive second-order necessary conditions
for optimality in (C). In this regard we shall obtain results parallel to Theorem 3.3,
Theorem 3.9, and Corollary 3.10 by either applying Theorem 3.3 to the generalized
problem of Bolza (PC) associated to (C), or by using Theorem 3.7 directly. The former
approach yields necessary conditions for W 1,s-local minimum and requires assuming
condition (B), given in section 2, and

(LC) for (t, x) ∈ T (x̄; ε), {(f(t, x, u), g(t, x, u) + r) : u ∈ U, r ≥ 0}

is convex and closed.
On the other hand, the second approach produces necessary conditions for W 1,s-

and Ls-weak local minimality, where s ∈ [1,∞]. For the first type of optimality this
approach requires only that the supremum in (1.4) be attained at some u(t, x, p),
while for the second type of optimality, regularity assumptions are needed on u. Of
course, all the results of this section apply for the (classical) strong local minimality
in (C).

Assume throughout this section that f, g, �, and U satisfy assumption (A), given
in section 2; for t ∈ [0, 1] and u ∈ U, f(t, ·, u) and g(t, ·, u) are differentiable on
Bn(x̄(t); ε); and � is differentiable on B2n(x̄(0), x̄(1); ε).
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Let (x̄, ū, p̄, γ̄) be given. We say that (x̄, ū, p̄, γ̄) satisfies the normal version of the
Pontryagin maximum principle if they satisfy



− ˙̄p = fTx (t, x̄(t), ū(t))p̄(t)− gTx (t, x̄(t), ū(t)),

(p̄T (0),−p̄T (1)) = ∇�(x̄(0), x̄(1)) + γ̄T M̄,

max{p̄T (t)f(t, x̄(t), u)− g(t, x̄(t), u) | u ∈ U}
is attained at ū(t), for almost all t.

(5.1)

Let the Hamiltonian H(t, ·, ·) be differentiable at (x̄, p̄). If (x̄, ū) is admissible for
(C) and (5.1) holds, then (x̄, ū, p̄, γ̄) satisfies

− ˙̄p(t) = H̄x(t) a.e.,

˙̄x(t) = H̄p(t) a.e.,

(p̄T (0),−p̄T (1)) = ∇�(x̄(0), x̄(1)) + γ̄T M̄,

H(t, x̄(t), p̄(t)) = 〈p̄(t), f(t, x̄(t), ū(t))〉 − g(t, x̄(t), ū(t)) a.e.

(see, e.g., [2, Proposition 3.2]).
The following result is an application of Theorem 4.1 to the optimal control

setting. It extends the corresponding result in [14], [15], and [2] to the case where x̄
is not necessarily C1 and both endpoints of x vary (i.e., φ(x(0), x(1)) = 0). When
we specialize to the case considered in [2], that is, a fixed initial and a free final
state constraints, our result assumes less regularity assumptions on the Hamiltonian
H defined by (1.4) and on Hp.

Theorem 5.1. Let (x̄, ū) be admissible for (C), p̄ ∈ W 1,1[0, 1] and γ̄ ∈ R
r such

that (x̄, ū, p̄, γ̄) satisfies the normal version of the Pontryagin maximum principle
(5.1). Let H, the Hamiltonian of (C), satisfy (H2) for some ε > 0. Assume that
there exists a symmetric, absolutely continuous solution on [0, 1] of (4.1) and the
Riccati equation (R), where H is replaced by H.

Then there exist ε̄ > 0 and δ̄ > 0 such that for all admissible pairs (x, u) with
‖x− x̄‖∞ < δ̄ we have

J(x, u) ≥ J(x̄, ū) + ε̄‖x− x̄‖22,

and (x̄, ū) is a strong local minimum for (C).
Proof. Define LC via (2.2), where T (x̄; ε) is used. In order to prove this theorem,

we use Remark 2.2. The maximality condition in (5.1) yields that

LC(t, x̄(t), ˙̄x(t)) = g(t, x̄(t), ū(t)) a.e.

Let us show that x̄ is a strong local minimum for (PC). Again the maximum principle
yields that

LC(t, x̄(t), ˙̄x(t) + v)− LC(t, x̄(t), ˙̄x(t)) ≥ 〈p̄(t), v〉

for almost all t and for all v ∈ R
n. Equations (5.1) yield that (x̄, p̄) satisfies (3.1),

where H := H. Since the Hamiltonian H of the control problem (C) is the same as
the Hamiltonian corresponding to (PC), all the conditions of Theorem 4.1 are satisfied
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for the problem (PC). It results that there exist ε̄ > 0 and δ̄ > 0 such that for any x
admissible for (PC) with ‖x− x̄‖∞ < δ̄ we have

JC(x)− JC(x̄) ≥ ε̄‖x− x̄‖22.
For (x, u) admissible for (C) Remark 2.2 implies that

JC(x) ≤ J(x, u).

We also know that

JC(x̄) = J(x̄, ū);

hence (x̄, ū) is a strong local minimum for (C) and for all admissible pairs (x, u) with
‖x− x̄‖∞ < δ̄ we have

J(x, u)− J(x̄, ū) ≥ ε̄‖x− x̄‖22.
Remark 5.1. Consider the case where the state endpoint costs and constraints

are separable, that is,

�(x, y) := �0(x) + �1(y) and φ(x, y) :=

(
φ0(x)

φ1(y)

)
.(5.2)

Then Theorem 4.2 and Corollary 4.3 yield that the result of Theorem 5.1 remains
valid for problem (C) when the assumption regarding the existence of a solution to
(R) and (4.1) is replaced by either condition (a) or condition (b) of Corollary 4.3, or
by any of the equivalent conditions given in Theorem 4.2, provided that the normality
hypothesis of that theorem holds.

Now we intend to derive necessary conditions for (C). This is done either by ensur-
ing that the problem (C), the function LC, and the HamiltonianH satisfy assumptions
(Ā), (L), and (H2), and hence Theorem 3.3 will apply to (PC), or by connecting the
two optimal control problems (C) and (CH), and then ensuring that H := H satisfies
the conditions of Theorem 3.7. Here (CH) is exactly the problem (CH) introduced in
section 3 with H := H. The first method leads to part (1)(i) of the theorem, and the
second method is behind the rest of the theorem.

Theorem 5.2. Let f, g, and U satisfy (A). Suppose that (x̄, ū, p̄, γ̄) and H satisfy
(5.1) and (H2). Then for H := H, the conclusions of Theorem 3.3 hold and Theo-
rem 3.9 and Corollary 3.10 are valid if either of the conditions (1) or (2) is satisfied.

(1) For s ∈ [1,∞], (x̄, ū) is a W 1,s-weak local minimum with (Hs
p) satisfied, and

either condition (i) or condition (ii) is in effect.
(i) Assumptions (LC) and (B) hold.
(ii) The supremum in (1.4) is attained for (t, x, p) ∈ T (x̄, p̄; ε).
(2) For s ∈ [1,∞], (x̄, ū) is a classically Ls-weak local minimum with (Hs

p) satis-
fied, and the supremum in condition (ii) is attained at u(t, x, p) such that u(t, x̄(t), p̄(t))
= ū(t), and u is continuous at z̄ := (x̄, p̄) from L∞ to Ls.

Remark 5.2. When U is compact, (B) and condition (ii) of Theorem 5.2 hold
automatically, and hence condition (i) is more restrictive than (ii). Thus, in this case,
part (1) of the theorem disposes of conditions (i) and (ii). This shows that in this
case the second-order necessary conditions obtained for (C) by passing through the
associated generalized Bolza problem (PC) are weaker than those obtained by passing
through (CH).
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The existence of a feedback-type function u as in part (2) of the theorem has been
employed in [13] when deriving sufficient conditions for the strong local minimum.

Proof. Assumptions (A) yield that H is (L×B)-measurable. By Remark 2.1, LC

is also (L × B)-measurable.
For (1), assume that (i) holds. Then, by Remark 2.3, assumptions (Ā) are satis-

fied. Thus, by applying Theorem 2.7, it results that x̄ is W 1,s-weak local for (PC). We
shall check whether the assumptions of Theorem 3.3 are met by (PC). As mentioned
earlier, (5.1) yields that (x̄, p̄, γ̄) is a normal extremal for (PC), whose Hamiltonian is
H. Assumption (LC) implies that LC(t, x, ·) is convex, since for (t, x) ∈ T (x̄; ε) the
set defined in (LC) is the epigraph of LC(t, x, ·). Thus Assumption (L) is satisfied,
whence the conclusions of Theorem 3.3 hold. Assume that φ and � are separable, as
in (5.2); then, under the normality assumptions therein, the results of Theorem 3.9
and Corollary 3.10 are valid.

To prove parts (1)(ii) and (2) of the theorem we shall use the following result that
connects (C) with (CH).

Proposition 5.3. Assume that f, g, and U satisfy (A). Suppose that condition
(ii) of Theorem 5.2 holds and that H(t, ·, ·) is differentiable on B2n(x̄(t), p̄(t); ε). Let
(x̄, ū, p̄) satisfy (5.1)(iii). If for s ∈ [1,∞], (Hs

p) holds and
(a) (x̄, ū) is a W 1,s-weak local minimum for (C), or
(b) (x̄, ū) is a classically Ls-weak local minimum and the supremum in condition

(ii) of Theorem 5.2 is attained at some u(t, x, p) such that u(t, x̄(t), p̄(t)) =
ū(t), and u is continuous at (x̄, p̄) from L∞ to Ls,

then (x̄, p̄) is classically an L∞-weak local minimum for (CH).
Proof. For (a), suppose that there exists 0 < ε0 < ε such that J(x, u) ≥ J(x̄, ū)

for all admissible pairs (x, u) with ‖x− x̄‖1,s < ε0. Let (x, p) be admissible for (CH)
with (x, p) ∈ T (x̄, p̄; ε) and ‖x − x̄‖1,s < ε0. Condition (ii) of Theorem 5.2 and the
differentiability of H(t, ·, ·) yield that

Hp(t, x(t), p(t)) = f(t, x(t), A(t, x(t), p(t))),

where

A(t, x, p) := {u ∈ U : 〈p, f(t, x, u)〉 − g(t, x, u) = H(t, x, p)},
and f(t, x,A(t, x, p)) is a singleton. Hence, by the measurable selection theorem, there
exists a measurable function u such that u(t) ∈ A(t, x(t), p(t)) for almost all t. Thus

ẋ(t) = f(t, x(t), u(t)) = Hp(t, x(t), p(t)) a.e.,(5.3)

and

〈p(t), f(t, x(t), u(t))〉 − g(t, x(t), u(t)) = H(t, x(t), p(t)) a.e.(5.4)

It follows that (x, u) is admissible for (C), and then

J(x, u) ≥ J(x̄, ū).

However, using (5.3) and (5.4), we get

JC(x, p) = J(x, u) and JC(x̄, p̄) = J(x̄, ū).

Therefore, (x̄, p̄) is a W 1,s-weak local minimum for (CH). Now applying Lemma 2.6
to the problem (CH), we conclude the result.
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For (b), suppose for 0 < ε0 < ε we have J(x, u) ≥ J(x̄, ū) for ‖x−x̄‖∞+‖u−ū‖s <
ε0. By continuity of u, there exists 0 < δ0 < ε0

2 such that for ‖x−x̄‖∞+‖p−p̄‖∞ < δ0,
we have

‖u(·, x(·), p(·))− u(·, x̄(·), p̄(·))‖s < ε0/2.

Now let (x, p) be such that ‖x − x̄‖∞ + ‖p − p̄‖∞ < δ0 and (x, p) is admissible for
(CH). In this case, u(t, x(t), p(t)) belongs to A(t, x(t), p(t)) defined above, and hence,
for u(·) := u(·, x(·), p(·)), (x, u) is admissible for (C). Since

‖x− x̄‖∞ + ‖u− ū‖s < δ0 +
ε0

2
< ε0,

it results that J(x, u) ≥ J(x̄, ū). Arguments similar to those used for (a) yield that
JC(x, p) ≥ JC(x̄, p̄). That is, (x̄, p̄) is an L∞-weak local minimum for (CH).

Return to the proof of part (1) of Theorem 5.2. Assume condition (ii) of the
theorem holds. Then Proposition 5.3(a) and Theorem 3.7 yield that the conclusions
of Theorem 3.3 hold, and thus each of Theorem 3.9 and Corollary 3.10 is valid. Part
(2) of the theorem follows from Proposition 5.3(b) and Theorem 3.7.

Remark 5.3. When the initial state value is fixed and the final state value is free,
the problem (C) reduces to the one studied in [2]. In this case, � and φ in (5.2) take
the form �(x, y) = �1(y) and φ(x, y) = φ0(x) = x−x0. In this special setting necessary
conditions in terms of the Riccati equation (R) were derived in [2, Theorem 5.1] for
the W 1,1-weak local minimum. On the other hand, specialized to this setting, part (1)
of Theorem 5.2 here yields that, under hypotheses (A), (5.1), (H2), and condition (ii)
of Theorem 5.2, Corollary 3.10 holds true. Hence, by Remark 3.2, these assumptions
yield necessary conditions in terms of a solution on (0, 1] to (R) and (3.17). However,
these assumptions are considerably weaker than those imposed in [2, Theorem 5.1].
This is so since we do not assume (1.5), ∇2

zH̄(·) to be L∞, ∇2
zH to be Lipschitz near

z̄ = (x̄, p̄) from L∞ to L1, nor the strengthened Legendre–Clebsch condition (SL) to
hold. Also, our necessary conditions apply for the W 1,s-, or classically Ls-weak local
minimum, where s ∈ [1,∞], and not only for the W 1,1-weak local minimum.

As we shall see below, the assumption (SL) in [2] is very strong. In fact, it
renders the corresponding function LC to be locally C1 in (x, v), and hence, the
control problem (C) resembles a calculus of variations problem.

Lemma 5.4. Let (x̄, p̄) ∈ W 1,∞[0, 1]× L∞[0, 1] satisfy ˙̄x(t) = H̄p(t) a.e., and let
H satisfy (H2), (H∞

p ), and (SL). Assume that Hpp is continuous at (x̄, p̄), from L∞

to L∞, and H̄p(·) and Hpp(·) are in L∞.
If LC , defined by (2.2), satisfies (L), then LC is (L × B)-measurable and lower

semicontinuous in (x, v), and there exists ε̃ > 0 (ε̃ ≤ ε) and p(t, x, v) such that p(t, ·, ·)
is C1 on T (x̄, ˙̄x; ε̃) and ∇p is continuous at (x̄, ˙̄x), from L∞ to L∞, such that

LC(t, x, v) = p(t, x, v) · v −H(t, x, p(t, x, v)).

Proof. Since H is also the Hamiltonian corresponding to LC , which is convex in
v,

LC(t, x, v) = sup{〈p, v〉 − H(t, x, p) | p ∈ R
n}

for (t, x) ∈ T (x̄; ε). Hence by [9], LC is (L×B)-measurable and lower semicontinuous
in (x, v). Consider the equation

v = Hp(t, x, p).(5.5)
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We have that (5.5) is satisfied for almost all t, for v = ˙̄x(t), for x = x̄(t), and for
p = p̄(t). Set

N(z(·); ε) := {x(·) ∈ L∞[0, 1] | ‖z − x‖∞ < ε},

and define

F : N(x̄; ε)×N(p̄; ε)→ L∞[0, 1],

(x(·), p(·))→ v(·) = F(x(·), p(·)),

where

F(x(·), p(·))(t) = Hp(t, x(t), p(t)).

Consider the equation

v(·) = F(x(·), p(·)).

(i) For x(·) ∈ N(p̄; ε), F(x(·), ·) is differentiable on N(p̄; ε).
For, let p(·) ∈ N(p̄; ε) and ε̄ > 0 given. The continuity of Hpp from L∞ to L∞

yields the existence of δ > 0 such that for ‖q − p‖∞ < δ we have

|Hpp(t, x(t), q(t))−Hpp(t, x(t), p(t))| < ε̄

2
a.e.

Let q̄(·) ∈ N(p(·); δ). We shall show

‖F(x(·), q̄(·))−F(x(·), p(·))−Fp(x(·), p(·))(q̄(·)− p(·))‖∞ ≤ ε̄‖q̄ − p‖∞.

By the mean value theorem for vector-valued functions applied to Hp(t, x(t), ·) −
Hpp(t, x(t), p(t))(·) on the line segment joining p(t) and q̄(t), there exists q̃ with |q̃(t)−
p(t)| < δ such that

|Hp(t, x(t), q̄(t))−Hp(t, x(t), p(t))−Hpp(t, x(t), p(t))(q̄(t)− p(t))|
≤ ∣∣(Hpp(t, x(t), q̃(t))−Hpp(t, x(t), p(t))

)
(q̄(t)− p(t))

∣∣
≤ ε̄

2
‖q̄ − p‖∞.

Set

Fp(x(·), p(·))(t) := Hpp(t, x(t), p(t)).

The result follows.
(ii) Let B(L∞, L∞) be the normed space of all bounded linear operators from L∞

into L∞. Then

Fp : N(x̄, ε)×N(p̄, ε)→ B(L∞, L∞)

is continuous, sinceHpp(t, ·, ·) is continuous onN(x̄, ε)×N(p̄, ε), L∞-uniformly
in t.
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(iii) Fp(x̄, p̄) is a homeomorphism of L∞ onto L∞. The strengthened Legendre
condition (SL) yields that Fp(x̄, p̄) is a bijection and that H̄−1

pp (t) is essentially

bounded. Since H̄pp(·) ∈ L∞[0, 1], we get that Fp(x̄, p̄) is a homeomorphism.

(i)–(iii) allow us to apply the implicit function theorem [11, II.3.8] to deduce the
existence of ε0, ε1 > 0 and a unique C1-function P such that

P : N(x̄, ε0)×N( ˙̄x, ε0)→ N(p̄, ε1),

v(·) = F(x(·),P(x(·), v(·))),

and

P(x̄, ˙̄x) = p̄.

Let us construct p(t, x, v) on T (x̄, ˙̄x; ε02 ).

For given (t, x, v) ∈ T (x̄, ˙̄x; ε02 ), set

x(s) := x̄(s) + ( ˙̄x(t)− v)(t− s) + x− x̄(t).

We have x(t) = x, and ẋ(t) = v. Define

p(t, x, v) := P(x(·), ẋ(·))(t).

Then, on T (x̄, ˙̄x; ε02 ), p(·, ·, ·) is well defined with values in N(p̄, ε1),

v = Hp(t, x, p(t, x, v)),(5.6)

and

p(t, x̄(t), ˙̄x(t)) = p̄(t).

Condition (SL) yields that p(·, ·, ·) is unique. The C1-property of P on N(x̄; ε0) ×
N( ˙̄x, ε0) implies that p is continuously differentiable from L∞ to L∞. Thus, by the
convexity of H(t, x, ·), for (t, x, v) in T (x̄, ˙̄x; ε02 ),

LC(t, x, v) = p(t, x, v) · v −H(t, x, p(t, x, v)),

whence the result follows.

The following example shows the power of the results of this section, as it produces
information where previous work offered none.

Example 5.1. Consider the optimal control problem

(C0) minimize J(x, u) := −5

3
25/3x2(1) +

∫ 1

0

(x3(t) + u2(t))dt

subject to

ẋ(t) =

(
t− 1

2

)1/3

u(t),

x(0) = 0,

u(t) ∈ R a.e.



608 VERA ZEIDAN

The Hamiltonian corresponding to (C0) is

H(t, x, p) := sup
u∈R

{
p

(
t− 1

2

)1/3

u− x3 − u2

}

= −x3 +
p2

4

(
t− 1

2

)2/3

,

and hence the supremum in H is attained for all (t, x, p) ∈ [0, 1]× R× R at

u(t, x, p) =
p

2

(
t− 1

2

)1/3

with u continuous everywhere from L∞ × L∞ to L∞. Moreover, H is the same
Hamiltonian H of the problem (P0) in Example 3.1.

Let x̄ ≡ 0, ū ≡ 0, p̄ ≡ 0, and γ̄ =
(
0
0

)
. Then (x̄, p̄, ū, γ̄) satisfy the normal version

of the Pontryagin maximum principle (5.1). Furthermore, assumptions (A) and (H2)
hold, and, as seen in Example 3.1, the normality requirements of Theorem 3.9 are
satisfied.

The Riccati equation (R) for this problem with the boundary condition (3.17) is
exactly given by (3.18). The solution W (t) = − 10

3(t− 1
2 )5/3

exists on ( 1
2 , 1] and cannot

be extended (by continuity) to [12 , 1]. Even though (1.4) holds, the strengthened
Legendre–Clebsch condition (SL) required in the necessity theorem [2, Theorem 5.1]
fails to hold near tc = 1

2 , since

H̄pp(t) =
1

2

(
t− 1

2

)2/3

⇒ inf
α≤t<tc

H̄pp(t) = 0 ∀ α ∈ [0, tc).

Therefore, the result in [2, Theorem 5.1] does not apply to this problem, and no
information can be produced from [2] about the optimality of (x̄, ū) for (C0).

On the other hand, as seen in Example 3.1, the conclusion of Corollary 3.10 does
not hold since the solution W does not exist on (0, 1]. Given that condition (ii) of part
(1) of Theorem 5.2 is satisfied, it results from applying Theorem 5.2(1) that (x̄, ū) is
not a W 1,s-weak local minimum for (C0), for any s ∈ [1,∞]. Since the assumptions
for part (2) of Theorem 5.2 hold, we also conclude that (x̄, ū) is not a Ls-weak local
minimum for (C0), for any s ∈ [1,∞].

Acknowledgment. The author wishes to thank a referee for the thorough read-
ing of the paper and for valuable remarks and comments that helped improve the
presentation of the results.
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Abstract. A robust control framework for linear, time-invariant (LTI), spatially distributed
systems is outlined in this paper. We adopt an input-output approach which takes account of the
spatially distributed nature of the input and output signals for such systems. The approach is a
generalization of H∞ control in the sense that the 2-norm (in both time and space) is used to
quantify the size of signals. It is shown that a frequency-domain representation, in the form of a
graph symbol, exists for every LTI, spatially distributed system under very mild assumptions. The
graph symbol gives rise to left and right coprime representations if the system is also stabilizable.
We investigate fundamental issues of feedback control such as feedback stability and robust stability
to plant and/or controller uncertainty quantified in the gap-metric. This includes a generalization of
the Sefton–Ober gap formula to the infinite-dimensional operator case. A design example in which
an electrostatically destabilized membrane is feedback-stabilized concludes the paper.

Key words. spatially distributed systems, distributed-parameter systems, robust stability, gap-
metric, H∞-control

AMS subject classifications. 93C20, 93C30, 93D09, 93D15, 93D25

PII. S0363012999357057

1. Introduction.

1.1. Motivation. Robust control theory attempts to account for the fact that
there is always some mismatch between any model of a physical plant and the actual
physical plant itself. A fundamental problem in the theory is to find a suitable mea-
sure of the distance between two systems. A solution to this problem (initially only
for finite-dimensional, lumped-parameter, linear, time-invariant (LTI) systems) was
proposed in terms of the so-called gap-metric, which was introduced into the control
literature by Zames and El-Sakkary [ZE] in 1980. In the 1980’s and early 1990’s a
system- and control-theoretic framework for finite-dimensional, lumped-parameter,
LTI systems emerged which, in particular, complemented the use of the gap-metric
as a distance measure to quantify uncertainty; see, e.g., [DLMS], [VSF], [V1], [E],
[VK], [G1], [GM], [GS1], [OS], [QD], [SO], [V3] as well as the monographs [V2], [F],
[ZDG], and [V4]. Substantial parts of this robust control theory were subsequently
generalized to certain classes of infinite-dimensional, lumped-parameter, LTI systems
(see [C2] and [GS2], for example), to the case of linear, time-varying systems (see
[DS], [FGS], [CG1], and [CG2]), and to the case of nonlinear systems (see [DGS],
[G2], and [GS5], for example). In this paper we systematically generalize much of
this theory to the class of LTI, spatially distributed systems. The results and proofs
are in parts based on similar results available in the literature for finite-dimensional,

∗Received by the editors May 31, 1999; accepted for publication (in revised form) February 16,
2000; published electronically DATE. Part of this reserach was performed while the first author
received financial support from the German Academic Exchange Service (DAAD) through their
programme HSP III. The paper was also supported by EPSRC.

http://www.siam.org/journals/sicon/40-2/35705.html
†Siemens AG, I & S MP TC, P.O. Box 3240, D-91050 Erlangen, Germany (Johannes.Reinschke

@SIEMENS.com).
‡Deparment of Electrical and Electronic Engineering, The University of Melbourne, Parkville,

VIC 3010, Australia (m.cantoni@ee.mu.oz.au).
§Department of Engineering, The University of Cambridge, Trumpington Street, Cambridge CB2

1PZ, UK (mcs@eng.cam.ac.uk).

610



ROBUST CONTROL FOR SPATIALLY DISTRIBUTED SYSTEMS 611

lumped-parameter, LTI systems; we refer, in particular, to [GS1], [GS3], and [SO].
As in [GS1] and [SO], we will use techniques that are mostly function-theoretic, re-
lying on specific representations for the graph of an LTI, dynamical system. A more
general, geometric framework based on operator-theoretic methods, in particular, the
use of parallel projection operators, was presented in [FGS]. However, the results
of [FGS] do not consider the shift-invariance or causality of systems, and hence the
necessity parts of the robust stability results as stated here are not known to hold in
the geometric framework.

We take an input-output view of spatially distributed systems in which the sys-
tem’s input and output signals are spatially distributed, i.e., the signals may depend
on spatial variables as well as time. This view is motivated by the observation that
there exist numerous examples of feedback control problems in which inputs, out-
puts, disturbances, etc. are naturally considered as spatially distributed signals. A
common first step in analyzing spatially distributed systems is to reduce them to
“lumped-parameter” form. By contrast, we seek to retain the spatial element of sig-
nals in the definition of input-output performance measures. In particular, we will
make use of the 2-norm for both the space- and the time-dependence of signals and
thereby define the induced norm of a system. As we are concerned with LTI systems,
we can think interchangeably of signals and systems in the time and frequency do-
main. In this way our approach can be considered as a generalization of H∞ control
to spatially distributed systems. We will not be concerned with distributed systems
in state-space form (as in [CZ]) but concentrate on input-output properties and is-
sues such as the existence of graph symbols and coprime representations, feedback
stability, robustness, etc.

The paper is organized as follows. In subsection 1.2 we discuss a simple example of
a spatially distributed system to illustrate the input-output view taken. A number of
mathematical results of complex analysis and operator theory needed in the remainder
of the paper are gathered in section 1.3. In section 2 we present an abstract approach
to spatially distributed systems and show that a frequency-domain representation
exists for every spatially distributed LTI system under very mild assumptions. The
representation takes the form of a graph symbol from which so-called (normalized)
right and left coprime representations can be obtained if the system is stabilizable. In
section 3 we generalize the Sefton–Ober gap formula [SO] to the infinite-dimensional
operator case. In section 4 we present (generalized) robust stability results for feed-
back loops of shift-invariant systems in which the plant, or the controller, or both,
may be uncertain with the uncertainty being measured in the gap-metric. Finally, in
section 5 the use of the previously obtained results is illustrated by a controller design
example.

1.2. Example. In this subsection we discuss a simple example of a spatially dis-
tributed system to illustrate the distributed input-output view taken, and the choice
of signal spaces. Consider an elastic string stretched between x = 0 and x = 1 and
clamped at both ends. Denote the string’s deflection from the equilibrium position
by y(x, t), and assume the string is set in motion under the action of a distributed
load u(x, t) (u(x, t) ≡ 0 for t < 0). The dynamics of the string are governed by the
PDE

∂2y(x, t)

∂t2
+ δ

∂y(x, t)

∂t
− τ

∂2y(x, t)

∂x2
= u(x, t),(1)

x∈(0, 1), t≥0, together with the boundary conditions y(0, t)=y(1, t)=0. In (1), δ>0
is a frictional coefficient, and τ >0 represents the tension per unit mass of the string.
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We select spaces of input and output signals as follows. At any given time instant we
assume that u(x, t) is square-integrable in x over the spatial domain Di=(0, 1). That
is, for fixed t, u(., t) ∈ L2(Di) =: U , where L2(Di) is the standard Lebesgue space.
Bringing in the time-dependence, we consider u(., t)=:u(t) to belong to the Lebesgue
space of U -valued, square-integrable functions, L2

U [0,∞), which is defined as

L2
U [0,∞) :=

{
u : [0,∞)→ U

∣∣∣ ∫ ∞

0

〈u(t), u(t)〉U dt <∞
}
,

where 〈., .〉U denotes the scalar product in U . Similarly, a suitable space for the
output signals is L2

Y [0,∞), where Y :=L2(Do), and in this case the spatial domain is
Do=(0, 1). Thus we consider the system (1) as defining an operator from L2

U [0,∞) to
L2

Y [0,∞). In this example, Di and Do are both equal to (0, 1). In general, however,
we allow for Di and Do to be different, which permits the description of plants with
boundary controls or boundary observations, for example. Also, in the case of spatially
multidimensional systems, Di and Do will be subsets of R

nu and R
ny with nu, ny ∈

Z+.
Taking Laplace transforms of (1) with zero initial conditions gives(

(s2 + δ s)− τ
d2

dx2

)
ŷ(x; s) = û(x; s),

x ∈ (0, 1), s ∈ C, plus the boundary conditions ŷ(0; s) = ŷ(1; s) = 0. Then û(.; s) =:
û(s) may be regarded as the system’s Laplace-transformed spatially distributed input
variable and ŷ(.; s) =: ŷ(s) as its Laplace-transformed spatially distributed output
variable. After taking Laplace transforms, the input and output signal spaces become
Hardy 2-spaces of U - (respectively, Y -) valued functions; see Definition 1.2 below.
In the frequency-domain, the input-output relationship of a spatially distributed LTI
plant can often be represented as

ŷ(x; s) =

∫
Di

dξ κP̂(x, ξ; s) û(ξ; s), x∈Do,

where κP̂(x, ξ; s) denotes the kernel of an s-dependent, infinite-dimensional, inte-
gral operator. For the vibrating string, the integral kernel is given by κP̂(x, ξ; s) =∑∞

k=1 2 sin(kπx)
(
s2+δ s+τ (k π)2

)−1
sin(kπξ), which is the string’s Laplace-transformed

Green’s function.

1.3. Mathematical preliminaries. In this subsection we introduce the nota-
tion and the mathematical background that will be used repeatedly in this paper.
Except for Proposition 1.12, the material is taken from the literature (see especially
[RR], [FF], and [N]).

Let C+ :=
{
s ∈ C |Re(s) > 0

}
. Let L represent the Laplace-transform operator.

IV , ‖.‖V , and 〈., .〉V denote the identity operator, the norm, and the scalar product in
the Hilbert space V . Throughout, Hilbert spaces will be assumed to be separable. Let
V1 be a subspace of V . The projection operator onto V1 is denoted by PV1

. For U, Y
Banach spaces, let the space of all bounded, linear operators from U to Y , equipped
with the induced norm ‖.‖ind, be denoted by B(U, Y ). The domain, the null-space,
and the range-space of an operator T : U → Y are denoted by dom(T ) := {u ∈
U |T u∈Y }, null(T ) :={u∈U |T u=0}, and ran(T ) :={y∈Y | y=T u, u∈dom(T )}.

Theorem 1.1 (see [H, Problem 52]). Let U, Y be Hilbert spaces. If T ∈
B(U, Y ) is bounded from below (i.e., ‖Tu‖Y ≥ δ‖u‖U for all u ∈ U and some
δ > 0) and has dense range, then T is boundedly invertible.
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Definition 1.2 (Lebesgue 2-space, Hardy 2-space [RR]). Let V be a Hilbert
space. The Lebesgue 2-space L2

V (R) is the Banach space of V-valued functions v̂ of

a complex variable that are bounded in the norm ‖v̂‖
L2 :=

(
1
2π

∫∞
−∞

∥∥v̂(ω)∥∥2

V
dω
)1/2

.

By the Hardy 2-space H2
V (C+) we mean the Banach space of V-valued functions v̂

of a complex variable that are analytic on C+ and bounded in the norm ‖v̂‖
H2 :=(

supσ>0
1
2π

∫∞
−∞

∥∥v̂(σ + ω)
∥∥2

V
dω
)1/2

. If v̂ ∈H2
V (C+), then v̂ can be extended to a

boundary function on R and ‖v̂‖
L2 = ‖v̂‖H2 . The Lebesgue 2-space L

2
V (R) and the

Hardy 2-space H2
V (C+) are Hilbert spaces with inner product 〈f, g〉2 := 1

2π

∫∞
−∞〈f(ω),

g(ω)〉V dω, and H2
V (C+) ⊂ L2

V (R).
Definition 1.3 (truncation and shift operators). Let V be a Hilbert space.

The (time-domain) truncation and shift operators, Tτ and Sτ , on the signal space
L2

V [0,∞) are defined by

Tτv(t) =

{
v(t) if t < τ,

0 otherwise,
and Sτv(t) =

{
v(t− τ) if τ ≤ t,

0 if 0 ≤ t < τ,

where v ∈ L2
V [0,∞). The (frequency-domain) shift operator Ŝτ on the signal space

H2
V (C+) is defined as Ŝτ := LSτL−1 = e−τs IV . On L2

V (R), e
−ωτ IV corresponds

to the bilateral shift by τ .
Definition 1.4 (Lebesgue ∞-space, Hardy ∞-space [RR]). Let U, Y be Hilbert

spaces. The Lebesgue ∞-space L∞
B(U,Y )(R) is the Banach space of B(U, Y )-valued

functions T of a complex variable that are bounded in the norm ‖T‖
L∞ := ess

supω∈R {‖T (ω)‖ind}. The Hardy ∞-space H∞
B(U,Y )(C+) is the Banach space of

B(U, Y )-valued functions T of a complex variable that are analytic on C+ and
bounded in the norm ‖T‖

H∞ := sups∈C+
{‖T (s)‖ind}. If T ∈ H∞

B(U,Y )(C+), then

‖T‖
H∞ = ess supω∈R ‖T (ω)‖ind, and hence we can identify the norms ‖.‖L∞ and

‖.‖
H∞ with each other and write simply ‖.‖∞, calling it the ∞-norm.
Definition 1.5 (multiplication operator [RR]). Let T ∈ H∞

B(U,Y )(C+). The

operator MT : H
2
U (C+) → H2

Y (C+) defined by MT : f �→ Tf for all f ∈H2
U (C+) is

called the multiplication operator with symbol T .
Definition 1.6 (Laurent operator and para-hermitian conjugate). Each G ∈

L∞
B(U,Y )(R) induces an operator LG : L

2
U (R)→ L2

Y (R), called the Laurent operator

with symbol G, and defined by LG : g �→ Gg for all g ∈ L2
U (R). The adjoint L∗

G

is equal to the Laurent operator with symbol G∼, where G∼ is defined via 〈f, Gg〉2 =
〈G∼f, g〉2 for all g ∈ L2

U (R), f ∈ L2
Y (R). G∼ ∈ L∞

B(Y,U )(R) is called the para-

hermitian conjugate of G, and it is given by G∼(s) =
(
G(−s))∗, where (.)∗ denotes

the B(U, Y )-adjoint and s is the complex-conjugate of s. If G∈H∞
B(U,Y )(C+), then

‖G‖
H∞ =

√‖G∼G‖
L∞ =

√‖GG∼‖
L∞ .

Theorem 1.7 ([FF, p. 235]). Let U, Y be Hilbert spaces. A bounded linear
operator M : H2

U (C+) → H2
Y (C+) is shift-invariant iff M = MG for some G ∈

H∞
B(U,Y )(C+). In this case, ‖M‖ind = ‖G‖∞. Similarly, a bounded linear opera-

tor L : L2
U (R) → L2

Y (R) commutes with the bilateral shift iff L = LK for some
K∈L∞

B(U,Y )(R). In this case, ‖L‖ind=‖K‖∞.
Definition 1.8 (invertible in H∞). An (operator-valued) function T ∈

H∞
B(U,U )(C+) is said to be invertible inH

∞ if there exists a function T−1 ∈ H∞
B(U,U )(C+)

such that T−1 T = T T−1= IU . The terms right invertible in H∞ and left invertible
in H∞ are defined analogously.
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Definition 1.9 (inner and coinner functions [FF, p. 234]). Let U, Y be Hilbert
spaces. A function G∈H∞

B(U,Y )(C+) is called inner if G
∼(ω)G(ω)=IU for (almost)

all ω ∈ R, and coinner if G(ω)G∼(ω)=IY for (almost) all ω ∈ R.
Definition 1.10 (outer function [FF, p. 240]). Let U, Y be Hilbert spaces. Go ∈

H∞
B(U,Y )(C+) is called an outer function (or simply outer) if cl

(
GoH

2
U (C+)

)
=

H2
Y (C+), where cl(.) denotes “closure.”
Theorem 1.11 (Szegö [RR, section 6.14]). Let Y be a Hilbert space, and F a

(weakly measurable) nonnegative B(Y , Y )-valued function of ω ∈ R that has invert-
ible values for (almost) all ω ∈ R. Assume that

∫ ∞

−∞

log+‖F (ω)‖ind

1 + ω2
dω <∞ and

∫ ∞

−∞

log+‖F−1(ω)‖ind

1 + ω2
dω <∞,(2)

where log+t :=max(log t, 0) for t>0 and log+ 0 :=−∞. Then F (ω) = V ∼(ω)V (ω)
for (almost) all ω ∈ R, where V (s), s ∈ C, is a B(Y , Y1)-valued outer function with
Y1 being a closed subspace of Y .

The following Proposition 1.12 on the spectral factorization of operator-valued
L∞-functions is a consequence of Szegö’s theorem. A proof of the proposition is in-
cluded as the authors were unable to find the result, as stated below, in the literature.

Proposition 1.12 (spectral factorization). Let U, Y be Hilbert spaces.
(i) For every function G∈L∞

B(U,Y )(R) that has a left inverse in L
∞, there exists

a function X ∈H∞
B(U,U )(C+), which is invertible in H∞, such that G∼(ω)G(ω) =

X∼(ω)X(ω) for (almost) all ω ∈ R.
(ii) For every function G̃∈L∞

B(Y,U )(R) that has a right inverse in L
∞, there ex-

ists a function Y ∈H∞
B(U,U )(C+), which is invertible in H

∞, such that G̃(ω) G̃∼(ω) =
Y (ω)Y ∼(ω) for (almost) all ω ∈ R.

Proof. Given a function K∈L∞
B(U,Y )(R) that has a left inverse L∈L∞

B(Y,U )(R),

set F := K∼K. Since LK = IU , it follows that ‖K û‖2 ≥ ‖L‖−1
∞ ‖û‖2, and

hence, since ‖L‖−2
∞ 〈û, û〉2 ≤ 〈Kû,Kû〉2 = 〈û, F û〉2 ≤ ‖û‖2 ‖Fû‖2, we have ‖F û‖2 ≥

‖L‖−2
∞ ‖û‖2 for all û ∈ L2

U (R). Thus LF : L
2
U (R) → L2

U (R) is bounded from be-
low. Since K is left invertible, K∼ is right invertible which means that LK∼ has full
range. Since K is bounded below, ran(LK) = cl

(
ran(LK)

)
= null(LK∼)⊥. Hence

ran(LF ) = L2
U [0,∞). This means that LF is boundedly invertible by Theorem 1.1.

Since LF commutes with the bilateral shift, so does L−1
F , implying the existence of a

function F−1∈L∞
B(U,U )(R) such that L−1

F = LF−1 by Theorem 1.7. Note that both

F and F−1 satisfy the conditions (2) in Theorem 1.11. Consequently, there exist outer
functions V1 ∈H∞

B(U ,U1)
(C+) and V2 ∈H∞

B(U ,U2)
(C+), with U1 and U2 being closed

subspaces of U , such that F (ω) = V ∼
1 (ω)V1(ω) and F−1(ω) = V ∼

2 (ω)V2(ω)
for (almost) all ω ∈ R. The multiplication operators MV1 : H

2
U (C+) → H2

U1
(C+)

and MV2 : H
2
U (C+) → H2

U2
(C+) have dense range (since V1 and V2 are outer) and

are bounded from below (since ‖Fû‖2 = ‖V ∼
1 V1 û‖2 ≥ ‖L‖−2

∞ ‖û‖2 implies ‖V1 û‖2 ≥
‖V1‖−1

∞ ‖L‖−2
∞ ‖û‖2, and similarly for V2). Combining Theorems 1.1 and 1.7, it follows

that both V1 and V2 are invertible in H∞. Furthermore, dimU1 = dimU2 = dimU ,
i.e., both U1 and U2 are isometrically isomorphic to U [K2, p. 173], and therefore
there exist (constant) isometric isomorphisms T1 : U1 → U and T2 : U2 → U .

To prove part (i), set K := G and X := T1 V1. Now note that X, X−1 ∈
H∞

B(U,U )(C+) and that G∼(ω)G(ω) = F (ω) = V ∼
1 (ω)V1(ω) =X∼(ω)X(ω) for

(almost) all ω ∈ R.
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To prove part (ii), set K := G̃∼ and Y :=
(
T2 V2

)−1
. Now note that Y, Y −1 ∈

H∞
B(U,U )(C+) and that

(
G̃(ω) G̃∼(ω)

)−1
=F−1(ω)=V ∼

2 (ω)V2(ω)=
(
Y (ω)Y ∼(ω)

)−1
,

i.e., G̃(ω) G̃∼(ω)=Y (ω)Y ∼(ω) for (almost) all ω ∈ R.

2. System representations. Mathematical models for spatially distributed
systems may arise in the form of PDEs, integral operators, or as a result of di-
rect modelling techniques such as the finite element method. In this section we take
an abstract approach to show that frequency domain representations exist for LTI,
spatially distributed systems under very mild assumptions. The representation takes
the form of a graph symbol. We will furthermore show that the graph symbol gives
rise to so-called (normalized) right and left coprime representations if the system is
(feedback-) stabilizable.

In the time-domain, a spatially distributed system is considered to be an operator

P : dom(P) ⊆ L2
U [0,∞)→ L2

Y [0,∞),
where U, Y are (infinite-dimensional) Hilbert spaces. The graph of P is defined by
GP :=

[
IU
P

]
dom(P) ⊆ L2

[UY ]
[0,∞). A system P is said to be linear if GP is a linear

subspace of L2

[UY ]
[0,∞). A linear system P is said to be stable if dom(P) = L2

U [0,∞)
and ‖P‖ind < ∞. A system P is said to be shift-invariant (or time-invariant) if, for
all τ ∈ (0,∞) and all u ∈ dom(P), Sτ Pu = P Sτ u. This is equivalent to the graph
GP being a shift-invariant subspace of L2

[UY ]
[0,∞), i.e., Sτ GP ⊆ GP for all τ ∈ (0,∞).

A linear system P is said to be causal if, for all τ ∈ (0,∞) and all u1, u2 ∈ dom(P),
Tτ u1 = Tτ u2 implies Tτ Pu1 = Tτ Pu2. This is equivalent to the graph of P
satisfying the following: (0v̂) ∈ Tτ GP implies v̂ = 0 for all τ ∈ (0,∞). A stable, linear
system P is causal iff Tτ Pu=Tτ P Tτ u for all u∈L2

U [0,∞). Furthermore, it is a
standard fact that every linear, stable, and shift-invariant system, which is defined
on the singly infinite time axis [0,∞), is causal. A causal, linear system P is called
causally extendible if Tτ dom(P) = L2

U [0, τ) := TτL2
U [0,∞) for all τ ∈ (0,∞). Causal

extendibility means that, given any τ > 0, we can choose the input to P arbitrarily
over the interval [0, τ) and yet be able to continue the input to an element of dom(P).

Consider the LTI system P : dom(P) ⊆ L2
U [0,∞)→ L2

Y [0,∞) with input-output
relationship given by y=Pu. Denote the Laplace-transforms of u and y by û :=Lu
and ŷ := Ly, respectively. In the “frequency domain,” the system is represented
by the operator P̂ : dom(P̂) ⊆ H2

U (C+) → H2
Y (C+), defined via P̂ := LPL−1.

The Laplace-transformed system graph is denoted by GP̂ := LGP. It is well known
that the Laplace-transform (of signals) is an isometric isomorphism between Hilbert
spaces. Thus we can think interchangeably of operators defined in the “time domain”
or the “frequency domain.” The equivalence between “time domain” and “frequency
domain” can be depicted in diagrammatic form:

L2
U [0,∞) ⊇ dom(P)

P−−−−→ L2
Y [0,∞)

L � L−1 L � L−1 L � L−1

H2
U [C+) ⊇ dom(P̂)

P̂−−−−→ H2
Y [C+).

The following result, which is a generalization of a fundamental result for lumped-
parameter systems, states mild conditions under which the graph of a spatially dis-
tributed LTI system can be represented as the range of an operator-valued H∞-
function.
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Theorem 2.1. Let U, Y be (separable) Hilbert spaces. Consider a closed, linear,
shift-invariant, causally extendible system P : dom(P)⊆L2

U [0,∞)→ L2
Y [0,∞). Then

there exist (operator-valued) functions M ∈ H∞
B(U,U )(C+) and N ∈ H∞

B(U,Y )(C+)

such that G := [MN ] is inner and satisfies GP̂ = GH2
U (C+).

Proof (the proof is based on the proofs of Propositions 1 and 11 in [GS3]). Call
V :=

[
U
Y

]
. By assumption GP̂ is a closed, shift-invariant subspace of H2

V (C+), and
hence by the Beurling–Lax theorem [FF, p. 239] there exists an at most countably
infinite-dimensional Hilbert space Z and an inner function G′∈H∞

B(Z,V )(C+) such

that GP̂=G′H2
Z (C+). We will show next that the assumption of causal extendibility

of P implies that Z cannot be finite-dimensional if U is infinite-dimensional. Set
G′=:

[
M ′
N ′
]
, whereM ′∈H∞

B(Z,U )(C+) and N
′∈H∞

B(Z,Y )(C+). P is causally extendible,

meaning that for all τ > 0 and all û∈H2
U (C+)�e−τsH2

U (C+) there exists a ẑ∈H2
Z (C+)

such that û=PH2
U(C+)	e−τsH2

U(C+)M
′ ẑ. Equivalently, for every û∈H2

U (C+) and τ > 0,

û=M ′ ŵ− e−τs v̂=:M ′′ (ŵ
v̂

)
has a solution

(
ŵ
v̂

)∈H2

[ZU]
(C+). This condition is satisfied

iff M ′′H2

[ZU]
(C+) = H2

U (C+), i.e., the multiplication operator MM ′′ : H2

[ZU]
(C+) →

H2
U (C+) is onto. This implies that MM ′′ has a right inverse, which by [FF, Corollary

VI.6.2, p. 218] can be expressed as a multiplication operator with symbol in H∞.
Hence

(
M ′′(s)

)∗
is left invertible for fixed s ∈ C+. Moreover,

(
M ′′(s)

)∗
is uniformly

(in C+) bounded from below. Thus infs∈C+

〈(
M ′′(s)

)∗
u,
(
M ′′(s)

)∗
u
〉[

Z
U

] > 0 for all

0 �= u ∈ U , and hence

inf
s∈C+

(〈(
M ′(s)

)∗
u,
(
M ′(s)

)∗
u
〉

Z
+ e−2τRe(s)〈u, u〉U

)
> 0 for all 0 �= u ∈ U .

(3)

Thus, for all s ∈ C+, the bounded linear operator
(
M ′(s)

)∗
: U → Z has zero

null-space, and hence dimU = dim ran
(
M ′(s)

)∗ ≤ dimZ . Therefore, if U is count-
ably infinite-dimensional, so must be Z . Since the Hilbert spaces Z and U have
the same dimension, they are isometrically isomorphic ([K2, p. 173]), i.e., there ex-
ists a (constant) isometric isomorphism U : U → Z . Finally, G := G′ U satis-
fies GP̂ = GH2

U (C+), where G so defined is inner since G ∈ H∞
B(U, [UY ])

(C+) and(
G(ω)

)∼
G(ω)=U∗ (G′(ω)

)∼
G′(ω)U=U∗ IZ U=IU for (almost) all ω ∈ R.

Definition 2.2 (graph symbol). Given a closed, linear, and shift-invariant
system P : L2

U [0,∞) → L2
Y [0,∞), a function G ∈ H∞

B(U, [UY ])
(C+) satisfying GP̂ =

GH2
U (C+) is called a graph symbol of P.
In the physical sciences and engineering it is often the case that the input-output

behavior of a system can be represented in terms of an integral operator. Though
we are not able to provide an existence theorem for such representations, based on
fundamental system properties as in Theorem 2.1, we now briefly discuss the pos-
sible relationship between such representations and the graph symbol arising from
Theorem 2.1. Suppose that P is a causal, linear, shift-invariant system with integral
operator representation of the form

y(x, t) =

∫ t

0

∫
Di

κP(x, ξ, t− τ)u(ξ, τ) dξ dτ, x ∈ Do,(4)

where Di and Do denote the input and output spatial domains. Taking Laplace-
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P

C

❤

❤

+

+✛ ❄

✻
✲✲

✛

d1 e1

d2e2

Fig. 1. Standard feedback configuration [P, C] of spatially distributed systems in the “time
domain.”

transforms of (4) gives

ŷ(x; s) =

∫
Di

κP̂(x, ξ; s) û(ξ; s) dξ, x ∈ Do,

where κP̂(x, ξ; s) is the Laplace-transform of the system’s Green’s function κP(x, ξ; t).
This leads to a “frequency domain” interpretation of P as a parameter-dependent
(i.e., s-dependent) integral operator P (s) with kernel κP̂(x, ξ; s). Now suppose that
P is closed and causally extendible, so that by Theorem 2.1 there exists an M ∈
H∞

B(U,U )(C+) and an N ∈ H∞
B(U,Y )(C+) such that GP̂ = GH2

U (C+), where G =:[
M
N

]
, U := L2(Di), and Y := L2(Do). If P is also bounded on the whole of L2

U [0,∞),
then it can be shown that the corresponding M is invertible in H∞

B(U,U )(C+) and

that P (s) = N(s)M−1(s). In general, however, although it can be shown that MM

is always injective, whether (MM )
−1 corresponds to multiplication by some operator-

valued function (frequency-domain symbol) appears to be an open question. In such
cases, the relationship between the integral operator representation and graph symbol
needs further clarification.

Consider now the spatially distributed feedback system in Figure 1, which we
denote by [P,C], where P : dom(P) ⊆ L2

U [0,∞) → L2
Y [0,∞) and C : dom(C) ⊆

L2
Y [0,∞)→ L2

U [0,∞) are linear operators.
Definition 2.3 (feedback stability). Consider the systems P : dom(P) ⊆

L2
U [0,∞) → L2

Y [0,∞) and C : dom(C) ⊆ L2
Y [0,∞) → L2

U [0,∞), where U and
Y are Hilbert spaces. The standard feedback configuration [P,C] in Figure 1 is said
to be stable if

F(P,C) :=

(
IU −C
−P IY

)
: dom(P)×dom(C)

⊆ L2

[UY ]
[0,∞)→ L2

[UY ]
[0,∞) :

(
e1
e2

)
�→
(
d1

d2

)

has a bounded inverse
(
F(P,C)

)−1
=: H(P,C) on L2

[UY ]
[0,∞).

The inverse graph of C is defined as Gi
C :=

[
C
IY

]
dom(C), and its frequency-

domain equivalent is denoted by Gi
Ĉ

:= LGi
C. The following result characterizes

feedback stability in terms of the graphs of P and C; see [FGS1, OS, GS3, FGS], for
example.

Proposition 2.4. Consider the systems P : dom(P) ⊆ L2
U [0,∞) → L2

Y [0,∞)
and C : dom(C) ⊆ L2

Y [0,∞) → L2
U [0,∞), where U and Y are Hilbert spaces. The
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feedback configuration [P,C] is stable iff GP, Gi
C are closed subspaces of L2

[UY ]
[0,∞),

GP ∩ Gi
C = {0},(5)

GP + Gi
C = L2

[UY ]
[0,∞).(6)

On the basis of Theorem 2.1 and Definition 2.3, we now define the class of spatially
distributed systems considered in this paper.

Definition 2.5 (class of shift-invariant, spatially distributed systems). Con-
sider the Hilbert spaces U := L2(Di) and Y := L2(Do), where Di and Do are spa-
tial domains. We define S

(
U, Y ; [0,∞)) to be the set of all closed, linear, shift-

invariant, causally extendible operators P : dom(P) ⊆ L2
U [0,∞) → L2

Y [0,∞). By
SS
(
U, Y ; [0,∞)) we denote the subclass of stabilizable systems in S

(
U, Y ; [0,∞)).

The requirement that the elements of S
(
U, Y ; [0,∞)) be closed operators (i.e.,

operators with closed graphs) is not a major restriction since, by Proposition 2.4,
closedness of the system graph is necessary for the system to be stabilizable. We
next define coprime representations, which are shown to exist for every system in
SS
(
U, Y ; [0,∞)). Coprime representations have proved to be useful notions in feed-

back control, particularly in dealing with (open-loop) unstable systems, and as shown
below they lead to a neat parameterization of stabilizing controllers. The following
definition is adapted from [DS].

Definition 2.6 (coprime representations). Given a system P∈S
(
U, Y ; [0,∞)),

[MN ] is said to be a right coprime representation of P if M ∈ H∞
B(U,U )(C+) and

N ∈ H∞
B(U,Y )(C+) satisfy GP̂ = [MN ]H

2
U (C+), and [MN ] is left invertible in H∞. If,

in addition, [MN ] is inner, then the right coprime representation is called normalized.
Given P∈S

(
U, Y ; [0,∞)), [−Ñ M̃

]
is said to be a left coprime representation of P

if M̃ ∈H∞
B(Y,Y )(C+) and Ñ ∈H∞

B(U,Y )(C+) satisfy GP̂=
{
v̂∈H2

[UY ]
(C+)

∣∣ [−Ñ M̃
]
v̂ =

0
}
, and

[−Ñ M̃
]
is right invertible in H∞. If, in addition,

[−Ñ M̃
]
is coinner,

then the left coprime representation is called normalized.
Theorem 2.7. Every P∈SS

(
U, Y ; [0,∞)) has normalized right and normalized

left coprime representations [MN ] ∈ H∞
B(U, [UY ])

(C+) and
[−Ñ M̃

] ∈ H∞
B([UY ],Y )

(C+),

respectively.
Proof. Suppose that C ∈ SS

(
Y , U; [0,∞)) stabilizes P. By Theorem 2.1 there

exist (operator-valued) inner functions G ∈H∞
B(U, [UY ])

(C+) and K ∈H∞
B(Y, [UY ])

(C+)

such that GP̂=GH2
U (C+) and Gi

Ĉ
=KH2

Y (C+). Let T := (G, K). Then since [P,C]
is stable, it follows by Proposition 2.4 that

T H2

[UY ]
(C+) = GH2

U (C+) +KH2
Y (C+) = GP̂ + Gi

Ĉ
= H2

[UY ]
(C+).

Moreover, since null
(
MG

)
= {0} and null(MK

)
= {0}, it follows from (5) that MT :

H2

[UY ]
(C+) → H2

[UY ]
(C+) is also injective, and hence boundedly invertible. As the

inverse is also shift-invariant, it follows by Theorem 1.7 that T is invertible in H∞.
Partition T =: (M Y

N X) ∈ H∞
B([UY ], [

U
Y ])

(C+) and T−1 =:
(
X̃ −Ỹ
−Ñ M̃

)
∈ H∞

B([UY ], [
U
Y ])

(C+).

Clearly,
[
X̃ −Ỹ ] is a left inverse of G = [MN ], and correspondingly G is a right

coprime representation of P. Furthermore, it is normalized since G is inner.
We now show that G̃ :=

[−Ñ M̃
]
is a left coprime representation of P. First

note that [YX] is a right inverse of G̃. Let v̂1, v̂2 ∈ H2

[UY ]
(C+) satisfy 0 �= v̂1 ∈ GP̂ and
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0 �= v̂2 �∈ GP̂, noting that there exist a 0 �= û1 ∈ H2
U (C+) such that v̂1 = [MN ] û1 and

a û2 ∈ H2
U (C+) and 0 �= ŷ ∈ H2

Y (C+) such that v̂2 = [MN ] û2 + [YX] ŷ. It follows that

G̃ v̂1 =
[−Ñ M̃

]
[MN ] û1 = 0 and G̃ v̂2 =

[−Ñ M̃
]
[YX] ŷ = ŷ �= 0, which implies that

GP̂ =
{
v̂ ∈ H2

[UY ]
(C+)

∣∣ G̃ v̂ = 0
}
. It remains to show that G̃ can be normalized. Since

G̃ is right invertible, it follows by Proposition 1.12(ii) that there exists a function
Y ∈ H∞

B(Y,Y )(C+), invertible in H∞, such that G̃(ω) G̃∼(ω) = Y (ω)Y ∼(ω) for

(almost) all ω ∈ R. It is now straightforward to verify that (Y −1 G̃) is a normalized
left coprime representation of P.

Proposition 2.8 (Youla-parametrization of all stabilizing controllers). Let P∈
SS
(
U, Y ; [0,∞)). Consider any (operator-valued) functions M , X̃ ∈ H∞

B(U,U )(C+);

Y , Ỹ ∈ H∞
B(Y,U )(C+); N , Ñ ∈ H∞

B(U,Y )(C+); and X, M̃ ∈ H∞
B(Y,Y )(C+) with [MN ]

a right coprime representation of P and
[−Ñ M̃

]
a left coprime representation of

P such that the following double Bezout identity holds:(
M Y
N X

)(
X̃ −Ỹ
−Ñ M̃

)
=

(
X̃ −Ỹ
−Ñ M̃

)(
M Y
N X

)
=

(
IU 0
0 IY

)
.

Then C ∈ SS
(
Y , U; [0,∞)) stabilizes P iff C has a right coprime representation[

Y−M Q
X−N Q

]
and a left coprime representation

[
(−Ỹ +QM̃) (X̃ −QÑ)

]
for some Q∈

H∞
B(Y,U )(C+).

Proof. The result follows largely by arguments in [F], with extra care needed to
ensure invertibility of certain frequency-domain symbols in H∞, as in the first part
of the proof of Theorem 2.7 above.

3. The gap-metric. Consider two systems P1, P2 ∈ SS
(
U, Y ; [0,∞)). Let

their (Laplace-transformed) graphs be denoted by G1 := GP̂1
and G2 := GP̂2

, and
let the inner functions G1 and G2 denote the respective graph symbols. The gap
δg(., .) between the two systems P1 and P2 is defined to be the aperture between
their graphs (cf. [K1, p. 197ff] and [ZE]), i.e., δg(P1, P2) := ‖PG1 − PG2‖ind, where
PG1 and PG2 denote the projection operators from H2

[UY ]
(C+) onto the (closed) graphs

G1 and G2. It is easy to verify that the gap δg(., .) so defined is a metric. Further-
more, 0 ≤ δg(P1, P2) ≤ 1. In [KVZRS, p. 205f], it was shown that δg(P1,P2) =

max
{
)δg(P1,P2), )δg(P2,P1)

}
, where )δg(P1,P2) :=

∥∥PG⊥
2

PG1

∥∥
ind
, which is termed

the directed gap. In addition,

δg(P1,P2) = )δg(P1,P2) = )δg(P2,P1) if δg(P1,P2) < 1.(7)

Generalizing the result of [G1] to the infinite-dimensional, linear operator case, it was
shown in [CG2, Theorem 3.3] that

)δg(P1,P2) =
∥∥∥PG⊥

2
PG1

∥∥∥
ind

= inf
Q∈H∞

B(U,U)(C+)
‖G1 −G2 Q‖∞.(8)

Building on the result of [G1], Sefton and Ober [SO] derived a useful formula for the
gap (as opposed to the directed gap) between lumped-parameter LTI systems, which
is similar to (8) except that Q is restricted to being invertible in H∞. In what follows
the Sefton–Ober gap formula is generalized to the case of spatially distributed LTI
systems.



620 J. REINSCHKE, M. W. CANTONI, AND M. C. SMITH

Theorem 3.1. Let the inner functions
[
M1

N1

]
,
[
M2

N2

]∈H∞
B(U, [UY ])

(C+) be graph sym-

bols of the systems P1,P2∈S
(
U, Y ; [0,∞)).

(i) If there exists a Q̃ ∈ H∞
B(U,U )(C+) such that ‖

[
M1

N1

]− [M2

N2

]
Q̃‖∞ < 1 and Q̃ is

not invertible in H∞, then δg(P1, P2) = 1.

(ii) If there exists a Q̃∈H∞
B(U,U )(C+) such that ‖G1 −G2 Q̃‖∞ < 1 and Q̃−1∈

H∞
B(U,U )(C+), then δg(P1, P2) < 1.

Proof. (i) This part follows as shown in the proof of Proposition 4.6 in [SO],
provided it can be shown that when Q̃∈H∞

B(U,U )(C+) satisfies∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Q̃

∥∥∥∥
∞
< 1,(9)

then taking an inner-outer factorization (see [FF, p. 241]), the outer part is invertible
in H∞. To see that this is the case, first note that for any Q̃ ∈ H∞

B(U,U )(C+)

satisfying (9), MQ̃ : H2
U (C+) → H2

U (C+) is bounded from below. This follows by

assuming the contrary and taking a sequence v̂n ∈ H2
U (C+) such that ‖v̂n‖2 = 1

for n ∈ Z+ and limn→∞ ‖Q̃v̂n‖2 = 0. Then limn→∞ ‖
[
M1

N1

]
v̂n −

[
M2

N2

]
Q̃v̂n‖2 = 1,

which contradicts (9). Now taking an inner-outer factorization Q̃ = Q̃i Q̃o, where
Q̃i∈H∞

B(V,U )(C+) is inner, Q̃o∈H∞
B(U,V )(C+) is outer, and V is a Hilbert space of

suitable dimension, it follows that MQ̃o
: H2

U (C+)→ H2
V (C+) is bounded from below,

since MQ̃i
: H2

V (C+)→ H2
U (C+) is isometric. But MQ̃o

has dense range, since Q̃o is

outer, which by Theorem 1.1 implies that MQ̃o
is boundedly invertible. Hence, Q̃o is

invertible in H∞ by Theorem 1.7, as claimed.
(ii) This part of the result follows by the same arguments used to prove Theorem

4.7 in [SO].
The Sefton–Ober gap formula is a direct consequence of Theorem 3.1 as stated

below.
Corollary 3.2. Let the inner functions G1, G2∈H∞

B(U, [UY ])
(C+) be graph sym-

bols of the systems P1, P2∈S
(
U, Y ; [0,∞)). Then δg(P1, P2) = infQ,Q−1∈H∞

B(U,U)(C+)

‖G1 −G2 Q‖∞.
4. Robust feedback stability. In this section we establish a quantitative ro-

bust stability result for feedback loops comprised of spatially distributed LTI systems
subject to gap-metric perturbations. First, we present a qualitative result which
demonstrates that the gap-metric is a measure of the difference between open-loop
systems with respect to variation in closed-loop performance.

Proposition 4.1. With P, Pi ∈ SS
(
U, Y ; [0,∞)) for i ∈ Z+, the following

statements are equivalent:
(a) δg(Pi,P)→ 0 as i→∞;
(b) ‖H(Pi,C)−H(P,C)‖ind → 0 as i→∞ for any C stabilizing P;

(c) there exist right coprime representations
[
Mi

Ni

]
,
[
M
N

]
of Pi,P such that

∥∥[Mi

Ni

]−[
M
N

]∥∥
∞ → 0 as i→∞.
Proof. (a) ⇔ (b) is a direct consequence of Theorem 4.1 in [C1] and sufficiency

of Theorem 3 in [FGS]. The equivalence (c) ⇔ (a) follows directly from Corollary
3.2.

Suppose that [P,C] is stable and that P has a right coprime representation
[
M
N

]
.

By Proposition 4.1, every plant P′, with a (perturbed) right coprime representation
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[
M ′
N ′
]
=
[
M+∆M

N+∆N

]
, will be stabilized by C provided that the perturbation

[
∆M

∆N

]
, com-

monly referred to as the (right) coprime factor uncertainty, has a sufficiently small
∞-norm. The following result shows that a normalized coprime factor ball of systems
is equivalent to a gap-metric ball of systems.

Proposition 4.2. Given P ∈ SS
(
U, Y ; [0,∞)), let [MN ] be a normalized right

coprime representation of P. For all b : 0 < b ≤ 1 we have{
P′ ∈ SS

(
U, Y ; [0,∞)) ∣∣ δg(P,P′) < b

}
=
{
P′ ∈ SS

(
U, Y ; [0,∞)) ∣∣ [M+∆M

N+∆N

]
is a right coprime representation of P′ with

∥∥∆M

∆N

∥∥
∞< b

}
.

Proof. The proof is the same as that of Theorem 5.2 in [SO] for the lumped-par-
ameter LTI case.

Given P ∈ SS
(
U, Y ; [0,∞)) and C ∈ SS

(
Y , U; [0,∞)) such that the standard

feedback configuration [P,C] in Figure 1 is stable, let

bP,C :=

∥∥∥∥
[
IU

P

] [(
IU −C P

)−1 −C
(
IY −P C

)−1
]∥∥∥∥

−1

ind

,

and define

bopt(P) := sup
C∈SS(U ,Y , [0,∞))

bP,C.(10)

With G = [MN ] as a normalized right coprime representation of P and
[−Ũ Ṽ

]
as

a left coprime representation of C, setting K̃ :=
[
Ṽ −Ũ] it follows that (K̃G)−1 ∈

H∞
B(U,U )(C+) ⇔ [P,C] is stable, and bP,C =

∥∥(K̃G
)−1

K̃
∥∥−1

∞ . Furthermore, bP,C
satisfies (see, e.g., [FGS]) 0 ≤ bP,C ≤ 1 and bP,C = bC,P. The number bP,C is
often called the stability margin. The reason for this terminology is evident from the
following result.

Theorem 4.3 (robustness under plant gap uncertainty). Assume that P ∈
SS
(
U, Y ; [0,∞)) and C ∈ SS

(
Y , U; [0,∞)) are such that [P, C] is stable and 0 <

bP,C < bopt(P). Then [P′,C] is stable for all P′ ∈ SS
(
U, Y ; [0,∞)) such that

δg(P,P
′) < b iff b ≤ bP,C.

Proof. (i) “if”: Using Proposition 4.2, this can be proved as for lumped-parameter
LTI systems (see Theorem 9.6 in [ZDG], for example). Alternatively, it follows from
[FGS, Theorem 3].

(ii) “only if”: Let G :=
[
M
N

]
, whereM ∈H∞

B(U,U )(C+) and N ∈H∞
B(U,Y )(C+), be

a normalized right coprime representation of P. Also let
[−Ũ Ṽ

]
be a left coprime

representation of C, and set K̃ :=
[
Ṽ −Ũ]. Assuming that the claim does not hold,

we now show that it is then possible to construct a right coprime representation of a
system P′ ∈ SS

(
U, Y ; [0,∞)) such that δg(P,P

′) < b with bP,C < b ≤ bopt(P) and
[P′,C] unstable. The right coprime representation of the required P′ takes the form
(G+∆) ∈ H∞

B(U, [UY ])
(C+), where ‖∆‖∞ < b (cf. Proposition 4.2.)

Before going on to construct an appropriate ∆, we make the following observa-
tions. First, note that provided ‖∆‖∞<bopt(P), then (G+∆)∈H∞

B(U, [UY ])
(C+) is left

invertible in H∞, which can be shown as follows. By the definition of bopt(P), there

exists a C0 with left coprime representation
[−Ũ0 Ṽ0

]
such that K̃0 :=

[
Ṽ0 −Ũ0

]
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satisfies b−1
opt(P) ≤ b−1

P,C0
=
∥∥(K̃0G

)−1
K̃0

∥∥
∞ < ‖∆‖−1

∞ . Setting X :=
(
K̃0G

)−1
K̃0,

and noting that X(G+∆) = IU +X∆, where ‖X∆‖∞ ≤ ‖X‖∞ ‖∆‖∞ < 1, it follows

that X(G + ∆) is invertible in H∞. Then X0 :=
(
X(G + ∆)

)−1
X ∈H∞

B([UY ],U )
(C+)

is a left inverse of (G + ∆). Second, note that if (G+∆)∈H∞
B(U, [UY ])

(C+) is a right

coprime representation of a system P′ ∈ SS
(
U, Y ; [0,∞)), then [P′,C] is stable iff(

IU + (K̃G)−1K̃∆
)−1∈H∞

B(U,U )(C+). This follows from the fact that
(
K̃ G

)−1
K̃ is

a left coprime representation of C.

Now, since
∥∥(K̃G

)−1
K̃
∥∥
∞= b−1

P,C > b−1, it follows that for arbitrary small σ >

0, there exists a frequency ω0 ∈ (0,∞) and a unit vector v̂ ∈ [UY ] such that û :=(
K̃(σ + ω0)G(σ + ω0)

)−1
K̃(σ + ω0) v̂ satisfies b

−1
P,C ≥ ‖û‖U > b−1. Define p(s) :=

s
s2+2δs+ω2

0
and ∆(s) := −p(s)

p(σ+ω0)
e−αs

e−α(σ+ω0)
v̂

‖û‖2
U
〈û, .〉U , where δ > 0 and α > 0. It

follows that ‖∆‖∞ = |p(ω0)|
|p(σ+ω0)| e

ασ ‖û‖−1
U . Since ‖û‖−1

U < b and |p(ω0)|
|p(σ+ω0)| e

ασ =√
(σ2+2δσ)2+4ω2

0(σ+δ)2

2δ
√
σ2+ω2

0

eασ → 1 as δ → ∞ and α → 0, we can choose δ>0 sufficiently

large and α>0 sufficiently small so that ‖∆‖∞ < b. Furthermore, by construction

(
IU +

(
K̃(σ + ω0)G(σ + ω0)

)−1
K̃(σ + ω0)∆(σ + ω0)

)
û = 0,

and hence (IU +
(
K̃ G

)−1
K̃∆) cannot be invertible in H∞. Therefore, if

(
G + ∆

)
corresponds to a right coprime representation of a system P′ ∈ SS

(
U, Y ; [0,∞)),

then the feedback loop [P′, C] is unstable as claimed. The remainder of the proof is
devoted to showing that indeed P′∈SS

(
U, Y ; [0,∞)).

Since the perturbation constructed satisfies ‖∆‖∞ < bopt(P)≤ 1, it follows that
(G + ∆) is a right coprime representation of a closed, linear, shift-invariant sys-
tem P′. Furthermore, using the result of part (i) and the fact that δg(P,P

′) <
bopt(P) (cf. Proposition 4.2), we see that P′ is also stabilizable. For P′ to be in
SS
(
U, Y ; [0,∞)) it remains to show that P′ is causally extendible. The following

proof that P′ is causally extendible uses arguments similar to those in [CG2]. Parti-
tion (G+∆) =:

[
M ′
N ′
]
such that M ′∈H∞

B(U,U )(C+) and N ′∈H∞
B(U,Y )(C+). Define

M := L−1 MM L, N := L−1 MN L, M′ := L−1 MM ′ L, and N′ := L−1 MN ′ L, and
recall that for P′ to be causally extendible, we must show that P′ is causal and that
Tτdom(P′) = L2

U [0, τ) for all τ > 0. We will first show that P′ is causal. Pick a

τ > 0 and a v ∈L2
U [0,∞) such that Tτ M′ v = 0. Setting Ũ := L2

U [0, α), define the
time-lifting isomorphism W : L2

U [0,∞)→ .2
Ũ
[0,∞) via

f̃k(θ) :=
(
Wf

)
k
(θ) := f(k α+ θ), f ∈ L2

U [0,∞), θ ∈ [0, α), k = 0, 1, 2, . . . .

Representing signals in .2
Ũ
[0,∞) by (infinite-dimensional) column vectors with the

kth entry corresponding to the value of the signal at the kth time instant, which
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corresponds to the continuous-time interval
[
k α, (k+1)α

)
, we obtain

0 = Tτ M′ v = Tτ W−1 [W M′ W−1] [W v] = Tτ W−1




=:
[
M̃′]

N︷ ︸︸ ︷


M̃′
0 0 · · · 0

M̃′
1 M̃′

0

. . .
...

...
. . .

. . . 0

M̃′
N · · · M̃′

1 M̃′
0






ṽ0

ṽ1

...
ṽN




0
...



,

(11)

where N := the integer part of τ/α, ṽk := (W v)k, and M̃′
k : Ũ → Ũ is the kth entry

of the sequence uniquely identifiable with the block-Toeplitz representation of the
causal, discrete-time operator W M′ W−1 : .2

Ũ
[0,∞) → .2

Ũ
[0,∞). Now, noting that

M′ = M+ Sα∆′, where ∆′ is a causal system, it follows that M̃′
0 = M̃0, where M̃0

is the 0th entry of the block-Toeplitz representation of W M W−1. As such, [M̃′]N
defined in (11) is boundedly invertible because of its block lower triangular structure

and since M̃0 is boundedly invertible as shown next. First note that since P is causal,
Tα Mu = 0 implies Tα Nu = 0 for all u ∈ L2

U [0,∞). Next, since
[
M
N

]
is a right

coprime representation of P,
[
M
N

]
has a bounded, shift-invariant (and hence causal)

left inverse, K. Therefore, Tα u = Tα K
[
M
N

]
u = Tα K Tα

[
M
N

]
u = 0 if Tα Mu =

Tα M Tα u = 0, which implies that M̃0 : Ũ → Ũ is injective. Moreover, since P is

causally extendible, we have that Tα ML2
U [0,∞) = Tα dom(P) = TαL2

U [0,∞) = Ũ ,

implying that M̃0 : Ũ → Ũ is surjective. Consequently, M̃0, and hence [M̃′]N , are
boundedly invertible. In view of this, (11) implies that Tτ v = 0, by which it follows
that Tτ N′ v = Tτ N′ Tτ v = 0, where the first equality is a consequence of the fact
that N′ is a causal operator, since it is bounded and shift-invariant. Correspondingly,
we have shown that, for all τ > 0 and v ∈ L2

U [0,∞), Tτ
[
M′
N′
]
v =

[
0
y

]
implies y = 0.

That is, P′ is causal. Causal extendibility of P′ now follows by noting that, since[
M̃′]

N
has full range for all N = 0, 1, 2, . . . , for every τ >0 (taking N > τ/α)

Tτ dom(P′) = Tτ M′ L2
U [0,∞) = Tτ W−1



[
M̃′]

N

N times︷ ︸︸ ︷(
Ũ × · · · × Ũ

)
0
...


 = Tτ L2

U [0, Nα)

= L2
U [0, τ).

This completes the proof.
Corollary 4.4 (robustness under controller gap uncertainty). Let P∈SS

(
U, Y ;

[0,∞)) and C ∈ SS
(
Y , U; [0,∞)) be such that [P, C] is stable and 0 < bP,C <

bopt(P). Then b ≤ bP,C iff [P,C′] is stable for all C′ ∈ SS
(
U, Y ; [0,∞)) with

δg(C,C′) < b.
Proof. Thinking of the plant and the controller interchanged and recalling that

bP,C = bC,P, the result follows immediately by Theorem 4.3.
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Fig. 2. Left: Functional diagram of the electrostatically destabilized membrane with feedback
arrangement for stabilization. Right: Geometry of actuator and sensor plates (assumed equal).

For completeness, we quote a result on the stability of feedback loops with simul-
taneous plant and controller uncertainty, which was originally formulated for finite-di-
mensional, lumped-parameter, LTI systems in [QD], and which was later generalized
to infinite-dimensional, time-varying systems in [FGS].

Theorem 4.5 (robustness to plant and controller gap uncertainty [FGS]). Given
a plant P ∈ SS

(
U, Y ; [0,∞)) and controller a C ∈ SS

(
Y , U; [0,∞)), fix nonnegative

numbers b1 and b2 such that b21 + b22 < 1. Suppose that [P,C] is stable and that
b1
√
1− b22 + b2

√
1− b21 < bP,C. Then [P′,C′] is stable for all P′∈S

(
U, Y ; [0,∞))

and all C′∈S
(
Y , U; [0,∞)) which satisfy δg(P,P

′) ≤ b1 and δg(C,C′) ≤ b2.

5. Controller design example. Based on the control-theoretic framework de-
scribed above, a controller design method was proposed in [R]. The design method,
termed coprime factor synthesis, can be regarded as an extension or adaptation
of “normalized coprime factor robust stabilization” [GM] and “H∞ loop-shaping”
[MG1, MG2] to the case of spatially distributed LTI systems. In the following we will
briefly outline the method by means of a numerical example treating the feedback sta-
bilization of an electrostatically destabilized, electrically conducting membrane. For
details see [R].

The experimental setup is schematically depicted in Figure 2 and can be described
as follows. A rectangular, flexible, electrically conducting membrane is suspended
vertically, clamped at its boundaries, and biased by a high-voltage source V . The
two spatial coordinates within the membrane plane shall be denoted by x1 and x2.
Assuming the membrane deflection ŷ(x1, x2; s) from the level-flat equilibrium position
to be small, this (Laplace-transformed) quantity is governed by the PDE(

s2 µ+ s δ − 2ε0V
2

H3

)
ŷ(x1, x2; s)− τ1

∂2ŷ(x1, x2; s)

∂x2
1

− τ2
∂2ŷ(x1, x2; s)

∂x2
2

(12)

= −ε0 V
H2

û(x1, x2; s),

{x1, x2} ∈ [0, L1] × [0, L2], together with the boundary conditions ŷ(x1, x2; s) = 0 if
x1 = 0, or x1 = L1, or x2 = 0, or x2 = L1. The distributed variable û(x1, x2; s) on the
right-hand side of (12) stands for a distributed control voltage to be realized by the
actuators. (The fact that the form of û(x1, x2; s) is restricted due to the discreteness
of the actuators shall be disregarded for the moment.)

The parameters appearing in (12) have the following meaning and numerical
values: membrane mass density µ = 0.033 kgm−2, viscous damping coefficient δ =
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0.48 kgm−2 s−1, membrane tension in x1-direction τ1 = 8.4N/m, membrane tension
in x2-direction τ2 = 7.8N/m, distance between membrane and actuator plates H =
9.2 ·10−3m, free space permittivity ε0 = 8.85 ·10−12As/V/m. The size of the actuator
and sensor surfaces is assumed to be L1 × L2 = 1.04m × 1.12m.

The explicit input-output relationship of the system described by (12) is given by

ŷ(x1, x2; s) =
∫ L1

0
dξ1

∫ L2

0
dξ2 κP̂∞(x1, x2, ξ1, ξ2; s) û(ξ1, ξ2; s), where

κP̂∞(x1, x2, ξ1, ξ2; s) =

∞∑
j=1

αj(x1, x2)

(
−ε0V
H2

)(
s2 µ+ s δ + ω2

j − Ω
)−1

βj(ξ1, ξ2)

(13)

with αj(x1, x2) = βj(x1, x2) :=
2√
L1 L2

sin( iπx1

L1
) sin( lπx2

L2
), ωj :=

√
τ1
(
iπ
L1

)2
+ τ2

(
lπ
L2

)2
,

and Ω:= 2ε0V
2

H3 . The mapping (i, l) �→ j is defined such that {ωj}j∈Z+ is an increasing
sequence. From (13) it is clear that the first mode becomes unstable if V exceeds

π
√

H3

2ε0

(
τ1
L2

1
+ τ2

L2
2

)
= 2460V; the second mode goes unstable at V = 3760V, etc. We

take V = 2500V, whence precisely the first mode of the open-loop plant is unstable.
Let P̂∞ denote the integral operator whose kernel is given by (13); its finite-dimen-

sional approximation, P̂(10), is obtained by truncating the infinite sum in (13) after the
first m=10 terms. We select the scalar, stable, stably invertible, weighting function
Ŵ (s) = s+w1

s+w2
with w1 = 3.1158 · 106 and w2 = 70, and we define P̂∞

W := P̂∞ · Ŵ as

well as P̂
(10)
W := P̂(10) · Ŵ . Using the generalized Sefton–Ober gap formula (Corollary

3.2), the gap distance between the weighted infinite-dimensional plant model and

the weighted finite-dimensional plant model can be evaluated as δg(P̂
∞
W , P̂

(10)
W ) =

0.0458. By means of (10) and standardH∞-techniques for finite-dimensional, lumped-
parameter systems, the optimal stability margin of P̂

(10)
W can be computed to be

bopt(P̂
(10)
W ) = 0.3732, where the optimally stabilizing controller, Ĉopt, achieving this

stability margin has a kernel of the form

κĈopt(ξ1, ξ2, x1, x2; s) = Eβ(ξ1, ξ2) Ĉ
opt(s)

(
Eα(x1, x2)

)T
with Eα(x1, x2) :=

(
α1(x1, x2), . . . , α10(x1, x2)

)
, Eβ(ξ1, ξ2) :=

(
β1(ξ1, ξ2), . . . , β10(ξ1, ξ2)

)
,

and Ĉopt being a 10× 10, finite-dimensional, lumped-parameter, transfer matrix.
The controller Ĉopt cannot be realized by the discrete sensors and actuators, as

depicted in Figure 2. Therefore, we wish to find an implementable controller, Ĉimp,
whose kernel is of the form

κĈimp(x1, x2, ξ1, ξ2, s) = Eαc(x1, x2) Ĉ
imp(s)

(
Eβc(ξ1, ξ2)

)T
,

where Eαc(x1, x2) = Eβc(x1, x2) =
(
αc1(x1, x2), . . . , α

c
9(x1, x2)

)
with

αc1(x1, x2) :=

{
(l1 · l2)−1/2 if 0 < x1 < l1 and 0 < x2 < l2,

0 otherwise,

etc. The parameters l1 and l2 as well as the 9×9, lumped-parameter, transfer matrix
Ĉ imp(s) are to be determined such that the gap distance δg

(
Ĉopt, Ĉimp

)
is sufficiently

small for the implementable controller to stabilize the weighted, infinite-dimensional,
plant model P̂∞

W according to Theorem 4.5. By means of a direct, global search in l1
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and l2, in conjunction with standard H
∞-techniques for computing Ĉ imp(s), we found

l1 = 0.20, l2 = 0.22, and C imp(s) with (minimal) state-space realization [A,B,C,D],
where

A =


−905.0798 −193.9911 −109.3168

193.9911 −1.2967 −5.4102
−109.3168 5.4102 −93.9223


 ,

B =


−1.667 −8.664 −1.667 −8.385 −43.583 −8.385 −1.667 −8.664 −1.667

0.053 0.275 0.053 0.266 1.384 0.266 0.053 0.275 0.053
−0.104 −0.543 −0.104 −0.526 −2.732 −0.526 −0.104 −0.543 −0.104


 ,

C =




−1.6668 −0.0530 −0.1045
−8.6642 −0.2752 −0.5432
−1.6668 −0.0530 −0.1045
−8.3847 −0.2663 −0.5256

−43.5833 −1.3838 −2.7316
−8.3847 −0.2663 −0.5256
−1.6668 −0.0530 −0.1045
−8.6642 −0.2752 −0.5432
−1.6668 −0.0530 −0.1045



, D = 09×9,

to be nearly optimal. For the gap distance between optimal and implementable
controllers we obtained δg(Ĉ

opt, Ĉimp) = 0.3195, thus satisfying the inequality in

Theorem 4.5. Since the weight Ŵ (s) is scalar, stable, and stably invertible, Ĉimp sta-

bilizing P̂∞
W implies that the implementable controller Ĉimp ·Ŵ stabilizes the infinite-

dimensional, open-loop unstable, spatially distributed plant P̂∞.
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[KVZRS] M. A. Krasnosel’skĭı, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskĭı, and V.
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Abstract. An important question in feedback control design is how to achieve desired perfor-
mance for dynamical systems subject to both model uncertainties and white noise. For this purpose,
it is desirable to develop a systematic design technique that combines the good aspects of both
H2(LQG) and H∞ methods, which provides the motivation for the development of multiobjective
design framework in this paper. Encouraged by a time domain game approach for H2/H∞ control
design, two multiobjective control design problems are formulated and solved in the time domain.
Results for both the finite time horizon and the infinite time horizon are presented. It is shown that
all the results can be obtained by solving the corresponding set of coupled Riccati equations.
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1. Introduction. It is probably fair to say that the most important objective
of any control design is to achieve certain desired performance specifications in spite
of external disturbances and noises, system parameter variations, and variations of
system operating conditions. What a judicially designed feedback can usually achieve
is to improve the system performance in one aspect by sacrificing the system per-
formance in another aspect. Thus a feedback control design is a process of making
trade-offs between conflicting objectives. Two prominent conflicting objectives in
most feedback control designs are good transient response and robustness with re-
spect to disturbances and system uncertainties. Usually a very robust control law
tends to make the system’s transient response poor [35, 36]. On the other hand, a
system with an extremely good transient response for a nominal operation condition
(or model) could be very sensitive to external disturbances and parameter variations
[9]. In this case a good control design should be a compromise between good transient
performance and robustness. It is generally agreed that a suitable linear quadratic
Gaussian (LQG) or H2 criterion can be a good measure for transient performance,
while the H∞ optimal control design framework is developed primarily because of the
robustness consideration. Thus it is natural to consider a design framework that can
systematically make the design tradeoffs between these two design objectives. The
development of such a multiobjective design framework is the main topic of this paper.

The multiobjective control problem has received much attention from the control
research community in the past decade [3, 4, 6, 7, 8, 11, 12, 14, 17, 20, 22, 25, 26,
28, 27, 29, 30, 31, 34, 36]. Though there are many multiobjective approaches [32],
the H2/H∞ approach has a better physical interpretation and clearer motivation, as
discussed above, and attracts a great number of researchers. It should be pointed out
that the term H2/H∞ usually refers to any multiobjective optimal design of which the
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performance measures have both H2(LQG) and H∞ interpretations. Thus, under the
big framework of H2/H∞, there are many different ways to formulate the problem.
It is more appropriate to call them multiobjective H2/H∞ designs as is done in this
paper.

Some major results about multiobjective control with an H2/H∞ interpretation
are summarized as follows (see also [32]):

1. Fixed-order controller design by minimizing an auxiliary cost functional [3, 17,
18]: This formulation minimizes an upper bound on the H2 norm of the closed-loop
transfer function as the index functional which is subject to an H∞ norm constraint
and designs a fixed order controller for the formulated problem.

2. Convex optimization [20, 14, 19, 12, 8, 4]: There are several approaches in this
category. In general, each approach uses (different) matrix inequalities as performance
measures to characterize a convex optimization problem. The advantage of the convex
optimization approach is that there exist effective and powerful algorithms for the
solutions of these problems. However, it is difficult to generalize this approach to a
nonlinear system or to apply this approach to systems with stochastic disturbances.

3. Optimizing an entropy cost functional [24, 25, 15]: This approach designs
a controller to minimize the so-called closed-loop entropy which provides an upper
bound of H2 cost, while guaranteeing the H∞ performance. It turns out that this
approach is equivalent to the approach of minimizing an auxiliary cost functional in
[3] for the single external input case [24].

4. Bounded power characterization [11, 36]: This approach can treat systems
with both white noise and bounded power disturbances. The design objective is to
minimize the power of the output error signal. The problem solved by this approach
is a dual to that solved in [3] in some sense [34]. This approach is interesting because
it uses norms of power signals instead of norms of transfer functions to characterize
the problem, which positions it as a time domain approach.

5. Nash game approach [21, 22, 28]: This approach uses the Nash equilibrium
strategy [2] as a performance measure to characterize the problem with a very clear
H2/H∞ interpretation. It is also possible to generalize this approach to a nonlinear
system [23]. However, only a state feedback problem was solved in [22], and the
output feedback problem turns out to be very difficult [28].

As pointed out before, the clearH2/H∞ interpretation plus the solvability through
some standard algorithm makes the Nash game approach very attractive. Hence how
to generalize this approach to the output feedback case is very interesting and im-
portant, considering that, in general, information of system state variables may not
be available. The desire of developing output feedback mixed H2/H∞ control using
the game approach triggered our development of multiobjective control design in this
paper. We shall adopt the observer-based controller structure for the proposed mul-
tiobjective control problems. As a result of this, we have to take the estimation of
system states into account in the output feedback framework; hence the inclusion of
the noise (usually Gaussian white noise) effect becomes necessary for the purpose of
optimization as it does in classical LQG control. Because of this similarity, we call
the second multiobjective control problem formulated in this paper “H∞ Gaussian
Control.”

The paper is organized as follows: in section 2 the formulation of our problems
is given; section 3 provides definitions and preliminary results about signals, systems,
and constrained optimization required for sections 4 and 5, which are devoted to
solving the main problems in both finite and infinite time horizons; some comments
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and the conclusion can be found in sections 6 and 7.
The notations used in this paper are standard: I always denotes the identity

matrix with dimensions determined in context; E{·} is the expectation operator; if A
is a matrix or a vector, then AT is its transpose and A∗ is its conjugate transpose; if x
is a complex number, then Re(x) and Im(x) are, respectively, its real and imaginary
parts; R is the set of real numbers; RH∞ is the space of all proper and real rational
stable matrix transfer functions; if A is a square matrix, then trace (A) is the trace
of A; ‖ · ‖ represents the Euclidean norm of a vector.

2. Formulation of main problems. As stated in the introduction, in this
paper, we are interested in control design problems as shown in Figures 1 and 2.

From now on, we call the problem in Figure 1multiobjective control design and the
problem in Figure 2 H∞ Gaussian control design. We shall first provide the definition
of signal and system norms. Then we present the formulation of our problems.

2.1. Norms of signals and systems. There are two classes of stochastic signals
which are used in this paper for the development of multiobjective control design:
bounded power signals and white noise signals. It should be pointed out that a
deterministic version of bounded power signals can also be defined (see [36, 13]), and
the results obtained in this paper can be derived correspondingly.

Given a real vector stochastic signal u(t),

u(t) =
[
u1(t) u2(t) · · · um(t)

]T ∈ Rm ∀t ∈ R,

where ui(t), i = 1, . . . ,m are real stationary random processes, define the mean and
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autocorrelation matrices of u(t), respectively, as follows:

E{u} := [ E{u1(t)} E{u2(t)} · · · E{um(t)}
]T

,

Ruu(τ) := lim
T→∞

1

T

∫ T

0

E{u(t+ τ)uT (t)}dt.

The Fourier transform of Ruu(τ), if exists, is Suu :=
1
2π

∫∞
−∞ Ruu(τ)e

−jωτdτ . The
so-called bounded power signal is defined as follows.

Definition 1. A vector stationary stochastic signal u is said to have bounded
power if

1. both Ruu and Suu exist;

2. limT→∞ 1
T

∫ T
0

E‖u(t)‖2dt <∞.
Let P be the space of all signals with bounded power. A seminorm can be defined

on P:

‖u‖P :=
√
lim
T→∞

1

T

∫ T

0

E{‖u(t)‖2}dt =
√
trace[Ruu(0)] ∀u ∈ P.

The well-known Gaussian white noise w0(t) is a stationary random process that sat-
isfies E{w0(t)} ≡ 0 and E{w0(t)w

T
0 (τ)} = Q(t)δ(t−τ), where δ(t) is Dirac δ function

and Q(t) is a positive definite matrix. In this paper, we shall assume, without loss
of generality, that Q(t) = I, where I is an identity matrix, i.e., w0(t) is a zero mean
stationary process with an identity power spectrum. A more rigorous description of
the white noise process can be found in standard textbooks for stochastic processes
(see, e.g., [33]). Independence between stochastic signals is defined as follows.

Definition 2. Two vector stationary stochastic signals w1(t) and w2(t) are said
to be independent if, for any t1 ≥ 0 and t2 ≥ 0, we have

E{w1(t1)w
T
2 (t2)} = E{w1(t1)}E{wT2 (t2)}.

A close relation exists between these two types of signals and the H∞ and H2

norms of systems. Recall that, given a system G(s) ∈ RH∞ in Figure 3 with a state

space realization (A, B, C,D) and denoted byG(s) = D + C(sI −A)−1B :=
[
A B
C D

]
,

the H∞ and H2 norms of this system are defined as

‖G(s)‖∞ := sup
ω

σ̄{G(jω)}, ‖G(s)‖2 :=
√
1

2π

∫ ∞

−∞
trace[G∗(jω)G(jω)]dω,

where σ̄ is the largest singular value of G(s).

Let w be a bounded power signal. It can be proved that ‖G(s)‖∞ = supw
‖z‖P
‖w‖P

(see [36]). On the other hand, if w = w0(t) is a white noise signal, then it can be
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proved that ‖G(s)‖2 = ‖z‖P (see [36]). On finite time horizon [0, T ], we define the

2-norm of a signal u as ‖u‖[0,T ] :=
√∫ T

0
E‖u‖2dt. Accordingly, we define the system

norms

‖G(s)‖∞,[0,T ] := sup
w

‖z‖[0,T ]

‖w‖[0,T ]
, where w is any bounded power signal,

and

‖G(s)‖2,[0,T ] := ‖z‖[0,T ], where w is a white noise signal.

These definitions will be helpful for formulating our problems on the finite time hori-
zon. Finally, note that it is easy to verify the following equivalencies:

‖G(s)‖∞ < γ ⇐⇒ 0 < γ2‖w‖2P − ‖z‖2P ∀w �= 0,

‖G(s)‖∞,[0,T ] < γ ⇐⇒ 0 < γ2‖w‖2[0,T ] − ‖z‖2[0,T ] ∀w �= 0.
2.2. Formulation of multiobjective control design. Consider a linear con-

trol system G in Figure 1 described by

ẋ = Ax+B0w0 +B1w +B2u, x(0) = 0,(1)

y = C2x+D20w0, R0 := D20D
T
20 > 0,(2)

z = C1x+D12u, R1 = DT
12D12,(3)

z0 = C0x+D02u, R02 := DT
02D02 > 0,(4)

where w is a bounded power signal and w0 is a white noise signal. Define the perfor-
mance index functionals

J1(u,w,w0) := γ2‖w‖2[0,T ] − ‖z‖2[0,T ] , J2(u,w,w0) := ‖z0‖2[0,T ] ,

and

J3(u,w,w0) := γ2 ‖w‖2P − ‖z‖2P , J4(u,w,w0) := ‖z0‖2P ,

where u is the output feedback control law to be designed.
Then the multiobjective control design is formulated as follows: Find an output

feedback control law u∗ such that it achieves

J1(u∗, w∗, w0) ≤ J1(u∗, w, w0) ∀w �= w∗, J2(u∗, w∗, w0) ≤ J2(u,w∗, w0)

for the finite time horizon case and

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0) ∀w �= w∗, J4(u∗, w∗, w0) ≤ J4(u,w∗, w0)

for the infinite time horizon case, where w∗ is the worst possible disturbance signal to
be determined.

It must be pointed out that the control law u (hence the optimal control law u∗)
is supposed to have the following observer form:

˙̂x = Âx̂+B2u− Ly, x̂(0) = 0,

u = Fx̂.
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2.3. Formulation of H∞ Gaussian control. Consider a linear system in Fig-
ure 2 described by

ẋ = Ax+B0w0 +B1w +B2u, x(0) = 0,(5)

z = C1x+D12u, R1 := DT
12D12 > 0,(6)

y = C2x+D20w0, R0 := D20D
T
20 > 0,(7)

where w is a bounded power signal and w0 is a white noise signal. w and w0 are
independent. Let Ps be the subset of P consisting of all bounded power signals
independent from w0; hence w ∈ Ps. The control law is supposed to take the observer
form

˙̂x = Âx̂+B2u− Ly, x̂(0) = 0,

u = Fx̂.

Let ex := x− x̂, and define the following performance index functionals:

J1(u,w,w0) := γ2‖w‖2[0,T ] − ‖z‖2[0,T ] , J2(u,w,w0) := ‖ex‖2[0,T ] ,

and

J3(u,w,w0) := γ2 ‖w‖2P − ‖z‖2P , J4(u,w,w0) := ‖ex‖2P .

Then theH∞ Gaussian control design is formulated as follows: Find a feedback control
law u∗ in the given form such that it achieves

J1(u∗, w∗, w0) ≤ J1(u∗, w, w0) ∀w ∈ Ps, J2(u∗, w∗, w0) ≤ J2(u,w∗, w0)

for the finite time horizon case and

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0) ∀w ∈ Ps, J4(u∗, w∗, w0) ≤ J4(u,w∗, w0)

for the infinite time horizon case, where w∗ is called the worst disturbance signal.
Note that w∗ may not be necessarily in Ps, but it does guarantee that the per-

formance index J1 or J3 has a lower bound.

3. Preliminaries. In this section, we present some preliminary results which
will be applied to proving the main results in the subsequent sections.

Lemma 3. Let Rzw(s) be the stable matrix transfer function from w (a bounded
power signal) to z defined by

ẋ = Ax+Bw, x(0) = 0,

z = Cx.

Then the following two statements are equivalent:
1. ‖Rzw(s)‖∞,[0,T ] < γ, i.e., 0 < γ2‖w‖2[0,T ] − ‖z‖2[0,T ] ∀w �= 0;
2. the solution of the Riccati equation

−Ṗ (t) = ATP (t) + P (t)A− γ−2P (t)BBTP (t)− CTC, P (T ) = 0,

has no finite escape time on [0, T ].
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A proof of this lemma can be found in [22, Lemma 2].
Lemma 4. Consider the system

ẋ = Ax+B0w0 +B1w +B2u, x(0) = 0,

y = C2x+D20w0,

where w0 is a white noise and w is a stationary signal. Suppose w0 and w are inde-
pendent. Let the controller K(s) = C̄(sI − Ā)−1B̄. Then we have

E{x(t)wT0 (t1)} = (e11B0 + e12B̄D20)/2, t1 ≤ t, or E{x(t)wT0 (t1)} = 0, t1 > t,

where Â =
[

A B2C̄
B̄C2 Ā

]
and eÂ(t−t1) =

[
e11 e12
e21 e22

]
.

Proof. Since K(s) = C̄(sI − Ā)−1B̄, the closed-loop system becomes

˙̂x = Âx̂+ B̂0w0 + B̂1w,

where x̂ = [ xT x̄T ]T , B̂0 = [ BT
0 (B̄D20)

T ]T , and B̂1 = [ BT
1 0 ]T . Hence

x̂ =

∫ t

0

eÂ(t−τ)[B̂0w0(τ) + B̂1w(τ)]dτ,

and

E[ w0(t1)x
T (t) w0(t1)x̄

T (t) ]T = E

{∫ t

0

eÂ(t−τ)[B̂0w0(τ) + B̂1w(τ)]w
T
0 (t1)dτ

}

=

∫ t

0

eÂ(t−τ)B̂0E{w0(τ)w
T
0 (t1)}dτ =

∫ t

0

eÂ(t−τ)B̂0δ(τ − t1)dτ,

which gives E{x(t)wT0 (t1)} = (e11B0 + e12B̄D20)/2 for t1 ≤ t, or E{x(t)wT0 (t1)} = 0
for t1 > t.

Lemma 5. Consider the system

ẋ = Ax+B0w0 +B1w +B2u, x(0) = 0,

y = C2x+D20w0,

where w0 is a white noise and the controller K(s) is of the form

˙̄x = Āx̄+ B̄y, x̄(0) = 0,

u = C̄x̄.

Let w = Fx̂, where x̂ = [ xT x̄T ]T . Then we have

E{x(t)wT0 (t1)} = (e11B0 + e12B̄D20)/2, t1 ≤ t, or E{x(t)wT0 (t1)} = 0, t1 > t,

where Â =
[

A B2C̄
B̄C2 Ā

]
+B1F and eÂ(t−t1) =

[
e11 e12
e21 e22

]
.

Proof. The proof is similar to that of Lemma 4 and is omitted.
A constrained optimization problem solved below plays the key role in the solu-

tion of our multiobjective control design. The sufficient conditions for the constrained
optimization problem will be proved in this section, and the proof of necessary con-
ditions will be given in the appendix of this paper.

Given A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, D ∈ Rp×r, and R = DDT > 0, we
define two index functionals:
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1. J1(L(t)) = trace(
∫ T
0

Q(t)P (t)QT (t)dt), T ≥ 0, whereQ(t) is any time-varying
weighting matrix, and P (t) = PT (t) ≥ 0 on [0, T ] with P (0) = 0 satisfies

(A+ L(t)C)P (t) + P (t)(A+ L(t)C)T

+ (B + L(t)D)(B + L(t)D)T = Ṗ (t).(8)

2. J2(L) = trace(QPQT ), where Q is any constant weighting matrix, A+LC is
Hurwitz, and P = PT ≥ 0 satisfies

(A+ LC)P + P (A+ LC)T + (B + LD)(B + LD)T = 0.(9)

The constrained optimization problems on finite time and infinite time horizons
can be stated as follows:

1. minL(t) J1(L(t)) = minP (t) trace(
∫ T
0

Q(t)P (t)QT (t)dt), where L(t) and P (t)
are subject to the constraint (8).

2. minL J2(L) = minP trace(QPQT ), where L and P are subject to the con-
straint (9).

The next two theorems provide solutions to these two optimization problems.
Theorem 6. Consider the constrained optimization problem defined on the finite

time horizon; if there is a solution P∗(t) ≥ 0 on [0, T ] with P∗(0) = 0 for

(A−BDTR−1C)P∗(t) + P∗(t)(A−BDTR−1C)T − P∗(t)CTR−1CP∗(t)

+B(I −DTR−1D)BT = Ṗ∗(t),

then J1(L(t)) achieves the minimum value at L∗(t) = −(P∗(t)CT +BDT )R−1.
Conversely, if there are L(t) and P (t) such that

(A+ L(t)C)P (t) + P (t)(A+ L(t)C)T + (B + L(t)D)(B + L(t)D)T = Ṗ (t)

and J1(L(t)) is the minimum value, then there is a solution P∗(t) ≥ 0 on [0, T ] with
P∗(0) = 0 to

(A−BDTR−1C)P∗(t) + P∗(t)(A−BDTR−1C)T − P∗(t)CTR−1CP∗(t)

+B(I −DTR−1D)BT = Ṗ∗(t),

and the minimum value of J(L(t)) is also achieved at L∗(t) = −(P∗(t)CT+BDT )R−1.

Proof (sufficiency). Take ∆P (t) = P (t)− P∗(t). Then

∆Ṗ (t) = (A+L(t)C)∆P (t) +∆P (t)(A+L(t)C)T + (L(t)−L∗(t))R(L(t)−L∗(t))T ,

where L∗(t) = −(P∗(t)CT + BDT )R−1. Now let Φ(t, τ) be the transition matrix of
A+ L(t)C. Then

∆P (t) =

∫ t

0

Φ(t, s)(L(s)− L∗(s))R(L(s)− L∗(s))TΦT (t, s)ds ≥ 0

for any L(t) and ∆P (t) = 0 if L(t) = L∗(t). Therefore, J(L(t)) − J(L∗(t)) ≥ 0 for
any L(t), which means that J(L(t)) achieves the minimum value at L∗(t).
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For the proof of necessity, please see the appendix.
Theorem 7. Consider the constrained optimization problem, defined for infinite

time horizon case; if there is a stabilizing solution P∗ ≥ 0 for
(A−BDTR−1C)P∗+P∗(A−BDTR−1C)T−P∗CTR−1CP∗+B(I−DTR−1D)BT = 0

i.e., A−BDTR−1C − P∗CTR−1C is stable, then J2(L) achieves the minimum value
at L∗ = −(P∗CT +BDT )R−1.

Conversely, let (C,A) be detectable. If there are L1 and P1 ≥ 0, where A+ L1C
is stable and P1 solves

(A+ L1C)P1 + P1(A+ L1C)
T + (B + L1D)(B + L1D)

T = 0

such that J2(L) is minimized, then there is a P∗ ≥ 0 solving
(A−BDTR−1C)P∗+P∗(A−BDTR−1C)T−P∗CTR−1CP∗+B(I−DTR−1D)BT = 0.

Moreover, an optimal L∗ can be obtained as L∗ = −(P∗CT + BDT )R−1 if A + L∗C
is Hurwitz.

Proof (sufficiency). Since P∗ is a stabilizing solution, A+ L∗C is Hurwitz, where
L∗ = −(P∗CT + BDT )R−1. For any L for which A + LC is stable, we have P ≥ 0
solving

(A+ LC)P + P (A+ LC)T + (B + LD)(B + LD)T = 0.

Now take ∆P = P − P∗. Then

(A+ LC)∆P +∆P (A+ LC)T + (L− L∗)R(L− L∗)T = 0.

By the standard property of the Lyapunov equation, we have ∆P ≥ 0 and ∆P = 0
if and only if L = L∗. Hence J(L) − J(L∗) ≥ 0 for any L, which means that J(L)
achieves the minimum value at L∗.

For the proof of necessity, please see the appendix.

4. Multiobjective control design. In this section, we give the main theorems
for the multiobjective control design problems formulated in section 2.2. To simplify
the notations, the following abbreviations are assumed:

As = A−B2R
−1
02 DT

02C0, Af = A−B0D
T
20R

−1
0 C2,

P := B0(I −DT
20R

−1
0 D20)B

T
0 , Q := CT

0 (I −D02R
−1
02 DT

02)C0.

4.1. Multiobjective control design—finite time horizon. To motivate our
output feedback design, we shall first present the state feedback design results, a
simplified version of which can be found in [22].

Theorem 8. For the system G described by (1)–(4) and the associated cost
functionals J1(u,w,w0) and J2(u,w,w0), there exist linear memoryless state feedback
strategies (Nash equilibrium strategies) u∗ and w∗ such that

0 ≤ J1(u∗, w∗, 0) ≤ J1(u∗, w, 0), J2(u∗, w∗, 0) ≤ J2(u,w∗, 0)

if and only if the coupled Riccati differential equations

−Ṗ1(t) = (As−B2R
−1
02 BT

2 P2(t))
TP1(t)+P1(t)(As−B2R

−1
02 BT

2 P2(t))+γ−2P1(t)B1B
T
1 P1(t)
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+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2(t))]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2(t))],

−Ṗ2(t) = (As + γ−2B1B
T
1 P1(t))

TP2(t) + P2(t)(As + γ−2B1B
T
1 P1(t))

−P2(t)B2R
−1
02 BT

2 P2(t) +Q

have solutions P1(t) ≥ 0 and P2(t) ≥ 0 on [0, T ] with P1(T ) = 0 and P2(T ) = 0.
Furthermore, if the solutions exist, we have w∗ = γ−2BT

1 P1(t)x and u∗ = F∗(t)x with
F∗ = −R−1

02 (D
T
02C0 +BT

2 P2(t)).
The output feedback design are established in the following theorems for multi-

objective control in finite time horizon.
Theorem 9. There exist a w∗ and an output feedback control law u∗ in the form

of

˙̂x = (A+ γ−2B1B
T
1 P1(t) +B2F∗(t))x̂+ L∗(t)(C2x̂− y),

u∗ = F∗(t)x̂,

such that J1(u∗, w∗, w0) ≤ J1(u∗, w, w0), J2(u∗, w∗, w0) ≤ J2(u,w∗, w0) if the coupled
differential Riccati equations

−Ṗ1(t) = (As−B2R
−1
02 BT

2 P2(t))
TP1(t)+P1(t)(As−B2R

−1
02 BT

2 P2(t))+γ−2P1(t)B1B
T
1 P1(t)

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2(t))]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2(t))],

−Ṗ2(t) = (As+γ−2B1B
T
1 P1)

TP2(t)+P2(t)(As+γ−2B1B
T
1 P1(t))−P2(t)B2R

−1
02 BT

2 P2(t)+Q,

Ṗ3(t) = (Af+γ−2B1B
T
1 P1(t))P3(t)+P3(t)(Af+γ−2B1B

T
1 P1(t))

T−P3(t)C
T
2 R−1

20 C2P3(t)+P

have solutions P1(t) ≥ 0, P2(t) ≥ 0, and P3(t) ≥ 0 on [0, T ] with P1(T ) = 0, P2(T ) =
0, and P3(0) = 0.

If the solutions exist, then

w∗ = γ−2BT
1 P1(t)x, F∗(t) = −R−1

02 (D
T
02C0+BT

2 P2(t)), L∗(t) = −(B0D
T
20+P3(t)C

T
2 )R

−1
20 .

Proof. Suppose there exist solutions P1(t) ≥ 0, P2(t) ≥ 0, and P3(t) ≥ 0, t ∈
[0, T ], with P1(T ) = 0, P2(T ) = 0, and P3(0) = 0 for the three differential Riccati
equations. We have

J1(u,w,w0) = γ2‖w‖2[0,T ] − ‖z‖2[0,T ] = E

{∫ T

0

(γ2 ‖w‖2 − ‖z‖2)dt
}

= E

{∫ T

0

[γ2 ‖w‖2 − ‖z‖2 − d

dt
(xTP1(t)x)]dt

}

= E

{∫ T

0

[γ2 ‖w‖2 − ‖z‖2 − ẋTP1(t)x− xT Ṗ1(t)x− xTP1(t)ẋ]dt

}
.
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Using the equation for Ṗ1(t), we get

J1(u,w,w0) = E

{∫ T

0

[γ2 ‖w − w∗‖2 − uTR1u+ ūT∗ R1ū∗

−2xT (P1(t)B2 + CT
1 D12)(u− ū∗)− 2xTP1(t)B0w0]dt

}
,

where w∗ = γ−2BT
1 P1(t)x and ū∗ = −R−1

02 (D
T
02C0 + BT

2 P2(t))x, i.e., the optimal
strategies for state feedback case. Clearly, if we take w = w∗, then for any u, hence for
the optimally designed output feedback control law u∗, we have J1(u∗, w∗, w0) ≤ J1(u∗,
w, w0).

Now we design u∗ to minimize J2(u,w∗, w0). By substituting the w∗ into the
system equation, we get

ẋ = (A+ γ−2B1B
T
1 P1(t))x+B0w0 +B2u, x(0) = 0,

y = C2x+D20w0, R0 := D20D
T
20 > 0,

z0 = C0x+D02u, R02 := DT
02D02 > 0.

This is a standard LQG problem [1, 16]. Thus the optimal control law is given by

˙̂x = (A+ γ−2B1B
T
1 P1(t))x̂+B2u∗ + L∗(t)(C2x̂− y),

u∗ = F∗(t)x̂,

where F∗(t) = −R−1
02 (D

T
02C0+BT

2 P2(t)), L∗(t) = −(B0D
T
20+P3(t)C

T
2 )R

−1
20 , P2(t) > 0,

and P3(t) > 0 solve

−Ṗ2(t) = (As + γ−2B1B
T
1 P1(t))

TP2(t) + P2(t)(As + γ−2B1B
T
1 P1(t))

−P2(t)B2R
−1
02 BT

2 P2(t) +Q,

Ṗ3(t) = (Af + γ−2B1B
T
1 P1(t))P3(t) + P3(t)(Af + γ−2B1B

T
1 P1(t))

T

−P3(t)C
T
2 R−1

20 C2P3(t) + P,

with P2(T ) = 0 and P3(0) = 0, and u∗ achieves J2(u∗, w∗, w0) ≤ J2(u,w∗, w0).
Theorem 10. Suppose the state feedback control problem is solvable, i.e., there

are P1(t) ≥ 0 and P2(t) ≥ 0 with P1(T ) = 0 and P2(T ) = 0 solving

−Ṗ1(t) = (As−B2R
−1
02 BT

2 P2(t))
TP1(t)+P1(t)(As−B2R

−1
02 BT

2 P2(t))+γ−2P1(t)B1B
T
1 P1(t)

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2(t))]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2(t))],

−Ṗ2(t) = (As + γ−2B1B
T
1 P1(t))

TP2(t) + P2(t)(As + γ−2B1B
T
1 P1(t))

−P2(t)B2R
−1
02 BT

2 P2(t) +Q,
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and there is a w∗ and an output feedback control u∗ (hence an L∗(t)) in the given
form of

˙̂x = (A+ γ−2B1B
T
1 P1(t) +B2F∗(t))x̂+ L∗(t)(C2x̂− y),

u∗ = F∗(t)x̂,

where F∗(t) = −R−1
02 (D

T
02C0 +BT

2 P2(t)), such that

J1(u∗, w∗, w0) ≤ J1(u∗, w, w0), J2(u∗, w∗, w0) ≤ J2(u,w∗, w0);

then there is a P3(t) ≥ 0 with P3(0) = 0 solving

Ṗ3(t) = (Af + γ−2B1B
T
1 P1(t))P3(t) + P3(t)(Af + γ−2B1B

T
1 P1(t))

T

− P3(t)C
T
2 R−1

20 C2P3(t) + P,

and L∗(t) can be chosen as L∗(t) = −(B0D
T
20 + P3(t)C

T
2 )R

−1
20 .

Proof. Let P1(t) ≥ 0 and P2(t) ≥ 0 with P1(T ) = 0 and P2(T ) = 0 solve

−Ṗ1(t) = (As −B2R
−1
02 BT

2 P2(t))
TP1(t)

+ P1(t)(As −B2R
−1
02 BT

2 P2(t)) + γ−2P1(t)B1B
T
1 P1(t)

+ [C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2(t))]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2(t))],

−Ṗ2(t) = (As + γ−2B1B
T
1 P1(t))

TP2(t) + P2(t)(As + γ−2B1B
T
1 P1(t))

−P2(t)B2R
−1
02 BT

2 P2(t) +Q.

Since

J1(u∗, w, w0) = E

{∫ T

0

(γ2 ‖w‖2 − ‖z‖2)dt
}

= E

{∫ T

0

[
γ2 ‖w‖2 − ‖z‖2 − d

dt
(xTP1(t)x)

]
dt

}

= E

{∫ T

0

[γ2 ‖w‖2 − ‖z‖2 − ẋTP1(t)x− xT Ṗ1(t)x− xTP1(t)ẋ]dt

}
,

using the equation for Ṗ1(t), we get

E

{∫ T

0

(γ2 ‖w‖2 − ‖z‖2)dt
}
= E

{∫ T

0

[γ2 ‖w − w∗‖2 − uTR1u+ ūT∗ R1ū∗

−2xT (P1(t)B2 + CT
1 D12)(u− ū∗)− 2xTP1(t)B0w0]dt

}
,

where w∗ = γ−2BT
1 P1(t)x, ū∗ = −R−1

02 (D
T
02C0 + BT

2 P2(t))x = F∗(t)x. Hence u∗ and
w∗ achieve J1(u∗, w∗, w0) ≤ J1(u∗, w, w0).

Substituting w∗ into the system equation, we get

ẋ = (A+ γ−2B1B
T
1 P1(t))x+B0w0 +B2u∗,

y = C2x+D20w0,

z0 = C0x+D02u∗.
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Thus

J2(u∗, w∗, w0) = E

∫ T

0

‖z0‖2dt

= E

∫ T

0

[
xTCT

0 C0x+ 2x
TCT

0 D02u∗ + uT∗ R02u∗ +
d

dt
(xTP2(t)x)

]
dt

= E

∫ T

0

[xTCT
0 C0x+ 2x

TCT
0 D02u∗ + uT∗ R02u∗

+ ẋTP2(t)x+ xT Ṗ2(t)x+ xTP2(t)ẋ]dt.

Using the equation about P2(t), we get

J2(u∗, w∗, w0) = E

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt+ 2E
∫ T

0

xTP2(t)B0w0dt

= E

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt+ 2trace
∫ T

0

P2(t)B0E{w0x
T }dt.

By Lemma 5, we have E{xwT0 } = B0/2. Hence

J2(u∗, w∗, w0) = E

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt+ trace
∫ T

0

P2(t)B0B
T
0 dt

= E

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt+ trace
∫ T

0

BT
0 P2(t)B0dt.

We need only to consider the first term. Define ex = x− x̂; then

E

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt = E

∫ T

0

eTxF
T
∗ (t)R02F∗(t)exdt.

Since we have

˙̂x = (A+ γ−2B1B
T
1 P1(t) +B2F∗(t))x̂+ L∗(t)(C2x̂− y),

u∗ = F∗(t)x̂,

clearly, ex satisfies

ėx = ẋ− ˙̂x = (A+γ−2B1B
T
1 P1(t)+L∗(t)C2)ex+(B0+L∗(t)D20)w0 := AL∗ex+BL∗w0.

Let Φ(t, τ) be the transition matrix of A+ γ−2B1B
T
1 P1(t) + L∗(t)C2; then

ex =

∫ t

0

Φ(t, τ)(B0 + L∗(t)D20)w0dτ.

This gives
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E

∫ T

0

eTxF
T
∗ (t)R02F∗(t)exdt

= E

{∫ T

0

∫ t

0

∫ t

0

wT (τ)BT
L∗Φ

T (t, τ)FT
∗ (t)R02F∗(t)Φ(t, τ)BL∗w(s)dτ ds dt

}

= trace

{∫ T

0

∫ t

0

∫ t

0

FT
∗ (t)R02F∗(t)Φ(t, τ)BL∗E{w(s)w(τ)}BT

L∗Φ
T (t, τ)dτ ds dt

}

= trace

{∫ T

0

∫ t

0

∫ t

0

FT
∗ (t)R02F∗(t)Φ(t, τ)BL∗δ(τ − s)BT

L∗Φ
T (t, τ)dτ ds dt

}

= trace

{∫ T

0

D02F∗(t)Y (t)FT
∗ (t)D

T
02dt

}
,

where Y (t) =
∫ t
0
Φ(t, s)BL∗B

T
L∗Φ

T (t, s)ds ≥ 0 satisfies

Ẏ (t) = AL∗Y (t) + Y (t)ATL∗ +BL∗B
T
L∗ , Y (0) = 0.

Since

J2(u∗, w∗, w0) = trace

{∫ T

0

D02F∗(t)Y (t)FT
∗ (t)D

T
02dt

}
+ trace

∫ T

0

BT
0 P2(t)B0dt

is the minimum value by assumption, by Theorem 6 there is a P3(t) ≥ 0, P3(t) ≤
Y (t), ∀t ∈ [0, T ], with P3(0) = 0 solving

Ṗ3(t) = (Af + γ−2B1B
T
1 P1(t))P3(t) + P3(t)(Af + γ−2B1B

T
1 P1(t))

T

−P3(t)C
T
2 R−1

20 C2P3(t) + P,

and, besides, L∗(t) can be chosen as L∗(t) = −(B0D
T
20 + P3(t)C

T
2 )R

−1
20 since

J2(u∗, w∗, w0) = trace

{∫ T

0

D02F∗(t)P3(t)F
T
∗ (t)D

T
02dt

}
+ trace

∫ T

0

BT
0 P2(t)B0dt.

This concludes the proof.

4.2. Multiobjective control design—infinite time horizon. For multiob-
jective control design in infinite time horizon, we need to add the following standard
assumptions:
(A1) (A,B2) is stabilizable and (C2, A) is detectable,

(A2)
[
A− jωI B2

C0 D02

]
has full column rank for all ω,

(A3)
[
A− jωI B0

C2 D20

]
has full row rank for all ω.

The state feedback design result [22] is presented in the next theorem.
Theorem 11. There exist linear memoryless state feedback strategies (Nash equi-

librium strategies) u∗ and w∗ such that

0 ≤ J3(u∗, w∗, 0) ≤ J3(u∗, w, 0), J4(u∗, w∗, 0) ≤ J4(u,w∗, 0)
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if and only if the coupled Riccati equations

(As −B2R
−1
02 BT

2 P2)
TP1 + P1(As −B2R

−1
02 BT

2 P2) + γ−2P1B1B
T
1 P1

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2)]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2)] = 0

and

(As + γ−2B1B
T
1 P1)

TP2 + P2(As + γ−2B1B
T
1 P1)− P2B2R

−1
02 BT

2 P2 +Q = 0

have stabilizing solutions P1 ≥ 0 and P2 ≥ 0, i.e., As + γ−2B1B
T
1 P1 − B2R

−1
02 BT

2 P2

is stable.
Furthermore, if the solutions exist, we have w∗ = γ−2BT

1 P1x and u∗ = F∗x with
F∗ := −R−1

02 (D
T
02C0 +BT

2 P2).
Now we prove the results of output feedback design.
Theorem 12. There exist a w∗ and an output feedback control law u∗ such that

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0), J4(u∗, w∗, w0) ≤ J4(u,w∗, w0)

if the coupled Riccati algebraic equations

(As −B2R
−1
02 BT

2 P2)
TP1 + P1(As −B2R

−1
02 BT

2 P2) + γ−2P1B1B
T
1 P1

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2)]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2)] = 0,

(As + γ−2B1B
T
1 P1)

TP2 + P2(As + γ−2B1B
T
1 P1)− P2B2R

−1
02 BT

2 P2 +Q = 0

and

(Af + γ−2B1B
T
1 P1)P3 + P3(Af + γ−2B1B

T
1 P1)

T − P3C
T
2 R−1

20 C2P3 + P = 0

have stabilizing solutions P1 ≥ 0, P2 ≥ 0, and P3 ≥ 0, i.e., both As + γ−2B1B
T
1 P1 −

B2R
−1
02 BT

2 P2 and Af + γ−2B1B
T
1 P1 − P3C

T
2 R−1

20 C2 are stable.
If the solutions exist, we have w∗ = γ−2BT

1 P1x, and u∗ is of the form

˙̂x = (A+ γ−2B1B
T
1 P1 +B2F∗)x̂+ L∗(C2x̂− y),

u∗ = F∗x̂,

where F∗ = −R−1
02 (D

T
02C0 +BT

2 P2) and L∗ = −(B0D
T
20 + P3C

T
2 )R

−1
0 .

Conversely, if the state feedback control problem is solvable, i.e., there are stabi-
lizing solutions P1 ≥ 0 and P2 ≥ 0 for

(As −B2R
−1
02 BT

2 P2)
TP1 + P1(As −B2R

−1
02 BT

2 P2) + γ−2P1B1B
T
1 P1

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2)]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2)] = 0,

(As + γ−2B1B
T
1 P1)

TP2 + P2(As + γ−2B1B
T
1 P1)− P2B2R

−1
02 BT

2 P2 +Q = 0,

and there is a w∗ and an optimal control u∗ in the form of

˙̂x = (A+ γ−2B1B
T
1 P1 +B2F∗)x̂+ L∗(C2x̂− y),

u∗ = F∗x̂,
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where F∗ = −R−1
02 (D

T
02C0 +BT

2 P2) such that

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0), J4(u∗, w∗, w0) ≤ J4(u,w∗, w0),

then there is a P3 ≥ 0 solving
(Af + γ−2B1B

T
1 P1)P3 + P3(Af + γ−2B1B

T
1 P1)

T − P3C
T
2 R−1

0 C2P3 + P = 0.

Moreover, if A+γ−2B1B
T
1 P1−(B0D

T
20+P3C

T
2 )R

−1
0 C2 is stable, then L∗ = −(B0D

T
20+

P3C
T
2 )R

−1
0 .

Proof. Suppose there exist stabilizing solutions P1 ≥ 0, P2 ≥ 0, and P3 ≥ 0 to
the following Riccati equations:

(As −B2R
−1
02 BT

2 P2)
TP1 + P1(As −B2R

−1
02 BT

2 P2) + γ−2P1B1B
T
1 P1

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2)]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2)] = 0,

(As + γ−2B1B
T
1 P1)

TP2 + P2(As + γ−2B1B
T
1 P1)− P2B2R

−1
02 BT

2 P2 +Q = 0,

and

(Af + γ−2B1B
T
1 P1)P3 + P3(Af + γ−2B1B

T
1 P1)

T − P3C
T
2 R−1

0 C2P3 + P = 0.

Let u be any stabilizing control law. Since

J3(u,w,w0) = γ2 ‖w‖2P − ‖z‖2P

= lim
T→∞

E

{
1

T

∫ T

0

(γ2 ‖w‖2 − ‖z‖2)dt
}

= lim
T→∞

E

{
1

T

∫ T

0

(γ2‖w‖2 − xTCT
1 C1x− 2xTCT

1 D12u− uTR12u)dt

}
,

using the equation for P1, we get

J3(u,w,w0) = E

{
lim
T→∞

∫ T

0

[γ2 ‖w − w∗‖2 − uTR12u+ ūT∗ R1ū∗

−2xT (P1B2 + CT
1 D12)(u− ū∗)− 2xTP1B0w0]dt

}
,

where R1 := DT
12D12, w∗ = γ−2BT

1 P1x, and ū∗ = −R−1
02 (D

T
02C0 + BT

2 P2)x, i.e., the
optimal strategies for state feedback case. Clearly, if we take w = w∗, then for any
u, and hence for the optimally designed output feedback control law u∗, we have
J3(u∗, w∗, w0) ≤ J3(u∗, w, w0). Now we design u∗ to minimize J4. By substituting
the w∗ into the system equation, we get

ẋ = (A+ γ−2B1B
T
1 P1)x+B0w0 +B2u,

y = C2x+D20w0,

z0 = C0x+D02u.
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Clearly, for the index functional J4, it is a standard LQG problem [1, 16]. Thus the
optimal control law is given by

˙̂x = (A+ γ−2B1B
T
1 P1)x̂+B2u∗ + L∗(C2x̂− y),

u∗ = F∗x̂,

where F∗ = −R−1
02 (D

T
02C0 + BT

2 P2) , L∗ = −(B0D
T
20 + P3C

T
2 )R

−1
0 , and u∗ achieves

J4(u∗, w∗, w0) ≤ J4(u,w∗, w0). Note that J4(u∗, w∗, w0) can be calculated as

J4(u∗, w∗, w0) = trace
{
B0B

T
0 P2

}
+ trace

{
FT
∗ R02F∗P3

}
.

Conversely, suppose the state feedback control problem is solvable, i.e., there are
stabilizing solutions to

(As −B2R
−1
02 BT

2 P2)
TP1 + P1(As −B2R

−1
02 BT

2 P2) + γ−2P1B1B
T
1 P1

+[C1 −D12R
−1
02 (D

T
02C0 +BT

2 P2)]
T [C1 −D12R

−1
02 (D

T
02C0 +BT

2 P2)] = 0,

(As + γ−2B1B
T
1 P1)

TP2 + P2(As + γ−2B1B
T
1 P1)− P2B2R

−1
02 BT

2 P2 +Q = 0.

Let u∗ be in the form of

˙̂x = (A+ γ−2B1B
T
1 P1 +B2F∗)x̂+ L∗(C2x̂− y),

u∗ = F∗x̂,

where F∗ = −R−1
02 (D

T
02C0 +BT

2 P2) and u∗ and w∗ achieve

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0), J4(u∗, w∗, w0) ≤ J4(u,w∗, w0).

From the proof of the sufficiency, we get w∗ = γ−2BT
1 P1x. Substituting w∗ and u∗

into the system equations, we have

ẋ = (A+ γ−2B1B
T
1 P1)x+B0w0 +B2u∗,

y = C2x+D20w0,

z0 = C0x+D02u∗.

Since

J4(u∗, w∗, w0) = ‖z0‖2P = lim
T→∞

E

{
1

T

∫ T

0

‖z0‖2dt
}

= lim
T→∞

E

{
1

T

∫ T

0

[xTCT
0 C0x+ 2x

TCT
0 D02u∗ + uT∗ R02u∗]dt

}
,

using the equation about P2, we get

J4(u∗, w∗, w0) = lim
T→∞

E

{
1

T

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt

}
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+2 lim
T→∞

E

{
1

T

∫ T

0

xTP2B0w0dt

}

= lim
T→∞

E

{
1

T

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt

}

+2trace

{
lim
T→∞

1

T

∫ T

0

P2B0E{w0x
T }dt

}

= lim
T→∞

E

{
1

T

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt

}

+ trace(BT
0 P2B0),

where ū∗ = −R−1
02 (D

T
02C0 +BT

2 P2)x. We need only to consider the first term. Define
ex = x− x̂; then

lim
T→∞

E

{
1

T

∫ T

0

(u∗ − ū∗)TR02(u∗ − ū∗)dt

}
= lim
T→∞

E

{
1

T

∫ T

0

eTxF
T
∗ R02F∗exdt

}
,

where ex satisfies

ėx = ẋ− ˙̂x = (A+ γ−2B1B
T
1 P1 + L∗C2)ex + (B0 + L∗D20)w0 = AL∗ex +BL∗w0.

Hence ex =
∫ t
0
eAL∗ (t−τ)BL∗w0 dτ . This gives

lim
T→∞

E

{
1

T

∫ T

0

eTxF
T
∗ R02F∗exdt

}
= trace(D02F∗Y FT

∗ DT
02),

where Y =
∫∞
0
exp(AL∗s)BL∗B

T
L∗exp(A

T
L∗s)ds ≥ 0 satisfies AL∗Y + Y ATL∗ +BL∗B

T
L∗

= 0. Since

J4(u∗, w∗, w0) = trace(D02F∗Y FT
∗ DT

02) + trace(B
T
0 P2B0)

is the minimum value, by Theorem 7, there is a P3 ≥ 0, P3 ≤ Y solving

(Af + γ−2B1B
T
1 P1)P3 + P3(Af + γ−2B1B

T
1 P1)

T − P3C
T
2 R−1

0 C2P3 + P = 0.

If A+γ−2B1B
T
1 P1− (B0D

T
20+P3C

T
2 )R

−1
0 C2 is stable, then L∗ can be chosen as L∗ =

−(B0D
T
20+P3C

T
2 )R

−1
0 because J4(u∗, w∗, w0) = trace(D02F∗P3F

T
∗ DT

02) + trace(B
T
0 P2B0).

This concludes the proof.

5. H∞ Gaussian control design. In this section, we give the solution to the
problem formulated in section 2.3. To simplify the notations, we shall introduce the
following abbreviations:

Ax := A−B2R
−1
1 DT

12C1, Ay := A−B0D
T
20R

−1
0 C2,

P := B0(I −DT
20R

−1
0 D20)B

T
0 , Q := CT

1 (I −D12R
−1
1 DT

12)C1.
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5.1. H∞ Gaussian control design—finite time horizon. The design re-
sults for H∞ Gaussian control in the finite time horizon are summarized in the next
theorem.

Theorem 13. Let the dynamical system G be described by (5)–(7). If there are
solutions P1(t) ≥ 0, P2(t) ≥ 0, and P3(t) ≥ 0 with P1(T ) = 0, P2(T ) = 0, and
P3(0) = 0 solving the differential Riccati equations

ATxP1(t) + P1(t)Ax + P1(t)(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1(t) +Q = −Ṗ1(t),

P2(t)(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)+(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)
TP2(t)

+γ−2P2(t)B1B
T
1 P2(t) + (D

T
12C1 +BT

2 P1(t))
TR−1

1 (DT
12C1 +BT

2 P1(t)) = −Ṗ2(t),

[Ay + γ−2B1B
T
1 (P1(t) + P2(t))]P3(t) + P3(t)[Ay + γ−2B1B

T
1 (P1(t) + P2(t))]

T

−P3(t)C
T
2 R−1

0 C2P3(t) + P = Ṗ3(t),

then there exist an optimal control law u∗ and a worst disturbance signal w∗ such that

J1(u∗, w∗, w0) ≤ J1(u∗, w, w0), J2(u∗, w∗, w0) ≤ J2(u,w∗, w0).

If the solutions exist, we have the optimal controller

˙̂x = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2 +B2F∗(t))x̂− L∗(t)y, x̂(0) = 0,

u∗ = F∗(t)x̂,

where F∗(t) := −R−1
1 (DT

12C1 + BT
2 P1(t)), L∗(t) = −(B0D

T
20 + P3(t)C

T
2 )R

−1
0 , and

w∗ = γ−2BT
1 (P1(t)x+ P2(t)ex), ex = x− x̂.

Conversely, let P1(t) ≥ 0 with P1(T ) = 0 solve

ATxP1(t) + P1(t)Ax + P1(t)(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1(t) +Q = −Ṗ1(t).

Suppose there exist a w′
∗ and an optimal control u∗ (hence an L∗(t)) in the form

˙̂x = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2 +B2F∗(t))x̂− L∗(t)y, x̂(0) = 0,

u∗ = F∗(t)x̂,

where F∗(t) = −R−1
1 (DT

12C1 + BT
2 P1(t)) such that 0 < J1(u∗, w′

∗, 0) ≤ J1(u∗, w, 0).
Then, there is a w∗ plus the same u∗ achieving J1(u∗, w∗, w0) ≤ J1(u∗, w, w0).

If, furthermore, u∗ and w∗ also achieve J2(u∗, w∗, w0) ≤ J2(u,w∗, w0), then there
exist P2(t) ≥ 0, P3(t) ≥ 0 with P2(T ) = 0 and P3(0) = 0 solving

P2(t)(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)+(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)
TP2(t)

+γ−2P2(t)B1B
T
1 P2(t) + (D

T
12C1 +BT

2 P1(t))
TR−1

1 (DT
12C1 +BT

2 P1(t)) = −Ṗ2(t),

[Ay + γ−2B1B
T
1 (P1(t) + P2(t))]P3(t) + P3(t)[Ay + γ−2B1B

T
1 (P1(t) + P2(t))]

T
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−P3(t)C
T
2 R−1

0 C2P3(t) + P = Ṗ3(t),

and J2(L(t)) is minimized by L∗(t) = −(B0D
T
20 + P3(t)C

T
2 )R

−1
0 .

Proof (sufficiency). Suppose there exist solutions P1(t) ≥ 0, P2(t) ≥ 0, and
P3(t) ≥ 0 ∀t ∈ [0, T ] with P1(T ) = 0, P2(T ) = 0, and P3(0) = 0 solving those three
differential Riccati equations.

Using the first Riccati equation and Lemma 5 to complete square for J1(u,w,w0),
we get

J1(u,w,w0) = γ2‖w‖2[0,T ] − ‖z‖2[0,T ]

= γ2‖w − w̃∗‖2[0,T ] − ‖D12(u− ũ∗)‖2[0,T ] −
∫ T

0

trace{BT
0 P1(t)B0}dt,

where w̃∗ = γ−2BT
1 P1(t)x and ũ∗ = −R−1

1 (DT
12C1 +BT

2 P1(t))x. Define

r := w − γ−2BT
1 P1(t)x, v := D12

{
u+R−1

1 (DT
12C1 +BT

2 P1(t))x
}
.

Then the system equations can be rewritten as

ẋ = (A+ γ−2B1B
T
1 P1(t))x+B0w0 +B1r +B2u, x(0) = 0,

v = D12

{
R−1

1 (DT
12C1 +BT

2 P1(t))x+ u
}
,

y = C2x+D20w0,

and the performance index J1(u,w,w0) becomes

J1(u,w,w0) = γ2‖r‖2[0,T ] − ‖v‖2[0,T ] −
∫ T

0

trace{BT
0 P1(t)B0}dt.

Using L∗ = −R−1
1 (DT

12C1 +BT
2 P1(t)) to construct a state estimator,

˙̂x = (A+ γ−2B1B
T
1 P1(t))x̂+B2u+ L∗(t)(C2x̂− y), x̂(0) = 0,

a natural choice of the optimal control law u = u∗ would be u∗ = −R−1
1 (DT

12C1

+BT
2 P1(t))x̂. Denote ex = x − x̂. Accordingly, the system can be further simplified

into

ėx = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2)ex + (B0 + L∗(t)D20)w0 +B1r, ex(0) = 0,

v = D12R
−1
1 (DT

12C1 +BT
2 P1(t))ex.

Now we can complete square for J1(u,w,w0) again by using the second Riccati equa-
tion and Lemma 5 to get

J1(u∗, w, w0) = γ2‖r − γ−2BT
1 P2(t)ex‖2[0,T ] −

∫ T

0

trace{BT
0 P1(t)B0}dt

−
∫ T

0

trace{(B0 + L∗(t)D20)
TP2(t)(B0 + L∗(t)D20)}dt.

We claim that the worst signal w∗ can be taken as

w∗ = γ−2BT
1 (P1(t)x+ P2(t)ex) or r∗ = γ−2BT

1 P2(t)ex.
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Indeed, substituting w∗ = γ−2BT
1 (P1(t)x+P2(t)ex) and u∗ = −R−1

1 (DT
12C1+BT

2 P1(t))
(x− ex) into the system equation (5)–(7), we get

˙̄x = Āx̄+ B̄w0, z = C̄x̄,

where x̄ = [ xT eTx ]T ,

Ā =
[
A+ γ−2B1B

T
1 P1(t) − B2R

−1
1 (DT12C1 + BT2 P1(t)) γ−2B1B

T
1 P2(t) + B2R

−1
1 (DT12C1 + BT2 P1(t))

0 A+ γ−2B1B
T
1 (P1(t) + P2(t)) + L∗(t)C2

]
,

B̄ =
[
BT

0 (B0 + L∗(t)D20)
T
]T

,

C̄ =
[
C1 −D12R

−1
1 (DT

12C1 +BT
2 P1(t)) D12R

−1
1 (DT

12C1 +BT
2 P1(t))

]
.

Hence x̄ =
∫ t
0
eĀ(t−τ)B̄w0dτ . By Lemma 5, we have

E{x(t)wT0 (t)} =
1

2
B0, E{ex(t)wT0 (t)} =

1

2
(B0 + L∗(t)D20).

The first completed square gives

J1(u∗, w∗, w0) = γ2‖w∗‖2[0,T ] − ‖z‖2[0,T ]

= γ2‖γ−2BT
1 P2(t)ex‖2[0,T ] − ‖D12R

−1
1 (DT

12C1 +BT
2 P1(t))ex‖2[0,T ]

−2
∫ T

0

trace{BT
0 P1(t)E(xw

T
0 )}dt

= γ2‖γ−2BT
1 P2(t)ex‖2[0,T ] − ‖D12R

−1
1 (DT

12C1 +BT
2 P1(t))ex‖2[0,T ]

−
∫ T

0

trace{BT
0 P1(t)B0}dt.

Note that the second Riccati equation can be written as

P2(t)(A+γ−2B1B
T
1 (P1(t)+P2(t))+L∗(t)C2)+(A+γ−2B1B

T
1 (P1(t)+P2(t))+L∗(t)C2)

TP2(t)

−γ−2P2(t)B1B
T
1 P2(t) + (D

T
12C1 +BT

2 P1(t))
TR−1

1 (DT
12C1 +BT

2 P1(t)) = −Ṗ2(t).

Hence

γ2‖γ−2BT
1 P2(t)ex‖2[0,T ] − ‖D12R

−1
1 (DT

12C1 +BT
2 P1(t))ex‖2[0,T ]

= E

∫ T

0

eTx [γ
−2P2(t)B1B

T
1 P2(t)− (DT

12C1 +BT
2 P1(t))

TR−1
1 (DT

12C1 +BT
2 P1(t))]exdt

= E

∫ T

0

eTx [P2(t)(A+ γ−2B1B
T
1 (P1(t) + P2(t)) + L∗(t)C2)

+(A+ γ−2B1B
T
1 (P1(t) + P2(t)) + L∗(t)C2)

TP2(t) + Ṗ2(t)]exdt



MULTIOBJECTIVE H2/H∞ CONTROL 649

= E

∫ T

0

[eTxP2(t)ėx + ėTxP2(t)ex + eTx Ṗ2(t)ex − 2exP2(t)(B0 + L∗(t)C2)w0]dt

= −2
∫ T

0

trace{(B0 + L∗(t)C2)
TP2(t)E(exw

T
0 )}dt

= −
∫ T

0

trace{(B0 + L∗(t)C2)
TP2(t)(B0 + L∗(t)C2)}dt.

Therefore,

J1(u∗, w∗, w0) = −
∫ T

0

{trace{(B0 + L∗(t)C2)
TP2(t)(B0 + L∗C2(t))}

+trace{BT
0 P1(t)B0}}dt.

Clearly, J1(u∗, w∗, w0) ≤ J1(u∗, w, w0) for all w which is independent from w0. Hence
w∗ is the worst signal.

Next, it is shown that u∗ does minimize the index J2(u,w∗, w0) under the worst
disturbance w∗. Let L(t) be any filter gain. Substituting w∗ (or r∗) into the system
equations, we get

ėx = (A+ γ−2B1B
T
1 P1(t) + L(t)C2 + γ−2B1B

T
1 P2(t))ex + (B0 + L(t)D20)w0, ex(0) = 0,

:= ALex +BLw0.

Let Φ(t, τ) be the transition matrix for AL; then ex =
∫ t
0
Φ(t, τ)BLw0(τ)dτ and

J2(u,w∗, w0) = ‖ex‖2[0,T ] = E

{∫ T

0

∫ t

0

∫ t

0

wT0 (τ)B
T
LΦ

T (t, τ)Φ(t, s)BLw0(s)dτ ds dt

}

= trace

{∫ T

0

∫ t

0

∫ t

0

Φ(t, s)BLE{w0(s)w
T
0 (τ)}BT

LΦ
T (t, τ)dτ ds dt

}

= trace

{∫ T

0

∫ t

0

∫ t

0

Φ(t, s)BLδ(τ − s)BT
LΦ

T (t, τ)dτ ds dt

}

= trace

{∫ T

0

∫ t

0

Φ(t, s)BLB
T
LΦ

T (t, s)ds dt

}
= trace{

∫ T

0

Y (t)dt},

where Y (t) =
∫ t
0
Φ(t, s)BLB

T
LΦ

T (t, s)ds ≥ 0 satisfiesALY (t) + Y (t)ATL +BLB
T
L = Ẏ (t).

By Theorem 6 and applying the third Riccati equation, J2(u,w∗, w0) achieves the min-
imum value at L(t) = L∗(t), which means that u∗ is the desired optimal control. Thus
u∗ and w∗ achieve

J1(u∗, w∗, w0) ≤ J1(u∗, w, w0), J2(u∗, w∗, w0) ≤ J2(u,w∗, w0).

Proof (necessity). Let P1(t) ≥ 0 ∀t ∈ [0, T ] with P1(T ) = 0 solve

ATxP1(t) + P1(t)Ax + P1(t)(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1(t) +Q = −Ṗ1(t).

Suppose there are a w′
∗ and an optimal control u∗ in the form of

˙̂x = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2 +B2F∗(t))x̂− L∗(t)y, x̂(0) = 0,

u∗ = F∗(t)x̂,
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where F∗(t) = −R−1
1 (DT

12C1 + BT
2 P1(t)), achieving 0 < J1(u∗, w′

∗, 0) ≤ J1(u∗, w, 0).
This suggests that the system without the white noise,

ẋ = Ax+B1w +B2u∗, x(0) = 0,

z = C1x+D12u∗,
y = C2x+D20w0,

achieves the H∞ performance on finite support [0, T ]. Now define

ex := x− x̂, r := w− γ−2BT
1 P1(t)x, v∗ := D12

{
u∗ +R−1

1 (DT
12C1 +BT

2 P1(t))x
}
.

The system without the white noise can be converted into

ėx = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2)ex +B1r, ex(0) = 0,

v∗ = D12

{
R−1

1 (DT
12C1 +BT

2 P1(t))ex
}
,

and J1(u∗, w, 0) can be converted into

J1(u∗, w, 0) = γ2‖w − w̃∗‖2[0,T ] − ‖D12(u∗ − ũ∗)‖2[0,T ] = γ2‖r‖2[0,T ] − ‖v∗‖2[0,T ],

where w̃∗ = γ−2BT
1 P1(t)x and ũ∗ = −R−1

1 (DT
12C1+BT

2 P1(t))x. Hence, by Lemma 3,
there is a P2(t) ≥ 0 ∀t ∈ [0, T ] with P2(T ) = 0 solving

P2(t)(A+ γ−2B1B
T
1 P1(t) + L∗(t)C2) + (Ay + γ−2B1B

T
1 P1(t) + L∗(t)C2)

TP2(t)

+γ−2P2(t)B1B
T
1 P2(t) + (D

T
12C1 +BT

2 P1(t))
TR−1

1 (DT
12C1 +BT

2 P1(t)) = −Ṗ2(t),

and, clearly, w′
∗ can be obtained as

w′
∗ = r′∗ + γ−2BT

1 P1(t)x = γ−2BT
1 (P1(t)x+ P2(t)ex), r′∗ = γ−2BT

1 P2(t)ex.

Consider the system with white noise

ẋ = Ax+B0w0 +B1w +B2u∗, x(0) = 0,

z = C1x+D12u∗,
y = C2x+D20w0.

Under the same transformation, we have

ėx = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2)ex + (B0 + L∗(t)D20)w0 +B1r, ex(0) = 0,

v∗ = D12

{
R−1

1 (DT
12C1 +BT

2 P1(t))ex
}
.

J1(u∗, w, w0) becomes (see the proof for the sufficiency)

J1(u∗, w, w0) = γ2‖w − w̃∗‖2[0,T ] − ‖D12(u∗ − ũ∗)‖2[0,T ] −
∫ T

0

trace{BT
0 P1(t)B0}dt

= γ2‖r − γ−2BT
1 P2(t)ex‖2[0,T ] −

∫ T

0

trace{BT
0 P1(t)B0}dt
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−
∫ T

0

trace{(B0 + L∗(t)D20)
TP2(t)(B0 + L∗(t)D20)}dt.

Choosing

r∗ = γ−2BT
1 P2(t)ex or w∗ = r∗ + γ−2BT

1 P1(t)x = γ−2BT
1 (P1(t)x+ P2(t)ex),

it is easy to see that J1(u∗, w∗, w0) ≤ J1(u∗, w, w0). If, furthermore, this w∗ together
with u∗ achieves J2(u∗, w∗, w0) ≤ J2(u,w∗, w0), by substituting w∗ into the system
equations, we get

ėx = (A+ γ−2B1B
T
1 P1(t) + L∗(t)C2 + γ−2B1B

T
1 P2(t))ex + (B0 + L∗(t)D20)w0,

:= AL∗ex +BL∗w0.

Let Φ(t, τ) be the transition matrix of AL∗ ; then ex =
∫ t
0
ΦT (t, τ)BL∗w0(τ)dτ , and

J2(u∗, w∗, w0) = ‖ex‖[0,T ] = trace

{∫ T

0

Y (t)dt

}

is the minimum value, where Y (t) =
∫ t
0
Φ(t, s)BL∗B

T
L∗Φ

T (t, s)ds ≥ 0, Y (0) = 0,

satisfies AL∗Y (t) + Y (t)ATL∗ + BL∗B
T
L∗ = Ẏ (t). Thus, by Theorem 6, there is a

P3(t) ≥ 0 ∀t ∈ [0, T ] with P3(0) = 0 solving

[Ay + γ−2B1B
T
1 (P1(t) + P2(t))]P3(t) + P3(t)[Ay + γ−2B1B

T
1 (P1(t) + P2(t))]

T

−P3(t)C
T
2 R−1

0 C2P3(t) + P = Ṗ3(t),

and L∗(t) can be chosen as L∗(t) = −(B0D
T
20 + P3(t)C

T
2 )R

−1
0 . Substituting L∗ back

into the Riccati equation about P2(t), clearly, P2(t) ≥ 0 ∀t ∈ [0, T ] with P2(T ) = 0
solves

P2(t)(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)+(Ay+γ−2B1B
T
1 P1(t)−P3(t)C

T
2 R−1

0 C2)
TP2(t)

+γ−2P2(t)B1B
T
1 P2(t) + (D

T
12C1+BT

2 P1(t))
TR−1

1 (DT
12C1+BT

2 P1(t)) = −Ṗ2(t).

5.2. H∞ Gaussian control design—infinite time horizon. For H∞ Gaus-
sian design on infinite time horizon, we need to add the following standard assump-
tions:
(A1) (A,B2) is stabilizable and (C2, A) is detectable;

(A2)
[
A− jωI B2

C1 D12

]
has full column rank for all ω;

(A3)
[
A− jωI B0

C2 D20

]
has full row rank for all ω.

The infinite time H∞ Gaussian control design is presented in the next theorem.
Theorem 14. Let the dynamical system G be described by (5)–(7). Suppose that

w and w0 are independent. If there are stabilizing solutions P1 ≥ 0, P2 ≥ 0, and
P3 ≥ 0 solving the Riccati equations

ATxP1 + P1Ax + P1(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1 +Q = 0,

P2(Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2) + (Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2)
TP2
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+γ−2P2B1B
T
1 P2 + (D

T
12C1 +BT

2 P1)
TR−1

1 (DT
12C1 +BT

2 P1) = 0,

[Ay + γ−2B1B
T
1 (P1 + P2)]P3 + P3[Ay + γ−2B1B

T
1 (P1 + P2)]

T

−P3C
T
2 R−1

0 C2P3 + P = 0,

i.e., if Ax + (B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1 and Ay + γ−2B1B
T
1 (P1 + P2)− P3C

T
2 R−1

0 C2

are both stable, then there exist an optimal control law u∗ and a worst disturbance
signal w∗ such that

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0), J4(u∗, w∗, w0) ≤ J4(u,w∗, w0).

If the solutions exist, then w∗ = γ−2BT
1 (P1x+P2e), and an optimal controller is given

by

˙̂x = (A+ γ−2B1B
T
1 P1 + L∗C2 +B2F∗)x̂− L∗y,

u∗ = F∗x̂, x̂(0) = 0,

where F∗ := −R−1
1 (DT

12C1 +BT
2 P1) and L∗ = −(B0D

T
20 + P3C

T
2 )R

−1
0 .

Conversely, let P1 ≥ 0 be a stabilizing solution to

ATxP1 + P1Ax + P1(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1 +Q = 0.

Suppose there exist a w′
∗ and a controller u∗ (hence, an L∗)

˙̂x = (A+ γ−2B1B
T
1 P1 + L∗C2 +B2F∗)x̂− L∗y,

u∗ = F∗x̂, F∗ = −R−1
1 (DT

12C1 +BT
2 P1),

achieving 0 < J3(u∗, w′
∗, 0) ≤ J3(u∗, w, 0). Then there exists a w∗ achieving J3(u∗, w∗, w0)

≤ J3(u∗, w, w0). If, furthermore, this w∗ also achieves J4(u∗, w∗, w0) ≤ J4(u,w∗, w0),
then there exist P2 ≥ 0 and P3 ≥ 0 solving

P2(Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2) + (Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2)
TP2

+γ−2P2B1B
T
1 P2 + (D

T
12C1 +BT

2 P1)
TR−1

1 (DT
12C1 +BT

2 P1) = 0,

[Ay+γ−2B1B
T
1 (P1+P2)]P3+P3[Ay+γ−2B1B

T
1 (P1+P2)]

T −P3C
T
2 R−1

0 C2P3+P = 0.

Moreover, if A + γ−2B1B
T
1 (P1 + P2) − (B0D

T
20 + P3C

T
2 )R

−1
0 C2 is stable, then L∗ =

−(B0D
T
20 + P3C

T
2 )R

−1
0 .

Proof (sufficiency). Suppose that there are P1 ≥ 0, P2 ≥ 0, and P3 ≥ 0 solving

ATxP1 + P1Ax + P1(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1 +Q = 0,

P2(Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2) + (Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2)
TP2

+γ−2P2B1B
T
1 P2 + (D

T
12C1 +BT

2 P1)
TR−1

1 (DT
12C1 +BT

2 P1) = 0,
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[Ay+γ−2B1B
T
1 (P1+P2)]P3+P3[Ay+γ−2B1B

T
1 (P1+P2)]

T −P3C
T
2 R−1

0 C2P3+P = 0.

First, it is claimed that Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2 = A+ γ−2B1B
T
1 P1 +L∗C2

is stable, where L∗ = −(B0D
T
20 + P3C

T
2 )R

−1
0 . The reason is as follows: if A +

γ−2B1B
T
1 P1 + L∗C2 is not stable, then at least one of its eigenvalues λ is on the

closed right-half plane, i.e., Re(λ) ≥ 0. Let x be the eigenvector corresponding to λ;
then

xTP2(Ay+γ−2B1B
T
1 P1−P3C

T
2 R−1

0 C2)x+xT (Ay+γ−2B1B
T
1 P1−P3C

T
2 R−1

0 C2)
TP2x

γ−2xTP2B1B
T
1 P2x+ xT (DT

12C1 +BT
2 P1)

TR−1
1 (DT

12C1 +BT
2 P1)x = 0

or

2Re(λ)xTP2x+xT (DT
12C1+BT

2 P1)
TR−1

1 (DT
12C1+BT

2 P1)x+γ−2xTP2B1B
T
1 P2x = 0,

which gives BT
1 P2x = 0 and (D

T
12C1 +BT

2 P1)x = 0. Thus

[Ay + γ−2B1B
T
1 (P1 + P2)− P3C

T
2 R−1

0 C2]x = [A+ γ−2B1B
T
1 P1 + L∗C2]x = λx,

which means that Ay + γ−2B1B
T
1 (P1 + P2) − P3C

T
2 R−1

0 C2 is not stable, which is a
contradiction.

Now consider the index J3(u,w,w0). Let u be any stabilizing control law. Define
r := w − γ−2BT

1 P1x and v := D12

{
u+R−1

1 (DT
12C1 +BT

2 P1)x
}
. Then the system

equations can be rewritten as

ẋ = (A+ γ−2B1B
T
1 P1)x+B0w0 +B1r +B2u,

v = D12

{
R−1

1 (DT
12C1 +BT

2 P1)x+ u
}
,

y = C2x+D20w0,

and the performance index J3(u,w,w0) becomes

J3(u,w,w0) = γ2‖w‖2P − ‖z‖2P = γ2‖r‖2P − ‖v‖2P − trace{BT
0 P1B0}.

Note that the first Riccati equation and Lemma 4 are used to derive this equation.
We can use L∗ to construct a state estimator:

˙̂x = (A+ γ−2B1B
T
1 P1)x̂+B2u+ L∗(C2x̂− y), x̂(0) = 0.

It is pointed out that the control law u∗ = −R−1
1 (DT

12C1 + BT
2 P1)x̂ comes naturally

when the state information is not available. Let ex = x − x̂. The system can be
further simplified into

ėx = (A+ γ−2B1B
T
1 P1 + L∗C2)ex + (B0 + L∗D20)w0 +B1r,

v = D12R
−1
1 (DT

12C1 +BT
2 P1)ex.

Now J3(u,w,w0) becomes (by using the second Riccati equation and Lemma 5)

J3(u∗, w, w0) = γ2‖r − γ−2BT
1 P2ex‖2P − trace{BT

0 P1B0}
− trace{(B0 + L∗D20)

TP2(B0 + L∗D20)}.
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Similar to finite time horizon case, we can take

r∗ = γ−2BT
1 P2ex or w∗ = r∗ + γ−2BT

1 P1x = γ−2BT
1 (P1x+ P2ex).

Then we have J3(u∗, w∗, w0) ≤ J3(u∗, w, w0).
Next, it is shown that u∗ does minimize the index J4(u,w∗, w0). Let L be any

filter gain such that both A + γ−2B1B
T
1 P1 + LC2 and A + γ−2B1B

T
1 P1 + LC2 +

γ−2B1B
T
1 P2 are stable. Substituting w∗ (or r∗) into the system equations, we get

ėx = ALex +BLw0, where

AL = A+ γ−2B1B
T
1 P1 + LC2 + γ−2B1B

T
1 P2, BL = B0 + LD20.

Note that ex =
∫ t
0
eAL(t−τ)BLw0(τ)dτ and

J4(u,w∗, w0) = ‖ex‖2P

= lim
T→∞

E

{
1

T

∫ T

0

∫ t

0

∫ t

0

wT0 (τ)B
T
Le

ATL(t−τ)eAL(t−s)BLw0(s)dτ ds dt

}

= trace

{
lim
T→∞

1

T

∫ T

0

∫ t

0

∫ t

0

eAL(t−s)BLδ(τ − s)BT
Le

ATL(t−τ)dτ ds dt

}

= trace

{
lim
T→∞

1

T

∫ T

0

∫ t

0

eAL(t−s)BLBT
Le

ATL(t−s)ds dt

}
= trace{Y },

where Y =
∫∞
0

eALsBLB
T
Le

ATLsds ≥ 0 satisfies ALY + Y ATL +BLB
T
L = 0. By Theo-

rem 7 and using the third Riccati equation, it can be seen that J4(u,w∗, w0) achieves
the minimum value at L = L∗, where L∗ = −(B0D

T
20+P3C

T
2 )R

−1
0 , which means that

u∗ is indeed the desired optimal control. Thus u∗ and w∗ achieve

J3(u∗, w∗, w0) ≤ J3(u∗, w, w0), J4(u∗, w∗, w0) ≤ J4(u,w∗, w0).

Proof (necessity). Let P1 ≥ 0 solve

ATxP1 + P1Ax + P1(B1B
T
1 /γ2 −B2R

−1
1 BT

2 )P1 +Q = 0.

Suppose the controller u∗,

˙̂x = (A+ γ−2B1B
T
1 P1 + L∗C2 +B2F∗)x̂− L∗y,

u∗ = F∗x̂, F∗ = −R−1
1 (DT

12C1 +BT
2 P1),

and a w′
∗ achieve 0 < J3(u∗, w′

∗, 0) ≤ J3(u∗, w, 0). This suggests that the system with-
out the white noise

ẋ = Ax+B1w +B2u∗, x(0) = 0,

z = C1x+D12u∗,
y = C2x+D20w0,

achieves the H∞ performance. Define

ex := x− x̂, r := w − γ−2BT
1 P1x, v∗ := D12

{
u∗ +R−1

1 (DT
12C1 +BT

2 P1)x
}
.
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The system without the white noise can be converted into

ėx = (A+ γ−2B1B
T
1 P1 + L∗C2)ex +B1r, ex(0) = 0,

v∗ = D12

{
R−1

1 (DT
12C1 +BT

2 P1)ex
}
,

and J3(u∗, w, 0) can be converted into

J3(u∗, w, 0) = γ2‖w − w̃∗‖2P − ‖D12(u∗ − ũ∗)‖2P = γ2‖r‖2P − ‖v∗‖2P ,

where w̃∗ = γ−2BT
1 P1x and ũ∗ = −R−1

1 (DT
12C1 + BT

2 P1)x. Hence, by the bounded
real lemma, there is a P2 ≥ 0 solving

P2(A+ γ−2B1B
T
1 P1 + L∗C2) + (Ay + γ−2B1B

T
1 P1 + L∗C2)

TP2

+γ−2P2B1B
T
1 P2 + (D

T
12C1 +BT

2 P1)
TR−1

1 (DT
12C1 +BT

2 P1) = 0,

and, accordingly, w′
∗ can be obtained as

w′
∗ = r′∗ + γ−2BT

1 P1x = γ−2BT
1 (P1x+ P2ex), r′∗ = γ−2BT

1 P2ex.

Now consider the system with white noise

ẋ = Ax+B0w0 +B1w +B2u∗, x(0) = 0,

z = C1x+D12u∗,
y = C2x+D20w0.

Under the same transformation, we have

ėx = (A+ γ−2B1B
T
1 P1 + L∗C2)ex + (B0 + L∗D20)w0 +B1r, ex(0) = 0,

v∗ = D12

{
R−1

1 (DT
12C1 +BT

2 P1)ex
}
,

and J3(u∗, w, w0) becomes (see the proof for the sufficiency)

J3(u∗, w, w0) = γ2‖w − w̃∗‖2P − ‖D12(u∗ − ũ∗)‖2P − trace{BT
0 P1B0}

= γ2‖r − γ−2BT
1 P2ex‖2P − trace{BT

0 P1B0} − trace{(B0 + L∗D20)
TP2(B0 + L∗D20)}.

Therefore, if we choose

w∗ = r∗ + γ−2BT
1 P1x = γ−2BT

1 (P1x+ P2ex), r∗ = γ−2BT
1 P2ex,

then we have J3(u∗, w∗, w0) ≤ J3(u∗, w, w0).
If, furthermore, this w∗ together with u∗ achieves J4(u∗, w∗, w0) ≤ J4(u,w∗, w0),

by substituting w∗ into the system equations, we get

ėx = (A+ γ−2B1B
T
1 P1 + L∗C2 + γ−2B1B

T
1 P2)ex + (B0 + L∗D20)w0,

:= AL∗ex +BL∗w0,

where AL∗ = A + γ−2B1B
T
1 P1 + L∗C2 + γ−2B1B

T
1 P2 and BL∗ = B0 + L∗D20. So

ex =
∫ t
0
eAL∗ (t−τ)BL∗w0(τ)dτ and J4(u∗, w∗, w0) = trace{Y } is the minimum value,
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where Y =
∫∞
0

eAL∗sBL∗B
T
L∗e

ATL∗sds ≥ 0 satisfies AL∗Y + Y ATL∗ + BL∗B
T
L∗ = 0.

Thus, by Theorem 7, there are P3 ≥ 0 and P3 ≤ Y solving

[Ay+γ−2B1B
T
1 (P1+P2)]P3+P3[Ay+γ−2B1B

T
1 (P1+P2)]

T −P3C
T
2 R−1

0 C2P3+P = 0.

In the case in which A+ γ−2B1B
T
1 (P1 + P2)− (B0D

T
20 + P3C

T
2 )R

−1
0 C2 is stable, L∗

can be chosen as L∗ = −(B0D
T
20 + P3C

T
2 )R

−1
0 . Substituting L∗ back into the Riccati

equation about P2, clearly, P2 solves

P2(Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2) + (Ay + γ−2B1B
T
1 P1 − P3C

T
2 R−1

0 C2)
TP2

+γ−2P2B1B
T
1 P2 + (D

T
12C1 +BT

2 P1)
TR−1

1 (DT
12C1 +BT

2 P1) = 0.

This concludes the proof.

6. Comments. We have the following comments on the results in this paper.
1. It must be pointed out that, in either of our developments, while we can

achieve quadratic optimization (H2 performance) under the worst disturbance, the
optimal γ may or may not be achievable. As seen from the results, we can only show
that the H∞ performance index has a lower bound, but this bound may or may not
be the optimal γ as achieved by a pure H∞ control. This means that, naturally
and reasonably, we should not expect a multiobjective control law to be as robust
as an H∞ control law. Similarly, we can only expect that a multiobjective control
law achieves the quadratic optimal performance when the disturbance signal is in its
“worst” form. And all of these facts exactly reflect the design trade-off.

2. For the solvability of the solutions in this paper, we point out that, although
our results are characterized by three Riccati equations, only two of them are really
coupled, while the third one can be solved independently. Hence the computation of
our results should be no more difficult than that of the state feedback case, where
two coupled Riccati equations can be solved by standard numerical integration, as
pointed out in [22].

7. Conclusion. In this paper, we have generalized the state feedback results of
mixed H2/H∞ control [22] to the output feedback case. We have also solved a newly
formulated H∞ Gaussian control problem which provides a natural design trade-off
between the LQG performance and the robust performance. Both sufficient and nec-
essary conditions were given for the existence of the control law in both the finite
time horizon and the infinite time horizon. Since these conditions are in the form
of coupled Riccati equations, differential or algebraic, which are deemed as solvable
by standard algorithm, the design procedures developed in this paper provide com-
putable solutions, which strongly enhances the possibility of potential engineering
applications.

Appendix: Proof for necessary conditions in Theorems 6 and 7. Note
that we shall only give the proof in detail for necessary conditions in Theorem 6
because the proof for Theorem 7 can be done in very similar way.

We shall first establish some preliminary results for the proof.
Let {Pi(t), i = 1, 2, . . . , Pi(t) = PT

i (t), t ≥ 0} be a sequence in Rn×n. Corre-
spondingly, we define a sequence {Li(t), i = 2, 3 . . . , t ≥ 0} in Rn×p with Li+1(t) =
−(Pi(t)CT + BDT )R−1 ∀t ≥ 0, for some R > 0. The limits of {Pi(t)} and {Li(t)}
are defined as follows.
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Definition 15. We say that P∗(t) and L∗(t) are the limits of sequences {Pi(t)}
and {Li(t)} if

xTP∗(t)x = lim
i→∞

xTPi(t)x, L∗(t) = −(P∗(t)CT +BDT )R−1 ∀x ∈ Rn,∀t ≥ 0.

If these limits exist, we denote

P∗(t) = lim
i→∞

Pi(t), L∗(t) = lim
i→∞

Li+1(t) = − lim
i→∞

(Pi(t)C
T +BDT )R−1.

It is easy to see that Li(t) has a limit if Pi(t) does.
Proposition 16. A sequence {Pi(t)} converges to some P∗(t) if and only if the

convergence is entrywise, i.e., if pikj(t) and pkj∗(t) are entries of Pi(t) and P∗(t), then

pkj∗(t) = lim
i→∞

pikj(t), k, j = 1, 2, . . . , n ∀t ≥ 0.

Proof. If the convergence is entrywise, i.e.,

pkj∗(t) = lim
i→∞

pikj(t), k, j = 1, 2, . . . , n,

then we have ∀x ∈ Rn and ∀t ≥ 0

lim
i→∞

xTPi(t)x = lim
i→∞

∑
k,j

pikj(t)xkxj =
∑
k,j

lim
i→∞

pikj(t)xkxj =
∑
k,j

pkj∗(t)xkxj = xTP∗(t)x.

So P∗(t) = limi→∞ Pi(t). Conversely, if Pi(t) converges to P∗(t) for any t ≥ 0, i.e.,
xTP∗(t)x = limi→∞ xTPi(t)x ∀x ∈ Rn, ∀t ≥ 0, or∑

j,q

pjq∗(t)xjxq = lim
i→∞

∑
j,q

pijq(t)xjxq =
∑
j,q

lim
i→∞

pijq(t)xjxq.

Comparing coefficients on both sides (considering x is arbitrary), we obtain

pjq∗(t) = lim
i→∞

pijq(t).

That is, Pi(t) converges to P∗(t) entrywise.
We are interested in a pair of special sequences {Pi(t)} and {Li(t)}, which are

generated by the following procedures.
Procedures.
1. Choose L1(t) ∈ Rn×p for any t ≥ 0.
2. Solve Pi(t), i = 1, 2, . . . , Pi(0) = 0 from

(A+Li(t)C)Pi(t)+Pi(t)(A+Li(t)C)
T +(B+Li(t)D)(B+Li(t)D)

T = Ṗi(t).

3. Set Li+1(t) = −(Pi(t)CT +BDT )R−1, i = 1, 2, . . . , for some R > 0.
Proposition 17. Sequences Pi(t) and Li(t) generated by the above procedures

1–3 always have limits P∗(t) and L∗(t).
Proof. We need only to prove that Pi(t) has a limit P∗(t). Note that we have, for

i = 1, 2, . . . ,

(A+ Li(t)C)Pi(t) + Pi(t)(A+ Li(t)C)
T + (B + Li(t)D)(B + Li(t)D)

T = Ṗi(t),
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(A+Li+1(t)C)Pi+1+Pi+1(A+Li+1(t)C)
T+(B+Li+1(t)D)(B+Li+1(t)D)

T = Ṗi+1(t).

Define ∆Pi(t) = Pi+1 − Pi(t) and ∆Li(t) = Li+1(t)− Li(t); then

(A+ Li+1(t)C)∆Pi(t) + ∆Pi(t)(A+ Li+1(t)C)
T −∆Li(t)R∆LTi (t) = ∆Ṗi(t).

Let Φ(t, τ) be the transition matrix of A+ Li+1(t)C; then we have

∆Pi(t) = −
∫ t

0

Φ(t, s)∆Li(s)R∆LTi (s)Φ
T (t, s)ds,

which gives that ∆Pi(t) ≤ 0 ∀t ≥ 0. This means that for any x ∈ Rn

0 ≤ · · · ≤ xTPi+1(t)x ≤ xTPi(t)x ≤ · · · ≤ xTP1(t)x ∀t ≥ 0.

Hence limi→∞ xTPi(t)x exists and

lim
i→∞

xTPi(t)x = lim
i→∞

∑
k,j

pikj(t)(t)xkxj =
∑
k,j

lim
i→∞

pikj(t)xkxj

=
∑
k,j

pkj∗(t)xkxj = xTP∗(t)x,

where pkj∗(t) = limi→∞ pikj(t) ∀t ≥ 0 and P∗(t) = [pkj∗(t)]. Therefore, Pi(t) has a
limit and so does Li(t) with

L∗(t) = lim
i→∞

Li+1(t) = − lim
i→∞

(Pi(t)C
T +BDT )R−1 = −(P∗(t)CT +BDT )R−1.

Lemma 18. For sequences Pi(t) and Li(t) generated by the procedures 1–3, if
P∗(t) and L∗(t) are the limit points of these sequences, then P∗(t) ≥ 0 solves

(A+ L∗(t)C)P∗(t) + P∗(t)(A+ L∗(t)C)T + (B + L∗(t)D)(B + L∗(t)D)T = Ṗ∗(t),

where L∗(t) = −(P∗(t)CT +BDT )R−1.
Proof. Suppose P∗(t) and L∗(t) are the limit points of sequences Pi(t) and

Li(t). Let pikj(t) and pkj∗(t) be entries of Pi(t) and P∗(t). Let limq(t) and lmq∗(t)
be entries of Li(t) and L∗(t). By Proposition 16, we have entrywise convergence
pkj∗(t) = limi→∞ pikj(t), k, j = 1, 2, . . . , n, and, consequently, for any m = 1, . . . , n,
and q = 1, . . . , p,

lmq∗(t) = lim
i→∞

limq(t)(p
i
kj(t), k, j = 1, 2, . . . , n) = limq(t)( lim

i→∞
pikj(t), k, j = 1, 2, . . . , n)

since limq(t) is a continuous function of p
i
kj(t), k, j = 1, 2, . . . , n.

Next we define

F (Pi(t), Li(t)) = Ṗi(t)−(A+Li(t)C)Pi(t)+Pi(t)(A+Li(t)C)
T+(B+Li(t)D)(B+Li(t)D)

T .

Obviously, F (Pi(t), Li(t)) = 0 ∀i = 1, 2, . . . ,∀t ≥ 0. Let f ikj(t), k, j = 1, . . . , n be

entries of F (Pi(t), Li(t)); then they are continuous about all p
i
kj(t), ṗ

i
kj(t), and limq(t).

Therefore,

fkj∗(t) = lim
i→∞

f ikj(t)(p
i
kj(t), l

i
mq(t)) = 0, k, j = 1, . . . , n, ∀t ≥ 0.
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This shows that F (P∗(t), L∗(t)) = 0 or

(A+ L∗(t)C)P∗(t) + P∗(t)(A+ L∗(t)C)T + (B + L∗(t)D)(B + L∗(t)D)T = Ṗ∗(t),

where L∗(t) = −(P∗(t)CT +BDT )R−1.
Now we are in the position to prove the necessity of Theorem 6.
Proof. If there are L(t) and a P (t), P (0) = 0, such that

(A+ L(t)C)P (t) + P (t)(A+ L(t)C)T + (B + L(t)D)(B + L(t)D)T = Ṗ (t),

and J1 achieves the minimum value at L(t), take L1(t) = L(t) as the initial value and
generate the sequences Pi(t) and Li(t) using the procedures 1–3. Then the following
claims can be made (see Proposition 17):

1. 0 ≤ · · · ≤ Pi+1(t) ≤ Pi(t) ≤ · · · ≤ P1(t).
2. {Pi(t), i = 1, 2, . . . , } and {Li(t), i = 1, 2, . . . , } have limit points P∗(t) and

L∗(t) and P∗(t) ≤ P1(t) ∀t ≥ 0.
Hence, by Lemma 18, P∗(t) and L∗(t) = −(P∗(t)CT +BDT )R−1 solve

(A+ L∗(t)C)P∗(t) + P∗(t)(A+ L∗(t)C)T + (B + L∗(t)D)(B + L∗(t)D)T = Ṗ∗(t),

and, clearly, J1(L) achieves the minimum value at L∗(t) = −(P∗(t)CT+
BDT )R−1.
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Abstract. In this paper the effect of bounded input perturbations on the stability of nonlinear
globally asymptotically stable delay differential equations is analyzed. We investigate under which
conditions global stability is preserved and if not, whether semiglobal stabilization is possible by
controlling the size or shape of the perturbation. These results are used to study the stabilization of
partially linear cascade systems with partial state feedback.
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AMS subject classifications. 34K20, 93A20, 93D15

PII. S0363012999365042

1. Introduction. The stability analysis of the series (cascade) interconnection
of two stable nonlinear systems described by ODEs is a classical subject in system
theory [8, 9, 11].

stable
  NL

stable
  NLu

Contrary to the linear case, the zero-input global asymptotic stability of each
subsystem does not imply the zero-input global asymptotic stability of the intercon-
nection. The output of the first subsystem acts as a transient input disturbance which
can be sufficient to destabilize the second subsystem. In the ODE case, such desta-
bilizing mechanisms are well understood since the seminal work by Sussmann and
Kokotovic [10]. They can be subtle but are almost invariably associated to a finite
escape time in the second subsystem. (Some states blow up to infinity in a finite
time.) The present paper explores similar instability mechanisms generated by the
series interconnection of nonlinear delay differential equations (DDEs). In particu-
lar, we consider the situation where the destabilizing effect of the interconnection is
delayed and examine the difference from the ODE situation.

Instrumental to the stability analysis of cascades, we first study the effect of
external (affine) perturbations w on the stability of nonlinear time delay systems

ż = f(z, z(t− τ)) + Ψ(z, z(t− τ))w, z ∈ R
n, w ∈ R,(1.1)

where we assume that the equilibrum z = 0 of ż = f(z, z(t − τ)) is globally asymp-
totically stable (GAS). We consider perturbations w = η(t) which belong to both L1

and L∞ and investigate the region in the space of initial conditions which give rise
to bounded solutions under various assumptions on the system and the perturbation.
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These results are strengthened to asymptotic stability results when the perturbation
is generated by a GAS DDE.

We consider both global and semiglobal results. In the ODE-case, an obstruction
to global stability is formed by the fact that arbitrarily small input perturbations can
cause the state to escape to infinity in a finite time, for instance, when the intercon-
nection term Ψ(z) is nonlinear in z. This is studied extensively in the literature in
the context of the stability of cascades, see, e.g., [10, 8] and the references therein.
Even though delayed perturbations do not cause a finite escape time, we explain a
similar mechanism giving rise to unbounded solutions, caused by nonlinear delayed
interconnection terms.

In situations where unbounded solutions are inevitable for large initial conditions,
we investigate under which conditions trajectories can be bounded semiglobally in the
space of initial conditions, in case the perturbation is parametrized, i.e., η = η(t, a).
Hereby we let the parameter a control the L1 or L∞ norm of the perturbation. We
also consider the effect of concentrating the perturbation in an arbitrarily small time-
interval. The study of controlled perturbations is motivated by the situation where
the perturbation is the output of a controlled system; see Figure 1.1.

stable
  NL

stable
  NL controlled perturbationu

 feedback controller

Fig. 1.1. Partial state feedback as a way of controlling the input perturbation to the second
subsystem.

In particular, we will be interested in the stabilization of the cascade




ż = f(z, z(t− τ)) + Ψ(z, z(t− τ))y,

ξ̇ = Aξ + Bu,
y = Cξ, ξ ∈ R

µ, u, y ∈ R,
(1.2)

where the perturbation w in (1.1) is now the output of a linear system. We assume
that the pair (A,B) is controllable and will control the “perturbation” y with linear
state feedback

u = Fξ.(1.3)

In the ODE-case this stabilization problem has been extensively studied in the litera-
ture, for instance, in [12, 1, 10, 6]. Because the output of the linear subsystem, which
acts as a destabilizing disturbance to the nonlinear subsystem, can cause trajectories
to escape to infinity in a finite time, one typically tries to drive the “perturbation” y
quickly to zero. However, a high-gain control, placing all observable eigenvalues far
into the left half plane, will not necessarily result in large stability regions because
of the fast peaking phenomenon [10, 8]. Peaking is a structural property of the ξ-
subsystem whereby achieving faster convergence implies larger overshoots which can
in turn destabilize the cascade. Semiglobal stability results are obtained when impos-
ing structural assumptions on the ξ-subsystem (a nonpeaking system) or by imposing
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conditions on the z-subsystem and the growth of the interconnection term Ψ: for
instance, in [8, Theorem 4.41] one requires a nonpeaking linear subsystem, and the
conditions of [10, Theorem 9.1] are a trade-off between peaking and growth.

The structure of the paper is as follows. After some preliminaries (section 2),
we study the effect of bounded input perturbations in sections 3 and 4 and use the
obtained results to study the stabilization of partially linear cascades with partial
state feedback in section 5.

2. Preliminaries. The state of the delay equation (1.1) at time t can be de-
scribed as a vector z(t) ∈ R

n or as a function segment zt defined by

zt(θ) = z(t + θ), θ ∈ [−τ, 0].

Therefore, delay equations form a special class of functional differential equations
[2, 4, 5].

We assume that the right-hand side of (1.1) is continuous in all of its arguments
and Lipschitz in z and z(t−τ). Then a solution is uniquely defined by specifying as an
initial condition a function segment z0 whereby z0 ∈ C([−τ, 0], R

n), the Banach space
of continuous functions mapping the delay-interval [−τ, 0] into R

n and equipped with
the supremum-norm ‖.‖s.

Sufficient conditions for stability of a functional differential equation are provided
by the theory of Lyapunov functionals [2, 5], a generalization of the classical Lyapunov
theory for ODEs. For functional differential equations of the form

ż = F (zt),(2.1)

according to [2, Definition V.5.3], a mapping V : C([−τ, 0], R
n) → R is called a

Lyapunov functional on a set G if V is continuous on G and V̇ ≤ 0 on G. Here V̇ is
the upper-right-hand derivative of V along the solutions of (2.1), i.e.,

V̇ (zt) = lim sup
h→0+

1

h
[V (zt+h)− V (zt)] .

The following theorem, taken from [2, Corollary V.3.1], provides sufficient conditions
for global asymptotic stability.

Theorem 2.1. Suppose z = 0 is a solution of (2.1) and V : C([−τ, 0], R
n)→ R

is continuous with V (0) = 0. When there exist nonnegative functions a(r) and b(r)
with a(r) > 0 as r > 0 and a(r)→∞ as r →∞ such that

a(‖z(t)‖) ≤ V (zt), V̇ (zt) ≤ −b(‖z(t)‖),
then the zero solution is stable, and every solution is bounded. If, in addition, b(r) is
positive definite, then every solution approaches zero as t→∞.

Instead of working with functionals, it is also possible to use classical Lyapunov
functions when relaxing the condition V̇ ≤ 0. This approach, leading to the so-called
Lyapunov–Razumikhin theorems [5], is not considered in this paper.

In most of the theorems of the paper, the condition of global asymptotic stability
for the unperturbed system ((1.1) with η = 0) is not sufficient. When the dimension
of the system is higher than one, we sometimes need precise information about the
interaction of different components of the state z(t). This information is captured in
the Lyapunov functional, associated with the unperturbed system. Therefore, when
necessary, we will restrict ourselves to the class of DDEs, satisfying the following
assumption.
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Assumption 2.2. The unperturbed system ż = f(z, z(t−τ)) is delay-independent
globally asymptotically stable (i.e., GAS for all values of the delay) with a Lyapunov
functional of the form

V (zt) = k(z) +

∫ t

t−τ

l(z(θ))dθ(2.2)

with k(z) > 0, l(z) ≥ 0, and k(z) radially unbounded, such that the conditions of
Theorem 2.1 (with b(r) positive definite) are satisfied.

This particular choice is motivated by the fact that such functionals are used for
a class of linear time-delay systems [2, 5]. Furthermore, choosing a delay-independent
stable unperturbed system also allows us to investigate whether the results obtained
in the presence of perturbations are still global in the delay. Note that in the ODE-
case (2.2) reduces to V = k(z) and hardly forms any restriction because under mild
conditions its existence is guaranteed by converse theorems.

The perturbation η(t) ∈ Lp([0, ∞)) when ∃M such that ‖η‖p =
[∫∞

0
|η(s)|pds] 1

p =
M <∞, η(t) ∈ L∞, when ‖η‖∞ = supt≥0 |η(t)| <∞.

We assume η in (1.1) to be continuous and to belong to both L1 and L∞. When
the perturbation is generated by an autonomous DDE, ξ̇ = a(ξ, ξ(t−τ)), η = b(ξ, ξ(t−
τ)) with a and b continuous, locally Lipschitz and b(0, 0) = 0, which is GAS and locally
exponentially stable (LES), these assumptions are satisfied.

In the paper we show that when the unperturbed system is delay-independent
stable and the initial conditions are bounded (i.e., ‖z0‖s ≤ R <∞), arbitrarily small
perturbations may cause unbounded trajectories provided the delay is large enough;
hence arbitrarily small perturbations may destroy the delay-independent stability
property. For such cases it is instructive to investigate whether semiglobal stabilization
in the delay is possible: with a parametrized perturbation η(t, a), we say that the
trajectories of (1.1) can be bounded semiglobally in z and semiglobally in the delay
if for each compact region Ω ⊂ R

n and ∀τ̄ ∈ R
+ there exists a positive number ā

such that for every delay value τ ≤ τ̄ , all initial conditions z0 ∈ C([−τ, 0], R
n), with

z0(θ) ∈ Ω, θ ∈ [−τ, 0], give rise to bounded trajectories when a ≥ ā.

A C0 function γ : R → R belongs to class κ if it is strictly increasing and
γ(0) = 0. The symbol ‖.‖ is used for the Euclidean norm in R

n, and by ‖x, y‖ we

mean
(‖x‖2 + ‖y‖2) 1

2 .

3. The mechanism of destabilizing perturbations. In contrast to linear
systems, small perturbations (in the L1 or L∞ sense) are sufficient to destabilize
nonlinear differential equations. In the ODE-case, the nonlinear mechanism for insta-
bility is well known: small perturbations suffice to make solutions escape to infinity
in a finite time, for instance, when the interconnection term Ψ is nonlinear in z. This
is illustrated with the following example:

ż = −z + z2η,
η̇ = −aη,(3.1)

which can be solved analytically for z to give

z(t) =
e−t

1
z(0) −

∫ t
0
e−sη(s)ds

=
e−t

1
z(0) − η(0)

∫ t
0
e−(1+a)sds

.(3.2)
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If z(0)η(0) > 1 + a, z escapes to infinity in a finite time te, which is given by

te =
1

1 + a
log

(
z(0)η(0)

z(0)η(0)− (1 + a)

)
.(3.3)

This last expression shows that the escape time becomes smaller as the initial condi-
tions are chosen larger, and, as a consequence, however fast η(t) would be driven to
zero in the first equation of (3.1), z(0) could always be chosen large enough for the
solution to escape to infinity in finite time.

In the simple example (3.1), the perturbation is the output of a stable linear
system. Its initial condition η(0) dictates the L∞ norm of the perturbation, while
the parameter a controls its L1 norm. Making these norms arbitrarily small does not
result in global stability. This is due to the nonlinear growth of the interconnection
term.

One may wonder whether the instability mechanism encountered in the ODE
situation (3.1) will persist in the DDE situation{

ż = −bz + z(t− τ)2η,
η̇ = −aη.(3.4)

In contrast to (3.1), system (3.4) exhibits no finite escape time. This can be proven by
application of the method of steps, i.e., from the boundedness of z(θ), θ ∈ [(k−1)τ, kτ ],
we conclude boundedness in [kτ, (k + 1)τ ] of ż(θ) and thus of z(θ). Nevertheless
the exponentially decaying input η still causes unbounded solutions in (3.4): this
particular system is easily seen to have an exponential solution ze(t) = a+b

η(0)e
2aτeat.

The instability mechanism can be explained by the superlinear divergence of the
solutions of ż = zα(t− τ) for α > 1.

Proposition 3.1.

ż = z(t− τ)α, α > 1,

has solutions which diverge faster than any exponential function.
Proof. Take as an initial condition a strictly positive solution segment z0 over

[−τ, 0] with z(0) > 1. For t ≥ 0, the trajectory is monotonically increasing. This
means that in the interval [kτ, (k + 1)τ ] for k ≥ 1,

z((k − 1)τ)α ≤ ż ≤ z(kτ)α.

The solution at point kτ, k ≥ 1 is bounded below by the sequence satisfying

zk+1 = zk + τzαk−1, z0 = z(0), z1 = z(τ),

which has limit +∞. The ratio Rk = zk
zk−1

satisfies

Rk+1Rk = Rk + τzα−1
k−1 ,

and, consequently, (Rk+1 − 1)Rk tends to infinity. However, for an exponential func-
tion eat, R = eaτ and (R− 1)R is constant.

Because of the faster than exponential growth of z in (3.4), the arbitrarily fast
exponential decay of η cannot counter the blow-up caused by the nonlinearity in
z(t− τ), and hence the system is not GAS.
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The instability mechanism illustrated by (3.1) and (3.4) can be avoided by im-
posing suitable growth restrictions on the interconnection term Ψ. When the unper-
turbed system is scalar, it is sufficient to restrict the interconnection term to have
linear growth in both of its arguments, i.e.,

∃c1, c2 > 0 such that ‖Ψ(z, z(t− τ))‖ ≤ c1 + c2‖z, z(t− τ)‖.(3.5)

This linear growth condition is by itself not sufficient, however, if the unperturbed
system has dimension greater than one. In that case, the interaction of the different
components of the state z(t) can still cause “nonlinear” effects leading to unbounded
solutions. An illustration of this phenomenon is given by the system


ż1 = −z1 + z2η(t),
ż2 = −z2 + z2

1z2,
η̇ = −η,

(3.6)

which was shown in [8] to have unbounded solutions, despite the linearity of the
interconnection. The instability is caused by the mutual interaction between z1 and
z2 when η = 0.

The following theorem, inspired by Theorem 4.7 in [8], provides sufficient condi-
tions for bounded solutions. To prevent the instability mechanism due to interacting
states, conditions are put on the Lyapunov functional of the unperturbed system.

Theorem 3.2. Assume that the system ż = f(z, z(t−τ))+Ψ(z, z(t−τ))η satisfies
Assumption 2.2 and that the interconnection term Ψ(z, z(t− τ)) grows linearly in its
arguments, i.e., satisfies (3.5). Furthermore, if the perturbation η(t) ∈ L1([0,∞)) and
k(z) satisfies

(i) α1‖z‖γ ≤ k(z) ≤ α2‖z‖γ , 0 < α1 < α2 <∞, 1 ≤ γ <∞,
(ii) ||dkdz || ||z|| ≤ ck(z),

then all trajectories of the perturbed system are bounded for all values of the time
delay.

Condition (ii) is sometimes called a polynomial growth condition because it is
satisfied if k(z) is polynomial in z but not satisfied if k(z) is exponential in z.

Proof. Along a trajectory z(t) we have

V̇ ≤
∥∥∥∥dkdz

∥∥∥∥ ‖Ψ(z, z(t− τ))‖|η|

≤ c
k(z)

‖z‖ (c1 + c2
√‖z‖2 + ‖z(t− τ)‖2)|η|

≤ cα
1/γ
2 k(z)1−1/γ

(
c1 + c2

√
k(z)2/γ

α
2/γ
1

+ k(z(t−τ))2/γ

α
2/γ
1

)
|η|

≤ cα
1/γ
2 (c1k(z)1−1/γ + c2α

−1/γ
1

√
k(z)2 + k(z)2−2/γk(z(t− τ))2/γ)|η|

≤ cα
1/γ
2 (c1V

1−1/γ + c2α
−1/γ
1

√
V 2 + V 2−2/γk(z(t− τ))2/γ)|η|.

(3.7)

For t ∈ [0, τ ], z(t) cannot escape to infinity because k(z(t − τ)) is bounded
(calculated from the initial condition), and the above estimate can be integrated over
the interval since the right-hand side is linear in V and η ∈ L1.

For t ≥ τ we can use the estimate k(z(t− τ)) ≤ V (z(t− τ)):

V̇ ≤ cα
1/γ
2

(
c1V

1−1/γ + c2α
−1/γ
1

√
V 2 + V 2−2/γV (t− τ)2/γ

)
|η|.
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Because this estimate for V̇ is increasing in both of its arguments, an upper bound
for V along the trajectory is described by

Ẇ = cα
1/γ
2

(
c1W

1−1/γ + c2α
−1/γ
1

√
W 2 + W 2−2/γW (t− τ)2/γ

)
|η|

with W (zτ ) = V (zτ ) as the initial condition. Via the method of steps, it is clear that
W cannot escape to infinity in a finite time. From t = τ on, W is monotonically
increasing. As a consequence, for t ≥ 2τ , W (t) ≥W (t− τ) and

Ẇ ≤ cα
1/γ
2

(
c1W

1−1/γ + c2α
−1/γ
1

√
2W
)
|η(t)|,

and this estimate can be integrated leading to uniform boundedness of W (t) and V (t)
in [0, ∞) since η(t) ∈ L1. Hence the trajectory z(t) is bounded.

Remark 3.3. When the interconnection term is undelayed, i.e., Ψ depends only
on the argument z, condition (i) in Theorem 3.2 can be dropped, and as a special
case (f also undelayed), Theorem 4.7 of [8] is recovered. The presence of a delay in
the unperturbed system does not provide additional complications compared to the
ODE-case, and the proof is analogous to the proof of Theorem 4.7 of [8].

Along a trajectory, we now have

V̇ ≤
∥∥∥∥dkdz

∥∥∥∥ (c1 + c2‖z‖)|η|.

When ‖z‖ ≥ 1 it follows from ‖dkdz ‖ ≤ ck(z)
‖z‖ that V̇ ≤ c(c1 + c2)V |η|. When

‖z‖ ≤ 1, we have V̇ ≤ M |η| with M = sup‖z‖≤1 ‖dkdz ‖(c1 + c2‖z‖), and when, in

addition, V ≥ 1, we have V̇ ≤MV |η|.
Hence the following estimate holds whenever V ≥ 1:

V̇ ≤ max (c(c1 + c2),M)V |η|.
From the explicit integration of this estimate the boundedness of V and the trajectory
are proven.

4. Semiglobal results for controlled perturbations. Although no global
results can be guaranteed in the absence of growth conditions, the examples in the
previous section suggest that one should be able to bound the solutions semiglobally
in the space of initial conditions by decreasing the size of the perturbation. Therefore,
we assume that the perturbation is parametrized:

η = η(t, a).

We will consider two cases: (a) parameter a controls the L1 or the L∞ norm of η,
and (b) a regulates the shape of a perturbation with fixed L1 norm.

4.1. Controlling the L1 norm and the L∞ norm of the perturbation.
We first assume that the L1 norm of η is controlled. We have the following result.

Theorem 4.1. Consider the system

ż = f(z, z(t− τ)) + Ψ(z, z(t− τ))η(t, a),

and suppose that the unperturbed system is GAS with the Lyapunov functional V (zt)
satisfying Assumption 2.2. If, furthermore, ‖η(t, a)‖1 → 0 as a → ∞, then the
trajectories can be bounded semiglobally both in z and the delay τ by increasing a.
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Proof. Let τ ≥ 0 be fixed, and denote by Ω the desired stability domain in R
n,

i.e., such that all trajectories z(t) with initial condition z0(θ) ∈ Ω for all θ ∈ [−τ, 0]
are bounded. Let Vc = supz0∈Ω V (z0). Along a trajectory starting in Ω, we have

V̇ =
dk

dz
f(z, z(t− τ)) + l(z(t))− l(z(t− τ)) +

dk

dz
Ψ(z, z(t− τ))η(t, a)

≤ |dk
dz

Ψ(z, z(t− τ))|.|η(t, a)|.

As long as V (t) ≤ 2Vc, both z(t) and z(t−τ) belong to a compact set. Hence ∃M > 0
such that |dkdzΨ(z, z(t− τ)| ≤M and

V (t)− V (0) ≤M

∫ ∞

0

|η(s, a)|ds = M‖η(t, a)‖1.

When a→∞, the maximal increase of V tends to zero. Hence there exists a number
ā > such that for a ≥ ā, the assumption V (t) ≤ 2Vc is valid for all t ≥ 0 and the
trajectories with initial condition in Ω are bounded.

Note that for a fixed region Ω ⊂ R
n, Vc increases with τ and this influences both

the value of M in the estimation of |dkdzΨ(z, z(t − τ)| and the critical value ā of a.
However, for any delay value τ in a compact interval [0, τ̄ ], the trajectories starting
in Ω are bounded when taking a ≥ supτ∈[0, τ̄ ] ā(τ). Hence the trajectories can be
bounded semiglobally in both the state and the delay.

This result above is natural because for a given initial condition, a certain amount
of energy is needed for destabilization, expressed mathematically by ‖η‖1. However,
global stability in the state is not possible because the required energy can become
arbitrarily small for large initial conditions; see, for instance, example (3.1). Later we
will discuss why the trajectories cannot be bounded globally in the delay.

Now we consider the case whereby the L∞ norm of the perturbation is controlled.
Theorem 4.2. Consider the system

ż = f(z, z(t− τ)) + Ψ(z, z(t− τ))η(t, a).

Suppose that the unperturbed system is GAS with the Lyapunov functional V (zt) sat-
isfying Assumption 2.2. If ‖η(t, a)‖∞ → 0 as a→∞, the trajectories of the perturbed
system can be bounded semiglobally in both z and the delay τ .

Proof. As in the proof of Theorem 4.1, it is sufficient to prove semiglobal bound-
edness in the state for a fixed τ ≥ 0. Let Ω and Vc be defined as in the proof of
Theorem 4.1. Define Ω2 = {z ∈ R

n : k(z) ≤ 4Vc}, and for some (small) ε > 0,
Ωε = {z ∈ R

n : ‖z‖ ≤ ε} ⊂ Ω.
Because of Assumption 2.2, the time derivative of V along a trajectory satisfies

V̇ =
dk

dz
f(z, z(t− τ)) + l(z(t))− l(z(t− τ)) +

dk

dz
Ψ(z, z(t− τ))η(t, a)

≤ −b(‖z‖) +

∣∣∣∣dkdzΨ(z, z(t− τ))

∣∣∣∣ η(t, a).

(4.1)

Let M = supz,y∈Ω2
|dkdzΨ(z, y)|.

When z(t) ∈ Ω2\Ωε we have, since b is positive definite, V̇ ≤ −b(‖z‖)+M‖η‖∞ ≤
−N for some number N > 0, provided ‖η‖∞ is small. For z(t) ∈ Ωε, we have the
estimate V̇ ≤M‖η‖∞.
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Now we prove by contradiction that all trajectories with initial condition in Ω are
bounded for small ‖η‖∞. Suppose that a solution starting in Ω (hence V (z0) ≤ Vc)
is unbounded. Then it has to cross the “level set” 2Vc. Assume that this happens
for the first time at t∗. Note that for small ‖η‖∞, t∗ is large. During the interval
[t∗−τ, t∗], V can both increase and decrease. When V increases in this time-interval,
z(t) ∈ Ωε, and the increase ∆V is limited: ∆V ≤M‖η‖∞τ . When z(t) is outside Ωε

during a time-interval ∆t ⊂ [t∗ − τ, t∗], V always decreases because V̇ ≤ −N . Since
V (t∗) > V (t∗ − τ), we have

N∆t ≤Mτ‖η‖∞.(4.2)

Hence by reducing ‖η(t, a)‖∞ we can make the time-interval ∆t arbitrarily small. On
the other hand, there exists a constant L, independently of a, such that∥∥∥∥dzdt

∥∥∥∥ ≤ ‖f(z, z(t− τ)) + Ψ(z, z(t− τ))η(t, a)‖ ≤ L <∞

when zt is inside Ω2, because f and Ψ map bounded sets into bounded sets. Hence
with |t2 − t1| ≤ ∆t we have ‖z(t1)− z(t2)‖ ≤ L∆t. Because of (4.2) we can increase
a (reduce ‖η(t, a)‖∞) such that L∆t ≤ ε, and consequently we have

‖z(t)‖ ≤ 2ε, t ∈ [t∗ − τ, t∗].

If ε was chosen such that Ω2ε = {z ∈ R
n : ‖z‖ ≤ 2ε} lies inside Ω, we have a contra-

diction because this implies V (t∗) ≤ Vc. Hence a trajectory can never cross the level
set 2Vc and is bounded.

The results of Theorems 4.1 and 4.2 are not global in the delay, even though
the unperturbed system is delay-independent stable. Global results in the delay are
generally not possible. We illustrate this fact with the following example, where it
is impossible to bound the trajectories semiglobally in the state and globally in the
delay, even if we make the size of the perturbation arbitrarily small with respect to
the L1 and L∞ norms.

Example 4.3. Consider the following system:{
ż1 = −2z1 + z1(t− τ),

ż2 = − (z1−2)2−1
z2
2+1

z2 + z3
2η(t, a).

(4.3)

The unperturbed system, i.e., (4.3) with η = 0, is delay-independent stable. This is
proven with the Lyapunov functional

V = z2
1 +

∫ t

t−τ

z2
1dθ +

1

2
z2
2 .

Its time derivative,

V̇ = [z1 z1(t− τ)]

[ −3 1
1 −1

] [
z1

z1(t− τ)

]
−z2

2
(z1−2)2−1

z2
2+1

≤ −2z2
1 − z2

2
(z1−2)2−1

z2
2+1

,

is negative definite: when z1 ∈ [1, 3], both terms are negative, and in the other case
the second term is dominated, because it saturates in z2. From this it follows that
the conditions of Assumption 2.2 are satisfied.
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With the perturbation

η(t, a) = (t− t0)2e−a(t−t0) t ≥ t0 = a3

= 0, t ≤ t0,
(4.4)

whereby increasing a leads to a reduction of both ‖η‖1 and ‖η‖∞, we cannot bound
the trajectories semiglobally in the state and globally in τ : for each value of a we
can find a bounded initial condition (upper bound independent of a), leading to a
diverging solution, provided τ is large enough. The first equation of (4.3) has a
solution z1(t) = 2.5e−αt, where −α is the real solution of

λ = −2 + e−λτ .

Clearly, α → 0 as τ → ∞. Since z1(−τ) = 2.5eατ → 5 as τ → ∞, uniform bound-
edness in τ of this solution over the interval [−τ, 0] (initial condition) is guaranteed.
Furthermore, we have

z1(t) ∈ [1.5, 2.5]

when t ∈ [0, 1
α log 5

3 ], and thus

ż2 ≥ z2
2(1 + z2

2)
+ z3

2η(t, a)(4.5)

for any positive initial condition z2(0). A rather lengthy calculation shows that with
z2(0) = 1 and the perturbation (4.4), the solution of (4.5) always escapes to infinity
in a finite time tf (a). Hence this also holds for the solution of the system (4.3)–(4.4)
when the delay is large enough such that

1

α(τ)
log

5

3
> tf (a).

This result is not in contradiction with the intuition that a perturbation with small
L1 norm can only cause a finite escape time when the initial condition is far away
from the origin, as illustrated with example (3.1). In the system (4.3) with η = 0, z2
is driven away from the origin as long as z1 ∈ [1, 3]. By increasing the delay in the
first equation, we can keep z1 in this interval as long as desired. Thus the diverging
transient of the unperturbed system is used to drive the state away from the origin,
far enough to make the perturbation cause escape.

4.2. Controlling the shape of the perturbation. We now assume that the
shape of a perturbation with a fixed L1 norm can be controlled and consider the
influence of a concentration of the perturbation in arbitrarily small time-intervals
near t = 0. In the ODE-case this does not allow improvement of stability properties.
This is illustrated with the first equation of example (3.1): instability occurs when
z(0) ≥ 1∫ t

0
e−sη(s)ds

, and by concentrating the perturbation the stability domain may

even shrink, because the beneficial influence of damping is reduced. In the DDE-
case however, when the interconnection term is linear in the undelayed argument, it
behaves linearly during one delay interval, preventing escape. Moreover, starting from
a compact region of initial conditions, the reachable set after one delay interval can
be bounded independently of the shape of the perturbation (because of the fixed L1

norm). After one delay interval we are in the situation treated in Theorem 4.1. This
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is expressed in the following theorem. As in Theorem 3.2, the polynomial growth
condition prevents a destabilizing interaction between different components of the
state vector z(t).

Theorem 4.4. Consider

ż(t) = f(z(t), z(t− τ)) + Ψ(z(t), z(t− τ))η(t, a),(4.6)

and suppose that the unperturbed system is GAS with the Lyapunov functional V (zt) =

k(z)+
∫ t
t−τ

l(z(θ))dθ satisfying Assumption 2.2. Let k(z) satisfy the polynomial growth

condition ‖dkdz ‖‖z‖ ≤ ck(z), and assume that Ψ has linear growth in z(t), i.e., there
exist two class-κ functions γ1 and γ2 such that

‖Ψ(z, z(t− τ))‖ ≤ γ1(‖z(t− τ)‖) + γ2(‖z(t− τ)‖)‖z‖.
Assume further that ‖η(t, a)‖1 < M for some constant M independent of a, and that
lima→∞

∫∞
t
|η(s, a)|ds = 0 for all t > 0. Then the solutions of (4.6) can be bounded

semiglobally in z and for all τ ∈ [τ1, τ2] with 0 < τ1 ≤ τ2 <∞.
Proof. Consider first a fixed value of τ ∈ [τ1, τ2]. Let Ω be the desired stabil-

ity domain in R
n. Let Vmax = max

(
supzt∈Ω V (zt), 1

)
. The time-derivative of the

functional V along a trajectory starting in Ω satisfies

V̇ ≤
∥∥∥∥dkdz

∥∥∥∥ .‖Ψ(z, z(t− τ))‖.|η(t, a)|

≤
∥∥∥∥dkdz

∥∥∥∥ . (γ1(‖z(t− τ)‖) + γ2(‖z(t− τ)‖)‖z‖) .|η(t, a)|.

Consider the interval [0, τ ]. Then z(t − τ) belongs to the compact set Ω. When
‖z‖ ≥ 1, there exists a constant c1 such that

V̇ ≤ ck(z).

(
γ1(‖z(t− τ)‖)

‖z‖ + γ2(‖z(t− τ)‖)
)
|η(t, a)|

≤ cV |η(t, a)|
(
γ1(‖z(t− τ)‖)

‖z‖ + γ2(‖z(t− τ)‖)
)

≤ cc1V |η(t, a)|.

(4.7)

When ‖z‖ ≤ 1 and V ≥ 1, we have

V̇ ≤ c2|η(t, a)| ≤ c2V |η(t, a)|(4.8)

with c2 = sup
{‖dkdz ‖‖Ψ(z, z(t− τ))‖ : ‖z‖ ≤ 1, z(t− τ) ∈ Ω

}
. From (4.7) and (4.8)

we have, whenever V ≥ 1 in [0, τ ], V̇ ≤ c3V |η(t, a)| with c3 = max(cc1, c2). Hence
for all t ∈ [0, τ ],

V ≤ Vmaxe
c3
∫ t

0
|η(s,a)|ds ≤ Vmaxe

c3‖η(t,a)‖1 ≤ Vmaxe
c3M .

As a consequence, k(z) and ‖z(t)‖ can also be uniformly bounded over the interval
[0, τ ], independently of a. Hence there exists a compact set Ω2 ⊂ R

n such that
zτ ∈ Ω2, whatever the value of a and z0 ∈ Ω.

Now we can translate the original problem over one delay interval: at time τ the
“initial conditions” belong to the compact set Ω2, and with t′ = t− τ we have

‖η(t′, a)‖1 =

∫ ∞

τ

|η(s, a)|ds→ 0 as a→∞.
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Because of Theorem 4.1, we can increase a such that all solutions starting in Ω2 are
bounded.

Until now we assumed a fixed τ . But because [τ1, τ2] is compact, we can take
the largest threshold of a for bounded solutions over this delay interval.

Remark 4.5. Whenever the perturbation in (1.1) is generated by a GAS and LES
DDE, the boundedness results are strengthened to asymptotic stability results. This
can be shown following the lines of the proof of Proposition 4.1 in [8]. Stability follows
from a local version of Theorem 4.1, and attractivity follows from the application of
a generalization to the time-delay case of the classical theorem proposed by LaSalle
[2, Theorem V.3.1].

5. Stabilization of partially linear cascades. In the rest of the paper we
consider the stabilization of the cascade (1.2) with the control law (1.3).

From the previous sections it is clear that the input y of the z-subsystem can
act as a destabilizing disturbance. However, the control can drive the output of the
linear system fast to zero. We will investigate under which conditions this is sufficient
to stabilize the whole cascade. An important issue in this context is the so-called
fast peaking phenomenon [10]. This is a structural property of the ξ-system whereby
imposing faster convergence of the output to zero implies larger overshoots which can
in turn destabilize the cascade and may form an obstacle to both global and semiglobal
stabilizability. We start with a short description of the peaking phenomenon and then
apply the results of previous sections to the stabilization of the cascade system (1.2).

Our presentation of the peaking phenomenon is inspired by [10], but, following [8],
we place the phenomenon in an input-output framework rather than an input-state
framework. We also emphasize the relation between a peaking system and the L1

norm of its output.

5.1. The peaking phenomenon. When in the system

ξ̇ = Aξ + Bu,
y = Cξ,

(5.1)

the pair (A,B) is controllable, one can always find state feedback laws u = Fξ result-
ing in an exponential decay rate with exponent −a. Then the output of the closed
loop system satisfies

‖y(t)‖ ≤ γ‖ξ(0)‖e−at,(5.2)

where γ depends on the choice of the feedback gain. We are interested in the lowest
achievable value of γ among different feedback laws and its dependence upon a. This
will be determined by the so-called peaking exponent, which we now define.

Denote by F(a) the collection of all stabilizing feedback laws u : ξ → Fξ with the
additional property that all observable1 eigenvalues λ of (C,AF ), with AF = A+BF ,
satisfy Re(λ) < −a. For a given a and F ∈ F(a), define the smallest value of γ in
(5.2) as

κF (a) = sup
{‖y(t)‖eat} ,

where the supremum is taken over all t ≥ 0 and all initial conditions satisfy ‖ξ(0)‖ ≤ 1.
Now denote κ(a) = infF∈F(a) κF . The output of system (5.1) is said to have peaking

1In [10], where the peaking phenomenon is rather studied in an input-state framework, one places
all eigenvalues to the left of the line λ = −a.
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exponent s when there exist constants α1, α2 such that

α1a
s < κ(a) < α2a

s(5.3)

for large a. When s = 0 the output is said to be nonpeaking.
The peaking exponent s is a structural property related to the zero dynamics.

When the system has relative degree r, it can be transformed (including a preliminary
feedback transformation) into the normal form [3, 1]:{

ξ̇0 = A0ξ0 + B0y,
y(r) = u,

(5.4)

which can be interpreted as an integrator chain linearly coupled with the zero-dynamics
subsystem ξ̇0 = A0ξ0. Using state feedback the output of an integrator chain can be
forced to zero rapidly without peaking [8]. Because of the linear interconnection term,
asymptotic stability of the zero-dynamics subsystem then implies asymptotic stability
of the whole cascade. On the contrary, when the zero dynamics are unstable, some
amount of energy, expressed by

∫∞
0
‖y(t)‖dt, is needed for its stabilization, and there-

fore the output must peak. More precisely, we have the following theorem, proven in
the appendix.

Theorem 5.1. The peaking exponent s equals the number of eigenvalues in the
closed right half plane (RHP) of the zero-dynamics subsystem.

The definition of the peaking exponent (5.3) is based on an upper bound of the
exponentially weighted output, while its L1 norm is important in most of the theorems
of section 4. But because the overshoots related to peaking occur in a fast time-scale
(∼ at), there is a connection. For instance, we have the following theorem, based on
a result of Braslavsky and Middleton [7].

Theorem 5.2. When the output y of system (5.1) is peaking (s ≥ 1), ‖y(t)‖1
cannot be reduced arbitrarily.

Proof. Denote by z0 an unstable eigenvalue of the zero dynamics of (5.1). When
a feedback u = Fξ asymptotically stabilizes the system, the relation between y and
w = u + Fξ in the Laplace domain is given by

Y (s) = C(sI − Ā)−1BW (s) + C(sI − Ā)−1ξ(0)
= H(s)W (s) + C(sI − Ā)−1ξ(0)

with Ā = A + BF . The first term vanishes at z0 because the eigenvalues of the zero
dynamics appear as zeros in the corresponding transfer function H(s), and since the
feedback F is stabilizing, no unstable pole-zero cancellation occurs at z0. Hence

‖y‖1 ≥
∫ ∞

0

|y(t)e−z0t|dt

≥
∣∣∣∣
∫ ∞

0

y(t)e−z0tdt

∣∣∣∣
= |C(z0I − Ā)−1ξ(0)|.

(5.5)

5.2. Nonpeaking cascades. When the ξ-subsystem is minimum-phase and
thus nonpeaking, one can find state feedback laws u = Faξ resulting in

|y(t)| ≤ α2e
−at,

and the L1 norm of the output can be made arbitrarily small. So by Theorem 4.1,
the cascade (1.2) can be semiglobally asymptotically stabilized in both the state and
the delay.
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5.3. Peaking cascades. When the ξ-subsystem is nonminimum-phase, the peak-
ing phenomenon forms an obstacle to semiglobal stabilizability because the L1 norm
of the output cannot be reduced (Theorem 5.2).

For ODE-cascades, we illustrate the peaking obstruction with the following ex-
ample.

Example 5.3. In the cascade,

ż = −z + z2y,

ξ̇1 = ξ1 + ξ2,

ξ̇2 = u, y = −ξ2.

The peaking exponent of the ξ-subsystem is 1 (zero dynamics ξ̇1 = ξ1). The cascade
cannot be stabilized semiglobally since the explicit solution of the first equation is
given by

z(t) =
e−t

1
z(0) −

∫ t
0
e−sy(s)ds

,

whereby
∫∞
0

e−sy(s)ds = ξ1(0). Hence the solution reaches infinity in a finite time

when 0 < 1
ξ1(0)

< z(0).

For DDE-cascades, we consider two cases.
Case 1. Peaking exponent=1. We can apply Theorem 4.4 and obtain semiglobal

stabilizability in the state and in the delay when the interconnection term has linear
growth in the undelayed argument: besides (5.5) the L1 norm of y can also be bounded
from above since there exist feedback laws u = Faξ and a constant α2 such that

‖y(t)‖1 ≤
∫ ∞

0

α2ae
−asds = α2,

and because of the fast time-scale property, the energy can be concentrated since for
all t > 0 ∫ ∞

t

|y(s)|ds ≤
∫ ∞

t

α2ae
−asds→ 0 as a→∞.

Case 2. Peaking exponent > 1. In this case, we expect the L1 norm of y to grow
unbounded with a, as suggested by the following example.

Example 5.4. When ξk is considered as the output of the integrator chain,

ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇n = u,

the peaking exponent is k−1 (Theorem 5.1), and ‖ξk(t)‖1, k = 2, n cannot be reduced
arbitrarily by achieving a faster exponential decay rate. In Proposition 4.32 of [8],
it is shown that with the feedback law u = K(a)ξ = −∑n

k=1 a
n−k+1qk−1ξk, where

all solutions of
∑n−1

k=0 qkλ
k + λn = 0 satisfy Re(λ) < −1, there exists a constant c

independent of a such that

|ξk(t)| ≤ cak−1e−at‖ξ(0)‖;
hence the particular feedback u = K(a)ξ is able to achieve an upper bound which
corresponds to definition (5.3) for each choice of the output y = ξk. It is also shown
in [8] that with the same feedback and with as initial condition ξ1(0) = 1, ξk(0) =
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0, k = 2, n, there exists a constant d such that sk = supt≥0 |ξk(t)| ≥ dak−1. Define
tk, k = 2, n such that |ξk(tk)| = sk. As a consequence,

‖ξk(t)‖1 ≥
∣∣∣∣
∫ tk−1

0

ξk(s)ds

∣∣∣∣ = |ξk−1(tk−1)| ≥ dak−2, k = 3, n,

while the peaking exponent of output y = ξk is k − 1.
With the two following examples, we show that when the energy of an exponen-

tially decaying input perturbation (∼ e−at) grows unbounded with a, an interconnec-
tion term which is linear in the undelayed argument is not sufficient to bound the
solutions semiglobally in the state. Because it is hard to deal in general with outputs
generated by a linear system with peaking exponent s > 1, we use an artificial pertur-
bation ase−at, which has both the fast time-scale property and the suitable growth
rate of the energy (as−1) with respect to a.

Example 5.5. The solutions of equation

ż = −bz + zz(t− τ)αase−at, α > 0,(5.6)

cannot be bounded semiglobally in z by increasing a for any τ > 0 if the “peaking
exponent” s is larger than one.

Proof. Equation (5.6) has an exponential solution ze(t):

ze(t) =

[
( aα + b)eaτ

as

] 1
α

e
a
α t.

Consider the solution z(t) with initial condition z0 ≡ L > 0 on [−τ, 0]. For t ∈ [0, τ ],
z(t) satisfies

ż = −bz + zLαase−at

and consequently coincides on [o, τ ] with

y(t) = LeL
αas−1(1−e−at)−bt.(5.7)

For large a, expression (5.7) describes a lower bound for z(t) on [τ, 2τ ]. Furthermore,
y(t) decreases on this interval since it reaches its maximum in t∗(a) with t∗ → 0 as
a→∞. Thus imposing y(2τ) > ze(2τ) implies that z(t) > ze(t), t ∈ [τ, 2τ ], and from
this one can argue2 that z(t) ≥ ze(t), t ≥ τ . Thus the trajectory starting with initial
condition L on [−τ, 0] is unbounded when

LeL
αas−1(1−e−2aτ )−2bτ > xe(2τ) =

[ a
α + b

as

] 1
α

e
3a
α τ .

When s > 2, for each value of L, the solution is unstable for large a, and thus the
attraction domain of the stable zero solution shrinks to zero. When s = 2, a solution

with initial condition L >
[
3τ
α

] 1
α is unstable for large a.

Even when the interconnection term contains no terms in z(t) but only delayed
terms of z, semiglobal results are still not possible in general, as shown with the
following example.

2From (5.6), intersection at t∗ would imply ż(t∗) > że(t∗) and we have a contradiction.
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Example 5.6. The solutions of the system

ż = −sat(z) + ez(t−τ)ase−at(5.8)

with sat(z) = z when |z| ≤ 1 and sat(z) = sign(z) otherwise cannot be bounded
semiglobally in z by increasing a for any τ > 0 when the “peaking exponent” s is
greater than one.

Proof. When z ≥ 1, (5.8) reduces to

ż = −1 + ez(t−τ)ase−at,

which has the following explicit solution:

zl(t) = at + b, b = aτ − log

(
as

a + 1

)
.

When a is large enough such that b ≥ 1, zl(t) is a solution of (5.8) for all t ≥ 0.
When the initial condition of (5.8) is L on [−τ, 0] one can find a lower bound for

the corresponding solution z(t) on [0, τ ] by integrating

ż = −z + eLase−at, z(0) = L,

yielding

zu(t) = Le−t + e−teL
as

a− 1
(1− e−(a−1)t).

Furthermore, for large a, zu(t) describes a lower bound for this solution in the
interval [0, 2τ ]. When imposing zu(2τ) > zl(2τ), we have for large a, zu(t) >
zl(t) for all t ∈ [τ, 2τ ]. (zu(t) reaches its maximum in t∗(a) → 0 as a → ∞.) Hence
z(t) > zl(t) for all t ∈ [τ, 2τ ] and consequently for all t ≥ τ . Thus the trajectory
with initial condition L on [−τ, 0] is unbounded when

Le−2τ + e−2τeL
as

a− 1
(1− e−(a−1)2τ ) > 3aτ − log

(
as

a + 1

)
.

5.4. Zero dynamics with eigenvalues on the imaginary axis. The sit-
uation where the zero dynamics possess eigenvalues on the imaginary axis but no
eigenvalues in the open RHP deserves special attention. According to Theorem 5.1,
the system is peaking; that is, the L1 norm of the output cannot be reduced arbitrar-
ily. However, this energy can be “spread out” over a long time-interval. It is indeed
well known that a system with all its eigenvalues in the closed left half plane (LHP)
can be stabilized with a low-gain feedback, as expressed by the following theorem
taken from [8].

Theorem 5.7. If a system ξ̇0 = A0ξ0 + B0y is stabilizable and the eigenvalues
of A0 are in the closed left half plane, then it can be stabilized with a low-gain control
law y = K0(a)ξ0 which for large a satisfies

|y(t)| ≤ γ

a
‖ξ0(0)‖.

The infinity norm of such a low-gain control signal can be arbitrarily reduced,
which results, by Theorem 4.2, in satisfactory stabilizability results when it also acts
as an input disturbance of a nonlinear system. This suggests not to force the output
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of (5.1) exponentially fast (∼ e−at) to zero, which results in peaking, but to drive
it rapidly without peaking to the manifold y = K0(a)ξ0, on which the dynamics are
controlled by the low-gain control action. Mathematically, with e = y − K0(a)ξ0
and a feedback transformation v = u + Mξ, the normal form of the ξ-subsystem is
transformed into

ξ̇0 = A0ξ0 + B0K0(a)ξ + B0e,
er = v.

Using a high-gain feedback driving e(t) to zero without peaking, as proven in [8,
Proposition 4.37], one can always force the output to satisfy the constraint

|y(t)| ≤ γ

(
e−at +

1

a

)
‖ξ(0)‖(5.9)

with γ independent of a. A systematic treatment of such high-low-gain control laws
can be found in [6].

For instance, the system {
ξ̇1 = ξ2,

ξ̇2 = u, y = ξ2
(5.10)

is weakly minimum-phase (zero dynamics ξ̇1 = 0). With the high-low gain feedback
u = −ξ1 − aξ2 the explicit solution of (5.10) for large a can be approximated by[

ξ1
ξ2 = y

]
≈ c1e

−at

[
1
a−1

]
+ c2e

− 1
a t

[
1
− 1

a

]
.(5.11)

Perturbations satisfying constraint (5.9) can be decomposed in signals with van-
ishing L1 or L∞ norm. This suggests the combination of Theorems 4.1 and 4.2 as
follows.

Theorem 5.8. Consider the interconnected system

ż = f(z, z(t− τ)) + Ψ(z, z(t− τ))y,

ξ̇ = Aξ + Bu,
y = Cξ.

Suppose that the z-subsystem is GAS with the Lyapunov functional V (zt) satisfying
Assumption 2.2 and the zeros of the ξ-subsystem are in the closed LHP. Then the
interconnected system can be made semiglobally asymptotically stable in both [z, ξ]
and the delay, using only partial-state feedback.

Proof. As explained in Remark 4.5, the origin (z, ξ) = (0, 0) is stable. Let Ω be
the desired region of attraction in the (z, ξ)-space and choose R such that for all
(z0, ξ) ∈ Ω, ‖ξ‖ < R. Because of the assumption on the ξ-subsystem, there exist
partial-state feedback laws such that

‖y(t)‖ ≤ γ‖ξ(0)‖
(
e−at +

1

a

)
≤ γR

(
e−at +

1

a

)

with γ independent of a.
Consider the time-interval [0, 1]. Because∫ 1

0

γR

(
e−at +

1

a

)
→ 0, a→∞,
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one can show, as in the proof of Theorem 4.1, that by taking a large, the increase of
V can be limited arbitrarily. Hence for t ≤ 1, the trajectories can be bounded inside
a compact region Ω2. We can now translate the original problem over one time-unit,
and since

sup
t≥1

γR

(
e−at +

1

a

)
→ 0

as a → ∞, we can, by Theorem 4.2, increase a until the stability domain contains
Ω2. Then all trajectories starting in Ω are bounded and hence converge to the origin
(Remark 4.5).

6. Conclusions. In this paper, we first studied the effect of bounded input
perturbations on the stability of nonlinear delay equations of the form (1.1).

Global stability results are generally not possible without structural assumptions
on the unperturbed system and the interconnection term, because arbitrarily small
perturbations can lead to unbounded trajectories, even when they are exponentially
decaying. In the ODE-case this is caused by the fact that superlinear destabilizing
terms can drive the state to infinity in a finite time. Superlinear delayed terms cannot
cause a finite escape-time but can still make trajectories diverge faster than any
exponential function.

We also considered semiglobal results when the size or shape of the perturbation
can be controlled. We assumed that the unperturbed system is delay-independent
stable. When the L1 or the L∞ norm of the perturbations is brought to zero, tra-
jectories can be bounded semiglobally in both the state and the delay. By means of
an example we explained why global results in the delay are generally not possible.
Next we considered the effect of concentrating a perturbation with a fixed L1 norm
in arbitrarily small time-intervals. This leads to semiglobal stabilizability in both
the state and the delay (compact delay-intervals not containing τ = 0), when the
interconnection term is linear in its undelayed arguments.

Using these boundedness results, we studied the stabilizability of the partially
linear cascade (1.2) using partial state feedback. When the interconnection term is
nonlinear, output peaking of the linear system can form an obstruction to semiglobal
stabilizability because the L1 norm of the output cannot be reduced by achieving a
faster exponential decay rate. If we assume that the interconnection term has lin-
ear growth in the undelayed argument and the peaking exponent is one, we have
semiglobal stabilizability results, because the L1 norm of the output can be bounded
from above while concentrating its energy. Even with this assumption on the in-
terconnection term, higher peaking exponents may form an obstruction. When the
zeros of the linear subsystem are in the closed left half plane, satisfactory stability
results are obtained when using a high-low-gain feedback, whereby the output of the
linear subsystem can be decomposed in two signals with vanishing L1 and L∞ norm,
respectively.

The main contribution of this paper lies in generalizing classical cascade results
to a class of functional differential equations. Instrumental to this generalization is
the observation that the way a bounded input perturbation affects a nonlinear system
mainly lies in the way its L1 and L∞ norm can be controlled.
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Appendix. Proof of Theorem 5.1. We transform the system (5.1) into the
normal form

ξ̇0 = A0ξ0 + B0y,
ẏ = y2,
...
ẏr = u,

(A.1)

where y = C[ξT0 Y T ]T , Y = [y y1 · · · yr]T , is the output, and ξ̇0 = Aoξ0, A0 ∈ R
m×m,

describes the zero dynamics. We consider two cases.
Case 1. All eigenvalues of A0 lie in the closed RHP.
For the stabilization of the system (A.1), we use a state feedback

u = F0ξ0 + F1Y.

The closed loop matrix is

Acl =




A0 B0

0
...
0

1
. . .

· · · 0 1
F0 F1



.

For asymptotic stability, the observability of (F0, A0) is required. In the other
case (unstable) eigenvalues of A0 will still be present in the closed loop system. Math-
ematically, when (F0, A0) would not be observable, one can perform a similarity trans-
formation on ξ0 leading to

[
A0 B0

F0

]
→

 Aō A12 Bō

0 Ao Bo

0 Fo


 ,

whereby Aō contains the unobservable modes of A0. These unstable eigenvalues are
still present in the closed loop matrix Acl, which contradicts the stability assumption.

As a consequence, the whole system is observable since the observability matrix
of (C,Acl) is given by

Ocl =

[
0 O1,2

O2,1 O2,2

]
,

whereby O1,2 is the unity matrix in R
r and

O2,1 =




1
fn 1
...

. . .

fm−1
n . . . fn 1


 .



F0

F0A0

...
F0A

m−1
0




with fn the last component of F1. From this it follows that the observability of
(C,Acl) is implied by the observability of (F0, A0).
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Consequently, in order to achieve an exponential decay of the output (∼ e−at),
we need to place all eigenvalues to the left of the line λ = −a. But now we are in
the situation considered by Sussmann and Kokotovic [10]. From Theorem 8.1 in [10],
it follows that in this case the peaking exponent equals the dimension of the zero
dynamics.

Case 2. A0 has eigenvalues λ with Re(λ) < 0.
With another similarity transformation we split off the asymptotically stable part

A0s of A0. Equation (A.1) becomes


ξ̇0s = A0sξ0s + A0suξ0u + B0sy,

ξ̇0u = A0uξ0u + B0uy,
y(r) = u.

Because ξ0s is linearly coupled with the other states, it is sufficient to consider state-
feedback laws for the (ξ0u, Y ) subsystem (which render the eigenvalues of A0s unob-
servable).
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Abstract. This paper gives the first rigorous convergence analysis of analogues of Watkins’s
Q-learning algorithm, applied to average cost control of finite-state Markov chains. We discuss two
algorithms which may be viewed as stochastic approximation counterparts of two existing algorithms
for recursively computing the value function of the average cost problem—the traditional relative
value iteration (RVI) algorithm and a recent algorithm of Bertsekas based on the stochastic shortest
path (SSP) formulation of the problem. Both synchronous and asynchronous implementations are
considered and analyzed using the ODE method. This involves establishing asymptotic stability of
associated ODE limits. The SSP algorithm also uses ideas from two-time-scale stochastic approxi-
mation.

Key words. simulation-based algorithms, Q-learning, controlled Markov chains, average cost
control, stochastic approximation, dynamic programming
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1. Introduction. Q-learning algorithms are simulation-based reinforcement learn-
ing algorithms for learning the value function arising in the dynamic programming
approach to Markov decision processes. They were first introduced for the discounted
cost problem by Watkins [27] and analyzed partially in Watkins [27] and then in
Watkins and Dayan [28]. A more comprehensive analysis was given by Tsitsiklis [25]
(also reproduced in Bertsekas and Tsitsiklis [7]), which made the connection between
Q-learning and stochastic approximation. (See also Jaakola, Jordan, and Singh [15]
for a parallel treatment, which made the connection between TD(λ) and stochastic
approximation.) In particular, Q-learning algorithms for discounted cost problems
or stochastic shortest path (SSP) problems were viewed as stochastic approximation
variants of well-known value iteration algorithms in dynamic programming.

These techniques, however, do not extend automatically to the average cost prob-
lem, which is harder to analyze even when the model (i.e., controlled transition prob-
abilities) is readily available. Not surprisingly, the corresponding developments for
the average cost problem have been slower. One of the first was the “R-learning”
algorithm proposed by Schwartz [22]. This is a two-time-scale algorithm that carries
out a value iteration-type step to update values of state-action pairs and updates con-
currently an estimate of the optimal average cost using the immediate reward along
with an adjustment factor. The idea is to obtain a good estimate for the average cost
while searching for the optimal policy using a value iteration-type update. Although
Schwartz presents some intuitive arguments to justify his algorithm along with some
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numerical results, he does not provide any convergence analysis. Singh [23] presents
two Q-learning algorithms for the average cost problem: one is a slight modification
of Schwartz’s algorithm which updates the estimate of optimal cost at every step.
The other one updates the estimate of average cost in a fashion similar to Jalali and
Ferguson’s deterministic asynchronous algorithm for average cost problems [16]. He
provides simulation results for medium-sized problems but no convergence analysis.
Finally, Mahadevan [20] discusses average cost problems and the need to consider the
average cost criterion, with an emphasis on the difference between gain-optimal and
bias-optimal policies. He presents extensive numerical experiments, highlighting the
problems the algorithm can run into. He does not, however, provide any convergence
analysis. It is also noteworthy that none of these algorithms use the relative value
iteration (RVI) algorithm for average cost problems (see, e.g., [4], [21], [24]) as a basis
for the learning algorithms because the latter may not converge asynchronously, as
shown in [3]. Nevertheless, a diminishing stepsize does work around this problem, as
we show in this paper.

We propose and give for the first time a complete convergence analysis of two Q-
learning algorithms for average cost. The first is a stochastic approximation analogue
of (RVI). The second is a stochastic approximation analogue of a recent value iteration
algorithm of Bertsekas based on the SSP formulation of the average cost problem. We
consider both synchronous and asynchronous implementations. The analysis relies on
the ODE method, based on establishing first the boundedness of iterates and then the
asymptotic stability of limiting ODEs. The rest then follows as in the Kushner–Clark
approach [18] (see also Kushner and Yin [19]) in the synchronous case and by Borkar’s
theorem [10] in the asynchronous case.

The paper is organized as follows. The next section describes the two algorithms
in both synchronous and asynchronous modes and states the assumptions required in
each case. Section 3 provides the convergence analysis of the RVI-based Q-learning
algorithm. Section 4 does likewise for the SSP Q-learning algorithm. Section 5 con-
cludes with some general remarks. An Appendix collects some key facts from the
literature that we used here.

2. Average cost Q-learning algorithms.

2.1. Preliminaries. We consider a controlled Markov chain {Xn} on a finite
state space S = {1, 2, . . . , d} with a finite action space A = {a1, . . . , ar} and transition
probabilities p(i, a, j) = the probability of transition from i to j under action a for
i, j ∈ S, a ∈ A. Associated with this transition is a “cost” g(i, a, j) and the aim is to
choose actions {Zn} nonanticipatively (i.e., conditionally independent of the future
state trajectory given past states and actions) so as to minimize the “average cost”

lim sup
n→∞

1

n

n−1∑
m=0

E[g(Xm, Zm, Xm+1)].(2.1)

This problem is extensively treated in [4], [21], and [24] among others, to which we
refer the reader for details. We recall here the minimal necessary background material
required to motivate our algorithms.

We shall be interested in “stationary policies” wherein Zn = v(Xn) for a map
v : S → A. It is known that an optimal one exists under the following “unichain”
condition which we assume throughout.

Assumption 2.1. Under any stationary policy, the chain has a single communi-
cating class and a common state (say, s) that is recurrent.
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In particular, this implies that “limsup” in (2.1) is a limit under any stationary
policy. It is known that one can then associate a “value function” V : S → R with
the problem, given as the solution to the dynamic programming equations

V (i) = min
a


∑

j

p(i, a, j)(g(i, a, j) + V (j))− β


 , i ∈ S,(2.2)

where β is the optimal cost. V (·) is the unique solution to (2.2) modulo an additive
constant. Let Q(i, a) denote the expression inside the square brackets on the right-
hand-side (r.h.s.) of (2.2). Equation (2.2) is useful because of the following fact: A
stationary policy v : S → A is optimal if and only if v(i) ∈ Argmin (Q(i, ·)) for all i
that are recurrent under v. Q(·, ·) is called the “Q-factor,” also defined uniquely only
up to an additive constant. Thus V (i) = minaQ(i, a) for all i, and Q(·, ·) satisfies

Q(i, a) =
∑
j

p(i, a, j)

(
g(i, a, j) + min

b
Q(j, b)

)
− β, i ∈ S, a ∈ A.(2.3)

The aim of any Q-learning algorithm is to “learn” the Q-factors when p(·, ·, ·) is not
known, but one has access to a simulation device that can generate an independent S-
valued random variable (i.e., independent of other random variables that might have
been generated up to that point in time) ξia whose probability law is p(i, a, ·), i ∈
S, a ∈ A. Let ξ = [ξia].

2.2. RVI Q-learning. The RVI algorithm is given by (see, e.g., [4], [21], [24])

V n+1(i) = min
a


∑

j

p(i, a, j)(g(i, a, j) + V n(j))− V n(i0)


 , i ∈ S,(2.4)

where i0 ∈ S is an arbitrary but fixed state. This can be shown, under some additional
aperiodicity conditions (see [4, Chap. 4]), to converge to the unique V (·) that satisfies
(2.2) with V (i0) = β. The purpose of subtracting the scalar “offset” V n(i0) from
each component on the r.h.s. of (2.4) is to keep the iterations stable—recall that V (·)
is specified anyway only up to an additive constant. It turns out that V n(i0) → β.
However, V n(i0) is not the unique choice of an offset term that makes the algorithm
work. More generally, one can replace it by f(V ) for an f : Rd → R satisfying suitable
hypotheses. (See below.)

Algorithm (2.4) suggests the “relative Q-factor iteration”

Qn+1(i, a) =
∑
j

p(i, α, j)

(
g(i, a, j) + min

b
Qn(j, b)

)
−Qn(i0, a0), i ∈ S, a ∈ A,

with i0 ∈ S, a0 ∈ A prescribed. The idea behind RVI Q-learning is to replace the
conditional average with respect to the transition probability p(i, a, ·) by an actual
evaluation at a random variable ξia with law p(i, a, ·) and then “see” the conditional
average by means of the well-known averaging effect of the stochastic approximation
algorithm. Thus the synchronous RVI Q-learning algorithm is
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Qn+1(i, a) = Qn(i, a) + γ(n)

(
g(i, a, ξnia) + min

b
Qn(ξnia, b)

−f(Qn)−Qn(i, a)

)
, i ∈ S, a ∈ A,(2.5)

where ξnia are independent with the law of ξnia being p(i, a, ·) for all n. {γ(k)} ∈ (0,∞)
is the usual diminishing stepsize schedule of stochastic approximation satisfying∑

k

γ(k) =∞,
∑
k

γ2(k) <∞.(2.6)

The function f : Rd×r → R satisfies the following assumption.
Assumption 2.2. f is Lipschitz, and, furthermore, for e equal to the constant

vector of all 1’s in Rd×r, f(e) = 1 and f(x+ ce) = f(x) + c for c ∈ R.
Examples are f(Q) = Q(i0, b0) for prescribed i0, b0, f(Q) = minuQ(i0, u) for

prescribed i0, f(Q) = 1
dr

∑
i,aQ(i, a), and so on.

For the asynchronous algorithm, we hypothesize a set-valued process {Y n} taking
values in the set of nonempty subsets of S ×A with the interpretation: Y n = {(i, a) :
(i, a)th component of Q was updated at time n}. (Thus Y n ≡ S×A is the synchronous
case.)

Remarks. As argued in [10], we may take Y n = {φn} for some φn ∈ S × A,
i.e., a singleton. This can be achieved by unfolding a single iteration that updates k
components into k iterations that update one component each. While this introduces
“delays” in the formulation of the algorithm below, that does not affect the results
of [10] that we use here. Alternatively, we may use the results of [17, section 4],
which work with the Y n’s directly. The only difference is that the resultant ODE is a
time-scaled version of the one arising in the former approach with a nonautonomous
time-scaling which, however, does not affect its qualitative behavior.

Define

ν(n, i, a) =
n∑
k=0

I{(i, a) ∈ Y k},

where I{. . .} is the indicator function. Thus ν(n, i, a) = the number of times Qm(i, a)
was updated up to time n.

The asynchronous RVI Q-learning algorithm then is

Qn+1(i, a) = Qn(i, a) + γ(ν(n, i, a))
(
g(i, a, ξnia) + min

u
Qn(ξnia, u)

−f(Qn)−Qn(i, a)
)
I{(i, a) ∈ Y n}(2.7)

for (i, a) ∈ S × A. For the asynchronous case, we need the following additional
assumptions.

Assumption 2.3. In addition to (2.6), {γ(n)} satisfy the following: If [. . .] stands
for “the integer part of . . .,” then for x ∈ (0, 1),

sup
k
γ([xk])/γ(k) <∞,

and ∑[yk]
m=0 γ(m)∑k
m=0 γ(m)

→ 1 uniformly in y ∈ [x, 1].
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Examples of stepsizes satisfying Assumption 2.3 are γ(n) = 1
n ,

1
n logn ,

logn
n , etc.,

for n ≥ 2.
Assumption 2.4. There exists ∆ > 0 such that

lim inf
n→∞

ν(n, i, a)

n+ 1
≥ ∆ a.s., (i, a) ∈ S ×A.

Furthermore, for all x > 0 and

N(n, x) = min

{
m ≥ n :

m∑
k=n

γ(k) ≥ x

}
,

the limit

limn→∞

∑ν(N(n,x),i,a)
k=ν(n,i,a) γ(k)∑ν(N(n,x),j,u)
k=ν(n,j,u) γ(k)

exists a.s. for all i, j, a, u.
That is, all components are updated comparably often in an evenly distributed

manner.

2.3. SSP Q-learning. SSP Q-learning is based on the observation that the
average cost under any stationary policy is simply the ratio of expected total cost and
expected time between two successive visits to the reference state s. This connection
was exploited by Bertsekas in [5] to give a new algorithm for computing V (·), which
we describe below.

Define a parametrized family of SSP problems parametrized by a scalar λ as
follows.

(i) The state space is S′ = S ∪ {s′}, where s′ is an artificially added terminal
state (i.e., zero-cost and absorbing).

(ii) The action set is A for all states.
(iii) The transition probabilities are

p′(i, a, j) =




p(i, a, j) if j �= s, s′,
0 if j = s,
p(i, a, s) if j = s′.

(iv) The costs are defined by

g′(i, a, j) =




g(i, a, j)− λ if j �= s, s′,
0 if j = s,
g(i, a, s)− λ if j = s′.

By Assumption 2.1, s′ is reached from every state with probability 1. Thus all
policies are proper (as defined in [4]). Let Vλ(·) denote the value function given as
the unique solution to the dynamic programming equations

Vλ(i) = min
a


 d∑
j=1

p(i, a, j)


g(i, a, j) +∑

j �=s
p(i, a, j)Vλ(j)


− λ


 , 1 ≤ i ≤ d,

Vλ(s
′) = 0.
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For each fixed policy, the cost is linear in λ with negative slope. Thus Vλ(·), which by
standard dynamic programming arguments is the lower envelope thereof, is piecewise
linear with finitely many linear pieces and concave decreasing in λ for each component.
If λ = β, we “recover” (2.2), which can be shown to happen when Vλ(s) = 0. This
suggests the coupled iterations

V k+1(i) = min
a


 d∑
j=1

p(i, a, j)


g(i, a, j) +∑

j �=s
p(i, a, j)V k(j)


− λk


 , i ∈ S,

λk+1 = λk + b(k)V k(s),

where {b(k)} ⊂ (0,∞) with
∑
k b(k) = ∞ and

∑
k b

2(k) < ∞. This is the algorithm
of [5], wherein the first “fast” iteration sees λk as quasi-static (b(k)’s are “small”)
and thus tracks Vλk(·), while the second “slow” iteration gradually guides λk to the
desired value.

This suggests the SSP Q-learning algorithm (synchronous) as
(2.8a)

Qn+1(i, a) = Qn(i, a)+γ(n)
[
(g(i, a, ξnia) + min

u
Qn(ξnia, u))I{ξnia �= s} − λn −Qn(i, a)

]
,

(2.8b) λn+1 = λn + b(n)min
u

Qn(s, u),

where b(n) = o(γ(n)). Unfortunately, it appears hard to ensure boundedness of {λn}.
So we propose replacing (2.8b) by

(2.8b′) λn+1 = Γ
(
λn + b(n)min

u
Qn(s, u)

)
,

where Γ(·) is the projection onto an interval [−K,K] with K chosen so that β ∈
(−K,K). (This assumes prior knowledge of a bound on β, but this can be obtained
from a bound on g(·, ·, ·).)

As in the case of RVI Q-learning, we impose Assumptions 2.3 and 2.4 for the
asynchronous SSP Q-learning, which is

Qn+1(i, a) = Qn(i, a) + γ(ν(n, i, a))
[(
g(i, a, ξnia) + min

u
Qn(ξnia, u)I{ξnia �= s}

)

(2.9a) −λn −Qn(i, a)
]
I{(i, a) ∈ Y n},

(2.9b) λn+1 = Γ
(
λn + b(n)min

u
Qn(s, u)

)
.

3. Convergence of RVI Q-learning.

3.1. ODE analysis. We can rewrite the synchronous RVI Q-learning algorithm
(2.5) as

Qn+1 = Qn + γ(n)(T (Qn)− f(Qn)e−Qn +Mn+1),(3.1)

where Qn stands for Qn(i, a), T : Rd×r → Rd×r is the map defined by

(TQ)(i, a) =
∑
j

p(i, a, j)
(
g(i, a, j) + min

u
Q(j, u)

)
,
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and, for n ≥ 0,

Mn+1(i, a) = g(i, a, ξnia) + min
u

Qn(ξnia, u)− (TQn)(i, a).

Letting Fn = σ(Qm,Mm,m ≤ n), n ≥ 0, we note that, for all n,

E[Mn+1 | Fn] = 0,(3.2)

E[||Mn+1||2 | Fn] ≤ C1(1 + ||Qn||2)(3.3)

for a suitable constant C1 > 0.
Define T̂ : Rd×r → Rd×r, T ′ : Rd×r → Rd×r by

T̂ (Q) = T (Q)− βe,
T ′(Q) = T (Q)− f(Q)e = T̂ (Q) + (β − f(Q))e,

where, as before, e ∈ Rd×r is the constant vector of all 1’s.
Let ||x||∞ = maxi,a |xia|, ||x||s = maxi,a xia −mini,a xia for x ∈ Rd×r. These are,

respectively, the max-norm and the span seminorm, the latter having the property
that ||x||s = 0 if and only if x is a scalar multiple of e. The following “nonexpansivity”
properties are then easily verified:

||T (Q)− T (Q′)||∞ ≤ ||Q−Q′||∞,

and likewise for T̂ (·). Also,

||T (Q)− T (Q′)||s ≤ ||Q−Q′||s,

and likewise for T̂ (·), T ′(·). In fact, ||T (Q)||s = ||T ′(Q)||s = ||T̂ (Q)||s since ||e||s = 0.
Algorithm (3.1) is in the form of a standard stochastic approximation algorithm

with the martingale difference sequence {Mn+1} serving as the “noise.” The ODE
approach to analyzing the convergence of such algorithms (described in [2], [13], [18],
and [19], among others) is based on the stability of the associated ODE

Q̇(t) = T ′(Q(t))−Q(t).(3.4)

This subsection is devoted to studying the stability properties of this ODE. We
do so through a succession of lemmas. The analysis is inspired by a similar analysis
in [9] in the context of value iteration. (See also [17].)

We shall also consider the related ODE

Q̇(t) = T̂ (Q(t))−Q(t).(3.5)

Note that by the properties of T (·), f(·), both (3.4) and (3.5) have Lipschitz r.h.s.’s
and thus are well-posed.

The set G of equilibrium points of (3.5) is precisely the set of fixed points of T̂ (·),
i.e., the solutions of (2.3) which are unique up to an additive constant. Thus G = {Q :
Q = Q∗ + ce, c ∈ R}, where Q∗ is the solution to (2.3) satisfying f(Q∗) = β. (That
there will indeed be one such solution follows from the fact that f(x+ ce) = f(x) + c
for c ∈ R.)

The next lemma is a special case of Theorem 4.1 of [14] (see the appendix).
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Lemma 3.1. Let y(·) and z be a solution and an equilibrium point of (3.5),
respectively. Then ||y(t)− z||∞ is nonincreasing, and y(t)→ y∗ for some equilibrium
point y∗ of (3.5) that may depend on y(0).

We use this to analyze (3.4). But first note the following.
Lemma 3.2. Equation (3.4) has a unique equilibrium point at Q∗.
Proof. Since f(Q∗) = β, it follows that T ′(Q∗) = T̂ (Q∗) = Q∗; thus Q∗ is an

equilibrium point for (3.4). Conversely, if T ′(Q) = Q, then Q = T̂ (Q) + (β − f(Q))e.
But the Bellman equation

Q = T̂ (Q) + ce

has a solution if and only if c = 0. (This can be deduced from the corresponding
statement for (2.2), which is well known, and the relation V (i) = minuQ(i, u) modulo
an additive constant.) Thus f(Q) = β, implying Q = Q∗.

Lemma 3.3. Let x(·), y(·) satisfy (3.4) and (3.5), respectively, with x(0) = y(0) =
x0. Then x(t) = y(t) + r(t)e, where r(·) satisfies the ODE

ṙ(t) = −r(t) + (β − f(y(t))).

Proof. By the variation of constants formula,

x(t) = x0e
−t +

∫ t

0

e−(t−s)T̂ (x(s))ds+
[∫ t

0

e−(t−s)(β − f(x(s)))ds

]
e,

y(t) = x0e
−t +

∫ t

0

e−(t−s)T̂ (y(s)).

Therefore, with T̂i(·) denoting the ith component of T̂ (·),

max
i

(xi(t)− yi(t)) ≤
∫ t

0

e−(t−s) max
i

(T̂i(x(s))− T̂i(y(s)))ds+

∫ t

0

e−(t−s)(β − f(x(s)))ds,

min
i
(xi(t)− yi(t)) ≥

∫ t

0

e−(t−s) min
i
(T̂i(x(s))− T̂i(y(s)))ds+

∫ t

0

e−(t−s)(β − f(x(s)))ds.

Subtracting, we have

||x(t)− y(t)||s ≤
∫ t

0

e−(t−s)||T̂ (x(s))− T̂ (y(s))||sds

≤
∫ t

0

e−(t−s)||x(s)− y(s)||sds.

By Gronwall’s inequality, ||x(t)−y(t)||s = 0 for all t ≥ 0. Since ||x||s = 0 if and only if
x = ce for some c ∈ R, we have x(t) = y(t) + r(t)e, t ≥ 0. Since x(0) = y(0), r(0) = 0.
Since

T̂ (x+ ce) = T̂ (x) + ce,
f(x+ ce) = f(x) + c,

for r ∈ R we have

ṙ(t)e = ẋ(t)− ẏ(t)
= (T̂ (x(t))− x(t) + β − f(x(t))e)− (T̂ (y(t))− y(t))
= (−r(t) + β − f(y(t)))e.
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Theorem 3.4. Q∗ is the globally asymptotically stable equilibrium point for
(3.4).

Proof. By the variation of constants formula, in the foregoing,

r(t) =

∫ t

0

e−(t−s)(β − f(y(s)))ds.(3.6)

Let y(t) → y∗ ∈ G. Then r(t) → β − f(y∗) so that x(t) → y∗ + (β − f(y∗))e, which
must coincide with Q∗, since that is the only equilibrium point for (3.4). To claim
asymptotic stability, we also need to prove Liapunov stability. (That is, we need to
show that given any ε > 0, we can find a δ > 0 such that ‖x(0) −Q∗‖∞ < δ implies
‖x(t)−Q∗‖∞ < ε for t ≥ 0.) Now

||x(t)−Q∗||∞ ≤ ||y(t)−Q∗||∞ + |r(t)|
≤ ||y(0)−Q∗||∞ +

∫ t

0

e−(t−s)|β − f(y(s))|ds

≤ ||x(0)−Q∗||∞ +

∫ t

0

e−(t−s)|f(Q∗)− f(y(s))|ds.(3.7)

Since f(·) is Lipschitz,
|f(Q∗)− f(y(s))| ≤ L||y(s)−Q∗||∞

≤ L||y(0)−Q∗||∞
= L||x(0)−Q∗||∞(3.8)

for a suitable L > 0. Thus

||x(t)−Q∗||∞ ≤ (1 + L)||x(0)−Q∗||∞.

Liapunov stability follows, completing the proof.

3.2. Boundedness and convergence. The ODE method described variously
in [2], [13], [18], [19], etc. immediately yields the following.

Theorem 3.5. In both the synchronous and the asynchronous Q-learning itera-
tions (cf. (2.5), (2.7)), if {Qn} remain bounded a.s., then Qn → Q∗ a.s.

Proof. The synchronous case follows from the standard ODE approach in view
of Theorem 3.4. The asynchronous case follows likewise from the results of [10].
(In either case, given our prior assumptions, the only things left to verify are the
a.s. boundedness of the iterates, which we simply assumed for the time being, and
the global asymptotic stability of the associated ODE, which we just proved in the
previous subsection.)

The problem of proving a.s. boundedness remains. We shall indicate two proof ap-
proaches. The first, which works only for the synchronous case, is based on Lemma 2.2
of [1] (see Appendix). Note that by Theorem 3.4 and the converse Liapunov theorem
[29], there exists a C1 Liapunov function V : Rd×r → R+ with lim||x||→∞ V (x) =∞
and

〈∇V (x), T ′(x)− x〉 < 0, x �= Q∗.

Let B be an open neighborhood of Q∗, and let C = {x : V (x) ≤ c}, where c > 0
is chosen sufficiently large so as to ensure that B ⊂ interior (C). Note that C is
compact. Define π : Rd×r → C by

π(x) = x if x ∈ C,
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= Q∗ + η(x)(x−Q∗) if x �∈ C,

where η(x) = max{a > 0 : Q∗ + a(x − Q∗) ∈ B}. Consider the “scaled” version of
(2.5) given by

Q
n+1

(i, a) = Q̃n(i, a) + γ(n)
(
g(i, a, ξnia) + min

u
Q̃n(ξnia, u)

−f(Q̃n)− Q̃n(i, a)
)
, i ∈ S, a ∈ A,(3.9)

where Q̃n = π(Q
n
). The iterates (3.9) remain bounded a.s. by construction. To use

Lemma 2.2 of [1], we need the following:
(i) The maps x→ (1−γ(n))x+γ(n)T ′(x) are nonexpansive with respect to || · ||s

(where without any loss of generality we take γ(n) < 1). Note that they are
so if T ′(·) is, which it indeed is, as already observed.

(ii) The iterates {Qn} converge to Q∗ a.s., which, in view of Theorem 3.4, is
proved exactly as in [1, section 3].

We shall also need the following additional assumption on f(·).
Assumption 3.6. |f(Q)| ≤ ||Q||∞ for all Q ∈ Rd×r.
Note that this is satisfied by the examples of f(·) that follow Assumption 2.2.
Lemma 3.7. Under the additional Assumption 3.6, {Qn} given by the syn-

chronous Q-learning iteration 2.5 is bounded a.s.
Proof. In view of above remarks and Lemma 2.2 of [1], ||Qn − Qn||s remains

bounded a.s. Note that

sup
n
||Qn||s ≤ sup

n
||Qn||s + sup

n
||Qn −Q

n||s ∆
= K <∞.

Let D = max(||Q0||,maxi,a,j |g(i, a, j)|+K). Then by Assumptions 2.2 and 3.6,∣∣∣min
u

Qn(ξnia, u)− f(Qn)
∣∣∣ = ∣∣∣f (Qn − (min

u
Qn(ξnia, u)

)
e
)∣∣∣

≤
∣∣∣∣∣∣Qn − (min

u
Qn(ξnia, u)

)
e
∣∣∣∣∣∣
∞≤ ||Qn||s ≤ K.

Then

|Qn+1(i, a)| ≤ (1− γ(n))||Qn||∞ + γ(n)

(
max
i,a,j

g(i, a, j) +K

)
≤ (1− γ(n))||Qn||∞ + γ(n)D.

A simple induction shows that ||Qn||∞ ≤ D for all n.
The boundedness argument above does not work for the asynchronous iteration

(2.7). The reason is as follows: The term f(Qn)e (resp., f(Q
n
)e) being subtracted

from the r.h.s. of (2.5) (resp., (3.7)) implies that exactly the same “offset” is being
subtracted from all the components. These terms, being scalar multiples of e, con-
tribute nothing to the span seminorm, a fact that is crucial in the analysis of [1] used
above. In the asynchronous case, there is no way of achieving this without artificial
restrictions.

The second technique is that of [13], which applies to both synchronous and
asynchronous cases. We need the following assumption.

Assumption 3.6′. f(cQ) = cf(Q) for all c ∈ R,Q ∈ Rd×r.
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Once again, this is satisfied by all the examples of f(·) given in the preceding
section. Define T0 : Rd×r → Rd×r by

(T0(x))ia =
∑
j

p(i, a, j)min
b

xjb, x = [[xia]] ∈ Rd×r.

The technique of [13] requires that we look at

h(x)
∆
= lim
c→∞(T ′(cx)− cx)/c

= T0(x)− x− f(x)e

(in view of Assumption 3.6′) and requires that the origin be the globally asymptotically
stable equilibrium point of the ODE ẋ(t) = h(x(t)). But this is merely a special case
of Theorem 3.4, corresponding to g(·, ·, ·) being identically zero. Thus Theorem 2.2
of [13] applies, implying that {Qn} remains bounded a.s. for both the synchronous
iteration (2.5), and its asynchronous version (2.7). (For the latter, see section 4 of
[13].) We state this conclusion as a lemma.

Lemma 3.8. Under the additional Assumption 3.6′, {Qn} given by the syn-
chronous Q-learning iteration (2.5) and its asynchronous version (2.7) is bounded
a.s.

4. Convergence of SSP Q-learning.

4.1. ODE analysis. Redefine T, T ′, f as follows. T : Rd×r → Rd×r, T ′ :
Rd×r×1 → Rd×r, f : Rd×r → R are given by

(TQ)(i, a) =
d∑
j=1

p(i, a, j)


g(i, a, j) +∑

j �=s
p(i, a, j)min

u
Q(j, u)


 ,

(T ′(Q,λ))(i, a) = (TQ)(i, a)− λ,
f(Q) = min

u
Q(s, u).

Then the synchronous iteration (2.8a)–(2.8b′) can be rewritten as

Qn+1 = Qn + γ(n)[T ′(Qn, λn)−Qn +Mn+1],(4.1)

λn+1 = Γ(λn + b(n)f(Qn)),(4.2)

where Mn+1 = [Mn+1(i, a)] with

Mn+1(i, a) =
[
g(i, a, ξnia) + min

u
Qn(ξnia, u)

]
I{ξnia �= s}

−λn − T ′(Qn, λn).

In this new setup one verifies (3.2), (3.3) as before. Note that (4.2) can be rewritten
as

λn+1 = λn + e(n),

where e(n) = O(b(n)) = o(γ(n)). Thus the limiting ODE associated with (4.1)–(4.2)
is

Q̇(t) = T ′(Q(t), λ(t))−Q(t),



692 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

λ̇(t) = 0.

Thus it suffices to consider

Q̇(t) = T ′(Q(t), λ)−Q(t)(4.3)

for a fixed λ. As observed in [25], the map T (·), and therefore the map T ′(·, λ) for
fixed λ, is a contraction on Rd×r with respect to a certain weighted max-norm

||x||w ∆
= max |wixi|, x ∈ Rd×r,

for an appropriate weight vector w = [w1, . . . , wrd], wi > 0 for all i. In particular,
T ′(·, λ) has a unique fixed point Q(λ). A straightforward adaptation of the arguments
of [14] then shows the following.

Lemma 4.1. Q(λ) is the globally asymptotically stable equilibrium for (4.1). In
fact, ||Q(t)−Q(λ)||w decreases monotonically to zero.

4.2. Boundedness and convergence. Once again we present two alternative
schemes for proving the a.s. boundedness of {Qn}. (Note that {λn} are bounded
anyway, as they are constrained to remain in [−K,K].) The first approach is based
on [25].

Lemma 4.2. For both synchronous and asynchronous SSP Q-learning algorithms,
{Qn} remain bounded a.s.

Proof. Since T (·) is a contraction with respect to || · ||w, we have

||T (Q)||w ≤ α||Q||w +D

for some α ∈ (0, 1), D > 0. Thus

||T ′(Q,λ)||w ≤ α||Q||w +D′

with D′ = D+K. Since the r.h.s. does not involve λ, one can mimick the arguments
of [25] to conclude.

An alternative proof of Lemma 4.2 is to directly quote the results of [13]. For
this, consider T 0 : Rd×r → Rd×r defined by

(T 0Q)(i, a) =
∑
j �=s

p(i, a, j)min
u

Q(j, u).

Then

lim
a→∞

T ′(cQ, λ)
c

= T 0(Q),

and the ODE

Q̇(t) = T 0(Q)−Q

has the origin as the globally asymptotically stable equilibrium. (This is just a special
case of Lemma 4.1 with g(·) ≡ 0.) Thus the results of [13] apply, allowing us to
conclude Lemma 4.2.

Given the a.s. boundedness of iterates, one proves a.s. convergence for the syn-
chronous case as follows.

Lemma 4.3. ||Qn −Q(λn)|| → 0 a.s.



LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 693

Proof. Note that Q(λ) is simply the Q-factor associated with the SSP problem
described in section 2.3 with the prescribed λ, that is,

(Q(λ))(i, a) =

d∑
j=1

p(i, a, j)


g(i, a, j) +∑

j �=s
p(i, a, j)Vλ(j)− λ


 , i ∈ S, a ∈ A.

Since the map λ → Vλ is concave, it is continuous, and therefore so is the map
λ→ Q(λ). In view of Lemmas 4.1 and 4.2, the claim now follows as in Corollary 2.1
of [8].

We shall also need the following lemma.
Lemma 4.4.

Πni=0(1− b(i))→ 0, lim supn→∞
n∑
i=0

Πnj=i+1(1− b(j))b(i) <∞,

and for any sequence {an} with an → 0,

n∑
i=0


 n∏
j=i+1

(1− b(j))


 b(i)ai → 0.

Proof. Since
∑
i b(i) =∞ and 1− x ≤ e−x for all x,

n∏
i=0

(1− b(i)) ≤ e−
∑n

i=0
b(i) → 0

as n→∞. Let t(0) = 0, t(n) =
∑n−1
i=0 b(i), n ≥ 1. Then

n∑
i=0

n∏
j=i+1

(1− b(j))b(i) ≤
n∑
i=0

b(i) exp


− n∑

j=i+1

b(j)




=

n∑
i=0

e−(t(n+1)−t(i))(t(i+ 1)− t(i))

≤
∫ t(n+1)

0

e−(t(n+1)−s)ds→ 1

as n → ∞. Define h(t), t ≥ 0, by h(t) = an for t ∈ [t(n), t(n + 1)), n ≥ 0. Then a
similar argument shows that

n∑
i=0

n∏
j=i+1

(1− b(j))b(i)ai ≤
∫ t(n+1)

0

e−(t(n+1)−s)h(s)ds.

Since h(t)→ 0 as t→∞, the r.h.s. → 0 as n→∞.
Theorem 4.5. For the synchronous SSP Q-learning algorithm (2.8a)–(2.8b′),

(Qn, λn)→ (Q∗, β) a.s.
Proof. Define ∆n = λn − β, rn = f(Qn) − f(Q(λn)), n ≥ 0. By Lemma 4.3,

rn → 0. Also,
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∆n+1 = Γ(∆n + β + b(n)f(Qn))− β
= Γ(∆n + β + b(n)f(Q(λn)) + b(n)rn)− β.(4.4)

Since the map λ→ Vλ, and therefore also the map λ→ f(Q(λ)) = minu(Q(λ))(s, u),
is concave and piecewise linear with finitely many linear pieces, it follows that there
exist 0 < L1 ≤ L2 such that

−L2(λ1 − λ2) ≤ f(Q(λ1))− f(Q(λ2)) ≤ −L1(λ1 − λ2)

for all λ1, λ2 ∈ R. (Basically, these are upper and lower bounds on the slope of the map
λ→ f(Q(λ)).) With λ1 = λn, λ2 = β, and using the fact that f(Q(β)) = f(Q∗) = 0,
this reduces to

−L2∆
n ≤ f(Q(λn)) ≤ −L1∆

n.

Using this, (4.4), and the fact that Γ(·) is nondecreasing, we have

Γ((1− L2b(n))∆
n + b(n)rn + β)− β ≤ ∆n+1

≤ Γ((1− L1b(n))∆
n + b(n)rn + β)− β.

Note that for i = 1, 2,

(1− Lib(n))∆
n + b(n)rn + β = λn + b(n)(rn − Li∆

n)
= λn +O(b(n)).

Since λn ∈ [−K,K] for all n and b(n)→ 0, it follows from the definition of Γ(·) that
for any ε > 0, there is an N ≥ 1 sufficiently large so that for n ≥ N ,

(1− L2b(n))∆
n + (b(n)rn − ε) + β

≤ Γ((1− L2b(n))∆
n + b(n)rn + β)

≤ Γ((1− L1b(n))∆
n + b(n)rn + β)

≤ (1− Lib(n))∆
n + (b(n)rn + ε) + β.

Therefore,

(1− L2b(n))∆
n + b(n)rn − ε ≤ ∆n+1 ≤ (1− L1b(n))∆

n + b(n)rn + ε.

Iterating the inequalities, we have for n > N

n+1∏
i=N

(1− L2b(i))∆
N +

n∑
i=N

n∏
j=i+1

(1− L2b(j))(b(i)ri − ε) ≤ ∆n+1

≤
n+1∏
i=N

(1− L1b(i))∆
N +

n∑
i=N

n∏
j=i+1

(1− L1b(j))b(i)(ri − ε).

Letting n→∞ and using Lemma 4.4, we have ∆n → [−Cε,Cε] for a suitable constant
C > 0. Since ε > 0 was arbitrary, ∆n → 0, i.e., λn → β. Since λ → Q(λ) is
continuous, Q(λn)→ Q(β) = Q∗, and, by Lemma 4.3, Qn → Q∗.

Remark. If we consider instead the SSP Q-learning algorithm (2.8a)–(2.8b) that
does not use the projection Γ(·), it is possible to argue as above to conclude that if
the iterates {λn} remain bounded a.s., then Theorem 4.5 holds.

Finally, we have the following theorem.
Theorem 4.6. For the asynchronous SSP Q-learning algorithm (2.9a)–(2.9b),

(Qn, λn)→ (Q∗, λ∗) a.s.
Proof. The analysis of [10], [17] applies, implying, in particular, that Lemma 4.3

holds exactly as before. The only difference is that now the interpolated algorithm
would track a time-scaled version of (4.1). The rest is as before because the iteration
scheme for {λn} is unchanged.
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5. Conclusions. We have presented two Q-learning algorithms for average cost
control of finite Markov chains—one based on RVI and another on an SSP formula-
tion of the average cost problem. We have rigorously established their stability and
convergence to the desired limits with probability one. As already remarked in the in-
troduction, this is the first rigorous analysis of any Q-learning algorithms for average
cost problems. Nevertheless, this is only a first step toward a better understanding
of these algorithms. In conclusion, we mention three important directions for future
work in this area:

(i) Typically, the state space can be very large. This calls for approximations,
such as state aggregation or considering a parametrized family of candidate
Q-factor functions with a low dimensional parameter space. (See, e.g., [7],
[26].) The algorithms presented need to be interlaced with such approxima-
tion architectures and analyzed as such. A popular architecture is a linear
combination of suitable basis functions, the weights in question being the pa-
rameters that are tuned [7], [26]. A good choice of basis functions is crucial,
and it has been suggested that they be based upon sample simulation runs
[6]. Yet another technique for reducing computation is to update not at every
sample but at an appropriately chosen subsequence of samples. This can be
combined with “kernel” methods, where one updates in a neighborhood of
the sample in a weighted fashion. While there is an enormous amount of
empirical work on such ideas in recent years, the theory has been lacking.
Finally, it is worthwhile exploring the use of acceleration techniques in tradi-
tional Monte Carlo methods (such as importance sampling) to reinforcement
learning.

(ii) Simulation-based algorithms are slow. An analysis of rate of convergence and
good speed-up procedures are needed. To some extent, the rate of convergence
statements for general stochastic approximation algorithms, based on asso-
ciated limit theorems or asymptotics for moments, will also bear upon these
algorithms. However, they have enough special structure that one should be
able to say more. A recent work [12] takes a step in this direction by estimat-
ing the number of steps required by Q-learning for discounted cost problems
to attain a prescribed level of accuracy with a prescribed probability.

(iii) Extension to the case where the state space is not finite is an open issue. See,
however, [11] for the discounted cost problem.

Appendix. We briefly recall the key results from the literature that have been
used here in a crucial manner. To begin with, let F (·, ·) = [F1(·, ·), . . . , Fd(·, ·)]T :
Rd × Rm → Rd be Lipschitz in the first argument uniformly with respect to the
second, i.e., for some scalar K, we have

‖F (x, y)− F (y, u)‖ ≤ K‖x− y‖ ∀ x, y, u.
Consider the stochastic approximation algorithm of the form

xk=1 = xk + γ(k)F (xk, ξk), k ≥ 0,

for xk = [xk1 , . . . , x
k
d], with {ξk} i.i.d., Rn-valued random variables. Let h(x) =

E[F (x, ξ)]. The ODE approach views the above recursion as

xk=1 = xk + γ(k)[h(xk) +Mk+1]

with

Mk+1 = F (xk, ξk)− h(xk), k ≥ 0,
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a “martingale difference” sequence. The term in square brackets is viewed as a noisy
measurement of h(xk) with Mk+1 as the “noise.” The iteration can then be viewed
as a noisy discretization of the ODE ẋ(t) = h(x(t)) with diminishing time steps. We
assume that this ODE has a globally asymptotically stable equilibrium x∗. If {xk}
remains bounded and the martingale

∑
γ(k)Mk+1 converges with probability one,

both the discretization error and the error due to noise in the above “approximation”
of the ODE become asymptotically negligible, and therefore the iterates track the
ODE. In particular, xk → x∗ a.s.

The asynchronous version of this algorithm is

xk+1
i = xki + ν(k, i)I(i ∈ Y k)Fi(xk−τ1i1 (k), . . . , xk−τdid (k), ξk), 1 ≤ i ≤ d,

for k ≥ 0, where (1) {Y k} is a set-valued random process taking values in the
subsets of {1, . . . , d}, representing the components that do get updated at time k,
(2) {τij(k)}, 1 ≤ i, j ≤ d, k ≥ 0}, are bounded random delays, and (3) ν(k, i) =∑k
m=0 I(i ∈ Y m) denotes the number of times component i gets updated up to time

k. Under the kind of assumptions on {γ(k)} and {ν(k, i)} we have used here, Borkar
[10] shows that the asynchronous iterations track the ODE ẋ(t) = 1

dh(x(t)), which is
a time-scaled version of ẋ(t) = h(x(t)) and has the same trajectories.

The two-time-scale stochastic approximation algorithm of Borkar [8] considers the
following iteration:

xk+1 = xk + γ(k)F (xk, yk, ξk),

yk=1 = yk + β(k)G(xk, yk, ζk),

where {ξk}, {ζk} are i.i.d., and {β(k)} satisfy
∞∑
k=0

β(k) =∞,

∞∑
k=0

β(k)2 <∞, β(k) = o(γ(k)).

Thus {yk} (resp., {xk}) is the slow (resp., fast) component of the iteration. One can
analyze {xk} viewing {yk} as quasi-static, and then analyze {yk}, viewing {xk} as
essentially equilibrated. In other words, consider the ODE ẋ(t) = h(x(t), y), where
h(x, y) = E[F (x, y, ξ)] and y is treated as a fixed parameter. Suppose it has a globally
asymptotically stable equilibrium λ(y), where λ(·) is a Lipschitz function. Then {xk}
tracks {λ(yk)}. In turn, {yk} tracks the ODE ẏ(t) = g(λ(y(t)), y(t)), where g(x, y) =
E[G(x, y, ζ)]. If the latter ODE has a globally asymptotically stable equilibrium y∗,
one can show that (xk, yk)→ (λ(y∗), y∗) a.s.

In dynamic programming applications, an important special class of ODEs arises,
wherein h(x) = f(x)−x for an f : Rd → Rd satisfying the “nonexpansivity property”

‖f(x)− f(y)‖∞ ≤ ‖x− y‖∞.

The set B = {x : f(x) = x} of fixed points of f(·), assumed to be nonempty, is
precisely the set of equilibria for the ODE ẋ(t) = f(x(t))−x(t). It is shown in Borkar
and Soumyanath [14] that x(·) converges to a point in B and, furthermore, for any
x∗ ∈ B, ‖x(t)− x∗‖∞ is nonincreasing in t.

Finally, we recall Lemma 2.2 of [1], which has been used here. Let D ⊂ Rd be an
open bounded set, and let C ⊂ Rd be a set containing D. Define ΠD,C : Rd → D by∏

D,C

(x) = αD,C(x) · x,
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where

αD,C(x) =

{
1 if x ∈ C,
max{β > 0 : βx ∈ D} if x /∈ C.

Let ‖x‖s = maxi xi −mini xi define the span seminorm on Rd. Consider an iteration

xk+1 = Gk(xk, ξk),

where {ξk} is a random process and {Gk} satisfy

‖Gk(x, ξ)−Gk(y, ξ)‖s ≤ ‖x− y‖s ∀x, y, ξ.

Suppose the sequence {x̃k} generated by the “scaled” iteration

x̃k+1 = Gk


∏
D,C

(x̃k), ξk




converges a.s. Lemma 2.1 of [1] then says that {‖xk‖s} remains bounded with prob-
ability one.
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Abstract. In this paper we perform sensitivity analysis for optimization problems with varia-
tional inequality constraints (OPVICs). We provide upper estimates for the limiting subdifferential
(singular limiting subdifferential) of the value function in terms of the set of normal (abnormal)
coderivative (CD) multipliers for OPVICs. For the case of optimization problems with complemen-
tarity constraints (OPCCs), we provide upper estimates for the limiting subdifferentials in terms of
various multipliers. An example shows that the other multipliers may not provide useful information
on the subdifferentials of the value function, while the CD multipliers may provide tighter bounds.
Applications to sensitivity analysis of bilevel programming problems are also given.
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1. Introduction. In this paper, we consider the sensitivity analysis for the fol-
lowing optimization problem with variational inequality constraints (OPVIC):

(OPVIC) minimize f(x, y)

subject to Ψ(x, y) ≤ 0, H(x, y) = 0, (x, y) ∈ C,

y ∈ Ω, 〈F (x, y), y − z〉 ≤ 0 ∀z ∈ Ω,(1)

where the following basic assumptions are satisfied:
(BA) The functions f : Rn+m → R, Ψ : Rn+m → Rd, H : Rn+m → Rl, and

F : Rn+m → Rm are Lipschitz near any given point of C; C is a closed subset
of Rn+m, and Ω is a closed convex subset of Rm. Note that the OPVIC is
also called the mathematical program with equilibrium constraints (MPEC).

By definition of a normal cone in the sense of convex analysis, the variational
inequality (1) is equivalent to saying that y ∈ Ω and the vector −F (x, y) is in the
normal cone of the convex set Ω at y. Hence the OPVIC can be rewritten as an
optimization problem with a generalized equation constraint:

(GP) minimize f(x, y)

subject to Ψ(x, y) ≤ 0, H(x, y) = 0, (x, y) ∈ C,

0 ∈ F (x, y) +NΩ(y),(2)

where

NΩ(y) :=

{
the normal cone of Ω if y ∈ Ω,

∅ otherwise
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is the normal cone operator.
Let (x̄, ȳ) be an optimal solution of the OPVIC. If NΩ(y) is single-valued and

smooth, then the generalized equation constraint (2) would reduce to an ordinary
equation 0 = F (x, y) + NΩ(y). Moreover, if all problem data are smooth and there
is no abstract constraint, then the Fritz John necessary optimality condition can be
stated as follows. There exist scalar λ ≥ 0 and the vectors (γ, β, η) not all zero such
that{

0 = λ∇f(x̄, ȳ) +∇Ψ(x̄, ȳ)�γ +∇H(x̄, ȳ)�β +∇F (x̄, ȳ)�η + {0} × ∇NΩ(ȳ)�η,
γ ≥ 0, and 〈Ψ(x̄, ȳ), γ〉 = 0,

where ∇ denotes the usual gradient and A� denotes the transpose of a matrix A.
In general, however, the map y ⇒ NΩ(y) is a set-valued map. Naturally, the usual
gradient ∇NΩ(ȳ) has to be replaced by some kinds of derivatives of set-valued maps.

The Kuhn–Tucker-type necessary conditions with the transpose of the usual gra-
dient ∇NΩ replaced by the Mordukhovich coderivative D∗NΩ were first derived in Ye
and Ye [24] under the so-called pseudo-upper-Lipschitz condition for the case of no
inequality, no equality constraints, and an abstract constraint in x only. They were
further studied under the strong regularity condition in the sense of Robinson and the
generalized Mangasarian–Fromovitz constraint qualifications by Outrata in [14] in the
case of complementarity constraints and constraints in x only. The first order theory
including the necessary optimality conditions involving the Mordukhovich coderiva-
tive, various constraint qualifications and their relationships for the general setting of
this paper was given in Ye [23]. (Although the equality constraint H(x, y) = 0 was
not considered explicitly there, the general results under the presence of an equality
constraint still hold without any difficulty.) In Ye [22] the Kuhn–Tucker-type neces-
sary conditions with the proximal coderivative for the case of optimization problems
with complementarity constraints (OPCCs) were also studied . For recent develop-
ments and references on other optimality conditions and computational algorithms,
the reader is referred to recent monographs of Luo, Pang, and Ralph [8] and Outrata,
Kočvara, and Zowe [15].

In this paper we continue the study by considering the value function V (p, q, r)
associated with the right-hand side perturbations

GP(p, q, r) minimize f(x, y)
subject to Ψ(x, y) ≤ p,H(x, y) = q, (x, y) ∈ C,

r ∈ F (x, y) +NΩ(y),
(3)

i.e.,

V (p, q, r) := inf{f(x, y) : Ψ(x, y) ≤ p,H(x, y) = q, (x, y) ∈ C

r ∈ F (x, y) +NΩ(y)},
where by convention inf ∅ := +∞.

Our main result shows that as in sensitivity analysis for ordinary nonlinear pro-
gramming (NLP) problems, under certain growth hypotheses, the value function V is
lower semicontinuous near 0, and the limiting subdifferentials of the value functions
are contained in the negative of the multiplier sets, i.e.,

∂V (0) ⊆ −M1(Σ),(4)

∂∞V (0) ⊆ −M0(Σ),(5)
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where Σ is the set of solutions of GP and Mλ(Σ) is the set of index λ CD multipliers
for problem GP, which is the set of vectors (γ, β, η) satisfying the Fritz John necessary
condition stated above with the transpose of the usual gradient ∇NΩ replaced by the
Mordukhovich coderivative D∗NΩ in the case of smooth problem data and no abstract
constraints.

In the case of M0(Σ) = {0}, (5) implies that the singular limiting subgradient
∂∞V (0) contains only the zero vector, and hence the value function is Lipschitz con-
tinuous near 0. Moreover, if the optimal solution is unique, if the set of abnormal
multipliers M0(Σ) contains only the zero vector, and if the set of Kuhn–Tucker mul-
tipliers M1(Σ) is a singleton ζ, then inclusion (4) implies that the value function is
smooth and ∇V (0) = −ζ.

In the case where Ω = Rm+ , C = Rn+m, OPVIC reduces to the following OPCC.

(OPCC) minimize f(x, y),
subject to Ψ(x, y) ≤ 0, H(x, y) = 0,

y ≥ 0, F (x, y) ≥ 0, 〈y, F (x, y)〉 = 0.

In this case (when all functions involved are smooth), an index λ CD multiplier set
corresponding to a feasible solution (x̄, ȳ) denoted by Mλ

CD(x̄, ȳ) consists of (γ, β, η) ∈
Rd ×Rl ×Rm such that

0 = λ∇f(x̄, ȳ) +∇Ψ(x̄, ȳ)�γ +∇H(x̄, ȳ)�β +∇F (x̄, ȳ)�η + (0, ξ),(6)

γ ≥ 0 and 〈Ψ(x̄, ȳ), γ〉 = 0,(7)

ξi = 0 if ȳi > 0 and Fi(x̄, ȳ) = 0,(8)

ηi = 0 if ȳi = 0 and Fi(x̄, ȳ) > 0,(9)

and

either ξi < 0, ηi < 0, or ξiηi = 0 if ȳi = 0 and Fi(x̄, ȳ) = 0.

We call vectors (γ, β, η) ∈ Rd ×Rl ×Rm satisfying (6)–(9) and

ξiηi ≥ 0 if ȳi = 0 and Fi(x̄, ȳ) = 0

an index λ C-multiplier set and denote it by Mλ
C(x̄, ȳ), and we call those satisfying

(6)–(9) and

ξi ≤ 0, ηi ≤ 0 if ȳi = 0 and Fi(x̄, ȳ) = 0

an index λ S-multiplier set and denote it by Mλ
S (x̄, ȳ).

Under certain growth hypotheses, we show that the value function

V (p, q, r) := {f(x, y) :Ψ(x, y) ≤ p,H(x, y) = q,

y ≥ 0, F (x, y)− r ≥ 0, 〈y, F (x, y)− r〉 = 0}
is lower semicontinuous near 0 and

∂V (0) ⊆ −M1 ∂∞V (0) ⊆ −M0,

where

M1 = M1
CD(Σ),M1

C(Σ),M1
S(Σ), or {(γ, β, µȳ − rF ) : (γ, β, rF , ry, µ) ∈M1

NLP (Σ)},
M0 = M0

CD(Σ),M0
C(Σ),M0

S(Σ), or {(γ, β, µȳ − rF ) : (γ, β, rF , ry, µ) ∈M0
NLP (Σ)},
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where Mλ
NLP (x̄, ȳ) is the set of index λ ordinary NLP multipliers when the OPCC is

treated as an ordinary NLP problem.
Moreover, we show that the above multiplier sets can be ordered as follows:

{(γ, β, µȳ − rF ) : (γ, β, rF , ry, µ) ∈Mλ
NLP (Σ)} ⊆Mλ

S (Σ) ⊆Mλ
CD(Σ) ⊆Mλ

C(Σ).

It is obvious that one should use the smallest multiplier sets as possible. However,
the smaller multiplier sets may be empty and hence may not provide any information
on the properties of the value function. We show that under reasonable constraint
qualifications such as the generalized Mangasarian–Fromovitz constraint qualification
and the strongly regular constraint qualification, the abnormal CD multiplier set
contains only the zero vector, and the set of normal CD multipliers is nonempty. An
example is given to show that in sensitivity analysis the CD multipliers may provide
more useful information than the other multipliers. In this example, the value function
is Lipschitz, and the limiting subdifferentials of the value function coincide with the
set of negative CD multipliers, while the limiting subdifferentials are contained strictly
in the set of negative C multipliers and the set of P multipliers, NLP multipliers, and
S multipliers are empty. Applications to the bilevel programming problem are also
given.

In this paper we deal only with the sensitivity analysis of the optimal values. For
the sensitivity analysis of the optimal solutions, the reader is referred to Scheel and
Scholtes [19].

The following notations are used throughout the paper: B denotes the open unit
ball; B(z̄; δ) denotes the open ball centered at z̄ with radius δ > 0. For a set E, coE
denotes the convex hull of E, and intE and clE denote the interior and the closure
of E, respectively. The notation 〈a, b〉 denotes the inner products of vectors a and b.
For a differentiable function f , ∇f(x̄) denotes the gradient of f at x̄. For a vector
a ∈ Rn, ai denotes the ith component of a. For an m by n matrix A and index sets
I ⊆ {1, 2, . . . ,m}, J ⊆ {1, 2, . . . , n}, AI and AI,J denote the submatrix of A with rows
specified by I and the submatrix of A with rows and columns specified by I and J ,
respectively. A� denotes the transpose of a matrix A. For a vector d ∈ Rm, dI is the
subvector composed from the components di, i ∈ I.

2. Preliminaries. The purpose of this section is to provide the background
material on nonsmooth analysis which will be used later. We give only concise defi-
nitions and facts that will be needed in the paper. For more detailed information on
the subject, our references are Clarke [3], Loewen [7], Rockafellar and Wets [18], and
Mordukhovich [10, 12, 13].

First we give some definitions for various subdifferentials and normal cones.
Definition 2.1. Let f : Rn → R ∪ {+∞} be lower semicontinuous and finite at

x̄ ∈ Rn. The proximal subdifferential of f at x̄ is the set defined by

∂πf(x̄) = {v ∈ Rn :∃M > 0, δ > 0 s.t.

f(x) ≥ f(x̄) + 〈v, x− x̄〉+M‖x− x̄‖2 ∀x ∈ x̄+ δB},
the limiting subdifferential of f at x̄ is the set defined by

∂f(x̄) :=
{
v ∈ Rn : v = lim

ν→∞ vν with vν ∈ ∂πf(xν) and xν → x̄
}
,

the singular limiting subdifferential of f at x̄ is the set defined by

∂∞f(x̄) :=
{
v ∈ Rn : v = lim

ν→∞λνvν with vν ∈ ∂πf(xν) and λν ↓ 0, xν → x̄
}
.
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Let f : Rn → R be Lipschitz near x̄ ∈ Rn. The Clarke generalized gradient of f
at x̄ is the set

∂Cf(x̄) := clco∂f(x̄).

For set-valued maps, the definition for a limiting normal cone leads to the defini-
tion of the coderivative of a set-valued map introduced by Mordukhovich in [9].

Definition 2.2. For a closed set C ⊂ Rn and x̄ ∈ C, the proximal normal cone
to C at x̄ is defined by

NπC(x̄) := {v ∈ Rn : ∃M > 0 s.t. 〈v, x− x̄〉 ≤M‖x− x̄‖2 ∀x ∈ C},

and the limiting normal cone to C at x̄ is defined by

NC(x̄) :=
{

lim
ν→∞ vν : vν ∈ NπC(xν), xν → x̄

}
.

Definition 2.3. Let Φ : Rn ⇒ Rq be a set-valued map. Let (x̄, p̄) ∈ clGphΦ,
where GphΦ := {(x, p) : p ∈ Φ(x)} is the graph of the set-valued map Φ. The
set-valued map D∗Φ(x̄, p̄) from Rq into Rn, defined by

D∗Φ(x̄, p̄)(η) := {ξ ∈ Rn : (ξ,−η) ∈ NGphΦ(x̄, p̄)},

is called the Mordukhovich coderivative of Φ at (x̄, p̄).
In general, we have the following inclusions, which may be strict:

∂πf(x̄) ⊆ ∂f(x̄) ⊆ ∂Cf(x̄).

In the case where f is a convex function, all subdifferentials coincide with the subd-
ifferentials in the sense of convex analysis, i.e.,

∂πf(x̄) = ∂f(x̄) = ∂Cf(x̄) = {ζ : f(x)− f(x̄) ≥ 〈 ζ, x− x̄〉 ∀x}.

In the case where f is strictly differentiable (see the definition, e.g., in Clarke [2]), we
have

∂f(x̄) = ∂Cf(x̄) = {∇f(x̄)}.

The following facts about the subdifferentials are well known.
Proposition 2.4.
(i) A function f : Rn → R is Lipschitz near x̄ and ∂f(x̄) = {ζ} if and only if f

is strictly differentiable at x̄ and the gradient of f at x̄ equals ζ.
(ii) A function f : Rn → R is Lipschitz near x̄ if and only if ∂∞f(x̄) = {0}.
(iii) If a function f : Rn → R is Lipschitz near x̄ with positive constant Lf , then

∂f(x̄) ⊆ LfclB.
The following calculus rules will be useful and can be found in the references given

in the beginning of this section.
Proposition 2.5 (see, e.g., [7, Proposition 5A.4]). Let f : Rn → R be Lipschitz

near x̄, and let g : Rn → R ∪ {+∞} be lower semicontinuous and finite at x̄. Then

∂(f + g)(x̄) ⊆ ∂f(x̄) + ∂g(x̄),

∂∞(f + g)(x̄) ⊆ ∂∞g(x̄).
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Proposition 2.6 (see, e.g., [7, Lemma 5A.3]). Let f : Rn × Rm → R ∪ {+∞}
be lower semicontinuous and finite at (x̄, ȳ). If (ζ, 0) ∈ ∂∞f(x̄, ȳ) implies that ζ = 0,
then

∂yf(x̄, ȳ) ⊆ {η : (ζ, η) ∈ ∂f(x̄, ȳ) for some ζ},
∂∞
y f(x̄, ȳ) ⊆ {η : (ζ, η) ∈ ∂∞f(x̄, ȳ) for some ζ}.

Proposition 2.7 (see, e.g., [13, Theorem 7.6]). Let the minimum function be

(∧fj)(x) := min{fj(x)|j = 1, 2, . . . ,m},
where fj : Rn → R ∪ {+∞}. Assume that fj are lower semicontinuous around x̄ for
j ∈ J(x̄) and lower semicontinuous at x̄ for j �∈ J(x̄), where

J(x) := {j|fj(x) = ∧fj(x)}.
Then the minimum function ∧fj(x) is lower semicontinuous around x̄ and

∂(∧fj)(x̄) ⊆
⋃
{∂fj(x̄)|j ∈ J(x̄)},

∂∞(∧fj)(x̄) ⊆
⋃
{∂∞fj(x̄)|j ∈ J(x̄)}.

Classical results on the value function can be found in [2, 4, 7, 11, 18], while the
results we quote are from [7].

Proposition 2.8 (see [7, (b) and (d) of Theorem 5A.2]). Let g : Rn × Rm →
R ∪ {+∞} be lower semicontinuous everywhere and finite at (z̄, ᾱ). Suppose g is
bounded below on some set E ×O, where E is a compact neighborhood of z̄ and O is
an open set containing ᾱ. Define the value function V : Rm → R∪{+∞} and the set
of minimizers Σ as follows:

V (α) := inf{g(z, α) : z ∈ E},
Σ(α) := {z ∈ E : g(z, α) = V (α)}.

If Σ(ᾱ) ⊆ intE, then the value function V is lower semicontinuous on O, and the
subdifferentials of V satisfy these estimates:

∂V (ᾱ) ⊆ {η ∈ Rm : (0, η) ∈ ∂g(z, ᾱ) for some z ∈ Σ(ᾱ)},
∂∞V (ᾱ) ⊆ {η ∈ Rm : (0, η) ∈ ∂∞g(z, ᾱ) for some z ∈ Σ(ᾱ)}.

Our results are stated using the limiting subdifferentials. Alternatively, they could
be derived by using the Fréchet subdifferentials instead of the proximal subdifferen-
tials. (Both lead to the same limiting subdifferentials in finite dimensional spaces.) In
[18] arguments are given in favor of the former (called there the regular subdifferen-
tials). In the present paper we use the proximal subdifferentials to provide the same
framework as in [23].

3. Main results. Let (x̄, ȳ) be a feasible solution of the OPVIC and let λ be a
nonnegative number. We defineMλ(x̄, ȳ), the index λ CD multiplier set corresponding
to (x̄, ȳ), to be the set of vectors (γ, β, η) in Rd ×Rl ×Rm satisfying the Fritz John-
type necessary optimality condition involving the Mordukhovich coderivatives for GP,
that is, the vectors (γ, β, η) such that


0 ∈ λ∂f(x̄, ȳ) + ∂〈Ψ, γ〉(x̄, ȳ) + ∂〈H,β〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)

+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +NC(x̄, ȳ),

γ ≥ 0, and 〈Ψ(x̄, ȳ), γ〉 = 0.
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Then by Ye [23, Theorem 3.1], the Fritz John-type necessary optimality condition
involving the Mordukhovich coderivatives can be rephrased as follows.

Proposition 3.1. Under the basic assumption (BA), if (x̄, ȳ) is a local solution
of OPVIC, then either the set of normal CD multipliers is nonempty or there is a
nonzero abnormal CD multiplier, i.e.,

M1(x̄, ȳ) ∪ (M0(x̄, ȳ) \ {0}) �= ∅.
Note that by the definition of the Mordukhovich coderivative,

ξ ∈ D∗NΩ(ȳ,−F (x̄, ȳ))(η) if and only if (ξ,−η) ∈ NGphNΩ(ȳ,−F (x̄, ȳ)).

In the case where Ω = {0}, OPVIC reduces to an ordinary mathematical pro-
gramming problem with equality, inequality, and abstract constraints. The term
D∗NΩ(ȳ,−F (x̄, ȳ))(η) vanishes, and the above Fritz John condition can be consid-
ered as a limiting subdifferential version of the generalized Lagrange multiplier rule as
found in Clarke [2, Theorem 6.1.1] and was obtained by Mordukhovich [9, Theorem
1(b)].

In the case where Ω = Rm+ , (1) reduces to a complementarity constraint,

y ≥ 0, F (x, y) ≥ 0, 〈F (x, y), y〉 = 0,

and the coderivative of the normal cone to the set Rm+ can be calculated using the
following lemma whose proof follows from [22, Proposition 2.7] and the definition of
the limiting normal cones.

Lemma 3.2. For any (ū,−v̄) ∈ GphNRm
+

,

NGphNRm
+
(ū,−v̄) = {(ξ,−η) ∈ R2m :ξi = 0 if ūi > 0, v̄i = 0,

ηi = 0 if ūi = 0, v̄i > 0,

either ξiηi = 0 or ξi < 0 and ηi < 0 if ūi = 0, v̄i = 0}.

In the case where Ω is a polyhedral convex set, one can calculate the Mordukhovich
coderivative of the normal cone to the set Ω by using the formula of the limiting normal
cone to the graph of the normal cone to the set Ω, which was first given in the proof
of Dontchev and Rockafellar [5, Theorem 2] and stated in Poliquin and Rockafellar
[16, Proposition 4.4].

We first consider the following additively (right-hand side) perturbed GP:

GP(p, q, r) minimize f(x, y)
subject to Ψ(x, y) ≤ p,H(x, y) = q, (x, y) ∈ C,

r ∈ F (x, y) +NΩ(y),

with the solution set denoted by Σ(p, q, r).
In order to obtain useful information on the subdifferentials of the value function

at (p̄, q̄, r̄), some hypotheses are usually made for GP(p, q, r), where (p, q, r) are suffi-
ciently close to the point of interest (p̄, q̄, r̄) (see, for example, [4, Growth Hypothesis
3.1.1], [2, Hypothesis 6.5.1], [18, Definition 1.8]). In this paper, we make the following
growth hypothesis [7, Theorem 5A.2]:

(GH) at (p̄, q̄, r̄): There exists δ > 0 such that the set

{(x, y) ∈ C : Ψ(x, y) ≤ p,H(x, y) = q, r ∈ F (x, y) +NΩ(y), f(x, y) ≤M,

(p, q, r) ∈ B(p̄, q̄, r̄; δ)}
is bounded for each M .
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In order to apply Proposition 2.8, we rewrite the value function in the following
form:

V (p, q, r) = inf g(x, y, p, q, r),

where g is the extended-value function defined by

g(x, y, p, q, r) := f(x, y) + I(GphΦ)∩(C×Rd+l+m)(x, y, p, q, r)

with IE being the indicator function of a set E defined by

IE(x) :=

{
0 if x ∈ E,

∞ if x �∈ E

and Φ being the set-valued map defined by

Φ(x, y) = (Ψ(x, y), H(x, y), F (x, y)) +Rd+ × {0} ×NΩ(y).

The growth hypothesis (GH) amounts to saying the function g is level-bounded in
(x, y) uniformly for any (p, q, r) ∈ B(p̄, q̄, r̄; δ). Hence by virtue of [18, Theorem 1.9],⋃

(p,q,r)∈B(p̄,q̄,r̄;δ) Σ(p, q, r) is a compact set and for all (p, q, r) ∈ B(p̄, q̄, r̄; δ),

V (p, q, r) = inf{g(x, y, p, q, r) : (x, y) ∈ E},
where E is a compact set with interior containing

⋃
(p,q,r)∈B(p̄,q̄,r̄;δ) Σ(p, q, r). It is clear

that g is lower semicontinuous everywhere and finite at any (x, y, p, q, r) ∈ (GphΦ) ∩
(C ×Rd+l+m). Since f is Lipschitz on E, g is bounded below on E ×B(x̄, ȳ; ε). The
following result then follows immediately by applying Proposition 2.8.

Proposition 3.3. Under the basic assumption (BA) and the growth hypothesis
(GH) at (p̄, q̄, r̄) the value function V is lower semicontinuous on B(p̄, q̄, r̄; δ) and

∂V (p̄, q̄, r̄) ⊆
⋃

(x̄,ȳ) ∈Σ(p̄,q̄,r̄)

{(u, v, w) : (0, 0, u, v, w) ∈ ∂g(x̄, ȳ, p̄, q̄, r̄)},(10)

∂∞V (p̄, q̄, r̄) ⊆
⋃

(x̄,ȳ)∈Σ(p̄,q̄,r̄)

{(u, v, w) : (0, 0, u, v, w) ∈ ∂∞g(x̄, ȳ, p̄, q̄, r̄)}.(11)

We now prove that the set in the right-hand side of (10) (respectively, (11)) is
included in the normal multiplier set M1 (respectively, the abnormal multiplier set
M0).

By the sum rule (see Proposition 2.5) and the fact that for any closed set E with
z̄ ∈ E

∂IE(z̄) = ∂∞IE(z̄) = NE(z̄),

we have

∂g(x̄, ȳ, p̄, q̄, r̄) ⊂ ∂f(x̄, ȳ)× {(0, 0)}+N(GphΦ)∩(C×Rd+l+m)(x̄, ȳ, p̄, q̄, r̄),

∂∞g(x̄, ȳ, p̄, q̄, r̄) ⊂ N(GphΦ)∩(C×Rd+l+m)(x̄, ȳ, p̄, q̄, r̄).

Hence we need only to compute the normal cone.
Lemma 3.4. If (sx, sy, sp, sq, sr) ∈ N(GphΦ)∩(C×Rd+l+m)(x̄, ȳ, p̄, q̄, r̄), then


(sx, sy) ∈ ∂〈Ψ,−sp〉(x̄, ȳ) + ∂〈H,−sq〉(x̄, ȳ) + ∂〈F,−sr〉(x̄, ȳ) +NC(x̄, ȳ)

+{0} ×D∗NΩ(ȳ, r̄ − F (x̄, ȳ))(−sr),
sp ≥ 0, and 〈Ψ(x̄, ȳ)− p̄, sp〉 = 0.
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Proof. Step 1. Let (x̃, ỹ, p̃, q̃, r̃) be any point in a neighborhood of (x̄, ȳ, p̄, q̄, r̄) on
which Ψ, H, and F are Lipschitz continuous and

(sx, sy, sp, sq, sr) ∈ Nπ(GphΦ)∩(C×Rd+l+m)(x̃, ỹ, p̃, q̃, r̃).

By definition of the proximal normal cone, there isM > 0 such that for all (x, y, p, q, r) ∈
(GphΦ) ∩ (C ×Rd+l+m),

〈(sx, sy, sp, sq, sr), (x, y, p, q, r)− (x̃, ỹ, p̃, q̃, r̃)〉 ≤M‖(x, y, p, q, r)− (x̃, ỹ, p̃, q̃, r̃)‖2.

In other words, (x̃, ỹ, p̃, q̃, r̃) is a solution to the optimization problem

minimize 〈−(sx, sy, sp, sq, sr), (x, y, p, q, r)〉+M‖(x, y, p, q, r)− (x̃, ỹ, p̃, q̃, r̃)‖2
subject to Ψ(x, y) ≤ p,H(x, y) = q, (x, y) ∈ C,

r ∈ F (x, y) +NΩ(y).

We now prove that the only abnormal CD multiplier for the above problem is the
zero vector. Indeed, the set of abnormal CD multipliers at (x̃, ỹ, p̃, q̃, r̃) for the above
problem are the vectors (γ, β, η) satisfying


0 ∈ ∂〈Ψ, γ〉(x̃, ỹ)× {(−γ, 0, 0)}+ ∂〈H,β〉(x̃, ỹ)× {(0,−β, 0)}+ ∂〈F, η〉(x̃, ỹ)
×{(0, 0,−η)}+ {0} ×D∗NΩ(ỹ, r̃ − F (x̃, ỹ))(η)× {(0, 0, 0)}+NC(x̃, ỹ)

×{(0, 0, 0)}, γ ≥ 0, and 〈Ψ(x̃, ỹ)− p̃, γ〉 = 0,

which obviously coincides with the set {(0, 0, 0)}. Applying Proposition 3.1, we con-
clude that the set of normal CD multipliers for the above problem must be nonempty.
That is, there are vectors η ∈ Rm, β ∈ Rl, and γ ∈ Rd such that


0 ∈ −{(sx, sy, sp, sq, sr)}+ ∂〈Ψ, γ〉(x̃, ỹ)× {(−γ, 0, 0)}+ ∂〈H,β〉(x̃, ỹ)× {(0,−β, 0)}
+∂〈F, η〉(x̃, ỹ)× {(0, 0,−η)}+ {0} ×D∗NΩ(ỹ, r̃ − F (x̃, ỹ))(η)× {(0, 0, 0)}

+NC(x̃, ỹ)× {(0, 0)},
γ ≥ 0, and 〈Ψ(x̃, ỹ)− p̃, γ〉 = 0.

That is,


(sx, sy) ∈ ∂〈Ψ,−sp〉(x̃, ỹ) + ∂〈H,−sq〉(x̃, ỹ)
+∂〈F,−sr〉(x̃, ỹ) + {0} ×D∗NΩ(ỹ, r̃ − F (x̃, ỹ))(−sq) +NC(x̃, ỹ),

sp ≥ 0, and 〈Ψ(x̃, ỹ)− p̃, sp〉 = 0.

Step 2. Now take any (sx, sy, sp, sq, sr) ∈ N(GphΦ)∩(C×Rd+l+m)(x̄, ȳ, p̄, q̄, r̄). Then
by definition of limiting normal cones, there are sequences (xν , yν , pν , qν , rν)→ (x̄, ȳ, p̄, q̄, r̄)
and (sνx, s

ν
y , s

ν
p , s

ν
q , s

ν
r )→ (sx, sy, sp, sq, sr) with

(sνx, s
ν
y , s

ν
p , s

ν
q , s

ν
r ) ∈ Nπ(GphΦ)∩(C×Rd+l+m)(x

ν , yν , pν , qν , rν).

By virtue of step 1,


(sνx, s
ν
y) ∈ ∂〈Ψ,−sνp〉(xν , yν) + ∂〈H,−sνq 〉(xν , yν) + ∂〈F,−sνr 〉(xν , yν)

+ {0} ×D∗NΩ(yν , rν − F (xν , yν))(−sνr ) +NC(xν , yν),

sνp ≥ 0, and 〈Ψ(xν , yν)− pν , sνp〉 = 0.
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Since Ψ is Lipschitz near (x̄, ȳ), we have

∂〈Ψ,−sνp〉(xν , yν) ⊆ ∂〈Ψ,−sp〉(xν , yν) + ∂〈Ψ, sp − sνp〉(xν , yν) by Proposition 2.5

⊆ ∂〈Ψ,−sp〉(xν , yν) + ‖sνp − sp‖LΨclB by Proposition 2.4,

where LΨ is the Lipschitz constant of Ψ. Similarly,

∂〈H,−sνq 〉(xν , yν) ⊆ ∂〈H,−sq〉(xν , yν) + ‖sνq − sq‖LHclB,

∂〈F,−sνr 〉(xν , yν) ⊆ ∂〈F,−sr〉(xν , yν) + ‖sνr − sr‖LF clB,

where LH , LF are the Lipschitz constants of F and H. Hence we have


(sνx, s
ν
y) ∈ ∂〈Ψ,−sp〉(xν , yν) + ∂〈H,−sq〉(xν , yν) + ∂〈F,−sr〉(xν , yν)

+ (‖sνp − sp‖+ ‖sνq − sq‖+ ‖sνr − sr‖)(LΨ + LH + LF )clB

+ {0} ×D∗NΩ(yν , rν − F (xν , yν))(−sνr ) +NC(xν , yν),

sνp ≥ 0, and 〈Ψ(xν , yν)− pν , sνp〉 = 0.

Taking limits as ν →∞ and using the definitions of the limiting normal cone and the
limiting subdifferentials completes the proof.

Remark. As is pointed out by referee 1, alternatively, Lemma 3.4 can also be
proved by formulating the constraints in the form of [12, equation (6.19)] and applying
[12, Theorem 6.10].

All in all, we proved the following result.
Theorem 3.5. Assume (GH) and (BA) hold. Then the value function V is lower

semicontinuous on B(p̄, q̄, r̄; δ) and

∂V (p̄, q̄, r̄) ⊂
⋃

(x̄,ȳ)∈Σ(p̄,q̄,r̄)

−M1(x̄, ȳ) and ∂∞V (p̄, q̄, r̄) ⊂
⋃

(x̄,ȳ)∈Σ(p̄,q̄,r̄)

−M0(x̄, ȳ).

We now consider the value function V (α) associated with the following perturbed
GP:

GP(α) minimize f(x, y, α)
subject to Ψ(x, y, α) ≤ 0, H(x, y, α) = 0, (x, y) ∈ C,

0 ∈ F (x, y, α) +NΩ(y),

i.e.,

V (α) := inf{f(x, y, α) : Ψ(x, y, α) ≤ 0, H(x, y, α) = 0, (x, y) ∈ C,

0 ∈ F (x, y, α) +NΩ(y)},
where the following basic assumptions are satisfied:

(BH) The functions f : Rn+m+c → R,Ψ : Rn+m+c → Rd, H : Rn+m+c → Rl, and
F : Rn+m+c → Rm are locally Lipschitz near any points in C × Rc; C is a
closed subset of Rn+m; and Ω is a closed convex subset of Rm.

It is easy to see that we can turn the nonadditive perturbations into additive
perturbations by adding an auxiliary variable:

GP(α) minimize f(x, y, z)
subject to Ψ(x, y, z) ≤ 0, H(x, y, z) = 0, (x, y, z) ∈ C ×Rc,

0 ∈ F (x, y, z) +NΩ(y),
z = α,
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which is the partially perturbed problem of the fully perturbed problem

GP(p, q, r, α) minimize f(x, y, z)
subject to Ψ(x, y, z) ≤ p,H(x, y, z) = q, (x, y, z) ∈ C ×Rc,

r ∈ F (x, y, z) +NΩ(y),
z = α.

By Theorem 3.5, if the fully perturbed problem GP(p, q, r, α) satisfies the growth

hypothesis (GH) at (0, 0, 0, ᾱ), then the value function Ṽ (p, q, r, α) defined by

Ṽ (p, q, r, α) := inf{f(x, y, z) :Ψ(x, y, z) ≤ p,H(x, y, z) = q, (x, y, z) ∈ C ×Rc,

r ∈ F (x, y, z) +NΩ(y), z = α}
is lower semicontinuous on B(0, 0, 0, ᾱ; δ) and

∂Ṽ (0, 0, 0, ᾱ) ⊆
⋃

(x̄,ȳ,ᾱ)∈Σ(0,0,0,ᾱ)

−M1(x̄, ȳ, ᾱ),

∂∞Ṽ (0, 0, 0, ᾱ) ⊆
⋃

(x̄,ȳ,ᾱ)∈Σ(0,0,0,ᾱ)

−M0(x̄, ȳ, ᾱ).

For any (0, 0, 0, ζ) ∈ ∂∞Ṽ (0, 0, 0, ᾱ), we have (0, 0, 0, ζ) ∈ −M0(x̄, ȳ, ᾱ) for some
point (x̄, ȳ, ᾱ) ∈ Σ(0, 0, 0, ᾱ). Therefore,

(0, 0, ζ) ∈ NC(x̄, ȳ)× {0},
which implies that ζ = 0. By Proposition 2.6, we have

∂αṼ (0, 0, 0, ᾱ) ⊆ {−ζ : −(γ, β, η, ζ) ∈ ∂Ṽ (0, 0, 0, ᾱ) for some (γ, β, η)},
∂∞
α Ṽ (0, 0, 0, ᾱ) ⊆ {−ζ : −(γ, β, η, ζ) ∈ ∂∞Ṽ (0, 0, 0, ᾱ) for some (γ, β, η)}.

Moreover, since all functions involved are continuous, it suffices to fix α at ᾱ in the
growth hypothesis (GH) at (0, 0, 0, ᾱ) for the fully perturbed problem GP(p, q, r, α).

Consequently, noticing that V (α) = Ṽ (0, 0, 0, α), we have proved the following theo-
rem.

Theorem 3.6. In addition to the basic assumption (BH), assume that there
exists δ > 0 such that the set

{(x, y) ∈ C : Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q, r ∈ F (x, y, ᾱ) +NΩ(y), f(x, y, ᾱ) ≤M,

(p, q, r) ∈ B(0; δ)}
is bounded for each M . Then the value function V (α) is lower semicontinuous near
ᾱ and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M1(x̄, ȳ, ᾱ)},

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M0(x̄, ȳ, ᾱ)},

where Mλ(x̄, ȳ, ᾱ) is the set of index λ multipliers for problem GP(p, q, r, α) at (0, 0, 0, ᾱ),
i.e., vectors (γ, β, η, ζ) in Rd ×Rl ×Rm ×R satisfying


0 ∈ λ∂f(x̄, ȳ, ᾱ) + ∂〈Ψ, γ〉(x̄, ȳ, ᾱ) + ∂〈H,β〉(x̄, ȳ, ᾱ) + ∂〈F, η〉(x̄, ȳ, ᾱ)

+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ, ᾱ))(η)× {0}+ {(0, 0, ζ)}+NC(x̄, ȳ)× {0},
γ ≥ 0, and 〈Ψ(x̄, ȳ, ᾱ), γ〉 = 0,
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and Σ(ᾱ) is the set of solutions of problem GP(ᾱ).
The above estimates may not be useful in the case where ∂V (ᾱ) is empty. The

following consequence of Theorem 3.6 and Proposition 2.4 provides conditions which
rule out this possibility.

Corollary 3.7. Under the assumption of Theorem 3.6, if the set of ζ compo-
nents of the abnormal CD multiplier set contains only the zero vector, i.e.,⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M0(x̄, ȳ, ᾱ)} = {0},

then V (ᾱ) is finite and Lipschitz near ᾱ with

∅ �= ∂V (ᾱ) ⊂
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M1(x̄, ȳ, ᾱ)}.

In addition to the above assumptions, if the ζ components of the normal CD
multiplier set are unique, i.e.,⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, β, η, ζ) ∈M1(x̄, ȳ, ᾱ)} = {−ζ},

then V is strictly differentiable at ᾱ and ∇V (ᾱ) = −ζ.
In the case where all functions are smooth, the estimates have the following simple

expression.
Corollary 3.8. In addition to the assumptions in Theorem 3.6, assume that

f,Ψ, H, F are C1 at each (x̄, ȳ, ᾱ), where (x̄, ȳ) ∈ Σ(ᾱ); then the value function V is
lower semicontinuous near ᾱ, and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1(x̄, ȳ)},
∂∞V (ᾱ) ⊆

⋃
(x̄,ȳ,z̄)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0(x̄, ȳ)},
where Mλ(x̄, ȳ) is the set of index λ CD multipliers for problem GP(ᾱ).

Note that in the case where there are no variational inequality constraints, the
CD multipliers are the ordinary NLP multipliers, and the above results recover the
well-known results in the sensitivity analysis of NLP.

4. Applications to OPCCs. In this section, we apply our main results to the
following perturbed OPCC:

(OPCC)(α) minimize f(x, y, α),
subject to Ψ(x, y, α) ≤ 0, H(x, y, α) = 0, (x, y) ∈ C,

y ≥ 0, F (x, y, α) ≥ 0,
〈y, F (x, y, α)〉 = 0,

which is GP(α) with Ω = Rm+ .
For easier exposition, we assume in this section that all problem data f,Ψ, H, F

are C1. We denote by ∇f(x, y, α) the gradient of function f with respect to (x, y).
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For (x̄, ȳ), a feasible solution of (OPCC)(ᾱ), we define the index sets

L := L(x̄, ȳ) := {1 ≤ i ≤ m : ȳi > 0, Fi(x̄, ȳ, ᾱ) = 0},
I+ := I+(x̄, ȳ) := {1 ≤ i ≤ m : ȳi = 0, Fi(x̄, ȳ, ᾱ) > 0},
I0 := I0(x̄, ȳ) := {1 ≤ i ≤ m : ȳi = 0, Fi(x̄, ȳ, ᾱ) = 0}.

4.1. Sensitivity analysis of the value function via NLP multipliers. Let
(x̄, ȳ) be a local optimal solution for (OPCC)(ᾱ). Treating (OPCC)(ᾱ) as an ordinary
NLP problem with inequality constraints

Ψ(x, y, ᾱ) ≤ 0, y ≥ 0, F (x, y, ᾱ) ≥ 0,

equality constraints

H(x, y, ᾱ) = 0, 〈y, F (x, y, ᾱ〉 = 0,

and the abstract constraint (x, y) ∈ C, it is easy to see that the Fritz John optimality
condition implies the existence of λ ≥ 0, γ ∈ Rd, β ∈ Rl, rF ∈ Rm, ry ∈ Rm, µ ∈ R,
not all zero, such that

0 ∈ λ∇f(x̄, ȳ, ᾱ) +∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β
−∇F (x̄, ȳ, ᾱ)�rF − {(0, ry)}+ µ∇〈y, F 〉(x̄, ȳ, ᾱ) +NC(x̄, ȳ),

γ ≥ 0, 〈γ,Ψ(x̄, ȳ, ᾱ)〉 = 0,

rF ≥ 0, ry ≥ 0, 〈rF , F (x̄, ȳ, ᾱ)〉 = 0, 〈ry, ȳ〉 = 0.

Using the sum and product rules, we have

∇〈y, F 〉(x̄, ȳ, ᾱ) = {(0, F (x̄, ȳ, ᾱ))}+∇F (x̄, ȳ, ᾱ)�ȳ.

Therefore, the Fritz John necessary condition becomes

0 ∈ λ∇f(x̄, ȳ, ᾱ) +∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β
+∇F (x̄, ȳ, ᾱ)�(µȳ − rF ) + {(0, µF (x̄, ȳ, ᾱ)− ry)}+NC(x̄, ȳ),

γ ≥ 0, 〈γ,Ψ(x̄, ȳ, ᾱ)〉 = 0,

rF ≥ 0, ry ≥ 0, and 〈rF , F (x̄, ȳ, ᾱ)〉 = 0, 〈ry, ȳ〉 = 0.

Definition 4.1 (NLP multipliers). We call all vectors (γ, β, rF , ry, µ) ∈ Rd ×
Rl ×Rm ×Rm ×R satisfying the above Fritz John necessary condition for any λ ≥ 0
the index λ NLP multipliers for OPCC(ᾱ) and denote the set by Mλ

NLP (x̄, ȳ).
Since we treat OPCC(α) as an ordinary NLP problem, Ω = {0} in the corre-

sponding problem GP(α). Hence the CD multipliers for the corresponding GP (α)
are the NLP multipliers defined above. Applying Corollary 3.8 and Proposition 2.4,
we derive the following upper estimates of the limiting subdifferentials of the value
function in terms of the NLP multipliers.

Theorem 4.2. Assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, py, pF , qµ) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

y ≥ py, F (x, y, ᾱ) ≤ pF , 〈y, F (x, y, ᾱ)〉 = qµ, f(x, y, ᾱ) ≤M}
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is bounded for each M . Then the value function V is lower semicontinuous near ᾱ
and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�(µȳ − rF ) : (γ, β, rF , ry, µ) ∈M1
NLP (x̄, ȳ)},(12)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�(µȳ − rF ) : (γ, β, rF , ry, µ) ∈M0
NLP (x̄, ȳ)}.(13)

If the set in the right-hand side of inclusion (13) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(13) contains only the zero vector and the set in the right-hand side of inclusion (12)
is a singleton, then the value function is strictly differentiable at ᾱ.

4.2. Sensitivity analysis of the value function via CD multipliers. Since
OPCC(ᾱ) is OPVIC(ᾱ) with Ω = Rm+ , the following expression of CD multiplers
follows immediately from Lemma 3.2.

Proposition 4.3. For OPCC(ᾱ), an index λ CD multiplier corresponding to a
feasible solution (x̄, ȳ) is a vector (γ, β, η) ∈ Rd ×Rl ×Rm such that

0 ∈ λ∇f(x̄, ȳ, ᾱ) +∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β
+∇F (x̄, ȳ, ᾱ)�η + (0, 0, ξ) +NC(x̄, ȳ),(14)

γ ≥ 0 and 〈Ψ(x̄, ȳ, ᾱ), γ〉 = 0,(15)

ξi = 0 if ȳi > 0 and Fi(x̄, ȳ, ᾱ) = 0,(16)

ηi = 0 if ȳi = 0 and Fi(x̄, ȳ, ᾱ) > 0,(17)

either ξi < 0, ηi < 0, or ξiηi = 0 if ȳi = 0 and Fi(x̄, ȳ) = 0.(18)

Corollary 3.8 and Proposition 2.4 now lead to the following result.
Theorem 4.4. Assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, r) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

y ≥ 0, F (x, y, ᾱ) ≥ r, 〈y, F (x, y, ᾱ)− r〉 = 0, f(x, y, ᾱ) ≤M}
is bounded for each M . Then the value function V is lower semicontinuous near ᾱ
and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
CD(x̄, ȳ)},(19)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇F (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
CD(x̄, ȳ)}.(20)

If the set in the right-hand side of inclusion (20) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(20) contains only the zero vector and the set in the right-hand side of inclusion (19)
is a singleton, then the value function is strictly differentiable at ᾱ.

We say that the generalized Mangasarian–Fromovitz constraint qualification for
OPCC(ᾱ) is satisfied at (x̄, ȳ) if C = D ×Rm and
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(i) for every partition of I0 into sets P,Q,R with R �= ∅, there exist vectors
k ∈ intTC(x̄, D), h ∈ Rm such that hI+ = 0, hQ = 0, hR ≥ 0,

∇xΨI(Ψ)(x̄, ȳ, ᾱ)k +∇yΨI(Ψ)(x̄, ȳ, ᾱ)h ≤ 0,

∇xH(x̄, ȳ, ᾱ)k +∇yH(x̄, ȳ, ᾱ)h = 0,

∇xFL∪P (x̄, ȳ, ᾱ)k +∇yFL∪P (x̄, ȳ, ᾱ)h = 0,

∇xFR(x̄, ȳ, ᾱ)k +∇yFR(x̄, ȳ, ᾱ)h ≥ 0,

and either hi > 0 or

∇xFi(x̄, ȳ, ᾱ)k +∇yFi(x̄, ȳ, ᾱ)h > 0 for some i ∈ R;

(ii) for every partition of I0 into the sets P,Q, the matrix[ ∇xH(x̄, ȳ, ᾱ) ∇yHA,L∪P (x̄, ȳ, ᾱ)
∇xFL∪P (x̄, ȳ, ᾱ) ∇yFL∪P,L∪P (x̄, ȳ, ᾱ)

]

has full row rank and there exist vectors k ∈ intTC(x̄, D), h ∈ Rm such that

hI+ = 0, hQ = 0,

∇xΨI(Ψ)(x̄, ȳ, ᾱ)k +∇yΨI(Ψ)(x̄, ȳ, ᾱ)h < 0,

∇xH(x̄, ȳ, ᾱ)k +∇yH(x̄, ȳ, ᾱ)h = 0,

∇xFL∪P (x̄, ȳ, ᾱ)k +∇yFL∪P (x̄, ȳ, ᾱ)h = 0,

where A := {1, . . . , l}, TC(x̄, D) denotes the Clarke tangent cone of D at x̄, and
I(Ψ) := {i : Ψi(x̄, ȳ) = 0} is the index set of the binding inequality constraints.

In [23, Proposition 4.5] it was proved that the generalized Mangasarian–Fromovitz
constraint qualification implies that the only abnormal CD multiplier is the zero
vector. Hence Theorem 4.4 has the following consequence.

Corollary 4.5. In addition to the assumptions of Theorem 4.4, if the general-
ized Mangasarian–Fromovitz constraint qualification as defined above is satisfied for
OPCC(ᾱ), then V (α) is finite and Lipschitz near ᾱ.

Another sufficient condition for M0
CD(Σ(ᾱ)) = {0} is the strong regularity con-

dition in the sense of Robinson [17]. For OPCC (ᾱ), the strong regularity condition
has the following form according to [17, Theorem 3.1].

Corollary 4.6. In addition to the assumptions of Theorem 4.4, assume that
C = D×Rm for some D ⊆ Rn, that there are no inequality constraints, and that the
following conditions are satisfied:

(i) the matrix [ ∇yHA,L(x̄, ȳ, ᾱ)
∇yFL,L(x̄, ȳ, ᾱ)

]

is nonsingular, where A := {1, . . . , l};
(ii) the Schur complement of the above matrix in the matrix

 ∇yHA,L(x̄, ȳ, ᾱ) ∇yHA,I0(x̄, ȳ, ᾱ)
∇yFL,L(x̄, ȳ, ᾱ) ∇yFL,I0(x̄, ȳ, ᾱ)
∇yFI0,L(x̄, ȳ, ᾱ) ∇yFI0,I0(x̄, ȳ, ᾱ)




has positive principle minors;
then V (α) is finite and Lipschitz near ᾱ.
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4.3. Sensitivity analysis of the value function via C multipliers. It is
easy to see that OPCC (ᾱ) can be formulated as the following optimization problem
with a nonsmooth equation:

OPCC(ᾱ) minimize f(x, y, α)
subject to Ψ(x, y, α) ≤ 0, H(x, y, α) = 0, (x, y) ∈ C,

min{yi, Fi}(x, y, α) = 0, i = 1, 2, . . . ,m.
(21)

It can be shown as in Scheel and Scholtes [19, Lemma 1] that a solution of the OPCC
is C stationary defined as follows.

Definition 4.7 (C multipliers). Let (x̄, ȳ) be a feasible point of the OPCC. The
point (x̄, ȳ) is C stationary if there exist vectors (γ, β, η, ξ) ∈ Rd × Rl × Rm × Rm

satisfying (14)–(17) and

ξiηi ≥ 0 if ȳi = 0 and Fi(x̄, ȳ, ᾱ) = 0.

The set of vectors (γ, β, η) satisfying the above condition for some ξ is called the index
λ C multiplier set and is denoted by Mλ

C(x̄, ȳ).
Theorem 4.8. Assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, qm) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

min{yi, Fi(x, y, ᾱ)} = qmi , i = 1, . . . ,m, f(x, y, ᾱ) ≤M}
is bounded for each M . Then the value function V is lower semicontinuous near ᾱ
and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
C(x̄, ȳ)},(22)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+F (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
C(x̄, ȳ)}.(23)

If the set in the right-hand side of inclusion (23) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(23) contains only the zero vector and the set in the right-hand side of inclusion (22)
is a singleton, then the value function is strictly differentiable at ᾱ.

Proof. By Theorem 3.6, since the growth assumption is satisfied, the value func-
tion is lower semicontinuous near ᾱ and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, η, ζ) ∈M1(x̄, ȳ, ᾱ)},

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{−ζ : (γ, η, ζ) ∈M0(x̄, ȳ, ᾱ)},

where Mλ(x̄, ȳ, ᾱ) is the set of vectors (γ, β, r, ζ) ∈ Rd+l+m+c such that

0 ∈ λ∇f(x̄, ȳ, ᾱ) +∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β

+∂

m∑
i=1

rimin{yi, Fi}(x̄, ȳ, ᾱ) + {(0, 0, ζ)}+NC(x̄, ȳ)× {0},

γ ≥ 0, 〈γ,Ψ〉(x̄, ȳ, ᾱ) = 0.
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Note that, in the above, ∇f denotes the gradient of a function f with respect to
(x, y, α). Since

∂

m∑
i=1

rimin{yi, Fi}(x̄, ȳ, ᾱ) ⊆
m∑
i=1

ri∂C min{yi, Fi}(x̄, ȳ, ᾱ)

and

∂C min{yi, Fi}(x̄, ȳ, ᾱ) =




(0, ei, 0) ∀i ∈ I+,
∇Fi(x̄, ȳ, ᾱ) ∀i ∈ L,
{t(0, , ei, 0) + (1− t)∇Fi(x̄, ȳ, ᾱ) : t ∈ [0, 1]} ∀i ∈ I0,

where ei is the unit vector whose ith component is 1 and those other components are
zero, there exist γ, β, η such that

ζ = λ∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β +∇αF (x̄, ȳ, ᾱ)�η

and

0 ∈ λ∇f(x̄, ȳ, ᾱ) +∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η
+(0, ξ) +NC(x̄, ȳ),

γ ≥ 0, 〈Ψ, γ〉(x̄, ȳ, ᾱ) = 0,

where

ηi = 0 ∀i ∈ I+,
ξi = 0 ∀i ∈ L,
ηi = ri(1− t̄i), ξi = rit̄i for some t̄i ∈ [0, 1], ∀i ∈ I0.

It is then easy to see that

∀i ∈ I0, ηiξi ≥ 0.

Hence (γ, β, η) is a C multiplier, and the proof of the theorem is complete.

4.4. Sensitivity analysis via P multipliers and S multipliers. Taking the
“piecewise programming” approach, for any given index set ν ⊆ I := {1, . . . ,m}, we
consider the subproblem associated with ν:

OPCC(α)ν minimize f(x, y, α)
subject to Ψ(x, y, α) ≤ 0, H(x, y, α) = 0, (x, y) ∈ C,

yi ≥ 0, Fi(x, y, α) = 0 ∀i ∈ ν
yi = 0, Fi(x, y, α) ≥ 0 ∀i ∈ I\ν.

As suggested by referee 2, since the value function is the minimum of the value
functions for the subproblems, i.e.,

V (α) = min
ν⊂I

Vν(α)

and

V (ᾱ) = Vν(ᾱ) ∀ν = L(x̄, ȳ) ∪ σ, σ ⊆ I0(x̄, ȳ), (x̄, ȳ) ∈ Σ(ᾱ),
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applying the calculus for the minimum functions in Proposition 2.7, we conclude that
the value function V is lower semicontinuous if each Vν(α), ν = L(x̄, ȳ) ∪ σ, σ ⊆
I0(x̄, ȳ), (x̄, ȳ) ∈ Σ(ᾱ), is lower semicontinuous and the following inclusion holds:

∂∞V (ᾱ) ⊆ {∂∞Vν(ᾱ) : ν = L(x̄, ȳ) ∪ σ, σ ⊆ I0(x̄, ȳ), (x̄, ȳ) ∈ Σ(ᾱ)},(24)

∂V (ᾱ) ⊆ {∂Vν(ᾱ) : ν = L(x̄, ȳ) ∪ σ, σ ⊆ I0(x̄, ȳ), (x̄, ȳ) ∈ Σ(ᾱ)}.(25)

The Fritz John condition for the subproblem OPCC(ᾱ)ν with

ν = L(x̄, ȳ) ∪ σ, σ ⊆ I0(x̄, ȳ), (x̄, ȳ) ∈ Σ(ᾱ)

implies the existence of vectors (γ, β, η, ξ) ∈ Rd × Ra × Rb × Rb satisfying (14)–(17)
and

ξσ ≤ 0, ηI0\σ ≤ 0.(26)

Definition 4.9 (P multipliers). The set of all vectors (γ, β, η) satisfying the
above Fritz John condition at (x̄, ȳ) is denoted by Mλ

σ (x̄, ȳ), and
⋃
σ⊆I0 M

λ
σ (x̄, ȳ) is

called the set of P multipliers.
Applying Corollary 3.8, we have the following result.
Proposition 4.10. For any (x̄, ȳ) ∈ Σ(ᾱ) and any given index set σ ⊆ I0(x̄, ȳ),

assume that there exists δ > 0 such that the set

{(x, y) ∈ C :(p, q, qy, qF , ) ∈ B(0; δ),Ψ(x, y, ᾱ) ≤ p,H(x, y, ᾱ) = q,

yi ≥ qyi , Fi(x, y, ᾱ) = qFi ∀i ∈ ν := σ ∪ L(x̄, ȳ),

yi = qyi , Fi(x, y, ᾱ) ≥ qFi ∀i ∈ I\ν, f(x, y, ᾱ) ≤M}
is bounded for each M . Then the value function for subproblem OPCC(ᾱ)ν with
ν = L(x̄, ȳ) ∪ σ is lower semicontinuous near ᾱ and

∂Vν(ᾱ) ⊆
⋃

(x̄,ȳ)∈Σν(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
σ(x̄, ȳ)},

∂∞Vν(ᾱ) ⊆
⋃

(x̄,ȳ)∈Σν(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
σ(x̄, ȳ)},

where Σν(ᾱ) denotes the set of solutions for the subproblem OPCC (α)ν .
We have the following estimates for the value function in terms of P multipliers.
Theorem 4.11. Assume that there exists δ > 0 such that for (x̄, ȳ) ∈ Σ(ᾱ) and

each index set σ ⊆ I0(x̄, ȳ), the set in Proposition 4.10 is bounded for each M . Then
the value function V is lower semicontinuous near ᾱ and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈ ∪σ⊆I0M1
σ(x̄, ȳ)},(27)

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈ ∪σ⊆I0M0
σ(x̄, ȳ)}.(28)
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If the set in the right-hand side of inclusion (28) contains only the zero vector, then
the value function V is Lipschitz near ᾱ. If the set in the right-hand side of inclusion
(28) contains only the zero vector and the set in the right-hand side of inclusion (27)
is a singleton, then the value function is strictly differentiable at ᾱ.

Definition 4.12 (S multipliers). The set of index λ S multipliers, denoted by
Mλ
S (x̄, ȳ), is the set of all vectors (γ, β, η) ∈ Rd ×Ra ×Rb satisfying (14)–(17) and

ξi ≤ 0, ηi ≤ 0 if ȳi = 0 and Fi(x̄, ȳ, ᾱ) = 0.

In the following theorem, we give a condition under which the set of P multipliers
and S multipliers coincide, and so we have the estimates in terms of the S multipliers.

Theorem 4.13. In addition to the assumptions of Theorem 4.11, assume that
C = Rn×Ra×Rb and for all (x̄, z̄, ū) ∈ Σ(ᾱ), the partial MPEC linear independence
constraint qualification is satisfied, i.e.,{

0 = ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, 0, ξ),

γJ(Ψ) = 0, ηI+ = 0, ξL = 0,

implies that ηI0 = 0, ξI0 = 0, where J(Ψ) := {i : Ψi(x̄, ȳ, ᾱ) < 0}. Then the value
function V is lower semicontinuous near ᾱ and

∂V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αf(x̄, ȳ, ᾱ) +∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M1
S(x̄, ȳ)},

∂∞V (ᾱ) ⊆
⋃

(x̄,ȳ)∈Σ(ᾱ)

{∇αΨ(x̄, ȳ, ᾱ)�γ +∇αH(x̄, ȳ, ᾱ)�β

+∇αF (x̄, ȳ, ᾱ)�η : (γ, β, η) ∈M0
S(x̄, ȳ)}.

Remark. As in the proof of [22, Theorem 3.2], it is easy to see that under the
partial MPEC linear independence constraint qualification, all multipliers including
the S multiplier, the CD multiplier, the C multiplier, and the P multiplier coincide.

Recently, the MPEC linear independence constraint qualifications have received
a lot of attention. It is known that under the MPEC linear independence constraint
qualification, the computation of the OPCC is much easier and more efficient (see,
e.g., Scholtes [20]). Furthermore, it was shown in Scholtes [21] that the MPEC linear
independence constraint qualification is a generic condition for the OPCC. Here we
prove the importance of the MPEC linearly independence constraint qualification from
the aspect of the sensitivity analysis: the value function is Lipschitz continuous, and
it is even strictly differentiable in the case where the optimal solution set is unique.
Note that the MPEC linear independence constraint qualification is stronger than the
partial MPEC linear independence constraint qualification.

Corollary 4.14. In addition to the assumptions of Theorem 4.11, assume that
the MPEC linear independence constraint qualifications are satisfied at all (x̄, ȳ) ∈
Σ(ᾱ), i.e.,{

0 = ∇Ψ(x̄, ȳ, ᾱ)�γ +∇H(x̄, ȳ, ᾱ)�β +∇F (x̄, ȳ, ᾱ)�η + (0, 0, ξ),

γJ(Ψ) = 0, ηI+ = 0, ξL = 0,

implies that γ = 0, β = 0, η = 0, ξ = 0. Then the value function is Lipschitz continuous
near ᾱ. Furthermore, if the set of optimal solutions Σ(ᾱ) is a singleton, then the value
function V is strictly differentiable at ᾱ.
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Proof. The MPEC linear independence constraint qualification obviously implies
that M0

S(x̄, ȳ) = {0} and M1
S(x̄, ȳ) is a singleton. Hence the conclusion follows from

Theorem 4.13 and Proposition 2.4.

4.5. Relationships between the multipliers for the OPCC. Applying the
definitions, it is clear that

Mλ
S (x̄, ȳ) ⊆Mλ

CD(x̄, ȳ) ⊆Mλ
C(x̄, ȳ), Mλ

S (x̄, ȳ) ⊆Mλ
P (x̄, ȳ).(29)

It is not possible to compare the set of NLP multipliers directly with the other multipli-
ers since the spaces they belong to have different dimensions. However, the following
interesting relationships can be obtained.

Proposition 4.15 (relationship between an NLP multiplier and an S multiplier).

{(γ, β, µȳ − rF ) : (γ, β, rF , ry, µ) ∈Mλ
NLP (x̄, ȳ)} ⊆Mλ

S (x̄, ȳ)

for all λ ≥ 0.
Proof. Let (γ, β, rF , ry, µ) ∈Mλ

NLP (x̄, ȳ). We consider the following cases.
Case ȳi > 0, Fi(x̄, ȳ) = 0. Then ryi = 0. So ξi := µFi − ryi = 0.
Case ȳi = 0, Fi(x̄, ȳ) > 0. Then rFi = 0. So ηi = µȳi − rFi = 0.
Case ȳi = 0, Fi(x̄, ȳ) = 0]. Then ξi = µFi(x̄, ȳ) − ryi = −ryi and ηi = µȳi − rFi =

−rFi . So ξi = −ryi ≤ 0 and ηi = −rFi ≤ 0.
Hence (γ, β, η), where η := µȳ−rF , is an S multiplier, and the proof of the proposition
is complete.

The above relationship indicates that one can arrange the upper estimates of
the limiting subdifferentials in Theorems 4.2, 4.13, 4.4, and 4.8 from the smallest
to the largest in the order of NLP multipliers, S multipliers, CD multipliers, and C
multipliers.

One may try to use the smallest multiplier set in sensitivity analysis. However,
the smaller multipler sets tend to require stronger constraint qualifications and hence
may be empty. In such a case, where the smaller multipler set is empty, one may have
to use the larger multiplier set.

We now use the following example to show that in some cases the smaller mul-
tiplier sets such as the NLP and the S multiplier sets may be empty while the CD
multiplier provides the tightest bound.

Example. Consider the OPCC

(P ) minimize −y
subject to x− y = 0,

x ≥ 0, y ≥ 0, xy = 0,

where x ∈ R and y ∈ R, and its perturbed problem

P (q, r) minimize −y
subject to x− y = q,

x− r ≥ 0, y ≥ 0, (x− r)y = 0,

which is OPCC (α) with α = (q, r), f = −y,H = x− y− q, F = x− r. Let ᾱ = (0, 0).
It is clear that the only feasible solution for problem (P ) = P (0, 0) is (0, 0). Hence the
only optimal solution for (P) is (0, 0). The set of index λ NLP multipliers (β, ry, rF , µ)
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at (0, 0) satisfy{
0 = λ(0,−1) + β(1,−1)− (rF , 0)− (0, ry) + µ(0, 0),

rF , ry ≥ 0.

It is clear that any (β, ry, rF , µ) = (0, 0, 0, µ) with µ �= 0 is a nonzero NLP abnormal
multiplier and there is no NLP normal multiplier. Hence M0

NLP (0, 0) = {(0, 0, 0)} ×
(−∞,+∞) �= {(0, 0, 0, 0)} and M1

NLP (0, 0) = ∅.
Since ȳ = 0 and F (x̄, ȳ, 0) = x̄ = 0, the index λ CD multipliers (β, η) at (0, 0)

satisfy

0 = λ(0,−1) + β(1,−1) + η(1, 0) + (0, ξ),

either ξ < 0, η < 0, or ξη = 0.

When λ = 0, the above condition implies that β = η = ξ = 0, while when λ = 1,
either η = 1, β = −1, ξ = 0, or β = η = 0, ξ = 1. So M1

CD(0, 0) = {(0, 0)} ∪ {(−1, 1)}
and M0

CD(0, 0) = {(0, 0)}.
The set of index λ C multipliers (β, η) at (0, 0) satisfy

0 = λ(0,−1) + β(1,−1) + η(1, 0) + (0, ξ),

ξη ≥ 0.

When λ = 0, the above condition implies that β = η = ξ = 0, while for λ = 1,
−β = η ∈ [0, 1]. So M1

C(0, 0) = {(β, η) : η = −β ∈ [0, 1]} and M0
C(0, 0) = {(0, 0)}.

Since the optimal solution for (P) is (x̄, ȳ) = (0, 0), (0, 0) is also optimal for the
subproblem associated with ν = {1},

(P1) minimize −y
subject to x− y = 0,

y ≥ 0, x = 0,

and the subproblem associated with ν = ∅,
(P2) minimize −y

subject to x− y = 0,

y = 0, x ≥ 0.

The index λ multiplier set for (P1) consists of vectors (β, η) satisfying{
0 = λ(0,−1) + β(1,−1) + η(1, 0) + (0, ξ),

ξ ≤ 0,

and the index λ multiplier set for (P2) consist of vectors (β, η) satisfying{
0 = λ(0,−1) + β(1,−1) + η(1, 0) + (0, ξ),

η ≤ 0.

Therefore, the abnormal P multiplier set is

M0
P (0, 0) = M0

1 (0, 0) ∪M0
2 (0, 0) = {(β, η) : β = −η ≤ 0} ∪ {(β, η) : β = −η ≥ 0}

= {(β, η) : β = −η},



720 YVES LUCET AND JANE J. YE

and the normal P multiplier set is

M1
P (0, 0) = M1

1 (0, 0) ∪M1
2 (0, 0) = {(β, η) : β = −η ≤ −1} ∪ {(β, η) : β = −η ≥ 0}

= {(β, η) : β = −η ∈ (−∞,−1] ∪ [0,∞)}.
The index λ S multiplier set consists of vectors (β, η) satisfying{

0 = λ(0,−1) + β(1,−1) + η(1, 0) + (0, ξ),

ξ ≤ 0, η ≤ 0,

i.e.,

β = −η, β = −λ+ ξ,

ξ ≤ 0, η ≤ 0.

That is, M0
S(0, 0) = {0}, and M1

S(0, 0) = ∅.
Consider the value function

V (q, r) := inf{−y : x− r ≥ 0, y ≥ 0, (x− r)y = 0, x− y = q}.
Then by Theorem 4.4, since the only abnormal CD multiplier is the zero vector, we
conclude that the value function is Lipschitz near (0, 0), and

∅ �= ∂V (0, 0) ⊆ {β(−1, 0) + η(0,−1) : (β, η) ∈M1
CD(0, 0)}

= −M1
CD(0, 0) = {(0, 0)} ∪ {(1,−1)}.

In fact, we can easily find the expression for the value function for this simple
example since the feasible set of the perturbed problem P (q, r) still reduces to one
point. Indeed, we have{

Σ(q, r) = {(r, r − q)} and V (q, r) = q − r if q < r,

Σ(q, r) = {(q, 0)} and V (q, r) = 0 if q ≥ r.

So V (q, r) = min(0, q− r), which is Lipschitz continuous everywhere. By definition of
the limiting subdifferentials, it is easy to see that

∂V (0, 0) = {(0, 0)} ∪ {(1,−1)},
∂∞V (0, 0) = {(0, 0)}.

Therefore, the inclusions in Theorem 4.4 are actually equalities here, i.e.,

∂V (0, 0) = {(0, 0)} ∪ {(1,−1)} = −M1
CD(0, 0),

∂∞V (0, 0) = {(0, 0)} = −M0
CD(0, 0).

Using Theorem 4.8, since the only abnormal C multiplier is the zero vector, one
also concludes that the value function is Lipschitz. However, the upper estimate for
the limiting subdifferentials of the value function in terms of the C multiplier set is a
strict inclusion here:

∂V (0, 0) = {(0, 0)} ∪ {(1,−1)} ⊂ {(β, η) : β = −η ∈ [0, 1]} = −M1
C(0, 0),

∂∞V (0, 0) = {(0, 0)} = −M0
CD(0, 0).
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The upper estimate for both the limiting and the singular limiting subdifferentials
of the value function in Theorem 4.11 are both strict:

∂V (0, 0) = {(0, 0)} ∪ {(1,−1)}
⊂ {(β, η) : β = −η ∈ (−∞, 0] ∪ (1,∞)} = −M1

P (0, 0),

∂∞V (0, 0) = {(0, 0)}
⊂ {(β, η) : β = −η} = −M0

P (0, 0).

These inclusions are not very helpful since the Lipschitz continuity of the value func-
tion cannot be detected and the upper estimate is unbounded.

Since there is no S multiplier for this problem, the limiting subdifferential of
the value function cannot be estimated in terms of the S multiplier. In fact, the
assumptions in Theorem 4.13 are not satisfied for this problem. Indeed,

(0, 0) = β(1,−1) + η(1, 0) + (0, ξ)

does not imply that η = 0, ξ = 0.
Note that by Theorem 4.2, if the growth hypotheses were satisfied, then

∂V (0, 0) ⊆ {β(−1, 0)− rF (0,−1) : (β, rF , ry, µ) ∈M1
NLP (Σ)},

∂∞V (0, 0) ⊆ {β(−1, 0)− rF (0,−1) : (β, rF , ry, µ) ∈M0
NLP (Σ)}.

But this is not possible since M1
NLP (Σ) = ∅. Indeed, (GH) is not satisfied for this

example.
In the above example, M0

NLP (Σ) �= {0}, while M0
CD(Σ) = {0}. In fact, it

is not just a coincidence that M0
NLP (Σ) �= {0}. In general, the Mangasarian–

Fromovitz constraint qualification satisfying at a feasible solution (x̄, z̄, ū) implies
that M0

NLP ((x̄, z̄, ū)) = {0}, and in the case of no abstract constraint, the two con-
ditions are equivalent (see, e.g., [6] and [25, Proposition 4.5] for details). It is well
known that in the case of no abstract constraint, the Mangasarian–Fromovitz con-
straint qualification fails to hold at every feasible point of the OPCCs. (The proof
for the case where the complementarity constraint comes from the KKT condition
of a lower level quadratic programming problem was given in Chen and Florian [1,
Lemma 3.1], and the proof for the general case was given in [25, Proposition 1.1].)
We now prove that even for the case when the abstract constraint set C is present,
there always exist nonzero abnormal NLP multipliers for the OPCC.

Proposition 4.16. Let (x̄, ȳ) ∈ Rn+m be any feasible solution of the OPCC.
Then M0

NLP (x̄, ȳ)\{0} �= ∅.
Proof. The point (x̄, ȳ) is obviously a solution to the following optimization

problem:

minimize 〈y, F (x, y)〉
subject to y ≥ 0, F (x, y) ≥ 0.

By the multiplier rule, there exists µ ≥ 0, ry ∈ Rm+ , rF ∈ Rm+ not all zero such that

0 = µ∇〈y, F 〉(x̄, ȳ)− (0, ry)−∇F (x̄, ȳ)�rF ,
〈ȳ, ry〉 = 0, 〈rF , F (x̄, ȳ) = 0.

Therefore, taking γ = 0, β = 0 (γ = 0, β = 0, rF , ry, µ) is a nonzero NLP abnormal
multiplier of the OPCC.
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4.6. Applications to the bilevel programming problem. One of the moti-
vations to consider OPCCs is to solve the following bilevel programming problem:

(BLPP)
minimize f(x, z)
subject to z ∈ S(x),Ψ(x, z) ≤ 0, (x, z) ∈ C,

(30)

where S(x) is the solution of the lower-level problem

Px
minimize g(x, z)
subject to ψ(x, z) ≤ 0,

(31)

where f : Rn+a → R, g : Rn+a → R,ψ : Rn+a → Rb,Ψ : Rn+a → Rd. Under suitable
convexity assumptions, we can replace the lower problem by its KKT conditions. As
in [24], we find that any (x, z) is solution of (BLPP) if and only if there is u such that
(x, z, u) is solution of the problem

minimize f(x, z)
subject to ψ(x, z) ≤ 0 and u ≥ 0,

〈ψ(x, z), u〉 = 0,
∇zg(x, z) +∇zψ(x, z)�u = 0,

Ψ(x, z) ≤ 0, (x, z) ∈ C,

(32)

which is an OPCC.
Consider the perturbed bilevel programming problem

BLPP(α) minimize f(x, z, α)
subject to z ∈ S(x, α),Ψ(x, z, α) ≤ 0, (x, z) ∈ C,

(33)

where S(x, α) is the solution of the lower-level problem

minimize g(x, z, α)
subject to ψ(x, z, α) ≤ 0.

(34)

Under suitable assumptions, BLPP(α) is equivalent to

minimize f(x, z, α)
subject to ψ(x, z, α) ≤ 0 and u ≥ 0,

〈ψ(x, z, α), u〉 = 0,
∇zg(x, z, α) +∇zψ(x, z, α)Tu = 0,

Ψ(x, z, α) ≤ 0, (x, z) ∈ C.

(35)

Hence the results in this section allow us to derive the properties of the value
function and compute the upper estimates of the limiting subdifferentials of V by
the various kinds of multipliers for the above problem. For example, we can conclude
that the value function is Lipschitz continuous when the strong second order sufficient
condition and the linear independence of the binding constraints hold for the lower
level problem. Indeed, in this case the corresponding generalized equation is strongly
regular; hence the set of abnormal CD multipliers contains only the zero vector (see
Ye [23, Theorem 5.1]).
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Abstract. We propose what we believe to be a novel approach to performing calculations for
rational density functions using state-space representations of the densities. By standard results from
realization theory, a rational probability density function is considered to be the transfer function of
a linear system with generally complex entries. The stable part of this system is positive-real, which
we call the density summand. The existence of moments is investigated using the Markov parameters
of the density summand. Moreover, explicit formulae are given for the existing moments in terms
of these Markov parameters. Some of the main contributions of the paper are explicit state-space
descriptions for products and convolutions of rational densities.

As an application which is of interest in its own right, the filtering problem is investigated for
a linear time-varying system whose noise inputs have rational probability density functions. In
particular, state-space formulations are derived for the calculation of the prediction and update
equations. The case of Cauchy noise is treated as an illustrative example.

Key words. probability theory, realization theory for linear systems, non-Gaussian filtering,
rational functions, linear algebra

AMS subject classifications. 93, 60, 15, 62, 90
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1. Introduction. We are going to consider the filtering problem for the first
order system

xt+1 = ftxt + ηt,

yt = htxt + εt,

t = 0, 1, 2, . . . , where ft, ht are assumed to be known real numbers and, for ease
of exposition, are assumed to be such that ft �= 0 and ht > 0, t ≥ 0. The noise
sequences {ηt}t≥0 and {εt}t≥0 are assumed to be mutually independent sequences of
independent random variables whose probability density functions are rational. The
initial state x0 is also assumed to be a random variable which is independent of the
noise sequences and also has a rational density. No assumption is made that any of
the random variables are identically distributed.

This filtering problem with non-Gaussian noise has applications in econometrics,
for example in the analysis of financial time series. Studies have shown that the
quantities that are encountered there often do not admit a Gaussian distribution ([7],
[5], and see also [12]), since these distributions have “heavy tails.” As one of the
consequences, higher order moments may not exist. It has therefore been proposed
(see, e.g., [11]) that these distributions be modelled by rational densities, both because
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they do have “heavy tails” and because of the richness of the class of distributions.
Examples of rational probability densities which have been used in the literature are
Cauchy densities and Student densities with odd number of degrees of freedom.

The state filtering problem is defined as the problem of finding the best estimate
x̂t of xt for the quadratic loss function given knowledge of the distribution of x0 and
the values of y0, y1, . . . , yt. Since

x̂t =

∫ ∞

−∞
xp(x)xt|yt,yt−1,...,y0dx,

this estimate can be found if the conditional density pxt|yt,yt−1,...,y0 of xt is known and
the first moment exists, given the measured values of yt, yt−1, . . . , y0 and knowledge
of the distribution of x0.

In principle, the calculation of the conditional densities is not difficult. The un-
normalized conditional densities, denoted by ρ instead of p, are given by the following.

Update step. For t = 0,

ρx0|Y0
(x) = ρx0|y0(x) = ρy0|x(y0)ρx0(x) = ρε0(y0 − h0x)ρx0(x);

for t ≥ 1,

ρxt|Yt(x) = ρyt|x(yt)ρxt|Yt−1
(x) = ρεt(yt − htx)ρxt|Yt−1

(x),

x ∈ �.
Prediction step. For t ≥ 0,

ρxt+1|Yt(x) = (ρftxt|Yt ∗ ρηt)(x) =

∫ ∞

−∞
ρxt|Yt

(
ξ

ft

)
ρηt(x− ξ) dξ, x ∈ �.

Here we have set Yt to be the collection of observations yt, yt−1, . . . , y0.
In [11] it was noted that the various probability densities occurring in the filtering

problem are all rational functions if the noise variables and the initial state have ra-
tional probability densities and if explicit formulas are given. The practical problem
in doing these calculations for large numbers of observations is that the conditional
densities are fairly complicated to calculate. To alleviate this problem we propose the
use of state-space techniques for these calculations. Since by assumption the initial
state and the noise sequences have rational densities, this is indeed possible. For
this purpose we are going to develop a “state-space calculus” for rational probability
density functions. We believe that the use of linear system theory to analyze ratio-
nal probability densities is novel and may be of relevance beyond the application to
non-Gaussian filtering as discussed here. Since the approach is valid in general, we
develop the state-space approach for general probability density functions as well as
for conditional probability density functions.

Let ρ be a not necessarily normalized rational probability density, i.e., ρ(x) is
a rational function in the independent variable x, such that ρ(x) ≥ 0, x ∈ �, and
0 <

∫∞
−∞ ρ(x)dx < ∞. This implies that ρ is strictly proper, i.e., lim|x|→∞ ρ(x) = 0.

To speak of a not necessarily normalized or unnormalized probability density function
is an abuse of the standard notion of a probability density function, since this term
implies that its integral is 1. For ease of notation we use the notion of a not necessarily
normalized or unnormalized density function to imply that all properties of a density
function are given, with the possible exception of the normalization of its integral.
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By standard realization theory there exists a minimal state-space realization such
that

ρ(x) = c(ixI −A)−1b, x ∈ �.

In particular, we will present here state-space formulae for the translation, scaling,
product, and convolution of rational probability density functions. Most of our re-
sults will be formulated in terms of state-space realizations for the density summand,
which is defined to be the “stable” part of the probability density function. One rea-
son for doing this is that in this way the dimensions of the realizations are typically
half of what they would be otherwise. For actual implementations of our results,
this could lead to significant computational advantages, in particular when repeated
applications are necessary such as can be expected for the filtering case. Moreover,
we will investigate the existence of moments from the state-space point of view and
give state-space formulae for the existing moments in terms of the Markov parame-
ters of the density summand. A major part of the investigation will be built on a
careful analysis of the connections between impulse responses, transfer functions, and
characteristic functions of the various objects. In a result that may be of independent
interest, a state-space formula is given for the system whose impulse response is the
product of impulse responses of two systems.

2. Notation and preliminaries. The symbol C stands for the complex field,
and the symbol � stands for the real field. If (A, b, c) is a linear state-space system, we

also often use the notation ( A b
c 0

). If M is a complex matrix, M∗ denotes the adjoint

matrix. If G is a rational function, G∗ is defined by G∗(s) = (G(−s̄)), s ∈ C. If G has
the realization (A, b, c) (i.e., G(s) = c(sI − A)−1b for s ∈ C\σ(A), where σ(A) is the
spectrum of A), then G∗ has the realization (−A∗, c∗,−b∗). We call a system (A, b, c)
stable if all eigenvalues of A are in the open left half plane. Note that such systems
are often also called asymptotically stable. A rational function G is called strictly
proper if lim|s|→∞ G(s) = 0. An unnormalized probability density function ρ is a

nonnegative integrable function on � such that ∫∞
−∞ ρ(x)dx > 0, but not necessarily

1. Then p = ρ/
∫∞
−∞ ρ(x)dx is a normalized density function. The set of functions P

is defined in section 3.

3. State-space representations of rational densities. If ρ is not a neces-
sarily normalized rational probability density function, then ρ is strictly proper, i.e.,
lim|x|→∞ ρ(x) = 0. Therefore, by standard realization theory (see, e.g., [4, Section
2.1], [10, Sections 10–11]), there exists a minimal linear state-space system (A, b, c)
such that

ρ(x) = c(ixI −A)−1b, x ∈ �.

It should be noted that the system matrices A, b, c will be, in general, complex
matrices. A rational probability density function which is symmetric with respect to
0, however, could be realized with real system matrices.

Note also that we have set up the realization in such a way that we consider the
rational function to be defined on the imaginary axis. While in principle the choice
of axis is arbitrary, it is convenient to choose the imaginary axis since then standard
realization theoretic methods can be adopted without having to change the axis. In
particular, we will be using the formal analogy of methods developed for spectral
densities which are most naturally considered to be defined on the imaginary axis. To
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make this convention clear, set

Φ(ix) := ρ(x), x ∈ �.

Since Φ is a rational function defined on the imaginary axis, it can be extended as a
rational function to the whole complex plane. This rational function has the following
properties.

1. Φ(s) = Φ∗(s), s ∈ C.
2. Φ has no poles on the imaginary axis.
3. Φ(ix) ≥ 0, x ∈ �.
4. lim|s|→∞Φ(x) = 0.

The set of rational functions that satisfies properties 1, 2, 3, and 4 is denoted by P.
Many of our calculations are going to be based on the following well-known additive
decomposition (see Lemma 3.1) of Φ:

Φ(s) = Z(s) + Z∗(s), s ∈ C,

where Z is a stable rational function, i.e., all poles of Z are in the open left half plane.
This decomposition is unique if we assume that Z(∞) = 0, which can be done since
Φ(∞) = 0. The function Z is called the spectral summand or Φ. We will also call Z
the density summand of ρ.

In the following lemma some elementary and standard state-space properties are
collected concerning this additive decomposition of Φ. For the sake of completeness,
a short proof is added for this standard result.

Lemma 3.1. Let Φ ∈ P. Then there exists a stable rational function Z such that

Φ = Z + Z∗.

Let (A, b, c) be a minimal realization of Φ, i.e., Φ(s) = c(sI − A)−1b, and (A, b, c) is
minimal. There exists an equivalent realization


A1 0 b1

0 A2 b2

c1 c2 0




of (A, b, c) such that all eigenvalues of A1 are in the open left half plane and all
eigenvalues of A2 are in the open right half plane. The state-space system (A1, b1, c1)
is a minimal realization of Z, and (A2, b2, c2) is a minimal realization of Z∗.

Moreover, (A2, b2, c2) is equivalent to (−A∗
1, c∗1,−b∗1). In particular, there exists a

minimal realization of Φ such that


A1 0 b1

0 −A∗
1 c∗1

c1 −b∗1 0


 .

Proof. Let Φ = Zs + Zu be a stable-unstable partial fraction decomposition of
Φ, i.e., the partial fraction decomposition of Φ such that Zs is stable, meaning that
all its poles are in the open left half plane, and Zu is unstable, meaning that all its
poles are in the open right half plane. Note that this decomposition is unique. Let



728 BERNARD HANZON AND RAIMUND J. OBER

(A1, b1, c1) be a minimal realization of Zs, and let (A2, b2, c2) be a minimal realization
of Zu. Then 


A1 0 b1

0 A2 b2

c1 c2 0




is a minimal realization of Φ and hence equivalent to (A, b, c). Set Z := Zs. We need
to show that Zu = Z∗. Now consider Zs + Zu = Φ = Φ∗ = (Zs + Zu)

∗ = Z∗
s + Z∗

s .
Note that Z∗

s has all its roots in the open right half plane, and Z∗
u has all its roots in

the open left half plane. By the above-mentioned uniqueness of the stable-unstable
partial fraction decomposition, we have that Zu = Z∗

s = Z∗. The remaining parts of
the lemma follow immediately.

Example. As a special case we are going to consider the Cauchy density, which
was suggested, for example in [7], as a suitable density to study financial time series.
The normalized Cauchy density is defined as

p(x) =
1

π

k

(x− x0)2 + k2
, x ∈ �,

where x0 ∈ � and k > 0. A state-space realization of Φ(ix) := p(x), x ∈ �, is given
by

[
AΦ bΦ

cΦ 0

]
:=



−k + ix0 0 1

2π

0 k + ix0 1

1 − 1
2π 0


 .

The density summand of p is

Z(s) =
1

2π

1

s− (−k + ix0)
,

which has one pole at −k + ix0. A state-space realization of Z is given by

[
A b

c 0

]
:=


 −k + ix0

1
2π

1 0


 .

4. Fourier transforms, moments, and Markov parameters. In order to
obtain state space formulae for the moments of probability density functions and for
the convolution of such densities, we need to employ the Fourier transform. The main
tool will be to interpret the density summand as the Fourier transform of the impulse
response of a stable linear state-space system. Actually, we introduce the Fourier
transform as the Laplace transform evaluated on the imaginary axis. For a general
reference on Fourier transforms see, e.g., [9], [6]. This way of proceeding is of course
closely related to the use of the characteristic function in statistics, but there are a
few more minor technical differences.

For an integrable function f on � define the Fourier transform as usual by

(F(f))(iw) =
∫ ∞

−∞
f(t)e−iwtdt, iw ∈ i�.
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If (A, b, c) is a stable system, let m+(t) := cetAb for t ≥ 0, and m+(t) := 0 for t < 0.
Then the Fourier transform of m+ is given by

(Fm+)(iw) =

∫ ∞

0

cetAbe−itwdt = c(−iwI +A)−1e(−iwI+A)t|∞0 b = c(iwI −A)−1b

=: G(iw), iw ∈ i�.

If we set m−(t) := b∗e−tA
∗
c∗ for t < 0 and m−(t) := 0 for t ≥ 0, then the Fourier

transform of m− is given by

(Fm−)(iw) =
∫ 0

−∞
b∗e−tA

∗
c∗e−itwdt = b∗(−iwI −A∗)−1e(−iwI−A∗)t|0−∞c∗

= −b∗(iwI − (−A)∗)−1c∗ = G∗(iw), iw ∈ i�.

The lth derivative of m+ at t > 0 is given by (m+)(l)(t) = cAletAb. Hence the
right-hand side limit of the lth derivative at 0 is given by (m+)(l)(0+) = cAlb. The
lth derivative of m− at t < 0 is given by (m−)(l)(t) = b∗(−A∗)le−tA

∗
c∗. Hence the

left-hand side limit of the lth derivative at 0 is given by (m−)(l)(0−) := b∗(−A∗)lc∗ =
(−1)l(cAlb)∗ = (−1)l((m+)(l)(0+))∗, l ≥ 0.

Assume now that (A, b, c) is a realization of the spectral summand Z of the
function Φ ∈ P. Then (Fm+)(iw) = Z(iw), (Fm−)(iw) = Z∗(iw), and for m :=
m+ +m− we have that (Fm)(iw) = Φ(iw), iw ∈ i�. Hence m is the inverse Fourier
transform of Φ. Note that m is l times continuously differentiable at t = 0, l ≥ 0, if
and only if cAkb = (−1)k(cAkb)∗, k = 0, 1, . . . , l.

If G is a strictly proper rational function on C, then G admits a Laurent expansion
around ∞ such that

G(s) =

∞∑
n=1

M(n)
1

sn

for s ∈ C with |s| large enough. The parameters M(n), n = 1, 2, . . ., are the Markov
parameters of G (see, e.g., [10, p. 194]). If (A, b, c) is a realization of G, then

G(s) = c(sI −A)−1b =
1

s
c

(
I − A

s

)−1

b =
1

s
c

∞∑
k=0

(
1

s
A

)k
b =

∞∑
n=1

1

sn
cAn−1b.

Hence the Markov parameters of G are given by

M(n) = cAn−1b, n = 1, 2, 3, . . . .

The Markov parameters of a rational strictly proper function of P and its spectral
summand are easily determined.

Lemma 4.1. Let Φ be a strictly proper rational function in P with spectral sum-
mand Z. If (A, b, c) is a realization of Z, then

1. the Markov parameters of Z are given by

cAn−1b, n = 1, 2, 3, . . . ,

2. the Markov parameters of Z∗ are given by

(−1)nb∗(A∗)n−1c∗ = (−1)n(cAn−1b)∗, n = 1, 2, 3, . . . , and
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3. the Markov parameters of Φ are given by

cAn−1b− (−1)n−1(cAn−1b)∗, n = 1, 2, 3, . . . .

In the following lemma, a basic result on the integrability of rational functions is
summarized.

Lemma 4.2. Let G = n
d with n and d as a pair of coprime polynomials. Then∫ ∞

−∞
|G(x)|dx <∞

if and only if degree(n) ≤ degree(d)− 2 and d(x) �= 0 for all x ∈ �.
If G is as defined in the lemma, then degree(d)− degree(n) is called the codegree

of the rational function G. Therefore, G is integrable if and only if the codegree of G
is greater than or equal to 2. This lemma also implies that if the random variable X
has the rational probability density function p = n

d , then the moments EXk exist for
k = 0, 1, 2, . . ., codegree(p)− 2.

Let k be such that M(n) = 0 for n = 1, 2, . . . , k − 1 and M(k) �= 0. Then the
codegree of G is k [10, p. 254].

Summarizing the previous remarks, we obtain the following proposition.
Proposition 4.1. Let Φ be a strictly proper rational function in P with spectral

summand Z. Let (A, b, c) be a minimal realization of Z. Let m(t) := cetAb for t ≥ 0
and m(t) := b∗e−tA

∗
c∗ for t < 0. Then the following hold.

1. The codegree of Φ is k if and only if M(n) = 0 for all n ∈ {1, . . . , k − 1} and
M(k) �= 0, where M(n) is the nth Markov parameter of Φ.

2. The codegree of Φ is k if and only if

cAn−1b = (−1)n−1(cAn−1b)∗

for all n ∈ {1, . . . , k − 1} and

cAk−1b �= (−1)k−1(cAk−1b)∗.

3. m is k−1 times continuously differentiable at 0 if and only if the first k Markov
parameters of Φ are zero.

4. Φ has codegree k if and only if m is k− 2 times continuously differentiable but
not k − 1 times continuously differentiable at 0.

The following theorem provides important results concerning moments of a ran-
dom variable with rational probability density.

Theorem 4.1. Let X be a random variable with unnormalized rational probability
density function ρ. Let (A, b, c) be a realization of the density summand Z of ρ. Then
the following hold.

1. The codegree of ρ is k if and only if

cAn−1b = (−1)n−1(cAn−1b)∗

for all n ∈ {1, . . . , k − 1} and cAk−1b �= (−1)k−1(cAk−1b)∗.
2. The lth moment EX l of X with l a nonnegative integer exists if and only if

l ∈ {0, 1, . . . , k − 2}.
3. EX l = (−i)l cA

lb
cb for all l ∈ {0, 1, . . . , k − 2}.

Proof. (1) The proof follows immediately from Proposition 4.1.
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(2) Recall that the lth moment of X is given by

EX l =
1

R

∫ ∞

−∞
xlρ(x) dx,

where R :=
∫∞
−∞ ρ(x) dx. The codegree of the integrand is k − l. By Lemma 4.2 the

integrand is integrable if and only if its codegree is greater than or equal to 2. Hence
the claim.

(3) Let 0 ≤ l ≤ k − 2. Set Φ(ix) := ρ(x), x ∈ �, and use the notation of
Proposition 4.1. Then m is k − 2 times continuously differentiable at 0 and therefore
on �. Since the codegree of ρ is greater than or equal to 2, m is continuous on �.
Since ρ and m are continuous and integrable, we have by the inversion theorem for
Fourier transforms (see, e.g., [6, Theorem 60.1, p. 296]) that

m(t) =
1

2π

∫ ∞

−∞
Φ(iw)eiwtdw, t ∈ �.

Note that differentiation up to order k − 2 under this integral is justified by the
usual argument (see, e.g. [6, Theorem 53.5, p. 268]) as |ωlΦ(iω)eiωt| = |ωlΦ(iω)| is
integrable for each t ∈ � and 0 ≤ l ≤ k − 2. Hence for t ∈ �,

dl

dtl
m(t) =

1

2π

∫ ∞

−∞
Φ(iw)

dl

dtl
eiwtdw = (i)l

1

2π

∫ ∞

−∞
wlΦ(iw)eiwt dw.

Evaluating at t = 0, we have

dl

dtl
m(t)|t=0 =

1

2π
(i)l

∫ ∞

−∞
wlΦ(iw)eiwtdw|t=0 = R(i)l

1

2π
EX l.

Since dl

dtl
m(t)|t=0 = cAlb, l = 0, . . . , k − 2, we have that

EX l =
2π

R
(−i)lcAlb.

The constant R is determined by considering this equation for l = 0. Since EX0 = 1,

we have that R = 2πcb. Hence EX l = (−i)l cA
lb
cb .

In most of this paper we will be dealing with unnormalized rational probability
densities ρ. If (A, b, c) is a state-space realization of the density summand of ρ,
the normalized probability density function is given by p := ρ/

∫∞
−∞ ρ(x)dx. By the

above proposition
∫∞
−∞ ρ(x)dx = 2πcb, which provides a state-space formula for the

normalization constant.
If X is a random variable with rational probability density function ρ whose

density summand has the state-space realization (A, b, c), then the first moment exists
if the codegree of ρ is at least 3. This is the case if and only if

cb = (cb)∗

and

cAb = −(cAb)∗.

If the first moment, i.e., the mean, exists, then by the theorem it is given by

EX = −i
cAb

cb
.
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In the above discussion we gave a state-space construction for the inverse Fourier
transform m of a not necessarily normalized rational probability density function ρ,
i.e.,

m(t) =
1

2π

∫ ∞

−∞
ρ(ω)eiωtdω, ω ∈ �.

In the statistical literature an important object is the characteristic function of a
random variable X which is defined by E(eitX), t ∈ �. If X has the unnormalized
probability density function ρ, then

E(eitX) =
1∫∞

−∞ ρ(x)dx

∫ ∞

−∞
eitxρ(x)dx =

2π∫∞
−∞ ρ(x)dx

m(t), t ∈ �.

Hence up to a (known) scaling factor the function m is identical to the characteristic
function.

Example continued. We continue the discussion of the Cauchy density from sec-
tion 3. Note that for all x0 ∈ � and k > 0

cAb =
1

2π
(−k + ix0) �= −1

2
(−k − ix0) = −(cAb)∗.

Hence by the theorem the mean EX does not exist. This is of course also directly
evident by consideration of the integral

∫∞
−∞ xp(x)dx.

If m+(τ) := 1
2π eτ(−k+ix0) for t ≥ 0 and m+(τ) := 0 for t < 0, then F(m+)(iw) =

1
2π

1
iw−(−k+ix0)

, iw ∈ i�. If m−(τ) := 1
2π e−τ(−k−ix0) for t < 0 and m−(τ) := 0 for

t ≥ 0, then F(m−)(iw) = 1
2π

1
iw+(k−ix0)

, iw ∈ i�. With m := m++m−, we have that
m is continuous at 0. The derivative is given by

d

dt
m(t) =

1

2π
(−k + ix0)e

τ(−k+ix0), τ > 0,

d

dt
m(t) =

1

2π
(k + ix0)e

−τ(−k−ix0), τ < 0.

Note that the left-hand side limit and the right-hand side limit do not agree at 0.
Hence m is not differentiable at 0. As the codegree of p is 2, this is in agreement with
Proposition 4.1. The first two Markov parameters of Φ are

cΦbΦ = 0, cΦAΦbΦ =
−k

π
.

Hence the second Markov parameter is nonzero, which is also in agreement with
Proposition 4.1.

5. Operations on probability densities. In this section we are going to dis-
cuss state-space formulations of operations on rational probability densities. Given
state-space realizations for the density summands of two probability densities, we
will give state-space realizations for the density summand of the translation, scaling,
product, and convolution of the densities.

5.1. Translation and scaling of a probability density. In the next straight-
forward lemma the effect of translation and scaling of a random variable on the state-
space realization of the density is considered.
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Lemma 5.1. Let X be a random variable with unnormalized rational density ρ.
Let (A, b, c) be a minimal realization such that ρ(x) = c(ixI −A)−1b, x ∈ �.

Let x0 ∈ �. Then the random variable X + x0 has an unnormalized probability
density function q(x) = ρ(x− x0), which has a realization (A+ ix0I, b, c), so

q(x) = c(ixI − (A+ ix0I))−1b, x ∈ �.

Let a ∈ �, a �= 0; then the random variable aX has the unnormalized probability
density function q(x) = 1

aρ( x|a| ) which has a realization (aA, b, a
|a|c), so

q(x) =
a

|a|c(ixI − aA)−1b, x ∈ �.

In the following lemma, we are going to write down the analogous results for the
case when a state-space realization is given for the density summand of the probability
density. The proof is elementary.

Lemma 5.2. Let X be a random variable with unnormalized rational density ρ.
Let (A, b, c) be a realization of the density summand Z of ρ.

Let x0 ∈ �; then the random variable X + x0 has the unnormalized probability
density function q(x) = ρ(x− x0), x ∈ �, whose density summand has a realization(

A+ ix0I b

c 0

)
.

Let a ∈ �, a �= 0; then the random variable aX has the unnormalized probability
density function q(x) = 1

|a|ρ(
x
a ), whose density summand has a realization

(
aA b

c 0

)

if a > 0 and (
−aA∗ c∗

b∗ 0

)

if a < 0.

5.2. Product of two rational probability densities. In the update step of
the filtering problem, it is necessary to calculate the product of two density functions.
We are going to do this also by state-space techniques using the decomposition into
density summands. The following lemmas will be useful.

Lemma 5.3. Let G1 and G2 be two stable strictly proper rational functions with
minimal state-space realizations (A1, b1, c1) and (A2, b2, c2). Then the product G∗

1G2

can be decomposed as

G∗
1G2 = F +H∗,

where F , H are stable strictly proper rational functions such that F has the realizations
given by (

A2 b2

b∗1T1 0

)
,

(
A2 T2c∗1
c2 0

)
,
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and H∗ has the realizations given by(
−A∗

1 T1b2

−b∗1 0

)
,

(
−A∗

1 −c∗1
c2T2 0

)
,

where T1 is the unique solution to the Sylvester equation

A∗
1T1 + T1A2 + c∗1c2 = 0

and T2 is the unique solution to the Sylvester equation

A2T2 + T2A∗
1 + b2b∗1 = 0.

Proof. Note that a realization of G∗
1 is given by

(−A∗
1, c∗1,−b∗1),

and a realization of G∗
1G2 is given by


−A∗

1 c∗1c2 0

0 A2 b2

−b∗1 0 0


 .

Performing a state-space basis transformation with transformation matrix ( I T1

0 I
), we

obtain the equivalent realization

−A∗

1 A∗
1T1 + T1A2 + c∗1c2 T1b2

0 A2 b2

−b∗1 b∗1T1 0


 =



−A∗

1 0 T1b2

0 A2 b2

−b∗1 b∗1T1 0




since T1 is such that A∗
1T1+T1A2+c∗1c2 = 0. Note that such a T1 exists and is unique

since both A∗
1 and A2 have all their eigenvalues in the open left half plane (see, e.g.,

[1, Vol. I, p. 225]). This representation implies the first set of realizations. The other
set of realizations follows analogously by considering the state-space formula which
corresponds to G2G∗

1.
Remark. A method to generate explicit formulas for the solutions of Sylvester

equations is presented in [3].
We can now derive the desired representation for the density summand of the

product of two rational probability density functions.
Proposition 5.1. Let ρ1 and ρ2 be two unnormalized rational probability density

functions with density summands Z1 and Z2. Let (Ai, bi, ci) be a minimal realization
of Zi, i = 1, 2. Then the density summand Z of the unnormalized rational probability
density function ρ = ρ1ρ2 has a realization given by


A1 b1c2 T ∗

2 c∗2
0 A2 b2

c1 b∗1T1 0


 ,

where T1, T2 are the unique solutions to the Sylvester equations

A∗
1T1 + T1A2 + c∗1c2 = 0,

A2T2 + T2A∗
1 + b2b∗1 = 0.
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Proof. We have that

ρ = ρ1ρ2 = (Z1 + Z∗
1 )(Z2 + Z∗

2 ) = Z1Z2 + Z1Z∗
2 + (Z1Z∗

2 )
∗ + (Z1Z2)

∗.

By Lemma 5.3 a state-space realization for the stable part of this expression is given
by




A1 b1c2 0 0 0

0 A2 0 0 b2

0 0 A1 0 T ∗
2 c∗2

0 0 0 A2 b2

c1 0 c1 b∗1T1 0


 ,

where T1 is the unique solution of the equation

A∗
1T1 + T1A2 + c∗1c2 = 0

and T2 is the unique solution of the equation

A2T2 + T2A∗
1 + b2b∗1 = 0.

Performing a state-space basis transformation with transformation matrix

T =




I 0 0 0

0 I 0 0

0 0 I 0

0 −I 0 I


 ,

we obtain the equivalent realization




A1 b1c2 0 0 0

0 A2 0 0 b2

0 0 A1 0 T ∗
2 c∗2

0 0 0 A2 0

c1 b∗1T1 c1 b∗1T1 0


 ,

which is equivalent to 


A1 b1c2 0 0

0 A2 0 b2

0 0 A1 T ∗
2 c∗2

c1 b∗1T1 c1 0


 .

On this realization perform another state-space basis transformation with transfor-
mation matrix

T =




I 0 I

0 I 0

0 0 I






736 BERNARD HANZON AND RAIMUND J. OBER

to obtain 


A1 b1c2 0 T ∗
2 c∗2

0 A2 0 b2

0 0 A1 T ∗
2 c∗2

c1 b∗1T1 0 0


 ,

which is equivalent to 


A1 b1c2 T ∗
2 c∗2

0 A2 b2

c1 b∗1T1 0


 .

It was noted before that the codegree of a rational probability density function
is at least 2. Therefore, the product of two such probability density functions has
codegree at least 4. Hence for a random variable whose density is given by such a
product, at least the first and second moments exist. This will be used in the next
section to show the existence of a conditional mean and variance.

5.3. Convolution of probability densities. We now come to determine a
state-space formulation for the convolution of two probability densities. Recall that
if X and Y are two random variables with rational probability densities ρX and ρY ,
then the probability density of X + Y is given by the convolution ρX ∗ ρY .

Let ρ1 and ρ2 be two unnormalized rational probability functions with correspond-
ing spectral summands Z1 and Z2. Let (Ai, bi, ci) be a realization of Zi, i = 1, 2. Let,
for i = 1, 2,

m+
i (τ) :=

{
cie

τAibi, τ ≥ 0,
0, τ < 0,

m−
i (τ) :=

{
b∗i e

−τA∗
i c∗i , τ < 0,

0, τ ≥ 0.
Then (Fm+

i )(iw) = Zi(iw), (Fm−
i )(iw) = Z∗

i (iw), iw ∈ i�, and

(ρ1 ∗ ρ2)(w) =

∫ ∞

−∞
Φ1(iw − iν)Φ2(iν)dν = F

(
F−1

∫ ∞

−∞
Φ1(iw − iν)Φ2(iν)dν

)

= F((F−1Φ1)(F−1Φ2))(iw) = F((F−1(Z1 + Z∗
1 ))(F−1(Z2 + Z∗

2 )))(iw)

= F((m+
1 +m−

1 )(m
+
2 +m−

2 ))(iw) = F(m+
1 m+

2 +m−
1 m−

2 )(iw)

= F(m+
1 m+

2 )(iw) + F(m−
1 m−

2 )(iw).

It follows that the spectral summand Z of ρ1 ∗ρ2 is given by Z(iw) = F(m+
1 m+

2 )(iw).
In the following proposition we are going to give the state-space formulae for the

product of the impulse responses of two single-input single-output state-space systems.
This will be the key step to determine a state-space realization for the convolution of
two rational probability density functions.

Proposition 5.2. Let m+
i (τ) := cie

τAibi for τ ≥ 0, and m+
i (τ) := 0 for τ <

0, where (Ai, bi, ci) is an ni-dimensional single-input single-output system, i = 1, 2.
Then

m+(τ) := m+
1 (τ)m

+
2 (τ), τ ≥ 0,
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has a realization m+(τ) = ceτAb for τ ≥ 0 and m+(τ) = 0 for τ < 0, where

A = A1 ⊗ In2 + In1 ⊗A2,

b = b1 ⊗ b2,

c = c1 ⊗ c2.

(Here ⊗ denotes the Kronecker product.)
Proof. This follows immediately from basic rules on the Kronecker product (see,

e.g., [8]), since for τ ≥ 0
m+(τ) = ceτAb = (c1 ⊗ c2)e

τ(A1⊗In2+In1
⊗A2)(b1 ⊗ b2)

= (c1 ⊗ c2)(e
τA1 ⊗ eτA2)(b1 ⊗ b2) = c1eτA1b1 ⊗ c2eτA2b2 = c1eτA1b1c2eτA2b2

= m+
1 (τ)m

+
2 (τ).

The proposition is of interest in its own right, as it allows one to find state-space
formulas for products of impulse response functions.

Summarizing, we have the following result.
Proposition 5.3. Let ρ1 and ρ2 be unnormalized rational probability densities

whose spectral summands Z1 and Z2 have the n1-dimensional and n2-dimensional
state-space realizations (A1, b1, c1) and (A2, b2, c2). Then the density summand Z of
the convolution ρ = ρ1 ∗ ρ2 has the state-space realization(

A1 ⊗ In2
+ In1

⊗A2 b1 ⊗ b2

c1 ⊗ c2 0

)
.(1)

Proof. Suppose Z has the realization (1). Then the inverse Fourier transform of
Z is m+

1 m+
2 , showing that Z is the spectral summand of ρ.

Note that the state-space dimension of this realization is n1n2, which implies that
the McMillan degree of Z is at most n1n2.

6. State-space expressions for the filtering equations. We are now in a
position to derive state-space expressions for the unnormalized conditional densities
in the filter equations which were discussed in the introduction.

Theorem 6.1. Assume the notation and assumptions for the filtering problem
as presented in the introduction.

Let t ≥ 0, and let (Axt|t−1
, bxt|t−1

, cxt|t−1
) be a minimal nxt-dimensional state-

space realization of the density summand of the unnormalized conditional density
ρxt|Yt−1

. For t = 0, set ρxt|Yt−1
:= ρx0

, the density of the initial state x0. Let
(Aηt , bηt , cηt) be a minimal nηt-dimensional state-space realization of the density sum-
mand of the unnormalized rational density ρηt of the noise random variable ηt, and
let (Aεt , bεt , cεt) be a minimal ηεt-dimensional state-space realization of the density
summand of the unnormalized rational density ρεt of the noise random variable εt,
t ≥ 0.

Let T1 be the unique solution to the equation(
1

ht
Aεt + iytI

)
T1 + T1Axt|t−1

+ bεtcxt|t−1
= 0,

and let T2 be the unique solution to the equation

Axt|t−1
T2 + T2

(
1

ht
Aεt + iyt

)
+ bxt|t−1

cεt = 0.
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Then the density summand of the unnormalized density ρxt|Yt has state-space realiza-
tion

(
Axt|t bxt|t

cxt|t 0

)
=




1
ht

A∗
εt − iytI c∗εtcxt|t T ∗

2 c∗xt|t
0 Axt|t txt|t

b∗εt cεtT1 0


 .

The density summand of ρxt+1|Yt has state-space realization(
Axt+1|t bxt+1|t

cxt+1|t 0

)

=

(
ftAxt|t ⊗ Inηt + Inεt+nxt ⊗Aηt bxt|t ⊗ bnηt

cxt|t ⊗ cηt 0

)
if ft > 0,

=

( −ftA
∗
xt|t ⊗ Inηt + Inεt+nxt ⊗Aηt c∗xt|t ⊗ bnηt

b∗xt|t ⊗ cηt 0

)
if ft < 0.

Proof. Since by assumption ht > 0, the density summand of the density q(x) =
ρεt(yt − htx), x ∈ �, has the realization(

1
ht

A∗
εt − iytI c∗εt
b∗εt 0

)
.

As

ρxt|Yt(x) = ρεt(yt − htx)ρxt|Yt−1
(x), x ∈ �,

by Proposition 5.1 the density summand of ρ has the realization


1
ht

A∗
εt − iytI c∗εtcxt|t−1

T ∗
2 c∗xt|t−1

0 Axt|t−1
bxt|t−1

b∗εt cεtT1 0


 ,

where T1 is the unique solution to the equation(
1

ht
A∗
εt − iytI

)∗
T1 + T1Axt|t−1

+ bεtcxt|t−1

=

(
1

ht
Aεt + iytI

)
T1 + T1Axt|t−1

+ bεtcxt|t−1
= 0,

and T2 is the unique solution to the equation

Axt|t−1
T2 + T2

(
1

ht
A∗
εt − iytI

)∗
+ bxt|t−1

cεt

= Axt|t−1
T2 + T2

(
1

ht
Aεt + iytI

)
+ bxt|t−1

cεt = 0.

To obtain a state-space formula for the prediction step

ρxt+1|Yt = ρftxt|Yt ∗ ρηt ,
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we use Proposition 5.3. We need to introduce two cases depending on the sign of ft.
If ft > 0, the density summand of ρftxt|Yt has the realization(

ftAxt|t bxt|t

cxt|t 0

)
.

If ft < 0, the density summand of ρftxt|Yt has the realization( −ftA
∗
xt|t c∗xt|t

b∗xt|t 0

)
.

The remaining parts of the result now follow by Proposition 5.3.
It should be noted that the presented state-space realizations are data depen-

dent and, in particular, dependent on Yt. As the formulae that use Kronecker prod-
ucts show, the dimensions of the state-space representation can potentially grow very
quickly as the number of data points increases. It should be pointed out, however,
that the growth in complexity is inherent in the use of random variables with rational
densities (see also [11]). If, however, the density summand corresponding to ηt has
only McMillan degree 1, i.e., ηt has Cauchy distribution, then the Kronecker products
reduce to standard multiplication and the prediction step does not lead to an increase
in dimension. Also, if the density summand corresponding to εt has McMillan degree
1, i.e., εt has Cauchy distribution, then the matrix equations can be solved explicitly
to give

T1 = −bεtcxt|t−1

((
1

ht
Aεt + iyt

)
I +Axt|t−1

)−1

,

T2 = −
((

1

ht
Aεt + iyt

)
I +Axt|t−1

)−1

bxt|t−1
cεt .

Note that the inverse exists, since Axt|t−1
has all eigenvalues in the open left half

plane and 1
ht

Aεt + iyt has negative real part, because of the stability of Aεt and since
ht > 0. From the remark after Proposition 5.1, it follows that the conditional mean
E(xt|Yt) and the corresponding conditional variance E(xt − E(xt|Yt)2|Yt) exist and
can be calculated from the density summand realization (Axt|t , bxt|t , cxt|t) using the
formulas given in Theorem 4.1.

Note that prediction is also possible using the formulas presented here. For ex-
ample, the unnormalized rational conditional probability density of the output vari-
able at time t + 1, given the observations of the output until time t, is equal to
ρyt+1|t(y) = ρht+1xt+1|t ∗ ρεt+1 , and the spectral summand of this density can be cal-
culated using the formulas of section 5.

7. Conclusions. State-space formulae have been developed for various opera-
tions on rational density functions, and it is shown how this can be used to treat the
filtering problem in the case of a first order linear stochastic model with stochastically
independent noise variables with rational probability densities and stochastically in-
dependent initial state with rational probability density. This makes such filters easy
to program on present-day computers, using, e.g., a linear algebra package. If the
number of observations is not very small, however, the order of the conditional ratio-
nal densities will tend to grow quickly. Therefore, various schemes of order reduction
for positive real functions may be of relevance in practical applications (see, e.g.,
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[2]). The formulae presented can also be used for further theoretical research in the
behavior of the optimal filter. It follows, for example, that the conditional mean of
the present state, given present and past observations, is a rational function of the
present and past observations, which could be further investigated. The formula that
is presented for the realization of the product of impulse response functions appears
to be important in its own right.
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Abstract. This paper establishes new criteria for stability and for instability of multiclass
network models under a given stationary policy. It also extends previous results on the approximation
of the solution to the average cost optimality equations through an associated fluid model: It is shown
that an optimized network possesses a fluid limit model which is itself optimal with respect to a total
cost criterion.

A general framework for constructing control algorithms for multiclass queueing networks is
proposed based on these general results. Network sequencing and routing problems are considered
as special cases. The following aspects of the resulting feedback regulation policies are developed in
the paper:

(i) The policies are stabilizing and are, in fact, geometrically ergodic for a Markovian model.
(ii) Numerical examples are given. In each case it is shown that the feedback regulation

policy closely resembles the average-cost optimal policy.
(iii) A method is proposed for reducing variance in simulation for a network controlled using

a feedback regulation policy.

Key words. queueing networks, routing, scheduling, optimal control
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1. Introduction. This paper concerns the effective management of large net-
works through scheduling and routing.

Specific applications of interest include cellular and internet communication sys-
tems, large scale manufacturing processes, and computer systems (see, e.g., [5, 55, 22]).
In spite of the diversity of these applications, one can find many common goals:

(i) Controlling delay, throughput, inventory, and loss. The crudest issue is
stability : do queue lengths remain bounded for all time?

(ii) Estimating performance, or comparing the performance of one policy over
another one. Performance is context-dependent, but common metrics are average
delay and loss probabilities.

(iii) Prescriptive approaches to policy synthesis which are intuitive, flexible, ro-
bust, and reasonable in complexity. Robustness means that the policy will be effective
even under significant modeling error. By flexibility we mean that the policies will
react appropriately to changes in network topology or other gross structural changes.

(iv) In applications to telecommunications or power systems one may have lim-
ited information. Routing or sequencing decisions must then be determined using only
that information which can be made available. This issue is becoming less critical with
ever-increasing information processing power. In the future internet it may be possi-
ble to assume essentially complete information at every node in the network through
current flooding algorithms and proposed explicit congestion notification algorithms
[21].

There are currently several popular classes of models which describe in various
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levels of detail the dynamics of a queueing network to address the range of issues in
(i)–(iv). The utility of a particular model depends upon one’s particular goals.

A traditional academic approach to policy synthesis is to construct a Markov
decision process (MDP) model for the network. This involves constructing a controlled
transition operator Pa(x, y), which gives the probability of moving from state x to
state y when the control decision a ∈ A(x) is applied. The state space X (where x and
y live) is typically taken as the set of all possible buffer levels at the various stations
in the network; A(x) is then the set of feasible control actions when the state takes
the value x ∈ X. Given an MDP model and a one step cost function c : X → R+, a
solution to the average cost optimal control problem is found by solving the resulting
dynamic programming equations,

η∗ + h∗(x) = min
a∈A(x)

[c(x) + Pah
∗ (x)],(1.1)

F ∗(x) = argmin
a∈A(x)

Pah
∗ (x), x ∈ X.(1.2)

The function F ∗ on X then defines an optimal stationary policy.
The difficulty with this approach is very well known: When buffers are infinite,

this becomes an infinite dimensional optimization problem. Even when considering
finite buffers, the complexity grows exponentially with the dimension of the state
space. Some form of aggregation is necessary—the Markovian model is simply too
detailed to be useful in optimization.

An elegant approach is to consider the model in heavy traffic where a reflected
Brownian motion model is appropriate. The papers [24, 28] develop these ideas for
the network scheduling or sequencing problems, and [32] considers routing and other
control problems. One is then faced with optimizing a controlled stochastic differential
equation (SDE) model. In many examples considered in the literature this control
problem has a simple intuitive solution. This is just one example of a fluid model for
the physical network. Another popular model is the “σ-ρ” constrained fluid model
[11, 51] and the linear fluid model considered here (see, e.g., [8, 7, 56, 41, 42, 2]). Any
one of these models is valuable in network design because unimportant details are
stripped away.

Justification for considering these various idealizations comes from theory that
establishes solidarity between idealized fluid models and more accurate discrete mod-
els, when the load is close to capacity [32, 4], or the state of the system is large (e.g.,
the network is congested [45], or a “large deviation” occurs [54]). Stability theory for
networks, as in (i), has essentially reached maturation over the past decade, following
counterexamples introduced in [35, 52]. This theory is based on the close ties between
a stochastic network model and its linear fluid counterpart [14, 15, 16].

There are, however, several difficulties with these approaches:
• The Brownian motion approximation is based on a model in heavy traffic. If
the stations are not balanced then one loses some information at the stations
which are not heavily loaded.
• Although the optimal control problem for a Brownian motion or σ-ρ con-
strained fluid model often has a simple intuitive solution, frequently this is
not the case. There is currently no general practical method for generating
policies.
• It is not always obvious how to translate an optimal policy for an abstract
model to a feasible and efficient policy for the original discrete model.
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In this paper, we consider exclusively the linear fluid model (2.2) in design. The-
orem 3, an extension of the main result of [45], establishes a strong form of solidarity
between the discrete optimization problem (1.1) (1.2) and a related total-cost optimal
control problem for the linear fluid model. These results can be generalized to show
that an optimized SDE model possesses a fluid limit model which is itself optimal with
respect to the total-cost criterion. Hence to optimize the Brownian motion model one
must also solve the linear fluid model optimization problem.

A translation of a policy from the fluid model to the original discrete model of
interest is again not obvious. This issue is addressed in [42, 2], where it is shown that
virtually any “fluid trajectory” can be approximately tracked using a discrete policy
for the discrete-stochastic network. In [13, 45] the results from several numerical
studies are described. It is found that the optimal discrete policy resembles the
optimal fluid policy, but with the origin θ for the model (2.2) shifted to some value
x̄ ∈ R

�
+. From these results it is argued that one should use the fluid model to

attempt to regulate the state to some deterministic value x̄. In the numerical studies
considered, it was found that the average cost was nearly optimal and that the variance
at each buffer was lower than that obtained using an optimal policy. The computation
of optimal policies for the linear fluid model appears to be feasible for network models
of moderate complexity [56, 41, 49].

A final motivation for considering the simplest network model follows on consid-
ering our main goal: robust policy synthesis. As described in (iii) above, any policy
that we construct should be sufficiently robust so that it will tolerate modeling errors
resulting from uncertain variability in service or arrival rates.

The main results of the present paper builds upon those of [45, 44]:
(i) The class of models is extended to include routing and processor sharing

models as well as the scheduling models considered earlier. This requires that we
introduce a notion of stabilizability for networks, which is a generalization of the
usual capacity conditions.

(ii) The underlying theory is improved. It is shown that optimal policies have
optimal fluid limits with respect to the total cost criterion. This improves upon the
main result of [45, 44], which required specialization to a class of “fluid limit models”
obtained via weak convergence. Moreover, the stability theory relating networks and
their fluid models is improved to give criteria for geometric ergodicity and simpler
conditions implying transience of the controlled network.

(iii) The practical usefulness of the approach is improved by borrowing from the
BIGSTEP approach of [28] and by exploring reduced complexity control approaches
for the fluid model.

(iv) Numerical examples are given. In each case it is shown that the feedback
regulation policy closely resembles the average-cost optimal policy.

(v) Consideration of the fluid model leads to an approach to estimating steady
state performance indicators, such as mean delay, through simulation. This requires
care since standard Monte Carlo simulation is known to have high variance for highly
loaded networks.

The viewpoint arrived at in this paper leads to policies which are similar to
those found through a heavy traffic analysis using a Brownian motion approximation.
Consider, for example, the models treated in [32]. In each case one could perform
designs on the fluid model, translate these policies as in (4.1), and arrive at the
same policy that was obtained using a Brownian motion approximation. Given the
greater complexity of the Brownian motion model, we conclude that while diffusion
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approximations are tremendously useful for analysis and performance approximation,
presently they appear to be less useful for the purposes of control design. This will
change if more efficient numerical methods can be devised for control synthesis in
SDE models [38].

One of the most important benefits of a heavy traffic assumption is that the
resulting “state space collapse” can result in a model of reduced complexity. In the
models considered in the aforementioned references, in each case one is left with a
one dimensional state process which captures all relevant information. This model
reduction is obtained for either model, fluid or SDE, when the system load approaches
a critical value. The aim of Part II, the sequel to the present paper, is to exploit this
observation to prove that, under certain geometric conditions, an optimal policy for
the fluid model may be translated to form a policy which is approximately optimal
for the stochastic model [43].

The remainder of the paper is organized as follows. Section 2 describes the class of
models considered and their associated fluid limit model. Here some general stability
theory for networks and their fluid models is presented, including criteria for geometric
ergodicity. In section 3 this solidarity between the fluid model and the discrete network
is extended. It is shown that, provided the fluid model is stabilizable, there exists an
average cost optimal policy whose fluid model is optimal with respect to the total-
cost criterion. Several examples are given to illustrate the relationship between the
two optimization problems for specific models. The feedback regulation policies are
introduced in section 4. Several classes of stabilizing fluid policies are described, and
a stability proof is provided in this section. Conclusions are postponed to Part II.

2. Networks and their fluid limit models. The networks envisioned here
consist of a finite set of resources, a finite set of buffers, and various customers classes
which arrive to the network for processing. Resources perform various activities,
which transform parts or customers at the various buffers. On completion of service,
a customer either leaves the network or visits another resource for further processing.
This is the intuitive definition of a multiclass queueing network. A popular continuous-
time model is given by

Q(t;x) = x− S(Z(t;x)) +R(Z(t;x)) +A(t), t ≥ 0.(2.1)

The vector-valued stochastic process Q(t;x) denotes the buffer levels at time t with
initial condition Q(0;x) = x ∈ R

�. Some of these buffers may be virtual. In a
manufacturing model, such as that shown in Figure 1, virtual buffers may correspond
to backlog or excess inventory.

The vector-valued stochastic process Z(t;x) is the allocation (or control). The
ith component Zi(t;x) gives the cumulative time that the activity i has run up to
time t.

The vector-valued process A may denote a combination of exogenous arrivals
to the network and exogenous demands for materials from the network. The vector-
valued functions S( · ), R( · ) represent, respectively, the effects of random service rates
and the effects of a combination of possibly uncontrolled, possibly random routing,
and random service rates.

The fluid limit model is obtained on considering a congested network. When
Q(t;x) is large in magnitude, variations in the arrival and service processes appear
small when compared with the state. The behavior of Q when viewed on this large
spatial scale will appear deterministic and can be approximated by the mean field
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Fig. 1. A network with many buffers, controlled routing, uncontrolled routing, multiple de-
mands, and virtual buffers.

equations, or (linear) fluid model,

q(t;x) = x+Bz(t;x) + αt, t ≥ 0.(2.2)

Here B is a matrix of appropriate dimension, interpreted as a long-run average of
R− S, and α is a long-run average of A.

There are several ways of making this precise, and very few assumptions are
required to ensure the existence of a well-defined fluid limit model. A construction is
provided in section 2.1, and section 2.2 describes a stability theory for (2.1) based on
the simpler model (2.2).

Section 2.1 introduces a discrete-time countable state space MDP model. In the
special case where all of the driving processes (A,R,S) are multidimensional Poisson
processes, the discrete-time model is obtained from (2.1) via uniformization [40]. The
MDP model is convenient for the purposes of optimization and also provides the
simplest setting for constructing the fluid limit model through scaling Q and Z.

2.1. A Markovian network model and its fluid limit. Consider the M/M/1
queue, described in continuous time by

Q(t;x) = x− S(Z(t;x)) +A(t), t ≥ 0,

where the cumulative busy time Z satisfies d
dtZ(t;x) = 1 whenever Q(t;x) �= 0. The

stochastic processes (A,S) are one dimensional Poisson processes with rates α, µ,
respectively. The fluid model is given by the analogous equation,

q(t;x) = −µz(t) + αt, t ≥ 0.(2.3)

To obtain a discrete-time process, one might sample at successive jump times of
Q, but this would introduce bias. When Q(t;x) = 0, only upward jumps are possible;
hence sampling is less frequent in this situation, and the overall sampling rate is
nonuniform. Consequently, the steady-state queue length for the sampled process is
strictly larger than that of the unsampled queue.



746 SEAN P. MEYN

0 4000 8000 12000
0

100

200

300

400

ρ = 0.9 ρ = 1.1

0 4000 8000 12000
0

100

200

300

400

q (t; 400) q (t; 0)

Fig. 2. The M/M/1 queue: In the stable case on the left we see that the process Q(t;x) appears
piecewise linear with a relatively small high frequency “disturbance.” The process explodes linearly
in the unstable case shown at right.

Uniformization corrects this by introducing virtual service times and by sampling
Q at times of arrivals, service completions, or virtual service completions. For ex-
ample, the first sampling time is of the form τ1 = min(S1, T1), where S1 and T1 are
exponentially distributed random variables with mean 1/µ and 1/α, respectively. If
Q(0;x) = x > 0, then S1 is the remaining service time for the customer currently in
service. If x = 0, then S1 is again exponential with mean 1/µ, but it is now a random
variable which is independent of the original queue length process. Sampling results
in a discrete-time Markov chain with transition probabilities:

P (x, x+ 1) = α, P (x, (x− 1)+) = µ, x = 0, 1, 2, 3, . . . .

When ρ = α/µ is less than one, then the queue is positive recurrent, as shown in the
left-hand side of Figure 2.

The discrete-time M/M/1 queue model may be viewed as a random linear system,

Q(k + 1) = Q(k) + B̃(k + 1)U(k) + α̃(k + 1),(2.4)

where the sequence U is defined again by the nonidling policy U(k) = I(Q(k) > 0),

k ≥ 0, and {B̃(k), α̃(k) : k ≥ 1} is an indendent and identically distributed (i.i.d.)
sequence satisfying,

(
B̃(k)

α̃(k)

)
=

{
−e1 with prob µ,

e2 with prob α,

with ei equal to the standard basis element in R
2, i = 1, 2. The general network

model may be sampled in the same way to obtain a similar, multidimensional model
whenever (A,R,S) are Poisson.

Since we will not consider again the continuous-time model, we will denote by
(Q,U) = {(Q(k;x) , U(k;x)) : k ≥ 0} the state-allocation process for a discrete-
time model with initial condition x. (This dependency will be suppressed when the
particular initial condition is not relevant.) We assume that there are ! buffers and
!u activities so that (Q,U) evolves on Z

�
+×Z

�u
+ . As in the continuous-time case, each

Ui(k), 1 ≤ i ≤ !u, takes binary values. The discrete-time Markovian model is then
defined as the random linear system (2.4).
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We assume that the sequence {B̃(k), α̃(k) : k ≥ 1} is i.i.d.. For each k, the matrix

B̃(k) has dimension ! × !u, the vector α̃(k) has dimension !, and the components of
both take on integer values, again strictly bounded. We assume, moreover, that the
components of α̃(k) are nonnegative.

This is a generalization of the sampled model, in which the entries of (B̃(k), α̃(k))
take on the values (−1, 0, 1) only. However, this discrete-time model covers only a very
narrow set of stochastic network models. For example, it is not possible to convert the
natural continuous time model into a countable-state, discrete-time MDP if service
times are uniformly distributed. We restrict ourselves to the simple discrete-time
model for the sake of exposition only. General distributions are considered in [14, 15],
where it is shown that stability theory goes through without change. To generalize
the results of the present paper, e.g., Theorem 4, one must assume a bounded hazard
rate as in [46] to ensure that the mean forward recurrence time is bounded. Part II,
which does not require a Markovian description, develops the general model (2.1) [43].

We assume that there is an integer !m ≥ 1 and an !m × !u constituency matrix
C, such that

CU(k) ≤ 1, k ≥ 0,

where 1 denotes a vector of ones. The entries of C take on binary values, and each
row defines a resource: The ith resource Ri is defined to be the set of activities j such
that Cij = 1.

There may also be auxiliary constraints on the control sequence U and further
constraints on Q. For example, buffers may require synchronous processing, or strict
limits on buffer levels may be imposed. We assume that these may be expressed
through linear constraints,

CaU(k) ≤ ba, CsQ(k) ≤ bs, k ≥ 0,

for matrices Ca, Cs and vectors ba, bs of appropriate dimension.
We have thus restricted (Q,U) to lie in the countable sets

Q(k) ∈ X ∩ Z
� U(k) ∈ U ∩ Z

�u , k ≥ 0,

where

U := {ζ ∈ R
�u
+ : ζ ≥ θ, Cζ ≤ 1, Caζ ≤ ba} ,(2.5)

X := {x ∈ R
�
+ : x ≥ θ, Csx ≤ bs}.(2.6)

We assume throughout the paper that U is bounded. Unless noted otherwise, we
assume that Ca and Cs are null.

The sequence U is an adapted (history-dependent) stochastic process. We say
that U is defined by a stationary policy if there is a feedback function F : X → U
satisfying

P(Ui(k) = 1 | Q(0), . . . , Q(k)) = Fi(Q(k)), k ≥ 0.

The policies we consider are primarily stationary or are based on such policies.
In the classical scheduling model, the !m resources {Ri : 1 ≤ i ≤ !m} are called

stations. There is one activity for each customer class, giving !u = !. Class i customers
wait in the ith queue, if necessary, and then receive service via the ith activity. Upon
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completion of service, a class i customer becomes a class j customer with probability
Rij and exits the system with probability Ri0:=1−∑j Rij . The constraint CU(k) ≤ 1
is the usual condition that no two customers receive service simultaneously at a single
station.

To construct the fluid limit model, first consider the time-invariant means, given
by

B = E[B̃(k)], α = E[α̃(k)], k ≥ 1.

We may then write

Q(k + 1) = Q(k) +BU(k) + α+D(k + 1),(2.7)

where the process D is bounded, and it is a martingale difference sequence with respect
to the natural filtration. In this way, the model (2.4) may be viewed as a deterministic
“fluid model” with a bounded “disturbance” D. When the initial condition Q(0) is
large, then the state dominates this disturbance, and the network behavior appears
deterministic.

The fluid limit model considered in this paper is obtained by scaling the process,
both temporally and spatially, through a scaling parameter n ∈ Z+. For any x ∈ R

�
+,

n ≥ 1, we define

qn(t;x) =
1

n
Q(nt;nx),(2.8)

zn(t;x) =
1

n

∑
i≤nt

U(i;x), t =
0

n
,
1

n
,
2

n
, . . . ,(2.9)

where we are taking the integer part of nx whenever necessary so that the initial con-
dition nx lies in Z

�
+. We then extend the definition of {qn(t;x), zn(t;x)} to arbitrary

t ∈ R+ so that these processes are linear on each time segment [i/n, (i + 1)/n] and
continuous on R+.

We have qn(0;x) = x and zn(0;x) = θ, and {qn( · ;x), zn( · ;x)} are Lipschitz
continuous for any n and x. Typically, we find that {qn,zn} converges to a limiting,
deterministic function of time {q,z} as n → ∞. The limits q and z are piecewise
linear functions of t in all of the examples considered below. Figure 2 illustrates the
nature of this convergence for the M/M/1 queue, where the limiting process satisfies
(2.3).

For each x, the set Lx denotes all weak limits of {(qn( · ;x), zn( · ;x)) : n ≥ 1} as
n→∞. The fluid limit model, denoted L, is the union of Lx over all initial conditions.
Any (q, z) ∈ L satisfies (2.2), together with the rate constraints

C[z(t)− z(s)] ≤ (t− s)1, z(t)− z(s) ≥ θ, t ≥ s ≥ 0.(2.10)

That is, z(t)−z(s)
t−s ∈ U for any t �= s.

2.2. Stability of the models. Stability of the network under some policy re-
quires some assumptions on the model. We say that z is a feasible allocation for the
fluid model if the resulting state trajectory q satisfying (2.2), (2.10) remains in X for
all t ≥ 0. The fluid model is said to be

• stabilizable if, from any initial condition x ∈ X, there exist Tθ < ∞ and a
feasible allocation z such that

q(t;x) = x+ αt+Bz(t) = θ, t ≥ Tθ;



FEEDBACK REGULATION 749

• controllable if for any pair x, y ∈ X, there is a feasible allocation z and a time
T such that q(T ;x) = y.

Note that one can assume without loss of generality that an allocation z driving
x to y is linear.

Proposition 1. Suppose that x, y ∈ X, T > 0, and z is an allocation satisfying

q(T ;x) = x+ αT +Bz(T ) = y.

Then the linear allocation z1(t) = z̄t, 0 ≤ t ≤ T , also brings q to y from x at time T
and satisfies (2.10) on [0, T ].

A necessary condition for stabilizability is that there must exist some solution to
the equilibrium equation

Bζss + α = θ, ζss ∈ U.(2.11)

In the special case of network scheduling, the !× ! matrix B has the form

B = −(I −RT)M,(2.12)

where M is the diagonal matrix with diagonal entries µT = (µ1, . . . , µ�). There is a
unique solution to the equilibrium equation (2.11), given by ζss = −B−1α, and the
standard load condition may be written as

,ρ = −Cζss = M−1(I −RT)−1α < 1.(2.13)

It is readily seen that the load condition implies stabilizability. In routing models and
many other examples, the “load” at a station is policy-dependent [32].

To obtain sufficient conditions for stabilizability, it is convenient to envision (2.2)
as a differential inclusion,

q̇ ∈ V := {Bζ + α : ζ ∈ U} ⊂ R
�.

The set V is equal is the set of possible velocity vectors for the fluid model. We let −V
denote its reflection. The proof of the following result is obvious and will be omitted.
In Proposition 2 the set B(θ, ε) denotes the open ball of radius ε, centered at the
origin.

Proposition 2. The fluid model (2.2) is
(i) stabilizable if and only if there exists ε > 0 such that

B(θ, ε) ∩ R
�
+ ⊂ {−V} ∩ R

�
+,

(ii) controllable if and only if there exists ε > 0 such that B(θ, ε) ⊂ V.
Either of the conditions (i) or (ii) can be formulated as a finite linear program.

For example, the following set of constraints summarizes the condition that V contains
each of the vectors {−εei : 1 ≤ i ≤ !}.

Bζi + α = −εiei,
Cζi ≤ 1,
ζi ≥ θ, 1 ≤ i ≤ !.

A related linear program is devised to define the system load in [26, 25].
We now turn to the discrete-stochastic network.
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When controlled by a randomized stationary policy with feedback law F , the state
process becomes a time-homogeneous Markov chain. The state transition matrix is
denoted PF—the subscript is supressed when there is no risk of ambiguity. Stability of
the controlled process is defined as positive recurrence of the resulting Markov chain.
Under stability, there exists a unique invariant probability π = πF , and steady-state
performance measures such as mean delay or average total congestion can be described
in terms of the invariant probability.

We assume that, under the transition law P , the state process possesses a single
communicating class C which contains the origin θ. We assume, moreover, that the
controlled system is ψ-irreducible and aperiodic, as defined in [47]. Defining the first
return time to a set A ⊆ X by

τA = min(k ≥ 1 : Q(k) ∈ A),

the ψ-irreducibility condition can be expressed as Px(τθ <∞) > 0 for any x ∈ X. This
is typically a minor constraint on the policy. For the network scheduling problem these
conditions hold when the policy is nonidling.

Throughout the paper we use c : R
�
+ → R+ to denote a norm, i.e., it is continuous,

convex, vanishes only at θ, and it is radially homogeneous. The function c will be
interpreted as a one step cost function for the model. For a particular stationary
policy, the controlled chain is called c-regular if, for any initial condition x,

Ex

[
τθ−1∑
i=0

c(Q(i))

]
<∞.

A c-regular chain always possesses a unique invariant probability π such that

π(c) :=
∑
x∈X

c(x)π(x) <∞.

A stationary Markov policy (and its associated feedback function F ) is called regular
if the controlled chain is c-regular. In this case it follows from the f -norm ergodic
theorem of [47, Chapter 14] that the following average cost exists and is independent
of the initial condition x:

(i) J(x,w) = lim
k→∞

Ex[c(Q(k))] = π(c),

(ii) lim
n→∞

1

n

n∑
k=1

c(Q(k)) = π(c), almost surely (a.s.).

The fluid limit model is said to be stable if there exist ε > 0 and T < ∞ such
that q(T ;x) = θ for any q ∈ Lx with ‖x‖ ≤ ε. It will be called Lp-stable if, for some
ε > 0,

lim
t→∞ sup

q∈Lx:‖x‖≤ε
E[‖q(t)‖p] = 0.

The following result is a minor generalization of [45, Theorem 5.2]. Related results
are found in [20, 52, 14, 15].
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Theorem 3. The following stability criteria are equivalent for the network under
any nonidling, stationary Markov policy.

(i) There exist b0 < ∞ and a function V : R
� → R+ such that the following

drift condition holds:

PV (x) := Ex[V (Q(k + 1)) | Q(k) = x] ≤ V (x)− c(x) + b0, x ∈ X.(2.14)

The function V is equivalent to a quadratic in the sense that, for some ε > 0,

1 + ε‖x‖2 ≤ V (x) ≤ 1 + ε−1‖x‖2, x ∈ X.

(ii) For some quadratic function V and some b0 <∞,

Ex

[
τθ∑
n=0

c(Q(n))

]
≤ V (x) + b0, x ∈ X.

(iii) For some quadratic function V and some b0 <∞,

N∑
n=1

Ex[c(Q(n))] ≤ V (x) + b0N for all x and N ≥ 1.

(iv) The fluid limit model is L2-stable.
(v) The total cost for the fluid limit is uniformly bounded in the sense that, for

some quadratic function V,

E

[∫ ∞

0

‖q(τ ;x)‖ dτ
]
≤ V (x), x ∈ R

�
+, q ∈ Lx.

If any of these equivalent conditions, hold then the stationary policy is regular.
For a well-designed policy the controlled chain will be stable in a far stronger

sense. A Markov chain Q is called V -uniform ergodic, with V : R
� → [1,∞) a given

function, if there exist γ < 1 and b <∞ such that

|E[g(Q(k)) | Q(0) = x]− π(g)| ≤ bγkV (x), k ∈ Z+, x ∈ X,

where g is any function satisfying |g(x)| ≤ V (x), x ∈ X (see [47, Chapter 17]). A
Markov chain satisfying this strong form of ergodicity is similar to an i.i.d. process.
In particular, a V -uniform Markov chain satisfies a strong form of the large deviations
principle [3, 33].

This stronger form of stability holds under uniform convergence to the fluid limit.
The following two forms of uniform convergence will be assumed on a given set S ⊂ X
of initial conditions. For a set Y ⊆ R

� and a point x ∈ R
�, we define

d{x, Y } = inf(‖x− y‖ : y ∈ Y ).

Similarly, if F ⊆ C([0, T ],R�+�u) is a set of functions and q ∈ C([0, T ],R�+�u) is
another function, then we define

d{q,F} = inf
ψ∈F

sup
0≤t≤T

‖q(t)− ψ(t)‖.

(U1) For any given T, ε there is a sequence {Θ(ε, T, n)} such that for any x ∈ S,

P
(
d{qn(T ;x), Yx(T )} > ε

)
≤ Θ(ε, T, n)→ 0, n→∞,

where Yx(T ) = {q(T ;x) : q ∈ Lx} ⊆ R
�
+.
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(U2) For any given T, ε there is a sequence {Θ(ε, T, n)} such that for any x ∈ S,

P
(
d{qn( · ;x),Lx} > ε

)
≤ Θ(ε, T, n)→ 0, n→∞.

These conditions are frequently automatic since the functions
{
qn( · ;x)−q( · ;x), zn( · , x) :

n ≥ 1, x �= θ
}
are uniformly bounded and uniformly Lipschitz continuous.

A stable fluid limit model always admits a Lyapunov function V : R
�
+ → R+

satisfying

V (q(t;x)) ≤ V (x)− t for t < τθ = min(t : q(t;x) = θ).(2.15)

One can take the maximal emptying time itself and, moreover, this Lyapunov function
is radially homogeneous. Conversely, the existence of a Lyapunov function satisfying
(2.15) is known to imply stability.

If there exists a Lipschitz continuous Lyapunov function, then one can deduce
not just stability but robustness with respect to parametric perturbations. It is not
surprising then that the existence of a Lipschitz Lyapunov function implies a form of
exponential stability.

Theorem 4. Suppose that the network is controlled using a stationary policy,
and that there exists b0 <∞ such that, with S = {x : ‖x‖ ≥ b0},

(i) assumption (U1) holds on S;
(ii) there exists a Lipschitz continuous function V : R

�
+ → R+ satisfying (2.15)

for x ∈ S.
Then the network is Vε-uniformly ergodic, where Vε(x) = exp(εV (x)) for some ε > 0
sufficiently small.

Proof. Note first that V can be taken as radially homogeneous without loss of
generality: V (bx) = bV (x) for b ≥ 0. If this is not the case, we can replace V by
V 1(x) = infb>0

1
bV (bx).

Given the uniform convergence of {qn} and the inequality (2.15) for the limit, we
can find an n0 > 0 such that

E[V (Q(n;nx))] = nE[V (qn(1;x))] ≤ n(x− 1/2), ‖x‖ ≥ b0, n ≥ n0.

Hence we can assume that (V1) of [47] is satisfied for the n-step chain:

PnV (x) ≤ V (x)− 1, ‖x‖ ≥ nb0.

The result then follows from [47, Theorem 16.3.1].
A strengthened form of convergence to the fluid limit model also provides a basis

for establishing transience of a network model. Note that a large deviations bound
would provide a rate of convergence far stronger than assumed in (i).

Theorem 5. Suppose that the network is controlled using a stationary policy and
that the following hold for the set S = O, where O is bounded and open as a subset
of R

�
+.
(i) The uniform limit (U2) holds, where, for some finite b( · ),

Θ(ε, T, n) ≤ b(ε, T )/n, n ≥ 1.

(ii) There is an open set V with V̄ ⊂ O, and there are an r > 1, T < ∞, such
that

q(T ;x) ∈ rV, x ∈ O, q ∈ Lx.
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(iii) For some ε1 > 0 we have the uniform lower bound

‖q(t;x)‖ ≥ ε1, 0 ≤ t ≤ T, x ∈ O, q ∈ Lx.
Then there is a constant b2 such that for x ∈ O

P(Q→∞ | Q(0) = nx) ≥ 1− b2
n
.

Hence if {nO}∩C �= ∅ for some n > b2, then the state process Q is a transient Markov
chain.

Proof. By (U2) we have, for some 0 < ε2 < ε1, some b1 <∞, and any x ∈ O,

P
(
‖Q(nt;nx)‖ ≥ ε2n, 0 ≤ t ≤ T, and Q(nT ;nx) ∈ nrO

)
= P

(
‖qn(t;x)‖ ≥ ε2, 0 ≤ t ≤ T, and qn(T ;x) ∈ rO

)
≥ 1− b1

n
.

Here we are also using the assumption that V̄ ⊂ O.
The above bound can be generalized by replacing the integer n with rin, where

r > 1 is given in (ii) (again taking integer parts whenever necessary). For any x ∈ R
�
+

and any i ≥ 1, n ≥ 1, define the event A(x, i, n) ={
‖Q(rint;nx)‖ ≥ ε2r

in, 0 ≤ t ≤ T, and Q(rinT ;nx) ∈ ri+1nO
}

so that by the previous bound, whenever x ∈ riO,

P(A(x, i, n)) ≥ 1− b1
n
r−i.

By stopping the process at the successive times, N0 = 0, Nk = Nk−1+nrk−1T , k ≥ 1,
and, using the Markov property, we find that for x ∈ O and with β = ε2T

−1(1−r−1),

P(‖Q(k;nx)‖ ≥ βt, 0 ≤ t ≤ nNk) ≥
k−1∑
i=0

inf
y∈{riO}

P(A(y, i, n))

≥ 1− b1
n
(1 + r−1 + · · ·+ r−k+1).

This proves the theorem with b2 = b1
1−r−1 since the integer k is arbitrary.

We consider the example illustrated in Figure 10 to show how Theorems 4 and 5
can be applied. This example was introduced in [52, 35] to show how instability can
arise in networks even when the traffic conditions are satisfied.

To give one example of a stabilizing policy, suppose that at each time k we choose
U◦(k) to minimize the conditional mean,

U◦(k) = argmin
a

E[‖Q(k + 1)‖2 | Q(k), U(k) = a],

where the minimum is over all a ∈ U, subject to the constraint that ai = 0 ifQi(k) = 0.
The minimization can be selected so that U◦ is defined by a nonidling, stationary
Markov policy defined by a feedback law F ◦.
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The feedback law can be written as

F ◦(x) = argminPaV2 (x), x ∈ X,

where V2( · ) := ‖ · ‖2. The function F ◦ : X→ U is radially constant and vanishes on
the boundaries F ◦

i (x) = 0 when xi = 0. The uniform condition (U2) is readily verified
in this case since, for large x, the controlled chain resembles an unreflected random
walk (see [6] and also Proposition 8 below).

To evaluate F ◦ note that for any action a, the drift PaV2 − V2 is the sum of a
linear term 〈va, x〉 and a bounded term. The vector va can be expressed as

va = 2(Ba+ α) = 2(α1 − µ1a1, µ1a1 − µ2a2, α3 − µ3a3, µ3a3 − µ4a4)
T.

The choice a
ss

= (α1µ
−1
1 , α1µ

−1
2 , α3µ

−1
3 , α3µ

−1
4 )T makes vass = 0 and is in the interior

of the control space provided that the capacity conditions hold. This gives PassV2 −
V2 ≤ b0 for some constant b0. This is a randomized action, which is feasible provided
xi �= 0, 1 ≤ i ≤ 4. If some xi = 0, then the corresponding value a

ss

i must also be set
to 0, but we still obtain an upper bound of the form PassV2 − V2 ≤ b0.

One can conclude that the feedback law

F ε(x) = I+(x)

(
a

ss − εB−1 x

‖x‖
)

(2.16)

with B given in (2.12) and I+(x) = diag(I(x1 > 0), . . . , I(x4 > 0)) is feasible for ε > 0
sufficiently small. For some possibly larger b0, it satisfies

PFεV2 ≤ V2 − 2ε‖x‖+ b0.

By minimality, the feedback law F ◦ exhibits an even larger negative drift,

PF◦V2 ≤ PFεV2 ≤ V2 − 2ε‖x‖+ b0.

Using Jensen’s inequality, we find that the function V (x) =
√

V2(x) = ‖x‖ is a
Lyapunov function for the network, and it is also a Lyapunov function for the fluid
limit model. Applying Theorem 4, we see that F ◦ is a regular policy, and that the
controlled network is Vε-uniformly ergodic.

Suppose that we replace the !2-norm by the !1-norm. Letting c(x) =
∑

xi, we
minimize over all a the conditional mean Pac (x). The resulting policy is the last-
buffer-first-served (LBFS) policy (where buffers 2 and 4 have strict priority). This is
also one version of the cµ-rule.

This policy is known to lead to a transient model for certain parameters, even
when (2.13) holds. Specifically, suppose that

α1

µ2
+

α2

µ4
> 1.

Under the LBFS policy the resulting fluid limit model satisfies, for some T , r,

q(T ;x0) = rx0, x0 = (0, 0, 0, 1)T.

This was first shown in [35]. We also have ‖q(t;xε) − q(t;x0)‖ ≤ ε, 0 ≤ t ≤ T , for
all ε > 0 sufficiently small and all xε ∈ R

�
+ satisfying ‖xε − x0‖ ≤ ε. Hence the

assumptions of Theorem 5 are satisfied with O = {x ∈ R+ : ‖x − x0‖ < ε} and
V = {x ∈ R+ : ‖x− x0‖ < r−1ε}. Condition (U2) holds with S = O, again using the
fact that between emptying times at buffers 2 and 4 the process Q is a simple random
walk. We conclude that the network model is transient under the LBFS policy.
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3. Optimization.

3.1. The average-cost optimization problem. In this paper we restrict our
attention to the average cost problem. For any allocation sequence U and any initial
condition x we set

J(x,U) = lim sup
N→∞

1

N

N−1∑
0

Ex[c(Q(k))].

The most common choice is c(x) = |x|, where we let | · | denote the !1-norm. In this
case the optimization of J amounts to delay minimization by Little’s theorem. We
have already seen that the cost J(x,U) is finite and independent of x when U is a
regular policy.

An optimal policy, if it exists, can be taken to be stationary, where the associated
average cost optimality equations are given in (1.1),(1.2). We show below that a solu-
tion does exist when the fluid model is stabilizable, and that h∗ can be approximated
by the value function for a fluid model optimal control problem. For any T and any
x ∈ R

�
+, consider the problem of minimizing∫ T

0

c(q(t;x)) dt

subject to the constraint that q : [0, T ] → R
�
+ must satisfy (2.2) for some feasible

allocation z. The infimum is denoted V ∗(x, T ).
The following proposition shows that the fluid optimal policy is in some sense

greedy. That is, the cost as a function of the state c(q(t)) is never increasing, and its
rate of decrease is maximal when t ∼ 0. Such behavior is rarely found in dynamic
optimization problems. For example, even a second order linear system controlled
using optimal linear quadratric regulator (LQR) linear feedback can be expected to
exhibit overshoot. An illustration is shown in Figure 3 for the network shown in
Figure 12.

The proof of (ii) follows from the aforementioned fact that a state can be reached
by following a straight line, provided it is reachable through some control. The result
(i) easily follows, and (iii) is well known (see [56, 50]).

Proposition 6. For any time horizon T ,
(i) the value function V ∗( · , T ) is convex;
(ii) for any x ∈ R

�
+ and any optimal allocation z∗( · ;x), the function c(z∗(t;x))

is decreasing and convex as a function of t;
(iii) if the cost c is linear, then V ∗( · , T ) is piecewise quadratic. Moreover, for

any x ∈ R
�
+ there exists an optimal state trajectory q∗( · ;x) and an optimal allocation

z∗( · ;x) which are piecewise linear.
For any fixed x we evidently have that V ∗(x, T ) is increasing with T . Moreover,

there exists some Tθ such that the optimal trajectories vanish by time Tθ when the time
horizon T is at least Tθ, whenever the initial condition satisfies ‖x‖ ≤ 1. It follows
that V ∗(x, T ) = V ∗(x, Tθ) for any such T and x (see the proof of Theorem 7 (ii)
below). Hence for such x and T we have

V ∗(x, T ) = V ∗(x) = min

∫ ∞

0

c(q(t)) dt,(3.1)

where the minimum is subject to the same constraints on q over the entire positive
time axis.
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Fig. 3. The trajectory of buffer levels and evolution of the cost c(q(t)) = |q(t)| for the model of
Figure 12 for a given set of initial conditions. The first figure illustrates the optimal policy, and the
second shows the LBFS priority policy.

Theorem 7. If the fluid model is stabilizable, then for the network (2.7) there is
a stationary, nonrandomized feedback law F ∗ with the following properties:

(i) It is regular, and hence the average cost η∗ = J(x, F ∗) is finite and inde-
pendent of x.

(ii) The fluid limit model L∗ is stable.
(iii) The fluid limit model is optimal with respect to the total cost: With proba-

bility one, for any x ∈ R
�
+ and any fluid limit q∗ ∈ L∗

x,∫ ∞

0

c(q∗(t;x)) dt = V ∗(x).

(iv) There exists a solution h∗ to the average cost optimality equation (1.1), (1.2)
which satisfies

lim sup
‖x‖→∞

∣∣∣∣h∗(x)
‖x‖2 −

V ∗(x)
‖x‖2

∣∣∣∣ = 0.

Proof. Result (i) is a minor generalization of [45, Theorem 5.2]. The existence of
a stabilizing policy, as required in this result, is guaranteed by the stabilizability of
the fluid model (see Theorem 13 below).

To prove (ii), assume that (iii) holds. We then have for all t, with probability
one,

V ∗(q∗(t;x)) = V ∗(x)−
∫ t

0

c(q∗(s;x)) ds.

From the Lipschitz continuity of the model one can show that V ∗ is equivalent to a
quadratic, in the sense that V ∗(x)/‖x‖2 is bounded from above and below for x �= θ
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[45]. It then follows that for some l0 <∞,√
V ∗(q∗(t;x)) ≤

√
V ∗(x)− l0t, t ≤ τθ,

where τθ is the emptying time for q∗(t;x). Thus we have the bound τθ ≤
√

V ∗(x)/l0 <
∞

To prove (iii) we use the following previous results.
(a) It is shown in [45, Theorem 5.2 (i)] that the policy F ∗ can be chosen so that

for any other policy F ,

lim inf
T→∞

lim inf
n→∞

(
E

[∫ T

0

c(qnF (t;x)) ds

]
− E

[∫ T

0

c(qnF∗(s;x)) ds

])
≥ 0.(3.2)

(b) In [42, 2] it is shown that for any T there is a policy F∞ which attains the
optimal cost for the fluid control problem:

lim
n→∞E

[∫ T

0

c(qnF∞(s;x)) ds

]
= V ∗(x, T ), ‖x‖ = 1.

Taking T > Tθ, we see that, for any m ≥ 1,

lim
n→∞E

[∫ mT

0

c(qnF∞(s;x)) ds

]
= V ∗(x), ‖x‖ = m.

The point of (b) is that the optimal cost V ∗(x) is attainable, and hence the bound
given in (a) can be strengthened: For any weak limit qF∗( · ;x) and any T we have by
weak convergence

E

[∫ T

0

c(qF∗(s;x)) ds

]
≤ V ∗(x), x ∈ R

�
+.

But for T ≥ Tθ‖x‖ we have, with probability one,

∫ T

0

c(qF∗(s;x)) ds ≥ V ∗(x).

Combining these two inequalities completes the proof of (iii).
Result (iv) then follows as in the proof of [45, Theorem 5.2 (iii)].
From these results we can obtain much insight into the structure of optimal poli-

cies for the discrete network when the state is large, i.e., the network is congested.
We illustrate this now with several examples.

3.2. Examples. At this stage in the theory there are no general results which
are as striking as those that can be found in numerical examples. The general princi-
ple appears to be that an optimal policy for the discrete network is equal to the fluid
policy, suitably modified along the boundary of the state space. In fact, in several spe-
cial cases it has been shown that an approximately optimal policy can be constructed
in this manner [32, 26, 4], and a general approach is developed in [43].

In computing optimal policies for the examples below, we are forced to truncate
the state space to obtain a finite MDP model. Optimization is still difficult due to
the large state spaces involved. For example, for a network with four buffers of size
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twenty each, the state space contains m = 160, 000 elements, and computing the
optimal policy involves inverting an m×m matrix.

However, one can use successive approximation to obtain a sequence of approx-
imations {hn : n ≥ 0}. This is also known as the value iteration algorithm. The-
orem 7 (iv) suggests an initialization for the algorithm: h0 = V ∗ ≈ h∗. Numerical
results obtained in [9] show that this choice can speed convergence by orders of mag-
nitude. We have used this approach in all of the examples below.

Boundary effects for a truncated model can be severe. For instance, for a loss
model, if a buffer is full, then it may be desirable to serve an upstream buffer: the
resulting overflow will reduce the steady-state cost. The policies are shown in a
truncated region since this behavior has nothing to do with real network dynamics.
For example, Figure 5 shows the optimal policy F ∗(x) for all x satisfying ‖x‖∞ < 25.
In this example the value iteration algorithm was used with a network model allowing
39 customers at each buffer. The dimension of the resulting average-cost optimality
equations (1.1), (1.2) was 403 since there are three buffers in this example.

The M/M/1 queue. Recall that the fluid limit model satisfies q(t;x) = x−µz(t)+
αt, t ≥ 0, where α+ µ = 1. Using the notation defined in section 2, we have

B = −µ, C = 1, and 1 = 1.

The nonidling policy is given by ζ(t) = d
dtz(t) = 1 when q(t;x) > 0. It is optimal for

any monotone cost function.
For the discrete-stochastic model with cost c(x) = x, the relative value function

h∗ is given by

h∗(x) =
1

2

x2 + x

µ− α
.

The fluid value function is given by

V ∗(x) =

∫ ∞

0

q(t;x) dt

=
1

2

x2

µ− α
.

(3.3)

We see that the error in the approximation h∗(x) ≈ V ∗(x) is linear in this special
case.

The “criss-cross” network. Figure 4 shows a model introduced in [27] to illustrate
the use of Brownian motion approximation for networks. The system parameters are

B =


−µ1 0 0

µ1 −µ2 0
0 0 −µ3


 , C =

[
1 0 1
0 1 0

]
,

and in this model we take α2 = 0. This model has become a standard example.
Optimal policies for the fluid model are easily computed. Take c equal to the

!1-norm, and suppose that µ2, < µ3 < µ1. In this case strict priority is given to buffer
3 whenever buffer 2 is nonempty. When this buffer does empty, then the optimal
policy sets

z1(t) = µ2/µ1, z3(t) = 1− z1(t),
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Fig. 4. A simple two station network with �m = 2 and � = �u = 3.
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x  = 22

x  = 12

x  = 02

Fig. 5. The optimal policy for the network above with αT = (9, 0, 9) and µT = (25, 10, 20). The
grey areas indicate states at which buffer 3 is given strict priority.

provided both buffers 1 and 3 are nonempty. This is a pathwise optimal policy in the
sense that it minimizes c(q(t;x)), for each t ≥ 0, over all policies.

The optimal policy for the discrete model with particular parameter values satis-
fying these constraints is given in Figure 5. As always, the fluid limit of this optimal
policy is the optimal policy for the fluid model. The discrete optimal policy is similar
to the optimal fluid policy: The critical value q2(t) = 0 has been shifted upward to
Q2(t) ≈ 4.

A routing model. We now show how the theory applies to a routing problem. The
model illustrated in Figure 6 has been considered in several papers; see, in particular,
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m

a
1
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router

Fig. 6. A network with controlled routing: �m = 3, � = 2, and �u = 4.

[23, 32]. Customers that arrive to the system are routed to one of the two servers. In
this example, ! = 2, !u = 4, and

B =

[
α 0 −µ1 0
0 α 0 −µ2

]
, C =


1 1 0 0
0 0 1 0
0 0 0 1


 .

The router is nonidling in this model; ζ1 + ζ2 = 1. This requirement can be
expressed as the additional linear constraint, Caζ ≤ ba, where Ca = [−1,−1, 0, 0] and
ba = −1. Alternatively, one can enlarge the state space to include a buffer at the
router but impose the linear constraint that Q3(t) ≡ 0.

Note that in the routing model the arrival stream is absorbed into the random
matrix B̃. Hence in this model we take the two dimensional vector α to be zero.
Assume that µ1 = µ2 = µ and that µ < α < 2µ. The fluid model is then stabilizable.

To minimize the total cost for the fluid model∫ ∞

0

c(q(t;x)) dt,

one obviously takes z3 and z4 to be nonidling. Consider the case where c is linear
with c(x) = (c1, c2) · x and c1 > c2. Then the priority policy is optimal, where fluid
is routed to buffer 2 as long as buffer 1 is nonempty. As soon as it does empty, then
fluid is routed to buffer 1 at rate ζ1(t) =

d
dtz1(t) = µ1/α so that buffer 1 is nonidling,

but empty. The remaining fluid is sent to buffer 2 so that ζ2(t) = 1 − µ1/α. This
policy is again pathwise optimal, and it enforces nonidleness so that ζ3(t) = ζ4(t) = 1
for t < τθ.

The discrete-stochastic model is considered in [23] for a general linear cost func-
tion. It is shown that an optimal policy exists, and that it is of a nonlinear threshold
form: There is a nondecreasing function γ : Z+ → Z+ such that when a job arrives,
when the queue lengths are x1 and x2, then buffer 1 receives the job if and only if
γ(x1) ≥ x2. The analysis of [58] implies that the function γ is unbounded, but in
general no analytic formula is available for the computation of γ.

We see in Figure 7 that the optimal policy for the discrete network is closely
approximated by the optimal fluid policy, modified along the boundary. The “thick-
ened boundary” ensures that, with high probability, neither buffer will idle when the
network is congested.

A processor-sharing model. Another simple example where the optimal allocation
for the fluid model is explicitly computable is the processor-sharing network considered
in [4, 26] and illustrated in Figure 8. In this example, ! = 2, !u = 3, and the system
parameters are

B =

[−µA −µB 0
0 0 −µC

]
, C =

[
1 0 0
0 1 1

]
, α =

[
αA
αB

]
.
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x2

x1

Route to buffer 1

Fig. 7. Optimal discrete policy for the simple routing model with α = 9 and µT = (5, 5). The
one step cost is c(x) = 3x1 + 2x2.

As in the previous example, for any cost c we can assume that the optimal policy is
nonidling at station 1. The fluid limit model illustrated on the right in Figure 8 is
based on this assumption.

We assume that αA > µA. In this case, it is critical that station 1 receive outside
assistance. Under this condition and the nonidling assumption at station 1, we arrive
at a reduced order model with ! = !u = 2 and

B =

[−µB 0
0 −µC

]
, C =

[
1 1

]
, α =

[
αA − µA

αB

]
.

For any linear cost the optimal allocation is the cµ-rule priority policy, which is
again pathwise optimal in this example. It is shown in [4] that a modification of this
policy is nearly optimal in heavy traffic. Figure 9 shows the optimal policy for the
discrete model. It is similar to the cµ priority policy, with priority given to processor
B at station 2. However, the boundary {x2 = 0} has been shifted to form the concave
region shown in the figure.

A generalized cµ-rule in scheduling. We return now to the example illustrated in
Figure 10, whose fluid model is defined by the parameters

B =



−µ1 0 0 0
µ1 −µ2 0 0
0 0 −µ3 0
0 0 µ3 −µ4


 , C =

[
1 0 0 1
0 1 1 0

]
,

with α2 = α4 = 0. Consider for simplicity the symmetric case where µ1 = µ3 and
µ2 = µ4. We also assume that µ1 = 2µ2 so that the exit buffers are slow.

It is pointed out in [42] that the optimal policy for the fluid model when c is
the !1-norm is given as follows: The exit buffers have strict priority when q2(t) > 0
and q4(t) > 0. As soon as one of these buffers empties, say, buffer 2, then one sets
ζ1(t) = µ2/µ1 and ζ4(t) = 1−µ1 and continues to set ζ2(t) = 1. This policy maximizes
the overall draining rate at each time t, it is pathwise optimal, and it achieves the
total cost V ∗ for the fluid model. Recall that the analogous greedy policy, defined
through the discrete model, is destabilizing!

We have computed an optimal policy for the discrete network numerically for
this special case. However, noting that the optimal fluid policy is independent of the
arrival rates αT = (α1, 0, α3, 0), we have taken an extreme case with α = 0 and have
considered the total cost problem,

V (x) = min
∞∑
0

Ex[c(Q(k))],
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Fig. 8. On the left is the processor-sharing network of [27]. On the right is its fluid limit model.

x2

x1

Process buffer 2

Fig. 9. Optimal policy for the processor sharing model with �1 cost, α = (1, 1), and µ = (1, 3, 2).
This closely resembles the optimal fluid policy which gives strict priority to the first server at station
two since µB > µC .

where the minimum is with respect to all policies. This gives rise to a finite dimen-
sional optimization problem which can be solved exactly for each x.

The results shown in Figure 11 indicate that the optimal discrete policy is again
similar to the optimal fluid policy.

A scheduling-model with no pathwise optimal solution. Consider the network given
in Figure 12 with c taken to be the !1-norm. One policy that minimizes the total cost
for the fluid model is defined as follows, where γ is a positive constant defined by the
parameters of the network.

(i) Serve q3(t) exclusively (ζ3(t) = 1) whenever q2(t) > 0 and q3(t) > 0.
(ii) Serve q3(t) exclusively whenever q2(t) = 0 and q3(t)/q1(t) > γ.
(iii) Give q1(t) partial service with ζ1(t) = µ2/µ1 whenever q2(t) = 0, and

0 < q3(t)/q1(t) ≤ γ.

This model is most interesting when station 2 is the bottleneck, since one must then
make a tradeoff between draining the system and avoiding starvation at the bottleneck.
Taking ρ2 = α/µ2 = 9/10 and ρ1 = α/µ1 + α/µ3 = 9/11, the constant γ is equal to
one, and hence the optimal policy is of the form illustrated in Figure 13.

Optimal policies are computed numerically in [45] for versions of this model with
truncated buffers. Results from one experiment are shown in Figure 14. As in the
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Fig. 10. A multiclass network with �m = 2 and � = �u = 4.

Serve buffer 2

x3

x2
x  = 24

x  > 24

x  = 04

x  = 14

Fig. 11. Optimal policy for the four-buffer scheduling model shown in Figure 10 under the total
cost criterion with c equal to the �1-norm. The arrival streams are null, and µ = (2, 1, 2, 1). The
figure shows the policy when x1 = 3, x4 = 0, 1, 2, 3, with x2 and x3 arbitrary. This optimal policy
is of the same form as the fluid policy: It gives strict priority to the exit buffer at station 2, unless
buffer 4 is starved of work, in which case buffer 3 releases parts to feed buffer 4.

previous examples we see that the discrete optimal policy is easily interpreted. It
regulates the work waiting at buffer 2, and does so in such a way that buffer 2 is
rarely starved of work when the network is congested.

The policy shown in Figure 14 is also very similar to the fluid policy. Performing
some curve fitting, we can approximate this discrete policy as follows: serve buffer
one at time t if and only if either buffer three is equal to zero or

Q1(k)− x̄1 > Q3(k)− x̄3 and Q2(k) ≤ x̄2,(3.4)

where the translation x̄ positive. The most accurate approximation is obtained when
x̄ depends upon the current state Q(k) = x, say,

x̄ = x̄0 log(‖x‖+ 1), x ∈ X,(3.5)

with x̄0 > 0 and constant. Moreover, with this choice, the fluid limit obtained using
the policy (3.4) is precisely the optimal policy minimizing the total fluid cost, which
is illustrated in Figure 13.
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Fig. 12. A multiclass network with �m = 2 and � = �u = 3.

4. Feedback regulation. The results and examples of the previous section all
suggest that the fluid model should play a useful role in control synthesis for network
models. Theorem 7 establishes a connection between two optimization problems: one
is deterministic and relatively transparent, and the other is stochastic, discrete, and
apparently hopeless.

Even if one can find a feedback law d
dtz(t) = ζ(t) = f∗(q(t)) which is optimal for

the fluid model, it is not obvious how to use this information. A direct translation
such as F (x) = f∗(x) is not appropriate. It is shown in [45] that this policy may
have a fluid limit model which differs grossly from the desirable optimal fluid process.
However, the numerical results given above all show that, at least for simple models,
an optimal policy for a discrete network is approximated by an affine shift of the form

F (x) = f∗((x− x̄)+), x ∈ X.(4.1)

Moreover, one can show that a properly defined shift of this form ensures that the
resulting fluid limit model for the network controlled using F approximates the opti-
mized fluid model (see [42, 2, 43] and Proposition 8 below).

One might arrive at the policy (4.1) without any consideration of optimization.
When the feedback law f∗ is chosen appropriately, this policy will attempt to regulate
the state Q(k) about the value x̄. If this regulation is accomplished successfully, then

• provided x̄ is not too big, the cost c(Q(k)) will not be too large;
• if the target x̄ is not too small then this policy will avoid starvation of any
resource; and
• regulation to a constant should provide reduced variance at each station, as
has been argued for the class of fluctuation smoothing policies [37].

4.1. Discrete review structure. In this section we adapt the approach of [28]
to define policies for the physical network based on an idealized allocation derived
from the fluid model. Related approaches are described in [22].

In practice one will rarely use a stationary policy F since one is forced to make
scheduling decisions at every discrete sampling instance. This is undesirable since it
results in high computational overhead and, more importantly, excessive switch-overs.
The proposed policies consist of three components:

(a) For each initial condition x, a well-designed fluid trajectory q(t;x) satisfying
(2.2) for some allocation process U . This will typically be defined through a
feedback law f so that

q(t;x) = x+ αt+B

∫ t

0

f(q(s;x)) ds, t ∈ R+, x ∈ R
�
+.
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x  > 02
x 3

x 1

x  = 02

Fig. 13. The optimal fluid policy for the three buffer re-entrant line with ρ2 = 9/10 and
ρ1 = 9/11. In this illustration, the grey regions indicate those states for which buffer three is given
exclusive service.

x  > 32

x  = 12

x  = 22

x  = 32

x 1

x  = 02

x 3

Serve buffer 3

Fig. 14. Optimal discrete policy for three buffer re-entrant line in the balanced case: α/µ1 =
α/µ3 = 1

2
ρ1.

(b) A target vector x̄;
(c) A time horizon N over which the policy is fixed.

The target x̄ may be a “moving target,” in which case it is assumed to be a function
of the state. In general, we may also take N as a function of the state, but we will
always assume that N and x̄ are “roughly constant” for large x.

Given these, we set N0 = 0, and, given Q(N0) = x, we determine the time horizon
N1 = N(x). The values U(k), N0 ≤ t < N1 are chosen so that

E[Q(N1 −N0;x)]− x ≈ δ(N1 −N0; (x− x̄)+),(4.2)

where δ(T ; y) = q(T ; y)− y for any y ∈ R
�
+, T ≥ 0.

This final choice is far from unique but will be dictated by considerations such
as minimizing switch-over times and avoiding starvation at any station. Once one
arrives at time N1, the choice of U(k) on the time interval [N1, N2) proceeds exactly
as before, where N2 = N1 + N(Q(N1)). Successive review times {Ni : i ≥ 0} and
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actions {U(k) : k ≥ 0} can then be found by induction.
We shall call any policy of this form a feedback regulation policy since it is similar

to a state feedback approach to regulation as covered in a second-year control systems
course. Below we list some of the issues in design:

• The most basic question is the design of the fluid state trajectories {q( · ;x) :
x ∈ R

�
+}. A first requirement is stability, and the theory suggests that good

performance for the fluid model with respect to the total cost is highly desir-
able. These design issues will be discussed in depth in section 4.2.
• How do we choose x̄?
• How do we choose the time horizon N? This will be dictated by such issues
as batch or packet sizes and switch-over costs.
• How do we choose a sequence of actions on [Nk, Nk+1) so that (4.2) holds?

Again, one must consider switch-over costs—two approaches are described
below.
• In many models one must also consider idleness avoidance. For routing models
this can be treated as in [32] by enforcing routing to a buffer whenever its
level falls below a threshold. Scheduling models can be treated similarly.
• Machine failures and maintenance: How should the policy change during a
failure? One can again address this problem by considering a fluid model, but
one should consider the delayed fluid model which includes the residual-life
of each service process.

Much has been written on the choice of safety-stock levels. In some simple ex-
amples a constant threshold is optimal (see, e.g., [18, 39]). A value of zero is optimal
in the single-machine scheduling problem with linear cost since the cµ-rule is optimal
for both the fluid and stochastic models.

A general approach is suggested by a rich literature on networks in heavy traffic.
In [32] and many other references one considers the case where the system load ρ is
close to unity, and

(1− ρ)
√
n→ L, n→∞,

where n is a parameter which is sent to ∞ for the purpose of analysis, ρ = ρ(n), and
L is a nonzero, finite number. The steady-state number of customers in the system
is typically of order (1 − ρ)−1. (Consider a G/G/1 queue or the functional bounds
obtained in [31].) Hence the assumptions commonly used in the literature imply that

√
n = O

(
1

1− ρ

)
= O(Eπ[‖Q(k)‖]),

where Eπ[‖Q(k)‖] denotes the steady-state mean. The thresholds x̄ determined in
[4, 32] are of order log(n), so that ‖x̄‖ = O

(
log(Eπ[‖Q(k)‖])). By replacing the steady-

state mean with the current value Q(k) = x, we arrive at ‖x̄(x)‖ = O(log(‖x‖)).
However, the results of [43] show that such a small offset may be overly optimistic

in general. We are currently exploring parameterizations of the form (3.5), where x̄0

can be tuned, perhaps on-line.
Two major issues are stability and performance of the network under a feedback

regulation policy. A stability proof and some approaches to estimating performance
through simulation are given in section 4.4. Stability requires some assumptions.

(A1) There exists a function V : R
�
+ → R+ which is Lipschitz continuous and

satisfies

V (q(t;x))− V (x) ≤ −t, x ∈ R
�
+, t ≤ τθ.
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(A2) There exist an i.i.d. process {Γ(k) : k ≥ 0} evolving R
� and a family of

functions {F ( · , k,N) : 0 ≤ k < N <∞} such that for each k < N ,

F ( · , k,N) : Xk+1 × R
�(k+1) → {0, 1}�u ,

and when N(Q(0)) = N ,

U(k) = F (Q(0), . . . , Q(k),Γ(0), . . . ,Γ(k), k,N).

(A3) The convergence to the fluid model is uniform in the sense of (U1): For any
fixed N , there are a Θ(N) > 0 and a b0(N) < ∞ such that when U(k) =
F (Q(0), . . . , Q(k),Γ(0), . . . ,Γ(k), k,N) for k < N ,

1

N
Ex

[
‖Q(N ;x)− q(N, (x− x̄)+)‖

]
≤ Θ(N), ‖x‖ ≥ b0(N),

where Θ(N)→ 0 as N →∞.
Assumption (A1) ensures that the fluid process q(t;x) is stable. The Lipschitz

assumption is an important aspect of these policies since it is what allows us to
establish robustness with respect to perturbations in system parameters such as arrival
and service rates.

The proof of Theorem 13 below is based on a Markovian description of the con-
trolled network, which is possible by assumption (A2). Under this assumption, we
can define the Markov state process,

Φ(k)T = [Q(k), . . . , Q(n(k))], t ∈ Z+,

where n(k) is the last switch-over time: n(k) = min(s ≤ t : s = Nk for some k).
Assumption (A3) requires that one faithfully follow the fluid model. Consider for

simplicity the network scheduling problem where ! = !u. Perhaps the most natural
approach is to define a processing plan on [N(k), N(k + 1)) in a generalized round-
robin fashion: Take k = 0, without loss of generality, and, given Q(0) = x, set

y = q(T ; (x− x̄)+) = (x− x̄)+ +Bz(T ; (x− x̄)+) + Tα.

The vector a = z(T ; (x − x̄)+)/T satisfies a ≥ 0, Ca ≤ 1, and since y = (x − x̄)+ +
T (Ba+ α), we obviously have

(Ba+ α)i ≥ 0 whenever xi ≤ x̄i.(4.3)

At machine s suppose we have !s buffers i1, . . . , i�s . Given this value of a and given
a constant m > 0, we perform ai1m consecutive services at buffer i1 and then ai2m
consecutive services at buffer i2, continuing until buffer i�s has received ai�sm ser-
vices and then returning to buffer i1. This cycle repeats itself until time N(1). We
again must take the integer parts of akm, and this will lead to some error. This is
insignificant for large N .

An approach based on randomization is particularly straightforward. Suppose
that the function F is formed in a stationary, randomized fashion as follows:

P(Ui(k) = 1 | Q(0), . . . , Q(k),Γ(0), . . . ,Γ(k − 1))

= P(Ui(t) = 1 | Q(k))(4.4)

= aiI(Qi(k) > 0).
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This construction of U(k) for t < N can be equivalently expressed through a feedback
function of the form required in (A2), where, for some fixed function F : X×R

� → R
�
+,

F (Q(0), . . . , Q(k),Γ(0), . . . ,Γ(k), t, N) = F (Q(k),Γ(k)).

Proposition 8. Consider the network scheduling problem. The randomized
policy given in (4.4) defines a function F satisfying (A2) and (A3).

Proof. We have already seen that (A2) holds.
For any a ∈ R

�
+ we let Qa = {Q(k;x, a) : k ≥ 0} denote the state process for

a Jackson network with arrival and service rates given, respectively, by (αi, aiµi),
1 ≤ i ≤ !. We always assume that a ∈ U (a ∈ R

�
+ with Ca ≤ 1). We can construct all

of the processes {Q( · ;x, a) : x ∈ X, a ∈ U} on the same probability space as follows:
We are given two mutually independent !-dimensional Poisson processes M(t), N(t) of
rate one. The length of the service times, either real or virtual, at buffer i are defined
as the interjump times of Ni(µiait); the exogenous arrivals to buffer i occur at the
jump times of Mi(αit), t ∈ R+. The kth component of Ua is given by Uk(k;x, a) =
I(Qk(k;x, a) > 0).

For each n, we let {qn(t;x, a), zn(t;x, a)} denote the nth scaled queue length and
cummulative allocation process. We then set

Ln =

∞⋃
k=n

{
(qk( · ;x, a), zk( · ;x, a)) : ‖x‖ = b0; a ∈ U

}
.

The double bar indicates strong closure in the function space C([0, T ],R�+�v ), in the
uniform norm. The set Ln ⊂ C([0, T ],R�+�v ) is compact for any n, and so is its
intersection over all n: L =

⋂
n Ln.

The set L is defined for almost every (a.e.) sample path of (M,N). If (q, u) ∈ L,
then there exist xi → x, ai → a, and a subsequence {ni} of Z+ such that

qn
i

( · ;xi, ai) =⇒ q, zn
i

( · ;xi, ai) =⇒ z, i→∞,

where the convergence is in C([0, T ],R�+�v ). We then have q(0) = x, and for any time
t at which q and U are differentiable,

d

dt
qi(t) = 0 if qi(t) = 0,

d

dt
zi(t) = 1 if qi(t) > 0, 1 ≤ i ≤ !.

This is enough to completely determine the limit set: For any (x, a) there is a unique
q( · ;x, a) ∈ L.

It follows that we have uniformity in the sense of (U2): For any ε > 0,

sup
‖x‖=b0
a∈U

P

(
sup

0≤t≤T
‖zn(t;x, a)− z(t;x, a)‖ > ε

)
→ 0, n→∞,(4.5)

and the analogous limit holds for {qn}.
For x ∈ R

�
+, T > 0, we denote

A(x, T ) = {a ∈ R
�
+ : Ca ≤ 1, x+ T (Ba+ α) ∈ R

�
+}.
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For the randomized policies considered in Proposition 8 we always have a ∈ A(x, T )
(see the discussion surrounding (4.3)). Note also that for such a we have zi(t) = t for
any i, and any 0 ≤ t ≤ T . Hence, from (4.5),

sup
‖x‖=b0
a∈A(x,T )

P

(
sup

0≤t≤T
‖zni (t;x, a)− t‖ > ε

)
→ 0, n→∞.

It is well known that Jackson networks are monotone in the sense that if y ≥ x, then
Ui(k; y, a) ≥ Ui(k;x, a) for any i, t, and a (see [53]). Hence the above bound can be
improved:

sup
‖x‖≥b0
a∈A(x,T )

P

(
sup

0≤t≤T
‖zni (t;x, a)− t‖ > ε

)
→ 0, n→∞,(4.6)

and this easily implies that (A3) holds.

4.2. Design of the fluid trajectory. There are many control strategies for
a fluid model which have desirable stability characteristics. Here we describe four
approaches which always lead to a stabilizing solution: In each case we construct a
Lipschitz continuous Lyapunov function. We have already seen in Theorem 4 that
this can imply a strong form of stochastic stability for the network. These results will
be generalized to feedback regulation policies in Theorem 13.

The first three classes of policies considered below are based on optimal control:
the optimal fluid policies, time-optimal fluid policies, and constrained complexity
optimal fluid policies. The latter have fixed complexity which can be chosen in advance
by the user. The fourth class that we consider consists of greedy policies. Such policies
can be computed easily for large networks by solving an !-dimensional linear program.

Optimal fluid policies. The policy f∗ which optimizes the fluid model under
the total cost criterion is a natural candidate for application in a feedback regulation
policy. The computation of f∗ may be posed as an infinite dimensional linear program.
Because of the specific structure of the linear program, it is frequently feasible to
compute f∗ numerically, even though such problems are, in general, intractable (see
[41, 49]).

Time-optimal allocations can be computed with only trivial calculation: Proposi-
tion 1 implies that a linear time-optimal policy can be constructed for any stabilizable
network, which is the basis of the main result of [17]. Time-optimality is used as a
constraint in the construction of the policies described in [43].

Optimal fluid policies are stabilizing for the fluid model. Moreover, they satisfy
assumption (A1) and are hence guaranteed to be stabilizing for the stochastic model
when used in a feedback regulation policy.

Proposition 9. Suppose that the fluid model is stabilizable.
(i) Suppose that q( · ;x) is optimal with respect to the total cost (3.1) for each

x. Then there exists a Lipschitz Lyapunov function so that (A1) holds.
(ii) Suppose that q( · ;x) is time-optimal in the sense that τθ(x) is minimized

over all fluid policies. Then V (x) = τθ(x), x ∈ R
�
+, is a Lipschitz Lyapunov function

so that (A1) holds.
Proof. Let V = β

√
V ∗, where β > 0. From Proposition 6 we can conclude that V

is radially homogeneous, and each sublevel set Sη = {x : V (x) ≤ η} is a convex subset
of R

�
+ for any η > 0. It follows that V itself is convex and continuous, which implies

Lipschitz continuity. The negative drift required in (A1) holds for β sufficiently large,
which establishes (i).
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Another Lyapunov function is V = βc. This satisfies the required drift for suf-
ficiently large β since, as we have already observed, c(q(t)) is a convex, decreasing
function of t under an optimal policy.

The proof of (ii) is identical since the function V (x) = τθ(x) is radially homoge-
neous and convex.

Although Proposition 9 shows that optimal fluid policies are stabilizing, these
policies can be highly complex, even when they are computable (see [41, 49]). We
turn next to a simpler class of policies.

The constrained-complexity optimal fluid policy. The difficulty with using an
optimal state trajectory q∗( · ; · ) is that complexity, as measured by the number of
discontinuities in d

dtq
∗(t;x), i.e., the number of switches in the control z∗(t;x), can

grow exponentially with !.
To bound complexity, suppose that we take a number κ and demand that q be

piecewise linear, with at most κ pieces, so that the control can change no more than
κ times. Any q( · ; · ) which is optimal with respect to the total cost (3.1) subject to
this constraint will be called a κ-constrained optimal fluid process.

Any such policy can be computed by solving a κ · (! + 1)-dimensional quadratic
program when the cost is linear [41]. The variables can be taken as the switch-over
times {0 = T0, T1, . . . , Tκ} and the control increments {z(Ti+1)− z(Ti) : 0 ≤ i < κ}.

Proposition 10. Suppose that the fluid model is stabilizable. Then any κ-
constrained optimal fluid process possesses a Lipschitz continuous Lyapunov function
so that (A1) holds.

Proof. One can again show that c(q(t)) is a convex, decreasing function of t for any
κ-constrained optimal fluid process. Hence one can take V = βc for β > 0 sufficiently
large.

The greedy fluid policy. The greedy policy determines the allocation rate ζ(t)
that minimizes d

dtc(q(t)) at each t. One motivation for this class of policies comes
from considering the dynamic programing equations for the infinite-horizon optimal
control problem. The optimal policy is the solution to (4.7) with c replaced by the
value function V ∗. Greedy heuristics are the most popular in queueing theory. The
papers [8, 28] consider greedy policies for state-based cost functions as developed here.
The shortest expected delay policy [32] and the least slack policy [37] are based on
greedy heuristics for delay minimization.

Suppose that the cost function c is continuously differentiable (C1). The greedy
feedback law f(x) is computed by solving the following !-dimensional linear program:
For any x, let ∇c denote the gradient of c evaluated at x, and solve

min〈∇c,Bζ〉

subject to (Bζ + α)i ≥ 0 for all i such that xi = 0,
ζ ∈ U.

(4.7)

Then f(x) is defined to be any ζ which optimizes this linear program. The linear
program depends only upon sign(x) when the cost is linear. Given the feedback law
f , we then set d

dtz(t;x) = f(q(t;x)). As was seen in the previous examples, in many
cases the greedy policy leads to a pathwise optimal solution—geometric conditions
ensuring this are developed in [43].

The following is a generalization of a result of [10].
Proposition 11. Suppose that the fluid model is stabilizable, and the cost func-

tion c is C1. In this case any greedy fluid policy f is stabilizing for the fluid model,
and it is pathwise optimal if a unique pathwise optimal solution exists.
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Moreover, assumption (A1) holds with the Lyapunov function V (x) = βc(x) for
β > 0 sufficiently large.

Proof. As in the construction of a solution to (2.16), we can use stabilizability to
ensure the existence of an ε > 0 such that the equation

Bζ + α = −ε x

‖x‖
has a solution ζx ∈ U for any x �= θ. Hence, under the greedy policy we have, when
q(t) = x �= θ,

d

dt
c(q(t)) ≤ 〈∇c,Bζx + α〉

≤ − ε

‖x‖〈∇c, x〉 = −εc(x)‖x‖ .

The last equality follows from radial homogeneity of the norm c. This implies the
result with β = ε−1 maxx�=θ{‖x‖/c(x)}.

For the first four models shown above in Figures 4, 6, 8, and 10, the greedy fluid
policy is pathwise optimal. Hence it attains the minimal cost V ∗(x, T ) for any x and
any T > 0. The model shown in Figure 12 is a re-entrant line for which the greedy
policy is the LBFS priority policy. In this example the LBFS policy is not optimal for
the fluid model since it results in excessive starvation at the second machine whenever
the second machine is the bottleneck (see Figure 3).

Note that the greedy policy for a discrete network is typically defined to be the
policy which, at time t, minimizes over all admissible actions a the value E[c(Q(k+1)) |
Q(k), a]. For any network scheduling problem this policy gives strict priority to exit
buffers when c( · ) = | · |. In general, such a policy may perform extremely poorly:
For the example given in Figure 10 the greedy fluid policy is pathwise optimal, but
we saw in section 2 that the priority policy is destabilizing for some parameter values
even under (2.13).

4.3. Information. The policies considered thus far require the following infor-
mation for successful design:

• the arrival rates α,
• service rates and routing information as coded in the matrix B,
• bounds on variability of (A,R,S) so that appropriate safety-stocks can be
defined,
• global state information q(t;x) for each time t.

Relaxing this information structure is of interest in various applications.
We consider here only the first issue: In telecommunications applications we may

know little about arrival rates to the system, and in a manufacturing application
demand may be uncertain. Sensitivity with respect to service and arrival rates may
be large when the load is close to unity (see [19]).

To obtain a design without knowledge of arrival rates we define a set of generalized
Klimov indices which assign priorities to buffers, subject to positivity constraints, and
buffer level constraints. In this way one can define the policy in terms of observed
buffer levels without knowledge of the value of α. One can address (ii) in a similar
manner.

Define the permutation (i1, . . . , i�) of {1, . . . , !} so that for any resource j

〈∇c,Bein〉 ≤ 〈∇c,Beim〉 if n < m and in, im ∈ Rj .
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An allocation rate ζ = f(x) can then be defined as follows: for any n ≥ 1,∑
{ζik : k ≤ n, ik ∈ Rj} = 1 whenever

∑
{qik : k ≤ n, ik ∈ Rj} > 0.(4.8)

Proposition 12 follows from Proposition 11 since (4.8) may be viewed as an alter-
native representation of the greedy allocation.

Proposition 12. Suppose that the network is stabilizable. Then the policy (4.8)
is stabilizing for the fluid model. It is pathwise optimal if a unique pathwise optimal
solution exists.

4.4. Stability and performance. We are assured of stability under assump-
tions (A1)–(A3).

Theorem 13. Suppose that assumptions (A1) – (A3) hold, and suppose that for
some ε1 ≥ 0, N > 0,

(a) lim sup‖x‖→∞
N(x)
‖x‖ ≤ ε1,

(b) lim sup‖x‖→∞
‖x̄(x)‖
N(x) ≤ ε1,

(c) lim inf‖x‖→∞ N(x) ≥ N.
Then, for all N sufficiently large, the following hold.

(i) The state process Q is ergodic in the sense that for any initial condition
Q(0) = x and any function g which is bounded by some polynomial function of x,
there exists a finite ν(g) such that as T →∞,

1

T

T−1∑
0

g(Q(k))→ ν(g) a.s.,

Ex[g(Q(T ))]→ ν(g).

(ii) There exists ∆ > 0 such that if Q∆ is the state process for a new network
satisfying ‖B∆ − B‖ ≤ ∆, ‖α∆ − α‖ ≤ ∆, then the policy will continue to stabilize
the perturbed system in the sense of (i).

Proof. The idea of the proof is to construct a constant b and ε > 0 such that

PN(x)V (x) = E[V (Q(N(x);x))] ≤ V (x)− εN(x), ‖x‖ ≥ b.(4.9)

From the Lipschitz continuity of the model we can then find for each p a bp <∞ and
εp > 0 such that

PN(x)V p(x) ≤ V p(x)− εpN(x)V p−1(x), ‖x‖ ≥ bp.

Since V is equivalent to a norm on R
�, we can argue as in [15] that

PN(x)V p(x) ≤ V p(x)− εpEx


N(x)−1∑

0

‖Q(k)‖p−2


 , ‖x‖ ≥ bp,

where the constants bp, εp may have to be adjusted but remain finite and nonzero. It
follows that the process Φ is g-regular, with g(x) = ‖x‖q, for any q ≥ 1. The ergodic
theorems then follow, and, in fact, the ergodic limit in (i) converges faster than any
polynomial function of time (see [15]).

How then do we establish (4.9)? For x ∈ X let T = N(x), and write

V (Q(T ;x)) = V
(
q(T ; (x− x̄)+) + (Q(T ;x)− q(T ; (x− x̄)+)

)
≤ V (q(T ; (x− x̄)+) + b0‖Q(T ;x)− q(T ; (x− x̄)+)‖,
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where the inequality follows from Lipschitz continuity. The desired bound easily
follows since V (q(T ; (x− x̄)+) ≤ V ((x− x̄)+)− T for all x sufficiently large.

This proves (i), and (ii) follows since the drift inequality is preserved under per-
turbations in the model when V is Lipschitz.

Note that if N and x̄ are bounded, then, by following the proof of Theorem 4
and the arguments here, one can show that the state process Φ is Vε-uniformly
ergodic.

Given this large class of policies, how can we compare one to another? If our goal
is to estimate η, the steady-state mean of c(Q(k)) under a given policy, and if the
one step cost c is linear, then bounds on η can be obtained by solving certain linear
programs [36, 12, 34] or through comparison methods with a simpler model for which
performance is readily computed [48]. If these bounds are not useful, then one can
resort to simulation.

The standard estimator of η is given by η̂(k) := k−1
∑k−1

0 c(Q(i)), and this esti-
mator is strongly consistent for the policies considered here. From g-regularity with
g( · ) = ‖ · ‖4 we can also establish a central limit theorem of the form

√
t(η̂(k)−η)⇒

σN(0, 1), where ⇒ denotes weak convergence, and N(0, 1) is a standard normal ran-
dom variable [47]. The constant σ2 is known as the time-average variance constant
(TAVC) and provides a measure of the effectiveness of η̂(k).

The problem with simulation is that the TAVC is large in heavy traffic. It is
known that the TAVC is of order (1− ρ)−4 for the M/M/1 queue [1, 57], and similar
bounds hold for other network control problems [30]. With such a large variance, long
run-lengths will be required to estimate η effectively.

One method of reducing variance is through control variates: For any function
h : X→ R let ∆h = h− Ph. Here the transition function P may define the statistics
of the process Φ, in which case h is interpreted as a function of the first component
of Φ only. If the function h is π-integrable, then π(∆h) = 0, and so one might use
the consistent estimator

η̂c(n) = η̂(n) +
1

n

n−1∑
i=0

∆h(Q(i)).(4.10)

This approach can lead to substantial variance reductions, especially in heavy traffic,
when applied to the GI/G/1 queue [29].

In [30] these ideas are extended to network models. First note that the estimator
(4.10) will have a variance of zero when h solves the Poisson equation ∆h = −c+ η.
While this choice is not computable in general, we can approximate h by the fluid
value function

V (y) :=

∫ ∞

0

c(q(t;x)) dt.

The fluid estimator of η is then given by (4.10) with h = V ,

η̂f (n) = η̂(n) +
1

n

n−1∑
k=0

∆V (Φ(k)).(4.11)

Why should V provide an approximation to the solution of Poisson’s equation?
This actually follows from the construction of the feedback regulation policy which
requires that the increments of Q approximate the increments of the fluid trajectories.
See [30] for details.
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[26] J. M. Harrison and M. J. López, Heavy traffic resource pooling in parallel-server systems,
Queueing Systems, 33 (1999), pp. 339–368.

[27] J. M. Harrison and L. M. Wein, Scheduling networks of queues: Heavy traffic analysis of a
simple open network, Queueing Systems Theory Appl., 5 (1989), pp. 265–279.

[28] J. M. Harrison, The BIGSTEP approach to flow management in stochastic processing net-
works, in Stochastic Networks Theory and Applications, F. P. Kelly, S. Zachary, and I.
Ziedins, eds., Clarendon Press, Oxford, UK, 1996, pp. 57–89.



FEEDBACK REGULATION 775

[29] S. G. Henderson, Variance Reduction Via an Approximating Markov Process, Ph.D. thesis,
Stanford University, Stanford, CA, 1997.

[30] S. G. Henderson and S. P. Meyn, Variance reduction for simulation in multiclass queueing
networks, IIE Transactions on Operations Engineering, 1999, submitted.

[31] C. Humes, Jr., J. Ou, and P. R. Kumar, The delay of open Markovian queueing networks:
Uniform functional bounds, heavy traffic pole multiplicities, and stability, Math. Oper.
Res., 22 (1997), pp. 921–954.

[32] F. C. Kelly and C. N. Laws, Dynamic routing in open queueing networks: Brownian models,
cut constraints and resource pooling, Queueing Systems Theory Appl., 13 (1993), pp. 47–
86.

[33] Y. Kontoyiannis and S. Meyn, Spectral theory and limit theorems for geometrically ergodic
Markov processes, Ann. Appl. Probab., submitted, 2000.

[34] P. R. Kumar and S. P. Meyn, Duality and linear programs for stability and performance
analysis queueing networks and scheduling policies, IEEE Trans. Automat. Control, 41
(1996), pp. 4–17.

[35] P. R. Kumar and T. I. Seidman, Dynamic instabilities and stabilization methods in distributed
real-time scheduling of manufacturing systems, IEEE Trans. Automat. Control, 35 (1990),
pp. 289–298.

[36] S. Kumar and P. R. Kumar, Performance bounds for queueing networks and scheduling
policies, IEEE Trans. Automat. Control, 39 (1994), pp. 1600–1611.

[37] S. Kumar and P. R. Kumar, Fluctuation smoothing policies are stable for stochastic re-entrant
lines, J. Discrete Event Dynamic Systems: Theory and Applications, 6 (1996), pp. 361–370.

[38] S. Kumar and M. Muthuraman, A numerical method for solving singular controls, in Pro-
ceedings of the 39th IEEE Conference on Decision and Control, Volume 1, IEEE Control
Systems Society, Piscataway, NJ, 2000, pp. 522–527.

[39] W. Lin and P. R. Kumar, Optimal control of a queueing system with two heterogeneous
servers, IEEE Trans. Automat. Control, 29 (1984), pp. 696–703.

[40] S. Lippman, Applying a new device in the optimization of exponential queueing systems, Oper.
Res., 23 (1975), pp. 687–710.

[41] X. Luo and D. Bertsimas, A new algorithm for state-constrained separated continuous linear
programs, SIAM J. Control Optim., 37 (1998), pp. 177–210.

[42] C. Maglaras, Design of dynamic control policies for stochastic processing networks via fluid
models, in Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix,
AZ, 1997, pp. 1208–1213.

[43] S. P. Meyn, Sequencing and routing in multiclass queueing networks. Part II: Workload re-
laxations, SIAM J. Control Optim., submitted, 2000.

[44] S. P. Meyn, The policy improvement algorithm for Markov decision processes with general
state space, IEEE Trans. Automat. Control, 42 (1997), pp. 1663–1680.

[45] S. P. Meyn, Stability and optimization of multiclass queueing networks and their fluid models,
in Mathematics of Stochastic Manufacturing Systems: AMS–SIAM Summer Seminar in
Applied Mathematics, Lectures in Applied Mathematics 33, AMS, Providence, RI, 1997,
pp. 175–199.

[46] S. P. Meyn and D. Down, Stability of generalized Jackson networks, Ann. Appl. Probab., 4
(1994), pp. 124–148.

[47] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag,
London, 1993.

[48] J. Ou and L. M. Wein, Performance bounds for scheduling queueing networks, Ann. Appl.
Probab., 2 (1992), pp. 460–480.

[49] J. R. Perkins and P. R. Kumar, Optimal control of pull manufacturing systems, IEEE Trans.
Automat. Control, 40 (1995), pp. 2040–2051.

[50] M. C. Pullan, Forms of optimal solutions for separated continuous linear programs, SIAM J.
Control Optim., 33 (1995), pp. 1952–1977.

[51] C. Okino, R. Agrawal, R. L. Cruz, and R. Rajan, Performance bounds for flow control
protocols, IEEE Trans. Networking, 7 (1999), pp. 310–323.

[52] A. N. Rybko and A. L. Stolyar, On the ergodicity of stochastic processes describing the
operation of open queueing networks, Problemy Peredachi Informatsii, 28 (1992), pp. 3–
26.

[53] J. G. Shanthikumar and D. D. Yao, Stochastic monotonicity in general queueing networks,
J. Appl. Probab., 26 (1989), pp. 413–417.

[54] A. Shwartz and A. Weiss, Large deviations for performance analysis: Queues, communica-
tion and computing, Chapman-Hall, London, 1995.



776 SEAN P. MEYN

[55] S. Lavenberg, ed., Computer Performance Modeling Handbook, Academic Press, New York,
1983.

[56] G. Weiss, Optimal draining of fluid re-entrant lines: Some solved examples, in Stochastic
Networks: Theory and Applications, Roy. Statist. Soc. Lecture Note Ser. 4, F. P. Kelly, S.
Zachary, and I. Ziedins, eds., Oxford University Press, Oxford, UK, 1996, pp. 19–34.

[57] W. Whitt, Planning queueing simulations, Management Sci., 35 (1994), pp. 1341–1366.
[58] S. H. Xu and H. Chen, A note on the optimal control of two interacting service stations, IEEE

Trans. Automat. Control, 38 (1993), pp. 187–189.



A ROTATED MULTIPLIER APPLIED TO THE CONTROLLABILITY
OF WAVES, ELASTICITY, AND TANGENTIAL STOKES CONTROL∗

AXEL OSSES†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 777–800

Abstract. A new family of multipliers with rotated direction is introduced. This technique is
applied to obtain new results concerning controllability of waves, elasticity, and Stokes equations. The
boundary exact controllability for the wave equation and the dynamic elasticity system is reviewed
generalizing the classical exit condition in the case of explicit observability constants. Approximate
controllability for the Stokes system is also studied using a boundary control acting only on the
tangential component of the velocity. A geometric sufficient condition of exit generalized type is
deduced.

Key words. multiplier method, exact controllability, approximate controllability, unique con-
tinuation, wave equation, elasticity, Stokes system
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1. Introduction. In 1940, Rellich [41] introduced a multiplier technique in or-
der to obtain direct a priori estimates in linear partial differential equations (PDEs).
This method was called multiplier method since it consists in multiplying the equa-
tion by the gradient of the solution following some convenient vector field and then
integrating by parts in the domain. This technique was widely used in the classical
PDE development [32], [11]. Later on, in the 70s and 80s, this technique was used to
derive inverse estimates: the asymptotic estimates in scattering theory for unbounded
domains [30], [31] and the direct study of uniform stabilization in bounded domains
[5], [6], [17], [21].

In 1986, Ho [10] used this multiplier technique to prove an inverse inequality for
the linear wave equation implying its exact controllability. Ho arrived to a geome-
trical condition called exit condition: The control region must contain a subset of
the boundary where the scalar product between the outward normal and the vector
pointing from some origin towards the normal is positive. By varying the origin, a
family of control boundaries satisfying the condition is found. In a square, for instance,
the condition gives control boundaries consisting of four, three, or two adjacent sides.
Ho’s result was improved [25], [24] and adapted to other systems like vibrating plates
and the elasticity system [24], [19]. Afterwards, the method also gave similar results
for Maxwell [18], [16] and Schrödinger [29] equations.

Several authors have used multiplier techniques for control or stabilization of
mathematical models: viscoelastic or thermoelastic beams [23], [12]; semilinear wave
equations [44]; wave equation with mixed boundary conditions [8], [7] or in domains
with corners or cracks [9], [33], [34]; Euler–Bernoulli equations [13]; hybrid systems in
elasticity [40]; networks of membranes or beams with discontinuous coefficients [24],
[20]; coupled Schrödinger equations [14]; Korteweg–de Vries equations [42]. See also
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[15] for other references.

In recent years, microlocal techniques and geometric optics analysis allow us to
find geometrical characterization of control location and minimal control time in the
exact controllability of waves. After eventual reflection, diffraction, or sliding on the
boundary, every optic ray issue from the observation domain has to reach the control
zone. This is a necessary and sufficient condition [4] called the Bardos–Lebeau–Rauch
(BLR) condition [1]. This technique has also been applied to vibrating plates [22],
the elasticity system [2], and Maxwell equations [39].

Exit condition turns to be a particular case of the BLR condition. But there is a
certain balance: In the BLR condition, control time is optimal but the observability
constants are not explicit. In the exit condition, time is not optimal, but observability,
constants can be explicit and this fact is very useful in theoretical and numerical
estimations. In general [3], the BLR condition assumes more regularity on coefficients
and boundaries than exit condition.

In this article we introduce a family of multipliers with rotated direction as a
new approach in the multiplier method. More precisely, we propose to multiply the
equation by the gradient of the solution following not only a radial but also a rotated
direction. This takes advantage of invariances under rotations for the differential op-
erators considered here and leads to derive a generalized exit condition. For instance,
in two dimensions, the condition is that the control region must contain a subset of
the boundary where the scalar product between the outward normal rotated in an
angle and the vector pointing from some origin towards the normal is positive. A
family of control boundaries is obtained by varying the origin and the angle. The
minimal time of control results to be proportional to the inverse of the cosine of the
angle of the rotation.

To show the particularities of this method we have chosen some controllability
problems, but the technique could be a useful tool in other areas. We revisit the
exact or approximate controllability of some linear classical models in PDEs: the
wave equation, the elasticity system, and the Stokes system.

The paper is organized as follows. In section 2, rotated multipliers are used
to derive a generalization of classical inverse inequality for the linear wave equation
conserving explicit observability constants (see Theorem 2.2 and Theorem 2.3). New
boundary control geometries are found (Figures 2.1 and 2.2) which are particular cases
of the BLR condition and satisfy a generalized exit condition. In section 3, the method
is extended to the study of the exact controllability of the elasticity system. Beside
the choice of a rotated direction in a natural manner, a second multiplier formula is
needed in this case. The classical inverse inequality with explicit constants is also
generalized (see Theorem 3.3 and Theorem 3.4). The same geometrical conditions as
for the wave equation are found. In section 4, a different application in fluid control
is developed: the study of the approximate controllability of the Stokes system with
a boundary control acting only on the tangential part of the velocity. As far as
we know, this is an almost untreated topic (except for references [35] and [36]). A
sufficient geometric condition is found similar to one deduced for the wave equation
and the elasticity system. The final results are presented in two and three dimensions,
but the technique is actually not limited by dimension.

In the case of controlling all the velocity trace on an arbitrarily small nonempty
open part of the boundary, approximate controllability is easily obtained by using a
unique continuation property of Holmgren’s type. Second, approximate controllability
using the normal component of the velocity is studied in [27] and [28], where the result
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is proved in a real analytic connected domain with a simple spectrum for the Laplacian
with a control acting on an arbitrary small nonempty open part of the boundary and a
counterexample in a ball is given. It is amazing to observe that the normal boundary
approximate controllability also holds if the boundary has at least a rectangular corner
[38]. In the tangential case that we treat in this paper, we begin by following the idea
of [27] introducing a spectral decomposition to characterize the unique continuation
property of the time dependent system as a unique continuation property on each
frequency. Then we use rotated multipliers to obtain an inverse inequality for each
eigenfrequency and a sufficient geometrical condition to have the unique continuation
(see Theorem 4.3). We prove that this condition is not necessary for two dimensional
connected domains with analytic boundary (see Theorem 4.4). But, as far as all the
other cases are concerned, there is a lack of counterexamples for which tangential
boundary approximate controllability could not hold.

In summary, multipliers with rotated direction generalize the standard multipli-
ers in a natural way. For second order hyperbolic systems, the application of this
technique provides a wider class of geometric examples with explicit observability
constants which are particular cases of the BLR condition. For partially controlled
Petrovskii systems, the technique reveals to be useful to find results of approximate
controllability.

2. Wave equation.1

2.1. Control problem. Let Ω be a bounded domain of R
N (N ≥ 2) with a

regular2 boundary Γ of class C2. Let ν be the unit exterior normal to Ω. Let T > 0
be given, and define Q = Ω × (0, T ) and Σ = Γ × (0, T ). We consider the following
classical control problem. Let Γ0 ⊆ Γ and Σ0 = Γ0 × (0, T ). Our problem consists
of finding T0 such that for each T > T0 and for every (y0, y1) ∈ L2(Ω)N ×H−1(Ω)N ,
there exists v ∈ L2(Σ0)

N in such a way that the solution of the wave equation

y′′ −∆y = 0 in Q,(2.1a)

y = v on Σ0,(2.1b)

y = 0 on Σ \ Σ0,(2.1c)

y(0) = y0, y
′(0) = y1 in Ω(2.1d)

satisfies

y(T ) = 0, y′(T ) = 0 in Ω,(2.2)

where the prime symbol ′ stands for derivation with respect to time.
Following the Hilbert uniqueness method (HUM) [24], the solution to this problem

is equivalent to studying the observability properties of the adjoint problem. For each
pair of initial conditions (ϕ0, ϕ1) ∈ H1

0 (Ω)
N × L2(Ω)N , let us consider the solution ϕ

of the wave equation as follows:

ϕ′′ −∆ϕ = 0 in Q,(2.3a)

ϕ = 0 on Σ,(2.3b)

ϕ(0) = ϕ0, ϕ
′(0) = ϕ1 in Ω.(2.3c)

1A note about the results of this section was published in [37].
2The results of this section are also valid if we suppose that Ω is either a bounded polygonal of

R
2 or a bounded polyhedral of R

3. (It suffices to apply the methods of Grisvard [8].)
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More precisely, exact controllability is equivalent to demonstrate that for T > T0, the
inverse inequality

E0 ≤ C(Ω, T )

∫
Σ0

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dσdt

holds, where

E0 =
1

2

(∫
Ω

|∇ϕ0|2 dx+
∫

Ω

|ϕ1|2 dx
)

(2.4)

is the initial energy of system (2.3), and C(Ω, T ) is a constant depending only on
geometry and final time. Multiplier methods [24] can give explicit constants, but only
for large Γ0 and T . Microlocal techniques [1], [4] characterize all Γ0 and T for which
we obtain such a result, but in this case the constant is not explicit.

Using a new choice in the classical multiplier method, we will enlarge the set of
geometric examples with explicit knowledge of constants.

2.2. Inverse inequality and exact controllability.
Definition 2.1. Let A ∈ R

N×N be such that A = −At (skew-symmetric). Let
d > 0 be a positive real number and I the identity matrix in R

N×N . We define for
each x0 ∈ R

N the set

Γ(x0, d, A) = {x ∈ Γ such that (x− x0) · (dI +A)ν > 0}.(2.5)

Without loss of generality we introduce the following normalizing condition:

d2 + ‖A‖22 = 1,(2.6)

where ‖A‖2 = sup{|Ax| , |x| = 1} and | · | is the Euclidean norm in R
N . We also

define

r(x0, d, A) = max{(x− x0) · (dI +A)ν with x ∈ Γ(x0, d, A)},(2.7a)

R(x0) = max{∣∣x− x0
∣∣ with x ∈ Ω}.(2.7b)

Theorem 2.2 (inverse inequality). Given x0 ∈ R
N , d > 0, and a skew-symmetric

matrix A normalized as in (2.6), for each T > 2d−1R(x0) and for each weak solution
ϕ of (2.3) the following inequality holds:

E0 ≤ r(x0, d, A)

2 (dT − 2R(x0))

∫ T

0

∫
Γ(x0,d,A)

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dσdt.(2.8)

Theorem 2.3 (exact controllability). Suppose that we can find x0 ∈ R
N , d > 0,

and a skew-symmetric matrix A normalized as in (2.6) such that Γ(x0, d, A) is not
empty and Γ(x0, d, A) ⊂ Γ0; then for each T > 2d−1R(x0) there exists a control
v ∈ L2(Σ0)

N such that the corresponding solution of (2.1) satisfies the final condition
(2.2).
Remark 1. In the case d = 1 and A = 0 we recover classical results (see [24]).
Remark 2. For N = 2, introducing θ ∈] − π/2, π/2[, taking d = cos θ and A21 =

A12 = sin θ, definition (2.5) can be replaced by

Γ(x0, θ) = {x ∈ Γ such that (x− x0) ·M(θ)ν > 0},(2.9)
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Fig. 2.1. Left: Control region Γ(x0, θ) (bold line) in the square ] − 1, 1[2 for x0 centered and
θ < π/2. Theorem 2.3 gives a control time T > 2

√
2/ cos θ. Right: Comparison between BLR

minimal control time and the minimal time given by Theorem 2.3 for this example.

z
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Fig. 2.2. Other regions of control obtained by applying a rotated multiplier technique. Left:
Control region (bold line) for the Ikawa’s bowling ball and a bone-shape region for θ near π/2.
Right: Control region Γ(x0, d, α) (in gray) in the cube ]−1,1[3 for a centered x0, d = 0.1 and α in
the direction −(1, 1, 1).

where M(θ) is a rotation matrix of angle θ anticlockwise (see Figures 2.1 and 2.2).

Remark 3. For N = 3, if α ∈ R
3 and d2+ |α|2 = 1 we take A12 = −α3, A13 = α2,

and A23 = −α1, and the definition (2.5) can be written using the exterior product in
R

3 as (see Figure 2.2, right)

Γ(x0, d, α) = {x ∈ Γ such that (x− x0) · (dν + α× ν) > 0}.(2.10)

2.3. Rotated multiplier: Proof of Theorems 2.2 and 2.3. Let ϕ be a weak
solution of (2.3). Multiplying (2.3) by ∇ϕ · q, where q ∈ W 1,∞(Ω)N , and by ϕ and
integrating by parts, the following classical formulas [24, Chapter I], are deduced:

(ϕ′(t) , q · ∇ϕ)0,Ω
∣∣∣T
t=0

+
1

2

∫
Q

div q(|ϕ′|2 − |∇ϕ|2) dxdt(2.11)

+

∫
Q

(∇q)∇ϕ · ∇ϕdxdt = 1

2

∫
Σ

q · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dσdt

and

(ϕ′(t) , ϕ(t))0,Ω
∣∣∣T
t=0

=

∫
Q

(|ϕ′|2 − |∇ϕ|2) dxdt,(2.12)

where (· , ·)0,Ω and ‖·‖0,Ω denote the usual inner product and norm in L2(Ω)N , re-
spectively.
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We consider now in (2.11) a direction of type

q = (dI −A)(x− x0),(2.13)

where d > 0 and A = −At verify the normalizing condition (2.6). Note that div q =
dN , ∇q = dI −A, and (A∇ϕ , ∇ϕ)0,Ω = 0. With this choice (2.11) becomes

(ϕ′ , q · ∇ϕ)0,Ω
∣∣∣T
t=0

+
dN

2

∫
Q

(|ϕ′|2 − |∇ϕ|2) dxdt

+ d

∫
Q

|∇ϕ|2 dxdt = 1

2

∫
Σ

q · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dσdt.(2.14)

If we add up this last identity to (2.12) multiplied by d(N − 1)/2, we obtain
(
ϕ′ , q · ∇ϕ+ d(N − 1)

2
ϕ

)
0,Ω

∣∣∣∣∣
T

t=0

+
d

2

∫
Q

(|ϕ′|2+ |∇ϕ|2) dxdt = 1

2

∫
Σ

q · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dσdt.

In virtue of the energy conservation principle it follows that

(
ϕ′ , q · ∇ϕ+ d(N − 1)

2
ϕ

)
0,Ω

∣∣∣∣∣
T

t=0

+ dTE0 =
1

2

∫
Σ

q · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dσdt.(2.15)

Now, from

(q · ∇ϕ , ϕ)0,Ω = −
1

2

∫
Ω

div q |ϕ|2 dx = −dN
2
‖ϕ‖20,Ω ,

we can see that∥∥∥∥q · ∇ϕ+ d(N − 1)
2

ϕ

∥∥∥∥
2

0,Ω

= ‖q · ∇ϕ‖20,Ω −
d2N(N − 1)

2
‖ϕ‖20,Ω +

d2(N − 1)2
4

‖ϕ‖20,Ω

≤ ‖q · ∇ϕ‖20,Ω +
d2(1−N2)

4
‖ϕ‖20,Ω

≤ ‖q · ∇ϕ‖20,Ω .
The above inequality implies that the first term in the left hand side of (2.15) is
bounded by

2

(
R(x0)

2
‖ϕ′‖20,Ω +

1

2R(x0)
‖q · ∇ϕ‖20,Ω

)
,

where R(x0) was defined in (2.7). Using the normalization condition (2.6), we obtain

‖q · ∇ϕ‖0,Ω ≤ (d2 + ‖A‖22)1/2R(x0) ‖∇ϕ‖0,Ω = R(x0) ‖∇ϕ‖0,Ω .
Therefore, from (2.15) we deduce that

−2R(x0)E0 + dTE0 ≤ 1

2

∫
Σ

(dI −A)(x− x0) · ν
∣∣∣∣∂ϕ∂ν

∣∣∣∣
2

dσdt.

If we note that (dI−A)(x−x0)·ν = (x−x0)·(dI+A)ν, we have only to use definitions
(2.5) of Γ(x0, d, A) and (2.7a) of r(x0, d, A) in order to conclude the inverse inequality
(2.8) and Theorem 2.2.

The exact controllability result of Theorem 2.3 follows directly from Theorem 2.2
applying HUM method (see [24, Chapter IV]).
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3. Elasticity system.

3.1. Control problem. We consider an isotropic homogeneous elastic body
occupying a bounded open subset Ω of R

N . We keep the same regularity assumptions
and notations of section 2. We introduce the boundary Γ of Ω, the control boundary
Γ0, and given a final time T > 0, the associated cilinders Q = Ω × (0, T ), Σ =
Γ × (0, T ), and Σ0 = Γ0 × (0, T ). We study the exact controllability of the system
of linear elasticity with a control acting on a part of the boundary. More precisely,
given f ∈ L2(Q)N , a control v ∈ L2(Σ0)

N , and initial conditions u0 ∈ L2(Ω)N and
u1 ∈ H−1(Ω)N , let u be the solution of

u′′ − µ∆u− (λ+µ)∇divu = f in Q,(3.1a)

u = v on Σ0,(3.1b)

u = 0 on Σ \ Σ0,(3.1c)

u(0) = u0, u′(0) = u1 in Ω,(3.1d)

where µ and λ are Lamé’s constants with λ + 2µ > 0. The symbol ′ (prime) means
derivation with respect to time. We take the notation (∆u)i = ∂2ui/∂xj∂xj and
the convention that a repeated index in some expression means implicit sum on this
index.

Under the conditions described above, system (3.1) has a solution in a trans-
position sense. It can be shown that u ∈ C([0, T ];L2(Ω)N ) and also that u′ ∈
C([0, T ];H−1(Ω)N ); hence the conditions (3.1d) have a sense.

We seek for a control function v such that

u(T ) = 0 and u′(T ) = 0.(3.2)

Now, let us consider the solution ϕ of the adjoint system:

ϕ′′ − µ∆ϕ− (λ+µ)∇divϕ = 0 in Q,(3.3a)

ϕ = 0 on Σ,(3.3b)

ϕ(0) = ϕ0, ϕ′(0) = ϕ1 in Ω(3.3c)

for each ϕ0 ∈ H1
0 (Ω)

N and ϕ1 ∈ L2(Ω)N . From classical regularity results, we know
that ϕ ∈ C([0, T ];H1

0 (Ω)
N ) and ϕ′ ∈ C([0, T ];L2(Ω)N ).

If we define the initial energy by

E0 =
1

2

∫
Ω

(∣∣ϕ1
∣∣2 + µ

∣∣∇ϕ0
∣∣2 + (λ+µ) ∣∣divϕ0

∣∣2) dx,(3.4)

multiplying (3.3) by ϕ′ we obtain the conservation of energy

E(t) =
1

2

∫
Ω

(
|ϕ′(t)|2 + µ |∇ϕ(t)|2 + (λ+µ) |divϕ(t)|2

)
dx = E0 for all t ∈ [0, T ].(3.5)

3.2. Two multiplier formulas. The following geometric property will be useful
in this section and in the next section.

Proposition 3.1. Let Γ0 be a subset of Γ with positive measure. Let ϕ ∈ H2(Ω)N

be such that the trace of ϕ on Γ0 is a constant vector of R
N . Then

∂ϕi
∂xj

νk =
∂ϕi
∂xk

νj on Γ0 ∀ different i, j, k ∈ {1, . . . , N}.(3.6)
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Proof. We assume that ϕ ∈ C1(Ω)N and we can deduce the general case thanks
to a density argument. If the symbol × stands for the exterior product in R

N , the
condition imposed to ϕ on Γ0 is equivalent to ∇ϕi×ν = 0 on Γ0 for each i = 1, . . . , N ,
and this corresponds exactly to (3.6).

We introduce the well-known tensorial product

e : f = eij fij ,

where e = {eij}Nj=1 and f = {fij}Nj=1 are tensorial fields defined in Ω onto R
N×N .

We suppose that this tensorial product has lower precedence than the usual matrix
product in R

N×N .
Let q be a vector field defined in Ω with q ∈W 2,∞(Ω).
Taking the multiplier (∇ϕ)q for each term of the left-hand side in (3.3a) the

following identities are deduced:∫
Ω

∇divϕ · (∇ϕ)q dx =
∫

Ω

∂2ϕi
∂xi∂xj

∂ϕj
∂xk

qk dx(3.7)

= −
∫

Ω

∂ϕi
∂xi

∂2ϕj
∂xj∂xk

qk dx−
∫

Ω

∂ϕi
∂xi

∂ϕj
∂xk

∂qk
∂xj

dx+

∫
Γ

∂ϕi
∂xi

∂ϕj
∂xk

qkνj dσ,

but

−
∫

Ω

∂ϕi
∂xi

∂2ϕj
∂xj∂xk

qk dx =
1

2

∫
Ω

∂ϕi
∂xi

∂ϕj
∂xj

∂qk
∂xk

dx− 1

2

∫
Γ

∂ϕi
∂xi

∂ϕj
∂xj

qkνk dσ

and, taking into account Proposition 3.1,∫
Γ

∂ϕi
∂xi

∂ϕj
∂xk

qkνj dσ =

∫
Γ

∂ϕi
∂xi

∂ϕj
∂xj

qkνk dσ.

Hence it follows that∫
Ω

∇divϕ·(∇ϕ)q dx = 1

2

∫
Ω

|divϕ|2 div q dx−
∫

Ω

divϕ∇ϕ : ∇tq dx+1
2

∫
Γ

|divϕ|2 q·ν dσ.

The other term gives ∫
Ω

∆ϕ · (∇ϕ)q dx =
∫

Ω

∂2ϕi
∂xj∂xj

∂ϕi
∂xk

qk dx(3.8)

= −
∫

Ω

∂ϕi
∂xj

∂2ϕi
∂xj∂xk

qk dx−
∫

Ω

∂ϕi
∂xj

∂ϕi
∂xk

∂qk
∂xj

dx+

∫
Γ

∂ϕi
∂xj

∂ϕi
∂xk

qkνj dσ,

but

−
∫

Ω

∂ϕi
∂xj

∂2ϕi
∂xj∂xk

qk dx =
1

2

∫
Ω

∂ϕi
∂xj

∂ϕi
∂xj

∂qk
∂xk

dx− 1

2

∫
Γ

∂ϕi
∂xj

∂ϕi
∂xj

qkνk dσ,

and, from Proposition 3.1,∫
Γ

∂ϕi
∂xj

∂ϕi
∂xk

qkνj dσ =

∫
Γ

∂ϕi
∂xj

∂ϕi
∂xj

qkνk dσ;

then∫
Ω

∆ϕ · (∇ϕ)q dx = 1

2

∫
Ω

|∇ϕ|2 div q dx−
∫

Ω

∇ϕ : ∇ϕ∇q dx+ 1

2

∫
Γ

|∇ϕ|2 q · ν dσ.
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Always with the multiplier (∇ϕ)q the last term in (3.3a) gives in a classical manner∫
Q

ϕ′′ · (∇ϕ)q dxdt = 1

2

∫
Q

|ϕ′|2 div q dxdt− 1

2

∫
Σ

|ϕ′|2 q · ν dσdt+ (ϕ′ , (∇ϕ)q)0,Ω
∣∣∣T
t=0

.

Using the other multiplier (∇tq)ϕ for each term of the left-hand side in (3.3a) it
follows that ∫

Ω

∇divϕ · (∇tq)ϕdx =
∫

Ω

∂2ϕi
∂xi∂xj

∂qk
∂xj

ϕk dx(3.9)

= −
∫

Ω

∂ϕi
∂xi

∂2qk
∂xj∂xj

ϕk dx−
∫

Ω

∂ϕi
∂xi

∂qk
∂xj

∂ϕk
∂xj

dx+

∫
Ω

∂ϕi
∂xi

∂qk
∂xj

ϕkνj dx

= −
∫

Ω

divϕ∆q · ϕdx−
∫

Ω

divϕ∇ϕ : ∇q dx,

since ϕ = 0 on Γ. For the second term,∫
Ω

∆ϕ · (∇tq)ϕdx =
∫

Ω

∂2ϕi
∂xj∂xj

∂qk
∂xi

ϕk dx(3.10)

= −
∫

Ω

∂ϕi
∂xj

∂2qk
∂xi∂xj

ϕk dx−
∫

Ω

∂ϕi
∂xj

∂qk
∂xi

∂ϕk
∂xj

dx+

∫
Γ

∂ϕi
∂xj

∂qk
∂xi

ϕkνj dσ

= −
∫

Ω

∂ϕi
∂xj

∂2qk
∂xi∂xj

ϕk dx−
∫

Ω

∇ϕ : (∇tq)∇ϕdx.

For the last term, always with the second multiplier(∇tq)ϕ, integration by parts in Q
gives ∫

Q

ϕ′′ · (∇tq)ϕdxdt = −
∫
Q

(∇q)ϕ′ · ϕ′ dxdt+
(
ϕ′ , (∇tq)ϕ)

0,Ω

∣∣∣T
t=0

.

Combining the identities above, a multiplier formula appears for each multiplier
(∇ϕ)q and (∇tq)ϕ.

Lemma 3.2. Let ϕ be the solution of (3.3). For all q ∈W 2,∞(Ω)N we have

(ϕ′ , (∇ϕ)q)0,Ω
∣∣∣T
t=0

+
1

2

∫
Q

div q(|ϕ′|2 − µ |∇ϕ|2 − (λ+µ) |divϕ|2) dxdt(3.11)

+ µ

∫
Q

∇ϕ : ∇ϕ∇q dxdt+ (λ+µ)
∫
Q

divϕ∇ϕ : ∇tq dxdt

=
1

2

∫
Σ

q · ν(µ |∇ϕ|2 + (λ+µ) |divϕ|2) dσdt,

(
ϕ′ , (∇tq)ϕ)

0,Ω

∣∣∣T
t=0

=

∫
Q

(∇q)ϕ′ · ϕ′ dxdt− µ

∫
Q

∇ϕ : ∇tq∇ϕdxdt(3.12)

− (λ+µ)
∫
Q

divϕ∇ϕ : ∇q dxdt− µ

∫
Q

∂ϕi
∂xj

∂2qk
∂xi∂xj

ϕk dxdt

− (λ+µ)
∫
Q

divϕ∆q · ϕdxdt.
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3.3. Choice of the rotated direction. The classical choice q = x − x0, x0 ∈
R
N , in (3.11) and (3.12) gives (see [24])

(
ϕ′ , ∇ϕ(x−x0)

)
0,Ω

∣∣∣T
t=0

+
N

2

∫
Q

(|ϕ′|2 − µ |∇ϕ|2 − (λ+µ) |divϕ|2) dxdt(3.13)

+

∫
Q

(µ |∇ϕ|2 + (λ+µ) |divϕ|2) dxdt = 1

2

∫
Σ

(µ |∇ϕ|2 + (λ+µ) |divϕ|2)(x−x0) · ν dσdt

and

(ϕ′ , ϕ)0,Ω
∣∣∣T
t=0

=

∫
Q

(|ϕ′|2 − µ |∇ϕ|2 − (λ+µ) |divϕ|2) dxdt.(3.14)

Now, a rotated direction q = A(x−x0), A = −At (skew-symmetric) in (3.11) and
(3.12) gives the following new identities:

(
ϕ′ , ∇ϕA(x−x0)

)
0,Ω

∣∣∣T
t=0
− (λ+µ)

∫
Q

divϕ∇ϕ : Adxdt(3.15)

=
1

2

∫
Σ

(µ |∇ϕ|2 + (λ+µ) |divϕ|2)A(x−x0) · ν dσdt,

(ϕ′ , Aϕ)0,Ω
∣∣∣T
t=0

= (λ+µ)

∫
Q

divϕ∇ϕ : A dxdt.(3.16)

Remark 4. For N = 2 or N = 3, the tensorial product ∇ϕ : A in (3.15) and
(3.16) can be written in terms of the curl and curl operators, respectively. Indeed,
let eij = ei ⊗ ej = ej e

t
i, where {ei}Ni=1 is the canonical basis in R

N . If N = 2 and
A = α(e21 − e12), where α ∈ R, then

∇ϕ : A = α

(
∂ϕ2

∂x1
− ∂ϕ1

∂x2

)
= α curlϕ.

InN = 3 and A = α1(e32−e23)+α2(e13−e31)+α3(e21−e12) where α = (α1, α2, α3) ∈
R

3, then

∇ϕ : A = α1

(
∂ϕ3

∂x2
− ∂ϕ2

∂x3

)
+ α2

(
∂ϕ1

∂x3
− ∂ϕ3

∂x1

)
+ α3

(
∂ϕ2

∂x1
− ∂ϕ1

∂x2

)
= α · curlϕ.

One can compare with the analogous properties of Corollary 4.12 in section 4.

3.4. Inverse inequality and exact controllability. Given the same notations
as in section 2, if we introduce the subset Γ(x0, d, A) of Γ as in (2.5) and the quantities
r(x0, d, A) and R(x0) as in (2.7), we obtain the following observability inequality and
exact controllability result.

Theorem 3.3 (inverse inequality). Given x0 ∈ R
N , d > 0, and a skew-symmetric

matrix A normalized as in (2.6), if λ2
0 = inf{‖∇ϕ‖20,Ω / ‖ϕ‖20,Ω;ϕ ∈ H1

0 (Ω)
N} and if

we define

T (x0, d, A) =
2√
µ

(
R(x0) +

‖A‖2
λ0

)
,(3.17)
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then for each T > d−1T (x0, d, A) and for each weak solution ϕ of (3.3) the following
inequality holds:

E0 ≤ r(x0, d, A)

2(dT − T (x0, d, A))

∫ T

0

∫
Γ(x0,d,A)

(µ |∇ϕ|2 + (λ+µ) |divϕ|2) dσdt,(3.18)

where the initial energy E0 was defined in (3.4).
Theorem 3.4 (exact controllability). Suppose that there exist x0 ∈ R

N , d > 0,
and a skew-symmetric matrix A normalized as in (2.6) such that Γ(x0, d, A) is not
empty and Γ(x0, d, A) ⊂ Γ0, then for each T > d−1T (x0, d, A) there exists a control
v ∈ L2(Σ0)

N such that the corresponding solution of (3.1) satisfies the final time
condition (3.2).
Proof. Adding up the classical formulas (3.13) multiplied by b with (3.14) multi-

plied by d(N − 1)/2 let us to obtain
(
ϕ′ , ∇ϕ(x−x0) +

d(N − 1)
2

ϕ

)
0,Ω

∣∣∣∣∣
T

t=0

+
d

2

∫
Q

(|ϕ′|2 − µ |∇ϕ|2 − (λ+µ) |divϕ|2) dxdt

+ d

∫
Q

(µ |∇ϕ|2 + (λ+µ) |divϕ|2) dxdt = d

2

∫
Σ

(µ |∇ϕ|2 + (λ+µ) |divϕ|2)(x−x0) · ν dσdt.

Now, the new formula (3.16) replaced into the new identity (3.15) gives

(
ϕ′ , ∇ϕA(x−x0)−Aϕ

)
0,Ω

∣∣∣T
t=0

=
1

2

∫
Σ

(µ |∇ϕ|2 + (λ+µ) |divϕ|2)A(x−x0) · ν dσdt.

By subtracting the last two identities we establish that

(X1(t) +X2(t))|Tt=0 + dTE0

=
1

2

∫
Σ

(µ |∇ϕ|2 + (λ+µ) |divϕ|2)(x− x0) · (dI +A)ν dσdt,(3.19)

where we have defined the quantities

X1(t) = (ϕ′ , Aϕ)0,Ω and X2(t) =

(
ϕ′ , ∇ϕ(dI −A)(x−x0) + d

N − 1
2

ϕ

)
0,Ω

.

We will prove the inverse inequality (3.18). On one hand, we deduce, from the Cauchy–
Schwarz inequality, the inequality ab ≤ a2/(4ε) + εb2 with ε = λ0

√
µ/(2 ‖A‖2) and

from the definition of λ0 and E0 that∣∣∣X1(t)|Tt=0

∣∣∣ ≤ 2 ‖A‖2
2λ0
√
µ
‖ϕ′‖20,Ω + 2

λ0
√
µ

2 ‖A‖2
‖A‖22

1

λ2
0

‖∇ϕ‖20,Ω ≤ 2
‖A‖2
λ0
√
µ
E0.(3.20)

Note that if ‖A‖2 = 0 then X1 = 0. On the other hand, using the Cauchy–Schwarz
inequality and the same inequality as before with ε =

√
µ/(2R(x0)) we obtain

|X2(t)| ≤ R(x0)

2
√
µ
‖ϕ′‖20,Ω +

µ

2R(x0)
√
µ

(∥∥∇ϕ(dI −A)(x−x0)
∥∥2

0,Ω
(3.21)

+ d2 (N − 1)2
4

‖ϕ‖20,Ω + d(N − 1) (∇ϕ(dI −A)(x−x0) , ϕ
)
0,Ω

)
,
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where R(x0) = maxx∈Ω

∣∣x− x0
∣∣ > 0 was introduced in (2.7). We note that

(∇ϕ(dI −A)(x−x0) , ϕ
)
0,Ω

= −Nd

2
‖ϕ‖20,Ω ,

hence the last two terms in (3.21) have a negative sum −d2(N2 − 1) ‖ϕ‖20,Ω /4. One
also remarks that∥∥∇ϕ(dI −A)(x−x0)

∥∥2

0,Ω
≤ (d2 + ‖A‖22)R(x0)2 ‖∇ϕ‖20,Ω ≤ R(x0)2 ‖∇ϕ‖20,Ω ,

since it has been assumed that d2 + ‖A‖22 = 1. Finally we obtain

∣∣∣X2(t)|Tt=0

∣∣∣ ≤ 2R(x0)

2
√
µ
‖ϕ′‖20,Ω + 2

1

2R(x0)
√
µ
R(x0)2µ ‖∇ϕ‖20,Ω ≤ 2

R(x0)√
µ

E0.(3.22)

The inequality (3.18) follows from (3.19), (3.20), (3.22), and definitions (2.5) and
(2.7).

Theorem 3.4 follows immediately from Theorem 3.3 applying the HUM method
(see [24, Chapter IV]).

4. Stokes system.

4.1. Control problem. Let Ω be an open bounded subset of R
N (N = 2 or 3)

with boundary Γ of class C2. Let ν be the unit exterior normal to Ω. If N = 2 we
refer to the tangent vector on Γ as τ = (−ν2, ν1).

Definition 4.1. For a vector field z defined on the boundary Γ, we introduce the
operators γn and γτ defined by

γnz = z · ν,(4.1)

γτz =

{
z · τ if N = 2,
ν × z if N = 3.

(4.2)

Remark 5. It should be noticed that on Γ

z = γn(z)ν + γτ (z)τ if N = 2,(4.3a)

z = γn(z)ν + γτ (z)× ν if N = 3.(4.3b)

Therefore, γn corresponds to the normal trace for N = 2 and N = 3 and γτ corre-
sponds to the tangential trace for N = 2. In case N = 3, γτ × ν corresponds to the
tangential components.

Now, let us introduce the following classical functional spaces (see [43]) with their
usual topologies:

H = {v ∈ L2(Ω)N | divv = 0 , γnv = 0 on Γ}, V = {v ∈ H1
0 (Ω)

N | divv = 0}
in the standard embedding scheme V ′ ⊂ H ′ ≡ H ⊂ V .

The following control problem is considered. Let T > 0 and let Γ0 be a subset of
Γ with positive measure. Given y0 ∈ H and f ∈ L2(0, T ;V ′), for each control v scalar
field if N = 2 or v vector field in R

3 if N = 3, we consider (formally at the moment)
the solution (y, p) of the following evolution Stokes problem:

y′ −∆y +∇p = f in Ω× (0, T ),(4.4a)
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divy = 0 in Ω× (0, T ),(4.4b)

γny = 0 on Γ0 × (0, T ),(4.4c)

γτy =

{
v if N = 2
v if N = 3

on Γ0 × (0, T ),(4.4d)

y = 0 on (Γ \ Γ0)× (0, T ),(4.4e)

y(0) = y0 in Ω.(4.4f)

Here y is the vector velocity field in R
N and p is the pressure, defined up to an additive

constant. The symbol ′ (prime) means derivation with respect to time and we use
the usual notation (∆y)i = ∂2yi/∂xj∂xj here (where repeated index means sum). In
case N = 3, the control v must satisfy the following compatibility condition:

γnv = 0 on Γ0 if N = 3.(4.5)

Our main goal is to find geometric conditions over Γ0 in such a way that the space
{y(T )} is dense in a suitable space when the control function v or v varies in a space
also to be determined. In other words, we seek for conditions to have the tangential
boundary approximate controllability.

Without loss of generality, for the approximate control problem, the initial datum
y0 and f may be taken to be zero.

4.2. Tangential boundary approximate controllability. In Theorem 4.3 we
obtain approximate controllability by using a rotated direction multiplier technique,
with a geometric condition similar to that required in sections 2 and 3. In Theorem 4.4
we state the result for analytic boundaries and, in this particular case, the geometric
condition of Theorem 4.3 is not necessary.

In order to describe the condition appearing in Theorem 4.3, we set down an
analogous to Definition 2.1 in two and three dimensions including the case d = 0 and
other signs of the inner product appearing in the main condition.

Definition 4.2. Let x0 be a vector in R
N , d ≥ 0, and α ∈ R when N = 2 or

α ∈ R
3 when N = 3. We define the following subset of Γ:

Γ+(x0, d, α) =

{ {x ∈ Γ such that (x− x0) · (dν + ατ) > 0} if N = 2,
{x ∈ Γ such that (x− x0) · (dν + α× ν) > 0} if N = 3,

(4.6)

and analogously we define Γ−(x0, d, α) and Γ0(x0, d, α) if the sign of the inner product
in (4.6) is negative or zero, respectively.

In order to shorten notations let us define

Σ0 = Γ0 × (0, T ).
Theorem 4.3 (approximate controllability). We suppose that there exist x0 ∈

R
N , d ≥ 0, and α ∈ R when N = 2 or α ∈ R

3 when N = 3 such that Γ0 satisfies the
conditions

Γ0 ⊇ Γ+(x0, d, α) if d > 0,(4.7a)

Γ0 ⊇ Γ+(x0, 0, α) ∪ Γ0(x0, 0, α) if d = 0.(4.7b)

For each T > 0 and for each v ∈ L2(Σ0) when N = 2 or v ∈ L2(Σ0)
3 satisfying

(4.5) when N = 3, let us consider a solution (y,yT ) of (4.4) in the weak sense of
Definition 4.6. Then for all T > 0 the following sets are dense in V ′:

{yT such that v ∈ L2(Σ0)} if N = 2,
{yT such that v ∈ L2(Σ0)

3 satisfying (4.5)} if N = 3.
(4.8)
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τ ντ

Fig. 4.1. Example for Remark 7 in a half circle. Left: Take Γ0 = Γ+(x0, 0, 1) (bold line).
Γ0 can be extended to the whole diameter Γ0 = Γ+(x0, 0, 1) ∪ Γ−(x0, 0, 1). Center: For a new
x̃0, Γ0 can be extended to the whole boundary Γ0 = Γ+(x̃0, 0, 1) ∪ Γ−(x̃0, 0, 1). Right: Another

choice of parameters e.g., x0, d = 1, α = 0 leads to apply Theorem 4.3 to conclude the approximate
controllability.

Remark 6. With a boundary control in L2(Σ0), we will give a sense to y(T ) only in
V ′. More precisely, if (y,yT ) is a weak solution of (4.4) in the sense of Definition 4.6,
we will show that y ∈ C0([0, T ];V ′).
Remark 7. If Γ0 verifies Γ0 ⊇ Γ+(x0, 0, α) for a choice of the parameters x0,

d = 0 and α, but the condition (4.7b) is not fulfilled, then it is showed that Γ0 can
be replaced by Γ0 ∪ Γ−(x0, 0, α) and Theorem 4.3 can be applied again with a new
choice x0, d, α of the parameters (see the example provided by Figure 4.1).

The following result shows that condition (4.7) of Theorem 4.3 is not necessary
for analytic boundaries if N = 2.

Theorem 4.4 (approximate controllability for analytic boundaries). Assume
that N = 2 and Ω connected. Let {Γi}Ki=1 be the connected components of Γ and
define Γi0 = Γ0 ∩ Γi. If for each i = 1, . . . ,K we have Γi0 = Γi or Γi analytic and Γi0
an arbitrary nonempty open subset of Γi, then for each T > 0 the sets (4.8) are dense
in V ′.
Remark 8. Condition (4.7) is not necessary in a generic sense: For all N and for

a regular boundary Γ, if Γ0 is an arbitrary nonempty subset of Γ, we could always
slightly modify Γ0 in order to have the result of Theorem 4.3 (see [36]).
Remark 9. There is no counterexample in order to decide if condition (4.7) is too

restrictive, for instance, in the case of nonanalytic boundaries for N = 2.

4.3. A trace property. Here, we recall the definitions

(∇z)ij = ∂zi
∂xj

and curl z =
∂z2
∂x1
− ∂z1
∂x2

if N = 2,(4.9a)

curl z =

(
∂z3
∂x2
− ∂z2
∂x3

,
∂z1
∂x3
− ∂z3
∂x1

,
∂z2
∂x1
− ∂z1
∂x2

)
if N = 3.(4.9b)

Proposition 4.5. Let z ∈ H2(Ω)N with z = c on Γ0, where c is a constant
vector of R

N and Γ0 is a subset of Γ of positive measure. Then, on Γ0, we have

γn((∇z)ν) = div z,(4.10a)

γτ ((∇z)ν) =
{
curl z if N = 2,
curl z if N = 3.

(4.10b)

Proof. We will prove the result for z ∈ C1(Ω). The condition z = c on Γ0 allows
us to use Proposition 3.1, that is to say, that the derivative and normal indexes can
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be permuted on Γ0. Thanks to this property we easily see that

(∇z)ν · ν = ∂zi
∂xj

νjνi =
∂zi
∂xi

νjνj = div z.

We recall the condensed formulas:

curl z = εij
∂zj
∂xi

if N = 2 and (curl z)i = εijk
∂zk
∂xj

if N = 3,

where εij and εijk are the signs of index permutations, i.e., if ei is the ith canonical
base vector of R

N , we have εij = det(ei ej) and εijk = det(ei ej ek). In case N = 2,
if we remember that τi = −εikνk and εik = −εki, then

(∇z)ν · τ = − ∂zi
∂xj

νjεikνk = εki
∂zi
∂xk

νjνj = curl z.

For N = 3, if we use the fact that (a× b)i = εijkaj bk, we obtain

(ν × (∇z)ν)i = εijkνj
∂zk
∂xl

νl = εijk
∂zk
∂xj

νlνl = (curl z)i.

The general case z ∈ H2(Ω) can be deduced by a density argument from the regular
case.

4.4. Weak formulation of the nonsmooth data problem (4.4). Without
loss of generality, we consider the case f = 0 and y0 = 0. We can always do this by
choosing new variables y − y and p− p where (y, p) is the solution of (4.4) for v = 0
(or v = 0). We recall that [43, Theorem 1.1, p. 254],

y ∈ L2(0, T ;V ) ∩ C([0, T ];H), y′ ∈ L2(0, T ;V ′),

p = P
′
with P ∈ C([0, T ];L2(Ω)).

Definition 4.6. For each v ∈ L2(Σ0) if N = 2 or v ∈ L2(Σ0)
3 verifying (4.5)

if N = 3, we say that (y,yT ) is a weak solution to Problem (4.4) if y ∈ L2(0, T ;H),
yT ∈ V ′, and

∫
Q

y · h dxdt+ 〈yT , zT 〉V ′,V =



− ∫

Σ0
v curl z dσdt if N = 2,

− ∫
Σ0
v · curl z dσdt if N = 3

(4.11)

for each h ∈ L2(0, T ;H) and zT ∈ V , where z is the solution of

−z′ −∆z+∇q = h in Ω× (0, T ),(4.12a)

div z = 0 in Ω× (0, T ),(4.12b)

z = 0 on Γ× (0, T ),(4.12c)

z(T ) = zT on Ω.(4.12d)

We know [43, Proposition 1.2, p. 267], that problem (4.12) has a unique solution

z ∈ L2(0, T ;H2(Ω)N ∩ V ) and q ∈ L2(0, T ;H1(Ω)/R),
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with continuous dependence with respect to the data. From (4.12a) we also see that
z′ ∈ L2(0, T ;H) hence z ∈ C([0, T ];V ) (see [43, Chapter 1, Proposition 2.1] or [26,
Chapter 3, Lemma 1.1]), and then (4.12d) is meaningful.

Lemma 4.7. For each v ∈ L2(Σ0) when N = 2 or v ∈ L2(Σ0)
3 verifying (4.5)

when N = 3, there exists a unique solution (y,yT ) of (4.11)− (4.12) in L2(0, T ;H)×
V ′. Moreover, y ∈ C([0, T ];V ′) and y(T ) = yT in V ′.
Proof. The hardest part is to show that y ∈ C([0, T ];V ′). Let A be the Stokes

operator and let D(A) be its domain,
D(A) = {v ∈ V such that Av ∈ H} = H2(Ω)N ∩ V.

If h ∈ L2(0, T ;D(A)) and zT = 0, it can be shown that the solution of (4.12)
satisfies z′ ∈ L2(0, T ;D(A)) with a continuous dependence. Note that for each
h ∈ D((0, T );D(A)) we have in the sense of distributions

〈y′,h〉 = −〈y,h′〉 = −
∫
Q

y · h′ dxdt,

and then using problem (4.11)–(4.12) with zT = 0, it follows that

|〈y′,h〉| =
∣∣∣∣
∫
Q

y · h′ dxdt
∣∣∣∣ ≤ ‖v‖L2(Σ0)

‖curl z′‖L2(Σ0)
≤ C ‖h‖L2(0,T ;D(A)) ,

and then by density y′ ∈ L2(0, T ;D(A)′). Since y ∈ L2(0, T ;H) we have y ∈
C([0, T ];X) (see [26]) with

X = [H,D(A)′] 1
2
= [D(A), H]′1

2
= V ′,

where [X1, X2] 1
2
denotes the interpolated space between X1 and X2 (see [26, Chapter

1, Proposition 2.1]). Once we know that y ∈ C([0, T ];V ′) a density argument can
be used to prove y(T ) = yT . Indeed, by taking z ∈ D((0, T );V), where V = {φ ∈
D(Ω) | divφ = 0 in Ω} in (4.11)–(4.12) we obtain the weak solution y satisfying
(4.4a) in the sense of distributions. Then taking a test function z ∈ L2(0, T ;V) in
this equation and observing that the Green formula∫ T

0

〈y′, z〉D(A)′,D(A) dt = −
∫ T

0

〈y, z′〉H dt+ 〈y(T ),yT 〉V ′,V

is valid, after comparing with (4.11) we obtain that

〈y(T )− yT , zT 〉V ′,V = 0 ∀ zT ∈ V,
that is, for all zT ∈ V and this implies that y(T ) = yT in V ′.

Lemma 4.8. If v (or v) is a regular function, then problem (4.4) is equivalent to
problems (4.11)–(4.12).
Proof. If we multiply (4.4) by the solution of (4.12) and if we integrate by parts,

we obtain ∫
Q

y · h dxdt+
∫

Ω

y(T ) · zT dx = −
∫

Σ0

(∇z)ν · y dσdt.

But we know that z satisfies (4.12c), thus it is constant on Γ0. By using Proposi-
tion 4.5, conditions (4.12b), (4.4c), and (4.4d), we infer that on Σ0

(∇z)ν · y =
{
γn((∇z)ν)γny + γτ ((∇z)ν)γτy = v curl z if N = 2,
γn((∇z)ν)γny + γτ ((∇z)ν) · γτy = v · curl z if N = 3.
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Conversely, in the previous lemma we have proved that the solution of Problems (4.11)–
(4.12) satisfies (4.4) except for (4.4d). But this can be easily shown in the regular
case by comparison.

4.5. Spectral decomposition. We want to prove that, under the hypothesis
of Theorem 4.3 or Theorem 4.4, the set {yT } of solutions to problems (4.11)–(4.12)
is dense in V ′ as v (or v) varies in the control set. Given zT ∈ V , we suppose that
for each v ∈ L2(Σ0) if N = 2 or v ∈ L2(Σ0)

3 verifying (4.5) if N = 3, we have

〈yT , zT 〉V ′,V = 0.

We will show that zT = 0. We take h = 0 in Problem (4.11)–(4.12); therefore we have

{ ∫
Σ0
v curl z dσdt = 0 if N = 2,∫

Σ0
v · curl z dσdt = 0 if N = 3

for each v ∈ L2(Σ0) when N = 2 or v ∈ L2(Σ0)
3 verifying (4.5) when N = 3. Thus

we have curl z = 0 on Σ0 when N = 2. In case N = 3, Proposition 4.5 implies that
curl z · ν = 0 on Σ0 and then we also have curl z = 0 on Σ0.

After reversing time and changing notations by z0 = zT , we see that in order to
prove Theorem 4.3 or Theorem 4.4 we need to show the following unique continuation
property: Let (z, q) be a solution of

z′ −∆z+∇q = 0 in Ω× (0, T ),(4.13a)

div z = 0 in Ω× (0, T ),(4.13b)

z = 0 on Γ× (0, T ),(4.13c)

z(0) = z0 in Ω(4.13d)

under the condition {
curl z = 0 if N = 2
curl z = 0 if N = 3

on Σ0;(4.14a)

then necessarily

z = 0 and q = constant (ct) in Ω× (0, T ).

In order to study this property, we use an spectral decomposition method as in
[27]. In this way, we first extend the solutions of (4.13) analytically for t > 0 and we
introduce the spectrum of the Stokes operator ordered as

0 < λ1 < λ2 < · · · → ∞.

For each eigenvalue λi, i ≥ 1, with multiplicity li, the associated eigenfunctions are
designated by (ϕji , π

j
i ), j = 1, . . . , li, and they form an orthonormal basis. Thus we

have

−∆ϕji +∇πji = λiϕ
j
i in Ω,(4.15a)

divϕji = 0 in Ω,(4.15b)

ϕji = 0 on Γ.(4.15c)
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If we decompose z0 =
∑
i≥1

∑
j=1,...,li

ajiϕ
j
i , the solution of (4.13) can be written as

follows: for every t > 0:

z =
∑
i≥1

li∑
j=1

aji exp (−λit)ϕji .

Then, from condition (4.14), we have on Γ0 for each t > 0

curl z = 0 =
∑
i≥1

li∑
j=1

aji exp (−λit)curlϕji .

Finally, instead of condition (4.14), from the strictly increasing ordering of the eigen-
values, we have the following condition for every i ≥ 1:

li∑
j=1

aji curlϕ
j
i = 0 on Σ0.

If now, for a fixed i ≥ 1, we define

ϕ =

li∑
j=1

ajiϕ
j
i and ∇π =

li∑
j=1

aji∇πji ,

we deduce that, for proving Theorem 4.3 or Theorem 4.4, we only have to show that
the following unique continuation property on each frequency holds.

Lemma 4.9. Under the hypothesis of Theorem 4.3 or Theorem 4.4, if (ϕ, π, λ) is
the solution of

−∆ϕ+∇π = λϕ in Ω,(4.16a)

divϕ = 0 in Ω,(4.16b)

ϕ = 0 on Γ,(4.16c)

with the additional condition that{
curlϕ = 0 if N = 2
curlϕ = 0 if N = 3

on Γ0,(4.17)

then

ϕ = 0 and π = ct in Ω.(4.18)

4.6. Proof of Lemma 4.9 under the hypothesis of Theorem 4.4. We take
ϕ = curlw. Then −∆2w = λ∆w in Ω, w = 0 on Γ1, w constant on Γi, i = 2, . . . ,K,
and ∂w

∂ν = 0 on Γ = Γ1 ∪ · · · ∪ ΓK . From (4.16a) we also see that on Γ

∂π

∂ν
=

∂(∆w + λw)

∂τ
and

∂π

∂τ
= −∂(∆w + λw)

∂ν
.(4.19)

Thanks to the assumed hypothesis we have ∆w = 0 on Γ; then (4.19) implies that
∂π
∂ν = 0 on Γ. Since ∆π = 0 in Ω then π = ct in Ω. Using again (4.19) we obtain that
∂∆w
∂ν = 0 on Γ and then

w =
∂w

∂ν
= ∆w =

∂∆w

∂ν
= 0 on Γ1,

and this implies that w = 0, then ϕ = 0 by Holmgren’s uniqueness property. This
concludes the proof of Theorem 4.4.
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4.7. Proof of Lemma 4.9 under the hypothesis of Theorem 4.3.

4.7.1. Step 1. Two multiplier formulas. In order to prove Lemma 4.9 under
the hypothesis of Theorem 4.3, we have to introduce two new multiplier identities for
the eigenvalue problem (4.16). We state the results in a more general manner than is
required in this paper, since the results have an independent interest. We recall the
notation e : f = eijfij for e, f tensorial fields.

Lemma 4.10. Let (ϕ, π) and (φ, ρ) be solutions to the eigenvalue problem (4.16)
for the same λ. Then for all m ∈W 1,∞(Ω)N we have the following two formulas:∫

Γ

(∇ϕ)ν · (∇φ)ν (m · ν) dσ = λ

∫
Ω

ϕ · φ divmdx−
∫

Ω

∇ϕ : ∇φ divmdx(4.20)

+

∫
Ω

∇ϕ : ∇φ(∇m+∇mt) dx−
∫

Ω

π∇φ : ∇mt dx−
∫

Ω

ρ∇ϕ : ∇mt dx,

∫
Ω

∇π · (∇m)tφdx+
∫

Ω

∇ρ · (∇m)tϕdx = λ

∫
Ω

ϕ · (∇m+∇mt)φdx(4.21)

−
∫

Ω

∇ϕ : (∇m+∇mt)∇φdx+
∫

Ω

∇ϕ : (∇φt∇m+∇m∇φt) dx.

Proof. Briefly, we deduce the identities by using the multipliers (∇φ)m and
(∇ϕ)m in (4.16) in order to obtain (4.20) and the multipliers (∇m)tφ and (∇m)tϕ
again in (4.16) to deduce (4.21). We now give the details. We multiply the pressure
term in (4.16a) by (∇φ)m and we integrate the result by parts in Ω to obtain∫

Ω

∇π · (∇φ)mdx =

∫
Ω

∂π

∂xi

∂φi
∂xj

mj dx(4.22)

= −
∫

Ω

π
∂2φi
∂xi∂xj

mj dx−
∫

Ω

π
∂φi
∂xj

∂mj

∂xi
dx+

∫
Γ

π
∂φi
∂xj

mj νi dσ

= −
∫

Ω

π∇φ : ∇mt dx+

∫
Γ

πν · (∇φ)mdσ = −
∫

Ω

π∇φ : ∇mt dx,

since divφ = 0 and thanks to index change property (3.1)

(∇φ)m =
∂φi
∂xj

mj =
∂φi
∂xj

νk νkmj =
∂φi
∂xk

νj νkmj = (∇φ)ν (m · ν)(4.23)

and then from Proposition 4.5

(∇φ)m · ν = (∇φ)ν · ν (m · ν) = divφ (m · ν) = 0.

Now, if we multiply the diffusion term in (4.16a) by (∇φ)m we have

∫
Ω

∆ϕ · (∇φ)mdx =

∫
Ω

∂2ϕi
∂xj∂xj

∂φi
∂xk

mk dx(4.24)

= −
∫

Ω

∂ϕi
∂xj

∂2φi
∂xk∂xj

mk dx−
∫

Ω

∂ϕi
∂xj

∂φi
∂xk

∂mk

∂xj
dx+

∫
Γ

∂ϕi
∂xj

∂φi
∂xk

mk νj dσ

= −
∫

Ω

∇ϕ : (m · ∇)∇φdx−
∫

Ω

∇ϕ : ∇φ∇mdx+

∫
Γ

(∇ϕ)ν · (∇φ)mdσ,
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with the notation (m · ∇)∇φ ≡ mk
∂
∂xk
∇φ. To sum up, (4.16a) multiplied by (∇φ)m

gives ∫
Ω

∇ϕ : (m · ∇)∇φdx+
∫

Ω

∇ϕ : ∇φ∇mdx(4.25)

−
∫

Γ

(∇ϕ)ν · (∇φ)ν (m · ν) dσ −
∫

Ω

π∇φ : ∇mt dx = λ

∫
Ω

ϕ · (∇φ)mdx.

If we add the identity (4.25) to the same one obtained by interchanging the roles of
ϕ and φ we obtain the identity (4.20). We have only to remark that

∇φ : ∇ϕ∇m = ∇ϕ : ∇φ∇mt

to observe that∫
Ω

ϕ · (∇φ)mdx+

∫
Ω

(∇ϕ)m · φdx = −
∫

Ω

ϕ · φ divmdx,∫
Ω

∇ϕ : (m · ∇)∇φdx+
∫

Ω

(m · ∇)∇ϕ : ∇φdx

= −
∫

Ω

∇ϕ : ∇φ divmdx+

∫
Γ

∇ϕ : ∇φ (m · ν) dσ

and to transform the last boundary integral by proving the following relation on Γ

∇ϕ : ∇φ = ∂ϕi
∂xj

∂φi
∂xj

=
∂ϕi
∂xj

νk νk
∂φi
∂xj

=
∂ϕi
∂xk

νj νk
∂φi
∂xj

= (∇ϕ)ν · (∇φ)ν,

valid thanks to the Proposition 3.1.
To prove (4.21), we notice that if we multiply the diffusion term in (4.16a) by

(∇m)tφ and if we integrate by parts, then we obtain∫
Ω

∆ϕ · (∇m)tφdx =
∫

Ω

∂2ϕi
∂xk∂xk

∂mj

∂xi
φj dx(4.26)

= −
∫

Ω

∂ϕi
∂xk

∂2mj

∂xk∂xi
φj dx−

∫
Ω

∂ϕi
∂xk

∂mj

∂xi

∂φj
∂xk

dx

=

∫
Ω

∂2ϕi
∂xk∂xi

∂mj

∂xk
φj dx+

∫
Ω

∂ϕi
∂xk

∂mj

∂xk

∂φj
∂xi

dx−
∫

Ω

∂ϕi
∂xk

∂mj

∂xi

∂φj
∂xk

dx

=

∫
Ω

∇ϕ : ∇φt∇mdx−
∫

Ω

∇ϕ : ∇mt∇φdx.

Therefore, the multiplier (∇m)tφ in (4.16) gives

−
∫

Ω

∇ϕ : ∇φt∇mdx+

∫
Ω

∇ϕ : ∇mt∇φdx

+

∫
Ω

∇π · (∇m)tφdx = λ

∫
Ω

ϕ · (∇m)tφdx.(4.27)

By interchanging the roles of ϕ and φ we obtain an analogous formula to (4.27). If we
add up these two formulas, by using that (note the easy rules F : GH = H : GtF =
G : FHt and that F : G = F t : Gt)

∇ϕ : ∇φt∇m = ∇φ : ∇m∇ϕt,
∇φ : ∇mt∇ϕ = ∇ϕ : ∇m∇φ,

we obtain the identity (4.21).
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4.7.2. Step 2. A particular case in the formulas. A particular case of
formulas (4.20) and (4.21) in which we are interested is the choice m = B(x − x0),
where B is a constant matrix in R

N×N and x0 is a constant vector in R
N .

Corollary 4.11. Let (ϕ, π) and (φ, ρ) be solutions to the eigenvalue problem
(4.16) for the same λ. For each matrix B ∈ R

N×N and for each x0 ∈ R
N we have∫

Γ

(∇ϕ)ν · (∇φ)ν ((x− x0) ·Bν) dσ =
∫

Ω

∇ϕ : ∇φ(B +Bt) dx(4.28)

+ λ

∫
Ω

ϕ · (B +Bt)φdx−
∫

Ω

∇ϕ : (B +Bt)∇φdx,

∫
Ω

π∇φ : B dx+

∫
Ω

ρ∇ϕ : B dx(4.29)

= −λ
∫

Ω

ϕ · (B +Bt)φdx+

∫
Ω

∇ϕ : (B +Bt)∇φdx.

Proof. We take m = B(x− x0) in (4.21). Since ∇m = B and∫
Ω

∇ϕ : ∇φtB dx =

∫
Ω

∂ϕi
∂xj

∂φk
∂xi

bkj dx = −
∫

Ω

∂ϕi
∂xj

φk
∂bkj
∂xi

dx = 0,∫
Ω

∇ϕ : B∇φt dx =
∫

Ω

∂ϕi
∂xj

bik
∂φj
∂xk

dx = −
∫

Ω

ϕi
∂bik
∂xj

∂φj
∂xk

dx = 0,

we directly obtain (4.29), after noticing that∫
Ω

∇π ·Btφdx+

∫
Ω

∇ρ ·Btϕdx = −
∫

Ω

π∇φ : B dx−
∫

Ω

ρ∇ϕ : B dx.(4.30)

On the other hand, if we multiply (4.16a) by φ and if we integrate by parts, we
obtain ∫

Ω

∇ϕ : ∇φdx = λ

∫
Ω

ϕ · φdx.(4.31)

By taking m = Bt(x − x0) in (4.20) and using (4.30) and (4.31) we deduce
(4.28).
Remark 10. There are two cases where formulas (4.28) and (4.29) are simpler.

The case B = Bt (skew-symmetric) and the case B = dI, d ∈ R, I the identity
matrix in R

N×N . The case B = I in (4.28) was also treated in [36] to study the
generic simplicity of the Stokes’ spectrum.

Now, we will restrict ourselves to the two and three dimensional cases. First we
choose B = A where A is a skew-symmetric matrix of the form

A =

(
0 −α
α 0

)
if N = 2 and A =


 0 −α3 α2

α3 0 −α1

−α2 α1 0


 if N = 3,(4.32)

where α ∈ R if N = 2 or α ∈ R
3 if N = 3.

From (4.29), we obtain the following orthogonality property.
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Corollary 4.12. Let (ϕ, π) and (φ, ρ) be solutions to the eigenvalue problem
(4.16) for the same λ. Then

∫
Ω

π curlφdx+

∫
Ω

ρ curlϕdx = 0 if N = 2,(4.33a) ∫
Ω

π curlφdx+

∫
Ω

ρ curlϕdx = 0 if N = 3.(4.33b)

Now, we choose B = dI +A in (4.28) with d ≥ 0, I the identity matrix in R
N×N

and A always a skew-symmetric matrix in the form (4.32). The following result is
obtained.

Corollary 4.13. Let (ϕ, π) and (φ, ρ) solutions of (4.16) for the same λ. Then
for each x0 ∈ R

N , d ≥ 0, and α ∈ R if N = 2 or α ∈ R
3 if N = 3 we have

∫
Γ

curlϕ curlφ (x− x0) · (dν + ατ) dσ = 2d

∫
Ω

∇ϕ : ∇φdx if N = 2,(4.34a)∫
Γ

curlϕ · curlφ (x− x0) · (dν + α× ν) dσ = 2d

∫
Ω

∇ϕ : ∇φdx if N = 3.(4.34b)

4.7.3. Step 3. Splitting the boundary. By taking ϕ = φ in (4.34), we obtain

∫
Γ

|curlϕ|2 (x− x0) · (dν + ατ) dσ = 2d

∫
Ω

|∇ϕ|2 dx if N = 2,(4.35a) ∫
Γ

|curlϕ|2 (x− x0) · (dν + α× ν) dσ = 2d

∫
Ω

|∇ϕ|2 dx if N = 3.(4.35b)

Now, we split Γ as follows:

Γ = Γ+(x0, d, α) ∪ Γ0(x0, d, α) ∪ Γ−(x0, d, α).(4.36)

Since Γ0 satisfies the geometric condition (4.7a) of Theorem 4.3, then

curl z = 0 or curl z = 0 on Γ+(x0, d, α).(4.37)

If we consider decomposition (4.36) and condition (4.37) in identity (4.35), it follows

that d
∫
Ω
|∇ϕ|2 dx ≤ 0 and therefore we directly obtain ϕ = 0 if d > 0.

The case d = 0 is more complicated. Using decomposition (4.36) and condition
(4.37) in (4.35) with d = 0 let us deduce only that

curl z = 0 or curl z = 0 on Γ−(x0, d, α).(4.38)

Nevertheless, thanks to the geometric condition (4.7b) of Theorem 4.3, we obtain
that curl z = 0 or curl z = 0 on the whole Γ. Since Γ ⊇ Γ+(x0, 1, 0) for some x0 we
deduce from the previous case (d > 0) that ϕ = 0 in all Ω. This concludes the proof
of Theorem 4.3.

Remark 11. Condition (4.37) implies (4.38) if d = 0. This justifies Remark 7.
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Lund, 1953, pp. 105–115.

[12] J. U. Kim, Exact semi-internal control of an Euler–Bernoulli equation, SIAM J. Control Op-
tim., 30 (1992), pp. 1001–1023.

[13] J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal.,
23 (1992), pp. 889–899.

[14] K. Kime, Control of matter waves in adjacent potential wells, Math. Methods Appl. Sci., 20
(1997), pp. 369–381.

[15] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM 36, Wiley,
Chichester, Masson, Pairs, 1994.
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Abstract. We study stochastic linear-quadratic (LQ) optimal control problems over an infinite
time horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based
on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we
show this can be effectively examined through the complementary duality of the SDP. Furthermore,
we establish several implication relations among the SDP complementary duality, the (generalized)
Riccati equation, and the optimality of the LQ control problem. Based on these relations, we propose
a numerical procedure that provides a thorough treatment of the LQ control problem via primal-
dual SDP: it identifies a stabilizing feedback control that is optimal or determines that the problem
possesses no optimal solution. For the latter case, we develop an ε-approximation scheme that is
asymptotically optimal.

Key words. stochastic LQ control, semidefinite programming, complementary duality, mean-
square stability, generalized Riccati equation
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1. Introduction. Consider the following stochastic linear-quadratic (LQ) opti-
mal control problem:

(LQ) min J(x0, u(·)) := E

∫ +∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt(1.1)

s.t. (subject to) dx(t) = [Ax(t) +Bu(t)]dt+ [Cx(t) +Du(t)]dW (t)(1.2)

x(0) = x0 ∈ �n.
Here and throughout the paper, A,B,C,D and Q,R are constant matrices, with Q
and R being symmetric matrices; the superscript T denotes the transpose of matrices
and vectors; W (·) is a one-dimensional standard Brownian motion (with t ∈ [0,+∞)
and W (0) = 0), defined on a filtered probability space (Ω,F ,Ft, P ); and u(·) denotes
the (open-loop) control, which belongs to L2

F (�m), the space of all �m-valued, Ft-
adapted measurable processes satisfying

E

∫ +∞

0

‖u(t)‖2dt < +∞.

Note that allowing multidimensional Brownian motion will render no additional diffi-
culty to the results below. Also note that the dynamics in (1.2) involve multiplicative
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noise in both the state and the control. A motivating application is given below in
section 2.1, where the control of a portfolio affects not only the average return of the
portfolio but also its volatility.

Studies on LQ control problems have a long history that can be traced back
to the pioneering works of Kalman [12] and Wonham [22] (also refer to [5, 6, 9]
and the references therein). A primary tool in solving LQ control problems is the
following (stochastic algebraic) Riccati equation, with the symmetric matrix P being
the unknown:

ATP +PA+Q+CTPC− (PB+CTPD)(R+DTPD)−1(BTP +DTPC) = 0.(1.3)

Suppose P ∗ is a solution to the above equation with R + DTP ∗D � 0 (positive
definite). Then, following the classical LQ theory, we know that

u∗(t) = −(R+DTP ∗D)−1(BTP ∗ +DTP ∗C)x∗(t),(1.4)

assuming that it is mean-square stabilizing, is an optimal state feedback control for
(LQ).

The limitation of the classical theory, however, lies in the difficulty involved in
solving the Riccati equation (1.3), in particular since the matrix inverse term also
involves the unknown P . In fact, there is no guarantee for R +DTP ∗D � 0, except
when Q 	 0 (positive semidefinite) and R � 0, in which case P ∗ 	 0 follows as a
solution to (1.3); see [1, Corollary 5.1].

In the deterministic case, R 	 0 is in fact necessary for the LQ problem to
be well-posed (cf. [25, Chapter 6, Proposition 2.4]), whereas the Riccati approach
further requires the nonsingularity of R. The positive definiteness of R has been
a starting point of most of the stochastic LQ literature; see [5, 6, 9, 22] and the
references therein. Recent studies (e.g., [8]) have, however, made a case for studying
LQ problems in which R is singular or even indefinite in the stochastic case, with
relevant applications ranging from portfolio selection to pollution control [8, 13, 26].
In particular, a singular or indefinite R may naturally arise in a class of problems in
which the control affects the diffusion part of the system dynamics (i.e., D 
= 0 in
(1.2)).

A traditional method for solving the Riccati equation (in the case of D = 0) is
to consider the so-called associated Hamiltonian matrix [7]. In this case it is known
that the Riccati equation has a solution if and only if the associated Hamiltonian
matrix admits no pure imaginary eigenvalues, a condition that can be verified using
a Routh–Hurwitz-type test on a set of polynomial inequalities involving the given
matrices. If the associated Hamiltonian matrix passes this test, then the solution
to the Riccati equation can be constructed using the eigenvectors of the associated
Hamiltonian matrix. This procedure, however, does not apply when R is indefinite,
as the matrix inverse in (1.3), and hence the Riccati equation and the associated
Hamiltonian matrix themselves, may not be well defined.

To overcome this difficulty, our idea here is to use semidefinite programming
(SDP) as a unifying approach to solve the stochastic LQ control problem, generally
in the absence of the positive definiteness/semidefiniteness of the cost matrices R and
Q. SDP is a newly developed tool in optimization (see [16, 3]). It relates intimately to
the so-called linear matrix inequalities (LMI) (see [23]). Pioneered by Yakubovich [24]
and Willems [21], a vast literature has since appeared, applying the LMI approach to
both deterministic and stochastic systems; refer to [7] for a systematic exposition and
detailed literature review. However, the definiteness of R has remained a predominant
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assumption in the research literature. In a recent work, [1], the relationship between
the Riccati equation in (1.3) and the associated LMI has been examined under the
assumption that R+DTPD � 0 for some solution P of the Riccati equation (while R
itself is allowed to be indefinite). This assumption, however, is hard to verify a priori
as P is unknown; and even when this assumption is not satisfied, the corresponding
LQ problem may still possess a meaningful optimal control; see Example 6.1 below.

In contrast, our focus here is to develop a direct connection between the LQ
control problem and the duality theory of SDP. In particular, we demonstrate that
to extend beyond the confines of the classical LQ theory (with positive definite cost
matrices) the central issue is stability; and stability is intimately related to the com-
plementary duality of the SDP associated with the LQ problem. We establish several
equivalence relations between the stability/optimality of the LQ problem and the
duality of the SDP, and demonstrate that a new class of optimal controls can be con-
structed based on the dual SDP. Furthermore, exploiting the primal-dual structure
of the SDP also leads to powerful and efficient computational means, based on the
newly developed primal-dual interior-point technologies (refer to, e.g., [18]), to solv-
ing the LQ problem. In short, while the LMI approach is a primal-only method, our
primal-dual SDP approach applies to a more general class of problems, generates new
theoretical results, and leads to practical computational algorithms.

Briefly, the rest of the paper is organized as follows. In section 2, we start with an
application example that motivates the general LQ problem formulated above, intro-
duce several regularity conditions relating to stability, and present the preliminaries
of SDP. The main results of the paper are presented in the next two sections: We
establish first in section 3, the connection between stability and the dual SDP; and
then in section 4, we establish several implication relations among the optimality of
LQ control problem, the complementary duality of the SDP, and a generalized ver-
sion of the Riccati equation (1.3) involving a matrix pseudoinverse. A synthesis of
these results is presented in section 5, along with a computational procedure that
provides a systematic treatment of the LQ control problem via SDP. Several exam-
ples are collected in section 6 to illustrate some of the key technical issues involved
in the SDP approach. For problems that do not possess an attainable optimal con-
trol, an ε-approximation scheme is developed in section 7, which achieves asymptotic
optimality. Brief concluding remarks are summarized in section 8.

2. Preliminaries.

2.1. An application example. To motivate the general LQ problem formu-
lated in the last section, consider a market where there is one bond and one stock,
with price dynamics governed, respectively, by

dP0(t) = rP0(t)dt, P0(0) = p0,

and

dP1(t) = P1(t)
[
bdt+ σdW (t)

]
, P1(0) = p1,

where W (·) denotes the one-dimensional standard Brownian motion. Suppose an
agent, with an initial endowment z0, wants to track a (stochastic) wealth trajectory
(e.g., that of an index fund) I(t) determined by the following equation:

dI(t) = I(t)[bIdt+ σI(t)dW (t)], I(0) = i0.
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At any time t ≥ 0 the total wealth of the agent is denoted by z(t), of which the
market value of the stock is denoted by π(t). If we assume that the stock is traded
continuously, and that there is no transaction cost, dividend payment, and withdrawal
for consumption, then z(t) must satisfy the following (see, e.g., [25, Chapter 2, section
3.2]):

dz(t) = [rz(t) + (b− r)π(t)]dt+ σπ(t)dW (t), z(0) = z0.

The objective of the agent is to choose π(·) so as to minimize the following objective:

J(z(0), π(·)) = E

∫ +∞

0

e−ρt|z(t)− I(t)|2dt,

where ρ is the discount rate.
To transform the above into the formulation in (1.1) and (1.2), define the state

and control variables as follows:

(x(t), y(t)) = e−
1
2ρt(z(t), I(t)), u(t) = e−

1
2ρtπ(t).

Then, the state dynamics become

dx(t) =

[(
r − 1

2
ρ

)
x(t) + (b− r)u(t)

]
dt+ σu(t)dW (t), x(0) = z0,

dy(t) =

(
bI − 1

2
ρ

)
y(t) + σIy(t)dW (t), y(0) = i0,

and the objective function can be rewritten as follows:

J(x(0), y(0), u(·)) = E

∫ +∞

0

|x(t)− y(t)|2dt

= E

∫ +∞

0

[
x(t), y(t)

] [ 1, −1
−1, 1

] [
x(t)
y(t)

]
dt.

This way, we are in the framework of (1.1) and (1.2), with the control cost R ≡ 0,

and the state cost Q =
[

1, −1
−1, 1

]
being singular.

2.2. Regularity conditions.
Definition 2.1.
(i) An open-loop control u(·) is called (mean-square) stabilizing at x0, if the corre-

sponding state x(·) of (1.2) with the initial state x0 satisfies limt→+∞ E[x(t)Tx(t)] =
0.

(ii) A feedback control u(t) = Kx(t), where K is a constant matrix, is called
stabilizing if for every initial state x0, the solution to the equation{

dx(t) = (A+BK)x(t)dt+ (C +DK)x(t)dW (t),
x(0) = x0,

satisfies limt→+∞ E[x(t)Tx(t)] = 0.
(iii) The system in (1.2) is called (mean-square) stabilizable if there exists a sta-

bilizing feedback control of the form u(t) = Kx(t) where K is a constant
matrix.
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Definition 2.2.
(i) An open-loop control u(·) ∈ L2

F (�m) is called admissible (at x0) if it is stabi-
lizing at x0. The set of all admissible controls at x0 is denoted as U

x0

ad .
(ii) An admissible pair (x∗(·), u∗(·)) is called optimal (at x0) if u

∗(·) achieves the
infimum of J(x0, u(·)) over u(·) ∈ Ux0

ad .
(iii) The control problem (LQ) is called well-posed (at x0) if

−∞ < inf
u(·)∈Ux0

ad

J(x0, u(·)) < +∞;

(LQ) is called attainable (at x0) if it is well-posed (at x0) and there exists an
optimal admissible control.

Unless explicitly stated otherwise, we shall assume throughout the paper that
the system under consideration, (1.2), is mean-square stabilizable. Note that this is
a very mild regularity condition; in particular, it is implied by the well-posedness
of (LQ) when Q � 0 and R 	 0. Indeed, the well-posedness of (LQ) yields that
there is at least one control whose cost is finite. As a result, under that control,
limt→+∞ E[x(t)TQx(t)] = 0. Thus the control must be stabilizing due to the nonsin-
gularity of Q.

On the other hand, to appreciate why the admissible controls have to be stabi-
lizing, consider the case when Q � 0 and R 	 0. In order for the cost objective in
(1.1) to be finite it is necessary (as shown above) that the corresponding control must
be stabilizing. In general, a nonstabilizing control is ill behaved and hence should be
excluded.

Attainability of an optimal admissible control is another issue, even when the
problem is well-posed. Consider the following simple (deterministic) LQ problem:

min

∫ ∞

0

x(t)2dt

s.t. dx(t) = [−x(t) + u(t)]dt,
x(0) = 1.

Clearly, this problem has an infimum value zero. However, there is no control that
attains the zero cost. In general, deciding whether or not a problem has an attainable
optimal control is as hard as solving the (LQ) problem, especially for large problems.

2.3. Semidefinite programming. SDP is a special form of the so-called conic
optimization problem, which is in essence to optimize a linear function over the inter-
section of two closed convex sets: one being an affine subspace and the other a cone.
In SDP, the cone is formed by positive semidefinite matrices in the linear space of
symmetric matrices. Similar to linear programming, an SDP problem can be cast in
various ways. In standard form, an SDP is the following convex optimization problem:

(SDP )p min 〈C,X〉
s.t. 〈Ai, X〉 = bi for i = 1, . . . ,m,

X 	 0,

where C and Ai are n× n symmetric matrices, bi ∈ �m is a vector, i = 1, . . . ,m, and
〈X,Y 〉 :=∑i,j XijYij denotes the matrix inner-product.

The above has an associated dual, which is also an SDP problem:

(SDP )d max bT y
s.t.

∑m
i=1 yiAi + Z = C,

Z 	 0.
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A conic optimization problem is said to satisfy the Slater condition if its feasible
region has a nonempty intersection with the interior of the cone. In our standard
primal-dual SDP problems stated above, the Slater condition has the following char-
acterization. For the primal problem (SDP )p, the Slater condition is equivalent to
the existence of a primal feasible solution X0 such that X0 � 0. Similarly, for the
dual problem (SDP )d, the Slater condition is the existence of a dual feasible solution
(y0, Z0) with Z0 � 0.

For conic optimization problems, a well-developed duality theory exists; see e.g., [23,
14, 16]. Key points of the theory can be highlighted as follows:

• The weak duality always holds, i.e., any feasible solution to the primal (min-
imization) problem always possesses an objective value that is no less than
the (dual) objective value of any dual feasible solution (the dual being a
maximization problem).
• In contrast, the strong duality—that the optimal values of the primal and
dual problems coincide—holds if there exists a pair of complementary optimal
solutions X∗ and (y∗, Z∗), namely, they satisfy X∗Z∗ = 0. If, furthermore, it
holds that X∗ + Z∗ � 0, then this pair of optimal solutions is called strictly
complementary.
• Unlike linear programming, SDP may fail to satisfy the strong duality, let
alone strict complementarity. It is known, however, that if the primal problem
is feasible and the dual satisfies the Slater condition, then the primal problem
must have a nonempty and compact optimal solution set. Moreover, if both
the primal and the dual satisfy the Slater condition, then both must have
nonempty and compact optimal solution sets, and the strong duality holds.

In the SDP literature, the Slater type regularity conditions are mostly assumed
in order to avoid pathological cases. In Luo, Sturm, and Zhang [14, 15], extensive
analysis can be found addressing the issue of regularity in the context of duality
theory, and the related issue of how to detect the duality status numerically.

The linkage between the LQ control problem and the SDP is best understood in
the deterministic setting. Consider the deterministic version of (LQ) as follows:

min

∫ ∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt

s.t. ẋ(t) = Ax(t) +Bu(t),

x(0) = x0 ∈ �n.
Assume Q 	 0 and R � 0. Then, the optimal solution to the above problem is

u∗(t) = −R−1BTP ∗x∗(t),

where P ∗ is a nonnegative definite solution to the Riccati equation

Q+ATP + PA− PBR−1BTP = 0.

It turns out that solutions to the Riccati equation can be found through solving
the following SDP:

max 〈I, P 〉
s.t.

[
R, BTP
PB, Q+ATP + PA

]
	 0,

P ∈ Sn×n,
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where Sn×n denotes the space of n by n symmetric matrices. Note that the above is
an SDP problem because the constraint set can be viewed as an intersection between
a linear subspace and the cone of positive semidefinite matrices. The dual problem is

min 〈R,Zb〉+ 〈Q,Zn〉
s.t. I + ZTu B

T +BZu + ZnA
T +AZn = 0,

Z :=

[
Zb, Zu
ZTu , Zn

]
	 0.

It is interesting to note that both the primal and dual SDPs above are well defined
even in the presence of the singularity of R and Q. In particular, there is no matrix
inverse involved. Similarly, the primal and dual SDPs for the stochastic problem in
(LQ) can be written as follows:

(P) max 〈I, P 〉
s.t. L(P ) 	 0,

P ∈ Sn×n,

where

L(P ) :=
[

R+DTPD, BTP +DTPC
PB + CTPD, Q+ CTPC +ATP + PA

]
;(2.1)

and

(D) min 〈R,ZB〉+ 〈Q,ZN 〉
s.t. I + ZTUB

T +BZU + ZNA
T +AZN

+CZNC
T +DZUC

T + CZTUD
T +DZBD

T = 0,

Z :=

[
ZB , ZU
ZTU , ZN

]
	 0.

In the above forms, (P) and (D) are said to satisfy the Slater condition, if there
exist primal and dual feasible solutions, P 0 and Z0, such that L(P 0) � 0 and Z0 � 0,
respectively. On the other hand, a primal optimal solution P ∗ and a dual optimal
solution Z∗ are called complementary optimal solutions if L(P ∗)Z∗ = 0. Furthermore,
they are called strictly complementary if L(P ∗) + Z∗ � 0.

As a least condition in order to apply the SDP approach, we assume throughout
the paper that the feasible set of (P) is nonempty. This assumption is satisfied auto-
matically if the Riccati equation (1.3) has a solution P ∗ with R+DTP ∗D � 0 (which
is the key assumption in [1]) by virtue of the well-known Schur lemma. It is also
satisfied when Q 	 0 and R 	 0. Therefore, without this assumption, the original LQ
problem cannot be solved by either the Riccati or the SDP approach.

3. Stability. Since we require admissible controls to be stabilizing, we need first
to address the issue of stability, which, as it will become evident below, relates closely
to the dual SDP.

The following results from [1, Theorems 2.1, 5.2] will be used later.
Proposition 3.1. The following conditions are equivalent.
(i) System (1.2) is mean-square stabilizable.
(ii) Problem (D) satisfies the Slater condition.
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(iii) There exists a matrix K and a symmetric matrix Y such that

(A+BK)Y + Y (A+BK)T + (C +DK)Y (C +DK)T ≺ 0, Y � 0.(3.1)

In this case the feedback u(t) = Kx(t) is a stabilizing control.
(iv) There exists a matrix K such that for any X there exists a unique solution

Y to the following equation:

(A+BK)Y + Y (A+BK)T + (C +DK)Y (C +DK)T +X = 0.(3.2)

Moreover, if X � 0 (resp., X 	 0) then Y � 0 (resp., Y 	 0). Furthermore, in this
case the feedback u(t) = Kx(t) is a stabilizing control.

(v) There exist a matrix X and a positive definite matrix Y � 0 such that[
AY + Y AT +BX +XTBT CY +DX

Y CT +XTDT −Y
]
≺ 0.(3.3)

In this case, the feedback u(t) = XY −1x(t) is a stabilizing control.
Note that the last equivalent condition above is an LMI condition, based on which

the mean-square stabilizability can be verified numerically (cf. [7, 10]). Moreover, to
check whether or not a given feedback control u(t) = Kx(t) is stabilizing, it suffices
to check if the LMIs in (3.1) have a feasible solution, which again can be carried out
numerically.

Define

F (P ) := ATP+PA+Q+CTPC−(PB+CTPD)(R+DTPD)+(BTP+DTPC).(3.4)

Here, M+ stands for the pseudoinverse of a matrix M (refer to [17]). Note that when
M is a positive semidefinite matrix, M+ satisfies the following properties:

M+ 	 0, (M+)T =M+, M+M =MM+;

MM+M =M, M+MM+ =M+.

Clearly, the equation F (P ) = 0 generalizes the classical Riccati equation (1.3).
Hence, we shall refer to it below as the generalized Riccati equation.

The following extended Schur’s lemma [2] plays an important technical role.
Lemma 3.2. Let matrices M = MT , N and S = ST be given with appropriate

dimensions. Then the following three conditions are equivalent:
(i) M −NS+NT 	 0, S 	 0, and N(I − SS+) = 0.

(ii)
[

M N

NT S

]
	 0.

(iii)
[

S NT

N M

]
	 0.

Theorem 3.3. If a feasible solution of (P), P ∗, is such that F (P ∗) = 0, and the
feedback control

u(t) = −(R+DTP ∗D)+(BTP ∗ +DTP ∗C)x(t)(3.5)

is stabilizing, then there exist complementary optimal solutions of (P) and (D). In par-
ticular, P ∗ is optimal to (P); and there exists a complementary dual optimal solution
Z∗, such that Z∗

N � 0.
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Proof. Denote K := −(R + DTP ∗D)+(BTP ∗ + DTP ∗C). By the stability as-
sumption of the control (3.5) and Proposition 3.1(iv), the equation

(A+BK)Y + Y (A+BK)T + (C +DK)Y (C +DK)T + I = 0

has a positive solution. Let it be Y ∗ � 0. Furthermore, let

Z∗
N = Y ∗, Z∗

U = KZ∗
N , and Z

∗
B = K(Z∗

U )
T .(3.6)

By this construction, we can easily verify that[
Z∗
B , Z∗

U

(Z∗
U )

T , Z∗
N

]
=

[
I, K
0, I

] [
0, 0
0, Z∗

N

] [
I, 0
KT , I

]
	 0.

Moreover, by direct verification, we know

I+(Z∗
U )

TBT+BZ∗
U+Z

∗
NA

T+AZ∗
N+CZNC

T+DZ∗
UC

T+C(Z∗
U )

TDT+DZ∗
BD

T = 0.

Therefore, Z∗ is a feasible solution of (D). Moreover, using extended Schur’s lemma
(Lemma 3.2), we have

L(P ∗)
[

Z∗
B , Z∗

U

(Z∗
U )

T , Z∗
N

]

=

[
I, 0
−KT , I

] [
R+DTP ∗D, 0

0, F (P ∗)

] [
I, −K
0, I

] [
Z∗
B , Z∗

U

(Z∗
U )

T , Z∗
N

]

=

[
I, 0
−KT , I

] [
(R+DTP ∗D)(Z∗

B −K(Z∗
U )

T ), R(Z∗
U −KZ∗

N )
F (P ∗)(Z∗

U )
T , F (P ∗)Z∗

N

]

=

[
0, 0
0, 0

]
,

where in the first equation the decomposition of L(P ∗) into the product of three
matrices (the Schur decomposition) is possible because L(P ∗) 	 0, since P ∗ is a
feasible solution to (P); hence, Lemma 3.2 can be invoked.

Therefore, the above establishes that P ∗ and Z∗ are complementary solutions; in
particular, P ∗ is optimal to (P), and Z∗ is optimal to (D). The last statement of the
theorem follows from the fact that Z∗

N = Y ∗ � 0.
Note that the assumption in the above theorem, that the control in (3.5) is sta-

bilizing, is not automatically satisfied even in the case when R + DTP ∗D � 0; see
Example 6.2. The following result shows, however, that we can possibly obtain a
stabilizing feedback control via the dual SDP.

Theorem 3.4. Let Z =
[
ZB , ZU
ZTU , ZN

]
be a feasible solution of (D) with ZN � 0,

then the feedback control u(t) = ZUZ
−1
N x(t) is stabilizing.

Proof. First of all, by feasibility of Z to (D) along with Schur’s lemma we have

ZB 	 ZUZ−1
N ZTU .

Then,

0 = I + ZTUB
T +BZU + ZNA

T +AZN + CZNC
T +DZUC

T + CZTUD
T +DZBD

T

	 I + ZTUB
T +BZU + ZNA

T +AZN + CZNC
T

+ DZUC
T + CZTUD

T +DZUZ
−1
N ZTUD

T

� ZTUB
T +BZU + ZNA

T +AZN + (CZN +DZU )Z
−1
N (ZNC

T + ZTUD
T ).

Applying Schur’s lemma again, we conclude that Proposition 3.1(v) holds with X =
ZU and Y = ZN � 0. Hence u(t) = ZUZ

−1
N x(t) is stabilizing.
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4. Optimality. Here we establish the relationship among the optimality of the
original LQ problem, the primal/dual SDP problems, and the generalized Riccati
equation.

Theorem 4.1. If (LQ) is attainable at any x0 ∈ �n, then (P) must have an
optimal solution P ∗ satisfying F (P ∗) = 0.

Proof. First, note that since (LQ) has a finite optimal value with respect to any
initial value, it must have a quadratic representation

inf
u(·)∈Ux0

ad

J(x0, u(·)) = xT0Mx0 ∀x0 ∈ �n;

see [4, p. 21]. (Note that the proof there, which is for the deterministic case, readily
extends to the stochastic case.)

Suppose for the time being that the matrix M is a feasible solution of (P), the
validity of which will be proved later. Let u∗(·) be the optimal control and x∗(·) be
the corresponding state from the initial x0. Then for any feasible solution P of (P),
applying Itô’s formula (see, e.g., [25, p. 36]) yields

d(x∗(t)TPx∗(t))

=
[
(Ax∗(t) +Bu∗(t))TPx∗(t) + x∗(t)TP (Ax∗(t) +Bu∗(t))

+(Cx∗(t) +Du∗(t))TP (Cx∗(t) +Du∗(t))
]
dt+ {. . .}dW (t)

=
[
x∗(t)T (ATP + PA+ CTPC)x∗(t)

+2u∗(t)T (BTP +DTPC)x∗(t) + u∗(t)TDTPDu∗(t) ] dt
+{. . .}dW (t).

If we integrate the above over [0,∞), take expectations, and use that E[x∗(t)TPx∗(t)]→
0 (as u∗(·) is stabilizing), we obtain

0 = xT0 Px0 + E

∫ ∞

0

[x∗(t)T (ATP + PA+ CTPC)x∗(t)

+2u∗(t)T (BTP +DTPC)x∗(t)

+u∗(t)TDTPDu∗(t)]dt.

(4.1)

Completion of square yields

J(x0, u
∗(·))

= E

∫ ∞

0

[x∗(t)TQx∗(t) + u∗(t)TRu∗(t)]dt

= xT0 Px0 +

E

∫ ∞

0

{
[u∗(t)−Kx∗(t)]T (R+DTPD)[u∗(t)−Kx∗(t)] + x∗(t)TF (P )x∗(t)

}
dt,(4.2)

where K := −(R + DTPD)+(BTP + DTPC). Since P is feasible to (P), we have
R+DTPD 	 0 and F (P ) 	 0 by extended Schur’s lemma. This means that

xT0Mx0 ≡ J(x0, u
∗(·)) ≥ xT0 Px0(4.3)

for any P feasible to (P). HenceM must be optimal to (P). On the other hand, taking
P =M in (4.2) and noting J(x0, u

∗(·)) = xT0Mx0, we conclude that x(t)
TF (M)x(t) =
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0 for all t ∈ [0,∞). Since x0 can be chosen arbitrarily it follows that F (M) = 0. The
desired result thus follows.

What remains is to show the primal feasibility of M . To this end we consider
a perturbation on the problem (LQ). That is, we keep all the data A, B, C, and D
unchanged, and let Rε = R + εI and Qε = Q + εI where ε > 0 is a small positive
number.

Under the perturbation (ε > 0), the corresponding SDPs,

(Pε) max 〈I, P 〉
s.t.

[
R+ εI +DTPD, BTP +DTPC
PB + CTPD, Q+ εI + CTPC +ATP + PA

]
	 0,

P ∈ Sn×n,
and

(Dε) min 〈R+ εI, ZB〉+ 〈Q+ εI, ZN 〉
s.t. I + ZTUB

T +BZU + ZNA
T +AZN

+CZNC
T +DZUC

T + CZTUD
T +DZBD

T = 0,[
ZB , ZU
ZTU , ZN

]
	 0,

both satisfy the Slater condition (the former does because the feasible set of (P) is
assumed to be nonempty, and the latter because of the mean-square stabilizability
assumption and Proposition 3.1(ii)), and therefore complementary optimal solutions
exist [23]. Observe that the feasible set of (Dε) is independent of ε. Take any dual
feasible solution Z0. By weak duality, we have

tr P = 〈I, P 〉 ≤ 〈R+ εI, Z0
B〉+ 〈Q+ εI, Z0

N 〉.(4.4)

Let P̂ be a feasible solution of (P), which exists by our assumption. Certainly, P̂ is
feasible to (Pε) for all ε ≥ 0. Theorem 5.5 in [1] asserts that for ε > 0, the unique
optimal solution for (Pε), denoted by P ∗

ε , dominates any other feasible solutions.
Hence, P̂ � P ∗

ε for all ε > 0.
This, together with (4.4), implies in particular that P ∗

ε are contained in a compact
set, with 0 ≤ ε ≤ ε0 (ε0 > 0 is a predetermined constant.) Now, take a convergent
subsequence such that

lim
i→∞

P ∗
εi = P ∗

0

with εi → 0 as i→∞.
Clearly, P ∗

0 is a feasible solution of (P) since the feasible region of (Pε) mono-
tonically shrinks as ε ↓ 0. We now show that P ∗

0 = M . Define the perturbed cost
function

Jε(x0, u(·)) = E

∫ ∞

0

[x(t)TQεx(t) + u(t)TRεu(t)]dt.

Similar to (4.2), we can show

Jε(x0, u(·)) = xT0 P
∗
ε x0 + E

∫ ∞

0

{
[u(t)−Kεx(t)]

T (Rε +DTP ∗
ε D)[u(t)−Kεx(t)]

+ x(t)TFε(P
∗
ε )x(t)

}
dt
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for any u(·) ∈ Ux0

ad , where Kε := −(Rε + DTP ∗
ε D)+(BTP ∗

ε + DTPεC), and Fε is
the “perturbed” Riccati operator with Q and R in (3.4) replaced by Qε and Rε,
respectively. In [1, Theorems 5.4 and 5.5] it is stated that if the problem (Pε) is strictly
feasible (which is the case here) with an optimal solution P ∗

ε , then the corresponding
feedback control u(t) = Kεx(t) must be stabilizing (and hence admissible), and P ∗

ε

must be the unique optimal solution to (Pε) satisfying the corresponding Riccati
equation Fε(P ) = 0. Thus u(t) = Kεx(t) must be optimal, and

inf
u(·)∈Ux0

ad

Jε(x0, u(·)) = xT0 P
∗
ε x0,

which further yields

xT0 P
∗
εix0 = inf

u(·)∈Ux0
ad

Jεi(x0, u(·)) ≥ inf
u(·)∈Ux0

ad

J(x0, u(·)) = xT0Mx0.

Letting εi → 0, we obtain

xT0 P
∗
0 x0 ≥ xT0Mx0.

On the other hand, (4.3) gives rise to the opposite inequality since P ∗
0 is feasible to

(P). Thus we have M = P ∗
0 . This establishes that M is indeed a primal feasible

solution.
An important implication, which is the contrapositive of the above theorem, is

this: If (P) has no optimal solution, or if (P) has optimal solutions but none of them
satisfies the generalized Riccati equation F (P ) = 0, then (LQ) has no attainable
optimal control; in particular, it does not have any optimal feedback control.

A natural question to ask at this point is whether or not the converse of the above
statement is true. Namely, if (P) admits an optimal solution P ∗ satisfying F (P ∗) = 0,
then does (LQ) have an attainable optimal control? Recall that in the finite horizon
case an optimal feedback control is represented as u∗(t) = −(R+DTP ∗D)−1(BTP ∗+
DTP ∗C)x∗(t) (cf. [8, Theorem 3.2]). However in the present case R +DTP ∗D may
be singular, therefore we naturally expect that an optimal feedback control should be

u∗(t) = −(R+DTP ∗D)+(BTP ∗ +DTP ∗C)x∗(t).(4.5)

The following result establishes that this control is indeed optimal if it is stabilizing.
(Recall that in the infinite horizon case, stability is essential.)

Theorem 4.2. If a feasible solution of (P), P ∗, is such that F (P ∗) = 0, and the
feedback control u∗(t) in (4.5) is stabilizing, then it must be optimal for (LQ).

Proof. For any admissible control u(·) ∈ Ux0

ad , an argument similar to that in
proving (4.2) leads to

J(x0, u(·))
= E

∫ ∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt

= xT0 P
∗x0

+E

∫ ∞

0

{
[u(t)−Kx(t)]T (R+DTP ∗D)[u(t)−Kx(t)] + x(t)TF (P ∗)x(t)

}
dt

= xT0 P
∗x0

+E

∫ ∞

0

[u(t)−Kx(t)]T (R+DTP ∗D)[u(t)−Kx(t)]dt,(4.6)
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where K := −(R+DTP ∗D)+(BTP ∗ +DTP ∗C). Since u∗(t) = Kx∗(t) is stabilizing,
the above shows that u∗(·) must be optimal.

As mentioned earlier, the stability of the control in (4.5) can be examined nu-
merically via the LMIs as stipulated in Proposition 3.1(iii). On the other hand, by
Theorem 3.3, in order for this control to be stabilizing, it is necessary that there exist
complementary solutions P ∗ and Z∗ of (P) and (D), respectively, with Z∗

N � 0. It
is interesting that under these (weaker) conditions, one can prove the existence of an
explicitly representable optimal feedback control of (LQ) in (4.9) below (which is not
necessarily in the same form as the control in (4.5)).

First we need a lemma.
Lemma 4.3. Suppose (P) and (D) have complementary optimal solutions, P ∗

and Z∗, respectively. Then, F (P ∗) = 0.
Proof. We have the following decomposition:

L(P ∗) =
[

I, 0
−KT , I

] [
R+DTP ∗D, 0

0, F (P ∗)

] [
I, −K
0, I

]
,(4.7)

where K := −(R+DTP ∗D)+(BTP ∗ +DTP ∗C). From the relation L(P ∗)Z∗ = 0, it
follows that[

R+DTP ∗D, 0
0, F (P ∗)

] [
I, −K
0, I

] [
Z∗
B , Z∗

U

(Z∗
U )

T , Z∗
N

]

=

[
(R+DTP ∗D)(Z∗

B −K(Z∗
U )

T ), (R+DTP ∗D)(Z∗
U −KZ∗

N )
F (P ∗)(Z∗

U )
T , F (P ∗)Z∗

N

]

=

[
0, 0
0, 0

]
.(4.8)

Therefore,

F (P ∗)(Z∗
U )

T = 0, F (P ∗)Z∗
N = 0

and

Z∗
UF (P

∗) = 0, Z∗
NF (P

∗) = 0.

On the other hand, the dual nonnegativity constraint, together with the extended
Schur’s lemma, yields

Z∗
B − Z∗

U (Z
∗
N )+(Z∗

U )
T 	 0,

and

Z∗
U (I − Z∗

N (Z∗
N )+) = 0.

Multiplying F (P ∗) on both sides of the dual equality constraint and making use of
the above relations, we obtain

0 = F (P ∗)(I + CZ∗
NC

T +DZ∗
UC

T + CTZ∗
UD +DZ∗

BD
T )F (P ∗)

	 F (P ∗)(I + CZ∗
NC

T +DZ∗
UC

T + CTZ∗
UD +DZ∗

U (Z
∗
N )+(Z∗

U )
TDT )F (P ∗)

= F (P ∗)2 + F (P ∗)[CZ∗
N +DZ∗

U ](Z
∗
N )+[Z∗

NC
T + (Z∗

U )
TDT ]F (P ∗)

	 F (P ∗)2.
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This means, F (P ∗) = 0.
Theorem 4.4. Assume that solving (P) and (D) yields complementary optimal

solutions P ∗ and Z∗, with Z∗
N � 0. Then F (P ∗) = 0, and (LQ) has an attainable

optimal feedback control given by

u∗(t) = Z∗
U (Z

∗
N )−1x∗(t).(4.9)

Proof. First, that F (P ∗) = 0 is seen from Lemma 4.3 (even without the assump-
tion Z∗

N � 0).
Next, for any feasible solution P of (P) and any (stabilizing) control u(·) ∈ Ux0

ad ,
along with the corresponding state x(·), an argument similar to the one that proved
(4.2) leads to

J(x0, u(·))
= E

∫ ∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt

= xT0 Px0

+E

∫ ∞

0

{
[u(t)−Kx(t)]T (R+DTPD)[u(t)−Kx(t)] + x(t)TF (P )x(t)

}
dt,(4.10)

where K := −(R + DTPD)+(BTP + DTPC). Since P is feasible to (P), we have
F (P ) 	 0. This means that

J(x0, u(·)) ≥ xT0 Px0 ∀u(·) ∈ Ux0

ad

for any P feasible to (P).
Note that as yet we cannot conclude that the control in (4.5) is optimal, since

we do not know whether or not the control is stabilizing, whereas (4.10) holds only
for stabilizing controls. To get around, let us define a feedback control u∗(t) =
Z∗
U (Z

∗
N )−1x∗(t), which, following Theorem 3.4, is stabilizing. Hence (4.10) with u(·) =

u∗(·) and P = P ∗ yields

J(x0, u
∗(·)) = xT0 P

∗x0+E

∫ ∞

0

[u∗(t)−K∗x∗(t)]T (R+DTP ∗D)[u∗(t)−K∗x∗(t)]dt,

(4.11)
with K∗ := −(R+DTP ∗D)+(BTP ∗ +DTP ∗C). Next, we show that

[u∗(t)−K∗x∗(t)]T (R+DTP ∗D)[u∗(t)−K∗x∗(t)]
≡ [u∗(t)− Z∗

U (Z
∗
N )−1x∗(t)]T (R+DTP ∗D)[u∗(t)− Z∗

U (Z
∗
N )−1x∗(t)]

= 0.
(4.12)

To this end, apply the complementary duality. From the relation L(P ∗)Z∗ = 0, it
follows that[

R+DTP ∗D, 0
0, F (P ∗)

] [
I, −K∗
0, I

] [
Z∗
B , Z∗

U
(Z∗

U )
T , Z∗

N

]

=

[
(R+DTP ∗D)(Z∗

B −K∗(Z∗
U )

T ), (R+DTP ∗D)(Z∗
U −K∗Z∗

N )
F (P ∗)(Z∗

U )
T , F (P ∗)Z∗

N

]
=

[
(R+DTP ∗D)Z∗

B + (BTP ∗ +DTP ∗C)(Z∗
U )

T , (R+DTP ∗D)Z∗
U + (BTP ∗ +DTP ∗C)Z∗

N
F (P ∗)(Z∗

U )
T , F (P ∗)Z∗

N

]
=

[
0, 0
0, 0

]
.
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Therefore,

(R+DTP ∗D)Z∗
U = −(BTP ∗ +DTP ∗C)Z∗

N .(4.13)

Repeatedly using the above identity, we get

0 = [u∗(t)− Z∗
U (Z

∗
N )−1x∗(t)]T (R+DTP ∗D)[u∗(t)− Z∗

U (Z
∗
N )−1x∗(t)]

= u∗(t)T (R+DTP ∗D)u∗(t)− 2u∗(t)T (R+DTP ∗D)Z∗
U (Z

∗
N )−1x∗(t)

+x∗(t)T (Z∗
N )−1(Z∗

U )
T (R+DTP ∗D)Z∗

U (Z
∗
N )−1x∗(t)

= u∗(t)T (R+DTP ∗D)u∗(t) + 2u∗(t)T (BTP ∗ +DTP ∗C)x∗(t)
+x∗(t)T (Z∗

N )−1(Z∗
U )

T (R+DTP ∗D)(R+DTP ∗D)+(R+DTP ∗D)Z∗
U (Z

∗
N )−1x∗(t)

= u∗(t)T (R+DTP ∗D)u∗(t) + 2u∗(t)T (BTP ∗ +DTP ∗C)x∗(t)
+x∗(t)T (P ∗B + CTP ∗D)(R+DTP ∗D)+(BTP ∗ +DTP ∗C)x∗(t)

= [u∗(t)−K∗x∗(t)]T (R+DTP ∗D)[u∗(t)−K∗x∗(t)].

This proves (4.12). It then follows from (4.10) and (4.11) that

J(x0, u
∗(·)) = xT0 P

∗x0 ≤ J(x0, u(·)) ∀u(·) ∈ Ux0

ad .

Hence, u∗(·) is optimal.
A sufficient condition for Theorem 4.4 to hold is the strict complementarity of the

SDPs (P) and (D), as the following proposition asserts.
Proposition 4.5. Suppose that (P) and (D) have strictly complementary optimal

solutions P ∗ and Z∗, respectively, i.e., L(P ∗)Z∗ = 0 and L(P ∗) + Z∗ � 0. Then,
Z∗
N � 0.
Proof. Following Lemma 4.3 and (4.7) we have

L(P ∗) = (H−1)Tdiag(R+DTP ∗D, 0)H−1,

where

H =

[
I, K
0, I

]
and K = −(R+DTP ∗D)+(BTP ∗ +DTP ∗C).

Let Z̄∗ := H−1Z∗(H−1)T .
It is readily seen that Z̄∗

N = Z∗
N . Moreover, diag (R+DTP ∗D, 0) = HTL(P ∗)H

and Z̄∗ = H−1Z∗(H−1)T are positive semidefinite and they are complementary to
each other. We shall further show that they stay strictly complementary. To see
this we first note that the range space of L(P ∗), range(L(P ∗)), and the range space
of Z∗, range(Z∗), form an orthogonal decomposition of the whole space. Clearly,
range(HTL(P ∗)H) has the same dimension as that of range(L(P ∗)); and range(Z̄∗)
has the same dimension as that of range(Z∗). Finally, range(HTL(P ∗)H) and range(Z̄∗)
remain orthogonal to each other. Hence they span the whole space too. Therefore,

HTL(P ∗)H + Z̄∗ � 0.

As we noted before, the last diagonal block of the above matrix is Z∗
N . Hence, Z∗

N � 0,
as the proposition stipulates.

If P ∗ and Z∗ are strictly complementary optimal solutions with

R+DTP ∗D � 0,(4.14)

and Z∗
N � 0, then by (4.13), the feedback control in (4.9) coincides with the one in

(3.5). But if R+DTP ∗D is singular, then these two controls can indeed be different;
see Example 6.1.
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5. Synthesis. To summarize the results we have so far obtained, consider the
following statements:

(a) (LQ) is attainable at any x0 ∈ �n.
(b) (P) has an optimal solution P ∗ that satisfies:

(i) the generalized stochastic Riccati equation F (P ) = 0;
(ii) the corresponding feedback control u∗(t) of (4.5) is stabilizing.

(c) (P) and (D) have complementary optimal solutions P ∗ and Z∗, with Z∗
N � 0.

The following theorem is a summary of our main results.
Theorem 5.1. The following implications hold:
• (a) ⇒ (b(i)): Theorem 4.1.
• (b) ⇒ (a), with the control in (4.5) being optimal: Theorem 4.2.
• (b) ⇒ (c): Theorem 3.3.
• (c) ⇒ (a), with the control in (4.9) being optimal: Theorem 4.4.

Some remarks are in order. Among the above statements, (a) is a direct state-
ment about the solution of the original problem (LQ); (b) and (c), on the other hand,
provide two computational approaches to (LQ) via SDP — note that they both imply
(a) with the respective optimal feedback controls explicitly given. There are differ-
ences, however, between the two; in particular, they have different requirements, and
lead to different controls. Computationally, (c) appears to have an edge over (b),
as most SDP solvers are based on primal-dual interior point methods. This implies
that the iterative solutions produced by such a solver will likely converge to the an-
alytic centers of the primal and dual optimal sets, respectively, which are known to
be “maximally complementary” to each other. Therefore, if there is indeed any dual
optimal solution with Z∗

N � 0, then the solver will return such a solution. In this
respect, checking Z∗

N � 0 is much easier than verifying the stabilizing condition in
(b(ii)).

Furthermore, Theorem 5.1 also reveals the relationship between (b) and (c): (b)
implies (c), whereas (c) implies (b(i)) via (a). That (c) cannot imply the stabilizing
condition in (b(ii)) is in itself an interesting fact, which suggests that the two controls
in (4.5) and (4.9) are in general intrinsically different. Even when the former is
stabilizing, and hence both controls are optimal—since we then have (b) ⇒ (c) ⇒
(a)—they can still be different (except for the special case of (4.14), where (b) and
(c) become equivalent); see Example 6.1.

If (b(ii)) is satisfied, then (b) is reduced to (b(i)). Consequently, (a), (b), and (c)
are equivalent. Hence we have the following result.

Corollary 5.2. Suppose that the control in (4.5) is stabilizing, Then, (a), (b),
and (c) are equivalent.

An important special case is when

Q � 0, R � 0.(5.1)

In this case, (P) satisfies the Slater condition because P = 0 is a strictly feasible
solution, and so does (D) because of the mean-square stabilizability assumption of
the original LQ problem. Therefore, (c) holds. On the other hand, by [1, Corollary
5.1] the control in (4.5) must be stabilizing. Hence Corollary 5.2 stipulates that (a)
and (b) must hold true as well.

Corollary 5.3. Suppose (5.1) holds. Then, the three statements (a), (b), and
(c) hold true.

Based on the results obtained earlier, it is possible to develop a computational
procedure as follows to provide a complete treatment of the stochastic LQ control
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problem, and in particular to answer if the problem has an optimal feedback control
representable as in (4.5) or in (4.9). The procedure involves only solving some LMIs,
an SDP and its dual, for which numerical algorithms have been extensively developed
(among others see [11, 19, 20]). Insofar as the complementary primal SDP solution
satisfies the generalized Riccati equation (see Lemma 4.3), the procedure can also be
viewed as a numerical approach to solving the Riccati equation.
Step 1. Check if the feasible set of (P) is nonempty (which is an LMI condition). If

not, then stop: the LQ problem cannot be solved by either the SDP approach
or by the Riccati equation; else continue.

Step 2. Check if (D) satisfies the Slater condition, which amounts to solving a sys-
tem of strict LMIs. If not, then stop: the LQ problem is not mean-square
stablizable according to Proposition 3.1(ii) and hence ill-posed; else continue.

Step 3. At this point we know that (P) is feasible and (D) satisfies the Slater con-
dition, and hence (P) has an optimal solution (see, e.g., [14, Theorem 5]).
Check if there is any optimal solution of (P) that satisfies F (P ) = 0. If
not, then stop: the LQ problem has no attainable optimal feedback control
according to Theorem 4.1; else continue.

Step 4. Check if the control in (4.5) is stabilizing (which can be checked by LMIs
according to Proposition 3.1(iii)). If yes, then stop: the control is optimal;
else continue.

Step 5. Check if (P) and (D) have complementary optimal solutions P ∗ and Z∗ with
Z∗
N � 0. If yes, then stop: the control u∗(t) = Z∗

U (Z
∗
N )−1x∗(t) is optimal;

otherwise (LQ) cannot be solved by our SDP approach, nor can it be solved
by any other existing method.

Notice that in practical implementation one might as well starts solving (P) and
(D) by means of a primal-dual interior point code (e.g., that of using the homogeneous
self-dual embedding technique; see [19]), i.e., running Step 5 first. If the result turns
out to be positive, then Steps 1–4 are not necessary. On the other hand, even if the
result is negative, the algorithm will still tell the feasibility of (P) and (D). This makes
it easier to carry out Step 1, followed by subsequent steps.

6. Examples. The first example below demonstrates how the LQ control prob-
lem can be solved by the SDP approach developed here, even in the presence of the
singularity of R + DTP ∗D. It also shows that optimal stabilizing controls can be
obtained by both SDP approaches in (b) and (c) of Theorem 5.1, leading to different
optimal controls in (4.5) and (4.9), respectively.

Example 6.1. Let m = n = 1; A = C = −1, B = D = 1; Q = 1 and R = −1.
Namely, the problem is this:

min E
∫∞
0

[x(t)2 − u(t)2]dt
s.t. dx(t) = [−x(t) + u(t)]dt+ [−x(t) + u(t)]dW (t),

x(0) = x0.

This system is mean-square stabilizable, as u(t) = αx(t) is stabilizing for any α with
|α| < 1. To see this, applying Itô’s formula to the system (1) under the above feedback
control, we obtain

dE[x(t)2] = (α2 − 1)E[x(t)2]dt, E[x(0)2] = x2
0.

Hence

E[x(t)2] = e(α
2−1)tx2

0,(6.1)
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which converges to 0 as t→ +∞.
Now, the primal SDP is

max p

s.t.

[ −1 + p, 0
0, 1− p

]
	 0.

The above has an optimal solution p∗ = 1 (the only feasible solution), which also
satisfies the generalized Riccati equation F (p) = 1 − p = 0. (Note that singularity
occurs in this solution). The feedback control given by (4.5) reduces to u∗(t) = 0,
which is stabilizing as shown above (α = 0 < 1). Therefore, all the tests in Steps
1–4 of the computational procedure presented in section 5 are passed. Consequently,
u∗(t) = 0 is one optimal control of the LQ problem. Moreover, the corresponding
objective value is

E

∫ ∞

0

[x∗(t)]2dt = x2
0

∫ ∞

0

e−tdt = x2
0,(6.2)

where the first equality is due to (6.1) with α = 0.
Next, we can obtain additional — in fact, infinitely many more — optimal controls

by virtue of (c). Indeed, the dual SDP in this case is

min −zb + zn
s.t. 1 + zb − zn = 0,

z :=

[
zb, zu
zu, zn

]
	 0.

It can be directly verified that the above has multiple optimal solutions:

(zb, zu, zn) = (zb, zu, 1 + zb),

parameterized by (zu, zb) with

zb ≥ 0, z2
u ≤ zb(1 + zb).(6.3)

In particular, note that the above ensures zn = 1 + zb > 0. Furthermore, these
(parameterized) solutions are all complementary to the primal optimal solution p∗ =
0. Hence, the test in Step 5 of the numerical procedure is passed, which gives rise to
(multiple) optimal controls

u∗(t) = zuz
−1
n x∗(t) ≡ αx∗(t).

Notice that the feedback gain α satisfies

|α| = zu
1 + zb

≤
√
zb(1 + zb)

1 + zb
=

√
zb

1 + zb
< 1,

where the first inequality follows from (6.3). Therefore, these controls are indeed
stabilizing by (6.1). Finally, the optimal cost corresponding to these controls is

J = E
∫∞
0

(1− α2)[x(t)]2dt

= x2
0(1− α2)

∫∞
0
e(α

2−1)tdt
= x2

0,
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which coincides with (6.2).
The next example illustrates two points: First, when the primal SDP solution

satisfies the Riccati equation (i.e., (b(i)) holds), and moreover (4.14) holds, the re-
sulting feedback control may still not be stabilizing (i.e., (b(ii)) fails). When this
does happen, the complementarity condition in (c) fails. Second, there indeed exist
well-posed stochastic control problems which, however, do not have any attainable
optimal control. This calls for approximation methods, which will be presented in the
next section.

Example 6.2. Suppose m = n = 1; A = C = 0, B = D = 1; Q = 4 and R = −1.
The control system is as follows:

min E
∫∞
0

[4x(t)2 − u(t)2]dt
s.t. dx(t) = u(t)dt+ u(t)dW (t),

x(0) = x0.

Consider a feedback control u(t) = −kx(t). Applying Itô’s lemma yields

d[x(t)]2 = (k2 − 2k)[x(t)]2 − 2k[x(t)]2dW (t).

Clearly, such a feedback control is stabilizing if and only if k2 − 2k < 0 or 0 < k < 2.
In particular, this implies that u(t) = −x(t) is stabilizing while u(t) = −2x(t) is not.

For any 0 < k < 2, it follows that E
∫∞
0

[x(t)]2dt = x2
0/(2k − k2). Therefore, the

control u(t) = −kx(t) has a cost

(4− k2)E

∫ ∞

0

[x(t)]2dt =

(
1 +

2

k

)
x2

0.

As k ↑ 2 we see that the cost can be arbitrarily close to 2x2
0. Nevertheless, this

optimum is not attainable when x0 
= 0.
In terms of the corresponding SDPs, the primal reads

max p

s.t.

[ −1 + p, p
p, 4

]
	 0.

This problem has only one feasible solution p∗ = 2, which is necessarily the optimal
solution. It clearly satisfies the Riccati equation:

4 +
p2

1− p = 0.

Hence the control in (4.5) is

u∗(t) = − p∗

−1 + p∗
x∗(t) = −2x∗(t),

which is not stabilizing as we discussed before.
Since (b(ii)) does not hold, we expect (c) to fail as well, as (b) and (c) are

equivalent under (4.14). So, let us now examine the dual:

min 4zn − zb
s.t. 1 + 2zu + zb = 0,

z :=

[
zb, zu
zu, zn

]
	 0.
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This problem is strictly feasible, since the original LQ problem is stabilizable. For
instance, (zb, zu, zn) = (1,−1, 2) is a strictly feasible solution. Hence ([23, Theorem
3.1]), the infimum of the dual objective value must coincide with the supremum of
the primal objective value, which is 2. This means, should the dual optimal solution
z∗ exist, it must satisfy 4z∗n − z∗b = 2, or z∗n = (2 + z∗b )/4. This, along with z∗u =
−(1 + z∗b )/2, leads to

z∗b z
∗
n = z∗b ·

2 + z∗b
4

<
(1 + z∗b )

2

4
= (z∗u)

2,

which violates z 	 0. Consequently, the dual does not have an attainable optimal
solution, and the complementary duality fails.

The third example below illustrates a situation opposite to Example 6.2: (b(i))
fails while (b(ii)) holds. Namely, when R+DTP ∗D = 0, the optimal primal solution
P ∗ may not satisfy the generalized Riccati equation F (P ) = 0 (and vice versa), even
when the corresponding control is stabilizing. In this case, Theorem 4.1 shows that
the LQ problem has no attainable optimal control.

Example 6.3. Let m = n = 1; A = −1, B = 1, C = D = 0; Q = 1 and R = 0.
This is actually a deterministic system that is mean-square stabilizable, as u(t) = 0
is stabilizing. The corresponding SDP reads:

max p

s.t.

[
0, p
p, 1− 2p

]
	 0.

The above has a unique feasible solution p∗ = 0, which is hence optimal too. However,
the generalized Riccati equation in this case is F (p) = 1− 2p = 0, which has a unique
solution p = 1

2 . Therefore, the two solutions are completely different.
Moreover, notice that while (b(i)) fails in this case, (b(ii)) does hold: u∗(t) = 0

is indeed stabilizing. On the other hand, in view of Theorem 5.1, (c) ⇒ (a) ⇒ (b(i)),
we expect (c) to fail. Indeed, the dual SDP is

min zn
s.t. 1 + 2zu − 2zn = 0,

z :=

[
zb, zu
zu, zn

]
	 0.

This dual problem is strictly feasible, and it has an infimum equal to 0, which is
the supremum of the primal. However, the dual optimal solution is not attainable,
because whenever zn = 0 we must have zu = 1/2, and hence it is impossible to have
z 	 0.

7. ε-Approximation. Examples 6.2 and 6.3 have illustrated that the LQ control
problem could be well-posed, but still there exists no attainable optimal control. When
this happens we propose to consider (LQε), obtained by keeping all the data A, B,
C, and D in (LQ) unchanged, and letting Rε = R + εI and Qε = Q+ εI with ε > 0;
such a perturbation was already considered in the proof of Theorem 4.1. Recall that
the associated SDPs for (LQε) are

(Pε) max 〈I, P 〉
s.t.

[
R+ εI +DTPD, BTP +DTPC
PB + CTPD, Q+ εI + CTPC +ATP + PA

]
	 0,

P ∈ Sn×n,
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and

(Dε) min 〈R+ εI, ZB〉+ 〈Q+ εI, ZN 〉
s.t. I + ZTUB

T +BZU + ZNA
T +AZN

+CZNC
T +DZUC

T + CZTUD
T +DZBD

T = 0,[
ZB , ZU
ZTU , ZN

]
	 0.

Assuming that the LQ is stablizable and (P) is feasible, both (Pε) and (Dε) satisfy
the Slater condition.

Theorem 7.1. Suppose (LQ) is well-posed. Let J∗
ε (x0) and J

∗(x0) be the optimal
values of (LQε) and (LQ), respectively. Then,

lim
ε↓0

J∗
ε (x0) = J∗(x0).

Proof. Let the optimal solution of (Pε) be P ∗
ε . In the proof of Theorem 4.1, we

proved that

uε(t) = −(Rε +DTP ∗
ε D)+(BTP ∗

ε +DTPεC)x
ε(t)(7.1)

is optimal for (LQε), with the corresponding optimal objective value equal to J∗
ε (x0) =

xT0 P
∗
ε x0.
Following the same argument as in the proof of Theorem 4.1, we know that P ∗

ε

is contained in a compact set, with 0 < ε ≤ ε0. Moreover, since by definition J∗
ε (x0)

decreases monotonically as ε ↓ 0, so does P ∗
ε . Therefore, P ∗

ε itself also converges as
ε ↓ 0.

What remains is to show that xT0 P
∗
0 x0 is equal to the true infimum of (LQ), now

denoted as J∗(x0). To this end, first note that

xT0 P
∗
ε x0 = J∗

ε (x0) ≥ J∗(x0),

where the inequality is due to the positive perturbation in (Pε). Letting ε → 0, we
obtain

xT0 P
∗
0 x0 ≥ J∗(x0).

On the other hand, since P ∗
0 is feasible to (P) (see the proof of Theorem 4.1), it follows

from (4.10) that

J∗(x0) ≡ inf
u(·)∈Ux0

ad

J(x0, u(·)) ≥ xT0 P ∗
0 x0.

This completes the proof.
The above theorem says that the objective value achieved by the perturbed prob-

lem is asymptotically optimal. The next result is concerned with the asymptotic
optimality of the feedback control.

Theorem 7.2. The feedback control uε(·) constructed by (7.1) is asymptotically
optimal for (LQ), namely,

lim
ε↓0

J(x0, u
ε(·)) = J∗(x0).
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Proof. Denote by Jε(x0, u(·)) the cost of the perturbed problem (LQε) under an
admissible control u(·) ∈ Ux0

ad w.r.t. the initial state x0. Then for any η > 0, there is
an ε0 such that when 0 < ε < ε0,

J∗(x0) ≤ J(x0, u
ε(·))

≤ Jε(x0, u
ε(·))

= J∗
ε (x0)

≤ J∗(x0) + η,

where the last inequality is due to Theorem 7.1. This proves our claim.
Consider Example 6.2. With perturbation, the corresponding primal SDP be-

comes

max p

s.t.

[ −1 + ε+ p, p
p, 4 + ε

]
	 0.

Solving this problem yields

p∗ε =
4 + ε+

√
(4 + ε)2 + 4(4 + ε)(−1 + ε)

2
.

Clearly, p∗ε = 2+O(
√
ε), and hence the optimal value of (Pε), p

∗
εx

2
0, converges to 2x2

0

as ε ↓ 0.
8. Concluding remarks. We have developed a systematic approach to the

stochastic LQ control problem based on primal-dual SDP, allowing indefinite cost
matrices. We have shown that, in addition to its obvious computational advantage,
the SDP duality theory provides critical qualitative information about the LQ control
problem, in particular, regarding issues such as stability and optimality.

Among the three statements presented in section 5, the strongest is (b), which
consists of two parts: (i) the optimal solution to the primal SDP satisfies the gen-
eralized Riccati equation, and (ii) the corresponding feedback control is stabilizing.
It implies (c), the SDP complementary duality, which, in turn, implies (a): the exis-
tence of an optimal control to the LQ problem. Both (b) and (c) hence provide useful
computational approaches to solving the LQ problem.

Conversely, our results also provide new insight as to when the LQ problem does
not possess an optimal solution: Since (b(i)) is implied by (a), if no primal SDP solu-
tion satisfies the generalized Riccati equation, then the LQ problem has no attainable
optimal control. (For such problems we have developed an ε-approximation scheme
that yields asymptotic optimal solutions.) However, as the SDP in general possesses
multiple optimal solutions, and most SDP solvers usually return a single optimal so-
lution, this result is of more theoretical, as opposed to computational, interest. This
limitation is reflected in Step 3 of the procedure outlined in section 5: it requires
checking if there is any optimal solution of (P) satisfying F (P ) = 0.

Finally, the gap alluded to in the last step of the same procedure points to an
open problem: whether our SDP approach might fail to find an optimal control (a
counter-example), or this is simply impossible (a proof).
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Abstract. We study an infinite horizon stochastic control problem associated with a class of
stochastic reaction-diffusion systems with coefficients having polynomial growth. The hamiltonian
is assumed to be only locally Lipschitz continuous so that the quadratic case can be covered. We
prove that the value function V corresponding to the control problem is given by the solution of the
stationary Hamilton–Jacobi equation associated with the state system. To this purpose we write the
Hamilton–Jacobi equation in integral form, and, by using the smoothing properties of the transition
semigroup relative to the state system and the theory of m-dissipative operators, we show that it
admits a unique solution. Moreover, the value function V is obtained as the limit of minima for some
approximating control problems which admit unique optimal controls and states.

Key words. stochastic reaction-diffusion systems, stationary Hamilton–Jacobi–Bellman equa-
tions in infinite dimension, infinite horizon stochastic control problems
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1. Introduction. In the present paper we are concerned with an infinite horizon
stochastic control problem associated with the following reaction-diffusion system
perturbed by a random term:




∂yk
∂t

(t, ξ) = Ak yk(t, ξ) + fk(ξ, y1(t, ξ), . . . , yr(t, ξ)) + zk(t, ξ) +Qk
∂2wk
∂t∂ξ

(t, ξ),

yk(0, ξ) = xk(ξ), t ≥ 0, ξ ∈ O,

Bk yk(s, ξ) = 0, ξ ∈ ∂O, k = 1, . . . , r.

(1.1)

Here O is a bounded open set in R
d, d ≤ 3, with regular boundary. The second order

differential operatorsAk are strictly elliptic, have regular coefficients, and are endowed
with some boundary conditions Bk. The function f = (f1, . . . , fr) : O × R

r → R
r is

twice differentiable, has polynomial growth together with its derivatives, and verifies
suitable dissipativity conditions. The linear operatorsQk are bounded and self-adjoint
from L2(O) into itself and are not assumed to be Hilbert–Schmidt in general. Finally,
the random fields ∂2 wk/∂ t∂ ξ are mutually independent white noises in space and in
time, defined on the same stochastic basis (Ω,F ,Ft,P), and zk are square integrable
processes adapted to the filtration Ft.

Such a class of systems are of interest in applications and, especially in chemistry
and in the present setting, have been widely studied by several authors (see, for
example, Friedlin in [18] and Da Prato and Zabczyk in [14]). We recall that in [14] it
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is proved that for any initial datum x in the Hilbert space H = L2(O;R r) and for any
adapted control z ∈ L2(Ω;L2(0,+∞;H)) the system (1.1) admits a unique solution
y(t;x, z) in a generalized sense that we will specify later. Moreover, if x ∈ C(O;R r)
and z ∈ L2(Ω;Lp(0,+∞;H)) with p > 4/(4− d), such a solution is a mild solution.

In correspondence with the system (1.1) we study the following stochastic control
problem: minimizing the cost functional

J(x, z) = E

∫ +∞

0

e−λ t [g(y(t;x, z)) + k(z(t))] dt,(1.2)

among all controls z ∈ L2(Ω;L2(0,+∞;H)) adapted to the filtration Ft. Here
y(t;x, z) is the unique solution of (1.1), and g : H → R is Lipschitz continuous
and bounded. Moreover, k : H → (−∞,+∞] is a measurable mapping such that its
Legendre transform K, which is defined by

K(x) = sup
y∈H

{− 〈x, y〉H − k(y) } , x ∈ H,

is Fréchet differentiable and locally Lipschitz continuous together with its derivative.
Our aim here is to study the value function corresponding to the functional (1.2)

V (x) = inf
{
J(x, z) ; z ∈ L2(Ω;L2(0,+∞;H)), adapted

}
.

Namely, we show that, if A is the realization in H of the differential operator A =
(A1, . . . ,Ar), endowed with the boundary conditions B = (B1, . . . ,Br), and if F is
the Nemytskii operator associated with the function f = (f1, . . . , fr), then, under the
assumption of Lipschitz continuity for K, for any λ > 0 and g ∈ Cb(H)1 the infinite
dimensional second order nonlinear elliptic problem

λϕ(x)− 1

2
Tr
[
Q2D2ϕ(x)

]− 〈Ax+ F (x), Dϕ(x)〉H +K(Dϕ(x)) = g(x)(1.3)

admits a unique differentiable mild solution ϕ. This means that there exists a unique
solution ϕ ∈ C1

b (H) to the integral problem

ϕ(x) = E

∫ +∞

0

e−λ t [g(y(t;x))−K(Dϕ(y(t;x)))] dt,

where y(t;x) is the solution of the system (1.1), corresponding to z = 0. Moreover,
for any x ∈ H the solution ϕ(x) coincides with the function V (x). When K is only
locally Lipschitz continuous, there exists µ0 > 0 such that the same result holds for
any λ > µ0 and g ∈ C1

b (H).
It is important to remark that even if we assume f(ξ, ·) to be more than once

differentiable, nevertheless we are able to prove only C1-regularity in H for the tran-
sition semigroup Pt associated with the system (1.1) (see [8]). Then the solution ϕ of
the problem (1.3) is only C1, and we can not prove the existence of an optimal state
and an optimal control for our control problem. Actually, by following a dynamic

1We shall denote by Bb(H) the Banach space of all bounded Borel functions ϕ : H → R and by
Cb(H) the subspace of uniformly continuous functions. Moreover, we denote by Ck

b (H), k ∈ N, the
subspace of all k-times Fréchet differentiable functions, having uniformly continuous and bounded
derivatives, up to the kth order.



826 SANDRA CERRAI

programming approach, the optimal state and the optimal control would be given,
respectively, by the solution y
(t) of the so-called closed loop equation

dy(t) = [Ay(t) + F (y(t))−DK(Dϕ(y(t)))] dt+Qdw(t), y(0) = x,(1.4)

and by

z
(t) = −DK(Dϕ(y
(t))).

On the other hand, as Dϕ is only continuous, the mapping x �→ −DK(Dϕ(x)) is only
continuous. Thus we are able only to prove the existence of martingale solutions for
the problem (1.4), which are not defined in general in the original stochastic basis
(Ω,F ,Ft,P), so that the control z
(t) is not admissible for our original problem.
However, in the case of space dimension d = 1 it is possible to prove the existence
and uniqueness of solutions for the closed loop equation and then the existence and
uniqueness of an optimal control. In what follows, it could be interesting to see if,
by introducing the notion of relaxed controls (see [17] for the definition and some
interesting results in finite dimension), it is possible to prove the existence of an
optimal control.

Nevertheless, even if we are not able to prove in general the existence of an
optimal control, we can show that the value function V is obtained as the limit of
minima of suitable approximating cost functionals Jα, α ≥ 0, which admit unique
optimal controls and unique optimal states and whose value functions coincide with
the solutions of suitable approximating Hamilton–Jacobi problems.

Several authors have studied second order Hamilton–Jacobi equations by the ap-
proach of viscosity solutions. For the finite dimensional case we refer to the paper by
Crandall, Ishii, and Lions [11] and to the book by Fleming and Soner [17], and for the
infinite dimensional case we refer to the papers by Lions [25, 26] and to the thesis of
Swiech [28]. Other authors have studied regular solutions of second order Hamilton–
Jacobi equations, and as far as the infinite dimension is concerned we refer to the
works by Barbu and Da Prato [1], Cannarsa and Da Prato [2, 3], Gozzi [20, 21],
Haverneau [23] for the evolution case, and by Gozzi and Rouy [22] and Chow and
Menaldi [10] for the stationary case. More recently, infinite dimensional Hamilton–
Jacobi equations have been studied in connection with some ergodic control problems
(see, for example, [19] and [16]).

The main novelty here lies in the fact that we can prove the existence and unique-
ness of regular solutions for (1.3) when the nonlinear coefficient F in the state equation
has polynomial growth and is not even well defined in the Hilbert space H. Moreover,
we can treat both the case of a Lipschitz continuous hamiltonian and the case of a
locally Lipschitz hamiltonian so that the quadratic case can be covered.

Due to the difficulties arising from coefficients which are not Lipschitz continuous,
the study of mild solutions for the problem (1.3) is quite delicate, and we have to
proceed in several steps. We first consider the case of a Lipschitz hamiltonian K, and
we prove the existence and uniqueness result for λ large enough. To this purpose,
we apply a fixed point argument in the space C1

b (H), and we use the regularizing
properties of the semigroup Pt which have been studied in detail in [7] and [8]. Namely,
it has been proved that

ϕ ∈ Bb(H) =⇒ Ptϕ ∈ C1
b (H), t > 0,

and

sup
x∈H

|D(Ptϕ)(x)|H ≤ c (t ∧ 1)−
1+ε
2 sup
x∈H

|ϕ(x)|
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for some constant ε < 1 depending on Q. Then, if we denote by L the weak generator
of Pt (see [4] for the definition and main properties) by proceeding with suitable
approximations, we show that the operator

N(ϕ) = Lϕ−K(Dϕ)

is m-dissipative. This yields the existence and uniqueness of solutions for any λ > 0.
Then we consider a locally Lipschitz hamiltonian K. We approximate it by a sequence
of Lipschitz functions, we consider the problems associated with the approximating
hamiltonians, and, by a suitable a priori estimate, we get our result, even if in a less
general case.

We remark that throughout the paper we have to proceed by several approxima-
tions because of the intrinsic difficulties in the study of the system (1.1) and because of
the corresponding transition semigroup Pt. Actually, first we have to approximate the
reaction term F by Lipschitz continuous functionals Fα in order to get C2 regularity
for the semigroup Pαt associated with the system

dy(t) = [Ay(t) + Fα(y(t))] dt+Qdw(t), y(0) = x,(1.5)

and then we have to approximate Pαt by the semigroups Pα,nt associated with the finite
dimensional version of (1.5) in order to apply the usual Itô calculus. Unfortunately,
the direct approximation of the semigroup Pt by the semigroups Pα,nt does not work.

2. Assumptions. We denote by H the Hilbert space L2(O;R r), where O is a
bounded open set of R

d, d ≤ 3, having the boundary sufficiently regular. The norm
and the scalar product in H are, respectively, denoted by | · |H and 〈·, ·〉H . Moreover,
we denote by E the Banach space C(O;R r), endowed with the usual sup-norm | · |E .

Bb(H) is the Banach space of bounded Borel functions ϕ : H → R, endowed with
the sup-norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|.

Cb(H) is the subspace of uniformly continuous functions. Moreover, Lipb(H) denotes
the subspace of functions ϕ such that

[ϕ]Lip = sup
x,y∈H
x�=y

|ϕ(x)− ϕ(y)|
|x− y|H <∞.

Lipb(H) is a Banach space endowed with the norm

‖ϕ‖Lip = ‖ϕ‖0 + [ϕ]Lip.

For each k ∈ N, we denote by Ckb (H) the Banach space of k-times Fréchet differen-
tiable functions, endowed with the norm

‖ϕ‖k = ‖ϕ‖0 +
k∑
h=1

sup
x∈H

|Dhϕ(x)|Lh(H).

(Here and in what follows Lh(H) = L(H;Lh−1(H)), h ≥ 1, and L0(H) = R.) Finally,
for any k ∈ N and θ ∈ (0, 1), we denote by Ck+θb (H) the subspace of all functions
ϕ ∈ Ckb (H) such that

[ϕ]k+θ = sup
x,y∈H
x�=y

∣∣Dkϕ(x)−Dkϕ(y)
∣∣
Lk(H)

|x− y|θH
<∞.
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Ck+θb (H) is a Banach space endowed with the norm

‖ϕ‖k+θ = ‖ϕ‖k + [ϕ]k+θ.

In what follows we shall assume that for any ξ ∈ O and σ = (σ1, . . . , σr) ∈ R
r

fk(ξ, σ1, . . . , σr) = gk(ξ, σk) + hk(ξ, σ1, . . . , σr), k = 1, . . . , r.

The functions gk : O × R→ R and hk : O × R
r → R are continuous. Moreover, they

are assumed to fulfill the following conditions.
Hypothesis 1.
1. For any ξ ∈ O, the function hk(ξ, ·) is of class C2 and has bounded deriva-
tives, uniformly with respect to ξ ∈ O. Moreover, the mappings Dj

σhk :
O × R

r → R are continuous for j = 1, 2.
2. For any ξ ∈ O, the function gk(ξ, ·) is of class C2, and there exists m ≥ 0
such that

sup
ξ∈O

sup
t∈R

|Dj
t gk(ξ, t)|

1 + |t|2m+1−j <∞.

Moreover, the mappings Dj
t gk : O × R→ R are continuous for j = 1, 2.

3. If m ≥ 1, there exist a > 0 and c ∈ R such that

sup
ξ∈O

Dtgk(ξ, t) ≤ −a t2m + c, t ∈ R.(2.1)

Notice that if ck and ckj are continuous functions from O into R for k = 1, . . . , r
and j = 1, . . . , 2m, and

inf
ξ∈O

ck(ξ) > 0,

then, for any k = 1, . . . , r, the function

gk(ξ, t) = ck(ξ) t
2m+1 +

2m∑
j=1

ckj(ξ) t
j

fulfills the conditions of the Hypothesis 1.
Now we define the operator F by setting for any function x : O → R

r

F (x)(ξ) = f(ξ, x(ξ)), ξ ∈ O.

If we set p
 = 2m+2 and q
 = (2m+2)/(2m+1), then F is continuous from Lp�(O;R r)
into Lq�(O;R r), and if m ≥ 1, it is twice Fréchet differentiable. In particular, from
(2.1) and the mean-value theorem for x, y ∈ Lp�(O;R r), it holds that

〈F (x)− F (y), x− y〉H ≤ c |x− y|2H .(2.2)

In the same way, we have that the functional F is twice differentiable and dissipative
from E into itself. (For more details on the properties of F we refer to [7] and [9].)
Notice that due to the growth conditions on f , the functional F is not even well
defined in H.



STATIONARY H–J EQUATIONS IN HILBERT SPACES 829

As in [9], we can construct a sequence of functionals {Fα}α which are Lipschitz
continuous both in H and in E and such that for any x, y ∈ H

〈Fα(x)− Fα(y), x− y〉H ≤ c |x− y|2H(2.3)

for a suitable constant c independent of α > 0. Moreover, they are twice Fréchet
differentiable in E and for each j ≤ 2 and R > 0

lim
α→0

sup
|x|E≤R

|DjFα(x)−DjF (x)|Lj(E) = 0.

Concerning the differential operator A = (A1, . . . ,Ar), we assume that for any
k = 1, . . . , r

Ak(ξ,D) =

d∑
i,j=1

akij(ξ)
∂2

∂ξi∂ξj
+

d∑
i=1

bki (ξ)
∂

∂ξi
, ξ ∈ O.

The coefficients akij and bki are of class C1(O), and for any ξ ∈ O the matrix [akij(ξ)]

is symmetric and strictly positive, uniformly with respect to ξ ∈ O. The boundary
operators Bk are given by

Bk(ξ,D) = I or Bk(ξ,D) =

d∑
i,j=1

akij(ξ)νj(ξ)
∂

∂ξi
, ξ ∈ O,

where ν is the exterior normal to the boundary of O.
We denote by A the realization in H of the differential operator A equipped with

the boundary conditions B. The unbounded operator A : D(A) ⊂ H → H generates
an analytic semigroup et A, which is not restrictive to assume of negative type. Thus
we have

〈Ax, x〉H ≤ 0, x ∈ D(A).(2.4)

Notice that each Lp(O;R r), p ∈ [1,+∞], is invariant for the semigroup et A, and if
p > 1, then et A is analytic in Lp(O;R r). Moreover, E is invariant for et A as well,
and et A generates an analytic semigroup in E which is not strongly continuous. (For
the proofs of these facts we refer to [15] and [27].)

Now, for any k = 1, . . . , r we define

Gk(ξ,D) =

d∑
i=1


bki (ξ)− d∑

j=1

∂akij
∂ξj

(ξ)


 ∂

∂ξi
, ξ ∈ O,

and by difference we set Ck = Ak − Gk. The realization C of the operator C =
(C1, . . . , Cr) with the boundary conditions B generates in H a self-adjoint analytic
semigroup et C . In what follows we denote by Q the bounded linear operator of
components Q1, . . . , Qr.

Hypothesis 2.
1. There exists a complete orthonormal basis {ek} in H which diagonalizes C
such that supk∈N |ek|E <∞. The corresponding set of eigenvalues is denoted
by {−αk}.



830 SANDRA CERRAI

2. The bounded linear operator Q : H → H is nonnegative and diagonal with re-
spect to the complete orthonormal basis {ek} which diagonalizes C. Moreover,
if {λk} is the corresponding set of eigenvalues, we have

∞∑
k=1

λ2
k

α1−γ
k

< +∞

for some γ > 0.
3. There exists ε < 1 such that

D((−C)
ε
2 ) ⊂ D(Q−1).

If the operator A with the boundary conditions B is smooth enough, then αk �
k2/d. Thus, if we assume that λk � α−ρ

k , when d ≤ 3 it is possible to find some ρ such
that the conditions of Hypothesis 2 are verified. (For more details see [7] and [8].)

In what follows we shall denote by Pn the projection operator of H onto Hn,
the subspace generated by the eigenfunctions {e1, . . . , en}. Then for any x ∈ H we
define Anx = PnAPnx and Fα,n(x) = Pn(Fα(Pnx)). It is immediate to check that
there exists a constant c independent of α > 0 and n ∈ N such that

〈Fα,n(x)− Fα,n(y), x− y〉H ≤ c |x− y|2H .(2.5)

Next, let {wk(t)} be a sequence of mutually independent real-valued Brownian
motions defined on a stochastic basis (Ω,F ,Ft,P). The cylindrical Wiener process
w(t) is formally defined as

∞∑
k=1

ekwk(t),

where {ek} is the orthonormal basis of H introduced in Hypothesis 2(1). Under the
Hypotheses 2(1) and 2(2) it is possible to show that the linear problem associated
with the system (1.1),

dz(t) = Az(t) dt+Qdw(t), z(0) = 0,(2.6)

admits a unique solution wA(t) which is the mean-square Gaussian process with values
in H given by

wA(t) =

∫ t

0

e(t−s)AQdw(s).

As shown, for example, in [14], the process wA belongs to C([0,+∞)×O), P almost
surely (a.s), and for any p ≥ 1 and T > 0 it holds that

E sup
t∈ [0,T ]

|wA|pE <∞.(2.7)

3. The transition semigroup. By using the notations introduced in the pre-
vious section, the system (1.1) can be rewritten as

dy(t) = [Ay(t) + F (y(t)) + z(t)] dt+Qdw(t), y(0) = x.(3.1)

The following theorem is proved in [14] in the uncontrolled case. The proof in the
controlled case is analogous; thus we omit it. (For more details we refer also to [7]
and [8].)
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Theorem 3.1. Assume Hypotheses 1 and 2.
1. For any x ∈ E and for any adapted process z ∈ L2(Ω;Lp(0,+∞;H)) with

p > 4/(4−d), there exists a unique mild solution y(·;x, z) for the problem (3.1)
which belongs to L2 (Ω;C((0, T ];E) ∩ L∞(0, T ;E)), for any T > 0. This
means that

y(t;x, z) = et Ax+

∫ t

0

e(t−s)AF (y(s;x, z)) ds+ wA(t),(3.2)

where wA(t) is the solution of the linear system (2.6). Moreover, it holds that

|y(t;x, z)|E ≤ c(t)

(
|x|E + |z|2m+1

Lp(0,+∞;H) + sup
s∈ [0,t]

|wA(s)|2m+1
E

)
,(3.3)

P-a.s. for a suitable continuous increasing function c(t).
2. For any x ∈ H and for any adapted process z ∈ L2(Ω;L2(0,+∞;H)), there
exists a unique generalized solution y(·;x, z) ∈ L2(Ω;C([0,+∞);H)) for the
problem (3.1). This means that for any sequence {zn} ⊂ L2(Ω;Lp(0,+∞;H))
converging to z in L2(Ω;L2(0,+∞;H)) and for any sequence {xn} ⊂ E con-
verging to x in H, the corresponding sequence of mild solutions {y(·;xn, zn)}
converges to the process y(·;x, z) in C([0, T ];H), P-a.s., for any fixed T > 0.
Moreover, it holds that

|y(t;x, z)|H ≤ c(t)

(
|x|H + |z|2m+1

L2(0,+∞;H) + sup
s∈ [0,t]

|wA(s)|2m+1
E

)
,

P-a.s., for a suitable continuous increasing function c(t).
3. The generalized solution y(·;x, z) belongs to L2m+2(0,+∞;L2m+2(O;R r)),

P-a.s., and fulfills the integral equation (3.2).
4. For any x1, x2 ∈ H and z1, z2 ∈ L2(Ω;L2(0,+∞;H)) it holds that

|y(t;x1, z1)− y(t;x2, z2)|H ≤ c(t)
(|x1 − x2|H + |z1 − z2|L2(0,t;H)

)
,(3.4)

P-a.s., for a suitable continuous increasing function c(t).
Next, for any α > 0, we introduce the approximating problem

dy(t) = (Ay(t) + Fα(y(t)) + z(t)) dt+Qdw(t), y(0) = x.(3.5)

If x ∈ H and z ∈ L2(Ω;L2(0,+∞;H)), the system (3.5) admits a unique mild
solution yα(·;x, z) ∈ L2 (Ω;C([0,+∞);H)). If x ∈ E and z ∈ L2(Ω;Lp(0,+∞;H))
with p > 4/(4−d), then yα(·;x, z) ∈ L2 (Ω;C((0, T ];E) ∩ L∞(0, T ;E)) for any T > 0.
Moreover, an estimate analogous to (3.3) holds, uniformly with respect to α > 0.
Namely, there exists an increasing continuous function c(t) independent of α such
that

|yα(t;x, z)|E ≤ c(t)

(
|x|E + |z|2m+1

Lp(0,+∞;H) + sup
s∈ [0,t]

|wA(s)|2m+1
E

)
,(3.6)

P-a.s. The following approximation result has been proved already in [9].
Proposition 3.2. Under the Hypotheses 1 and 2, for any q ≥ 1 there exists

p ≥ 1 such that if x ∈ E and z ∈ Lp(Ω;L∞(0,+∞;H)), then it holds that

lim
α→0

E |y(t;x, z)− yα(t;x, z)|qE = 0, P-a.s.,(3.7)
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uniformly with respect to (t, x) in bounded sets of [0,+∞)× E and z in the set

M2
R =

{
z ∈ L2(Ω;L2(0,+∞;H)) : sup

t≥0
|z(t)|H ≤ R, P-a.s.

}
(3.8)

for any R ≥ 0.
For any α > 0 and n ∈ N, we denote by yα,n(·;x, z) the unique strong solution

in L2(Ω;C([0,+∞);H)) of the approximating problem

dy(t) = (Any(t) + Fα,n(y(t)) + Pnz(t)) dt+Qndw(t), y(0) = Pnx,(3.9)

with x ∈ H and z ∈ L2(Ω;L2(0,+∞;H)) adapted. In [9, Lemma 3.4] we have shown
that for any fixed R, T > 0

lim
n→+∞ sup

|x|H≤R
|yα,n(·;x, z)− yα(·;x, z)|L2(Ω;C([0,T ];H)) = 0.(3.10)

Moreover, we have

|yα,n(t;x, z)|H ≤ c(t)

(
|x|H + |z|2m+1

L2(0,+∞;H) + sup
s∈ [0,t]

|wA(s)|2m+1
E

)
, P-a.s.

(3.11)

In what follows we shall denote by y(t;x) the solution of (3.1) with z = 0. In [7,
Theorem 7.4] we have shown that if f(ξ, ·) is k-times differentiable, then for any t ≥ 0
the mapping

E → L2(Ω;E), x �→ y(t;x)

is k-times Fréchet differentiable. In particular, the first derivative Dy(t;x)h is the
unique solution of the linearized problem

dv

dt
(t) = Av(t) +DF (y(t;x))v(t), v(0) = h,

and it holds that

sup
x∈E
|Dy(t;x)h|H ≤ ec t|h|H , P-a.s.

If x, h ∈ H, then, as shown in [8], the problem above admits a unique generalized
solution v(t;x, h) which is not intended to be the mean-square derivative of y(t;x) in
general.

In [6] we have proved that, since Fα and Fα,n are Lipschitz continuous, yα(t;x)
and yα,n(t;x) are twice mean-square differentiable with respect to x ∈ H along any
direction h ∈ H. In addition, their derivatives belong to D(A1/2) ⊂ D(Q−1) and for
any T > 0

sup
x∈H

|Dyα(·;x)h|L∞(0,T ;H)∩L2(0,T ;D(A1/2)) ≤ cT |h|H , P-a.s.,

sup
x∈H

|Dyα,n(t;x)h|L∞(0,T ;H)∩L2(0,T ;D(A1/2)) ≤ cT |h|H , P-a.s.,
(3.12)
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for a constant cT which is independent of α > 0 and n ∈ N. In [9, Lemma 4.1] we
have also proved that

lim
α→0

E sup
|h|H≤1

|Dy(·;x)h−Dyα(·;x)h|2L∞(0,T ;H)∩L2(0,T ;D((−A)1/2)) = 0,

uniformly with respect to x in bounded sets of E, and in [9, Lemma 4.2] we have
proved that

lim
n→+∞ E sup

|h|H≤1

|Dyα(·;x)h−Dyα,n(·;x)h|2L∞(0,T ;H)∩L2(0,T ;D((−A)1/2)) = 0,

uniformly with respect to x in bounded sets of H.
Next we define the transition semigroup Pt corresponding to the system (3.1) by

setting for any ϕ ∈ Bb(H) and x ∈ H

Ptϕ(x) = Eϕ(y(t;x)), t ≥ 0.

In an analogous way, we define the semigroups Pαt and Pα,nt associated, respectively,
to the systems (3.5) and (3.9). Due to (3.7), for any ϕ ∈ Cb(H) and R > 0

lim
α→0

sup
|x|E≤R

|Pαt ϕ(x)− Ptϕ(x)| = 0,(3.13)

uniformly for t in bounded sets of [0,+∞). Moreover, due to (3.10) we have that

lim
n→+∞ sup

|x|H≤R
|Pα,nt ϕ(x)− Pαt ϕ(x)| = 0,(3.14)

uniformly for t in bounded sets of [0,+∞). It is important to notice that all the
properties of the semigroup Pt which we are going to describe are fulfilled by the
semigroups Pαt and Pα,nt as well.

From (3.4) it easily follows that Pt maps Cb(H) into itself as a contraction. In
general Pt is not strongly continuous in Cb(H). (See [4] for a counter example even
in finite dimension.) Nevertheless, as y(·;x) ∈ L2(Ω;C([0,+∞);H)) for any fixed
x ∈ H, by the dominated convergence theorem, we have that if ϕ ∈ Cb(H), then the
mapping

[0,+∞)→ R, t �→ Ptϕ(x)

is continuous. Thus, by proceeding as in [4], we define the generator L of Pt as the
unique closed operator L : D(L) ⊂ Cb(H)→ Cb(H) such that

R(λ,L)ϕ(x) =

∫ +∞

0

e−λtPtϕ(x) dt, λ > 0,

for any fixed ϕ ∈ Cb(H) and x ∈ H. In a similar way we define the generators Lα
and Lα,n corresponding, respectively, to the semigroups Pαt and Pα,nt .

In [4] it is shown that for any ϕ ∈ D(L) and x ∈ H the mapping

[0,+∞)→ R, t �→ Ptϕ(x)

is differentiable and

d

dt
Ptϕ(x) = L(Ptϕ)(x) = Pt(Lϕ)(x).
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The same holds for Lα and Lα,n. In particular, if ϕ ∈ C2
b (H), we have that Pα,ns ϕ ∈

D(Lα,n), for any α > 0, n ∈ N, and s ≥ 0, and

Lα,n(P
α,n
s ϕ) = Lα,n(Pα,ns ϕ),(3.15)

where the differential operator Lα,n is defined by

Lα,nϕ(x) = 1

2
Tr
[
Q2
nD

2ϕ(x)
]
+ 〈Anx+ Fα,n(x), Dϕ(x)〉H , x ∈ H.(3.16)

Actually, if we define ψ = λPα,ns ϕ− Lα,n(Pα,ns ϕ) for some λ > 0, we have that

R(λ,Lα,n)ψ(x) =

∫ +∞

0

e−λ t
[
λPα,nt+sϕ(x)− Pα,nt Lα,n(Pα,ns ϕ)(x)

]
dt.

It is not difficult to prove that, in general, if ϕ is twice differentiable, then

Pα,nt (Lα,nϕ)(x) = Lα,n(Pα,nt ϕ)(x).

Thus, as Pα,ns ϕ ∈ C2
b (H), from the Itô formula we have

Pα,nt Lα,n(Pα,ns ϕ)(x) = Lα,n
(
Pα,nt+sϕ

)
(x) =

d

dt
(Pα,nt+sϕ(x)).

This allows us to conclude that

R(λ,Lα,n)ψ(x) = −
∫ +∞

0

d

dt
(e−λ tPα,nt+sϕ(x)) dt = Pα,ns ϕ(x),

so that Pα,ns ϕ ∈ D(Lα,n) and (3.15) holds.
In [8] we have proved that the semigroup Pt has a smoothing effect. Namely, it

maps Bb(H) into C1
b (H) for any t > 0, and for i ≤ j = 0, 1 it holds that

‖Ptϕ‖j ≤ c (t ∧ 1)−
(j−i)(1+ε)

2 ‖ϕ‖i,(3.17)

where ε is the constant introduced in Hypothesis 2(3). As far as the semigroups Pαt
and Pα,nt are concerned, in [6] it is proved that they map Bb(H) into C2

b (H) for any
t > 0, and

‖Pαt ϕ‖j + ‖Pα,nt ϕ‖j ≤ cα (t ∧ 1)−
(j−i)(1+ε)

2 ‖ϕ‖i(3.18)

for any i ≤ j ≤ 2, for some constant cα independent of n. Moreover, if i ≤ j ≤ 1, the
constant cα is independent of α as well.

We conclude, recalling that in [9] it has been proved that if ϕ ∈ Cb(H), then for
any R > 0

lim
α→0

sup
|x|E≤R

|D(Pαt ϕ)(x)−D(Ptϕ)(x)|H = 0,(3.19)

uniformly for t in bounded sets of [δ,+∞) with δ > 0. Moreover, it has been proved
that

lim
n→+∞ sup

|x|H≤R
|D(Pα,nt ϕ)(x)−D(Pαt ϕ)(x)|H = 0,(3.20)

uniformly for t in bounded sets of [δ,+∞) with δ > 0.
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4. The Hamilton–Jacobi equation. We are here concerned with the station-
ary Hamilton–Jacobi equation

λϕ(x)− Lϕ(x) +K(Dϕ(x)) = g(x), x ∈ H.(4.1)

Our aim is to show that such an equation admits a unique solution ϕ(λ, g) for any
λ > 0 and g ∈ Cb(H). To this purpose we first prove a regularity result for the
elements of D(L).

Lemma 4.1. Assume Hypotheses 1 and 2. Then D(L) ⊂ C1
b (H), and for any

λ > 0 and g ∈ Cb(H) it holds that

‖R(λ,L)g‖1 ≤ ρ(λ)‖g‖0,(4.2)

where ρ(λ) = c(λ
ε−1
2 + λ−1).

Proof. We recall that if ϕ ∈ Cb(H), then Ptϕ ∈ C1
b (H) for any t > 0. Thus for

any x, h ∈ H and λ > 0 we have

R(λ,L)g(x+ h)−R(λ,L)g(x) =
∫ +∞

0

e−λ t(Ptg(x+ h)− Ptg(x)) dt

=

∫ +∞

0

e−λ t 〈D(Ptg)(x), h〉H dt+ E(x, h),

where

E(x, h) =

∫ +∞

0

e−λ t
∫ 1

0

〈D(Ptg)(x+ θh)−D(Ptg)(x), h〉H dθ dt.

Due to (3.17) we have∣∣∣∣
∫ +∞

0

e−λ t 〈D(Ptg)(x), h〉H dt

∣∣∣∣
≤ c

∫ +∞

0

e−λ t(t ∧ 1)−
1+ε
2 dt |h|H ‖g‖0 = c

(
λ
ε−1
2 + λ−1

)
|h|H ‖g‖0.

Moreover, as D(Ptg) is continuous in H, by the dominated convergence theorem we
easily have that

lim
|h|H→0

|E(x, h)|
|h|H = 0.

This implies that R(λ,L)g ∈ C1
b (H), and for any x, h ∈ H

〈D(R(λ,L)g)(x), h〉H =

∫ +∞

0

e−λ t 〈D(Ptg)(x), h〉H dt(4.3)

so that the estimate (4.2) holds true.
Remark 4.2. Notice that due to (3.18) we can repeat the arguments used above,

and we can show that both D(Lα) and D(Lα,n) are contained in C1
b (H), and a

formula analogous to (4.3) holds for the derivatives of R(λ,Lα)g and R(λ,Lα,n)g
when g ∈ Cb(H). In particular, it holds that

‖R(λ,Lα)g‖1 + ‖R(λ,Lα,n)g‖1 ≤ ρ(λ)‖g‖0.(4.4)



836 SANDRA CERRAI

Moreover, as

‖Pαt ϕ‖i + ‖Pα,nt ϕ‖i ≤ cα (t ∧ 1)−
(i−j)(1+ε)

2 ‖ϕ‖j , j ≤ i ≤ 2,

for a constant cα independent of n ∈ N, by interpolation we have that for any θ1, θ2 ∈
[0, 1]

‖Pαt ϕ‖1+θ1 + ‖Pα,nt ϕ‖1+θ1 ≤ cα (t ∧ 1)−
(θ1−θ2+1)(1+ε)

2 ‖ϕ‖θ2 .
By proceeding as in the proof of the previous lemma, this implies that if ϕ ∈ Cθ2b (H),

then R(λ,Lα)ϕ and R(λ,Lα,n)ϕ are in C1+θ1
b (H) for any θ1 < θ2 + (1 − ε)/(1 + ε)

and

‖R(λ,Lα)ϕ‖1+θ1 + ‖R(λ,Lα,n)ϕ‖1+θ1 ≤ cα

(
λ

(θ1−θ2+1)(ε+1)
2 −1 + λ−1

)
‖g‖θ2 .(4.5)

In particular, we have that D(Lα) and D(Lα,n) are contained in C1+θ
b (H) for any

θ < (1− ε)/(ε+ 1).

4.1. Lipschitz hamiltonian K. In the proof of the existence and uniqueness
of solutions for the problem (4.1) we proceed in several steps. First we assume the
Lipschitz continuity of the hamiltonian K.

Hypothesis 3. The mapping K : H → R is Fréchet differentiable and Lipschitz
continuous together with its derivative. Moreover, K(0) = 0.

Notice that the condition K(0) = 0 is not restrictive, as we can substitute g by
g −K(0).

By using the Lemma 4.1 we get the following result.
Proposition 4.3. Under Hypotheses 1, 2, and 3, there exists λ0 > 0 such

that (4.1) admits a unique solution ϕ(λ, g) ∈ C1
b (H) for any λ > λ0 and for any

g ∈ Cb(H).
Proof. The equation (4.1) is equivalent to the equation

ϕ = R(λ,L) (g −K(Dϕ)) = Γ(λ, g)(ϕ).

Due to Lemma 4.1, if ϕ ∈ C1
b (H) and g ∈ Cb(H), then Γ(λ, g)(ϕ) ∈ C1

b (H). Thus if
we show that for some λ0 > 0 the mapping Γ(λ, g) is a contraction in C1

b (H) for any
λ > λ0, our thesis follows.

As K is Lipschitz continuous for any ϕ1, ϕ2 ∈ C1
b (H), we have

‖R(λ,L)(K(Dϕ1)−K(Dϕ2))‖1 ≤ c ρ(λ)‖ϕ1 − ϕ2‖1.
Thus, if we choose λ0 such that cρ(λ0) = 1, we have that Γ(λ, g) is a contraction in
C1
b (H) for any λ > λ0. This implies that it admits a unique fixed point ϕ ∈ C1

b (H),
which is the unique solution of (4.1) in C1

b (H).
Remark 4.4. By using (4.4) it is possible to prove that there exists λ0 > 0

sufficiently large such that the mappings

Γα(λ, g)(ϕ) = R(λ,Lα)(g −K(Dϕ)), α > 0,

are contractions in C1
b (H) for any λ > λ0 and for any g ∈ Cb(H), and the approxi-

mating Hamilton–Jacobi equations

λϕ− Lαϕ+K(Dϕ) = g(4.6)
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admit a unique solution ϕα(λ, g) ∈ C1
b (H). Moreover, as the function ρ(λ) in (4.4)

does not depend on α > 0, the constant λ0 does not depend on α either.
Lemma 4.5. Under Hypotheses 1, 2, and 3, for any λ > 0 and g ∈ Cb(H) we

have

lim
α→0

sup
|x|E≤R

∣∣Dj
(
Γkα(λ, g)(0)− Γk(λ, g)(0)

)
(x)
∣∣
Lj(H)

= 0, j = 0, 1,(4.7)

for any k ∈ N and R > 0.
Proof. We proceed by induction. For k = 1 the limit (4.7) is trivially verified.

Assume that (4.7) holds for some k ≥ 1. We show that this implies that (4.7) holds
for k + 1. We have

Dj
(
Γk+1
α (λ, g)(0)− Γk+1(λ, g)(0)

)
= Dj

(
R(λ,Lα)

[
g −K (

D(Γkα(λ, g)(0))
)]−R(λ,L) [g −K (

D(Γk(λ, g)(0))
)])

.

In general, if f ∈ Cb(H) and {fα} is any bounded generalized sequence of Cb(H)
such that for any R > 0

lim
α→0

sup
|x|E≤R

|fα(x)− f(x)| = 0,(4.8)

then for any R > 0 and j = 0, 1 we have

lim
α→0

sup
|x|E≤R

|Dj(R(λ,Lα)(fα − f))(x)|H = 0.(4.9)

Indeed, as the formula (4.3) holds for the derivative of R(λ,Lα), as well, for any
x ∈ H we have

Dj(R(λ,Lα)(fα − f))(x) =
∫ +∞

0

e−λ tDj (Pαt (fα − f)) (x) dt.

If x lies in a bounded set of E, due to (2.7) and (3.6) the solution yα(t;x)(ω) lies in
a bounded set of E for P-almost all ω ∈ Ω. Therefore, by (4.8) for any R > 0 this
yields

lim
α→0

sup
|x|E≤R

|(fα − f)(yα(t;x))| = 0, P-a.s.,(4.10)

and by applying the dominated convergence theorem we get (4.9) for j = 0. As proved
in [5], for any t > 0 we have

〈D(Pαt (fα − f))(x), h〉H =
1

t
E (fα − f)(yα(t;x))

∫ t

0

〈
Q−1Dyα(s;x)h, dw(s)

〉
H
,

where Dyα(t;x)h is the mean-square derivative of yα(t;x) along the direction h ∈ H.
Hence, thanks to (3.12), by interpolation we easily get

|D(Pαt (fα − f))(x)|H ≤ c (t ∧ 1)−
1+ε
2

(
E |(fα − f)(yα(t;x))|2

)1/2

,

and, thanks to (4.10), this implies (4.9) for j = 1.
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Thus, since from the inductive hypothesis and the Lipschitz continuity of K the
sequence {K(D[Γkα(λ, g)(0)])} and K(D[Γk(λ, g)(0)]) fulfill (4.8), we can conclude
that for any R > 0

lim
α→0

sup
|x|E≤R

∣∣Dj
(
R(λ,Lα)

[
K(D[Γk+1

α (λ, g)(0)]))−K(D[Γk+1
α (λ, g)(0)])

])
(x)
∣∣ = 0.

(4.11)

Now, if f ∈ C1
b (H), for any x ∈ H we have

Dj [(R(λ,Lα)−R(λ,L)) (g −K(Df))] (x)

=

∫ +∞

0

e−λ tDj [(Pαt − Pt)(g −K(Df))] (x) dt.

Then, by using the estimates (3.17) and (3.18) and the limits (3.13) and (3.19), we
get that

lim
α→0

sup
|x|E≤R

∣∣Dj [(R(λ,Lα)−R(λ,L)) (g −K(Df))] (x)
∣∣
H

= 0

for any R > 0. As Γk(λ,L)(0) ∈ C1
b (H), this implies that

lim
α→0

sup
|x|E≤R

∣∣Dj
[
(R(λ,Lα)−R(λ,L)) (g − Γk(λ, g)(0))

]
(x)
∣∣
H

= 0,

and recalling (4.11) we can conclude that

lim
α→0

sup
|x|E≤R

∣∣Dj
(
Γk+1
α (λ, g)(0)− Γk+1(λ, g)(0)

)
(x)
∣∣ = 0.

By induction this yields (4.7).
In the next proposition we show that the solution ϕ(λ, g) of the problem (4.1)

can be approximated by the solutions ϕα(λ, g) of the problems (4.6).
Proposition 4.6. Assume Hypotheses 1, 2, and 3. Then, if λ0 is the constant

introduced in the Proposition 4.3, for any λ > λ0 and g ∈ Cb(H) it holds that

lim
α→0

sup
|x|E≤R

∣∣Dj (ϕ(λ, g)− ϕα(λ, g)) (x)
∣∣
Lj(H)

= 0, j = 0, 1,(4.12)

for any R > 0. In particular, for any λ > 0 we have

lim
α→0

sup
|x|E≤R

∣∣Dj [ϕ(λ, g)− ϕα(λ+ λ0, g + λ0 ϕ(λ, g))] (x)
∣∣
Lj(H)

= 0, j = 0, 1.

(4.13)

Proof. Let us fix λ0 as in Proposition 4.3. We have seen that ϕ = ϕ(λ, g) and
ϕα = ϕα(λ, g) are, respectively, the unique fixed points of the mappings Γ(λ, g) and
Γα(λ, g). Since for any λ > λ0 and g ∈ Cb(H) the contraction constants of Γα(λ, g)
are the same for all α > 0, for any ε > 0 there exists kε ∈ N such that

‖Γkε(λ, g)(0)− ϕ‖1 + sup
α>0
‖Γkεα (λ, g)(0)− ϕα‖1 ≤ ε.

Thus for j = 0, 1 and x ∈ H we have∣∣Dj (ϕ− ϕα) (x)
∣∣ ≤ ε+

∣∣Dj
(
Γkε(λ, g)(0)− Γkεα (λ, g)(0)

)
(x)
∣∣ ,
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and due to (4.7) this implies (4.12). Now, since ϕ(λ, g) = ϕ(λ + λ0, g + λ0 ϕ(λ, g)),
by using (4.12) we can conclude that (4.13) holds true.

Remark 4.7. For any α > 0 and n ∈ N, consider the problem

λϕ− Lα,nϕ+Kn(Dϕ) = gn,(4.14)

where Kn(x) = K(Pnx) and gn(x) = g(Pnx) for each n ∈ N and x ∈ H. By
proceeding as for the problems (4.1) and (4.6), it is possible to show that there exists
λ0 large enough such that for any g ∈ Cb(H) and λ > λ0 there exists a unique
solution ϕα,n(λ, g) ∈ C1

b (H). Such a solution is given by the unique fixed point of
the mapping

Γα,n(λ, g)(ϕ) = R(λ,Lα,n)(gn −Kn(Dϕ)).

By using arguments analogous to those used in the Lemma 4.5, due to the estimates
(3.11) and (3.18), and due to the limits (3.14) and (3.20), there exists λ0 > 0 such
that for λ > λ0 and g ∈ Cb(H) it holds that

lim
n→+∞ sup

|x|H≤R

∣∣Dj
(
Γkα,n(λ, g)(0)− Γkα(λ, g)(0)

)
(x)
∣∣
Lj(H)

= 0, j = 0, 1,

for any α > 0, k ∈ N, and R > 0. Thus, by proceeding as in the proof of Proposition
4.6, due to (3.14) and (3.20) it is possible to verify that there exists λ0 > 0 such that
if λ > λ0, then for any α > 0, and R > 0 it holds that

lim
n→+∞ sup

|x|H≤R

∣∣Dj [ϕα(λ, g)− ϕα,n(λ, g)] (x)
∣∣
Lj(H)

= 0.(4.15)

In the next proposition we show that if the datum g belongs to C1
b (H), then the

approximating problems (4.6) and (4.14) have a solution of class C2.
Lemma 4.8. Under Hypotheses 1, 2, and 3, if g ∈ C1

b (H) and λ > 0, then the
solutions ϕα(λ, g) and ϕα,n(λ, g) of the problems (4.6) and (4.14) belong to C2

b (H).
Moreover, for any R > 0 and λ > 0

sup
‖g‖1≤R

‖ϕα(λ, g)‖2 <∞.(4.16)

Proof. We prove the lemma only for the problem (4.6), as the proof for the
problem (4.14) is identical.

As shown in Remark 4.2, D(Lα) ⊂ C1+θ
b (H) for any θ < (1− ε)/(1 + ε). Thus, if

ϕα(λ, g) is the solution of the problem (4.6), we have that ϕα(λ, g) ∈ C1+θ0
b (H) for

some 0 < θ0 < (1− ε)/(1 + ε). As we have

ϕα(λ, g) = R(λ,Lα) (g −K(Dϕα(λ, g))) ,

by using again Remark 4.2 it follows that ϕα(λ, g) ∈ C1+2 θ0
b (H). Therefore, by

repeating this argument a finite number of steps we get that ϕα(λ, g) ∈ C2
b (H).

The estimate (4.16) follows as above by applying (4.5) a finite number of
times.

Due to (3.15), the previous lemma implies that if g ∈ C1
b (H), then ϕα,n =

ϕα,n(λ, g) is a strict solution of the problem (4.14); that is,

λϕα,n − Lα,nϕα,n +Kn(Dϕ) = gn,
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where Lα,n is the differential operator introduced in (3.16).
Now, for any ϕ ∈ D(L) we define

N(ϕ) = Lϕ−K(Dϕ).(4.17)

In the same way, for any α > 0 and n ∈ N we define Nα(ϕ) = Lαϕ − K(Dϕ) and
Nα,n(ϕ) = Lα,nϕ−Kn(Dϕ).

Theorem 4.9. Under Hypotheses 1, 2, and 3, the operator N defined by (4.17)
is m-dissipative. Thus for any λ > 0 and for any g ∈ Cb(H) there exists a unique
solution ϕ(λ, g) ∈ D(L) for the problem (4.1).

Thanks to Proposition 4.3, in order to show that N is m-dissipative, it suffices to
show that N is dissipative. To this purpose, we first give the following preliminary
result.

Lemma 4.10. Assume that Hypotheses 1, 2, and 3 hold. Then there exists λ0 > 0
such that for any λ > λ0 and ϕ1, ϕ2 ∈ D(Lα)

‖ϕ1 − ϕ2‖0 ≤ 1

λ
‖λ(ϕ1 − ϕ2)− (Nα(ϕ1)−Nα(ϕ2))‖0 .

Proof. We set g1 = λϕ1−Nα(ϕ1) and g2 = λϕ2−Nα(ϕ2), and for any n ∈ N we
set g1,n(x) = g1(Pnx) and g2,n(x) = g2(Pnx), x ∈ H. Then for λ large enough there
exist ϕ1,n and ϕ2,n in D(Lα,n) such that

λϕ1,n −Nα,n(ϕ1,n) = g1,n, λϕ2,n −Nα,n(ϕ2,n) = g2,n.

If we show that

‖ϕ1,n − ϕ2,n‖0 ≤ 1

λ
‖g1,n − g2,n‖0,(4.18)

we are done. Actually, for any x ∈ H this implies that

|ϕ1,n(x)− ϕ2,n(x)| ≤ 1

λ
‖g1,n − g2,n‖0 ≤ 1

λ
‖g1 − g2‖0,

and due to (4.15) we can take the limit as n→ +∞, and we get

|ϕ1(x)− ϕ2(x)| ≤ 1

λ
‖g1 − g2‖0.

By taking the supremum for x ∈ H, we can conclude.
Thus in order to conclude the proof we have to show that the operator Nα,n fulfills

(4.18). The operator Lα,n satisfies the same conditions of the operator L studied in
[5]; thus, thanks to [5, Proposition 7.5],

D(Lα,n) =


ϕ ∈

⋂
p≥1

W 2,p
loc (R

n) ∩ Cb(R n) ; Lα,nϕ ∈ Cb(R
n)


 ,

Lα,nϕ = Lα,nϕ.
Now we remark that

Kn(Dϕ1,n(x))−Kn(Dϕ2,n(x))

=

〈∫ 1

0

DKn(λDϕ1,n(x) + (1− λ)Dϕ2,n(x)) dλ,Dϕ1,n(x)−Dϕ2,n(x)

〉
;
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thus, if we set

Uα,n(x) =

∫ 1

0

DKn(λDϕ1,n(x) + (1− λ)Dϕ2,n(x)) dλ,

we have

λ(ϕ1,n − ϕ2,n)(x)− Lα,n(ϕ1,n − ϕ2,n)(x)

+ 〈Uα,n(x), D(ϕ1,n − ϕ2,n)(x)〉 = g1,n(x)− g2,n(x).

Since the function Uα,n is uniformly continuous, as ϕ1,n and ϕ2,n belong to C1
b (H),

the operator Nα,n defined by

Nα,nψ(x) = Lα,nψ(x)− 〈Uα,n(x), Dψ(x)〉

is of the same type as the operator L studied in [5]. Therefore, we can adapt the
proof of [5, Lemma 7.4] to the present situation, and we obtain

‖ϕ1,n − ϕ2,n‖0 ≤ 1

λ
‖λ(ϕ1,n − ϕ2,n)−Nα,n(ϕ1,n − ϕ2,n)‖0 =

1

λ
‖g1,n − g2,n‖0.

Proof of Theorem 4.9. Let us fix λ > 0 and ϕ1, ϕ2 ∈ D(L), and let us define
g1 = λϕ1−N(ϕ1) and g2 = λϕ2−N(ϕ2). If λ0 is the maximum between the constant
introduced in Remark 4.4 and the constant introduced in Lemma 4.10, for any α > 0
there exist ϕ1,α, ϕ2,α ∈ D(Lα) such that

(λ+ λ0)ϕ1,α −Nαϕ1,α = g1 + λ0 ϕ1, (λ+ λ0)ϕ2,α −Nαϕ2,α = g2 + λ0 ϕ2,

and

‖ϕ1,α − ϕ2,α‖0 ≤ 1

λ+ λ0
‖(g1 − g2) + λ0 (ϕ1 − ϕ2)‖0.

Thus for any x ∈ H we have

|ϕ1,α(x)− ϕ2,α(x)| ≤ 1

λ+ λ0
‖g1 − g2‖0 + λ0

λ+ λ0
‖ϕ1 − ϕ2‖0.

Now, if x ∈ E, due to (4.13) we can take the limit in the left-hand side as α goes to
zero, and we get

|ϕ1(x)− ϕ2(x)| ≤ 1

λ+ λ0
‖g1 − g2‖0 + λ0

λ+ λ0
‖ϕ1 − ϕ2‖0.

As ϕ1 and ϕ2 are continuous in H, the estimate above holds also for x ∈ H, and by
taking the supremum for x ∈ H it follows that

‖ϕ1 − ϕ2‖0 − λ0

λ+ λ0
‖ϕ1 − ϕ2‖0 ≤ 1

λ+ λ0
‖g1 − g2‖0,

so that

‖ϕ1 − ϕ2‖0 ≤ 1

λ
‖g1 − g2‖0.
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4.2. Locally Lipschitz hamiltonian K. We first prove an a priori estimate
which is crucial in order to prove the m-dissipativity of the operator N in the case of
a locally Lipschitz hamiltonian K.

Proposition 4.11. Assume that Hypotheses 1, 2, and 3 hold. Then there exists
some µ0 > 0, which does not depend on K, such that if g ∈ C1

b (H) and λ > µ0, then

‖Dϕ(λ, g)‖0 ≤ ‖Dg‖0.(4.19)

Proof. Let us fix λ, µ > 0 and g ∈ C1
b (H), and let us consider ϕα = ϕα(λ+µ, g+

µϕ(λ, g)) and ϕα,n = ϕα,n(λ+µ, g+µϕ(λ, g)). Since g ∈ C1
b (H), then ϕα,n belongs

to C2
b (H), and it is a strict solution of the problem

(λ+ µ)ϕ−Nα,n(ϕ) = gn + µϕn(λ, g),

where ϕn(λ, g)(x) = ϕ(λ, g)(Pnx). The problem above can be rewritten as

(λ+ µ)ϕ(x)− 1

2

n∑
h=1

λ2
hD

2
hϕ(x)−

n∑
h,k=1

ahkxkDhϕ(x)

−〈Fα(Pnx), Dϕ(x)〉H +K(PnDϕ(x)) = g(Pnx) + µϕ(λ, g)(Pnx),

where Dhϕ(x) = 〈Dϕ(x), eh〉H and ahk = 〈Aek, eh〉H . By differentiating with respect
to xj , by setting ψh = Dhϕ, for h = 1, . . . , n, and by multiplying each side by ψj , we
get

(λ+ µ)ψ2
j −

1

2

n∑
h=1

λ2
hψjD

2
hψj −

n∑
h,k=1

ahkxkψjDhψj −
n∑
h=1

ahjψhψj

−
n∑
h=1

〈Fα,n, eh〉 〈ψjDψj , eh〉 −
n∑
h=1

〈DFα,nejψj , eh〉ψh

+

n∑
h=1

DhK(PnDϕα,n)ψjDhψj = 〈Dgn, ejψj〉+ µ 〈Dϕn(λ, g), ejψj〉 .

Then we sum up over j and by setting z(x) = |Dϕα,n(x)|2H and by taking into account
that

(
D2
hψj

)
ψj =

1

2
D2
h(ψ

2
j )− (Dhψj)

2,

we have

2(λ+ µ) z(x)− 1

2
Tr
[
Q2
nD

2z(x)
]
+

n∑
h,j=1

λ2
h(Dhψj)

2(x)− 〈Anx,Dz(x)〉

−2 〈AnDϕα,n(x), Dϕα,n(x)〉+ 〈DK(Dϕα,n(x)), Dz(x)〉 − 〈Fα(Pnx), Dz(x)〉

−2 〈DFα(Pnx)Dϕα,n(x), Dϕα,n(x)〉 = 2 〈Dg(Pnx) + µDϕ(λ, g)(Pnx), Dϕα,n(x)〉 .
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Therefore, by using (2.3) and (2.4) it follows that

2(λ+ µ) z(x)− 1

2
Tr
[
Q2
nD

2z(x)
]− 〈Anx,Dz(x)〉 − 〈Fα(Pnx), Dz(x)〉

+ 〈DK(Dϕα,n(x)), Dz(x)〉 ≤ 2 〈Dg(x) + µDϕ(λ, g)(Pnx), Dϕα,n(Pnx)〉+ γ z(x)

≤ 2 (‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) |Dϕα,n(x)|H + γ z(x)

for a suitable constant γ ∈ R depending only on F and A.
Now let us consider the equation

dy(t) = [Any(t) + Fα,n(y(t)) + Uα,n(y(t))] dt+Qn dw(t), y(0) = Pnx,(4.20)

where Uα,n(x) = −DK(Dϕα,n(x)) for any x ∈ H. If g ∈ C1
b (H), then ϕα,n ∈ C2

b (H),
and then the mapping Uα,n : H → H is Lipschitz continuous. This implies that there
exists a unique strong solution yα,n(·;x) ∈ L2(Ω;C([0,+∞);H)) for (4.20). If we
denote by Rα,nt the corresponding transition semigroup, it is possible to show that
the solution of the problem

(2(λ+ µ)− γ)ψ(x)− 1

2
Tr
[
Q2
nD

2ψ(x)
]− 〈Anx,Dψ(x)〉 − 〈Fα(Pnx), Dψ(x)〉

+ 〈DK(Dϕα,n(x)), Dψ(x)〉 = 2 (‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) |Dϕα,n(x)|H
for any λ > γ is given by

ψ(x) = 2 (‖Dg‖0 + µ ‖Dϕ(λ, g)‖0)
∫ +∞

0

e−(2(λ+µ)−γ) tRα,nt (|Dϕα,n|H) (x) dt.

(See [5] for a proof.) Thus by a comparison argument we have that

|Dϕα,n(x)|2H ≤
2

2(λ+ µ)− γ (‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) |Dϕα,n(x)|H ,

and if we take λ > 1 + γ/2 = µ0, it follows that

|Dϕα,n(λ+ µ, g + µϕ(λ, g))(x)|H ≤ 1

1 + µ
(‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) .

Due to (4.13) and (4.15), if µ is large enough, we can take first the limit as n goes to
infinity and then the limit as α goes to zero, and for any x ∈ E we get

|Dϕ(x)|H ≤ 1

1 + µ
(‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) .

As ϕ(λ, g) ∈ C1
b (H), the same estimate holds for x ∈ H, and then, by taking the

supremum for x ∈ H, we get

‖Dϕ(λ, g)‖0 ≤ 1

1 + µ
(‖Dg‖0 + µ ‖Dϕ(λ, g)‖0) ,

which immediately yields (4.19).
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Remark 4.12. It is immediate to check that the proof of the previous proposition
adapts to the problem (4.6). Thus there exists λ0 > 0, which is clearly independent
of α > 0, such that for any λ > λ0 and g ∈ C1

b (H)

‖Dϕα(λ, g)‖0 ≤ ‖Dg‖0.

From now on we shall assume that K fulfills the following assumption.
Hypothesis 4. The hamiltonian K : H → R is Fréchet differentiable and is locally

Lipschitz continuous, together with its derivative. Moreover, K(0) = 0.
We want to show that under the hypotheses above the problem (4.1) admits a

unique solution for any λ > µ0 and g ∈ C1
b (H). To this purpose, for any r > 0 let

Kr be a Fréchet differentiable function such that

Kr(x) =




K(x) if |x|H ≤ r,

K

(
(r + 1)x

|x|H

)
if |x|H > r + 1.

(4.21)

It is immediate to check that Kr is Lipschitz continuous, together with its derivative,
for each r > 0, and Kr(x) = K(x) if |x|H ≤ r.

Theorem 4.13. Under Hypotheses 1, 2, and 4 there exists µ0 > 0 such that for
any λ > µ0 and g ∈ C1

b (H) there exists a unique solution ϕ(λ, g) ∈ D(L) for the
problem (4.1).

Proof. For any r > 0 and g ∈ C1
b (H) we define ϕr(λ, g) as the solution of the

problem λϕ − Lϕ +Kr(Dϕ) = g. Due to Proposition 4.11 there exists µ0 > 0 such
that for any λ > µ0

sup
r>0
‖Dϕr(λ, g)‖0 ≤ ‖Dg‖0.

Thus, if we fix r > ‖g‖1, we have that Kr(Dϕr(λ, g)) = K(Dϕr(λ, g)), and then

λϕr(λ, g)− Lϕr(λ, g) +K(Dϕr(λ, g)) = g.

Remark 4.14. The operator N is dissipative. Actually, fix λ > 0 and ϕ1, ϕ2 ∈
D(L), and define gi = λϕi − N(ϕi) for i = 1, 2. If we take r ≥ max (‖ϕ1‖1, ‖ϕ2‖1),
we have

gi = λϕi − Lϕi +Kr(Dϕi), i = 1, 2.

Thus we can apply Theorem 4.9 to the hamiltonian Kr, and we get

‖ϕ1 − ϕ2‖0 ≤ 1

λ
‖g1 − g2‖0,

so thatN is dissipative. In particular, N is closable, and its closure N̄ ism-dissipative,
so that for any λ > 0 and g ∈ Cb(H) there exists a unique solution to the problem

λϕ− N̄(ϕ) = g.
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5. Application to the control problem. Let k : H → (−∞,+∞] be a mea-
surable mapping such that its Legendre transform

K(x) = sup {− 〈x, y〉H − k(y) ; y ∈ H } , x ∈ H,

fulfills Hypothesis 4. It is possible to show that if k is strictly convex and continuously
Fréchet differentiable, if

lim
|y|H→+∞

k(y)

|y|H = 0,

and if Dk : H → L(H) has a continuous inverse which is Lipschitz continuous on
bounded subsets of H, then Hypothesis 4 is verified. An easy example is given by
k(y) = |y|2H .

For any λ > 0 and g ∈ Cb(H) we consider the cost functional

J(x; z) = E

∫ +∞

0

e−λ t [g(y(t)) + k(z(t))] dt,(5.1)

where y(t) = y(t;x, z) is the unique solution of the system (3.1). The corresponding
value function is defined as

V (x) = inf
{
J(x; z) ; z ∈ L2(Ω;L2(0,+∞;H)) adapted

}
.

Our aim is to prove that if ϕ is the unique solution of the Hamilton–Jacobi equation
(4.1), then V (x) = ϕ(x) for any x ∈ H. To this purpose we first prove the following
preliminary result.

Lemma 5.1. Assume Hypotheses 1, 2, and 4. If ϕ = ϕ(λ, g) is the solution of
the problem (4.1) in C1

b (H) and if y(t) = y(t;x, z) is the solution of the controlled
system (3.1), we have

J(x; z) = ϕ(x) + E

∫ +∞

0

e−λ t [K(Dϕ(y(t))) + 〈z(t), Dϕ(y(t))〉H + k(z(t))] dt.

(5.2)

Proof. If r ≥ ‖Dϕ(λ, g)‖0 and if Kr is defined as in (4.21), then we have
K(Dϕ(x)) = Kr(Dϕ(x)) for any x ∈ H, and the problem (4.1) can be rewritten
as

λϕ− Lϕ+Kr(Dϕ) = g.

Now we fix a sequence {gk} ⊂ C1
b (H) converging to g in Cb(H) and for any k, n ∈ N

and α > 0 we denote by ϕkα,n = ϕkα,n(λ+µ, gk+µϕ(λ, g)) the solution of the problem

(λ+ µ)ϕ− Lα,nϕ+Kr,n(Dϕ) = gk,n + µϕn(λ, g),(5.3)

where Kr,n(x) = Kr(Pnx), gk,n(x) = gk(Pnx), and ϕn(λ, g)(x) = ϕ(λ, g)(Pnx), and µ
is some positive constant to be determined later. Since gk and ϕ(λ, g) are continuously
differentiable, due to Lemma 4.8 we have that ϕkα,n belongs to C2

b (H). Then, since
yα,n(t;x, z) is a strong solution of the problem (3.9), we can apply the Itô formula to
the mapping t �→ e−λ tϕkα,n(yα,n(t)), and we get

d
(
e−λ tϕkα,n(yα,n(t))

)
= e−λ t

〈
Dϕkα,n(yα,n(t)), Qn dw(t)

〉
H

+e−λ t
(
(Lα,n − λ)ϕkα,n(yα,n(t)) +

〈
Pnz(t), Dϕ

k
α,n(yα,n(t))

〉
H

)
.
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Recalling that ϕkα,n is the solution of (5.3) and that (3.15) holds, we have

(Lα,n − λ)ϕkα,n = µϕkα,n +Kr,n(Dϕ
k
α,n)− gk,n − µϕn(λ, g).

Then, by integrating with respect to t ∈ [0, T ] and by taking the expectation, we get

e−λTPα,nT ϕkα,n − ϕkα,n = µE

∫ T

0

e−λ t
(
ϕkα,n − ϕ(λ, g)

)
(yα,n(t)) dt

+E

∫ T

0

e−λ t
(
Kr(Dϕ

k
α,n(yα,n(t)))− gk(yα,n(t)) +

〈
z(t), Dϕkα,n(yα,n(t))

〉
H

)
dt.

Due to (3.10) and (4.15), if µ is large enough, we can take the limit as n goes to
infinity, and we get

e−λTPαT ϕ
k
α(x)− ϕkα(x) = µE

∫ T

0

e−λ t
(
ϕkα − ϕ(λ, g)

)
(yα(t)) dt

= E

∫ T

0

e−λ t
[
Kr(Dϕ

k
α(yα(t)))− gk(yα(t)) +

〈
z(t), Dϕkα(yα(t))

〉
H

]
dt,

where ϕkα = ϕkα(λ+ µ, gk + µϕ(λ, g)) is the solution of the problem

(λ+ µ)ϕ− Lαϕ+Kr(Dϕ) = gk + µϕ(λ, g).

By taking the limit as T goes to infinity, this yields

−ϕkα = µE

∫ +∞

0

e−λ t
(
ϕkα − ϕ(λ, g)

)
(yα(t)) dt

+E

∫ +∞

0

e−λ t
[
Kr(Dϕ

k
α(yα(t)))− gk(yα(t)) +

〈
z(t), Dϕkα(yα(t))

〉
H

]
dt.

(5.4)

We remark that for any h, k ∈ N and α > 0 we have

ϕkα − ϕhα = R(λ+ µ,Lα)
[
gk − gh −

(
Kr(Dϕ

k
α)−Kr(Dϕ

h
α)
)]
,

and then, due to (4.2),

‖ϕkα − ϕhα‖1 ≤ ρ(λ+ µ)
(‖gk − gh‖0 + cr‖Dϕkα −Dϕhα‖0

)
,

where cr is the Lipschitz constant of Kr. Therefore, if µ is sufficiently large, we have
ρ(λ+ µ)cr < 1, so that

‖ϕkα − ϕhα‖1 ≤
ρ(λ+ µ)

1− ρ(λ+ µ)cr
‖gk − gh‖0.(5.5)

This means that the sequence {ϕkα} converges to some ϕα in C1
b (H). It is immediate

to check that ϕα coincides with ϕα(λ + µ, g + µϕ(λ, g)), and then, by taking the
limit as k goes to infinity in (5.4), due to the dominated convergence theorem we can
conclude that

−ϕα = µE

∫ +∞

0

e−λ t (ϕα − ϕ(λ, g)) (yα(t)) dt

+E

∫ +∞

0

e−λ t [Kr(Dϕα(yα(t)))− g(yα(t)) + 〈z(t), Dϕα(yα(t))〉H ] dt.
(5.6)
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If x ∈ E and z ∈ Lp(Ω;L∞(0,+∞;H)) with p as in the Proposition 3.2, we can use
(3.7) and (4.13), and by taking the limit as α goes to zero we have

ϕ(x) + E

∫ +∞

0

e−λ t [K(Dϕ(y(t)))− g(y(t)) + 〈z(t), Dϕ(y(t))〉H ] dt = 0.

Notice that here we have replaced Kr by K, as we fixed r ≥ ‖Dϕ(λ, g)‖0. Since ϕ ∈
C1
b (H) and y(t;x, z) depends continuously on x ∈ H and z ∈ L2(Ω;L2(0,+∞;H)),

the same identity holds for x ∈ H and z ∈ L2(Ω;L2(0,+∞;H)). Then, recalling how
J(x; z) is defined, if we rearrange all terms, we get (5.2).

Theorem 5.2. Assume that Hypotheses 1, 2, and 4 hold. Then there exists µ0

such that for any λ > µ0 and g ∈ C1
b (H) the value function V corresponding to

the cost functional (5.1) coincides with the solution ϕ(λ, g) of the Hamilton–Jacobi
equation (4.1).

Moreover, for any x ∈ E we have

V (x) = lim
α→0

min
{
Jα(x; z) ; z ∈ L2(Ω;L2(0,+∞;H)) adapted

}
,

where {Jα(x, z)} is a sequence of cost functionals which admit unique optimal controls
and states and whose value functions Vα coincide with the solution of the problems

(λ+ λ0)ϕ− Lαϕ+Kr(Dϕ) = g + λ0 ϕ(λ, g)

for some λ0 > 0 large enough and r ≥ ‖Dϕ(λ, g)‖0.
Proof. In Theorem 4.13 we have seen that, if λ > µ0 and g ∈ C1

b (H), there exists
a unique solution ϕ(λ, g) ∈ C1

b (H) for (4.1). Due to (5.2) and to the definition of K,
we have that V (x) ≥ ϕ(λ, g)(x) for any x ∈ H. Now we try to prove the opposite
inequality. To this purpose we proceed by approximation.

We fix r ≥ ‖Dϕ(λ, g)‖0, and for any α > 0 we define the cost functional

Jα(x; z) = E

∫ +∞

0

e−λ t [g(yα(t;x, z)) + k(z(t))] dt

+λ0 E

∫ +∞

0

e−λ t [(ϕ(λ, g)− ϕα) (yα(t;x, z))] dt

+E

∫ +∞

0

e−λ t [K(Dϕα(yα(t;x, z)))−Kr(Dϕα(yα(t;x, z)))] dt,

where ϕα = ϕα(λ+ λ0, g + λ0 ϕ(λ, g)) is the solution of the problem

(λ+ λ0)ϕ− Lαϕ+Kr(Dϕ) = g + λ0 ϕ(λ, g),

and λ0 is the constant introduced in Proposition 4.3 corresponding to the hamiltonian
Kr. We denote by Vα(x) the corresponding value function. Thanks to (5.6) we
easily have that Vα(x) ≥ ϕα(x) for any x ∈ H. In fact, it is possible to show that
Vα(x) = ϕα(x). Indeed, for each x ∈ H the function

H → R, z �→ − 〈z,Dϕα(x)〉H − k(z)
attains its maximum at z = −DK(Dϕα(x)). Then, if we show that the closed loop
equation

dy(t) = [Ay(t) + Fα(y(t))−DK(Dϕα(y(t)))] dt+Qdw(t), y(0) = x,(5.7)
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has a unique adapted solution y
α(t), we have that for the control

z
α(t) = −DK(Dϕα(y


α(t)))

it holds that Jα(x, z


α) = ϕα(x). This means that Vα(x) = ϕα(x), and there exists

a unique optimal control and a unique optimal state for the minimizing problem
corresponding to the cost functional Jα(x; z).

If g ∈ C1
b (H), then due to Lemma 4.8 ϕα ∈ C2

b (H), so that the mapping

Uα : H → H, x �→ −DK(Dϕα(x))

is Lipschitz continuous. This implies that the closed loop equation admits a unique
solution.

For any α > 0 the optimal control relative to the functional Jα(x; z) is z
α(t) =
−DK(Dϕα(y



α(t))). According to Proposition 4.11 we have

‖Dϕα‖0 ≤ ‖Dg‖0 + λ0‖Dϕ(λ, g)‖0,
and then, since DK is bounded on bounded sets, there exists R > 0 such that

sup
α>0

sup
t≥0
|z
α(t)|H = R, P-a.s.

This implies that

Vα(x) = inf
{
Jα(x; z) : z ∈ M2

R

}
,

whereM2
R is the subset of admissible controls introduced in (3.8).

Now, recalling Proposition 4.6, we have that for any x ∈ E

lim
α→0

Vα(x) = lim
α→0

ϕα(λ+ λ0, g + λ0ϕ(λ, g))(x) = ϕ(λ, g)(x).

Thus, if we show that

lim
α→0

sup
z∈M2

R

|Jα(x; z)− J(x; z)| = 0,(5.8)

it immediately follows that V (x) = ϕ(λ, g)(x) for x ∈ E.
Due to Proposition 3.2, we have that

lim
α→0

E |g(yα(t;x, z))− g(y(t;x, z))| = 0,

uniformly for (t, x) in bounded sets of [0,+∞) × E and z ∈ M2
R. Hence, if we fix

ε > 0 and M > 0 such that ∫ +∞

M

e−λ t dt ≤ ε

2 ‖g‖0 ,

we have

E

∫ +∞

0

e−λ t [g(yα(t;x, z))− g(y(t;x, z))] dt

≤ ε+

∫ M

0

e−λ tE |g(yα(t;x, z))− g(y(t;x, z))| dt,
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so that, due to the arbitrariness of ε > 0,

lim
α→0

sup
z∈M2

R

E

∫ +∞

0

e−λ t [g(yα(t;x, z))− g(y(t;x, z))] dt = 0.

Thanks to Lemma 4.8, we have that for j = 0, 1

lim
α→0

sup
|x|E≤R

∣∣Dj (ϕα − ϕ) (x)
∣∣
Lj(H)

= 0.(5.9)

Moreover, thanks to (3.6),

sup
z∈M2

R

sup
t∈ [0,T ]

|yα(t;x, z)|E < +∞, P-a.s.

for any T > 0. Thus, by using the same arguments as above, we have

lim
α→0

sup
z∈M2

R

E

∫ +∞

0

e−λ t [(ϕα − ϕ)(yα(t;x, z))] dt = 0.

Finally, since the sequence {ϕα} is bounded in C1
b (H), recalling that K and Kr are

bounded on bounded sets and K(Dϕ(x)) = Kr(Dϕ(x)) for any x ∈ H, by using (5.9)
and by arguing as above, we have

lim
α→0

sup
z∈M2

R

E

∫ +∞

0

e−λ t [K(Dϕα(yα(t;x, z)))−Kr(Dϕα(yα(t;x, z)))] dt = 0.

Therefore, we can conclude that (5.8) holds for any x ∈ E, and then V (x) = ϕ(x) for
x ∈ E.

Now assume that x ∈ H. We fix a sequence {xn} ⊂ E converging to x in H. For
each n ∈ N we have V (xn) = ϕ(xn) and

J(xn; z)− J(x; z) = E

∫ +∞

0

e−λ t [g(y(t;xn, z))− g(y(t;x, z))] dt.

Then, due to (3.4), if ϕ ∈ C1
b (H), we easily get

lim
n→+∞ sup

z∈M2
R

J(xn; z) = J(x; z),

so that we can conclude that V (x) = ϕ(x) for any x ∈ H.
We have seen that if we assume the hamiltonian K to be Lipschitz continuous,

then for any λ > 0 and g ∈ Cb(H) there exists a unique solution ϕ(λ, g) in D(L) ⊂
C1
b (H) to the problem (4.1). This allows us to have a stronger version of the previous

theorem in the case of Lipschitz K.
Theorem 5.3. Assume that Hypotheses 1, 2, and 3 hold. Then for any λ > 0 and

g ∈ Lipb(H) the value function V corresponding to the cost functional (5.1) coincides
with the solution ϕ(λ, g) of the Hamilton–Jacobi equation (4.1).

Moreover, for any x ∈ E we have

V (x) = lim
α→0

min
{
Jα(x; z) ; z ∈ L2(Ω;L2(0,+∞;H)) adapted

}
,
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where {Jα(x, z)} is a sequence of cost functionals which admit unique optimal controls
and states and whose value functions Vα coincide with the solution of the problems

(λ+ λ0)ϕ− Lαϕ+K(Dϕ) = g + λ0 ϕ(λ, g)

for some λ0 > 0.
Proof. By arguing as in the proof of the previous theorem, we have the thesis for

any g ∈ C1
b (H) and λ > 0. Thus, in order to conclude, we have to show that for any

g ∈ Lipb(H) the approximating closed loop equation

du(t) = [Au(t) + Fα(u(t))−DK(Dϕα(u(t)))] dt+Qdw(t), u(0) = x,

admits a unique adapted solution u
α(t).
If g ∈ Lipb(H), we can find a bounded sequence {gk} ⊂ C1

b (H) converging to g in
Cb(H). For each k ∈ N there exists a unique solution ϕα,k for the Hamilton–Jacobi
problem

(λ+ λ0)ϕ− Lαϕ+Kr(Dϕ) = gk + λ0ϕ(λ, g).

Then, since gk + λ0ϕ(λ, g) ∈ C1
b (H), as proved above, the corresponding closed loop

equation has a unique solution y
α,k(t). If we show that for any T > 0 the sequence
{y
α,k} converges to some y
α in C([0, T ];H), P-a.s. and in mean-square, then we easily
have that y
α is the solution of the closed loop equation (5.7).

For k, h ∈ N we define vk,hα (t) = y
α,k(t) − y
α,h(t). We have that vk,hα is the
solution of the problem

dv

dt
(t) = Av(t) + Fα(y



α,k(t))− Fα(y
α,h(t))−DK(Dϕα,k(y



α,k(t)))

+DK(Dϕα,h(y


α,h(t))), v(0) = 0.

By multiplying each side by vk,hα (t) and recalling (2.3) and (2.4), we have

1

2

d

dt
|vk,hα (t)|2H ≤ c |vk,hα (t)|2H

+|DK(Dϕα,k(y


α,k(t)))−DK(Dϕα,h(y



α,h(t)))|H |vk,hα (t)|H .

Since DK is locally Lipschitz continuous and according to Lemma 4.11 we have

sup
k∈N

‖Dϕα,k‖0 ≤ sup
k∈N

(‖Dgk‖0 + λ0 ‖Dϕ‖0) <∞,

we obtain

|DK(Dϕα,k(y


α,k(t)))−DK(Dϕα,h(y



α,h(t)))|H

≤ c
∣∣Dϕα,k(y
α,k(t))−Dϕα,h(y
α,h(t))∣∣H .

For each x, y ∈ H we have

|Dϕα,k(x)−Dϕα,k(y)|H ≤ c ‖ϕα,k‖2|x− y|H ,
and then, since the sequence {gk} is bounded in C1

b (H), from (4.16) it follows that

|Dϕα,k(y
α,k(t))−Dϕα,k(y
α,h(t))|H ≤ cα |vk,hα (t)|H .
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Moreover, if λ0 is large enough, due to (5.5) we have

‖Dϕα,k −Dϕα,h‖0 ≤ cα ‖gk − gh‖0.
Therefore, we can conclude that

|DK(Dϕα,k(y


α,k(t)))−DK(Dϕα,h(y



α,h(t)))|H ≤ cα |vk,hα (t)|H + cα ‖gk − gh‖0,

so that from the Young inequality we have

1

2

d

dt
|vk,hα (t)|2H ≤ cα |vk,hα (t)|2H + cα ‖gk − gh‖20.

By the Gronwall lemma this yields

sup
t∈ [0,T ]

|y
α,k(t)− y
α,h(t)|H ≤ cT ‖gk − gh‖0, P-a.s.,

for some constant CT . Thus y
α,k converges to some y
α in C([0, T ];H), P-a.s and in
mean-square, and it is not difficult to check that y
α is the solution of the closed loop
equation corresponding to the datum g.

By proceeding as in [9, Theorem 7.3] it is possible to show that when the space
dimension d equals 1, under suitable assumptions there exist an optimal control and
the corresponding optimal state.

Theorem 5.4. Assume that the space dimension d equals 1.
1. If the constant m in Hypothesis 1 is less than or equal to 1, then there exists
a unique optimal control for the minimizing problem associated with the func-
tional J . Furthermore, the optimal control z
 is related to the corresponding
optimal state y
 by the feedback formula

z
(t) = −DK[DV (y
(t))], t ∈ [0, T ].

2. If DK can be extended as a Lipschitz continuous mapping from E
 into itself,
then the same conclusion holds for any x ∈ E.
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Abstract. This paper provides a characterization of viability kernels and capture basins of a
target viable in a constrained subset as a unique closed subset between the target and the constrained
subset satisfying tangential conditions or, by duality, normal conditions. It is based on a method
devised by Hélène Frankowska for characterizing the value function of an optimal control problem as
generalized (contingent or viscosity) solutions to Hamilton–Jacobi equations. These abstract results,
interesting by themselves, can be applied to epigraphs of functions or graphs of maps and happen
to be very efficient for solving other problems, such as stopping time problems, dynamical games,
boundary-value problems for systems of partial differential equations, and impulse and hybrid control
systems, which are the topics of other companion papers.
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Jacobi equations, local viability, backward invariance
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1. Introduction. We consider in this paper a differential inclusion x′ ∈ F (x)
(summarizing the dynamics of a control system) and two subsets C and K of a finite
dimensional vector space X such that C ⊂ K. Here, K is regarded as a constrained
subset in which the solution must evolve until possibly reaching the subset C regarded
as a target.

Definition 1.1.
1. The subset ViabF (K) of initial states x0 ∈ K such that at least one solution
x(·) to differential inclusion x′ ∈ F (x) starting at x0 is viable in K for all
t ≥ 0 is called the viability kernel of K under F . A subset K is a repeller
under F if its viability kernel is empty.

2. The subset CaptKF (C) of initial states x0 ∈ K such that C is reached in
finite time before possibly leaving Kby at least one solution x(·) to differential
inclusion x′ ∈ F (x) starting at x0 is called the viable-capture basin of C in
K, and CaptF (C) := Capt

X
F (C) is said to be the capture basin of C.

3. The subset

ViabF (K,C) := ViabF (K\C) ∪ CaptKF (C)

of initial states x0 ∈ K such that at least one solution x(·) to differential
inclusion x′ ∈ F (x) starting at x0 is viable in K for all t ≥ 0 or viable in K
until it reaches C in finite time is called the viability kernel of K with target
C under F .

A subset C ⊂ K is said to be isolated in K by F if it coincides with its viability kernel
K with target C:

ViabF (K,C) = C.
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The subset EnvF (C) := Capt−F (C) is known under various names such as in-
variance envelope or accessibility map or controlled map of C. (See [45] for properties
of invariance envelopes under Lipschitz maps and [6, 8, 9] for Marchaud maps.) Henri
Poincaré introduced the concept of shadow (in French, ombre) of K, which is the set
of initial points of K from which (all) solutions leave K in finite time. It is thus
equal to the complement K\ViabF (K) of the viability kernel of K, which has been
introduced in the context of differential inclusions in [1]. The concept of viability
kernel with a target by a Lipschitz set-valued map has been introduced and studied
in [48], where the viability kernel algorithm designed in [50] (see also the survey [31])
has been extended for approximating the viability kernel with a target.

One could regard the viability kernel Viab(K) ofK as the viability kernel Viab(K, ∅)
of K with the empty set as a target:

Viab(K) = Viab(K, ∅) and CaptK(∅) = ∅.
Therefore, the viability kernel Viab(K,C) of K with target C coincides with the

capture basin CaptK(C) of C viable in K whenever the viability kernel Viab(K\C)
is empty, i.e., whenever K\C is a repeller:

Viab(K\C) = ∅ ⇒ Viab(K,C) = CaptK(C).

This happens, in particular, whenK is a repeller, or when the viability kernel Viab(K)
of K is contained in the target C.

Consequently, the concept of viability kernel with a target allows us to study both
the viability kernel of a closed subset and the viable-capture basin of a target.

These subsets can be characterized in diverse ways through tangential conditions.
We recall that the contingent cone TL(x) to L ⊂ X at x ∈ L is the set of directions
v ∈ X such that there exist sequences hn > 0 converging to 0 and vn converging to v
satisfying x+ hnvn ∈ K for every n.

One of our objectives is to prove the following characterizations of the viability
kernels and capture basins.

Theorem 1.2. Let us assume that F is Marchaud and that the target C ⊂ K
and K are closed. The viability kernel ViabF (K,C) of the subset K with target C is

1. the largest closed subset D satisfying C ⊂ D ⊂ K and
D\C is locally viable under F (∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅).

2. If, furthermore, K is assumed to be backward invariant under F and F to be
Lipschitz, the viability kernel ViabF (K,C) is the unique closed subset D ⊂ K
satisfying the following.


(i) D\C is locally viable under F (∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅),
(ii) D is backward invariant under F (∀ x ∈ D, F (x) ⊂ −TD(x)),
(iii) K\D is a repeller.

(1.1)

The uniqueness properties of the viability kernel and the viable-capture basins
are obtained thanks to the Frankowska method, consisting in introducing (local) back-
ward invariance together with (local) forward viability of subsets. Indeed, Hélène
Frankowska did point out in [39, 40] the backward invariance and local forward via-
bility properties of the epigraph of the value function of an optimal control problem.
She proved that the epigraph of the value function of an optimal control problem—
assumed to be only lower semicontinuous—is backward invariant and viable under a
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(natural) auxiliary system. It allowed her to characterize the value functions as unique
solutions of contingent inequalities and, by duality, to obtain lower semicontinuous
(or bilateral) solutions to Hamilton–Jacobi partial differential equations, obtained by
other methods in [19]. (See also [18] for more details on this point of view.) Further-
more, when the value function is continuous, she proved that its epigraph is viable
and its hypograph invariant [35, 36, 37, 38]. By duality, she proved that the latter
property is equivalent to the fact that the value function is a viscosity solution of the
associated Hamilton–Jacobi equation in the sense of Crandall and Lions in [32]. This
epigraphical approach in the field of Hamilton–Jacobi equations has since been taken
up by other authors.

Actually, we can spare the assumption that K is backward invariant in the above
theorem if we are ready to trade the property that D is backward invariant with the
weaker property that D satisfies CaptKF (D) = D. Indeed, we shall derive this theorem
from Theorem 4.4 below, which does not assume that K is backward viable.

Not only is the concept of the viability kernel naturally important in the frame-
work of economic models and biological problems having motivated viability theory
in the first place, but it happens that the notions of equilibria, of absorbing sets, of
basins of absorption, of attractors, of “permanence,” of “fluctuation,” of “Lyapunov
stability,” of optimal Lyapunov functions, and of value function of an intertemporal
optimization problem as well as other dynamical features can be studied by using the
concept of the viability kernel as a mathematical tool (see [2, 3, 4, 5] for applications
and further references).

The concept of the viable-capture basin also plays a fundamental role for solving
first-order partial differential equations (see [12, 13, 14, 15, 16], chapter 8 of [2], [11]
without boundary conditions, and [6, 7, 8, 9] for the Dirichlet boundary-value prob-
lems for such systems). Finally, the viability kernel algorithm allows us to compute
the viability kernel (see [31, 47, 50]). Nonemptiness of the viability kernel is studied
in [22, 23, 24]. Extension of this concept to impulse and hybrid control systems can
be found in [17].

We shall conclude this paper by describing (without proofs that will be given in a
forthcoming companion paper) an application of these results to optimal discounted
intertemporal control. Consider the evolution of a control system with (multivalued)
feedbacks: {

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ P (x(t)),

where the state x(·) ranges over a finite dimensional vector-space X and the con-
trol u(·) ranges over another finite dimensional vector-space M. The problem is to
minimize a functional of the form


J(t, x; (x(·), u(·)))

:= e

∫ t
0

m(x(s),u(s))ds
c(T − t, x(t)) +

∫ t

0

e

∫ τ
0

m(x(s),u(s))ds
l(x(τ), u(τ))dτ

over the set S(x) of solutions (x(·), u(·)) to a control system
V (T, x) := inf

(x(·),u(·))∈S(x)
inf

t∈[0,T ]
J(t, x; (x(·), u(·)))

or,

W (T, x) := inf
(x(·),u(·))∈S(x)

sup
t∈[0,T ]

J(t, x; (x(·), u(·))).
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The connection between these problems and the basic viability theorems is simple.
For instance, the epigraph of the value function is the capture basin of the epigraph
of the cost function c under the auxiliary control system governed by the dynamics

g(x, y, u) = (f(x, u),−m(x, y)y − l(x, u)),

viable in the epigraph of an adequate function. This being checked, it will be suf-
ficient to translate the properties of capture basins stated in Theorem 1.2 in terms
of value functions, the tangential conditions characterizing capture basins becoming
the Hamilton–Jacobi–Bellman variational inequalities of which the value function is
an (adequately generalized) solution. It is enough to observe that the contingent
cone to the epigraph of a function is, by definition, the epigraph of the contingent
epiderivative of this function.

When we are studying the viability kernels with targets under differential inclu-
sions, we observe that they are not specific to differential inclusions. They involve
only few properties1 of the solution map S associating with any initial state x the set
S(x) of pairs t �→ (x(t), u(t)) that are solutions to the above control system starting
at x at initial time 0. These properties of the solution map are common to other
control problems, such as

1. control problems with memory (see the contributions of [42, 43], some of
them being presented in [2])—previously known under the name of functional
control problems, the new fashion calling them “path dependent control sys-
tems,”

2. parabolic type partial differential inclusions (see the contributions of [51, 52,
53, 54, 55], some of them being presented in [2])—also known as distributed
control systems;

3. “mutational equations” governing the evolution in metric spaces, including
“morphological equations” governing the evolution of sets (see [4], for in-
stance).

Although these problems are not covered in this paper by lack of place, we shall make
another step in abstraction by gathering these common properties of the solution
map under the name of evolutionary systems and study the properties of viability
kernels with targets in this general framework. In the case of differential inclusions,
we shall use the viability and invariance theorems for characterizing them in terms of
tangential conditions.

The paper is organized as follows. Section 2 introduces evolutionary systems. The
third section defines hitting and exit functions. Viability kernels and capture basins
are defined and characterized in section 4 for general evolutionary systems. Their
characterizations in terms of tangential conditions or, by duality, in terms of normal
conditions, are provided in the fifth section. The sixth provides useful stability results.
The last section summarizes the applications of the above theorems to optimal control
and stopping time problems.

2. Evolutionary systems.

2.1. Definition of evolutionary systems. The following results dealing with
viability kernel and capture basins are valid for any evolutionary system described
by a set-valued map S mapping some topological space X (most often, a topological

1These are the translation and concatenation properties of the set-valued map x ❀ S(x), as well
as continuity properties of this set-valued map.
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vector-space) to the space C(0,∞;X) of continuous functions x(·) from R+ to X,
supplied with the topology of uniform convergence on compact intervals.

It can be the solution map associated with a differential inclusion x′ ∈ F (x)
on a finite dimensional vector space X, with a differential inclusion with memory

x′(t) ∈ F (T (t)x) or with a mutational equation ◦
x � f(x) on metric spaces.

Definition 2.1. An evolutionary system is a set-valued map S : X ❀ C(0,∞;X)
satisfying the following.

1. The translation property. Let x(·) ∈ S(x). Then for all T ≥ 0, the function
y(·) defined by y(t) := x(t+ T ) is a solution y(·) ∈ S(x(T )) starting at x(T ).

2. The concatenation property. Let x(·) ∈ S(x) and T ≥ 0. Then for every
y(·) ∈ S(x(T )), the function z(·), defined by

z(t) :=

{
x(t) if t ∈ [0, T ],
y(t− T ) if t ≥ T,

belongs to S(x).
We shall associate with S its backward evolutionary system S− : X ❀ C(0,∞;X)

defined by y(·) ∈ S−(x) if and only if there exists a solution z(·) ∈ S(x) such that for
every T ≥ 0, the function x(·), defined by

x(t) :=

{
y(T − t) if t ∈ [0, T ],
z(t− T ) if t ≥ T,

belongs to S(x).
We observe that S− − = S.
The viability and capturability issues use the notion of evolutions viable in a

subset.
Definition 2.2. Let K ⊂ X be a subset of X. A function t ∈ [0, T ] �→ x(t) ∈ X

is said to be viable in K on [0, T ] if

∀ t ∈ [0, T ], x(t) ∈ K,

and viable in K if T = +∞.
The following results dealing with these issues shall use only the translation and

concatenation properties and topological properties such that the upper semicompact-
ness2 and/or lower semicontinuity of the evolutionary system S : x ∈ X ❀ S(x) ⊂
C(0,∞;X).

Before proceeding further, let us recall that differential inclusions provide exam-
ples of evolutionary systems.

2.2. Evolutionary systems associated with differential inclusions. Let
X := Rn be a finite dimensional vector space, and let F : X ❀ X be a strict3

2A set-valued map F : X ❀ Y is said to be upper semicompact at x if for every sequence xn
converging to x and for every sequence yn ∈ F (xn), there exists a subsequence ynp converging to
some y ∈ F (x). It is said to be lower semicontinuous at x if and only if for any y ∈ F (x) and for any
sequence of elements xn ∈ Dom(F ) converging to x, there exists a sequence of elements yn ∈ F (xn)
converging to y.

3This means that for every x ∈ X, F (x) �= ∅. We denote by

Graph(F ) := {(x, y) ∈ X ∈ Y | y ∈ F (x)}
the graph of a set-valued map F : X ❀ Y and by Dom(F ) := {x ∈ X|F (x) �= ∅} its domain.
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set-valued map. We denote by SF (x) ⊂ C(0,∞;X) the set of absolutely continuous
functions t �→ x(t) ∈ X satisfying

for almost all t ≥ 0, x′(t) ∈ F (x(t)),

starting at time 0 at x: x(0) = x. The set-valued map SF : X ❀ C(0,∞;X) is called
the solution map (or the set-valued flow) associated with F .

Without assumptions, the solution map SF may have empty values. However,
whenever the solution map SF : X ❀ C(0,∞;X) associated with the differential
inclusion x′ ∈ F (x) is strict, it obviously satisfies the translation property and the
concatenation property.

One can also observe that the backward evolutionary system SF− is the solution
map S−F associated with −F .

2.2.1. Marchaud differential inclusions.
Definition 2.3 (Marchaud map). We shall say that F is a Marchaud map if

(i) the graph and the domain of F are nonempty and closed,
(ii) the values F (x) of F are convex,
(iii) the growth of F is linear:

∃ c > 0 | ∀ x ∈ X, ‖F (x)‖ := supv∈F (x) ‖v‖ ≤ c(‖x‖+ 1).
We recall the following version of the important Theorem 3.5.2 of [2] stating that

the solution map is strict and upper semicompact.
Statement 1. Assume that F : X ❀ X is Marchaud. Then the solution map

SF is an upper semicompact evolutionary system from X into the space of continuous
functions supplied with the topology of uniform convergence on compact intervals.

2.2.2. Lipschitz differential inclusions.
Definition 2.4. The set-valued map F is said to be Lipschitz if there exists a

constant λ > 0 such that

∀ x, y ∈ X, F (x) ⊂ F (y) +B(0, λ‖x− y‖).
The Filippov theorem (see Theorem 5.3.1 of [2]) implies that whenever F is Lip-

schitz, the associated evolutionary system is lower semicontinuous.
Statement 2. Assume that F : X ❀ X is Lipschitz. Then the solution map SF

is a lower semicontinuous evolutionary system from X into the space of continuous
functions supplied with the topology of uniform convergence on compact intervals.

3. Exit and hitting time functions. We shall associate with an evolutionary
system S : X ❀ C(0,∞;X) the concepts of upper exit time function of a subset K
and the lower hitting function (or minimal time function) of a target and study their
continuity (actually, semicontinuity) properties.

Definition 3.1. Let K ⊂ X be a subset. The functional τK : C(0,∞;X) �→
R+ ∪ {+∞} associating with x(·) its exit time τK(x(·)) defined by

τK(x(·)) := inf {t ∈ [0,∞[ | x(t) /∈ K}
is called the exit functional.

Let C ⊂ K be a target. We introduce the (constrained) hitting functional  (K,C)

defined by

 (K,C)(x(·)) := inf{t ≥ 0 | x(t) ∈ C and ∀s ∈ [0, t], x(s) ∈ K }
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associating with x(·) its hitting time, introduced in [29]). When K := X, we set

 C(x(·)) =  (X,C)(x(·)) : C(0,∞;X) �→ R+ ∪ {+∞}
and call it the hitting functional (or minimal time functional).

We use the convention inf{∅} := +∞, and we observe that
if  (X,C)(x(·)) < +∞, then  C(x(·)) =  (X,C)(x(·)) ≤ τC(x(·)).

We also note that

∀ s ∈ [0,  C(x(·))],  C(x(·+ s)) =  C(x(·))− s(3.1)

and that if K1 ⊂ K2 and D1 ⊃ D2, then  (K1,D1)(x(·)) ≤  (K2,D2)(x(·)). Let us
point out that

 n⋃
i=1

Di

(x(·)) = min
i=1,...,n

 Di(x(·)).

Therefore,

∀ x ∈ K\C, τK\C(x(·)) = min( C(x(·), τK(x(·)))
since

τK\C(x) =  X\(K\C)(x(·)) =  C∪(X\K) = min( C(x(·)),  X\K(x(·))).
Definition 3.2. Consider an evolutionary system S : X ❀ C(0,+∞;X). Let

C ⊂ K and K be two subsets.
The function τ �K : K �→ R+ ∪ {+∞} defined by

τ �K(x) := sup
x(·)∈S(x)

τK(x(·))

is called the upper exit function.
The function  �(K,C) : K �→ R+ ∪ {+∞} defined by

 �(K,C)(x) := inf
x(·)∈S(x)

 (K,C)(x(·))

is called the lower constrained hitting function, and the function

 �C(x) := inf
x(·)∈S(x)

 C(x(·))

is called the lower hitting function.
Statement 3. Let S : X ❀ C(0,+∞;X) be a strict upper semicompact map,

and let C and K be two closed subsets such that C ⊂ K. Then the hitting function
 �(K,C) is lower semicontinuous and the exit function τ

�
K is upper semicontinuous.

Furthermore, for any x ∈ Dom( �(K,C)), there exists at least one solution x
�(·) ∈ S(x)

which hits C as soon as possible before possibly leaving K,

 �(K,C)(x) =  (K,C)(x
�(·)),

and for any x ∈ Dom(τ �K), there exists at least one solution x
�(·) ∈ S(x) which

remains viable in K as long as possible:

τ �K(x) = τK(x
�(·)).

This statement is a consequence of the more general Theorem 6.2 dealing with up-
per hypolimits of upper exit functions and epilimits of lower constrained epifunctions
of subsets that is proved below. See also [29, 30].
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4. Viability kernels and capture basins. We shall answer in this section
questions such as the following.

• Starting from K, is it possible to remain viable in K (as long as possible)?
• Starting outside of a target C ⊂ K, is it possible to reach it (as fast as
possible) while being viable in the subset K?

These two very natural questions lead to the introduction of the following concepts.

4.1. Viability kernels with targets. We now define the viability kernels, the
capture basins, and the viable-capture basins of a subset under a set-valued map.

Definition 4.1. Let S : X ❀ C(0,+∞;X) be a set-valued evolutionary system,
and let C ⊂ K ⊂ X be two subsets, C being regarded as a target and K as a constrained
set.

1. The subset K is said to be locally viable under S if from any initial state
x ∈ K starts at least one solution viable in K on a nonempty interval and
viable if this solution is viable on [0,+∞[. We shall say that K captures the
target C if from any initial state x ∈ K starts at least one solution viable in
K until it may reach the target C, and we say that K finitely captures the
target C if it reaches it in finite time.

2. The subset Viab(K,C) of initial states x0 ∈ K such that at least one solution
x(·) ∈ S(x0) starting at x0 is viable in K for all t ≥ 0 or viable in K until
it reaches C in finite time is called the viability kernel of K with target C
under S. A subset C ⊂ K is said to be isolated in K by S if it coincides with
its viability kernel:

Viab(K,C) = C.

3. The subset CaptK(C) of initial states x0 ∈ K such that C is reached in finite
time before possibly leaving K by at least one solution x(·) ∈ S(x0) starting
at x0 is called the viable-capture basin of C in K, and

Capt(C) := CaptX(C)

is said to be the capture basin of C.
4. When the target C = ∅ is the empty set, we set

Viab(K) := Viab(K, ∅) and CaptK(∅) = ∅,

and we say that Viab(K) is the viability kernel of K. A subset K is a repeller
under S if its viability kernel is empty, or, equivalently, if the empty set is
isolated in K.

In other words, the viability kernel Viab(K) is the subset of initial states x0 ∈ K
such that at least one solution x(·) ∈ S(x0) starting at x0 is viable in K for all t ≥ 0.
Furthermore, we observe that

Viab(K,C) = Viab(K\C) ∪ CaptK(C).(4.1)

Therefore, the viability kernel Viab(K,C) of K with target C coincides with the
capture basin CaptK(C) of C viable in K whenever the viability kernel Viab(K\C)
is empty, i.e., whenever K\C is a repeller:

Viab(K\C) = ∅ ⇒ Viab(K,C) = CaptK(C).(4.2)
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Consequently, the concept of the viability kernel with a target allows us to study both
the viability kernel of a closed subset and the viable-capture basin of a target.

Remark. If subsets Ki capture a given target C ⊂ Ki for all i ∈ I, so does their
union

⋃
i∈IKi. However, the intersection of two subsets K1 and K2 capturing a same

target C does not necessarily capture C, since starting from a state of K1 ∩K2, there
may exist two different solutions that are viable in K1 or in K2 but no solution viable
in K1 ∩K2.

We observe that the viability kernel is characterized by

Viab(K) := {x ∈ K | τ �K(x) = +∞}
and that the viable-capture basin

CaptK(C) := {x ∈ K |  �(K,C)(x) < +∞}

is the domain of the constrained hitting function  �(K,C).

To say that K is a repeller under S amounts to saying that the exit function τ �K
is finite on K, and to say that K\C is a repeller amounts to saying that all solutions
x(·) ∈ S(x) starting from x ∈ K\C reach C or leave K in finite time, i.e., satisfy
τK\C(x(·)) = min( C(x(·), τK(x(·)))) < +∞.

The viability kernel Viab(K,C) of K with target C captures C.
Proposition 4.2. The viability kernel Viab(K,C) of K with target C is the

largest subset of K capturing C, and the viability kernel Viab(K) of K is the largest
viable subset of K.

Proof. First, any subset D such that C ⊂ D ⊂ K capturing C is obviously
contained in the viability kernel Viab(K,C) with target C.

For proving that the viability kernel Viab(K,C) with target C captures the target
C, take x0 ∈ Viab(K,C), and prove that there exists a solution x(·) ∈ S(x0) starting
at x0 viable in Viab(K,C) until it possibly reaches C. Indeed, there exists a solution
x(·) ∈ S(x0) viable in K until some time T ≥ 0, either finite when it reaches C or
infinite. Then for all t ∈ [0, T [, the function y(·) defined by y(τ) := x(t + τ) is a
solution y(·) ∈ S(x(t)) starting at x(t) and viable in K until it reaches C at time
T − t. Hence x(t) does belong to Viab(K,C) for every t ∈ [0, T [.

Furthermore, we derive from Proposition 4.2 and Theorem 6.4 below the following
proposition.

Proposition 4.3. Let us assume that the map S is upper semicompact and that
C ⊂ K and K are closed. Then the viability kernel Viab(K,C) with a target is the
largest closed subset of K capturing C, and the viability kernel Viab(K) is the largest
viable closed subset of K.

4.2. Characterization of the viability kernel with a target. The first char-
acterization is stated in the following theorem.

Theorem 4.4. Let us assume that S is upper semicompact and that the subsets
C ⊂ K and K are closed. The viability kernel Viab(K,C) of a subset K with target
C under S is the unique closed subset satisfying C ⊂ D ⊂ K, and{

(i) D\C is locally viable under S,
(ii) D is isolated in K by S (Viab(K,D) = D).

(4.3)

It follows from Theorem 4.6 characterizing the viability kernel as the largest closed
subset D ⊂ K such that D\C is locally viable and from Theorem 4.7 characterizing
the viability kernel as the smallest subset D isolated in K.
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We begin with necessary conditions.

Proposition 4.5. Let us consider a closed subset C of K. Then the following
hold.

1. If D ⊃ C captures C, then D\C is locally viable under S.
2. If D1 ⊃ C captures C and D2 ⊃ D1 captures D1, then D2 captures C (tran-
sitivity of the capturability property).

Consequently, the viability kernel Viab(K,C) of a subset K with target C under
S satisfies the following properties:{

(i) Viab(K,C)\C is locally viable and Viab(K) is viable under S,
(ii) Viab(K,C) is isolated in K by S (Viab(K,Viab(K,C)) = Viab(K,C)).

Proof. For proving the first statement, take x0 ∈ D\C, and prove that there
exists a solution x(·) ∈ S(x0) starting at x0 viable in D\C on a nonempty interval.
Indeed, since C is closed, there exists η > 0 such that B(x0, η) ∩ C = ∅, so that
x(t) ∈ B(x0, η) ∩D ⊂ D\C on some nonempty interval.

For proving that D2 captures C, take any x0 ∈ D2. There exists a solution
x(·) ∈ S(x0) viable in D2 forever or else, until it possibly reaches the subset D1 of D2

at some finite time T > 0 at x(T ) ∈ D1. In this case, for any t ≥ T , x(t) remains in
D1, and thus, in D2, until it possibly reaches C. Hence D2 captures C.

In particular, if we take D1 := Viab(K,C) and D2 := Viab(K,Viab(K,C)), we
infer that D1 = D2 since D1 is the largest subset of K capturing the target C.

We now proceed with the proof of the sufficiency.

Theorem 4.6. Assume that S is upper semicompact. Let C ⊂ K be closed
subsets.

Then the viability kernel Viab(K,C) of K with target C under S is the largest
closed subset D ⊂ K containing C such that D\C is locally viable.

In particular, K captures C if and only if K\C is locally viable.
Proof. When C = ∅, this is Proposition 4.3. Otherwise, Theorem 6.4 and Propo-

sition 4.5 imply that the viability kernel Viab(K,C) of K with target C under S is a
closed subset such that Viab(K,C)\C is locally viable.

Let D ⊂ K containing C such that D\C is locally viable. Since C ⊂ Viab(K,C),
let us take x in D\C and show that it belongs to Viab(K,C). Either there exists a
solution x(·) ∈ S(x) viable in D ⊂ K forever or, if not, by Statement 3, there exists
a solution x�(·) ∈ S(x) that maximizes τD(x(·)),

τ �D(x) := sup
x(·)∈S(x)

τD(x(·)) = τD(x
�(·)),

and thus that leaves D at x� := x�(τ �D(x)) ∈ D. Actually, this point belongs to C.
Otherwise, since D\C is locally viable, one could associate with x� ∈ D\C a so-

lution y(·) ∈ S(x�) and T > 0 such that y(τ) ∈ D\C for all τ ∈ [0, T ]. Concatenating
this solution to x�(·), we obtain a solution viable in D on an interval [0, τ �D(x) + T ],
which contradicts the definition of x�(·).

Theorem 4.7. Let C ⊂ K. Then the viability kernel Viab(K,C) is the smallest
subset D between C and K isolated in K by S.

Proof. Proposition 4.5 implies that the viability kernel Viab(K,C) is isolated in
K by S. Conversely, since D is isolated in K by S, we infer that Viab(K,C) ⊂
Viab(K,D) = D.
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4.3. Isolated subsets. We need to characterize further isolated subsets for en-
riching the above characterization theorem.

First, we point out the following.
Proposition 4.8. Let C and K be two subsets such that C ⊂ K. Then the

following properties are equivalent.
1. C is isolated in K by S: Viab(K,C) = C.
2. For all x ∈ K\C, all solutions reach X\K in finite time before (possibly)
hitting C.

3. Viab(K) = Viab(C), and CaptK(C) = C.
4. K\C is a repeller and CaptK(C) = C.
Isolated subsets enjoy local backward invariance properties discovered by Hélène

Frankowska in her studies of Hamilton–Jacobi equations associated with value func-
tions of optimal control problems under state constraints that play a crucial role in the
characterization of viability kernels with a target. Indeed, there is a close connection
between isolation in K and local backward invariance relatively to K.

Definition 4.9. We shall say that a subset C ⊂ K is locally backward invariant
relatively to K under S if for every x ∈ C, all backward solutions starting from x and
viable in K on an interval [0, T ] are viable in C on [0, T ], i.e., if for every x ∈ C, for
every t0 ∈]0,+∞[, and for all solutions x(·) arriving at x at time t0 such that there
exists s ∈ [0, t0[ such that x(·) is viable in K on the interval [s, t0], then x(·) is viable
in C on the same interval.

Naturally, if C ⊂ K is locally backward invariant, it remains locally backward
invariant relatively to K. If K is itself locally backward invariant, any subset locally
backward invariant relatively to K is locally backward invariant.

If C ⊂ K is locally backward invariant relatively to K, then C ∩ Int(K) is locally
backward invariant, and from any x ∈ C ∩ ∂K, all backward solutions y(·) ∈ S−(x)
satisfy {

either ∃ T > 0 such that ∀ t ∈ [0, T ], x(t) ∈ C,
or ∃ tn → 0 + | y(tn) ∈ X\K.

Theorem 4.10. A closed subset C ⊂ K is locally backward invariant relatively
to K if and only if CaptK(C) = C.

Proof. Assume that C is locally backward invariant relatively to K, and consider
x ∈ CaptK(C)\C. There exists a solution x(·) ∈ S(x) viable in K until it reaches
C at time T :=  C(x(·)) ≥ 0 at c = x( C(x(·))). Since C is closed, then T > 0 is
positive. Let z(·) ∈ S−(x), and let y(·) be the function defined by

y(t) :=

{
x(T − t) if t ∈ [0, T ],
z(t− T ) if t ≥ T.

Then y(·) ∈ S−(c) and is viable in K on the interval [0,  C(x(·))]. Since C is assumed
to be locally backward invariant relatively toK, then y(t) ∈ C for all t ∈ [0,  C(x(·))],
and, in particular, y(T ) = x belongs to C. We have obtained a contradiction.

The converse statement follows from the next theorem.
Proposition 4.11. The viability kernel Viab(K,C) of K with a target C ⊂ K

and the viable-capture basin CaptK(C) are locally backward invariant relatively to
K. Consequently, every subset C ⊂ K isolated in K is locally backward invariant
relatively to K.

Proof. Let us consider x ∈ Viab(K,C) and z(·) ∈ S(x) viable in K until it
possibly reaches C. Let us consider a backward solution y(·) ∈ S−(x) viable in K
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such that τK(y(·)) > 0. (This is always the case whenever x ∈ Int(K).) For every
T ∈ [0, τK(y(·))[, we associate with it the solution x(·) ∈ S(x(T )) defined by

x(t) :=

{
y(T − t) if t ∈ [0, T ],
z(t− T ) if t ≥ T,

starting at y(T ) ∈ K viable in K until it possibly reaches C. This means that y(T ) ∈
Viab(K,C) for every T ∈ [0, τK(y(·))[, i.e., that the backward solution y(·) ∈ S−(x)
is viable in Viab(K,C) on the interval [0, τK(y(·))].

In other words, for every x ∈ Viab(K,C), every backward solution viable in K on
some time interval is actually viable in x ∈ Viab(K,C) on the same interval.

We derive the following characterization.
Proposition 4.12. Let us consider a closed subset C ⊂ K. Then C is isolated

in K by S if and only if
1. C is locally backward invariant relatively to K, and
2. K\C is a repeller.
Putting together these results, we obtain Theorem 4.13, characterizing viability

kernels with targets, and Theorem 4.14, characterizing capture basins.
Theorem 4.13. Let us assume that S is upper semicompact and that the subsets

C ⊂ K and K are closed. The viability kernel Viab(K,C) of a subset K with target
C under S is the unique closed subset satisfying C ⊂ D ⊂ K and


(i) D\C is locally viable under S,
(ii) D is locally backward invariant relatively to K under S,
(iii) K\D is a repeller under S.

(4.4)

Therefore, Theorem 4.13 and (4.2) imply that when K\C is a repeller, the above
theorem implies a characterization of the viable-capture basins.

Theorem 4.14. Let us assume that S is upper semicompact and that a closed
subset C ⊂ K satisfies the property

Viab(K\C) = ∅.(4.5)

Then the viable-capture basin CaptK(C) is the unique closed subset D satisfying
C ⊂ D ⊂ K and{

(i) D\C is locally viable under S,
(ii) D is locally backward invariant relatively to K under S.(4.6)

4.4. Viability kernels of backward invariant sets. We obtain further prop-
erties when K is backward invariant under S. To begin with, the capture basin
Capt(C) := CaptX(C) is contained in K and equal to CaptK(C), so that

Viab(K,C) = Viab(K\C) ∪ Capt(C).

Theorem 4.15. A subset K is invariant under a set-valued map S if and only
if its complement X\K is backward invariant under S.

Proof. To say that K is not invariant under S amounts to saying that there exists
a solution x(·) ∈ S(x0) and T > 0 such that

x(0) ∈ K & x(T ) ∈ X\K.
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Let z(·) ∈ S−(x0) be a backward solution, and define the function y(·) by

y(t) =

{
x(T − t) if t ∈ [0, T ],
z(t− T ) if t ≥ T.

It is a backward solution starting at y(0) = x(T ) ∈ X\K and satisfying
y(T ) = x0 ∈ K. This amounts to saying that the complement X\K of K is not
backward invariant.

We then derive the following theorem.
Theorem 4.16. Assume that S is upper semicompact, that C ⊂ K and K

are closed, and that K is backward invariant under S. Then the viability kernel
Viab(K,C) of K with target C under S is the unique closed subset D satisfying
C ⊂ D ⊂ K and

(i) D\C is locally viable under S,
(ii) D is backward invariant under S (or, equivalently, X\D is invariant under S),
(iii) K\D is a repeller under S.

Proof. To say that K is backward invariant amounts to saying that the comple-
ment of K is invariant thanks to Theorem 4.15. Therefore, Viab(K,C) being isolated,
all solutions starting from K\Viab(K,C) leave K in finite time before possibly hitting
C. Actually, they never reach C because the complement X\K is invariant. Hence
we have checked that the complement X\Viab(K,C) of the viability kernel of K with
target C is invariant. Theorem 4.15 implies that the viability kernel Viab(K,C) of K
with target C is backward invariant.

4.5. The barrier property. The boundary of the viability kernel satisfies the
barrier property.

Definition 4.17. If D ⊂ K, the boundary ∂K(D) of D relative to K is the
subset

∂K(D) := D ∩ (K\D),

and the subset ∂D := ∂X(D) is called the boundary of D. We shall say that a subset
D ⊂ K enjoys the barrier property relative to K under S if its boundary ∂K(D) of D
relative to K is locally invariant with respect to D: For every x ∈ ∂K(D), all solutions
starting from x viable in D are actually viable in the boundary ∂K(D) of D relative
to K until they reach the boundary of K.

We see at once that

∂K(D) ∩ Int(K) = ∂D ∩ Int(K)

and that

if D ⊂ Int(K), then ∂K(D) = ∂D.

Remark on the barrier property. The “barrier property” of the viability kernel of
a closed subset has been discovered by Marc Quincampoix in [46] and generalized by
Pierre Cardaliaguet in [25, 26, 27, 28] for differential games. It plays an important role
in control theory and the theory of differential games, because every solution starting
from the boundary of the viability kernel can either remain in the boundary or leave
the viability kernel, or, equivalently, no solution starting from outside the viability
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kernel can cross its boundary. Such solutions can remain only on the boundary of the
viability kernel, or leave it.

This is a semipermeability property of the viability kernel, which is very important
in terms of interpretation. Viability is indeed a very fragile property, which cannot
be reestablished from the outside. In other words, love it or leave it.

Theorem 4.18. If S is upper semicompact and lower semicontinuous, then the
viability kernel Viab(K,C) of a closed subset K with a closed target C ⊂ K under S
enjoys the barrier property relative to K.

Proof. Let x belong to ∂K(Viab(K,C)), and let x(·) ∈ S(x) be a solution viable
in K forever ( �(K,C)(x(·)) = +∞) or until it reaches C at finite time  �(K,C)(x(·)) <
+∞. Let xn ∈ K\Viab(K,C) converge to x. Since S is lower semicontinuous by
Statement 3, there exists a solution xn(·) ∈ S(xn) converging to x(·) uniformly over
compact intervals. Since Viab(K,C) is isolated, we know that for every n,

∀ t ≤ τK(xn(·)), xn(t) ∈ K\Viab(K,C).
Since  ∂K(xn(·)) ≤ τK(xn(·)) and since the functional x(·) �→  ∂K(x(·)) is lower
semicontinuous, we infer that for every t <  ∂K(x(·)) there exists N > 0 such that
for any n ≥ N ,

t <  ∂K(xn(·)) ≤ τK(xn(·)),
and thus that xn(t) belongs to K\Viab(K,C). Taking the limit, we infer that x(t)
belongs to K\Viab(K,C). Hence x(t) belongs to the boundary ∂K(Viab(K,C)) of
the viability kernel relative to K whenever t <  ∂K(x(·)).

5. Frankowska’s and viscosity property of viability kernels. We restrict
now our study to the case of viability kernels with targets under evolutionary systems
defined by the solution maps of differential inclusions x′ ∈ F (x). In this case, the
viability and invariance theorems characterize the viability and invariance properties
by tangential conditions, as it was mentioned in the introduction, or, equivalently,4

by normal conditions. We recall that the (regular) normal cone5 NL(x) := TL(x)
− to

a subset L at x ∈ L is the polar cone to the contingent cone TL(x) (see, for instance,
[10] or [49] for more details). We denote by

∀ p ∈ X�, σ(K, p) := sup
x∈K

〈p, x〉

the support function of K.

∀ x ∈ K\R−1(K), F (x) ∩ TK(x) �= ∅.
5.1. The basic viability and invariance theorems.
Statement 4. Assume that F is Marchaud. The two following statements hold

true.
1. If K is closed, then K is (globally) viable under F if and only if

∀ x ∈ K, F (x) ∩ TK(x) �= ∅,
4The equivalence between tangential and normal conditions was first noticed in a different context

in [41]. A simpler proof of this fact was given by Hélène Frankowska and appeared in [14] and in
Theorem 3.2.4 of [2]. Other proofs were provided later in [24] and [57].

5One can replace if wished this normal cone NL(x) by the smaller subset x − ΠL(x) of normal
proximals to L at x, where ΠL(x) denotes the set of best approximations of x by elements of L.
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or, equivalently, in dual form, if and only if

∀ x ∈ K, ∀ p ∈ NK(x), σ(F (x),−p) ≥ 0.

2. If C ⊂ K is closed, then K captures C by F if and only if

∀ x ∈ K\C, F (x) ∩ TK(x) �= ∅,

or, equivalently, in dual form, if and only if

∀ x ∈ K\C, ∀ p ∈ NK(x), σ(F (x),−p) ≥ 0.

Statement 5. Assume that F is Lipschitz. The two following statements hold
true.

1. If K is closed, then K is (globally) invariant under F if and only if

∀ x ∈ K, F (x) ⊂ TK(x),

or, equivalently, in dual form, if and only if

∀ x ∈ K, ∀ p ∈ NK(x), σ(F (x), p) ≤ 0.

2. If C ⊂ K is closed, then K absorbs C by F if and only if

∀ x ∈ K\C, F (x) ⊂ TK(x),

or, equivalently, in dual form, if and only if

∀ x ∈ K\C, ∀ p ∈ NK(x), σ(F (x), p) ≤ 0.

3. If C ⊂ K is closed, then C is backward invariant under F relatively to K if
and only if{

(i) ∀ x ∈ C ∩ Int(K), −F (x) ⊂ TC(x),
(ii) ∀ x ∈ C ∩ ∂K, −F (x) ⊂ TC(x) ∪ TX\K(x),

(5.1)

or, equivalently, in normal form, if and only if{
(i) ∀ x ∈ C ∩ Int(K), ∀ p ∈ NC(x), σ(F (x),−p) ≤ 0,
(ii) ∀ x ∈ C ∩ ∂K, ∀ p ∈ NC(x) ∩NX\K(x), σ(F (x),−p) ≤ 0.(5.2)

5.2. Tangential and normal characterizations of viability kernels with
targets. Using the viability theorem, Statement 1, and the invariance theorem, State-
ment 5, we deduce that the viability kernels and the viable-capture basins enjoy tan-
gential and normal characterizations.

For that purpose, we introduce the following Frankowska property.
Definition 5.1. Let us consider a set-valued map F : X ❀ X and two subsets

C ⊂ K and K. We shall say that a subset D between C and K satisfies the Frankowska
property with respect to F if


(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅,
(ii) ∀ x ∈ D ∩ Int(K), −F (x) ⊂ TD(x),
(iii) ∀ x ∈ D ∩ ∂K, −F (x) ⊂ TD(x) ∪ TX\K(x),

(5.3)
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or, equivalently, by duality, satisfying the “normal conditions”

(i) ∀ x ∈ D\C, ∀ p ∈ ND(x), σ(F (x),−p) ≥ 0,
(i) ∀ x ∈ D ∩ Int(K), ∀ p ∈ ND(x), σ(F (x),−p) ≤ 0,
(ii) ∀ x ∈ D ∩ ∂K, ∀ p ∈ ND(x) ∩NX\K(x), σ(F (x),−p) ≤ 0.

(5.4)

When K is assumed further to be backward locally invariant, the above conditions
(5.3) and (5.4) boil down to{

(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅,
(ii) ∀ x ∈ D, −F (x) ⊂ TD(x),(5.5)

and {
(i) ∀ x ∈ D\C, ∀ p ∈ ND(x), σ(F (x),−p) = 0,
(ii) ∀ x ∈ D, ∀ p ∈ ND(x), σ(F (x),−p) ≤ 0,

(5.6)

respectively.
We deduce from the characterization theorem, Theorem 4.13, its tangential and

normal formulations.
Theorem 5.2. Let us assume that F is Marchaud and that C ⊂ K and K are

closed. The viability kernel ViabF (K,C) of the subset K with target C under F is
1. the largest closed subset D of K satisfying

∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅.
2. When F is assumed to be also Lipschitz, the viability kernel ViabF (K,C) is
the unique closed subset D ⊂ K satisfying
(a) the Frankowska property (5.3) (or its dual formulation (5.4));
(b) K\D is a repeller.

As a consequence, we obtain the following tangential characterization of viable-
capture basins.

Theorem 5.3. Let us assume that F is Marchaud, that K is closed, and that a
closed subset C satisfies ViabF (K\C) = ∅. Then the viable-capture basin CaptKF (C)
is

1. the largest closed subset D satisfying C ⊂ D ⊂ K and
∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅.(5.7)

2. If F is Lipschitz, the viable-capture basin CaptKF (C) is the unique closed
subset D satisfying the Frankowska property (5.3) (or its dual formulation
(5.4)).

We now define the following “viscosity property.”
Definition 5.4. Let us consider a set-valued map F : X ❀ X and two subsets

C ⊂ K and K. We shall say that a subset D between C and K satisfies the viscosity
property with respect to F if{

(i) ∀ x ∈ D\C, F (x) ∩ TD(x) �= ∅,
(ii) ∀ x ∈ X\D, F (x) ⊂ T

X\D(x),
(5.8)

and, in normal form,{
(i) ∀ x ∈ D\C, ∀ p ∈ ND(x), σ(F (x),−p) ≥ 0,

(ii) ∀ x ∈ X\D, ∀ p ∈ N
X\D(x), σ(F (x), p) ≤ 0,

(5.9)
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respectively.

When C = ∅, we recognize the definition of a discriminating kernel of K of the
Hamiltonian H(x, p) := σ(F (x),−p) given in [26], for instance.

Theorem 5.5. Let us assume that F is Marchaud and Lipschitz, that C ⊂ K and
K are closed, and that K is backward invariant. The viability kernel ViabF (K,C) of
the subset K with the target C under F is the unique closed subset D ⊂ K satisfying
the following:

1. the viscosity property (5.8) (or its dual formulation (5.9));
2. K\D is a repeller.
6. Stability properties. Consider two sequences of subsets Cn ⊂ C and Kn ⊂

X and their Painlevé–Kuratowski upper limits

C� := Limsupn→+∞Cn & K
� := Limsupn→+∞Kn.

Recall that the upper limit of a sequence of constant subsets C is the closure of C.

Definition 6.1. We define the hypolimit lim�↓n→∞τ
�
Kn
of upper exit functions

τ �Kn whose hypograph is the upper limit of the hypographs of the functions τ
�
Kn

Hp
(
lim�↓n→∞

(
τ �Kn

))
:= Limsupn→∞Hp(τ �Kn).

It is the upper hypolimit of the functions τ �Kn , equal to(
lim�↓n→∞τ

�
Kn

)
(x0) = lim sup

n→∞, xn →Kn x0

τ �Kn(xn).

In the same way, we define the upper epilimit lim�↑n→∞ �(Kn,Cn) whose epigraph

is the upper limit of the epigraphs of the functions  �(Kn,Cn)

Ep
(
lim�↑n→∞ �(Kn,Cn)

)
:= Limsupn→∞Ep

(
 �(Kn,Cn)

)
.

It is the upper epilimit of the functions  �(Kn,Cn), equal to(
lim�↑n→∞ �(Kn,Cn)

)
(x0) = lim inf

n→∞, xn →Kn x0

 �(Kn,Cn)(xn).

We have to prove this very useful stability result.

Theorem 6.2. Let S : X ❀ C(0,+∞;X) be a strict upper semicompact map.
Consider two sequences of subsets Cn ⊂ C and Kn ⊂ X and their Painlevé–Kuratowski
upper limits

C� := Limsupn→+∞Cn & K
� := Limsupn→+∞Kn.

Then

1. the upper hypolimit of the upper exit functions of a sequence of subsets Kn is
smaller than or equal to the upper exit function of their upper limit:(

lim�↓n→∞τ
�
Kn

)
(x) ≤ τ �

K�(x);
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2. the upper epilimit of the lower constrained hitting functions of a sequence
of subsets Cn ⊂ Kn is larger than or equal to the lower constrained hitting
function of their upper limit:(

lim�↑n→∞ �(Kn,Cn)

)
(x) ≥  �(K�,C�)(x).

Proof. Let us begin by proving the first inequality, which can be translated in the
form of the inclusion

Limsupn→∞Hp
(
τ �Kn

)
⊂ Hp

(
τ �
K�

)
.

For that purpose, let us take a sequence (Tn, xn) ∈ Hp(τ �Kn) converging to (T, x) and
check that this limit belongs to the hypograph of τ �

K� . By definition, there exists a
solution xn(·) ∈ S(xn) starting at xn such that, for every t ∈ [0, Tn[, xn(t) belongs to
Kn. Since S is upper semicompact, a subsequence (again denoted by) xn(·) converges
uniformly on compact intervals to some solution x(·) ∈ S(x) starting at x. Take t < T
and n large enough for having t < Tn. In this case, xn(t) belongs to Kn and, passing
to the limit, x(t) belongs to K�. This implies that

T ≤ τK(x(·)) ≤ τ �
K�(x).

Taking Kn := K, xn := x ∈ K, and Tn < τ �K(x) converging to τ �K(x), we infer that
the solution x(·) obtained above achieves the supremum.

Let us prove now the second inequality, which can be translated in the form of
the inclusion

Limsupn→∞Ep
(
 �(Kn,Cn)

)
⊂ Ep

(
 �(Kn,Cn)

)
.

For that purpose, let us take sequences (Tn, xn) ∈ Ep( �(Kn,Cn)) converging to (T, x)
and check that this limit belongs to the epigraph of  (K�,C�).

For every ε > 0, there exist N such that for n ≥ N , there exists a solution
xn(·) ∈ S(xn) and tn ≤ Tn +

ε
2 ≤ T + ε such that xn(tn) ∈ Cn, and for every

s < tn, xn(s) ∈ Kn. Since S is upper semicompact, a subsequence (again denoted
by) xn(·) converges uniformly on compact intervals to some solution x(·) ∈ S(x). Let
us consider also a subsequence (again denoted by) tn converging to some T

� ≤ T + ε.
By passing to the limit, we infer that x(T �) belongs to C� and that, for any s < T �,
x(s) belongs to K�. This implies that

 �(K�,C�)(x) ≤  (K�,C�)(x(·)) ≤ T � ≤ T + ε.

We conclude by letting ε converge to 0. Taking Kn := K, xn := x ∈ K, and
Tn < τ �K(x) converging to τ

�
K(x), we infer that the solution x(·) obtained above

achieves the supremum.
Taking Kn := K, Cn := C, xn := x ∈ K, and Tn ≥  �(K,C)(x) converging to

 �(K,C)(x), we infer that the solution x(·) obtained above achieves the infimum.
We derive stability properties of the viability kernels with targets.
Theorem 6.3. Let us assume that the map S is upper semicompact.
If a subset K captures a subset C ⊂ K under S, then its closure Kalso captures

the closure C of the target C.
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More generally, let us consider a sequence of subsets Kn and of targets Cn ⊂ Kn.
If Kn captures Cn for every n ≥ 0, then the upper limit Limsupn→+∞Kn captures the
upper limit Limsupn→+∞Cn of the targets Cn.

Proof. Let us set

C� := Limsupn→+∞Cn and K
� := Limsupn→+∞Kn.

Let us consider the limit x := limn→+∞ xn ∈ K� of elements xn ∈ Kn. Since Cn
captures Kn, there exists a solution xn(·) ∈ S(xn) viable in Kn until it possibly
reaches Cn at time tn :=  Cn(xn(·)), finite or infinite.

Since S is upper semicompact, a subsequence (again denoted by) xn(·) converges
to some x(·) ∈ S(x) uniformly on compact intervals.

Since xn(·) is viable in Kn until it reaches Cn, we know that
 Cn(xn(·)) ≤ τKn(xn(·)).

Either the limit x belongs to the viability kernel Viab(K�) of the upper limit K�, or
else this limit x does not belong to the viability kernel Viab(K�) and we have to check

that it belongs to the viable-capture basin CaptK�(C�). This means that τ
�
K�(x) is

finite. Since S is upper semicompact, Theorem 6.2 implies that

lim sup
n→+∞,xn →Kn x

τ �Kn(xn) ≤ τ �
K�(x).

For n large enough, there exists Tn < +∞ satisfying

 Cn(xn(·)) ≤ Tn ≤ τKn(xn(·)) ≤ τ �Kn(xn) ≤ τ �
K�(x) + 1 < +∞.

Therefore, a subsequence (again denoted by) Tn converges to some T
� ≤ τ �

K�(x) + 1.
Theorem 6.2 implies that

 �(K�,C�)(x) ≤  (K�,C�)(x(·)) ≤ T � ≤ τK�(x(·)) ≤ τK�(x).

Hence from every x ∈ K� starts a solution viable in K� until it possibly reaches C, so
that K� captures C�.

As a consequence, we obtain the following theorem.
Theorem 6.4. Let us assume that the map S is upper semicompact. Then

Viab(K,C) ⊂ Viab(K,C),

and thus, if C ⊂ K and K are closed, so is the viability kernel Viab(K,C) of K with
target C.

More generally, let us consider a sequence of subsets Kn and of targets Cn ⊂ Kn
and their upper limits K� and C�. Then

Limsupn→+∞Viab(Kn, Cn) ⊂ Viab(Limsupn→+∞Kn,Limsupn→+∞Cn).(6.1)

Theorem 6.5. If the set-valued map S− is lower semicontinuous, then for any
sequence of closed subsets Cn,

Capt(Liminfn→+∞Cn) ⊂ Liminfn→+∞Capt(Cn).(6.2)

Proof. For proving that

Capt(Liminfn→+∞Cn) ⊂ Liminfn→+∞Capt(Cn),
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let C� denote the lower limit of the subsets Cn. Let us take x ∈ Capt(C�) and a
solution x(·) ∈ S(x) viable in K until it reaches the target C� at time T < +∞ at
c := x(T ) ∈ C�. Hence the function t �→ y(t) := x(T − t) is a solution y(·) ∈ S−(c).
Let us consider a sequence of elements cn ∈ Cn converging to c.

Since S− is lower semicontinuous, there exist solutions yn(·) ∈ S−(cn) converging
uniformly over compact intervals to x(·). Therefore, xn := yn(T ) converges to x. It
is enough to observe that xn belongs to Capt(Cn) to conclude.

As a consequence, we obtain the following theorem.
Theorem 6.6. Let us consider a sequence of closed subsets Cn satisfying Viab(K) ⊂

Cn ⊂ K and

Limn→+∞Cn := Limsupn→+∞Cn = Liminfn→+∞Cn.

If the set-valued map S is upper semicompact, if S− is lower semicontinuous, and
if K is closed and backward invariant under S, then

Limn→+∞CaptK(Cn) = CaptK(Limn→+∞Cn).(6.3)

7. Optimal evolutionary control system. We devote this section to state-
ments of applications to optimal control and stopping time problems. We refer to [8, 9]
for applications to systems of first-order partial differential equations and inclusions.

7.1. Control evolutionary systems. We denote by L1(0,∞;U) the space of
measurable integrable functions from [0,+∞[ to a finite dimensional vector-space U ,
the control space. We shall supply it with the weakened topology.

Definition 7.1. Let us consider topological vector spaces X (the state space)
and U (the control space). A control evolutionary system is a set-valued map C : X ❀

C(0,∞;X)×L1(0,∞;U) associating with any x a set of state-control pairs (x(·), u(·))
satisfying the following.

1. The translation property. Let (x(·), u(·)) ∈ C(x). Then for all T ≥ 0, the
function (y(·), v(·)) defined by y(t) := x(t + T ) and v(t) := u(t + T ) is a
solution (y(·), v(·)) ∈ C(x(T )) starting at x(T ).

2. The concatenation property. Let (x(·), u(·)) ∈ C(x), and T ≥ 0. Then for
every (y(·), v(·)) ∈ C(x(T )), the pair (z(·), w(·)) of functions defined by

z(t) :=

{
x(t) if t ∈ [0, T ],
y(t− T ) if t ≥ T

and

w(t) :=

{
u(t) if t ∈ [0, T ],
v(t− T ) if t ≥ T

belongs to C(x).
We shall say that the control evolutionary system C is upper semicompact if the

set-valued map x❀ C(x) is upper semicompact from X to C(0,∞;X)×L1(0,∞;X).
Control evolutionary systems provide examples of evolutionary systems by setting

S(x) :=
⋃

{u(·) | (x(·),u(·))∈C(x)}
{x(·)}.

Usual control problems provide examples of control evolutionary systems.
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7.2. Control systems. Let us consider a control problem (P, f) with a priori
feedback map P : X ❀ U from X to some finite dimensional vector space U governing
the evolution of (x(·), u(·)) according the system{

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ P (x(t)).

(7.1)

Starting from x, we define C(P,F )(x) as the set of pairs (x(·), u(·)) ∈ C(0,∞;X) ×
L1(0,∞;U) satisfying (7.1) for almost all t ≥ 0 such that x(0) = 0.

Definition 7.2. We shall say that the control system (P, f) is
1. Marchaud if the set-valued map P : X ❀ U is Marchaud, if f : X×U �→ X is
continuous and affine with respect to the control, and if f satisfies the growth
condition

∀ (x, u) ∈ Graph(P ), ‖f(x, u)‖ ≤ c(‖x‖+ ‖u‖+ 1);
2. Lipschitz if the set-valued map P : X ❀ U is Lipschitz and if f : X ×U �→ X
is Lipschitz.

Therefore, a control system (P, f) provides an example of upper semicompact
evolutionary systems S if the control system (P, f) is Marchaud and an example of a
lower semicontinuous evolutionary systems S if the control system (P, f) is Lipschitz.

7.3. Optimal evolutionary control. Let us introduce the following two fea-
tures:

1. a discount factor

m : (x, u) ∈ X × U �→m(x, u) ∈ R,

2. an extended “Lagrangian”

l : (x, u) ∈ X × U �→ l(x, u) ∈ R,

used to measure a cumulated cost over time.
We associate with them the auxiliary evolutionary control system R defined by

R(T, x, y) = {(T − ·, x(·), u(·), y(·))}(x(·),u(·))∈C(x),

where

y(t) ≤ e
−
∫ t

0
m(x(s),u(s))ds

(
y −

∫ t

0

e

∫ τ
0

m(x(s),u(s))ds
l(x(τ), u(τ))dτ

)
.(7.2)

7.4. Objective and constraints. Let us consider two nonnegative extended
cost functions b (constraint function) and c (objective function) satisfying

∀ (t, x) ∈ R+ ×Rn+1
+ , 0 ≤ b(t, x) ≤ c(t, x) ≤ +∞,

allowed to take infinite values in order to describe state constraints. We extend them
as functions from R×Rn+1 to R+ ∪ {+∞} by setting

∀ (t, x) /∈ R+ ×Rn+1
+ , b(t, x) = c(t, x) = +∞,

so that nonnegativity constraints on time and on the state variables are automatically
taken into account. In particular, we shall denote by 0 the function defined by

0(t, x) =

{
0 if t ≥ 0, x ∈ Rn+1

+ ,
+∞ if not.
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Several control problems, in particular, financial problems such as the valuation
of options, are stated in the following fashion.

Definition 7.3. The two nonnegative extended constraint and objective functions
being given, and given also a horizon time T > 0, the problem is to

1. find the valuation subset V ⊂ R+ × Rn+1 × R of triples (T, x, y) made of
the horizon time T , the initial state x, and the cost y such that there exists
a control t ∈ [0, T ] �→ u(t) ∈ P (x(t)) and a time  (T ) ∈ [0, T ] such that the
solution to the system (7.3) satisfying x(0) = x, y(0) = y and{

(i) ∀ t ∈ [0,  (T )], y(t) ≥ b(T − t, x(t)),
(ii) y( (T ) ≥ c(T − (T ), x( (T )));(7.3)

2. associate with any initial price x the smallest cost

V (T, x) := inf
(T,x,y)∈V

y.(7.4)

The function (T, x) �→ V (T, x) is called the value function of the problem, i.e., the
minimal initial cost y satisfying the two above constraints (7.3).

We observe at once the following property. The value function satisfies the initial
condition

∀ x ∈ Rn, V (0, x) = c(0, x).

We observe that the valuation subset V is the viable-capture basin of the epigraph
of c viable in the epigraph of b under the auxiliary evolutionary control system (7.3)
because dynamical constraints (7.3) can be reformulated in the form{

(i) ∀ t ∈ [0,  (T )], (T − t, x(t), y(t)) ∈ Ep(b),
(ii) (T − (T ), x( (T )), y( (T ))) ∈ Ep(c).(7.5)

Therefore, we can reformulate the definition of the valuation subset V and of the
value function (T, x) �→ V (T, x) in the following way.

Proposition 7.4. The valuation subset

V = Capt
Ep(b)
R (Ep(c))

is the viable-basin capture of the epigraph of the cost function c under the auxiliary
evolutionary control system (7.3) viable in the epigraph of the cost function b.

We can prove that V is the concealed value function of an optimal evolutionary
control system that we have to unearth. For that purpose, we associate with the
function c the cost functional


Jc(t, x; (x(·), u(·)))

:= e

∫ t
0

m(x(s),u(s))ds
c(T − t, x(t)) +

∫ t

0

e

∫ τ
0

m(x(s),u(s))ds
l(x(τ), u(τ))dτ

(where t ranges over [0, T ]), constituted by the sum of the discounted spot cost and
the cumulated costs at time t of a solution to the control problem starting at x at
the initial time. The controls—most often prices or other regulees in economics,
portfolio in finance—appear both in the discount factor m and the Lagrangian l. In



VIABILITY KERNELS AND CAPTURE BASINS OF SETS 875

the same way, we associate with the function b the cost functional Jb and the maximal
cumulated cost up to the current time t:

Kb(t, x; (x(·), u(·))) := sup
s∈[0,t]

Jb(s, x; (x(·), u(·))).

We next integrate this cumulated cost together with the former cost Jc(t, x; (x(s), u(s)))
by introducing the new cost function

Lc
b(t, x; (x(·), u(·))) := max(Kb(t, x; (x(·), u(·))), Jc(t, x; (x(·), u(·)))).

The problem is now to minimize over all t ∈ [0, T ] and over all the solutions to
the evolutionary control problem:

Vb(c)(T, x) := inf
(x(·),u(·))∈C(x)

inf
t∈[0,T ]

Lc
b(t, x; (x(·), u(·))).

Statement 6. Let us assume that the extended functions b and c are nontrivial
and nonnegative. The constrained discounted intertemporal value function Vb(c) is

equal to the function V associated with the viable-capture basin Capt
Ep(b)
R (Ep(c)) of

Ep(c) under R. Furthermore, any solution (x(·), u(·)) ∈ C(x) starting from x ∈
Dom(Vb(c)) satisfying the inequality for every t ∈ [0,  (T, x(·))]


Vb(c)(T, x)

≥ e

∫ t
0

m(x(s),u(s))ds
Vb(c)(T − t, x(t)) +

∫ t

0

e

∫ τ
0

m(x(s),u(s))ds
l(x(τ), u(τ))dτ

(7.6)

until the first time  (T, x(·)) when

Vb(c)(T − (T, x(·))), x( (T, x(·))) = b(T − (T, x(·))), x( (T, x(·)))

is an optimal solution for the optimal time  (T, x(·)) and actually satisfies the equality



∀ t ∈ [0,  (T, x(·))], Vb(c)(T, x)

= e

∫ t
0

m(x(s),u(s))ds
Vb(c)(T − t, x(t)) +

∫ t

0

e

∫ τ
0

m(x(s),u(s))ds
l(x(τ), u(τ))dτ.

(7.7)

Finally, the value function is a solution v to the two following functional equations
stating that the functions Lv

b and L
c
v have the same infimum as L

c
b:


inf(x(·),u(·))∈C(x) inft∈[0,T ] L

c
v(t, x; (x(·), u(·)))

= v(T, x)
= inf(x(·),u(·))∈C(x) inft∈[0,T ] L

v
b(t, x; (x(·), u(·))).

(7.8)

We list a manifold of examples in classical optimal control (in the case when
m = 0), recalling that financial problems6 (in the case when l = 0) also fit the above
framework. Playing with the choice of the spot cost c, we shall cover several examples.

6See [44] for a treatment of dynamical valuation of portfolios in the framework of dynamical
games.
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1. Taking b = 0 and c defined by

c(t, x) :=

{
u(x) if t = 0,
+∞ if t > 0,

the above problem boils down to

V (c)(T, x) := inf
(x(·),u(·))∈C(x)

Jc(T, x; (x(·), u(·))),

which is the Bolza problem

inf
(x(·),u(·))∈C(x)

(
u(x(T )) +

∫ T

0

l(x(τ), u(τ))dτ

)

and the Mayer problem

inf
(x(·),u(·))∈C(x)

u(x(T ))

when, furthermore, l = 0.
2. Taking b = 0 and c(t, x) := u(x), we find the classical stopping time problem

F(u)(T, x) := inf
(x(·),u(·))∈C(x)

inf
t∈[0,T ]

(
u(x(t)) +

∫ t

0

l(x(τ), u(τ))dτ

)

associated with u in control theory. The cost function l can be regarded
as a density of Maslov measures, F(u) being then the mathematical faith of
u introduced by Pierre Bernhard (with the minus sign, under the name of
mathematical fear). They correspond to the mathematical expectation E(f)
of densities f of probability measures.

3. Let us consider an extended function b : R+ ×X �→ R ∪ {+∞} with which
we associate the problem

W (b)(T, x) := inf
(x(·),u(·))∈C(x)

sup
t∈[0,T ]

Jb(t, x; (x(·), u(·))).

b : R+ × X �→ R ∪ {+∞} is an extended cost function. We observe that
W (b) = Vb(c), where

c(t, x) :=

{
b(0, x) if t = 0,
+∞ if t > 0.

Indeed, we see that Jc(t, x; (x(·), u(·))) = +∞ if t < T and Jc(T, x; (x(·), u(·))) =
Jb(T, x; (x(·), u(·))). Therefore,

Lc
b(t, x; (x(·), u(·))) :=

{
Kb(T, x; (x(·), u(·))) if t = T,
+∞ if t < T,

and thus, W (b) = Vb(c).
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7.5. Episolutions to Hamilton–Jacobi–Bellman inequalities. Let us con-
sider the case when the evolutionary control system is associated with the control
system (7.1) and apply Theorem 5.3 characterizing capture basins in terms of the
tangential conditions. This allows us to relate the value function with generalized
solutions to Hamilton–Jacobi–Bellman partial differential variational inequalities


∀ (t, x) ∈ Ω(v),
−∂v(t, x)

∂t
+ inf
u∈P (x)

(〈
∂v(t, x)

∂x
, f(x, u)

〉
+ l(x, u) +m(x, u)v(t, x)

)
= 0

on the subset

Ω(v) := {(t, x) ∈ R+ ×X | b(t, x) ≤ v(t, x) < c(t, x)}.

Let us recall that the contingent epiderivative D↑v(t, x) of v at (t, x) is defined
by

D↑v(t, x)(λ, v) := lim inf
h→0+, u→v

v(t+ hλ, x+ hu)

h

and that

Ep(D↑v(t, x)) = TEp(v)(t, x,v(t, x)).

The first part of Theorem 5.3 implies a characterization of the value function as a
solution of Hamilton–Jacobi variational inequalities.

Statement 7 (Frankowska). Let us assume that the control system (P, f, l,m)
is Marchaud and that the functions b and c are nontrivial, nonnegative, and lower
semicontinuous.

Then the value function Vb(c) is characterized as the smallest of the nonnegative
lower semicontinuous functions v : R+ × X �→ R+ ∪ {+∞} satisfying for every
(t, x) ∈]0,∞[×X


(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if (t, x) ∈ Ω(v),

infu∈P (x) (D↑v(t, x)(−1, f(x, u)) + l(x, u) +m(x, u)v(t, x)) ≤ 0.

Let us set

R(t, x) := {u ∈ P (x) | D↑Vb(c)(t, x)(−1, f(x, u))+ l(x, u)+m(x, u)Vb(c)(t, x) ≤ 0}.

Knowing the value function, an optimal solution is obtained in the following way.
Starting from x0 such that Vb(c)(T, x0) < c(T, x0), any solution (x(·), u(·)) to the
control system {

(i) x′(t) = f(x(t), u(t)),
(ii) u(t) ∈ R(t, x(t)),

(7.9)

is an optimal solution, and the first time  (T, x(·)) ≥ 0 when

Vb(c)(T − (T, x(·)), x( (T, x(·))) = c(T − (T, x(·)), x( (T, x(·)))

is the optimal time.
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The second part of Theorem 5.3 implies the characterization of the value function
Vb(c) as a unique Frankowska episolution to the Hamilton–Jacobi–Bellman variational
inequality.

Statement 8 (Frankowska). Let us assume that the control system (P, f) is
Marchaud and Lipschitz and that b and c are nontrivial, nonnegative, and lower
semicontinuous.

Then the value function Vb(c) is the unique lower semicontinuous episolution v
to the system of differential inequalities: for every (t, x) ∈ Dom(v),



(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if v(t, x) < c(t, x),

infu∈P (x) (D↑v(t, x)(−1, f(x, u)) + l(x, u) +m(x, u)v(t, x)) ≤ 0,
(iii) if v(t, x) > b(t, x),

supu∈P (x)(D↑v(t, x)(1,−f(x, u))− l(x, u)−m(x, u)v(t, x)) ≤ 0,

(iv) if v(t, x) = b(t, x),
supu∈P (x) [min(D↑v(t, x)(1,−f(x, u)), D↓b(t, x)(1,−f(x, u)))
−l(x, u))−m(x, u)v(t, x)))] ≤ 0.

(7.10)

Remark. Condition (7.10)(iv) is automatically satisfied whenever

sup
u∈P (x)

(D↓b(t, x)(1,−f(x, u))− l(x, u))−m(x, u)v(t, x) ≤ 0,

i.e., whenever the epigraph of b is locally backward invariant under the auxiliary
system.

7.6. Bilateral and viscosity solutions to Hamilton–Jacobi–Bellman vari-
ational inequalities. We obtain by duality equivalent statements involving subdif-
ferential and/or superdifferentials, involving the Hamiltonian H : X ×R+ × X� �→
R ∪ {+∞} associated with the control problem and the Lagrangian by

H(x, y, p) := inf
u∈P (x)

(〈p, f(x, u)〉+ l(x, u) +m(x, u)y)

and the horizon Hamiltonian H∞ : X ×X� �→ R ∪ {+∞}, by
H∞(x, p) := inf

u∈P (x)
〈p, f(x, u)〉.

We recall the definition of the subdifferential ∂−v(t, x) and the horizon subdiffer-
ential ∂∞− v(t, x) of the function v at (t, x):{

(i) (pt, px) ∈ ∂−v(t, x) if (pt, px,−1) ∈ NEp(v)(t, x,v(t, x)),
(ii) (pt, px) ∈ ∂∞− v(t, x) if (pt, px, 0) ∈ NEp(v)(t, x,v(t, x)).

Let us recall that the horizon subdifferential ∂∞− v(t, x) = (0, 0) whenever the domain
of the contingent epiderivative D↑v(t, x) is dense in R+×X. This happens whenever
v is Lipschitz in a neighborhood of (t, x).

Statement 9 (Frankowska). Under the assumptions of Statement 7, the value
function Vb(c) is the smallest lower semicontinuous nonnegative function v : X �→
R ∪ {+∞} satisfying for every (t, x) ∈]0,∞[×X


(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if v(t, x) < c(t, x),

∀ (pt, px) ∈ ∂−v(t, x), −pt +H(x,v(t, x), px) ≤ 0,
∀ (pt, px) ∈ ∂∞− v(t, x), −pt +H∞(x, px) ≤ 0.
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Statement 8 can be stated in terms of subdifferentials, providing the existence
and uniqueness of bilateral solutions proved independently by Barron and Jensen and
Frankowska.

Statement 10 (Barron–Jensen and Frankowska). We posit the assumptions
of Statement 8. Then the value function Vb(c) is the unique lower semicontinuous
solution v—also called bilateral solution—to the system of differential inequalities:
for every (t, x) ∈ Dom(v),



(i) b(t, x) ≤ v(t, x) ≤ c(t, x),
(ii) if b(t, x) < v(t, x) < c(t, x), the equations

∀ (pt, px) ∈ ∂−v(t, x), −pt +H(x,v(t, x), px) = 0,
∀ (pt, px) ∈ ∂∞− v(t, x), −pt +H∞(x, px) = 0,

(iii) if v(t, x) = c(t, x), the boundary condition
∀ (pt, px) ∈ ∂−v(t, x), −pt +H(x,v(t, x), px) ≥ 0,
∀ (pt, px) ∈ ∂−v∞(t, x), −pt +H∞(x, px) ≥ 0,

(iv) if b(t, x) = v(t, x), the boundary condition
∀ (pt, px) ∈ ∂∞− v(t, x) ∩ −∂∞+ b(t, x), −pt +H∞(x, px) = 0.

(7.11)

See [20, 21, 39, 40].
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Abstract. A Wiener input process is shown to be persistently exciting (PE) for linear stochastic
systems with time-varying, convergent, random coefficients, provided asymptotic noise controllability
holds a.s. The PE result is in the sense that the minimum eigenvalue of the integrated outer product
of the state process is of O(t) (t being the upper time limit of the integral).

Key words. persistent excitation, linear stochastic systems, convergent coefficients, noise con-
trollability

AMS subject classifications. 60G15, 60H30, 93B05, 93C05, 93E12, 93E35

PII. S0363012996300458

1. Introduction. A central issue in the identification of stochastic systems by
such methods as maximum likelihood estimation, recursive least squares, and, more
generally, prediction error methods (see, e.g., Caines (1988) and the references therein)
is whether the control input and the system disturbance input will excite the system
state process sufficiently for consistent parameter estimation to occur. More specifi-
cally, many strong consistency results for the estimation of system parameters depend
upon the satisfaction of some form of asymptotic condition on the minimum and, in
some cases, the maximum and the minimum eigenvalues of the matrix process {Pt}
given by the integrated outer product of the system state process (or an equivalent
observed regression process) with itself. Such a condition is called a persistent excita-
tion condition on the state (respectively, regression) process with respect to the given
system inputs.

The use of various forms of persistent excitation conditions is ubiquitous in the
system identification field (see, e.g., Caines (1988) and the bibliography therein). To
cite just a few examples, applications of such conditions appear in Duncan and Pasik-
Duncan (1986), where an assumption implying that λmax(Pt)/λmin(Pt) = O(1) is
employed, and in Caines (1992), where a condition of the type λmin(Pt)/t = O(1) is
assumed. The well-known persistent excitation condition developed by Lai and Wei
(1982), which involves the ratio of the logarithm of the maximum eigenvalue to the
value of the minimum eigenvalue, is discussed in the remark at the end of this paper.
In this context, we note the persistent excitation results for linear, time-invariant,
systems presented by Moore (1987), which show the value of stochastic excitation
signals in the identification and adaptive control of otherwise deterministic systems.

In this paper we analyze time-varying stochastic linear systems that are driven
solely by a Wiener process, and whose stochastic system matrix converges a.s. in such
a way that the resulting system pair [A∞, C] is a.s. controllable from the disturbance
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input. We show that the state process of such a system satisfies the persistent exci-
tation condition that the minimum eigenvalue of Pt is of O(t) a.s. as t → ∞. Apart
from its general applicability, this result plays a key role in the theory of stochastic
adaptive control developed in Caines and Levanony (1993) and Levanony and Caines
(1994, 1996).

2. Main result.
Theorem 2.1. Let {xt} be an Rn valued process, evolving according to

dxt = Atxtdt+ Cdwt, t ≥ 0, x0 given,(2.1)

where {wt} is an Rm valued standard Brownian motion, and {At} an Rn×n valued
{Fxt } adapted process. Suppose that {At} is a.s. continuous and that there exists an
a.s. finite A∞ such that

At → A∞, a.s., as t→∞.(2.2)

Then if the pair [A∞, C] is a.s. controllable, it follows that

lim inf
t→∞

1

t
λmin

{∫ t

0

xrx
T
r dr

}
> 0, a.s.(2.3)

Proof. The proof consists of several steps, some of which are constructed to
overcome a key problem, namely, how to handle the possibility of trajectories {xt}
diverging to infinity.

2.1. A truncation mechanism. First, note that continuity and convergence
imply that

sup
t≥0
‖At‖ <∞, a.s.(2.4)

Hence it suffices to prove (2.3) for stopped versions {ANt } of {At} which satisfy

sup
t≥0
‖ANt ‖ ≤ N, a.s.(2.5)

for a deterministic arbitrary large N <∞. This is proved by the following (standard)
argument. Fix ε > 0 and let N be such that

sup
t≥0
‖At‖ ≤ N, with probability greater than 1− ε.

Let TN = inf{t ≥ 0 : ‖At‖ > N} and define {xNt } so as to satisfy

xNt = xt, 0 ≤ t < TN ,

dxNt = ATNx
N
t dt+ Cdwt, TN ≤ t <∞, xNTN = xTN .

Suppose now that (2.3) holds for {xNt }. Let ΓN∆{xt = xNt , t ≥ 0}, where, by the
choice of N,P (ΓN ) > 1− ε, it then follows that (2.3) holds for {xt}, with probability
greater than 1− ε. The arbitrary nature of ε > 0 then implies that if (2.4) holds and
(2.3) holds for {xNt } for all N > 0, then (2.3) holds for {xt}.

At this point it is worth emphasizing that ANt → AN∞ a.s. (where {ANt } denotes
the dynamic matrix process for the truncated process {xNt }), where

AN∞ =

{
A∞ a.e. on ΓN ,

ATN otherwise.
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Therefore, while the pair [AN∞, C] is a.e. controllable on ΓN , [AN∞, C] might be uncon-
trollable on ΓcN . (This point will reappear at the end of the proof.)

Henceforth we continue our investigation for the truncated process xN . To avoid
cumbersome notation, the superscript N will be omitted throughout, unless specifi-
cally required.

2.2. A consequence of the contradiction to the theorem. Assume that
(2.3) does not hold. Then there exists an event Ω̃ ∈ Fx∞ with P (Ω̃) > 0 such that

lim inft→∞ 1
tλmin{

∫ t
0
xrx

T
r dr} = 0 a.e. on Ω̃. Hence there exists an Rn vector process

αt ∈ Fx∞, t ≥ 0, with

‖αt‖ =
{
1 a.e. on Ω̃,

0 a.e. on Ω̃c,
(2.6)

such that

lim inf
t→∞

1

t

∫ t

0

(αTt xr)
2dr = 0, a.s.(2.7)

The equality (2.7) in turn implies that

lim inf
t→∞

∫ t+1

t

(αTt+1xr)
2dr = lim inf

t→∞

∫ 1

0

(αTt+1xt+s)
2ds = 0, a.s.(2.8)

2.3. Construction of a convergent subsequence. Equation (2.8) implies
the existence of a subsequence {tn}n≥1 and an associated subsequential limit α ∈ Rn,
‖α‖ ≤ 1, such that αtn+1 → α a.s. and

lim
n→∞

∫ 1

0

(αTtn+1xtn+s)
2ds = 0, a.s.(2.9)

With {xt} being a strong solution of the linear SDE (2.1) (for which no finite explosion
time exists), and due to (2.9), one may conclude that

sup
n≥1

∫ 1

0

(αTtn+1xtn+s)
2ds <∞, a.s.(2.10)

One now may assume that E[supn≥1

∫ 1

0
(αTtn+1xtn+s)

2ds] < ∞, because if not, then
by a truncation mechanism identical to the one described by (2.23)–(2.26) below, one
can redefine the vector process {αtn+1} so as to make the left-hand side of (2.10)
integrable (see below for details, omitted here to avoid repetition).

It now follows from the integrability above, (2.9), the a.s. convergence of {αtn+1},
and Corollary II-2.4 in Revuz and Yor (1991) that

lim
n→∞E

[∫ 1

0

(αTtn+1xtn+s)
2ds+ ‖αtn+1 − α‖|Fxtn

]
= 0, a.s.,(2.11)

which enables us to define a sequence of stopping times in the form:

τn = inf

{
t > 0 : E

[∫ 1

0

(αTt+1xt+s)
2ds+ ‖αt+1 − α‖|Fxt

]
< 1/n

}
.(2.12)
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Then, obviously, {τn} is an {Fxt }-adapted subsequence which satisfies

lim
n→∞E

[∫ 1

0

(αTnxτn+s)
2ds|Fxτn

]
= 0, a.s.,(2.13)

where αn∆ατn+1. Note that

0 ≤ E

[
lim
n→∞

∫ 1

0

(αTnxτn+s)
2ds

]
= lim
n→∞E

[∫ 1

0

(αTnxτn+s)
2ds

]

= lim
n→∞E

{
E

[∫ 1

0

(αTnxτn+s)
2ds|Fxτn

]}
= E

{
lim
n→∞E

[∫ 1

0

(αTnxτn+s)
2ds|Fxτn

]}
= 0.

The first equality is due to (2.9), (2.10) (together with its assumed integrability), and
dominated convergence. The second equality is based on smoothing, while the third
rests on (2.12) and dominated convergence. Finally, the last equality results from
(2.13). This chain of calculations therefore leads one to conclude that

lim
n→∞

∫ 1

0

(αTnxτn+s)
2ds = 0, a.s.(2.14)

Similarly, (2.11) and (2.12) imply αn → α, a.s. (The replacement of the sequence {tn}
with the adapted subsequence {τn} is made to enable the future use of conditional ex-
pectations, which, being Fxτn-measurable approximations, will allow relatively simple
calculations.)

We shall show that, under the hypotheses of the theorem, (2.14) yields a contra-
diction.

2.4. Calculation of bounds. Let φn(s, u) be the transition matrix generated
by {Aτn+r, u ≤ r ≤ s}, where φ̇n(r, u) = Aτn+rφn(r, u) and φn(r, r) = I, u ≤ r ≤ s.
Define

zn(s) = φTn (s, 0)αn,

mn(s) =

∫ s

0

φn(0, r)Cdwτn+r.

Then the integrand in (2.14) can be rewritten as

(αTnxτn+s)
2 = [zTn (s)(xτn +mn(s))]

2, 0 ≤ s ≤ 1.(2.15)

Note now that the boundedness of {At} given in (2.5) implies that

‖φn(s, u)‖ ≤ eN ∀n ≥ 0, u, s ∈ [0, 1], a.s.(2.16)

For the martingale {mn(s),F
x
τn+s} one therefore has

E sup
0≤s≤1

‖mn(s)‖2 = E sup
0≤s≤1

∥∥∥∥
∫ s

0

φn(0, r)Cdwτn+r

∥∥∥∥
2

≤ 4E

∥∥∥∥
∫ 1

0

φn(0, r)Cdwτn+r

∥∥∥∥
2

= 4Tr

{
E

∫ 1

0

φn(0, r)CCTφTn (0, r)dr

}
≤ 4e2NTrCCT ∀n ≥ 0,(2.17)
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where the first inequality is Doob’s inequality and the last inequality is due to (2.16).
It follows that

sup
n≥0

∫ 1

0

‖mn(s)‖2ds <∞, a.s.(2.18)

Furthermore, (2.16) and the definition of αn imply that

sup
n≥0

sup
0≤s≤1

‖zn(s)‖ ≤ eN , a.s.,(2.19)

and hence, via (2.18),

sup
n≥0

∫ 1

0

(zTn (s)mn(s))
2ds <∞, a.s.(2.20)

Now, we rewrite (2.14) using (2.15) to obtain

lim
n→0

∫ 1

0

(zTn (s)(xτn +mn(s)))
2ds = 0, a.s.(2.21)

Hence we conclude (by writing xτn = (xτn +mn)−mn, using (2.20), (2.21), and the
Cauchy–Schwarz (C–S) inequality) that

sup
n≥0

∫ 1

0

(zTn (s)xτn)
2ds <∞, a.s.(2.22)

At this stage in the proof we have replaced the initial hypothesized contradiction
(2.14) by the study of the consequences of (2.21) and (2.22), where the processes
{xτn+s 0 ≤ s ≤ 1}, n ≥ 0, are generated by an At process with a.s. bounded trajec-
tories. The next stage is to replace the integrals in (2.21) with integrals with past
measurable integrands, and hence to approximate the basic controllability covariance
(or Grammian) calculation, which will give a contradiction by virtue of the control-
lability of [A∞, C].

2.5. A truncation to obtain uniform integrability. As will be seen below,
the technique of the proof uses uniform integrability of the integral in (2.22). Since
this is not guaranteed here, we resort to another truncation mechanism.

Let ε > 0 be such that P (Ω̃) > 2ε. Next let ΩN ∈ Fx∞ be the set such that, by
(2.22),

sup
n≥0

∫ 1

0

(zTn (s)xτn)
2ds ≤ N a.e. on ΩN ,(2.23)

with P (ΩN ) > 1− ε for all sufficiently large N . Further, by (2.4) and (2.22), P (ΓN ∩
ΩN ) > 1 − 2ε for sufficiently large N , and hence P (Ω̃ ∩ ΓN ∩ ΩN ) > 0. (Recall that
ΓN = {xt = xNt , t ≥ 0}.)

Define the Rn valued process {αNn } by

αNn =

{
αn a.e. on ΩN ∩ ΓN ,

0 a.e. on ΩcN ∪ ΓcN
(2.24)
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(with an associated limit αN ) and accordingly

zNn (s) = φTn (s, 0)α
N
n .(2.25)

Then, by definition,

sup
n≥0

∫ 1

0

(xTτnz
N
n (s))2ds ≤ N, a.s.(2.26)

Hence, with (2.26), the basic limiting relation (2.14) (or equivalently (2.21)) implies

lim
n→∞

∫ 1

0

((xτn +mn(s))
T zNn (s))2ds = 0, a.s.(2.27)

Recall that z and hence zN are uniformly bounded by eN . Hence zN is square
integrable, and this enables us to define

ẑNn (s) = E[zNn (s)|Fxτn ], s ∈ [0, 1].(2.28)

2.6. The uniform consistency of ẑN . Our objective now is to show that, in
the formula (2.27), zN can be replaced by ẑN . Towards this end, we observe that the
ODE for zNn (s) (as defined in (2.25)) is

d

ds
zNn (s) = ATτn+sz

N
n (s), zNn (0) = αNn , 0 ≤ s ≤ 1.(2.29)

In order to derive an ODE for ẑNn , note that

‖zn(s+ h)− zn(s)‖/h ≤ ‖φTn (s, 0 + h)− φTn (s, 0)‖/h
≤ 2 sup

0≤s≤1
‖ATτn+sφn(s, 0)‖ ≤ 2NeN

for any n ≥ 0, s ∈ [0, 1], and small enough h.
Hence, by letting h→ 0, dominated convergence leads to

d

ds
ẑNn (s) = lim

h→0
E[zNn (s+ h)− zNn (s)|Fxτn ]/h = E

[
lim
h→0

(zNn (s+ h)− zNn (s))/h|Fxτn
]

= E[ATτn+sz
N
n (s)|Fxτn ], ẑNn (0) = α̂Nn ∆E[αNn |Fxτn ].(2.30)

Let en(s) = zNn (s)− ẑNn (s). Then, from (2.29) and (2.30),

d

ds
en(s) = ATτn+sz

N
n (s)− E[ATτn+sz

N
n (s)|Fxτn ]

= ATτn+s(z
N
n (s)− ẑNn (s)) +ATτn+sẑ

N
n (s)− E[ATτn+sz

N
n (s)|Fxτn ]

= ATτn+sen(s) + (Aτn+s −Aτn)
T ẑNn (s) +ATτn ẑ

N
n (s)− E[ATτn+sz

N
n (s)|Fxτn ]

= ATτn+sen(s) + (Aτn+s −Aτn)
T ẑNn (s) + E[(Aτn −Aτn+s)

T zNn (s)|Fxτn ],(2.31)

with the initial condition en(0) = αNn − α̂Nn . (Note that in introducing ATτn ẑ
N
n (s) into

the conditional expectation, we have used the definition of ẑN and the measurability
of Aτn w.r.t. Fxτn .)
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The solution of (2.31) is then

en(s) = φTn (s, 0)(α
N
n − α̂Nn ) +

∫ s

0

φTn (r, s)[Aτn+r −Aτn ]
T ẑNn (r)dr

+

∫ s

0

φTn (r, s)E[(Aτn −Aτn+r)
T zNn (r)|Fxτn ]dr.(2.32)

Using the uniform bounds which hold on φ, zN , and ẑN , it can be deduced from (2.32)
that

sup
0≤s≤1

‖zNn (s)− ẑNn (s)‖ = sup
0≤s≤1

‖en(s)‖ ≤ eN‖αNn − α̂Nn ‖+ e2N sup
0≤s≤1

‖Aτn+s −Aτn‖

+ e2N

(
E

[
sup

0≤s≤1
‖Aτn+s −Aτn‖2|Fxτn

])1/2

.

Let un = sup0≤s≤1 ‖Aτn+s − Aτn‖2 and note that, due to (2.2) and the definition
of the stopped At process, un → 0 a.s. as n → ∞; hence the second term on the
right-hand side (RHS) goes to zero as n → ∞, a.s. Furthermore, since by (2.5)
0 ≤ un ≤ 2N , the dominated convergence theorem implies that Eun → 0, which
makes the third term on the RHS decay to zero as n → ∞. Finally, observing that
α̂Nn = E[αNn |Fxτn ]→ E[αN |Fx∞] = αN (as αN ∈ Fx∞), one has

lim sup
n→∞0≤s≤1

‖zNn (s)− ẑNn (s)‖ = 0, a.s.(2.33)

Furthermore, using the same method with which (2.33) was obtained, we see that,
with probability 1 (w.p.1)

lim sup
n→∞0≤s≤1

‖φn(s, 0)− expAτns‖ = lim sup
n→∞0≤s≤1

sup
‖y‖=1

‖φn(s, 0)y − [expAτns]y‖ = 0,
(2.34)

a fact used in what follows.

2.7. Main argument to obtain a contradiction. Returning to our main
problem, it can be verified that the integrand in (2.27) may be rewritten as

[(xτn +mn(s))
T zNn (s)]2 = [(xτn +mn(s))

T ẑNn (s)]2 + [(xτn +mn(s))
T (ẑNn (s)− zNn (s))]2

− 2(ẑNn (s)− zNn (s))Tmn(s)m
T
n (s)ẑ

N
n (s)

− 2(ẑNn (s)− zNn (s))Tmn(s)x
T
τn ẑ

N
n (s)

− 2(ẑNn (s)− zNn (s))Txτnx
T
τn ẑ

N
n (s)

− 2(ẑNn (s)− zNn (s))Txτnm
T
n (s)ẑ

N
n (s).(2.35)

Using (2.33), our next step is to show that the integrals over [0, 1] of the third and
fourth terms on the RHS of (2.35) decay to zero as n → ∞. Consider first the third
term on the RHS of (2.35): Equipped with (2.18), (2.33), and the uniform bound on
ẑN , a C–S inequality leads to

lim
n→∞

∫ 1

0

(ẑNn (s)− zNn (s))Tmn(s)m
T
n (s)ẑ

N
n (s)ds = 0, a.s.(2.36)
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As for the fourth term on the RHS of (2.35), first note that (2.26), the fact that xτn ∈
Fxτn , n ≥ 0, and Jensen’s inequality guarantee that supn≥0

∫ 1

0
(xτn ẑ

N
n (s))2ds ≤ N ,

a.s. Hence, at this point, (2.18), (2.26), and a C–S inequality imply that

lim
n→∞

∫ 1

0

(ẑNn (s)− zNn (s))Tmn(s)x
T
τn ẑ

N
n (s)ds = 0, a.s.(2.37)

Let us consider the two last terms on the RHS of (2.35).
First, by the Burkholder–Davis–Gundy (B-D-G) inequality (e.g., Theorem IV-4.1,

Revuz and Yor (1991)), together with the uniform bounds (2.16), (2.19), on φn and
zn (respectively), it follows that

E sup
s∈[0,1]

(mT
n (s)z

N
n (s))4 ≤ e4NE sup

s∈[0,1]

‖mn(s)‖4 (due to (2.19))

≤ c4e
4N

(
TrE

∫ 1

0

φn(s, 0)CCTφTn (s, 0)ds

)2

(due to the B-D-G inequality)

≤ c4e
8N (TrCCT )2 (due to (2.16))

(where c4 is the universal constant in the 4th moment, B-D-G inequality), and, by
Theorem 2, section 3-VII of Shiryayev (1984) (for which use of the bound on the 4th
moment above is required),

E sup
n≥0

sup
s∈[0,1]

(mT
n (s)z

N
n (s))2 ≤ 9

√
c4e

4NTrCCT .

This, together with (2.26), enables us to apply the dominated convergence theorem to
(2.27). Recall that (2.35) is the integrand ((xτn +mn(s))

T zNn (s))2 in (2.27), broken
into the sum of six terms. After the elimination of the third and fourth terms (by
(2.36) and (2.37), respectively) and the use of the dominated convergence theorem
(justified above), (2.27) results in

0 = lim
n→∞E

[∫ 1

0

(
(xτn +mn(s))

T zNn (s)
)2
ds

]

≥ lim inf
n→∞ E

[∫ 1

0

((xτn +mn(s))
T ẑNn (s))2ds

]

− 2 lim sup
n→∞

E

[∫ 1

0

(
ẑNn (s)− zNn (s)

)T
xτn
(
xτn +mn(s)

)T
ẑNn (s)ds

]
.(2.38)

On our way to obtaining a contradiction, the next step involves the elimination of the
second term on the RHS of (2.38). First, note that the measurability of xτn and ẑNn
w.r.t. Fxτn , the definition of ẑNn (s), and (2.26) together lead to

E

[∫ 1

0

(
ẑNn (s)− zNn (s)

)T
xτnx

T
τn ẑ

N
n (s)ds

]

= E

{
E

[∫ 1

0

(
ẑNn (s)− zNn (s)

)T
xτnx

T
τn ẑ

N
n (s)ds|Fxτn

]}

= E

{∫ 1

0

E
[(
ẑNn (s)− zNn (s)

)T |Fxτn]xτnxTτn ẑNn (s)ds

}
= 0 ∀n ≥ 0.(2.39)
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To complete the elimination of the second term in the right-most expression in
the chain (2.38), we claim that

lim
n→∞E

[∫ 1

0

(
ẑNn (s)− zNn (s)

)T
xτnm

T
n (s)ẑ

N
n (s)ds

]
= 0.(2.40)

To see this, first note that, (i) since xτn and ẑNn (s) are Fxτn-measurable and (ii) because
{mn(s),F

x
τn+s, s ∈ [0, 1]} is a zero mean martingale satisfying E[mn(s)|Fxτn ] = 0, it

follows that

E

[∫ 1

0

(
ẑNn (s)− zNn (s)

)T
xτnm

T
n (s)ẑ

N
n (s)ds

]

=

∫ 1

0

E
[(
ẑNn (s)− zNn (s)

)T
xτnm

T
n (s)ẑ

N
n (s)

]
ds

=

∫ 1

0

E
{(

ẑNn (s)
)T

xτnE
[
mn(s)|Fxτn

]
ẑNn (s)

}
ds−

∫ 1

0

E
[(
zNn (s)

)T
xτnm

T
n (s)ẑn(s)

]
ds

=

∫ 1

0

E
[
xTτnz

N
n (s)mT

n (s)ẑn(s)
]
ds.

(A Fubini-type argument justifies the interchange between integration (over [0, 1]) and
expectation.)

Hence the claim (2.40) is equivalent to the following statement, for which a proof
is given in the appendix.

Proposition 2.2.

lim
n→∞

∫ 1

0

E
[
xTτnz

N
n (s)mT

n (s)ẑ
N
n (s)

]
ds = 0.(2.41)

We now proceed assuming the validity of (2.41). Having shown that the second
term on the RHS of (2.38) is equal to zero, it is clear that a contradiction to (2.38)
will be established if it is shown that

lim inf
n→∞ E

[∫ 1

0

(
(xτn +mn(s))

T ẑNn (s)
)2
ds

]
> 0,(2.42)

which in turn is implied by

lim inf
n→∞ E

[∫ 1

0

(
(xτn +mn(s))

T ẑNn (s)
)2
ds|Fxτn

]
> 0,(2.43)

with positive probability.

2.8. Approximations to the transition matrix. It remains to prove (2.43).
To simplify the presentation, we first show that mT

n (s)ẑ
N
n (s) may be replaced (in the

formula (2.43)) by a conditionally Gaussian process. Let

m̃n(s) =

∫ s

0

[exp−Aτnr]Cdwτn+r,(2.44)

z̃Nn (s) = [expAτns]
T α̂Nn .(2.45)

Then, using the convergence of {Aτn} to A∞, we follow an argument closely analogous
to that which led to (2.34) (the difference being that the corresponding second term
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on the RHS of (2.31), (2.32), etc., is zero in the current case) to obtain

lim sup
n→∞0≤s≤1

‖ẑNn (s)− z̃Nn ‖ = 0, a.s.(2.46)

Hence, by dominated convergence,

lim
n→∞E sup

0≤s≤1
‖ẑNn (s)− z̃Nn (s)‖2 = 0.

Furthermore, using calculations similar to (2.17),

lim
n→∞E sup

0≤s≤1
‖mn(s)− m̃n(s)‖2

≤ lim
n→∞ 4TrE

∫ 1

0

[φn(0, r)− exp(−Aτnr)]CCT [φn(0, r)− exp(−Aτnr)]T dr = 0,

(2.47)

which is obtained due to the uniform convergence of the integrand (see (2.34)) and
dominated convergence.

Therefore, since ‖z̃Nn (s)‖2 ≤ e2N and (see (2.17))

E

[
sup

0≤s≤1
‖mn(s)‖2|Fxτn

]
≤ 4e2NTr CCT ,

one has

E sup
0≤s≤1

|mT
n (s)ẑ

N
n (s)− m̃T

n (s)z̃
N
n (s)|2

≤ 2E sup
0≤s≤1

‖z̃Nn (s)‖2 sup
0≤s≤1

‖mn(s)− m̃n(s)‖2

+ 2E sup
0≤s≤1

‖z̃Nn (s)− ẑNn (s)‖2E
[
sup

0≤s≤1
‖mn(s)‖2|Fxτn

]
→ 0, a.s., n→∞.(2.48)

Proof of (2.43). Equipped with (2.48), it is obvious that proving (2.43) is equiv-
alent to showing that

lim inf
n→∞ E

[∫ 1

0

(xTτn ẑ
N
n (s) + m̃T

n (s)z̃
N
n (s))2ds|Fxτn

]
> 0, with positive probability.

(2.49)

Towards this end we use standard (Gaussian) calculations. Let

γn+1 =

∫ 1

0

(xTτn ẑ
N
n (s) + m̃n(s)z̃

N
n (s))2 ∧ 1ds.(2.50)

To establish (2.49), it suffices to show that

lim inf
n→∞ E[γn+1|Fxτn ] > 0, a.e. on Ω̃N ,(2.51)

where Ω̃N∆Ω̃ ∩ ΓN ∩ ΩN , and, by the choice of N,P (Ω̃N ) > 0.
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To simplify notation, we define

µn(s) = xTτn ẑ
N
n (s),(2.52)

ζn(s) = m̃T
n (s)z̃

N
n (s) = (α̂Nn )T

∫ s

0

[expAτn(s− r)]Cdwτn+r.(2.53)

Note that µn(s) ∈ Fxτn , and that ζn(s), for any fixed s, is a conditionally centered
Gaussian random variable (w.r.t. Fxτn).

Define the conditional variance by

σ2
n(s) = E[ζ2

n(s)|Fxτn ]
= (α̂Nn )T

∫ s

0

[expAτn(s− r)]CCT [expAτn(s− r)T ]drα̂Nn .(2.54)

With these definitions and observations we turn to the calculation of E[γn+1|Fxτn ]:

E[γn+1|Fxτn ] = E

{∫ 1

0

(ζn(s) + µn(s))
2 ∧ 1ds|Fxτn

}

=

∫ 1

0

E[(ζn(s) + µn(s))
2 ∧ 1|Fxτn ]ds

≥
∫ 1

0

P [(ζn(s) + µn(s))
2 ≥ 1|Fxτn ]ds

≥ 1

2
inf

1
2≤s≤1

{
P
(
ζn(s) ≥ 1− µn(s)|Fxτn

)
+ P

(
ζn(s) ≤ −1− µn(s)|Fxτn

)}
(2.55)

≥ inf
1
2≤s≤1

P (ζn(s) ≥ 1|Fxτn) = inf
1
2≤s≤1

1√
2π

∫ ∞

1/σn(s)

exp

(−u2

2

)
du

=
1√
2π

∫ ∞

1/σn( 1
2 )

exp

(−u2

2

)
du

≥ 1√
2π

σn(
1
2 )

1 + σ2
n(

1
2 )

exp

( −1
2σ2

n(
1
2 )

)
,

where the last equality is due to the fact that σn(·) is nondecreasing, and the last
inequality is a simple lower bound for the Gaussian integral.

Recall that

α̂Nn = E[αNn |Fxτn ]→ E[αN |Fx∞] = αN , a.s. as n→∞.

Furthermore, the integrand in (2.54) converges uniformly. This leads to

σ2
∞∆ lim

n→∞σ2
n

(
1

2

)
= (αN )T

∫ 1/2

0

[
expA∞

(
1

2
− r

)]
CCT

[
expA∞

(
1

2
− r

)]T
drαN ,

(2.56)

and, with the continuity of the last expression on the RHS of (2.55) (as a function of
σ), one has

lim inf
n→∞ E[γn+1|Fxτn ] ≥

1√
2π

σ∞
1 + σ2∞

exp

( −1
2σ2∞

)
, a.s.(2.57)
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Finally, recall that, by definition, ‖αN‖ = 1 a.e. on Ω̃N . Hence, with the fact
that the pair [A∞, C] is controllable (a.s.), it follows that

σ2
∞ > 0 a.e. on Ω̃N ,(2.58)

which immediately leads to (2.51). (Note that for the truncated process xN and
its limiting dynamic matrix AN∞, the pair [AN∞, C] is a.e. controllable on ΓN , while
[AN∞, C] might be uncontrollable on ΓCN , for which AN∞ = ATN , TN <∞.)

Since N was chosen such that P (Ω̃N ) > 0, the required contradiction is finally
established.

3. Examples and conclusion. We conclude the paper with a discussion of
potential applications of the main result. Let λm(t) = λm{

∫ t
0
xrx

T
r dr},m = min,max.

Then it follows from (2.3) that at one extreme λmin(t) = O(t), a.s. On the other
hand, it is known that with unstable dynamics λmax(t) = O(teβt), a.s., for some
β > 0, as t→∞. It turns out, then, that in the context of parameter estimation, an
input signal {xt} (satisfying the above growth rates for its λm(t), m = min, max),
lacks adequate excitation for a recursive least squares (RLS)-type algorithm, as it fails
to satisfy the condition (from Lai and Wei (1982)) that log λmax(t)/λmin(t) → 0 as
t → ∞, a.s. (In the absence of the convergence of this ratio to zero, Lai and Wei
provide a counterexample to consistency.) On the other hand, in a Bayesian setting,
(2.3) is sufficient to ensure consistency, where only limt→∞ λmin(t) =∞ is required.

Example 1. As an application of the main result of the paper, consider the
system (2.1), where {At} is a random, time-varying, convergent matrix process, i.e.,
a process satisfying (2.2). In this case, the consistency of the Bayesian estimate
E[At|Fxt ] is ensured by the condition λmin(t) = O(t), a.s., a property implied by (2.3)
(see Levanony (2001)). For the system described by (2.1), one then has E[At|Fxt ]→
A∞, a.s. Furthermore, suppose that instead of the Bayesian estimate E[At|Fxt ] one
uses a least squares (LS) estimate, denoted here by Ât; and finally, suppose that the
system (2.1) can be parameterized by a deterministic parameter, say θ ∈ Rp. Then,
by applying the idea of Bayesian embedding (Kumar (1989); see also the discussion in

Caines (1988, pp. 294–295)), we may identify Ât with E[At|Fxt ] for almost all θ ∈ Rp,
and so it follows that under (2.3),

Ât → A∞, a.s., for almost all θ ∈ Rp.(3.1)

Hence, we conclude that, subject to the a.s. convergence condition (2.2), both the
Bayesian and the LS consistency properties hold.

Example 2. As a control-related example of the above, consider an adaptive linear
quadratic Gaussian (LQG) control problem of the form described in Duncan, Guo,
and Pasik-Duncan (1999), where the system

dxt = Axtdt+But + Cdwt, t ≥ 0,(3.2)

is to be controlled by an input function u = {ut}, which is chosen so as to minimize a
(standard) long-term averaged linear quadratic (LQ) cost. It is well known that the
optimal control u0 takes the form u0

t = −K(A,B)xt. With unknown system matrices
(A,B), one can use a CE (certainty equivalence) approach by which θ = (A,B) is

estimated by θ̂t = θ̂t(xs, 0 ≤ s ≤ t), generated by some specified parameter estimation

algorithm. The resulting control input would then assume the form ut = −K(θ̂t)xt
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and, under this scheme, (3.1) is rewritten as (2.1) with At = A−BK(θ̂t). (See Kumar
(1983) for the discrete time, finite parameter set case.)

Suppose that the chosen parameter estimation algorithm is self-convergent (not
necessarily consistent) (Duncan, Guo, and Pasik-Duncan (1999)); that is, for almost

all parameters θ ∈ Rp there exists an a.s. finite random vector θ̂∞ such that θ̂t → θ̂∞
(w.p.1). Then, the continuity of K(·) clearly leads to At → A∞ = A − BK(θ̂∞),
which is the basic assumption (2.2) above. Hence, given (2.2), the main result implies
the persistent excitation (PE) property (2.3).

Now consider a separate procedure to estimate the time varying, closed-loop sys-
tem matrix At by a Bayesian or an LS estimate, depending, respectively, on whether
θ = (A,B) is random and Gaussian, or deterministic. By Example 1 above, both
procedures yield a strongly consistent limit, where, in the LS case, this property is
obtained in terms of Bayesian embedding.

Although the estimation of θ = (A,B) and the estimation of the closed-loop

matrix At = A − BK(θ̂t) were conceptually taken as two separate procedures, the
two can be combined within one estimation scheme, as is easily seen in the Bayesian
setting. Suppose that θ = (A,B) is Gaussian and independent of x0, {wt}. Then the
Bayesian estimate of At takes the form

E[At|Fxt ] = E[A−BK(θ̂t)|Fxt ] = E[A|Fxt ]− E[B|Fxt ]K(θ̂t),(3.3)

where the last equality follows from the fact that K(θ̂t) ∈ Fxt . Now take θ̂t = E[θ|Fxt ];
then the closed-loop estimate (3.3) is immediately obtained without any further cal-
culation. In the deterministic (A,B) setting, the same applies for the LS estimate by
virtue of Bayesian embedding (BE). Further, note that the Bayesian estimate of θ con-
verges to a finite limit and, due to BE, so does the LS estimate (the self-convergence
property, leading to (2.2)).

As far as adaptive control is concerned, it is interesting to note that the strong
consistency of the closed-loop Bayesian (equivalently, LS) estimates implies that the

corresponding generated limits θ̂∞ = θ′ = (A′, B′) are characterized by the prop-
erty that they form closed-loop dynamics which are indistinguishable from the actual
(closed-loop) dynamics, that is to say, A′ − B′K(θ′) = A − BK(θ′) (Caines and
Levanony (1993); Levanony and Caines (1996)).

This property, obtained from (2.3), may form the foundation of modifications to
the (original) adaptive schemes, which would lead to the desired property of long-run,
optimal performance (Caines and Levanony (1993)).

Appendix: Proof of Proposition 2.2. Recall (2.53), i.e., that ζn(s) =
m̃T
n (s)z̃

N
n (s) (where m̃ and z̃ are defined in (2.44) and (2.45), respectively), and let

ζ(s) = (αN )T
∫ s

0

[
expA∞(s− r)

]
Cdβr,(A.1)

where A∞ ∈ Fx∞(= σ{⋃n≥0 Fxτn}) is the a.s. limit of {Aτn ∈ Fxτn} and β is a (vector-
valued) Brownian motion, independent of Fx∞. (It is assumed that the probability
space has been properly extended to support this Brownian motion.) Note that this
definition makes ζ(s) conditionally Gaussian w.r.t. Fx∞ (as is ζn, w.r.t. Fxτn).

We now show that ζ induces a unique measure on R such that

ζn(s)−→ζ(s) ∀s ∈ [0, 1](A.2)
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in distribution. For (A.2) to hold, it suffices that (i) all moments of ζn converge to
those of ζ and that (ii) the set of moments form a separating function class, a fact
which guarantees uniqueness; see, e.g., Billingsley (1979) and Breiman (1968).

The 2kth moment of ζn(s) is calculated by utilizing its conditionally Gaussian
distribution (note that odd moments of ζn and ζ are identically zero):

E|ζn(s)|2k = E
{
E
[|ζn(s)|2k|Fxτn]} = 1 · 3 · 5 · · · (2k − 1)E

{
E
[|ζn(s)|2|Fxτn]k} ,

(A.3)

where, w.p.1,

E
[|ζn(s)|2|Fxτn] = E

[|m̃T
n (s)z̃

N
n (s)|2|Fxτn

]
= (α̂Nn )T

∫ s

0

[
expAτn(s− r)

]
CCT

[
expAτn(s− r)

]T
drα̂Nn ≤ ||C||2e2N .(A.4)

A similar calculation leads to

E|ζ(s)|2k = 1 · 3 · 5 · · · (2k − 1)E
{
E
[|ζ(s)|2|Fx∞]k} ,(A.5)

where

E
[|ζ(s)|2|Fx∞] = (αN )T

∫ s

0

[
expA∞(s− r)

]
CCT

[
expA∞(s− r)

]T
drαN .(A.6)

Now as α̂Nn → αN , Aτn → A∞ (a.s.) with αN and A∞ being Fx∞-measurable, it
follows (with the aid of dominated convergence) that

E|ζn(s)|2k → E|ζ(s)|2k(A.7)

as n → ∞, k = 1, 2, . . . , s ∈ [0, 1], which in turn implies (A.2) (Breiman (1968),
Theorem 8.48). Uniqueness follows from the fact that

lim sup
k→∞

(E|ζ(s)|2k)1/2k
2k

≤ lim sup
k→∞

(1 · 3 · 5 · · · (2k − 1))1/2k

2k
||C||2eN ≤ ||C||2eN <∞,

which makes the set of moments a separating function class (Breiman (1968), Proposi-
tion 8.49). (Another uniqueness condition, namely that

∑∞
k=1 E|ζ(s)|2kr2k/(2k)! <∞

for some r > 0, is satisfied here with 0 < r < (||C||2eN )−1 (Billingsley (1979, Theorem
30.1)).)

Now, combining (2.27) with (2.33), (2.46), and (2.47) leads to

lim
n→∞

∫ 1

0

(xTτnz
N
n (s) + ζn(s))

2ds = 0, a.s.,(A.8)

and integrability and dominated convergence imply that

lim
n→∞

∫ 1

0

E(xTτnz
N
n (s) + ζn(s))

2ds = 0.(A.9)

Define ηn(s)∆xTτnz
N
n (s), fix s ∈ [0, 1], and write

δn(s) = ζn(s) + ηn(s).(A.10)
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Then by (A.9) one obviously has

δn(s)−→ 0(A.11)

in L2, a.e. on [0,1]. We now claim the following.
Lemma A.1.

(ζn(s), δn(s))−→(ζ(s), 0),(A.12)

in distribution, a.e. on [0,1].
Proof. Based on (A.2) and (A.11),

P (ζn(s) ≤ a, δn(s) ≤ b) = P (ζn(s) ≤ a)− P (ζn(s) ≤ a, δn(s) > b)

→
{

P (ζ(s) ≤ a), b ≥ 0,
0, b < 0.

This is due to the fact that

P (ζn(s) ≤ a, δn(s) > b) ≤
{

P (δn(s) > b)→ 0, b ≥ 0,
P (ζn(s) ≤ a)→ P (ζ(s) ≤ a), b < 0,

while on the other hand,

P (ζn(s) ≤ a, δn(s) > b) ≥
{

0, b ≥ 0,
P (ζn(s) ≤ a)− P (δn(s) ≤ b)→ P (ζ(s) ≤ a), b < 0.

Thus the claim is proved.
It follows from (A.10) and (A.12) that there exists a random process {η(s), s ∈

[0, 1]}, defined on the underlying probability space (Ω,F, P ), such that

(ζn(s), ηn(s))−→(ζ(s), η(s)),(A.13)

in distribution, a.e. on [0, 1], where ζ(s) has been previously constructed as a random
variable on the underlying probability space (Ω,F, P ), and, by (A.10) and (A.12),
the aforementioned limit η(s) is also defined on (Ω,F, P ). Furthermore, recall that
ηn(s) = xTτnz

N
n (s) = xTτnφn(s, 0)α

N
n , where αNn ∈ Fx∞, xτn ∈ Fxτn ⊂ Fx∞, and φn ∈

Fxτn+1 ⊂ Fx∞. Next recall that, by (2.34),

zNn (s)−→zN (s) = [expAT∞s]αN ,(A.14)

uniformly over [0, 1], a.s. Since (i) zN (s) is Fx∞-measurable (by definition) and (ii)
{xτn} ∈ Fx∞, it follows from (A.14) and Skorohod’s theorem (Billigsley (1979, Theo-
rem 25.6)) that {η(s), s ∈ [0, 1]}, being the limit in distribution of ηn(s) = xTτnz

N
n (s) ∈

Fx∞, s ∈ [0, 1], is also Fx∞-measurable (recall that η is defined on (Ω,F, P )).
In light of the definition of ζ (see (A.1)), this fact therefore implies that η and ζ

are conditionally independent w.r.t. Fx∞; i.e., the limit joint distribution of ηn(s) and
ζn(s) is that of two Fx∞-conditionally independent random processes. This, together
with the fact that ζ is conditionally centered, yields

lim
n→∞E

[
xTτnz

N
n (s)m̃T

n (s)z̃n(s)
]
= lim
n→∞E

[
ηn(s)ζn(s)

]
= E

[
η(s)ζ(s)

]
= E

{
η(s)E

[
ζ(s)|Fx∞

]}
= 0,(A.15)
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a.e. on [0, 1]. Hence, utilizing dominated convergence yields

lim
n→∞

∫ 1

0

E
[
xTτnz

N
n (s)m̃T

n (s)z̃n(s)
]
ds = 0,

and, with (2.26) and (2.48), equation (2.41) is finally obtained.
Remarks. 1. Recall that the construction of the limit measure for ζn (namely,

that of ζ) has been carried out by the use of a Brownian motion β, assumed to be
independent of Fx∞. While the uniqueness of the resulting limit law has already been
proved, it is worth noting that this independence, which plays a key role in the proof
(see (A.15)), is crucial. This is due to the fact that if β were not independent of Fx∞,
then (A.5) and (A.6) would no longer hold, thus ruling out the validity of (A.7) and
hence that of the claim (A.2). By introducing this particular Brownian motion β, we
have (implicitly) constructed the conditional orthogonality between ζ and η (as part
of their joint distribution), which, in turn, enabled the calculation made in (A.15).

2. We note the following additional contradiction, which was generated in the
proof of the contradiction to (2.27): while (A.10) and (A.12) imply that E[η(s)ζ(s)] =
−E[ζ2(s)] < 0, this is not the case, since η and ζ were found to be mutually orthogonal.
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Abstract. For P0-complementarity problems, most existing non–interior-point path-following
methods require the existence of a strictly feasible point. (For a P∗-complementarity problem, the
existence of a strictly feasible point is equivalent to the nonemptyness and the boundedness of the
solution set.) In this paper, we propose a new homotopy formulation for complementarity problems
by which a new non–interior-point continuation trajectory is generated. The existence and the
boundedness of this non–interior-point trajectory for P0-complementarity problems are proved under
a very mild condition that is weaker than most conditions used in the literature. One prominent
feature of this condition is that it may hold even when the often-assumed strict feasibility condition
fails to hold. In particular, for a P∗-problem it turns out that the new non–interior-point trajectory
exists and is bounded if and only if the problem has a solution. We also study the convergence of
this trajectory and characterize its limiting point as the parameter approaches zero.
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1. Introduction. The standard complementarity problem (CP) is to find a pair
(x, y) ∈ Rn ×Rn such that

y = f(x), (x, y) ≥ 0, and xT y = 0,

where f : Rn → Rn is a continuous function. This problem has many applications in
optimization, economics, and engineering. See, for example, Cottle, Pang, and Stone
[8], Harker and Pang [14], Heemels, Schumacher, and Weiland [15], van der Schaft
and Schumacher [37], and Lötstedt [23].

The first non–interior-point method for the CP was proposed by Chen and Harker
[5], and was based on the use of a Chen–Harker–Kanzow–Smale smooth function.
Due to the impressive numerical performance of the algorithm, as well as its ideal
convenience for application to those CPs in which interiority restriction on the iterates
is quite severe, there is a growing interest in non–interior-point methods for the CP,
which have yielded many fruitful results; see, e.g., Kanzow [18], Burke and Xu [1, 2,
3, 4], Xu [35], Xu and Burke [36], Chen and Chen [6], Hotta and Yoshise [16], Hotta,
Inaba, and Yoshise [17], Qi and Sun [26], and Tseng [32]. In the setting of P0-CPs, a
common feature of the above-mentioned non–interior-point methods is the assumption
of the strict feasibility condition (or the nonemptyness and the boundedness conditions
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on the solution set) and a properness condition. For instance, Hotta and Yoshise [16]
utilized the following condition.

Condition 1.1. (i) f is a P0-function, i.e., for any distinct vectors x, y in Rn

max
xi �=yi

(xi − yi)(fi(x)− fi(y)) ≥ 0.

(ii) There exists a strictly feasible point (x0, y0), i.e., x0 > 0 and y0 = f(x0) > 0.
(iii) The set

U−1(D) = {(u, x, y) ∈ Rn+ ×R2n : U(u, x, y) ∈ D}

is bounded for every compact subset D of Rn+×V (Rn++×R2n), where V : Rn+×R2n →
Rn and U : Rn+ ×R2n → Rn+ ×R2n are given by

V (u, x, y) = x+ y −
√
(x− y)2 + 4u

and

U(u, x, y) =


 u

x+ y −√(x− y)2 + 4u
y − f(x)


 =


 u

V (u, x, y)
y − f(x)


 ,(1.1)

respectively. All the above algebraic operations are performed componentwise.
The following standard condition was widely used in interior-point methods and

non–interior-point methods. See, for example, [2, 3, 6, 16, 17, 19, 20, 21, 26, 38].
Condition 1.2. (i) f is monotone, i.e., (x − y)T (f(x) − f(y)) ≥ 0 for any

(x, y) ∈ R2n.
(ii) There exists a strictly feasible point (x0, y0), i.e., x0 > 0 and y0 = f(x0) > 0.
Condition 1.2 implies Condition 1.1 (see [16, 26]). Hotta and Yoshise [16] pointed

out that Condition 1.1 implies the well known Condition 1.5 in Kojima, Megiddo,
and Noma [19]. As observed by Zhao and Li [42] (see also section 3 of this paper),
Condition 1.5 in [19] implies that the solution set of the CP is nonempty and bounded.
Thus, the above-mentioned Conditions 1.1 and 1.2 imply that the solution set of the
CP is nonempty and bounded. Ravindran and Gowda (Corollary 5 in [27]) showed
that a P0-CP with a nonempty and bounded solution set must have a strictly feasible
point. Moreover, for monotone CPs the converse is also true, i.e., the solution set of
the monotone CP is nonempty and bounded if and only if it has a strictly feasible
point. (See also Chen, Chen, and Kanzow [7].) This property of the monotone
problem can be extended to the case of P∗-CPs. We recall that a map f : Rn → Rn

is said to be a P∗-function if there exists a constant τ ≥ 0 such that

(1 + τ)
∑
i∈I+

(xi − yi)(fi(x)− fi(y)) +
∑
i∈I−

(xi − yi)(fi(x)− fi(y)) ≥ 0

for all distinct vectors x, y in Rn, where I+ = {i : (xi − yi)(fi(x) − fi(y)) > 0} and
I− = {1, . . . , n} \ I+. (See, Cottle, Pang, and Venkateswaran [9], Kojima et al. [20],
Väliaho [33], Zhao and Han [38], and Zhao and Isac [39, 40].) Clearly a monotone
function is a P∗-function, but the converse is not true. Zhao and Li [41, 42] pointed
out that for a P∗-CP the following three conditions are equivalent:

(i) There exists a strictly feasible point.
(ii) The solution set of the CP is nonempty and bounded.
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(iii) The central path of the CP exists.

Since most existing (interior-point and) non–interior-point path-following algo-
rithms for CPs are based on the use of a certain continuation trajectory such as the
central path, whose existence is closely related to the existence of a strictly feasible
point, we conclude that for P0-CPs these (interior-point and) non–interior-point al-
gorithms are, in fact, confined to solving a class of strictly feasible problems. Other
non-interior-point algorithms in the literature also suffer from the same restriction.
For instance, the algorithms developed by Chen and Harker [5], Burke and Xu [1],
and Chen and Chen [6] require the P0 and R0 assumption, which also implies that the
solution set of the CP is nonempty and bounded, and hence the problem is strictly
feasible. The strict feasibility condition plays an indispensable role in these known
non–interior-point methods. In section 3, we give an example to show that Hotta
and Yoshise’s non–interior-point trajectory [16] does not necessarily exist when the
problem has no strictly feasible point, in which case the solution set of the P0-CP is
unbounded (provided that it is nonempty). An interesting question is how to circum-
vent this difficulty so that a non–interior-point path-following method can be designed
to solve a CP even when there is no strictly feasible point.

In this paper, we shall propose a new homotopy formulation of the CP. Based
on this formulation, a new non–interior-point continuation trajectory for the CP can
be generated. This new continuation trajectory possesses a desirable feature: For
P0-CPs, the existence and the boundedness of the continuation trajectory can be
ensured under a mild condition that is weaker than most existing conditions like
Conditions 1.1 and 1.2. The often assumed strict feasibility condition is not required
here. In particular, for P∗-CPs, the proposed continuation trajectory exists and is
bounded if and only if the problem has a solution. In other words, the existence
and the boundedness of the trajectory for P∗-CPs do not require the strict feasibility
condition (which is equivalent to the nonemptiness and boundedness of the solution
set). We also (i) provide some sufficient conditions for the convergence of the entire
trajectory as the parameter approaches zero and (ii) identify the properties of the
limiting point of this trajectory. The results presented in the paper provide us with
a theoretical basis for devising a new non–interior-point path-following method for
CPs. This method can be expected to solve a more general class of complementarity
problems than those to which most existing methods can be applied.

This paper is organized as follows. In section 2, we define a new homotopy
formulation for the CP. In section 3, we specify a new properness condition that will
be used to prove the existence and boundedness of a new continuation trajectory in
section 4. We also compare this condition with several others known in the literature.
The limiting behavior of the trajectory is studied in section 5. Final remarks are given
in section 6.

Notation. We denote by Rn the space of n-dimensional real vectors, and by
Rn+(R

n
++, respectively) the nonnegative orthant (positive orthant, respectively). If

x ∈ Rn+ (Rn++), we write x ≥ 0 (x > 0) for simplicity. All vectors, unless otherwise
stated, are column vectors. T denotes the transpose of a vector. The symbol e denotes
the vector in Rn with all of its components equal to one. For given vectors u,w, v in
Rn, the triplet (u,w, v) (the pair (x, y)) denotes the column vector (uT , wT , vT )T (
(xT , yT )T ). For any u ∈ Rn+, the symbol up denotes the pth power of the vector u,
i.e., the vector (up1, . . . , u

p
n)
T , where p > 0 is a positive scalar. In particular, when

p = 1/2,
√
u denotes the vector (

√
u1, . . . ,

√
un)

T . The symbol diag(x) denotes the
n × n diagonal matrix whose (i, i)th entry is xi. For any x, y ∈ Rn with x ≤ y, we
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define the rectangular box [x1, y1]× · · · × [xn, yn] as [x, y].

2. A new homotopy formulation for CPs. Let (ū, v̄, r̄) be a fixed point in
Rn++ ×R2n and let

w̄ = {θ(ū, v̄, r̄) ∈ Rn++ ×R2n : θ ∈ (0, 1]}.
Let U : Rn+ ×R2n → R3n be defined by (1.1). Set

U−1(w̄) = {z = (u, x, y) ∈ Rn++ ×R2n : U(z) = θ(ū, v̄, r̄) for some θ ∈ (0, 1]}.
Under Condition 1.1, Hotta and Yoshise [16] showed that the above set forms a
continuous trajectory leading to a solution of the CP. Based on this fact, they designed
a globally convergent path-following method for the CP. However, it is easy to see that
the strict feasibility condition plays an essential role in the existence of the Hotta and
Yoshise trajectory. In fact, it is impossible to remove the strict feasibility condition
from Conditions 1.1 and 1.2 without destroying the existence of their trajectory, as
we see in the following example.

Example 2.1. Let f(x) =Mx+ q, where

M =

(
0 −1
0 0

)
, q =

( −1
0

)
.

This function is a P0-function and there exists no strictly feasible point. The solution
set of the corresponding CP is unbounded. Let ū = (ū1, ū2)

T ∈ R2
++, v̄ = (v̄1, v̄2)

T ∈
R2, and r̄ = (r̄1, r̄2)

T ∈ R2. From Lemma 1.1 in [16], the system U(u, x, y) = θ(ū, v̄, r̄)
can be written as follows:

u = θū, y = f(x) + θr̄, x− θv̄/2 > 0, y − θv̄/2 > 0,

diag(x− θv̄/2)(y − θv̄/2) = θū.

Note that y = f(x) + θr̄ = (−x2 − 1 + θr̄1
θr̄2

). The last equation above can be rewritten
as

(x1 − θv̄1/2)(−x2 − 1 + θr̄1 − θv̄1/2) = θū1,(2.1)

(x2 − θv̄2/2)(θr̄2 − θv̄2/2) = θū2.

Since θ > 0, the second equation above reduces to

(x2 − θv̄2/2)(r̄2 − v̄2/2) = ū2.(2.2)

Case 1: r̄2 ≤ v̄2/2. Since x2 − θv̄2/2 > 0 and ū2 > 0, the above equation has no
solution, and thus the system U(u, x, y) = θ(ū, v̄, r̄) has no solution.

Case 2: r̄2 > v̄2/2. In this case, (2.2) can be written as

x2 = (r̄2 − v̄2/2)−1ū2 + θv̄2/2.

Hence, for all sufficiently small θ > 0, we have

−x2 − 1 + θr̄1 − θv̄1/2 = −(r̄2 − v̄2/2)−1ū2 − θv̄2/2− 1 + θr̄1 − θv̄1/2 < 0.

Since x1 − θv̄1/2 > 0, we deduce from the above that (2.1) has no solution for all
sufficiently small θ > 0. Thus, the Hotta–Yoshise trajectory [16] does not exist.
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Motivated by the above example, we now introduce a new homotopy formulation
for the CP. Let p ∈ (0,∞) and q ∈ [1,∞) be two fixed numbers throughout the paper.
Define the homotopy map H : Rn+ ×R2n → R3n as follows:

H(u, x, y) =


 u

x+ y −√(x− y)2 + 4uq

y − (f(x) + diag (up)x)


 , (u, x, y) ∈ Rn+ ×R2n.

The above homotopy map is the focus of our study. It is worth mentioning that for
each fixed vector u > 0, the function f(x) + diag (up)x can be viewed as a form of
the renowned Tikhonov regularization of f , which was originally utilized to handle
ill-posed problems. Recently, more attention has been paid to such techniques; see,
e.g., Venkateswaran [34], Facchinei [10], Facchinei and Kanzow [11], Facchinei and
Pang [12], Ravindran and Gowda [27], Gowda and Tawhid [13], Sznajder and Gowda
[29], Qi [25], Sun [28], Tseng [31], and Zhao and Li [42]. To deal with the case of
nonexistence of a strictly feasible point (or unboundedness of the solution set), we
will see from the later discussion that it is a judicious choice to use the above new
homotopy formulation of the CP.

The above homotopy map encompasses several extra variants. For instance, when
q = 1 and p→∞, the above homotopy map, as u varies within the open rectangular
box (0, e), reduces to the one proposed by Hotta and Yoshise [16]. When q = 2 and
p→∞, the above homotopy map, as u varies within (0, e), is precisely the one studied
by Burke and Xu [2, 3, 4], and Qi and Sun [26].

It is not difficult to see that if H(u, x, y) = 0, then (x, y) is a solution to the
CP; conversely, if (x, y) is a solution to the CP, then (0, x, y) is a solution to the
equation H(u, x, y) = 0. Thus, a CP can be solved by locating a solution to the
nonlinear equation H(u, x, y) = 0. The most widely used continuation method for
solving this equation is the path-following algorithm that traces certain continuation
trajectories leading to the solution set. We do not study such a numerical algorithm
in this paper. The purpose here is to establish a theoretical basis for constructing a
new non–interior-point path-following algorithm. Such a method can be used to solve
a class of problems that is broader than those to which most existing path-following
methods can be applied.

Given (a, b, c) ∈ Rn++ ×R2n, we consider the system

H(u, x, y) = θ(a, b, c),(2.3)

where θ ∈ (0, 1]. Define Z̄ = {θ(a, b, c) : θ ∈ (0, 1]}. In section 4, we will show that
the set

H−1(Z̄) = {(u, x, y) ∈ Rn++ ×R2n : H(u, x, y) = θ(a, b, c), θ ∈ (0, 1]}

forms a unique, continuous curve leading to a solution of the CP under certain mild
conditions. We now give two basic results that will be used later. The first result
below gives an equivalent formulation of the system (2.3). This result plays a critical
role in the analysis throughout the paper. For the given (a, b, c) ∈ Rn++ × R2n, we
define the map Y : Rn × (0, 1]→ Rn by

Y(x, θ) := x+ f(x) + θpdiag (ap)x+ θc

+
√

[x− (f(x) + θpdiag (ap)x+ θc)]2 + 4θqaq − θb.(2.4)
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Lemma 2.1. The solutions of Y(x, θ) = 0 are in one-to-one correspondence
with those of H(u, x, y) = θ(a, b, c). Specifically, for the given scalar θ ∈ (0, 1], if
(u, x, y) is a solution to the system H(u, x, y) = θ(a, b, c), then x is a solution to the
equation Y(x, θ) = 0; conversely, if x is a solution to the equation Y(x, θ) = 0, then
(u, x, y), where u = θa and y = f(x) + diag{up}x + θc, is a solution to the system
H(u, x, y) = θ(a, b, c).

Proof. The result is easy to show. Indeed, the equation H(u, x, y) = θ(a, b, c) is
equivalent to the following system:

u = θa,(2.5)

x+ y −
√

(x− y)2 + 4uq = θb,(2.6)

y = f(x) + diag{up}x+ θc.(2.7)

Substituting (2.5) and (2.7) into (2.6) yields Y(x, θ) = 0.
It is well known (see Lemma 1.1 in [16]) that for every nonnegative number µ ≥ 0,

a triplet (α, β, γ) ∈ R3 satisfies

φ(µ, α, β) = α+ β −
√

(α− β)2 + 4µ = γ

if and only if (α − γ/2, β − γ/2) ≥ 0 and (α − γ/2)(β − γ/2) = µ ≥ 0. Moreover,
if µ > 0, then (α − γ/2, β − γ/2) > 0. By this fact, from (2.5)–(2.7) we have the
following lemma.

Lemma 2.2. Let (a, b, c) ∈ Rn++ ×R2n be a fixed vector. Then for any θ ∈ (0, 1],
the vector (u(θ), x(θ), y(θ)) is a solution to the system (2.3) if and only if it satisfies
the following system:

u(θ) = θa,(2.8)

y(θ) = f(x(θ)) + θpdiag (ap)x(θ) + θc,(2.9)

x(θ)− θb/2 > 0, y(θ)− θb/2 > 0,(2.10)

diag (x(θ)− θb/2) (y(θ)− θb/2) = θqaq.(2.11)

Remark 2.1. Since θ ∈ (0, 1] and f is continuous, it follows from (2.8) and (2.9)
that a sequence {(u(θk), x(θk), y(θk))}, where θk ∈ (0, 1], is unbounded if and only if
{x(θk)} is unbounded. This fact will be frequently used in the later sections.

3. A new properness condition. In this section, we specify a new condition
that is used to prove the existence and boundedness of the trajectory in the next
section. To understand this condition better, we show first some properties of a
semimonotone function. A map f : Rn → Rn is said to be semimonotone if, for
any distinct vectors x, y in Rn with x ≥ y, there exists a component i such that
xi > yi and fi(x) ≥ fi(y). It is evident that each P0-function is semimonotone. The
following result is a generalization of Lemma 1 in Ravindran and Gowda [27]. The
proof is similar to the ones in such works as Tseng [30], Gowda and Tawhid [13], and
Facchinei and Kanzow [11].

Lemma 3.1. Let f : Rn → Rn be a continuous semimonotone function. Let {zk}
be an arbitrary sequence with ‖zk‖ → ∞ and zk ≥ z̄ for all k, where z̄ ∈ Rn is a fixed
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vector. Then there exist a subsequence of {zk}, denoted by {zkj}, and a fixed index

i0 such that z
kj
i0
→∞ and fi0(z

kj ) is bounded from below.
Proof. Passing through a subsequence, we may assume that there exists an index

set I such that zki → ∞ for all i ∈ I, and {zki } is bounded for all i /∈ I. Construct
{yk} as follows: yki = z̄i if i ∈ I, and yki = zki if i /∈ I. Then we have that zk �= yk

and zk ≥ yk for all sufficiently large k. By the semimonotone property of f , for each
sufficiently large k there exists at least one index i such that zki > yki and fi(z

k) ≥
fi(y

k). Thus, there exist an index i0 ∈ I and a subsequence of {zk}, denoted by {zkj},
such that z

kj
i0
> y

kj
i0

and fi0(z
kj ) ≥ fi0(y

kj ) for all j. By this construction, {ykj} is

bounded and so is {fi0(ykj )}. Hence {fi0(zkj )} is bounded from below.
Given (a, b, c) ∈ Rn++ ×R2n and θ ∈ (0, 1], we define a function F(a,b,c,θ) : R

2n →
R2n as follows:

F(a,b,c,θ)(x, y) =

(
Xy

y − f(x+ θb/2)− θpdiag (ap)x− θc
)
,(3.1)

where X = diag(x). The next property of semimonotone functions is one of the
motivations for our new properness condition.

Proposition 3.1. Let f : Rn → Rn be a continuous semimonotone function.
Then for any (a, b, c, θ) ∈ Rn++ ×R2n × (0, 1], the set

F−1
(a,b,c,θ)(D) = {(x, y) ∈ Rn++ : F(a,b,c,θ)(x, y) ∈ D}

is bounded for any compact set D in Rn+ ×Rn.
Proof. Assume the contrary: there exist certain (a′, b′, c′, θ′) ∈ Rn++×R2n× (0, 1]

and a compact set D′ ⊆ Rn+ × Rn such that F−1
(a′,b′,c′,θ′)(D

′) is unbounded. Let

{(xk, yk)} ⊆ F−1
(a′,b′,c′,θ′)(D

′) such that ‖(xk, yk)‖ → ∞. Notice that

F(a′,b′,c′,θ′)(x
k, yk) =

(
Xkyk

yk − f(xk + θ′b′/2)− (θ′)pdiag ((a′)p)xk − θ′c′
)
∈ D′.

There is a sequence {(uk, vk)} ⊆ D′, where uk ∈ Rn+ and vk ∈ Rn, such that for all k
we have

Xkyk = uk ≥ 0,(3.2)

yk = f(xk + θ′b′/2) + (θ′)pdiag ((a′)p)xk + θ′c′ + vk.(3.3)

Since {(uk, vk)} is bounded and since ‖(xk, yk)‖ → ∞, by continuity we conclude
that the sequence {xk} is unbounded. Thus, we may assume that ‖xk‖ → ∞. Since
xk ∈ Rn+ for all k, passing through a subsequence we may assume that there exists an
index set I such that xki → ∞ for all i ∈ I, and {xki } is bounded for all i /∈ I. Since
xki →∞ for all i ∈ I, it follows from (3.2) that yki → 0 for all i ∈ I. Hence from (3.3)
we have

fi(x
k + θ′b′/2) = yki − (θ′)pdiag ((a′)p)xki − θ′c′i − vki → −∞

for all i ∈ I. However, by Lemma 3.1 there exists an index i ∈ I such that {fi(xk +
θ′b′/2)} is bounded from below. This is a contradiction.

As a particular case, let Dr := [0, rv1]×[−rv2, rv3] ⊆ Rn+×Rn, where vi ∈ Rn+(i =
1, 2, 3) and r is a nonnegative number. We deduce from the above proposition that the
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set F−1
(a,b,c,r)(Dr) is bounded for any 0 < r <∞ if f is continuous and semimonotone.

Inspired by this observation, we impose the following properness condition on the CP.
Condition 3.1. For any given (a, b, c) ∈ Rn++×R2n and scalar t̂ ≥ 0 there exists

a scalar 1 ≥ θ∗ > 0 such that ⋃
θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ)

is bounded, where

F−1
(a,b,c,θ)(Dθ) := {(x, y) ∈ R2n

++ : F(a,b,c,θ)(x, y) ∈ Dθ}
and

Dθ := [0, θaq]× [−θt̂e, θt̂e] ⊆ Rn+ ×Rn.
Notice that for a fixed θ̄ ∈ (0, 1), the above set Dθ ⊆ Dθ̄ := [0, θ̄e] × [−θ̄e, θ̄e]

for all sufficiently small θ. Thus, we can see that Condition 3.1 holds if the following
condition is satisfied.

Condition 3.2. For any given (a, b, c) ∈ Rn++ × R2n there exists a scalar 1 >
θ̄ > 0 such that ⋃

θ∈(0,θ̄]

F−1
(a,b,c,θ)(Dθ̄)

is bounded, where Dθ̄ = [0, θ̄e]× [−θ̄e, θ̄e] and
F−1

(a,b,c,θ)(Dθ̄) = {(x, y) ∈ Rn++ : F(a,b,c,θ)(x, y) ∈ Dθ̄}.
At first glance, Condition 3.1 may seem to be a little unusual. As we will see

subsequently, this condition is actually quite weak. A prominent feature of Condition
3.1 is that it may hold even when the solution set of the CP is unbounded or the
strict feasibility condition fails to hold. Specifically, for P0-complementarity problems
we will show that previously known conditions such as Condition 1.1, Condition 1.2,
the nonemptiness and boundedness assumption of the solution set (in particular, the
P0 together with R0 property), and Condition 1.5 in [19] all imply Condition 3.1.
However, the converse is not true (see Theorem 3.1 below). Before we prove this
fact, we list some helpful results. The following result is easy to prove by using the
compactness of S and continuity of f . Its proof is omitted.

Lemma 3.2. Let S be a compact set in Rn and (a, b, c) ∈ Rn++ × R2n be a fixed
triplet. Let f be a continuous function from Rn into itself.

(i) Let

G(x) := x+ f(x)−
√
(x− f(x))2.

Define Ḡ : Rn × (0, 1]×Rn+ ×Rn → Rn by

Ḡ(x, θ, w, v) = x+ f(x) + θpdiag (ap) (x− θb/2) + θ(c+ b/2) + v

−
√
[x− (f(x) + θpdiag (ap) (x− θb/2) + θ(c+ b/2) + v)]

2
+ 4w − θb.

Then for any δ > 0 there exists a scalar θ̄ ∈ (0, 1] such that for all θ ∈ (0, θ̄] and
(w, v) ∈ [0, θ̄e]× [−θ̄e, θ̄e] ⊆ Rn+ ×Rn we have

sup
x∈S
‖Ḡ(x, θ, w, v)−G(x)‖ < δ.
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(ii) Given any θ̂ ∈ (0, 1), then for any δ > 0 there exists a sufficiently small
scalar β > 0 such that

sup
x∈S
‖Y(x, θ)− Y(x, θ̂)‖ < δ for all θ such that |θ − θ̂| < β,

where Y(x, θ) is defined by (2.4).
The next result, which was pointed out by Gowda and Tawhid [13], is very useful

for the subsequent analysis.
Lemma 3.3. Let Φ(x, v) = x+ f(x)−√(x− f(x))2 + v2, where v ∈ Rn.
(i) If f is a P0-function, then Φ(x, v) is a P0-function in x. Moreover, if v2 ∈

Rn++, then Φ(x, v) is a P-function in x.
(ii) If f is a P-function, then Φ(x, v) is a P-function in x.
The following upper-semicontinuity property of a P0-function is due to Ravindran

and Gowda [27].
Lemma 3.4. Let g : Rn → Rn be a P0-function. Suppose that g

−1(0) is nonempty
and compact. Then for any given ε > 0 there exists a scalar γ > 0 such that for any
P0-function h with

sup
Ω̄

‖h(x)− g(x)‖ < γ

we have

∅ �= h−1(0) ⊆ g−1(0) + εB,

where B denotes the open unit ball in Rn and Ω̄ is the closure of the set Ω = g−1(0)+
εB.

We now show that several well-known existing conditions used in the literature
of interior-point and non–interior-point methods imply Condition 3.1. However, the
converse is not true, since Condition 3.1 may hold for P0-CPs in the absence of the
strict feasibility condition.

Theorem 3.1. Let f be a P0-function. If one of the following condition holds,
(i) Condition 1.1,
(ii) Condition 1.2,
(iii) Condition 1.5 in Kojima, Magiddo, and Noma [19],
(iv) the solution set of the CP is nonempty and bounded,
(v) f is a P0 and R0 function [1, 6],

then Condition 3.1 holds. However, the converse is not true, i.e., Condition 3.1 does
not imply any one of the above conditions.

Proof. The implication (ii) ⇒ (i) is pointed out in [16, 26]. It is easy to verify
that (i) ⇒ (iv). In fact, if (i) holds, Hotta and Yoshise [16] showed that their non–
interior-point trajectory exists and a subtrajectory is bounded, and hence each of the
accumulation points of the subtrajectory is a solution to the CP. Hence the solution
set of the CP is not empty. We further demonstrate that it is bounded. Indeed, by
Condition 1.1, there is a point x0 > 0 such that f(x0) > 0. It follows from Lemma
2.1 in [16] that Rn− × Rn+ ⊆ V (Rn++ × R2n). Thus, by Condition 1.1 again, the set
U−1(D) is bounded for every compact subset D of Rn+ ×Rn− ×Rn+. In particular, set

D := {(0, 0, 0)} ⊆ Rn+ ×Rn− ×Rn+.
Then the set U−1(0) is bounded. The set U−1(0) coincides with the solution set of
the CP. Hence (i) ⇒ (iv).
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By a proof similar to the above, we can show that (iii)⇒ (iv). The implication of
(v) ⇒ (iv) is a known result.

Therefore, to show that each condition of (i)–(v) implies Condition 3.1, it is
sufficient to prove that (iv) implies Condition 3.1. Indeed, assume that f is a P0-
function and the solution set of the CP is nonempty and bounded. We show that
Condition 3.2 holds (and hence Condition 3.1 holds). Let G : Rn → Rn be given by

G(x) := x+ f(x)−
√
(x− f(x))2,

which is a P0-function (Lemma 3.3). Since G−1(0) = {x ∈ Rn : G(x) = 0} coincides
with the solution set of the CP, by the assumption, the set G−1(0) is nonempty and
bounded; in fact, it is a compact set by the continuity of f . For any scalar ε > 0, by
Lemma 3.4 there is a scalar δ > 0 such that for any P0-function h : Rn → Rn with

sup
x∈Ω̄

‖h(x)−G(x)‖ < δ,(3.4)

where Ω = G−1(0) + εB,

0 �= h−1(0) ⊆ G−1(0) + εB.(3.5)

Let (a, b, c) be a fixed triplet in Rn++×R2n, and let Ḡ(x, θ, w, v) be given as in Lemma
3.2, where θ ∈ (0, 1] and (w, v) ∈ Rn+ ×Rn. Clearly, the function

f(x) + diag (θpap) (x− θb/2) + θ(c+ b/2) + v

is a P-function in x. Since w ∈ Rn+, it follows from (ii) of Lemma 3.3 that Ḡ(x, θ, w, v)
is a P-function in x. By (i) of Lemma 3.2, there exists a sufficiently small number
θ̄ ∈ (0, 1) such that for all θ ∈ (0, θ̄] and (w, v) ∈ [0, θ̄e]× [−θ̄e, θ̄e] we have

sup
x∈Ω̄

‖Ḡ(x, θ, w, v)−G(x)‖ < δ.

Thus, setting h(x) := Ḡ(x, θ, w, v) in (3.4), we have from (3.5) that

∅ �= Ḡ−1
(θ,w,v)(0) ⊆ G−1(0) + εB

for all θ ∈ (0, θ̄] and (w, v) ∈ [0, θ̄]× [−θ̄e, θ̄e], where
Ḡ−1

(θ,w,v)(0) = {x ∈ Rn : Ḡ(x, θ, w, v) = 0}.
Hence, ⋃

(θ,w,v)∈(0,θ̄]×Dθ̄
Ḡ−1

(θ,w,v)(0) ⊆ G−1(0) + εB,

where Dθ̄ = [0, θ̄e]× [−θ̄e, θ̄e]. On the other hand, it is easy to verify that

Ḡ(x, θ, w, v) = 0, θ ∈ (0, θ̄], (w, v) ∈ Dθ̄,
if and only if

x− θb/2 ≥ 0, y − θb/2 ≥ 0,

diag(x− θb/2)(y − θb/2) = w,

y − θb/2− f(x)− θpdiag (ap) (x− θb/2)− θc = v,

θ ∈ (0, θ̄], (w, v) ∈ Dθ̄.
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Define x̄ = x− θb/2 and ȳ = y − θb/2. The above system can be rewritten as

F(a,b,c,θ)(x̄, ȳ) ∈ Dθ̄, (x̄, ȳ) ≥ 0, θ ∈ (0, θ̄],

where F(a,b,c,θ) is defined by (3.1). Denote

F−1
(a,b,c,θ)(Dθ̄) = {(u, v) ∈ R2n

++ : F(a,b,c,θ)(u, v) ∈ Dθ̄}.

Then from the above discussion, we deduce that

{x ∈ Rn : x = x̄+ θb/2, (x̄, ȳ) ∈ F−1
(a,b,c,θ)(Dθ̄), θ ∈ (0, θ̄]}

⊆ {x ∈ Rn : x = x̄+ θb/2,F(a,b,c,θ)(x̄, ȳ) ∈ Dθ̄, (x̄, ȳ) ≥ 0, θ ∈ (0, θ̄]}
=

⋃
(θ,w,v)∈(0,θ̄]×Dθ̄

Ḡ−1
(θ,w,v)(0)

⊆ G−1(0) + εB.

Since G−1(0) + εB is bounded, we deduce from the above that⋃
θ∈(0,θ̄]

F−1
(a,b,c,θ)(Dθ̄)

is bounded. Hence, Condition 3.2 is satisfied, and thus Condition 3.1 holds.
Since each of the conditions listed in the theorem implies the existence of a strictly

feasible point, to show that Condition 3.1 does not imply each of these conditions it
suffices to prove that Condition 3.1 may hold even when there is no strictly feasible
point. Now consider, in R2, the following example:

f(x) =

(
0 0
0 2

)(
x1

x2

)
+

(
0
−1

)
=

(
0

2x2 − 1

)
,

which is a P0-function. Clearly, f has no strictly feasible point, and the correspond-
ing complementarity problem has an unbounded solution set. However, this exam-
ple does satisfy Condition 3.1. Indeed, choose p ∈ (0, 1] and q ∈ [1,∞] and let
(a, b, c) ∈ R2

++ × R2 × R2 be a fixed vector. We show for each scalar 0 < θ∗ < 1

that the set ∪θ∈(0,θ∗]F−1
(a,b,c,θ)(Dθ) is a bounded set, where all symbols are defined

as in Condition 3.1. Assume that {(xk, yk)} is an arbitrary sequence contained in
the set. Then (xk, yk) > 0, and for each (xk, yk) there is a scalar θk ∈ (0, θ∗] such
that F(a,b,c,θk)(x

k, yk) ∈ Dθk . By the definitions of Dθk and F(a,b,c,θ), there exist two

vectors dk ∈ [0, aq] and d̄k ∈ [−t̂e, t̂e] such that

Xkyk = θkd
k ∈ [0, θka

q],

yk − f(xk + θkb/2)− θpkdiag(ap)xk − θkc = θkd̄
k ∈ θk[−t̂e, t̂e],

where Xk = diag(xk). For this example, the second equation above can be rewritten
as

yk1 = (θka1)
pxk1 + θkc1 + θkd̄

k
1 ,

yk2 = 2(xk2 + θkb2/2)− 1 + (θka2)
pxk2 + θkc2 + θkd̄

k
2 .
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Thus, from Xkyk = θkd
k we have

θkd
k
1 = xk1y

k
1 = (θka1)

p(xk1)
2 + θkx

k
1c1 + θkx

k
1 d̄
k
1 ,

i.e.,

θ1−pk dk1 = ap1(x
k
1)

2 + θ1−pk (c1 + d̄k1)x
k
1 ,

and

θkd
k
2 = xk2y

k
2 = (2 + (θka2)

p)(xk2)
2 + [θk(b2 + c2 + d̄k2)− 1]xk2 .

From the above two relations, we conclude that the sequence {xk} is bounded, and
by continuity so is {yk}. Therefore, the set ∪θ∈(0,θ∗]F−1

(a,b,c,θ)(Dθ) is bounded, i.e.,

Condition 3.1 is satisfied.

4. Existence and boundedness of the trajectory. The purpose of this sec-
tion is to show the existence and the boundedness of the proposed continuation tra-
jectory for P0-CPs under Condition 3.1. To begin with, we recall a useful result on
the degree of a continuous function. Let Ω be a bounded open set in Rn. The symbols
Ω̄ and ∂Ω denote the closure and boundary of Ω, respectively. Let h be a continuous
function from Ω̄ into Rn. For any vector y ∈ Rn such that y /∈ h(∂Ω), the degree of
h at y with respect to Ω is defined by deg(h,Ω, y). The following result can be found
in Lloyd [22].

Lemma 4.1. (i) If h is injective on Rn, then for any y ∈ h(Ω), |deg(h,Ω, y)| = 1.
(ii) If deg(h,Ω, y) �= 0, then the equation h(x) = y has a solution in Ω.
(iii) Let g be a continuous function from Ω̄→ Rn. Let

H(x, t) = tg(x) + (1− t)h(x), 0 ≤ t ≤ 1.

If y /∈ {H(x, t) : x ∈ ∂Ω, t ∈ [0, 1]}, then deg(g,Ω, y) = deg(h,Ω, y).
We are ready to prove a general and essential result.
Theorem 4.1. Let (a, b, c) be a fixed vector in Rn++ ×R2n. Let f : Rn → Rn be

a continuous semimonotone function.
(i) For each θ ∈ (0, 1], the system (2.3) has a solution.
(ii) If Condition 3.1 holds, then the set

{(u, x, y) ∈ Tθ : θ ∈ (0, 1]} :=
⋃

θ∈(0,1]

Tθ(4.1)

is bounded, where

Tθ := {(u, x, y) : H(u, x, y) = θ(a, b, c)}.
Proof. Let f be a continuous semimonotone function. We show the result by

contradiction. Assume that there is a scalar θ̂ ∈ (0, 1] such that system (2.3) has no
solution.

Let H : Rn × [0, 1]→ Rn be defined by

H(x, t) = t(x− θ̂b/2) + (1− t)Y(x, θ̂), t ∈ [0, 1],

where Y is given by (2.4). We first show that the set

S = {x ∈ Rn : H(x, t) = 0 for some t ∈ [0, 1]}
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is unbounded. Indeed, assume the contrary: S is bounded. Then for any fixed ε > 0,
the set D := ({θ̂b/2} ∪ S) + εB is a bounded open set in Rn, where B is the open
unit ball in Rn. Clearly, the intersection of S and the boundary of D is empty, i.e.,
for all x ∈ ∂D,H(x, t) �= 0 for all t ∈ [0, 1]. Therefore,

|deg(Y(·, θ̂), D, 0)| = |deg(g,D, 0)| = 1,

where g(x) := x − θ̂b/2. The first part of the equation above follows from (iii) of
Lemma 4.1, and the second part of the equation follows from (i) of Lemma 4.1 since
g is an injective mapping. Thus, it follows from (ii) of Lemma 4.1 that the equation

Y(x, θ̂) = 0 has a solution (in D). Thus, by Lemma 2.1, H(u, x, y) = θ̂(a, b, c) has a
solution. This contradicts our assumption at the beginning of the proof. Therefore,
the set S is unbounded.

Since S is unbounded, there is a sequence {xk} contained in S such that ‖xk‖ →
∞. We now show that {xk} satisfies the relations

xk − θ̂b/2 > 0

and

f(xk) ≤ −θ̂pdiag (ap)xk + 2θ̂q[diag(xk − θ̂b/2)]−1aq + θ̂(b/2− c)
for all sufficiently large k. Indeed, since ‖xk‖ → ∞, there is a k0 > 0 such that

‖xk − θ̂b/2‖ > 0 for all k > k0. Since xk ∈ S, by the definition of S there is a scalar
tk ∈ [0, 1] such that

H(xk, tk) = tk(xk − θ̂b/2) + (1− tk)Y(xk, θ̂) = 0.

Since xk �= θ̂b/2 for all k > k0, we deduce from the above that tk �= 1 for all k > k0.

Since system (2.3) has no solution (by the assumption), i.e., Y(x, θ̂) �= 0 for all x ∈ Rn
(Lemma 2.1), it follows from the above equation that tk �= 0. Therefore, we have that
tk ∈ (0, 1) for all k > k0. The above equation can be written as

tk(xk − θ̂b/2) + (1− tk)[(xk − θ̂b/2) + (yk − θ̂b/2)]
− (1− tk)

√
[(xk − θ̂b/2)− (yk − θ̂b/2)]2 + 4θ̂qaq = 0,

where

yk = f(xk) + θ̂pdiag (ap)xk + θ̂c.

Define

x̂k = xk − θ̂b/2, ŷk = yk − θ̂b/2.
The above equation can be further written as

x̂k + (1− tk)ŷk = (1− tk)
√
(x̂k − ŷk)2 + 4θ̂qaq.(4.2)

Squaring both sides of this equation and simplifying (all the algebraic operations are
performed componentwise), we obtain

tk(2− tk)(x̂k)2 + 2(1− tk)(2− tk)X̂kŷk = 4(1− tk)2θ̂qaq,
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where X̂k = diag(x̂k). It follows from the above that x̂ki �= 0 for all i = 1, 2, . . . , n.

Multiplying both sides of the above by (X̂k)−1 and dividing both sides by 2(1−tk)(2−
tk) yield

ŷk = − tk

2(1− tk) x̂
k +

2(1− tk)θ̂q
2− tk (X̂k)−1aq.

Thus, we have

x̂k + (1− tk)ŷk =

(
1− tk

2

)
x̂k +

2(1− tk)2θ̂q
2− tk (X̂k)−1aq.

If x̂ki ≤ 0 for some i, then we have from the above that x̂ki + (1 − tk)ŷki ≤ 0, which
contradicts the right-hand side of (4.2). Thus, {x̂k} ⊆ Rn++ and

ŷk ≤ 2(1− tk)θ̂q
2− tk (X̂k)−1aq ≤ 2θ̂q(X̂k)−1aq.

That is, xk − θ̂b/2 > 0 and

f(xk) ≤ −θ̂pdiag (ap)xk + 2θ̂q
[
diag

(
xk − θ̂b/2

)]−1

aq + θ̂(b/2− c)(4.3)

for all k > k0. Passing through a subsequence, we may suppose that there is an index
set I such that xki → ∞ for all i ∈ I and {xki } is bounded for i /∈ I. It follows from
(4.3) that fi(x

k) → −∞ for all i ∈ I. This contradicts the consequence of Lemma
3.1, which states that there exists an index i ∈ I such that fi(x

k) is bounded from
below. Hence, item (i) of the theorem is shown.

We now prove item (ii) of the theorem, i.e., the boundedness of set (4.1). Assume
the contrary: the set {(u, x, y) ∈ Tθ : θ ∈ (0, 1]} is unbounded, i.e., there exists an
unbounded sequence {(u(θk), x(θk), y(θk))} contained in the set, where 0 < θk ≤ 1.
Thus, the sequence {x(θk)} is unbounded (Remark 2.1). Without loss of generality,
we assume that ‖x(θk)‖ → ∞ as k → ∞. Note that {(u(θk), x(θk), y(θk))} satisfies
the system (2.8)–(2.11), where θ is replaced by θk. By the unboundedness of {x(θk)}
and x(θk) ≥ θ̂b/2, it follows from Lemma 3.1 that there exist a subsequence of {x(θk)}
denoted also by {x(θk)} and an index m such that xm(θk) → ∞ and fm(x(θk)) is
bounded from below. From (2.11) we have

ym(θk)− θkbm/2 =
θqka

q
m

xm(θk)− θkbm/2 ,

and by using (2.9) we obtain

fm(x(θk)) = θkbm/2 +
θqka

q
m

xm(θk)− θkbm/2 − θkcm − (θkam)pxm(θk).

Since xm(θk)→∞ and fm(x(θk)) is bounded from below, we deduce from the above
that θpk → 0, and thus θk → 0. Define

x̂(θk) = x(θk)− θkb/2, ŷ(θk) = y(θk)− θkb/2.
By (2.10) and (2.11), we have

(x̂(θk), ŷ(θk)) > 0, X̂(θk)x̂(θk) = θqka
q.
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By using (2.9) again, we have

ŷ(θk)− f(x̂(θk) + θkb/2)− θpkdiag (ap) x̂(θk)− θkc
= y(θk)− θkb/2− f(x(θk))− θpkdiag (ap)x(θk) + θpkdiag (a

p) (θkb/2)− θkc
= −θkb/2 + θpkdiag (a

p) (θkb/2)

= θk[−b/2 + θpkdiag (a
p) b/2].

Let t̂ = ‖ − b/2‖∞ + ‖diag(ap)b/2‖∞. Then, for any θk ∈ (0, 1], we have −t̂e ≤
−b/2 + θpkdiag(a

p)b/2 ≤ t̂e. Therefore,

θqka
q = θk(θ

q−1
k aq) ∈ [0, θka

q],

θk(−b/2 + θpkdiag (a
p) b/2) ∈ θk[−t̂e, t̂e].

Therefore,

F(a,b,c,θk)(x̂(θk), ŷ(θk)) =

(
X̂(θk)ŷ(θk)

ŷ(θk)− f(x̂(θk) + θkb/2)− θpkdiag (ap) x̂(θk)− θkc
)

∈ [0, θka
q]× θk[−t̂e, t̂e] =: Dθk

for all θk ∈ (0, 1]. That is, (x̂(θk), ŷ(θk)) ∈ F−1
(a,b,c,θk)

(Dθk) for all θk ∈ (0, 1]. Hence,

for any 1 ≥ θ∗ > 0, the sequence

{(x̂(θk), ŷ(θk)) : θk ∈ (0, θ∗]} ⊆
⋃

θk∈(0,θ∗]

F−1
(a,b,c,θk)

(Dθk) ⊆
⋃

θ∈(0,θ∗]

F−1
(a,b,c,θ)(Dθ).

By Condition 3.1, there exists a θ∗ ∈ (0, 1] such that the right-hand side of the above is
bounded. However, the left-hand side is an unbounded sequence. This contradiction
shows that the set (4.1) is indeed bounded. The proof is thus complete.

Since Condition 3.2 implies Condition 3.1, the following result is an immediate
consequence of Theorem 4.1.

Corollary 4.1. Let f : Rn → Rn be a continuous semimonotone function. If
Condition 3.2 holds, then the set (4.1) is bounded.

While system (2.3) has a solution for a continuous semimonotone function if
Condition 3.1 holds, it is not clear whether the solution of system (2.3) is unique
for each θ ∈ (0, 1]. However, for continuous P0-functions, which are special cases of
continuous semimonotone functions, it is easy to prove that for each θ ∈ (0, 1] system
(2.3) has a unique solution which is also continuous in θ. We summarize the result as
follows.

Theorem 4.2. Let f : Rn → Rn be a continuous P0-function.
(i) For each θ ∈ (0, 1], system (2.3) has a unique solution (u(θ), x(θ), y(θ)) which

is continuous in θ.
(ii) If Condition 3.1 (in particular, Condition 3.2) is satisfied, then the entire

trajectory {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]} is bounded. Hence there exists at least a
convergence subsequence (u(θk), x(θk), y(θk)) converging, as θk → 0, to (0, x∗, y∗),
where x∗ is a solution to the CP.

(iii) If f is continuously differentiable, then (u(θ), x(θ), y(θ)) is also continuously
differentiable in θ. In this case, the set {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]} forms a smooth
trajectory.
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Proof. Since each P0-function is a semimonotone function, by Theorem 4.1, sys-
tem (2.3) has at least one solution. It is sufficient to show that the system has at
most one solution. Let

g(x, a, c, θ) = f(x) + θpdiag (ap)x+ θc.

Since f is a P0-function and a ∈ Rn++, the function g(x, a, c, θ) is a P-function in x.
Thus, by Lemma 3.3, the map

Y(x, θ) = x+ g(x, a, c, θ)−
√

(x− g(x, a, c, θ))2 + 4θqaq − θb
is a P-function in x. Since every P-function is univalent (one-to-one), the equation
Y(x, θ) = 0 has at most one solution. Hence system (2.3) has at most one solution,
by Lemma 2.1.

The continuity of (u(θ), x(θ), y(θ)) follows easily from Lemma 3.4. Indeed, given

θ̂ ∈ (0, 1), in order to show the continuity of (u(θ), x(θ), y(θ)) at θ̂ it is sufficient to

prove the continuity of x(θ) at θ̂. Since Y(x, θ) is a P-function in x, x(θ̂) is the unique

element in Y−1

θ̂
(0) = {x : Y(x, θ̂) = 0}. By Lemma 3.4, for any ε > 0 there exists a

scalar δ > 0 such that for any P0-function h satisfying

sup
x∈Ω̄

‖h(x)− Y(x, θ̂)‖ < δ,(4.4)

where Ω = Y−1

θ̂
(0) + εB, we have

∅ �= h−1(0) ⊆ Y−1

θ̂
(0) + εB = x(θ̂) + εB.(4.5)

For this given δ, it follows from (ii) of Lemma 3.2 that there is a scalar β > 0 such
that

sup
x∈Ω̄

‖Y(x, θ)− Y(x, θ̂)‖ < δ

for all θ > 0 such that |θ − θ̂| < β. Setting h(x) := Y(x, θ) in (4.4), we deduce from

(4.5) that Y−1
θ (0) = {x : Y(x, θ) = 0} ⊆ x(θ̂) + εB for all θ with |θ − θ̂| < β. By

the P-property of Y, x(θ) is a unique element in Y−1
θ (0). Thus, ‖x(θ)− x(θ̂)‖ < ε for

all θ > 0 such that |θ − θ̂| < β, i.e., x(θ) is continuous at θ̂. Item (i) of the theorem
follows.

Item (ii) follows immediately from Theorem 4.1, since P0-functions are semimono-
tone. We now prove Item (iii). Consider the following 3n× 3n matrix

A :=


 I 0 0
−2qUq−1D I − (X − Y )D I + (X − Y )D
pUp−1X −(f ′(x) + diag(up)) I


 ,

where U = diag(u), X = diag(x), Y = diag(y), andD = diag(d) with d = (d1, . . . , dn)
T ,

where

di = 1/
√
(xi − yi)2 + 4uqi , i = 1, 2, . . . , n.

If u ∈ Rn++, then it is easy to see that I − (X − Y )D and I + (X − Y )D are positive
diagonal matrices for every (x, y) ∈ R2n. Thus, by Lemma 5.4 in Kojima, Megiddo,
and Noma [19], the matrix(

I − (X − Y )D I + (X − Y )D
−(f ′(x) + diag(up)) I

)
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is nonsingular when f is a P0-function. Hence A is a nonsingular matrix for every
(u, x, y) ∈ Rn++ ×R2n. Since the matrix A coincides with the Jacobian matrix (with
respect to (u, x, y)) of the equation

H(u, x, y)− θ(a, b, c) = 0,

by the implicit function theorem, there is a unique smooth (i.e., continuously differ-
entiable) curve (u(t), x(t), y(t)) such that

H(u(t), x(t), y(t)) = t(a, b, c)

for all t sufficiently close to θ, and

(u(t), x(t), y(t))|t=θ = (u(θ), x(θ), y(θ)).

In particular, (u(·), x(·), y(·)) is continuously differentiable at θ.
Furthermore, if f is a P∗-function we can obtain a much stronger result. We

now consider this important situation and show that for a P∗-function the proposed
trajectory exists and is bounded, provided that the solution set of the CP is nonempty.
For simplicity, we consider the case of (a, b, c) ∈ Rn++ × Rn− × Rn, i.e., the vector b
is confined to Rn−. We also consider the case of c ∈ Rn++ when it is necessary. The
stipulation that b ∈ Rn− has also been used in some non–interior-point algorithms; see
Burke and Xu [3] and Hotta, Inabar, and Yoshise [17], where the iterate {(xk, yk)} is
required to satisfy

xk + yk −
√
(xk − yk)2 + 4µk ≤ 0,

which is equivalent to the requirement of “b ∈ Rn−.”
Lemma 4.2. Let v∗ be an arbitrary solution of the CP, and (a, b, c) ∈ Rn++ ×

Rn− × Rn be a fixed vector. Let (u(θ), x(θ), y(θ)) satisfy the system (2.8)–(2.11) for
each θ ∈ (0, 1]. Then the following inequality holds:

(xi(θ)− v∗i )(fi(x(θ))− fi(v∗)) ≤ θqeTaq − θbT f(v∗)/2− θp min
1≤i≤n

Mi,

where

Mi = api xi(θ)(xi(θ)− v∗i ) + θ1−p(ci − bi/2)(xi(θ)− v∗i ).
Proof. Define ȳi(θ) = yi(θ) − θbi/2 and x̄i(θ) = xi(θ) − θbi/2. Let v∗ be an

arbitrary solution to the CP. By (2.11) and noting that (x̄(θ), ȳ(θ)) > 0, we have for
each i,

(ȳi(θ)− fi(v∗))(x̄i(θ)− v∗i ) = ȳi(θ)x̄i(θ)− fi(v∗)x̄i(θ)− ȳi(θ)v∗i
≤ ȳi(θ)x̄i(θ) = θqaqi .(4.6)

We also note that

(xi(θ)− v∗i )(fi(x(θ))− fi(v∗))
= (xi(θ)− v∗i )(yi(θ)− (θai)

pxi(θ)− θci − fi(v∗))
= (x̄i(θ)− v∗i + θbi/2)(ȳi(θ) + θbi/2− (θai)

pxi(θ)− θci − fi(v∗))
= (x̄i(θ)− v∗i )(ȳi(θ)− fi(v∗)) + (x̄i(θ)− v∗i )(θbi/2− (θai)

pxi(θ)− θci)
+ (θbi/2)(ȳi(θ) + θbi/2− (θai)

pxi(θ)− θci − fi(v∗)).
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Thus, by (4.6) and noting that b ≤ 0 and ȳ(θ) > 0, we have the following for all i:

(xi(θ)− v∗i )(fi(x(θ)− fi(v∗))
≤ θqaqi + (xi(θ)− v∗i − θbi/2)(θbi/2− (θai)

pxi(θ)− θci)
+ (θbi/2)(θbi/2− (θai)

pxi(θ)− θci − fi(v∗))
= θqaqi − (θai)

pxi(θ)(xi(θ)− v∗i )
+ (θbi/2− θci)(xi(θ)− v∗i )− θbifi(v∗)/2

≤ θqeTaq − θbT f(v∗)/2
− θp min

1≤i≤n
[api xi(θ)(xi(θ)− v∗i ) + θ1−p(ci − bi/2)(xi(θ)− v∗i )].

The last inequality follows from the fact that aqi ≤ eTaq and −bifi(v∗) ≤ −bT f(v∗)
since b ≤ 0 and f(v∗) ≥ 0. The proof is thus complete.

We are ready to prove the following result.

Theorem 4.3. Let f be a continuous P∗-function and (a, b, c) ∈ Rn++×Rn−×Rn
be a fixed vector. Assume that the solution set of the CP is nonempty.

(i) If p ≤ 1 and q ∈ [1,∞), then the trajectory {(u(θ), x(θ), y(θ)) : θ ∈ (0, 1]}
generated by (2.3) is bounded.

(ii) If p > 1, q ∈ [1,∞), and c ∈ Rn++, then the trajectory {(u(θ), x(θ), y(θ)) :
θ ∈ (0, 1]} generated by (2.3) is bounded.

Proof. We still use the notation

(x̄(θ), ȳ(θ)) = (x(θ)− θb/2, y(θ)− θb/2).

By (2.11), and noting that b ≤ 0 and (x̄(θ), ȳ(θ)) > 0, we have

x(θ)T y(θ) = (x̄(θ) + θb/2)T (ȳ(θ) + θb/2)

≤ θqeTaq + θ2‖b‖2/4.(4.7)

Let v∗ be an arbitrary solution of the CP. By the P∗-property of f and by Lemma
4.2 we have

(v∗)T y(θ) + f(v∗)Tx(θ)
= −(x(θ)− v∗)T (y(θ)− f(v∗)) + x(θ)T y(θ)

= −(x(θ)− v∗)T (f(x(θ)) + θpdiag(ap)x(θ) + θc− f(v∗)) + x(θ)T y(θ)

= −(x(θ)− v∗)T (f(x(θ))− f(v∗))− θp[diag(ap)x(θ)]T (x(θ)− v∗)
− θcT (x(θ)− v∗) + x(θ)T y(θ)

≤ τ
∑
i∈I+

(xi(θ)− v∗i )T (fi(x(θ))− fi(v∗))

− θp[diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ)

≤ τn max
1≤i≤n

(xi(θ)− v∗i )T (fi(x(θ))− fi(v∗))
− θp[ diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ)

≤ τn
(
θqeTaq − θbT f(v∗)/2− θp min

1≤i≤n
Mi

)
− θp[diag(ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗) + x(θ)T y(θ).
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The last inequality follows from Lemma 4.2, and Mi is given as in Lemma 4.2. By
(4.7) and the above inequality, we have

(v∗)T ȳ(θ) + f(v∗)T x̄(θ)
= (v∗)T y(θ) + f(v∗)Tx(θ)− θbT (v∗ + f(v∗))/2
≤ θq(1 + τn)eTaq + θ2‖b‖2/4− θτnbT f(v∗)/2− θpτn min

1≤i≤n
Mi

− θp[ diag (ap)x(θ)]T (x(θ)− v∗)− θcT (x(θ)− v∗)− θbT (v∗ + f(v∗))/2.(4.8)

(i) We now consider the case of p ≤ 1. Notice that the left-hand side is nonneg-
ative. Dividing both sides of the above inequality by θp and rearranging terms, we
have

[diag(ap)x(θ)]T (x(θ)− v∗) + θ1−pcT (x(θ)− v∗) + τn min
1≤i≤n

Mi

≤ θq−p(1 + τn)eTaq + θ2−p‖b‖2/4− θ1−pτnbT f(v∗)/2
−θ1−pbT (v∗ + f(v∗))/2.(4.9)

Since ap ∈ Rn++, p ≤ 1, and q ∈ [1,∞), we conclude from the above inequality that
the set {x(θ) : θ ∈ (0, 1]} is bounded, and by continuity the set {y(θ) : θ ∈ (0, 1]} is
also bounded. Item (i) of the theorem is proved.

(ii) If p > 1 and c ∈ Rn++, then, since (x̄(θ), ȳ(θ)) > 0 and b ≤ 0, we have

Mi ≥ −api v∗i xi(θ) + θ1−p(ci − bi/2)(x̄i(θ) + θbi/2− v∗i )
≥ −api v∗i x̄i(θ) + θ1−p(ci − bi/2)(θbi/2− v∗i )
≥ −[diag(ap)x̄(θ)]T v∗ + θ1−p min

1≤i≤n
(ci − bi/2)(θbi/2− v∗i ).(4.10)

Since the left-hand side of (4.8) is nonnegative, by (4.10) and (4.8), we have

0 ≤ θq(1 + τn)eTaq + θ2‖b‖2/4− θτnbT f(v∗)/2
+ θpτn[diag(ap)x̄(θ)]T v∗ − θτn min

1≤i≤n
(ci − bi/2)(θbi/2− v∗i )

+ θp[diag(ap)x(θ)]T v∗ − θcTx(θ) + θcT v∗ − θbT (v∗ + f(v∗))/2
≤ θq(1 + τn)eTaq + θ2‖b‖2/4− θτnbT f(v∗)/2

+ θp(1 + τn)[diag(ap)x̄(θ)]T v∗ − θτn min
1≤i≤n

(ci − bi/2)(θbi/2− v∗i )
+ θp[diag(ap)v∗]T b/2− θcT x̄(θ)− θcT b/2 + θcT v∗ − θbT (v∗ + f(v∗))/2.

Dividing both sides of the above by θ and rearranging terms, we have

(
c− θp−1(1 + τn)diag(ap)v∗

)T
x̄(θ)

≤ θq−1(1 + τn)eTaq + θ‖b‖2/4− τnbT f(v∗)/2
− τn min

1≤i≤n
(ci − bi/2)(θbi/2− v∗i )

+ θp−1[diag (ap)v∗]T b/2− cT b/2 + cT v∗ − bT (v∗ + f(v∗))/2.

Since p > 1 and c ∈ Rn++, there must exist a δ ∈ (0, 1) such that for all θ ∈ (0, δ] we
have that c − θp−1(1 + τn)diag(ap)v∗ ≥ c/2 > 0. Thus we can see from the above
inequality that the set {x̄(θ) : θ ∈ (0, δ]} is bounded. Thus, the set {x(θ) : θ ∈ (0, δ]}
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is bounded. The boundedness of the set {x(θ) : θ ∈ [δ, 1]} can be obtained by (4.8)
again. Indeed, if a subsequence in {x(θ) : θ ∈ [δ, 1]} is unbounded, then there exists a
subsequence denoted by {x(θk)} such that ‖x(θk)‖ → ∞ as k →∞, where θk ∈ [δ, 1].
Applying (4.8) to this sequence, the left-hand side of it is nonnegative. The right-hand
side of the inequality (4.8), however, tends to −∞. This is a contradiction. Therefore,
we conclude that the entire set {x(θ) : θ ∈ (0, 1]} is bounded. So is {y(θ) : θ ∈ (0, 1]},
by continuity.

Remark 4.1. The above result shows that the nonemptiness of the solution set
implies the boundedness of the entire trajectory {(x(θ), y(θ)) : θ ∈ (0, 1]}. Notice that
the boundedness of this trajectory in turn implies the nonemptiness of the solution
set. Therefore, we may conclude that the boundedness of this trajectory is equivalent
to the solvability of the problem.

5. Limiting behavior of the trajectory. We have shown that Condition 3.1
(and hence most of the known conditions used in interior-point and non–interior-point
methods) can guarantee the boundedness of the proposed continuation trajectory.
Thus, there exists at least one convergent subsequence {(u(θk), x(θk), y(θk))} whose
limiting point is a solution to the CP. Two natural questions arise: (i) When is the
entire trajectory convergent? (ii) What can be said about the limiting point of it? This
section is devoted to these questions. For 0 < p < 1 and (a, b, c) ∈ Rn++ × Rn− × Rn,
or 0 < p ≤ q and (a, b, c) ∈ Rn++ × {0} × {0}, we show (in Theorem 5.1) that if f
is a P∗-function and the CP has a least element solution, then the entire trajectory
{(u(θ), x(θ), y(θ))} generated by (2.3) converges, as θ → 0, to the unique least element
solution, and that if f is monotone, then the entire trajectory is convergent as θ → 0,
and the limiting point is the N -norm least solution, where N = diag(ap). For p > q
and (a, b, c) ∈ Rn++ × {0} × {0}, we show, among other things, that any limiting
point of the sequence {(u(θk), x(θk), y(θk))} as θ → 0 is a maximal complementarity
solution (see Theorem 5.2).

To begin, we review some concepts that will be used in this section. An element
x∗ of the set S is said to be the N -norm least element, where N is a positive definite
matrix, if ‖N1/2x∗‖ ≤ ‖N1/2u‖ for all u ∈ S. In particular, if N = I, the solution x∗

is called the least 2-norm element of S. An element x∗ of the set S is said to be a least
element of S if x∗ ≤ u for all u ∈ S (Pang [24]). An element x∗ of the set S is said
to be a weak Pareto minimal element if there is no element u in S such that u < x∗

(Sznajder and Gowda [29]). It is evident that the (unique) least element is a weak
Pareto minimal element, but the converse is not true. If the solution set SOLcp(f)
is convex, it is known that there exists a unique partition of the index set {1, . . . , n}
denoted by I, J , and O such that {1, . . . , n} = I ∪ J ∪O, and the intersection of each
pair of them is empty. In fact,

I = {i : x∗i > 0 for some x∗ ∈ SOLcp(f)},
J = {j : fj(x∗) > 0 for some x∗ ∈ SOLcp(f)},

O = {k : x∗k = fk(x
∗) = 0 for all x∗ ∈ SOLcp(f)}.

Since the solution set is convex, there must exist a solution x∗ satisfying x∗i > 0 for
all i ∈ I, fi(x∗) > 0 for all i ∈ J , and x∗i = fi(x

∗) = 0 for all i ∈ O. Such a solution
is called a maximal complementarity solution. When O = ∅, i.e., x∗ + f(x∗) > 0, x∗

is called a strict complementarity solution. We now prove the following result.
Theorem 5.1. Assume that the solution set SOLcp(f) is nonempty. Let p, q,

and (a, b, c) satisfy one of the following conditions:
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(C1) 0 < p < 1, q ∈ [1,∞), and (a, b, c) ∈ Rn++ ×Rn− ×Rn.
(C2) 0 < p < q, q ∈ [1,∞), and (a, b, c) ∈ Rn++ × {0} × {0}.
Then the following results hold:
(i) If f is a continuous P∗-function and the least element solution of the CP

exists, then the entire trajectory {x(θ) : θ ∈ (0, 1]} generated by (2.3) converges, as
θ → 0, to the unique least element solution.

(ii) If f is a continuous monotone mapping, then the entire continuation trajec-
tory {x(θ) : θ ∈ (0, 1]} generated by system (2.3) converges, as θ → 0, to a solution of
the CP. This solution, denoted by x∗, is an N -norm least solution, i.e.,

‖N1/2x∗‖ ≤ ‖N1/2v∗‖ for all v∗ ∈ SOLcp(f),

where N = diag(ap). In particular, if a = αe, where α > 0 is a positive scalar, then
this solution is the (unique) least two-norm solution.

Proof. We show first that the result holds under condition (C1). Let v∗ be an
arbitrary solution of the CP. Then (4.9) holds. By (i) of Theorem 4.3 the entire
continuation trajectory {(u(θ), x(θ), y(θ))} is bounded, provided that the solution set
of the CP is nonempty. Let x∗ be an arbitrary accumulation point of {x(θ)} as θ → 0.
Since 0 < p < 1 and q ∈ [1,∞), letting θ → 0 in (4.9), we have

τn min
1≤i≤n

api x
∗
i (x

∗
i − v∗i ) + [diag(ap)(x∗)]T (x∗ − v∗) ≤ 0.(5.1)

Note that v∗ is an arbitrary solution of the CP. If the problem has a least element
solution u∗, setting v∗ = u∗ in the above inequality, we deduce that x∗ = u∗. Since
the least element solution is unique, we conclude that the entire trajectory converges
to the solution.

Since each monotone map is a P∗-function with the constant τ = 0, the inequality
(5.1), in this case, reduces to

[diag(ap)(x∗)]T (x∗ − v∗) ≤ 0,(5.2)

where v∗ is an arbitrary solution of the CP. To show the convergence of the entire
trajectory, it is sufficient to show that x∗ is unique. Indeed, if there exists another
vector u∗ such that u∗ is also an accumulation point to the trajectory, then we have

[diag(ap)(u∗)]T (u∗ − v∗) ≤ 0(5.3)

for all solutions v∗. Since x∗ and u∗ are solutions to the CP, setting v∗ = u∗ in (5.2)
and v∗ = x∗ in (5.3), and adding the two inequalities, we obtain

(x∗ − u∗)T [diag(ap)](x∗ − u∗) ≤ 0.

Since ap ∈ Rn++, it follows from the above that x∗ = u∗. Hence the trajectory is
convergent because it has a unique limiting point. It follows from (5.2) that

‖N1/2x∗‖2 ≤ ‖N1/2x∗‖‖N1/2v∗‖,

where N = diag(up) and v∗ is an arbitrary solution of the CP. Therefore, ‖N1/2x∗‖ ≤
‖N1/2v∗‖ for any solution v∗, i.e., x∗ is a least N -norm solution. In particular, if
a = αe for some positive scalar α > 0, then (5.2) reduces to (x∗)T (x∗ − v∗) ≤ 0 for
all solutions v∗, which implies that x∗ is the unique least 2-norm solution.
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We now show the result under (C2). It is evident that, under condition (C2), the
inequality (4.8) can be written as:

(v∗)T ȳ(θ) + f(v∗)T x̄(θ)
≤ θq(1 + τn)eTaq − θpτn min

1≤i≤n
api xi(θ)(xi(θ)− x∗i )

− θp[diag(ap)x(θ)]T (x(θ)− v∗).

Dividing both sides of the above inequality by θp, and noting that the left-hand side
is nonnegative, we have

0 ≤ θq−p(1 + τn)eTaq − τnmin
1≤n

api xi(θ)(xi(θ)− v∗i )
− [diag(ap)x(θ)]T (x(θ)− v∗).

Since p < q, the above inequality implies that {x(θ) : θ ∈ (0, 1]} is bounded, and thus
so is {y(θ) : θ ∈ (0, 1)}, by continuity. Let x∗ be an arbitrary accumulation point of
{x(θ)} as θ → 0. Letting θ → 0 in the above inequality, we obtain inequality (5.1)
again. It suffices to repeat the proof of (C1).

The above result states that when p < q the trajectory of the monotone CP
converges to an N -norm least solution. The next result studies the case of p ≥ q.

Theorem 5.2. Assume that f is a monotone function.
(i) Let p ≥ q and (a, b, c) ∈ Rn++×{0}× {0}. If the trajectory {x(θ) : θ ∈ (0, 1]}

generated by (2.3) has an accumulation point as θ → 0, then any accumulation point
of the trajectory, as θ → 0, is a maximal complementarity solution of the CP.

(ii) Let p > q and (a, b, c) ∈ Rn++ × {0} × {0}. Assume that the CP has a strict
complementarity solution and the trajectory {x(θ) : θ ∈ (0, 1]} generated by (2.3) has
an accumulation point as θ → 0. Then any accumulation point (x̂, ŷ) of the trajectory
as θ → 0 is a maximal strict complementarity solution, in the sense that∑

i∈I
aqi log v

∗
i +

∑
j∈J

aqj log fj(v
∗) ≤

∑
i∈I

aqi log x̂i +
∑
j∈J

aqj log fj(x̂),

where v∗ is an arbitrary strict complementarity solution. Furthermore, if f is linear,
i.e., f = Mx + u, where M is an n by n positive semidefinite matrix and u ∈ Rn is
a vector, then the entire trajectory converges, as θ → 0, to a unique maximal strict
complementarity solution.

Proof. Since each accumulation point of the trajectory, as θ → 0, is a solution
to the CP, then under the assumption of the theorem the solution set of the CP
is nonempty. Let v∗ be an arbitrary solution to the CP. Thus, the inequality (4.8)
remains valid. By assumption, we have τ = 0 and b = c = 0. Therefore, (4.8) reduces
to

(v∗)T ȳ(θ) + f(v∗)T x̄(θ) ≤ θqeTaq − θp [diag(ap)x(θ)]T (x(θ)− v∗)
≤ θqeTaq + θp [diag(ap)x(θ)]

T
v∗.

Notice that the solution set of a monotone CP is convex. Let I, J,O be the unique
partition of the indexes {1, 2, . . . , n} as defined at the beginning of this section. Then
the above inequality further reduces to

(v∗)TI ȳI(θ) + fJ(v
∗)T x̄J(θ) ≤ θqeTaq + θp [diag(apI)xI(θ)]

T
v∗I .
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Since (x̄(θ), ȳ(θ)) ∈ R2n
++, we have

(v∗)TI X̄
−1
I (θ)X̄I(θ)ȳI(θ) + fJ(v

∗)T Ȳ −1
J (θ)ȲJ(θ)x̄J(θ)

≤ θqeTaq + θp [diag(apI)xI(θ)]
T
v∗I ,

where X̄I(θ) = diag(x̄I(θ)), and ȲJ(θ) = diag(ȳJ(θ)). Since

X̄I(θ)ȳI(θ) = θqaqI , X̄J(θ)ȳJ(θ) = θqaqJ ,

from the above inequality we have

(v∗)TI X̄
−1
I (θ)aqI + fJ(v

∗)T Ȳ −1
J (θ)aqJ ≤ eTaq + θp−q [diag(apI)xI(θ)]

T
v∗I .(5.4)

The above inequality holds for all solutions v∗. In particular, let v∗ be a solution
satisfying v∗I > 0 and fJ(v

∗) > 0, i.e., let v∗ be a maximal complementarity solution.
Assume that (x̂, ŷ) is an accumulation point of (x(θ), y(θ)) as θ → 0. Taking θ → 0
in the above inequality we deduce that x̂I > 0 and ŷJ > 0 since p ≥ q. Notice that
(x̂, ŷ) is a solution of the CP; (x̂, ŷ) is a maximal complementarity solution. Theorem
5.2(i) follows.

We now prove Theorem 5.2(ii). Let v∗ in (5.4) be an arbitrary strict complemen-
tarity solution. Assume that (x̂, ŷ) is an arbitrary accumulation point of {x(θ), y(θ)}
as θ → 0. We now prove that (x̂, ŷ) is a strict complementarity solution. Taking the
limit in (5.4) and noting that p > q, we deduce that x̂I > 0, ŷJ > 0, and

(v∗)TI X̂
−1
I (θ)aqI + fJ(v

∗)TatY −1
I (θ)aqJ ≤ eTaq.

Notice that ŷ = f(x̂). The above inequality can be further written as∑
i∈I

aqi (v
∗
i /x̂i) +

∑
j∈J

aqj(fj(v
∗)/fj(ŷ)) ≤ eTaq.

Since 1 + log t ≤ t for all t > 0, from the above we have∑
i∈I

aqi [1 + log(v∗i /x̂i)] +
∑
j∈J

aqj [1 + log(fj(v
∗)/fj(ŷ))] ≤ eTaq.

Since a strict complementarity solution exists, we have I ∪ J = {1, . . . , n}, and thus∑
i∈I

aqi log(v
∗
i /x̂i) +

∑
j∈J

aqj log(fj(v
∗)/fj(ŷ)) ≤ 0.

Therefore,∑
i∈I

aqi log v
∗
i +

∑
j∈J

aqj log fj(v
∗) ≤

∑
i∈I

aqi log x̂i +
∑
j∈J

aqj log fj(ŷ).(5.5)

Since v∗ is an arbitrary strict complementarity solution, the first part of Theorem
5.2(ii) is proved.

We now consider the linear case, i.e., f =Mx+u. Denote by SSOL(f) the set of
strict complementarity solutions of the CP, which is also a convex set by the convexity
of SOLcp(f). Since f is linear, this fact in turn implies that the following set is also
convex:

S = {(x, y) : y =Mx+ u, x ∈ SSOL(f)}.
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To show the second part of result (ii), it is sufficient to prove that the accumulation
point (x̂, ŷ) satisfying (5.5) is unique. In fact, it is easy to see that (x̂, ŷ) is the solution
to the following strict concave program:

Maximize
∑
i∈I

aqi log xi +
∑
i∈J

aqj log yi

subject to (x, y) ∈ S.
Since a strict concave program has at most one solution, (x̂, ŷ) is the unique solution
to the above program, which is a maximal strict complementarity solution of the CP.
Thus, the entire trajectory is convergent.

We close this section by proving a general result concerning the characterization of
the limiting point of the trajectory proposed in this paper in the case of semimonotone
functions.

Theorem 5.3. Let f be a continuous semimonotone function from Rn into Rn.
Let p, q, and (a, b, c) satisfy one of the following conditions:

(C1) 0 < p < 1, q ∈ [1,∞), and (a, b, c) ∈ Rn++ ×R2n.
(C2) 0 < p < q, q ∈ [1,∞), and (a, b, c) ∈ Rn++ × {0} × {0}.

Let (u(θ), x(θ), y(θ)) be a solution to system (2.3) for each θ ∈ (0, 1]. Assume that
there exists an accumulation point to the trajectory (u(θ), x(θ), y(θ)) as θ → 0. Then
for any accumulation point (0, x∗, y∗) of this trajectory as θ → 0, x∗ is a weak Pareto
minimal solution to the CP.

Proof. Let (0, x∗, y∗) be an arbitrary accumulation point of (u(θ), x(θ), y(θ)) as
θ → 0. Then there exists a subsequence {θk} → 0 such that

{(u(θk), x(θk), y(θk))} → (0, x∗, y∗).

Assume the contrary: that x∗ is not a weak Pareto minimal solution. Then there
exists a solution u∗ satisfying u∗ < x∗. Since x(θk)→ x∗, we have x(θk) > u∗ for all
sufficiently large k. By the semimonotone property of f , for each sufficiently large k
there is an index ik such that

xik(θk) > u∗ik and fik(x(θk)) ≥ fik(u∗).
Passing through a subsequence, we may assume that there exists an index l such that

xl(θk) > u∗l and fl(x(θk)) ≥ fl(u∗)
for all sufficiently large k. Notice that for each θ, the solution (u(θ), x(θ), y(θ)) of
system (9) satisfies the system (2.8)–(2.11). We still use the symbols ȳi(θ) = yi(θ)−
θbi/2 > 0 and x̄i(θ) = xi(θ)− θbi/2 > 0. By (4.6) we have

(ȳl(θk)− fl(u∗))(x̄l(θk)− u∗l ) ≤ θqkaql .(5.6)

On the other hand, we have

(ȳl(θk)− fl(u∗))(x̄l(θk)− u∗l )
= (ȳl(θk)− fl(u∗))(−θkbl/2) + (ȳl(θk)− fl(u∗))(xl(θk)− u∗l )
= (ȳl(θk)− fl(u∗))(−θkbl/2)

+ (fl(x(θk)) + θpka
p
l xl(θk) + θkcl − θkbl/2− fl(u∗))(xl(θk)− u∗l )

= (yl(θk)− θkbl/2− fl(u∗))(−θkbl/2)
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+(fl(x(θk))− fl(u∗))(xl(θk)− u∗l )
+ (θpka

p
l xl(θk) + θkcl − θkbl/2) (xl(θk)− u∗l )

≥ (yl(θk)− θkbl/2− fl(u∗))(−θkbl/2)
+ (θpka

p
l xl(θk) + θkcl − θkbl/2) (xl(θk)− u∗l ).

Combining inequality (5.6) and the inequality above and dividing both sides by θpk,
we have

θq−pk a2
l ≥ (yl(θk)− θkbl/2− fl(u∗))(−θ1−pk bl/2)

+ (apl xl(θk) + θ1−pk cl − θ1−pk bl/2)(xl(θk)− u∗l ).

Let θk → 0. It is easy to see that under either condition (C1) or (C2) we have

apl x
∗
l (x

∗
l − u∗l ) ≤ 0,

which contradicts the assumption 0 ≤ u∗ < x∗.

6. Final remarks. We have proved the existence and the boundedness of a
new homotopy continuation trajectory for nonlinear P0-complementarity problems.
The assumption imposed in the paper is weaker than most existing conditions widely
used in interior-point and non–interior-point methods. Particularly, this assumption
is satisfied if the P0-CP has a nonempty and bounded solution set. Therefore, the
method proposed in this paper can tackle all P0-CPs with bounded solution sets.
Since this assumption can be satisfied even when the strict feasibility condition fails
to hold, the proposed method can also be used to tackle some P0-CPs with unbounded
solution sets. For P∗-CPs, the existence and the boundedness of the new continuation
trajectory can be guaranteed, provided that the solution set of the CP is nonempty
(whether the solution set is bounded or not). Moreover, under some choices of p, q,
and (a, b, c), the entire trajectory for any continuous monotone CP always converges
to a solution of the CP, provided that a solution exists. Based on the results of this
paper, we may design a non–interior-point path-following algorithm for CPs that can
solve all solvable P∗-CPs, all P0-CPs with bounded solution sets, and some P0-CPs
with unbounded solution sets.

Since the proposed method can deal with all solvable P∗-CPs, a natural question
is whether this method can attack all solvable P0-CPs. That is, can Condition 3.1 in
Theorem 4.2 be replaced by the nonemptiness assumption of the solution set? The an-
swer is no. For some P0-CPs with unbounded solution sets, the proposed continuation
trajectory might be divergent to infinity. This phenomena has also been seen in the
canonical Tikhonov regularization trajectory for a P0-CP with an unbounded solution
set (Sznajder and Gowda [29]). In fact, in section 3.4 of [20], Kojima et al. pointed
out that a certain knapsack problem can be transformed into a linear P0-CP with an
unbounded solution set. For this P0-CP, it is easy to verify that both the canonical
Tikhonov regularization trajectory and the continuation trajectory proposed in this
paper are divergent to infinity. This implies that the example in section 3.4 of [20]
does not satisfy Condition 3.1.
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Abstract. Second order methods for open loop optimal control problems governed by the two-
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1. Introduction. This research is devoted to the analysis of second methods for
solving optimal control problems involving the time-dependent Navier–Stokes equa-
tions. Thus we consider

min J(y, u) over (y, u)(1.1)

subject to 

∂y
∂t + (y · ∇)y − ν∆y +∇p = Bu in Q = (0, T )× Ω,
div y = 0 in Q,
y(t, ·) = 0 on Σ = (0, T )× ∂Ω,
y(0, ·) = y0 in Ω.

(1.2)

Here Ω is a bounded domain in R
2 with sufficiently smooth boundary ∂Ω. The final

time T > 0 and the initial condition y0 are fixed. The vector valued variable y and the
scalar valued variable p represent the velocity and the pressure of the fluid. Further,
u denotes the control variable and B the control operator. The precise functional
analytic setting of problem (1.1), (1.2) will be given in section 2. For the moment it
suffices to say that typical cost functionals include tracking-type functionals

J(y, u) =
1

2

∫
Q

|y − z|2dx dt+
α

2
|u|2(1.3)
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and functionals involving the vorticity of the fluid

J(y, u) =
1

2

∫
Q

|curl y(t, ·)|2
Rn dx dt+

α

2
|u|2,(1.4)

where α > 0 and z are given. For the following discussion it will be convenient to
formally represent all the equality constraints involved in (1.2) by ê(y, p, u) = 0 so
that (1.1), (1.2) can be expressed in the form

(P )




min J(y, u) over (y, u)
subject to
ê(y, p, u) = 0.

In this form solving (1.1), (1.2) appears at first to be a standard task; see [AM, DHV,
G, GT, IK, KS2, NT] and the references given there. However, the formidable size of
(1.1), (1.2) and the goal of analyzing second order methods necessitate an independent
analysis.

For second order methods applied to optimal control problems two classes can be
distinguished depending on whether (y, p) in (1.1), (1.2) are considered as independent
variables or as functions of the control variable u. In the former case ê(y, p, u) = 0
represents an explicit constraint for the optimization problem, whereas in the latter
case ê(y(u), p(u), u) = 0 serves the purpose of describing the evaluation of (y, p) as a
function of u. In fact, (P ) can be expressed as the reduced problem

(P̂ ) min Ĵ(u) = J(y(u), u) over u,

where y(u) is implicitly defined via ê(y(u), p(u), u) = 0.
To obtain a second order method in the case when (y, p) are considered as inde-

pendent variables, one can derive the optimality system for (P ) and apply the Newton
algorithm to the optimality system. This is referred to as the sequential quadratic
programming (SQP) method. Alternatively, if (y, p) are considered as functions of u,
then Newton’s method can be applied to (P̂ ) directly. The relative merits of these two
approaches will be discussed in section 4. To anticipate some of this discussion let us
point out that the difference in numerical effort between these two methods is rather
small. In fact, after proper rearrangements, the difference in computational cost per
iteration of the SQP method for (P ) and the Newton method for (P̂ ) consists in solv-
ing either the linearized equation (1.2) or the full nonlinear equation itself. In view of
the time dependence of either of these two equations, an iterative procedure is used
for their solution so that the difference between solving the linearized and nonlinear
equation per sweep is not so significant. A second consideration that may influence
the choice between SQP method or Newton method applied to (P̂ ) concerns initial-
ization. Initial guesses (y0, p0) and u0 for (y, p, u) can clearly be used independently
of each other in the SQP method, where the states are decoupled from the controls. It
is sometimes hinted at that this decoupling is not only important for the initialization
but also during the iteration and that as a consequence the SQP method may require
fewer iterations than Newton’s method for (P̂ ), [H]. As we shall see below, the vari-
ables y and p can be initialized independently from u0 also in the Newton method.
Specifically, if (y0, p0) and u0 are available, it is not necessary to abandon (y0, p0)
and compute (y(u0), p(u0)) from u0. As for the choice of the initial guess (y0, p0, u0),
one possibility is to rely on one of the suboptimal strategies that were developed
in the recent past to obtain approximate solutions to (1.1), (1.2). We mention re-
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duced order techniques [IR], proper orthogonal decomposition (POD)-based methods
[HK, KV, LT], and the instantaneous control method [CTMK, BMT, CHK, HKK].
As another possibility, one can carry out some gradient steps before one switches to
the Newton iteration. Let us stress that the numerical realization of the discussed
algorithms does not require the availability of the matrix representation of an approx-
imation to the Hessian of the optimal control problem. In fact, storage of the Hessian
would be unfeasible. Rather, only the action of the Hessian to a vector is required. In
the context of shape optimization this point was elaborated upon in [LA], for example.

Let us briefly comment on some related contributions. In [AT] optimality systems
are derived for problems of the type (1.1), (1.2). A gradient technique is proposed
in [GM] for the solution of (1.1), (1.2). Similarly, in [B] gradient techniques are
analyzed for a boundary control problem related to (1.1), (1.2). In [FGH] the authors
analyze optimality systems for exterior boundary control problems. One of the few
contributions focusing on second order methods for optimal control of fluids is given
in [GB, H]. These works are restricted to stationary problems, however.

This paper, on the other hand, focuses on second order methods for time-dependent
problems. We show that despite the difficulties due to the size of (1.1), (1.2) and the
fact that the optimality systems contain a two point boundary value problem, for-
ward in time for the primal and backwards in time for the adjoint variables, second
order methods are computationally feasible. We establish that the initial approx-
imation to the reduced Hessian is only a compact perturbation of the Hessian at
the minimizer. In addition, we give conditions for second order sufficient optimality
conditions of tracking-type problems. These results imply superlinear convergence of
quasi-Newton as well as SQP methods. While the present paper focuses on distributed
control problems, in a future paper we plan to address the case of velocity control
along the boundary.

The paper is organized as follows. Section 2 contains the necessary analytic
prerequisites. First and second order derivatives of the cost functional with re-
spect to the control are computed in section 3. Section 4 contains a comparison
of second order methods to solve (1.1), (1.2). In section 5, the convergence of the
quasi-Newton method and SQP methods applied to (P̂ ) is analyzed. Numerical re-
sults for the Newton method and comparisons to a gradient method are contained in
section 6.

2. The optimal control problem. In this section we consider the optimal
control problem (1.1), (1.2) in the abstract form{

min J(y, u) over (y, u) ∈W × U
subject to e(y, u) = 0.

(2.1)

To define the spaces and operators arising in (2.1), we assume Ω to be a bounded
domain in R

2 with Lipschitz boundary and introduce the solenoidal spaces

H = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

L2 , V = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

H1 ,

with the superscripts denoting closures in the respective norms. Further, we define

W = {v ∈ L2(V ) : vt ∈ L2(V ∗)} and Z := L2(V )×H,

W endowed with the norm

|v|W = (|v|2L2(V ) + |vt|2L2(V ∗))
1/2,
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H2,1(Q) := {v ∈ L2(V ∩H2(Ω)2); vt ∈ L2(H)}
equipped with the norm

|v|2H2,1(Q) := |v|2L2(V ∩H2(Ω)2) + |vt|2L2(H),

and we set 〈·, ·〉 := 〈·, ·〉L2(V ∗),L2(V ) with V ∗ denoting the dual space of V . Here
L2(V ) is an abbreviation for L2(0, T ;V ), and similarly L2(V ∗) = L2(0, T ;V ∗). Recall
that up to a set of measure zero in (0, T ) elements v ∈ W can be identified with
elements in C([0, T ];H), and elements w ∈ H2,1(Q) can be identified with elements
in C([0, T ];V ). In (2.1), further, U denotes the Hilbert space of controls which is
identified with its dual U∗. For the cost functional J : L2(V ) × U → R we make the
following assumptions:

(H0)

1. J is bounded from below, i.e., J(y, u) ≥ C > −∞ for all (y, u) ∈
L2(V )× U .

2. J is weakly lower semicontinuous.
3. J is twice Fréchet differentiable with locally Lipschitzian second deriva-

tive.
4. J can be decomposed as J(y, u) = J1(y) + J2(u).
5. J is radially unbounded in u, i.e., J(y, u)→∞ as |u|U →∞ for every

y ∈W .
The nonlinear mapping

e : W × U → Z∗ = L2(V ∗)×H

is defined by

e(y, u) =

(
∂y

∂t
+ (y · ∇)y − ν∆y −Bu, y(0)− y0

)
,

where B ∈ L(U,L2(V ∗)) and y0 ∈ H. Comparing (1.1), (1.2) to (2.1), we note that
the conservation of mass as well as the boundary condition are realized in the choice
of the space W, while the dynamics are described by the condition e(y, u) = 0. In
variational form the constraints in (2.1) can be equivalently expressed as the following:
given u ∈ U find y ∈W such that y(0) = y0 and

(2.2) 〈yt, v〉 + 〈(y · ∇)y, v〉 + ν(∇y,∇v)L2(L2) = 〈Bu, v〉 for all v ∈ L2(V ).

The following existence result for the Navier–Stokes equations in dimension two is
well known [CF, L], [T, Chapter III].

Proposition 2.1. There exists a constant C such that for every u ∈ U there
exists a unique element y = y(u) ∈W satisfying

e(y(u), u) = 0

and

|y|C(0,T ;H) + |y|W ≤ C(|y0|H + |u|U + |y0|2H + |u|2U ).
From Proposition (2.1) we conclude that with respect to existence (2.1) is equiv-

alent to

min Ĵ(u) = J(y(u), u) subject to u ∈ U,(2.3)
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where y(u) ∈W satisfies e(y(u), u) = 0.

Theorem 2.2. Problem (2.1) admits a solution (y∗, u∗) = (y(u∗), u∗) ∈W ×U .

Proof. With the above formalism the proof is quite standard, and we give only
a brief outline. Since by assumption (H0) 1 J is bounded from below, there exists a
minimizing sequence {(yn, un)} = {y(un), un} in W × U . Due to (H0) 4, the radial
unboundedness property (H0) 5 of J, and Proposition 2.1, the sequence {(yn, un)} is
bounded in W ×U, and hence there exists a subsequence with a weak limit (y∗, u∗) ∈
W × U . The weakly lower semicontinuity assumption (H0) 2 of (y, u) �→ J(y, u)
implies that

J(y∗, u∗) = inf{J(y, u) : (y, u) ∈W × U, e(y, u) = 0},

and it remains to show that y∗ = y(u∗). This can be achieved by passing to the limit
in (2.2) with (y, u) replaced by (y(un), un).

We shall also require the following result concerning strong solutions to the
Navier–Stokes equation [T, Theorem III. 3.10], [T1].

Proposition 2.3. If y0 ∈ V and B ∈ L(U,L2(H)), then for every u ∈ U the
solution y = y(u) ∈ W to e(y, u) = 0 satisfies y ∈ H2,1(Q). Moreover, for every
bounded set U in U

{y(u) : u ∈ U} is bounded in H2,1(Q).

We shall frequently refer to the linearized Navier–Stokes system and the adjoint
equations given next:{

vt + (v · ∇)y + (y · ∇)v − ν∆v = f in Ω a.e. on (0, T ],
v(0) = v0

(2.4)

and { −wt + (∇y)tw − (y · ∇)w − ν∆w = g in Ω a.e. on [0, T ),
w(T ) = 0.

(2.5)

Proposition 2.4. Let y ∈W , v0 ∈ H, f ∈ L2(V ∗), and g ∈ Lα(V ∗)∩W ∗, with
α ∈ [1, 4

3 ]. Then (2.4) admits a unique variational solution v ∈ W, and (2.5) has a
unique variational solution w ∈ L2(V ) with wt ∈ Lα(V ∗) ∩W ∗, w ∈ C(H), and the
first equation in (2.5) holding in Lα(V ∗) ∩ W ∗. Moreover, the following estimates
hold.

(i) |v|L∞(H) + |v|L2(V ) ≤ C(|y|L2(V ))
{|f |L2(V ∗) + |v0|H

}
,

(ii) |vt|L2(V ∗) ≤ C(|y|L2(V ), |y|L∞(H))
{|f |L2(V ∗) + |v0|H

}
,

(iii) |w|L2(V ) + |wt|Lα(V ∗) ≤ C(|y|L2(V ), |y|L∞(H))
{|g|Lα(V ∗) + |g|W∗

}
.

If, in addition, y ∈ L∞(V ) and g ∈ L2(V ∗), then w ∈W and

(iv) |w|L2(V ) + |wt|L2(V ∗) ≤ C(|y|L∞(V )) |g|L2(V ∗).

For ∂Ω ∈ C2, y ∈ W ∩ L∞(V ) ∩ L2(H2(Ω)2), v0 ∈ V, and f, g ∈ L2(H) the unique
solutions v of (2.4) and w of (2.5) are elements of H2,1(Q) and satisfy the a priori
estimates

(v) |v|H2,1(Q) ≤ C(|y|L∞(V ), |y|L2(H2(Ω)2))
{|f |L2(H) + |v0|V

}
and

(vi) |w|H2,1(Q) ≤ C(|y|L∞(V ), |y|L2(H2(Ω)2)) |g|L2(H).

Proof. The proof can be found in [HH, Appendix].
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3. Derivatives. In this section representations for the first and second deriva-
tives of Ĵ appropriate for the treatment of (2.3) by the Newton and quasi-Newton
method are derived. We shall utilize the notation

X = W × U and x = (y, u) for (y, u) ∈W × U.

Proposition 3.1. The operator e = (e1, e2) : X → Z∗ is twice continuously
differentiable with Lipschitz continuous second derivative. The action of the first two
derivatives of e1 are given by

〈e1
x(x)(w, s), φ〉 = 〈wt, φ〉+ 〈(w · ∇)y, φ〉+ 〈(y · ∇)w, φ〉

+ ν(∇w,∇φ)L2(L2) − 〈Bs, φ〉,
where x = (y, u) ∈ X, (w, s) ∈ X, and φ ∈ L2(V ), and

(3.1) 〈e1
xx(x)(w, s)(v, r), φ〉 = 〈e1

yy(x)(w, v), φ〉
= 〈(w · ∇)v, φ〉+ 〈(v · ∇)w, φ〉 =: 〈v,H(φ)w〉W,W∗ ,

where (v, r) ∈ X.
Proof. Since e2 is linear, we restrict our attention to e1. Let b : V × V × V → R

be defined by

b(u, v, φ) = 〈(u · ∇)v, φ〉V ∗,V ,

and recall that, due to the assumption that Ω ⊂ R
2,

|b(u, v, φ)|2 ≤ 2|u|H |u|V |v|H |v|V |φ|2V(3.2)

for all (u, v, φ) ∈ V × V × V [T, p. 293]. To argue local Lipschitz continuity of e, let
x, x̃ ∈ X and φ ∈ L2(V ). We find

〈e1(x)− e1(x̃), φ〉 = 〈(y − ỹ)t, φ〉+ 〈((y − ỹ) · ∇)ỹ, φ〉
+〈(y · ∇)(y − ỹ), φ〉+ ν(∇(y − ỹ),∇φ)L2(L2) + 〈B(ũ− u), φ〉

≤
√
2

∫ T
0

|y − ỹ|1/2H |y − ỹ|1/2V (|ỹ|1/2H |ỹ|1/2V + |y|1/2H |y|1/2V )|φ|V dt

+ C|x− x̃|X |φ|L2(V ).

Here and below, C denotes a constant independent of x, x̃, and φ. Due to the contin-
uous embedding of W into L∞(H), we have

〈e1(x)− e1(x̃), φ〉 ≤ C

[
|x− x̃|X |φ|L2(V )

+ |y − ỹ|1/2L∞(H)

(
|ỹ|1/2L∞(H) + |y|1/2L∞(H)

)∫ T
0

|y − ỹ|1/2V
(
|ỹ|1/2V + |y|1/2V

)
|φ|V dt

]
.

Using Hölder’s inequality this further implies the estimate

〈e1(x)− e1(x̃), φ〉 ≤ C

[
|x− x̃|X + |y − ỹ|1/2L∞(H)

×
(
|ỹ|1/2L∞(H) + |y|1/2L∞(H)

)(∫ T
0

|y − ỹ|V } (|ỹ|V + |y|V ) dt
)1/2


 |φ|L2(V ),
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and, consequently, after redefining C one last time,

〈e1(x)− e1(x̃), φ〉 ≤ C |x− x̃|X(|y|W + |ỹ|W )|φ|L2(V ).(3.3)

This estimate establishes the local Lipschitz continuity of e. To verify that the formula
for ex given above represents the Fréchet derivative of e, we estimate

|e1(x̃)− e1(x)− e1
x(x)(x̃− x)|L2(V ∗) = sup

|φ|L2(V )=1

∫ T
0

|b(y − ỹ, y − ỹ, φ)| dt

≤ sup
|φ|L2(V )=1

∫ T
0

|y − ỹ|H |y − ỹ|V |φ|V dt

≤ C|y − ỹ|W sup
|φ|L2(V )=1

∫ T
0

|y − ỹ|V |φ|V dt ≤ C|y − ỹ|2W ,

and the Fréchet differentiability of e follows. To show Lipschitz continuity of the first
derivative, let x, x̃, and (v, r) be in X, and estimate

|(e1
x(x̃)− e1

x(x))(v, r)|L2(V ∗) = sup
|φ|L2(V )=1

∫ T
0

|b(y − ỹ, v, φ) + b(v, y − ỹ, φ)| dt

≤ 2
√
2 sup

|φ|L2(V )=1

∫ T
0

|y − ỹ|H |y − ỹ|V |v|H |v|V |φ|V dt

≤ C|y − ỹ|W |v|W .

The expression for the second derivative can be verified by an estimate analogous to
the one for the first derivative. The second derivative is independent of the point at
which it is taken, and thus it is necessarily Lipschitz continuous.

From (3.2) it follows that for φ ∈ L2(V ) and w ∈W the mapping

σ : v �→ 〈v,H(φ)w〉W,W∗

is an element of W ∗. In section 4 we shall use the fact that σ can also be identified
with an element of L4(V )∗ = L4/3(V ∗).

Lemma 3.2. For φ ∈ L2(V ) and w ∈ W the functional σ can be identified with
an element in W ∗ ∩ L4/3(V ∗).

Proof. To argue that σ ∈ L4/3(V ∗), let v ∈ L4(V ) and estimate using (3.2)

σ(v) =

∫ T
0

b(w, v, φ) + b(v, w, φ) dt ≤ 2
√
2k|w| 12L∞(H)

∫ T
0

|w| 12V |v|V |φ|V dt

≤ 2
√
2k|w| 12L∞(H)|φ|L2(V )|w|

1
2

L2(V )|v|L4(V ),

where k is the embedding constant of V into H. This gives the claim.
Proposition 3.3. Let x = (y, u) ∈ W × U . Then ey(x) : W → Z∗ is a homeo-

morphism. Moreover, if the inverse of its adjoint e−∗
y (x) : W ∗ → Z is applied to an

element g ∈W ∗∩Lα(V ∗), α ∈ [1, 4/3], then, setting (w,w0) := e−∗
y (x)g ∈ L2(V )×H,

we have wt ∈ Lα(V ∗), w(0) = w0, and w is the variational solution to (2.5).
Proof. Due to Proposition 3.1, ey(x) is a bounded linear operator. By the closed

range theorem the claim follows once it is argued that (2.4) has a unique solution
v ∈ W for every (f, v0) ∈ Z∗. This is a direct consequence of Proposition 2.4(i) and
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(ii). The assertion concerning the adjoint follows from (iii) of the same proposition
and its proof.

As a consequence of Propositions 3.1 and 3.3 and the implicit function theorem,
the first derivative of the mapping u→ y(u) at u in direction δu is given by

y′(u)δu = −e−1
y (x)eu(x)δu,(3.4)

where x = (y(u), u). By the chain rule we thus obtain

〈Ĵ ′(u), δu〉U = 〈Ju(x)− e∗u(x)e
−∗
y (x)Jy(x), δu〉U .

Introducing the variable

λ = −e−∗
y (x)Jy(x) ∈ Z,(3.5)

we obtain, utilizing Proposition 2.4(iii) with g = −Jy(x) ∈ L2(V ∗), the Riesz repre-

sentation for the first derivative of u→ Ĵ(u):

Ĵ ′(u) = Ju(x) + e∗uλ.(3.6)

Here λ = (λ1, λ0) ∈ Z, λ1
t ∈ L4/3(V ∗), λ1 ∈ C(H), and λ1 is the variational solution

of { −λ1
t + (∇y)tλ1 − (y · ∇)λ1 − ν∆λ1 = −Jy(x),

λ1(T ) = 0,
(3.7)

where the first equation holds in L4/3(V ∗) ∩W ∗.
The computation of the second derivative of Ĵ ′′(u) ∈ L(U) of Ĵ is more involved.

Let (δu, δv) ∈ U × U, and note that the second derivative of u → y(u) from U to W
can be expressed as

y′′(u)(δu, δv) = −e−1
y (x)eyy(x)(y

′(u)δu, y′(u)δv).(3.8)

By the chain rule and since W ⊂ L2(V ) and hence L2(V ∗) ⊂W ∗, we have

〈Ĵ ′′(u)δu, δv〉U = 〈Jyy(x)y′(u)δu, y′(u)δv〉
+ 〈Jy(x), y′′(u)(δu, δv)〉+ 〈Juu(x)δu, δv〉U

= 〈Jyy(x)y′(u)δu, y′(u)δv〉 − 〈Jy(x), e−1
y eyy(x)(y

′(u)δu, y′(u)δv)〉
+ 〈Juu(x)δu, δv〉U

= 〈Jyy(x)y′(u)δu, y′(u)δv〉+ 〈λ1, e1
yy(x)(y

′(u)δu, y′(u)δv)〉
+ 〈Juu(u)δu, δv〉U .

We introduce the Lagrangian L : X × Z → R

L(x, λ) = J(x) + 〈e(x), λ〉Z∗,Z(3.9)

and the matrix operator

T (x) =

( −e−1
y (x)eu(x)
IdU

)
∈ L(U,X).(3.10)

We observe that the second derivative of L with respect to x can be expressed as

Lxx(x, λ) =

(
Jyy(x)+ 〈e1

yy(x)(·, ·), λ1〉 0
0 Juu(x)

)
∈ L(X,X∗).

The above computation for Ĵ ′′(u) together with (3.4) imply that

Ĵ ′′(u) = T ∗(x)Lxx(x, λ)T (x),(3.11)

where x = (y(u), u).
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4. Second order methods. This section contains a description and a compari-
son of second order methods to solve (2.1). Throughout, u∗ denotes a (local) solution
to (2.1).

4.1. Newton and quasi-Newton algorithm. For the sake of reference let us
specify the Newton algorithm.

Algorithm 4.1 (Newton algorithm).
1. Choose u0 ∈ N(u∗); set k = 0.
2. Do until convergence:

(i) solve Ĵ ′′(uk)δuk = −Ĵ ′(uk),
(ii) update uk+1 = uk + δuk,
(iii) set k = k + 1.

Let us consider the linear system in 2(i). Its dimension is that of the control space
U . From the characterization of the Hessian Ĵ ′′(uk) we conclude that the number of
solutions to the linearized Navier–Stokes equation (3.4) with appropriate right-hand
sides that are required for its evaluation equals the dimension of U . If U is infinite
dimensional, then an appropriate discretization must be carried out. Let us assume
now that the dimension of U is large so that direct evaluation of Ĵ ′′(uk) is not feasible.
In this case 2(i) must be solved iteratively, e.g., by a conjugate gradient technique.
We shall then refer to 2(i) as the “inner” loop as opposed to the do loop in 2, which
is the “outer” loop of the Newton algorithm. The inner loop at iteration level k of
the outer loop requires us to

(i) evaluate Ĵ ′(uk), i.e., given uk, compute y(uk) from (1.2) and λ1 from (3.7)
with x = (y(uk), uk);

(ii) iteratively evaluate the action of Ĵ ′′(uk) on δkj , the jth iterate of the inner
loop on the kth level of the outer loop.

The iterate q = Ĵ ′′(uk)δkj can be evaluated by successively applying the following
steps:

(a) solve in L2(V ∗) for v ∈W

vt + (v · ∇)y + (y · ∇)v − ν∆v = Bδkj ,
v(0) = 0,

where y = y(uk);
(b) evaluate Jyy(x)v + 〈e1

yy(x)(v, ·), λ1〉;
(c) solve in W ∗ for w ∈ L2(V )

ey(x)
∗ w = Jyy(x)v + 〈e1

yy(x)(v, ·), λ1〉;

(d) and, finally, set q := Juuδu+B∗w.
We recall that λ1 ∈ L2(V ) and that for s ∈W

〈e1
yy(x)(v, s), λ

1〉 =
∫ T

0

∫
Ω

((v · ∇)sλ1 + (s · ∇)vλ1)dx dt.

Moreover, by Lemma 3.2 the functional appearing in (b) is an element of W ∗ ∩
L4/3(V ∗). Hence by Proposition 2.4 the adjoint equation in (c) can equivalently be
rewritten as

−wt + (∇y)tw − (y · ∇)w − ν∆w = Jyy(x)v + 〈e1
yy(x)(v, ·), λ1〉,

w(T ) = 0,
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where the first equation holds in W ∗∩L4/3(V ∗). Summarizing, for the outer iteration
of the Newton method one Navier–Stokes solve for y(uk) and one linearized Navier–
Stokes solve for λ(uk) are required. For the inner loop one forward (in time) as well
as one backward linearized Navier–Stokes solve per iteration are necessary.

Concerning initialization, we observe that if initial guesses (y0, u0) ∈ W × U are
available (with y0 not necessarily y(u0)), then, alternatively to the initialization in
Algorithm 4.1, this information can be used advantageously to compute the adjoint
variable λ1 required for the initial guess for the right-hand side of the linear system
as well as to carry out steps (a)–(c) for the evaluation of the Hessian. There is no
necessity to recompute y(u0) from u0.

To avoid the difficulties of evaluating the action of the exact Hessian in Algorithm
4.1, one can resort to quasi-Newton algorithms. Here we specify one of the most
prominent candidates, the BFGS method. For w and z in U we define the rank-one
operator w ⊗ z ∈ L(U), the action of which is given by

(w ⊗ z)(v) = 〈z, v〉U w.

In the BFGS method the Hessian Ĵ ′′ at u∗ is approximated by a sequence of operators
Hk.

Algorithm 4.2 (BFGS algorithm).

1. Choose u0 ∈ N(u∗), H0 ∈ L(U) symmetric, set k = 0.
2. Do until convergence:

(i) solve Hkδuk = −Ĵ ′(uk),
(ii) update uk+1 = uk + δuk,
(iii) compute Ĵ ′(uk+1),
(iv) set sk = uk+1 − uk, dk = Ĵ ′(uk+1)− Ĵ ′(uk),
(v) update Hk+1 = Hk + dk⊗dk

〈dk,sk〉U − H
ksk⊗Hksk

〈Hksk,sk〉U ,

(vi) set k = k + 1.

Note that the BFGS algorithm requires no more system solves than the gradient
algorithm applied to (2.1), which is one forward solution of the nonlinear equation
to obtain y(uk) and one backward solve of the linearized equation (3.7) to obtain the
adjoint variable λ(uk).

In order to compare Newton’s method to the SQP method derived in the next
section, we rewrite the update step 2(i) in Algorithm 4.1. To begin with, we observe
that the right-hand side in the update step can be written with the help of the adjoint
variable λ from (3.5) and the operator T (x) defined in (3.10) as

−Ĵu(u) = −Ju(x)− e∗u(x)λ = −T ∗(x)
[

0
Ju(x) + e∗u(x)λ

]
,(4.1)

where we dropped the iteration indices. As a consequence, with δy = y′(u)δu from
(3.3), the update can be written as

T ∗(x)Lxx(x, λ)
[

δy
δu

]
= −T ∗(x)

[
0

Ju(x) + e∗u(x)λ

]
(4.2)

so that

Lxx(x, λ)

[
δy
δu

]
+

[
0

Ju(x) + e∗u(x)λ

]
∈ N (T ∗(x))
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holds. Since ex(x) ∈ L(X,Z∗) and N (ex(x)) = R(T ) ⊆ X, it follows that R(T ) is
closed, and we have the sequence of identities

N (T ∗(x)) = R(T (x))⊥ = N (ex(x))
⊥ = R(e∗x(x)).

Thus there exists δλ ∈ Z such that

−e∗x(x)δλ = Lxx(x, λ)

[
δy
δu

]
+

[
0

Ju(x) + e∗u(x)λ

]
.

Using this equation together with the definition of δy, we may rewrite Newton’s
update as

[
Lxx(x

k, λk) ex∗(x
k)

ex(x
k) 0

] δy
δu
δλ


 = −


 0

Ju(x) + e∗u(x)λ
0


 .(4.3)

4.2. Basic SQP method. Here we regard (2.1) as a minimization problem
of the functional J over the space X subject to the explicit constraint e(x) = 0.
The basic SQP algorithm consists in applying Newton’s method to the first order
optimality system

Lx(x, λ) = 0 in X∗,
Lλ(x, λ) = 0 in Z∗,(4.4)

where the Lagrangian L is defined in (3.9).
With x∗ denoting a solution to problem (P), ex(x

∗) is surjective by Proposition
3.3, and hence there exists a Lagrange multiplier λ∗ ∈ Z, which is even unique such
that (4.4) holds. The SQP method will be well defined and locally second order con-
vergent if in addition to the surjectivity of ex(x

∗) the following second order optimality
condition holds.

(H1)
There exists α > 0 such that
〈Lxx(x∗, λ∗)x, x〉X∗,X ≥ α |x|2X for all x ∈ ker(ex(x

∗)).

If (H1) holds, then, due to the regularity properties of e, there exists a neighborhood
B((x∗, λ∗)) such that Lxx(x, λ) is uniformly positive definite on ker(ex(x)) for every
x ∈ B((x∗, λ∗)).

Algorithm 4.3 (SQP algorithm).
1. Choose (x0, λ0) ∈ B((x∗, λ∗)), set k = 0.
2. Do until convergence:

(i) solve(
Lxx(x

k, λk) e∗x(x
k)

ex(x
k) 0

)(
δxk

δλk

)
= −

(
Jx(x

k) + e∗x(x
k)λk

e(xk)

)
,(4.5)

(ii) update (xk+1, λk+1) = (xk, λk) + (δxk, δλk),
(iii) set k = k + 1.

Just as for Newton’s method, step 2(i) is the difficult one. While in contrast to
Newton’s method, neither the Navier–Stokes equation nor its linearization needs to
be solved; the dimension of the system matrix which is twice the dimension of the
state plus the dimension of the control space is formidable for applications in fluid
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mechanics. In addition, from experience with Algorithm 4.3 for other optimal control
problems (see [KA, V], for example) it is well known that preconditioning techniques
must be applied to solve (4.5) efficiently. As a preconditioner one might consider the
(action of the) operator P : X∗ × Z∗ → X × Z given by

P =


 0 0 R

0 Juu(x
k)−1 0

R∗ 0 0


 ,

where R : Z∗ → H is the inverse to the (discretized) instationary Stokes operator or
the (discretized) linearization of the Navier–Stokes equation at the state yk, either
one with homogenous boundary conditions.

One iteration of the preconditioned version of Algorithm 4.3 therefore requires two
linear parabolic solves, one forward and one backward in time. As a consequence, even
with the application of preconditioning techniques, the numerical expense counted in
number of parabolic system solves is less for the SQP method than for Newton’s
method. However, the number of iterations of iterative methods applied to solve the
system equations in Algorithms 4.1 and 4.3 strongly depends on the system dimension,
which is much larger for Algorithm 4.3 than for Algorithm 4.1.

To further compare the structure of the Newton and the SQP methods, let us
assume, for an instance, that xk is feasible for the primal equation, i.e., e(xk) = 0 and
(xk, λk) is feasible for the adjoint equation (3.5), i.e., e∗y(x

k)λk = −Jy(xk). Then the

right-hand side of (4.5) has the form −[0, Ju(xk)+e∗uλ
k, 0]t, and comparing this to the

computation at the end of section 4.1, we observe that the linear systems describing
the Newton and the SQP methods coincide. In general, the nonlinear primal and the
linearized adjoint equation will not be satisfied by the iterates of the SQP method,
and we therefore refer to the SQP method as an outer or unfeasible method, while
the Newton method is a feasible one.

4.3. Reduced SQP method. The idea of the reduced SQP method is to replace
(4.5) with an equation in ker ex(x) so that the reduced system is of smaller dimension
than the original one. To develop the reduced system, we follow the lines of [KS].
Recall the definition of T (x) : U → X, and define A(x) : Z∗ → X by

A(x) =

(
e−1
y (x)
0

)
.(4.6)

Note that A is a right-inverse to ex(x). In fact, we have

(i) ker ex(x) = R(T (x)) = {(−e
−1
y (x)eu(x)v
v ) : v ∈ U},

(ii) ex(x)T (x) = 0 in Z∗,
(iii) ex(x)A(x) = IZ∗ .
By Proposition 3.3 and due to B ∈ L(U,L2(V ∗)), the operator T (x) is an isomor-

phism from U to ker ex(x), and hence the second equality in (4.5) given by

ex(x)δx = −e(x)
can be expressed as

δx = T (x)δu−A(x)e(x).(4.7)

Using this in the first equality of (4.5), we find

Lxx(x, λ)T (x)δu− Lxx(x, λ)A(x)e(x) + e∗x(x)δλ = −(Jx(x) + e∗x(x)λ).
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Applying T ∗(x) to this last equation and (ii) from above implies that if δu is a solution
coordinate of (4.5), then it also satisfies

T ∗(x)Lxx(x, λ)T (x)δu = T ∗(x)Lxx(x, λ)A(x)e(x)− T ∗(x)Jx(x).(4.8)

Once δu is computed from (4.8), then δy and δλ can be obtained from (4.7) (which
requires one forward linear parabolic solve) and the first equation in (4.5) (another
backwards linear parabolic solve).

Let us note that if x is feasible, then the first term on the right-hand side of (4.8)
is zero and (4.8) is identical to step 2(i) in Newton’s algorithm (Algorithm 4.1).

This again reflects the fact that Newton’s method can be viewed as an SQP
method that obeys the feasibility constraint e(x) = 0. It also points at the fact that
the amount of work (measured in equation solves) for the inner loop coincides for
both the Newton and the reduced SQP methods. The significant difference between
the two methods lies in the outer iteration. To make this evident we next specify the
reduced SQP algorithm.

Algorithm 4.4 (reduced SQP algorithm).
1. Choose x0 ∈ B(x∗), set k = 0.
2. Do until convergence:

(i) Lagrange multiplier update: solve

e∗y(x
k)λk = −Jy(xk),

(ii) solve

α) T ∗(xk)Lxx(xk, λk)T (xk)δuk = T ∗(xk)Lxx(xk, λk)A(xk)e(xk)
−T ∗(xk)Jx(xk)

β) ey(x
k)δyk = −e(xk)− eu(x

k)δuk,
(iii) update

xk+1 = xk + (δyk, δuk),

(iv) set k = k + 1.
Note that in the algorithm that we specified we did not follow the procedure out-

lined above for the update of the Lagrange variable. In fact, for reduced SQP methods
there is no “optimal” update strategy for λ. The two choices described above are nat-
ural and frequently used. To implement Algorithm 4.4 two linear parabolic systems
have to be solved in steps 2(i) and 2(ii)β) and, in addition, two linear parabolic sys-
tems are necessary to evaluate the term involving the operator A on the right-hand
side of 2(ii)α). In applications this term is often neglected since it vanishes at x∗.

The reduced SQP method and Newton’s method turn out to be very similar. Let
us discuss the points in which they differ:

(i) Most significantly, the velocity field is updated by means of the nonlinear
equation in Newton’s method and via the linearized equation in the reduced
SQP method.

(ii) The right-hand sides of the linear systems differ due to the appearance of the
term involving the operator A. As mentioned above, this term is frequently
not implemented.

(iii) Formally there is a difference in the initialization procedure in that y0 is
chosen independently from u0 in the reduced SQP method and y0 = y(u0) in
Newton’s method. However, as explained in section 4.1 above, if a good initial
guess y0 independent from y(u0) is available, it can be utilized in Newton’s
method as well.
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5. Convergence analysis. We present local convergence results for the algo-
rithms introduced in section 4 for cost functionals J which are of separable type;
i.e., (H0) 4 is satisfied. For this purpose it will be essential to derive conditions
that ensure positive definiteness of Ĵ ′′(u∗) and (H1). The key to these conditions
are the a priori estimates of Proposition 2.4. We shall also prove that the difference
Ĵ ′′(u∗) − Juu(x

∗) is compact. This property is required for the rate of convergence
analysis of quasi-Newton methods. In our first result we assert positive definiteness of
the Hessian provided that Jy(x) is sufficiently small, a condition which is applicable
to tracking-type problems.

Lemma 5.1 (positive definiteness of the Hessian). Let u ∈ U, and assume that
Jyy(x) ∈ L(L2(V ), L2(V ∗)) is positive semidefinite and Juu(x) ∈ L(U) is positive

definite, where x = (y(u), u). Then the Hessian Ĵ
′′
(u) is positive definite provided

that |Jy(x)|L2(V ∗) is sufficiently small.

Proof. We recall from (3.11) that

Ĵ ′′(u) = T ∗(x)Lxx(x, λ)T (x),

where x = (y(u), u) and λ = λ(x) is the solution to (3.7). It follows that

(5.1) Ĵ ′′(u) = e∗u(x)e
−∗
y (x)Jyy(x)e

−1
y (x)eu(x)

+ e∗u(x)e
−∗
y (x)〈e1

yy(x)(e
−1
y (x)eu(x), ·), λ1(x)〉+ Juu(x).

Here we note that for δu ∈ U the functional

w �→ 〈eyy(x)(e−1
y (x)eu(x)δu, w), λ1〉

is an element of W ∗. Since Jyy(x) is assumed to be positive definite and Juu(x) is
positive definite, the result will follow provided the operator norm of

R := e∗u(x)e
−∗
y (x)〈e1

yy(x)(e
−1
y (x)eu(x), ·), λ1(x)〉 ∈ L(U)(5.2)

can be bounded by |Jy(x)|L2(V ∗). Straightforward estimation gives

(5.3) ‖R‖L(U) ≤ ‖e∗u(x)e−∗
y (x)‖L(W∗,U)

‖〈e1
yy(x)(·, ·), λ1(x)〉‖L(W,W∗) ‖e−1

y (x)eu(x)‖L(U,W )

= ‖e−1
y (x)eu(x)‖2L(U,W ) ‖〈e1

yy(x)(·, ·), λ1(x)〉‖L(W,W∗).

From Proposition 2.4 we conclude that

‖e−1
y (x)eu(x)‖L(U,W ) ≤ C(|y|L2(V ), |y|L∞(H), ‖B‖L(U,L2(V ∗))).

To estimate ‖〈e1
yy(x)(·, ·), λ1(x)〉‖L(W,W∗) we recall that for g, h ∈W

〈e1
yy(x)(g, h), λ

1(x)〉 =

∫ T
0

∫
Ω

(g · ∇)hλ1 + (h · ∇)gλ1 dxdt.

Using (3.2) and the continuity of the embedding W ↪→ L∞(H), we may estimate

|〈e1
yy(x)(g, h), λ

1(x)〉| ≤ C |g|W |h|W |λ1|L2(V ),
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with a constant C independent of g and h. Therefore,

‖R‖L(U) ≤ C(|y|L2(V ), |y|L∞(H), ‖B‖L(U,L2(V ∗))) |λ1|L2(V )

≤ C(|y|L2(V ), |y|L∞(H), ‖B‖L(U,L2(V ∗))) |Jy(x)|L2(V ∗),

where we applied (iii) in Proposition 2.4 to (3.7).
Lemma 5.2. Let x ∈ X, and denote by λ = λ(x) ∈ Z the function defined in

(3.5). Then, under the assumptions of Lemma 5.1 on J condition, (H1) is satisfied
with (x∗, λ∗) replaced by (x, λ).

Proof. Let (v, u) ∈ N (ex(x)). Then v solves (2.4) with v0 = 0 and f = Bu. Due
to Proposition 2.3, v ∈W and satisfies

|v|W ≤ C(|y|L2(V )), |y|L∞(H), ‖B‖L(U,L2(V ∗))) |u|U .(5.4)

Let δ > 0 be chosen such that Juu(x)(u, u) ≥ δ|u|2U for all u ∈ U . We find

〈Lxx(x, λ)(v, u), (v, u)〉X∗,X = Jyy(x)(v, v) + 〈e1
yy(x)(v, v), λ

1〉+ Juu(x)(u, u)

≥ δ |u|2U − 2
√
2

∫ T
0

|v|H |v|V |λ1|V dt ≥ δ |u|2U − C|u|2U |λ1|L2(V ).

Here and below, C denotes a generic constant independent of (v, u), and λ = λ(x).
Due to (3.5) and Proposition 2.4

|λ|L2(V ) ≤ C |Jy(x)|L2(V ∗).

These estimates imply

〈Lxx(x, λ)(v, u), (v, u)〉X∗,X ≥
(
δ − C|Jy(x)|L2(V ∗)

) |u|2U ,
and combined with (5.4) the claim follows.

Lemma 5.3. If B ∈ L(U,L2(H)), then the difference

Ĵ ′′(u)− Juu(x)

is compact for every u ∈ U .
Proof. Utilizing (5.2), we may rewrite

Ĵ ′′(u)− Juu(x) = e∗u(x)e
−∗
y (x)Jyy(x)e

−1
y (x)eu(x) + R,(5.5)

where x = (y(u), u). It will be shown that both summands define compact operators
on U . For this purpose let U be a bounded subset of U . Utilizing B ∈ L(U,L2(H)) ⊂
L(U,L2(V ∗)) and Proposition 2.4, we conclude that

S = {e−1
y (x)eu(x)δu : δu ∈ U}

is a bounded subset of W and hence of L2(V ). Since by assumption J is twice
continuously Fréchet differentiable with respect to y from L2(V ) to R, it follows that
Jyy(S) is a bounded subset of L2(V ∗). Proposition 2.4(iii) implies that, consequently,
e−∗
y (Jyy(S)) is bounded in W 2

4/3 × H, where W 2
4/3 := {v ∈ L2(V ) : vt ∈ L4/3(V ∗)}.

Since W 2
4/3 is compactly embedded in L2(H) [CF] and B ∈ L(U,L2(H)), it follows

from the fact that e∗u(x)(z
1, z0) = −B∗z1 for z = (z1, z0) ∈ L2(V )×H that

{e∗u(x)e−∗
y (x)Jyy(x)(z) : z ∈ S}(5.6)
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is precompact in U .

Let us turn to the second addend in (5.5). Due to Lemma 3.2 and its proof, the
set

{〈e1
yy(x)(z, ·), λ1〉 : z ∈ S}

is a bounded subset of W ∗ ∩ L4/3(V ∗). It follows, utilizing Proposition 2.4, that

{e−∗
y (x)〈e1

yy(x)(z, ·), λ1〉 : z ∈ S}

is a bounded subset of W 2
4/3 ×H. As above, the assumption that B ∈ L(U,L2(H))

implies that

{e∗u(x)e−∗
y (x)〈e1

yy(x)(z, ·), λ1〉; z ∈ S}

is precompact in U , and the lemma is verified.

The following lemma concerning the operators T (x) and A(x) defined in (3.10)
and (4.6) will be required for the analysis of the reduced SQP method.

Lemma 5.4. The mappings x �→ A(x) from X to L(Z∗, X) and x �→ T (x) from
X to L(U,X) are Fréchet differentiable with Lipschitz continuous derivatives.

Proof. The proof is an immediate consequence of (i), (ii) in Proposition 2.4 and
the identities (ii) and (iii) in section (4.3) together with the differentiability properties
of the mapping x �→ ex(x).

We are now in the position to prove local convergence for the algorithms discussed
in section 4. Throughout we assume that (y∗, u∗) is a local solution to (2.1) and set
y∗ = y(u∗), x∗ = (y∗, u∗). In addition to the general conditions on J , B, and e, we
require

(H2)
Jyy(x

∗) ∈ L(L2(V ), L2(V ∗)) is positive semidefinite, Juu(x
∗) ∈ L(U) is

positive definite, and |Jy(x∗)|L2(V ∗) is sufficiently small.

With (H2) holding, (H1) is satisfied due to Lemma 5.1. In particular, a second
order sufficient optimality condition holds, and (y∗, u∗) is a strict local solution to
(2.1). The following theorem follows from well-known results on Newton’s algorithm.

Theorem 5.5. If (H2) holds, then there exists a neighborhood U(u∗) such that
for every u0 ∈ U(u∗) the iterates {un}n∈N of Newton’s algorithm (Algorithm 4.1)
converge quadratically to u∗.

Theorem 5.6. If (H2) holds, then there exists a neighborhood U(u∗) and ε > 0
such that for all u0 ∈ U(u∗) and all positive definite operators H0 ∈ L(U) with

|H0 − Ĵ
′′
(u∗)|L(U) < ε,

the BFGS method of Algorithm 4.2 converges linearly to u∗. If in addition B ∈
L(U,L2(H)) and H0 := Juu(x

∗), then the convergence is superlinear.

Proof. For the first part of the theorem we refer to [GR, section 4], for example.
For the second claim we observe that the difference Ĵ

′′
(u∗) − Juu(x

∗) is compact by
Lemma 5.3 so that the claim follows from [GR, Theorem 5.1]; see also [KS1].

Theorem 5.7. Assume that (H2) holds, and let λ∗ be the Lagrange multiplier
associated to x∗. Then there exists a neighborhood U(x∗, λ∗) ⊂ X × Z such that for
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all (x0, λ0) ∈ U(x∗, λ∗) the SQP algorithm (Algorithm 4.3) is well defined, and the
iterates {(xn, λn)}n∈N converge quadratically to (x∗, λ∗).

Proof. Since J and e are twice continuously differentiable with Lipschitz contin-
uous second derivative, ex(x

∗) is surjective by Proposition 3.3, and (H1) is satisfied,
second order convergence of the SQP method follows from standard results; see, for
instance, [IK].

We now turn to the reduced SQP method.
Theorem 5.8. Assume that (H1) holds, and let λ∗ denote the Lagrange multiplier

associated to x∗. Then there exists a neighborhood U(x∗) ⊂ X such that for all
x0 ∈ U(x∗) the reduced SQP algorithm (Algorithm 4.4) is well defined, and its iterates
{xk}k∈N converge two-step quadratically to x∗, i.e.,

|xk+1 − x∗|X ≤ C |xk−1 − x∗|2X
for some positive constant C independent of k ∈ N.

Proof. First note that (H1) implies positive definiteness of T (x∗)∗Lxx(x∗, λ∗)T (x∗)
in a neighborhood Ũ(x∗) of x∗. By Lemma 5.4 the mappings x �→ T (x) and x �→ A(x)
are Fréchet differentiable with Lipschitz continuous derivatives. Furthermore, it can
be shown that the mapping x �→ λ(x) is locally Lipschitz continuous, where λ is de-
fined through (3.5) [HH, Lemma 4.5.2]. This, in particular, implies for the Lagrange
multiplier updates λk the estimate

|λk − λ|Z ≤ C |xk − x∗|X , xk ∈ Ũ(x∗),

where the constant C is positive and depends on x∗ and on sup{|Jyy(x)|L(L2(V ),L2(V ∗);

x ∈ Ũ(x∗)}. Altogether, the assumptions for Corollary 3.6 in [K] are met, and there
exists a neighborhood Û(x∗) such that for all x0 ∈ U(x∗) := Û(x∗) ∩ Ũ(x∗) the claim
follows.

6. Numerical results. Here we present a numerical example that should first
demonstrate the feasibility of utilizing Newton’s method for optimal control of the
two-dimensional instationary Navier–Stokes equations in a workstation environment
despite the formidable size of the optimization problem. The total number of un-
knowns (primal, adjoint, and control variables) in example 1 below, for instance, is of
order 2.2∗106. The time horizon could still be increased or the mesh size decreased
by utilizing reduced storage techniques at the expense of additional cpu time, but we
shall not pursue this aspect here. The control problem is given by (1.1), (1.2) with
cost function J defined by

J(y, u) :=
1

2

∫
Qo

|y − z|2 dxdt+ α

2

∫
Qc

|u|2 dxdt,(6.1)

where Qc := Ωc× (0, T ) and Qo := Ωo× (0, T ), with Ωc and Ωo subsets of Ω = (0, 1)2

denoting the control and observation volumes, respectively. In our example, T = 1,
U := L2(Qc), ν = 1

Re =400, and B is the indicator function of Qc. The results for
Newton’s method will be compared to those of the gradient algorithm, which we recall
here for the sake of convenience.

Algorithm 6.1 (gradient algorithm).
1. Set k = 0 and choose u0,
2. set d := −Ĵ ′(uk) and compute

ρ∗ = arg minρ>0I(ρ) := Ĵ(uk + ρd),
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3. set

uk+1 = uk + ρ∗d,

4. set k = k + 1 and goto 2.
Given a control u, the evaluation of the gradient of J at a point u amounts to

solving (1.2) for the state y and (3.7) for the adjoint variable λ. Implementing a
stepsize rule to determine an approximation of ρ∗ is numerically expensive as every
evaluation of the functional J at a control u requires solving the instationary Navier–
Stokes equations with right-hand side Bu.

In the numerical example presented below, we use the following procedure to
compute an approximation to the step size ρ∗. For a given search direction d ∈ U we
insert the linearization of the mapping ρ �→ y(u+ ρd) at ρ = 0,

y(u+ ρd)
.
= y(u) + ρy′(u)d,

into the cost functional J . This results in the quadratic approximation

I1(ρ) := J(y(u) + ρy′(u)d, u+ ρd)

of the functional I(ρ). Now we use the unique root

ρ∗1 =
−〈Ĵ ′(u), d〉U

α|d|2U + |v|2L2(Qo)

(6.2)

of the equation I ′1(ρ) = 0 as approximation of ρ∗, with v given by (2.4) with f = Bd
and v0 = 0.

Altogether, every iteration of the gradient algorithm amounts to solving the non-
linear Navier–Stokes equations forward in time and the associated adjoint equations
backward in time for the computation of the gradient, and to solving linearized
Navier–Stokes equations forward in time for the step size proposal. For a detailed
discussion of step size rules for the gradient algorithm, see [HH, Algorithm 4.7.1].

The inner iteration of Newton’s method is performed by the conjugate gradient
method, the choice of which is justified in a neighborhood of a local solution u∗ of the
optimal control problem by the positive definiteness of Ĵ

′′
(u∗), provided the desired

state z is sufficiently close to the optimal state y(u∗).
For the numerical tests the target flow z is given by the Stokes flow with boundary

condition z1 = 1 in tangential direction (Figure 6.1), and the uncontrolled flow is the
Navier–Stokes flow at Re=400 with the same boundary values as z; see Figure 6.3,
top left. The termination criterion for the jth iterate ukj in the conjugate gradient
method is chosen as

|Ĵ ′′
(uk)δukj + Ĵ ′(uk)|
|Ĵ ′(u0)| ≤ min



(
|Ĵ ′(uk)|
|Ĵ ′(u0)|

) 3
2

, 10−2 |Ĵ ′(uk)|
|Ĵ ′(u0)|


 or j ≥ 50.

The initialization for Newton’s method was u0 := 0.
The discretization of the Navier–Stokes equations, its linearization and adjoint,

was carried out by using parts of the code developed by Bänsch in [BA], which is based
on Taylor–Hood finite elements for spatial discretization. As time step size we took
δt = .00625, which resulted in 160 grid points for the time grid and 545 pressure and
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Fig. 6.1. Control target: Stokes flow in the cavity.

Table 6.1
Performance of Newton’s method.

Iteration CG-steps
|Ĵ′(u)|
|Ĵ′(u0)|

|δuk|U
|δuk−1|U Ĵ(uk)

1 - 1.e0 - 1.196202e-2
2 13 3.358825e-1 1. 3.226486e-3
3 11 5.058497e-2 0.492 1.617913e-3
4 18 8.249029e-3 0.422 1.482032e-3
5 17 1.409278e-4 0.079 1.480533e-3
6 19 4.686819e-6 0.032 1.480534e-3

2113 velocity nodes for the spatial discretization. All computations were performed
on a DEC-ALPHATM station 500.

We now present the results for Ωc = Ωo = (0, 1)2 and α = 10−2. Table 6.1
confirms superlinear convergence of the inexact Newton method. To achieve the same
accuracy as Newton’s method the gradient algorithm requires 96 iterations. The
computing time with Newton’s method is approximately 45 minutes, whereas the
gradient method requires 110 minutes. This demonstrates the superiority of Newton’s
method over the gradient algorithm for this example. For larger values of α and
coarser time and space grids the difference in computing time is less drastic. In
fact, this difference increases with decreasing α and increasing mesh refinement. As
expected, a significant amount of computing time is spent for read-write actions of
the variables to the hard disc in the subproblems.

In Figure 6.2 the evolution of the cost functional is documented. It can be ob-
served that Newton’s method (left) tends to overestimate the control in the first
iteration step, whereas the gradient algorithm (right) approximates the optimal con-
trol from below. Graphically there is no significant change after the second iteration
for Newton’s method. These comments hold for quite a wide range of values for α.

In Figure 6.3 a snapshot of the uncontrolled flow at t = 1 together with a snapshot
of the control action at t=0.75 and two zooms are presented. As one can see, two
major vortices develop; the one in the upper left corner (Figure 6.3, bottom left) is
responsible for tearing back the vortex of the uncontrolled flow (Figure 6.3, top left),
while the second control vortex (Figure 6.3, bottom right) pushes back this vortex
towards the vortex of the target flow (Figure 6.1). The controlled flow at t=1 is
optically nearly indistinguishable from the target flow.

In this example the observation volume Ωo and the control volume Ωc each cover
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Fig. 6.2. Newton’s method (left, 6 iterations) versus gradient algorithm (right), Re = 400,
α = 10−2: Evolution of cost functional for relative accuracy = 1.d− 5.
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Fig. 6.3. Top left: Uncontrolled flow at Re = 400. Top right: Control force at t=0.75 for α =
10−2. Bottom left: Control force, zoom on [0, 0.7]× [0.4, 1]. Bottom right: Zoom on [0.3, 1]× [0.2, 1].

the whole spatial domain. From the practical point of view this is not feasible. How-
ever, from the numerical standpoint this is a complicated situation, since the inhomo-
geneities in the primal and adjoint equations are large. Further numerical examples
with different observation and control domains can be found in [HH, Chapter 4.7].
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[GT] H. Goldberg and F. Tröltzsch, Second-order sufficient optimality conditions for a
class of nonlinear parabolic control problems, SIAM J. Control Optim., 31 (1993),
pp. 1007–1025.

[H] M. Heinkenschloss, Formulation and analysis of a sequential quadratic programming
method for the optimal Dirichlet boundary control of Navier–Stokes flow, in Opti-
mal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1998, pp. 178–203.

[HH] M. Hinze, Optimal and Instantaneous Control of the Instationary Navier–Stokes Equa-
tions, Habilitation Thesis, Technische Universität Berlin, Berlin, Germany, 2000.

[HK] M. Hinze and A. Kauffmann, Reduced Order Modelling and Suboptimal Control of a
Solid Fuel Ignition Model, preprint 636/99, Technische Universität Berlin, Berlin,
Germany, 1999.

[HKK] M. Hinze and K. Kunisch, Control strategies for fluid flows—optimal versus suboptimal
control, in ENUMATH 97, H. G. Bock et al., eds., World Scientific, Singapore, pp.
351–358.

[IK] K. Ito and K. Kunisch, Augmented Lagrangian–SQP methods for nonlinear optimal
control problems of tracking type, SIAM J. Control Optim., 34 (1996), pp. 874–891.

[IR] K. Ito and S. S. Ravindran, Optimal control of thermally convected fluid flows, SIAM
J. Sci. Comput., 19 (1998), pp. 1847–1869.

[KA] A. Kauffmann, Optimal Control of the Solid Fuel Ignition Model, Ph.D. thesis, Fach-
bereich Mathematik, Technische Universität Berlin, Berlin, Germany, 1998.



946 MICHAEL HINZE AND KARL KUNISCH

[KS] K. Kunisch and E. W. Sachs, Reduced SQP methods for parameter identification prob-
lems, SIAM J. Numer. Anal. 29 (1992), pp. 1793–1820.

[K] F.-S. Kupfer, An infinite-dimensional convergence theory for reduced SQP methods in
Hilbert space, SIAM J. Optim., 6 (1996), pp. 126–163.

[KS1] C. T. Kelley and E. W. Sachs, Quasi-Newton methods and unconstrained optimal
control problems, SIAM J. Control Optim., 25 (1987), pp. 1503–1516.

[KS2] C. T. Kelley and E. W. Sachs, Mesh independence of the gradient projection method
for optimal control problems, SIAM J. Control Optim., 30 (1992), pp. 477–493.

[KV] K. Kunisch and S. Volkwein, Control of Burgers equation by a reduced order approach
using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), pp. 345–
371.

[LA] M. Laumen, Newton’s method for a class of optimal shape design problems, SIAM J.
Optim., 10 (2000), pp. 503–533.

[L] P. L. Lions, Mathematical Topics in Fluid Mechanics I, Clarendon, Oxford University
Press, New York, 1996.

[LT] H. V. Ly and H. T. Tran, Modelling and control of physical processes using proper
orthogonal decomposition, Math. Comput. Modelling, 33 (2001), pp. 223–236.
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Abstract. In this paper, the problem of system identification in H∞ with general orthonormal
basis functions is investigated. A two-stage algorithm is shown to be robust, provided that the

number of basis elements as a function of the amount of data does not increase faster than O(N
2
5 ).

Worst-case identification error bounds in the H∞ norm are derived. The algorithm also works on
nonuniformly spaced frequency response measurements. An example is provided to illustrate the
application of the algorithm.
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1. Introduction. Consider a linear-time-invariant, single-input/single-output,
discrete-time system with impulse response g(k). It is assumed that this system is �2
bounded-input/bounded-output stable so that the associated power-series represen-
tation

G(z) =

∞∑
k=0

g(k)zk(1.1)

lies in H∞(D). Note that the definition of the z-transform is such that the stability
corresponds to having no poles in the closed unit disk. Here H∞(D) denotes the space
of bounded analytic functions in the open unit disk D. Let C(T) denote the set of
continuous functions on T, the unit circle, and let A(D) = H∞(D)∩C(T). We further
require G ∈ A(D). In the series expansion, we have employed a set of orthonormal
functions 1, z, z2, . . ., where orthogonality is with respect to the inner product

〈f, g〉 ∆
=

1

2π

∫ 2π

0

f(eiω) g(eiω) dω.

Although power-series representation or finite-impulse response modelling is suit-
able for most applications, it fails to be successful when the number of basis coefficients
to be estimated from the data becomes very large, especially in the modelling of large
flexible structures. This increase in parameter dimension to maintain a certain level
of accuracy over a broad range of transfer functions is a drawback of finite-impulse
response models in robust controller design. Alternatively, we can write (1.1) in a
generalized form as

G(z) =
∞∑
k=0

akBk(z),(1.2)
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where {B0, B1, B2, . . .} is an orthonormal set of rational basis functions in H2(D).
Here L2(T) is the space of square integrable functions on T, and H2(D) denotes
its intersection with the set of analytic functions on D. The choice of basis poles
reflects the desire to adapt basis functions to the specific properties of the system.
With appropriately chosen basis poles, the convergence rate of the series expansion
in (1.2) can be very fast, and hence the number of basis coefficients to be estimated
can become very small.

The undermodelling-induced component of the estimation error can be reduced
significantly in comparison to the use of a finite-impulse response model structure
in (1.1) by employing the well-known Laguerre and Kautz bases [22, 21]. The use
of the Laguerre and Kautz bases for approximation and identification of linear time-
invariant dynamics has been investigated in [17, 30, 24, 32, 40, 14, 41, 42, 12]. More
recently, in [43, 44] the rational wavelet bases have been suggested to robustly estimate
linear-time-invariant infinite-dimensional dynamics.

Recently, in [19, 38, 39], the general orthonormal basis functions, which gener-
alize the Laguerre and Kautz bases and to some extent incorporate the dynamics of
the underlying system, were introduced and used in a Hilbert-space setting, mostly
for time-domain identification. These basis functions are obtained from the rational
orthonormal basis functions considered in detail in [28, 29, 2, 4], which are defined by
a choice of numbers zk ∈ D, k = 0, 1, . . . , as

Bk(z)
∆
=

√
1− |zk|2

1− zk z
ψk(z), ψk(z)

∆
=

k−1∏
j=0

z − zj
1− zj z

, ψ0(z)
∆
= 1,(1.3)

with the restriction

zj+nm = zj , j = 1, 2, . . . , n, m = 1, 2, . . . ,(1.4)

where n is a fixed number, z0 = 0, and 1/z1, . . . , 1/zn denote the chosen basis poles
in complex conjugate pairs. The general orthonormal basis functions are constructed
from an initial set of orthonormal functions by repeated multiplication of an all-pass
function that acts as a generalized shift. The rational orthonormal basis functions
in (1.3) are complete in the spaces Hp(D) (1 ≤ p < ∞) and A(D) if and only if∑∞
k=1 (1− |zk|) =∞ [2].

In a series of papers [2, 3, 4, 7, 10, 9], completeness, approximation, and identi-
fication properties of the basis functions defined by (1.3) and their continuous-time
versions have been investigated. In particular, it was established in [2] that by using
a min-max criterion, provided that the basis functions are complete and the model
order increases at most linearly with the amount of data, these bases lead to robust
estimators for which error bounds in the H∞ norm can be explicitly quantified. The
purpose of the current paper is to establish a similar robust estimation result for the
general orthonormal basis functions defined by (1.3)–(1.4), using a two-stage scheme
which first appeared in [18].

In this paper, we will consider the problem of system identification in H∞ initiated
by [18] in the general orthonormal basis set-up. The system identification with H∞
criterion has received a growing interest since the appearance of the H∞ formulation
of robust control [46, 18, 16, 34, 25, 27, 15, 6]. Given N noise-corrupted samples of
the frequency response function

ek = G(eiωk) + νk, k = 1, . . . , N,(1.5)
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at the frequencies ωk ∈ [0, 2π), k = 1, . . . , N , where ν is the frequency response
measurement noise bounded in amplitude by ε, the objective is to find an identification
algorithm which maps the data ek, k = 1, . . . , N , to an identified model ĜN ∈ A(D)
such that for all G ∈ A(D)

lim
ε→0

N→∞
sup

‖ν‖∞≤ε
‖ĜN −G‖∞ = 0.(1.6)

An algorithm that satisfies (1.6) and does not use the prior knowledge of ε and
the uncertainty set in which the system lies is called robustly convergent. It should
be noted that the latter requirement restricts the nature of identification algorithms
to be used. If this restriction is removed, a large class of nonlinear tuned algorithms
that satisfy (1.6) exists. This problem formulation is, in a technical sense, somewhat
different from the usual formulation adopted in [18]. The main difference is that in
this definition we have not taken a supremum of the identification error over the set
of unknown systems. This formulation is similar to the point of view taken in [25].

Several robustly convergent nonlinear algorithms have been proposed for solving
this problem of system identification in H∞ [18, 16, 25, 6]. These algorithms share a
common two-stage structure. In the first stage, a (stable and unstable) finite-impulse
response model is linearly estimated from the frequency response data. In the second
stage, the identified model is obtained by solving a Nehari problem. We will also adapt
the same two-stage strategy. In a very recent paper [37], Szabó, Bokor, and Schipp
have obtained some general results for the same identification problem. However, our
results and algorithm are quite different from and independent of those in [37].

In this paper, we obtain explicit worst-case identification error bounds, provided
that the number of general orthonormal basis functions used for the estimation does
not increase too fast with the amount of data. In comparison to the min-max algo-
rithms in [2], worst-case error bounds are large for small amounts of data and, for a
given amount of data, the number of general orthonormal basis functions that could
be used for the estimation is rather restricted.

In spite of these weaknesses, a couple of distinct features of our approach deserve
to be mentioned. First, due to the linearity of the first stage, the algorithm of this
paper is easier to implement and analyze than the min-max algorithms. In this
stage, our algorithm is also computationally more efficient. When model complexity
is restricted, the second stage could be omitted since the linear estimate diverges very
slowly in the worst-case. The second and most compelling reason is that frequently
low complexity models are desired for the purpose of subsequent controller design,
and by iteratively updating basis poles it may be possible to significantly reduce the
undermodelling-induced component of the estimation error.

Now we will briefly describe the contents of this paper. In section 2, uniform
approximation of complex-valued continuous functions, by the general orthonormal
basis functions defined by (1.3)–(1.4) and the complementary general orthonormal
functions, is studied. The basis functions spanning the orthogonal complement of
H2(D) are defined by a choice of numbers xk ∈ D, k = 1, 2, . . . , as

B−k(z)
∆
=

√
1− |xk|2
z − xk

φk(z), φk−1(z)
∆
=

k∏
j=1

1− xj z

z − xj
, φ0(z)

∆
= 1.(1.7)

Then the complementary general orthonormal functions are obtained from (1.7) by
setting

xk = zk for all k.(1.8)
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In section 3, an overdetermined system of linear equations is studied. The purpose of
this section is to link the approximation results derived in section 2 to the identification
problem. In section 4, the main result of this paper is presented. In section 5, an
example is given to illustrate the use of the general orthonormal basis functions defined
by (1.3)–(1.4) in an iterative-identification scheme. Section 6 concludes the paper.

We consider only single-input/single-output systems. This is not at all a restric-
tion. The results extend with no modifications to multi-input/multi-output systems.
They are also applicable to continuous-time systems, since the bilinear mapping

s
∆
= λ

1− z

1 + z
, λ > 0,

preserves the supremum norms between the space of functions which are analytic and
bounded on the upper half plane and H∞(D). The details can be found in [1].

2. Approximation of continuous functions. In this section, we derive error
bounds in the L∞ norm for the approximation of continuous functions on T by a par-
ticular weighted Fourier series. These bounds will be used in the analysis of a proposed
algorithm that solves the worst-case identification problem posed in section 1.

Let Skf denote the partial sums of the Fourier series of f ∈ C(T) with respect
to the orthonormal system (1.3) and (1.7) defined by

Skf(eiθ)
∆
=

k∑
j=−k

〈f,Bj〉Bj(eiθ).(2.1)

The (block) Cesàro means of f is defined as

Fmf ∆
=

1

m+ 1

m∑
j=0

Snjf.(2.2)

We take the (block) de la Vallée Poussin estimate of f defined by

Vmf ∆
= 2F2m+1f −Fmf(2.3)

as the L∞-approximant of f . This estimate can be written as

Vmf =

n(2m+1)∑
k=−n(2m+1)

χm(k) 〈f,Bk〉Bk

for a nonnegative symmetric window function χm:

χm(k)
∆
= 1, k = 0, . . . , n(m+ 1),

χm (n(m+ j) + k)
∆
= 1− j

m+ 1
, k = 1, . . . , n, j = 1, . . . ,m,

(2.4)
χm(k)

∆
= 0, k > n(2m+ 1).

The de la Vallée Poussin estimator was introduced to the field of worst-case iden-
tification by Partington [33]. It is possible to use windows other than χm provided
that the chosen window function satisfies certain regularity conditions. The choice of
window functions is discussed in [37].
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We want to show that Vmf → f uniformly on T for all continuous functions f .
To this end, we first derive a simple expression for the so-called Dirichlet kernel

Dk,k′(s, θ)
∆
=

k∑
j=−k′

Bj(eis)Bj(e
iθ).(2.5)

We undertake this as follows.
Lemma 2.1. Consider the rational basis functions defined by (1.3) and (1.7). Let

Dk,k′(s, θ) be as in (2.5). Then

Dk,k′(s, θ) = eiµk,k′ (s,θ)
sin (λk,k′(s, θ))

sin
(
θ−s
2

) ,(2.6)

where

µk,k′(s, θ)
∆
=

1

2

∫ θ

s


 k∑
j=0

|Bj(eiy)|2 − 1−
−1∑
j=−k′

|Bj(eiy)|2

 dy,

(2.7)

λk,k′(s, θ)
∆
=

1

2

∫ θ

s

k∑
j=−k′

|Bj(eiy)|2 dy.

Proof. See [10]. This lemma can also be proved using the results in [36] after
applying some algebra.

The partial sums in (2.1) can be written as

Skf(eiθ) =
1

2π

∫ θ+π

θ−π
f(eis)Dk,k(s, θ) ds.(2.8)

Hence

‖Sk‖ ∆
= sup

‖f‖∞≤1

‖Skf‖∞ = sup
θ

1

2π

∫ 2π

0

|Dk,k(s, θ)| ds.

The right-hand side is called the Lebesgue constant for the basis {Bk}. Thus the
Fourier series (2.1) converges uniformly for every f ∈ C(T) if and only if the Lebesgue
constants are uniformly bounded, and in this case {Bk} is said to form a basis for
C(T).

It is known [31] that no uniformly bounded orthonormal system can form a basis
for the space C(T). This result applies to the disk algebra with the basis functions
defined by (1.3) as well. Notice that the uniform boundedness of the basis defined by
(1.3) and (1.7) is equivalent to

sup
n
{|zn|, |xn|} ∆

= r < 1.(2.9)

Although unbounded, the rational wavelets considered in [43, 44] cannot form a basis
for A(D) as well [8]. It is unknown whether there exists an (unbounded) rational
basis defined by (1.3) such that every function in A(D) has a convergent Fourier series
with respect to this basis. However, Fourier series of every Dini–Lipschitz continuous
function with respect to the uniformly bounded orthonormal bases defined by (1.3)
and (1.7) always converge uniformly on T [10].
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The situation is quite different if one considers orthonormal systems other than
the rational system defined by (1.3). There are certainly orthonormal bases for H2(D)
which consists of rational functions (even polynomials) and also form bases in the disk
algebra. See, for example, the construction in [45].

Having seen that the Fourier series of a continuous function may not necessarily
converge uniformly with respect to a given (uniformly) bounded basis, we now study
the convergence properties of the windowed Fourier series defined in (2.2) with respect
to the general orthonormal basis functions. Recall that the general orthonormal basis
functions are obtained from the rational functions in (1.3) and (1.7) by enforcing (1.8)
and the periodicity condition (1.4).

The Cesàro means of f defined in (2.2) can be written as

Fmf(eiθ) =
1

2π

∫ θ+π

θ−π
f(eis)σm(s, θ) ds,(2.10)

where σm(s, θ) is the Fejér kernel defined by

σm(s, θ)
∆
=

1

m+ 1

m∑
k=0

Dnk,nk(s, θ).(2.11)

Assuming that the basis poles are cyclically repeated according to (1.4), we derive
a formula for the Fejér kernel in the following.

Lemma 2.2. Consider the general orthonormal basis functions defined by (1.3),
(1.7), (1.4), and (1.8). Let σm(s, θ) be as in (2.11). Then

σm(s, θ) = αm(s, θ) + β(s, θ)
1

m+ 1

sin2

(
(m+ 1)

ζ

2

)

sin2

(
ζ

2

) ,(2.12)

where

αm(s, θ)
∆
=


cos

(
m
ζ

2

)
− cos

(η
2

)
cos

(
(m+ 1)

ζ

2

) sin

(
ζ

2

)

sin
(η

2

)



sin

(
(m+ 1)

ζ

2

)

(m+ 1) sin

(
ζ

2

) ,

β(s, θ)
∆
= cos

(
ζ

2

)
cos

(η
2

) sin
(
ζ
2

)
sin

(
η
2

) ,(2.13)

ζ
∆
=

n∑
k=1

∫ θ

s

∣∣Bk(eiy)∣∣2 dy,
(2.14)

η
∆
= θ − s.

Proof. Since zj = xj and |ψj(eiθ)| = |φj(eiθ)| = 1, note that |Bj(eiθ)| = |B−j(eiθ)|
for all j and θ. Thus in (2.7), µk,k(s, θ) = 0 for all s, θ, and k. Due to (1.4), we also



ORTHONORMAL BASES FOR ROBUST IDENTIFICATION 953

have

λnk,nk(s, θ) =
θ − s

2
+

∫ θ

s

nk∑
j=1

∣∣Bj(eiy)∣∣2 dy
=

η

2
+ k ζ.

Hence from Lemma 2.1,

Dnk,nk(s, θ) =
sin

(η
2

+ k ζ
)

sin
(η

2

) , k ≥ 0.(2.15)

Plugging (2.15) into (2.11), we get (2.12) from several applications of the identities:

sin θ =
eiθ − e−iθ

2i
,

m−1∑
k=0

eikθ =
eimθ − 1

eiθ − 1
,

sin(x+ y) = sinx cos y + cosx sin y.

The Cesàro means of f defined in (2.2) and the de la Vallée Poussin estimate of
f converge uniformly to f . This will follow from the following lemma.

Lemma 2.3. Consider the general orthonormal basis functions defined by (1.3),
(1.7), (1.4), and (1.8). Let σm(s, θ) be as in (2.12). Then for all m ≥ 1,

sup
θ

1

2π

∫ π

−π
|σm(s, θ)| ds ≤ C1 + cm,(2.16)

where

C1
∆
=

4 + 6π + 4 lnn

(1− r)2
,

(2.17)

cm
∆
=

28n

(1− r)2
ln(m+ 1)

m+ 1
.

Proof. From Lemma 2.2, by a change of variables s = θ + t we have∫ π

−π
|σm(s, θ)| ds ≤

∫ π

−π
|αm(θ + t, θ)| dt

(2.18)

+

∫ π

−π

|β(θ + t, θ)|
m+ 1

sin2

(
(m+ 1)

ζ(t)

2

)

sin2

(
ζ(t)

2

)
︸ ︷︷ ︸

[Υ(ζ(t))]2

dt.
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To bound the first integral on the right-hand side, note from (2.14) that

ζ

η
=

n∑
k=1

∫ θ

θ+t

∣∣Bk(eiy)∣∣2 dy
θ − (θ + t)

≤
n∑
k=1

‖Bk‖2∞,

where the terms ‖Bk‖2∞ are bounded as

‖Bk‖2∞ = max
t

1− |zk|2
|1− zk e

it|2 ≤
1 + r

1− r
.(2.19)

Hence

ζ

η
≤ 2n

1− r
.(2.20)

We also have

ζ

η
≥

n∑
k=1

min
t
|Bk(eit)| ≥ n

1− r

1 + r
.(2.21)

Thus from (2.20) and (2.21),

n(1− r)

2
≤ dζ

dη
≤ 2n

1− r
.(2.22)

Next from (2.20), the inequalities | sinx| ≤ |x| for all x, and

sinx

x
≥ 2

π
, |x| ≤ π

2
,(2.23)

we get ∣∣∣∣sin
(
ζ

2

)∣∣∣∣∣∣∣sin(η
2

)∣∣∣ ≤
π ζ

2η
≤ π n

1− r
, |η| ≤ π.(2.24)

Hence ∫ π

−π
|αm(θ + t, θ)| dt ≤ 1

m+ 1

(
1 +

πn

1− r

)∫ π

−π
|Υ(ζ(t))| dt.(2.25)

By a change of the variables ζ =
∫ θ
θ+t

∑n
k=1 |Bk(eis)|2 ds and η = −t, we have from

(2.22) the following:

∫ π

−π
|Υ(ζ(t))| dt =

∫ 2πn+ζ(π)

ζ(π)

|Υ(ζ)|
(

dζ

dη

)−1

dζ

≤ 2

n(1− r)

∫ 2πn+ζ(π)

ζ(π)

|Υ(ζ)| dζ
(2.26)

=
2

1− r

∫ π

−π
|Υ(ζ)| dζ,
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where the first two (in)equalities follow from (2.22) and

∫ θ+2π

θ

|Bk(eis)|2 ds = 2π for all θ and k,(2.27)

and the last equality from the fact that |Υ(ζ)| is a periodic function with period 2π.
The integral in (2.26) can be bounded from (2.23) as follows:

∫ π

−π
|Υ(ζ)| dζ = 2



∫ π

m+1

0

∣∣∣∣sin
(

(m+ 1)
ζ

2

)∣∣∣∣
sin

(
ζ

2

) dζ +

∫ π

π
m+1

∣∣∣∣sin
(

(m+ 1)
ζ

2

)∣∣∣∣
sin

(
ζ

2

) dζ




≤ 2

{∫ π
m+1

0

(m+ 1)π

2
dζ +

∫ π

π
m+1

π

ζ
dζ

}
(2.28)

= π2 + 2π ln(m+ 1).

Hence from (2.25), (2.26), and (2.28), we get∫ π

−π
|αm(θ + t, θ)| dt ≤ 2(πn + 1− r)

(m+ 1)(1− r)2
(
π2 + 2π ln(m+ 1)

)
(2.29)

≤ 55πn

(1− r)2
ln(m+ 1)

m+ 1
, m ≥ 1.

To bound the second integral on the right-hand side of (2.18), change the variables

again to ζ =
∫ θ
θ+t

∑n
k=1 |Bk(eis)|2 ds. Note that ζ is decreasing and (2.27) implies that

it maps [−π, π] onto [ζ(π), 2πn+ζ(π)]. Thus we may define an inverse map Ξ : ζ �→ t.
Let tk = Ξ(ζ(π) + 2πk), k = 0, 1, . . . , n, and suppose that for some j, 0 ∈ [tj+1, tj).
Then∫ π

−π
|β(θ + t, θ)| [Υ(ζ(t))]

2

m+ 1
dt =

∫ 2πn+ζ(π)

ζ(π)

|β(θ + Ξ(ζ), θ)|
(
dζ

dη

)−1
[Υ(ζ)]

2

m+ 1
dζ

≤ 2

n(1− r)

∫ 2πn+ζ(π)

ζ(π)

∣∣∣∣sin
(
ζ

2

)∣∣∣∣∣∣∣∣sin
(
−Ξ(ζ)

2

)∣∣∣∣
[Υ(ζ)]

2

m+ 1

︸ ︷︷ ︸
Λ(ζ)

dζ,
(2.30)

where the inequality follows from (2.22). Split the integral above as follows:

∫ ζ(π)+2πn

ζ(π)

Λ(ζ) dζ =

j−1∑
k=1

∫ ζ(tk)

ζ(tk−1)

Λ(ζ) dζ +

n∑
k=j+3

∫ ζ(tk)

ζ(tk−1)

Λ(ζ) dζ +

∫ ζ(tj+2)

ζ(tj−1)

Λ(ζ) dζ.

Note from (2.22) the following inequalities:

n(1− r)

2
(tk − tk+1) ≤ 2π = ζ(tk+1)− ζ(tk) ≤ 2n

1− r
(tk − tk+1),
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which imply

π(1− r)

n
≤ (tk − tk+1) ≤ 4π

n(1− r)
.

Thus for k ≥ j + 2,

tk = tj+1 +

k∑
l=j+2

(tl − tl−1) ≤ −π(1− r)

n
(k − j − 1),(2.31)

and for k ≤ j − 1,

tk = tj +

j∑
l=k+1

(tl−1 − tl) ≥ π(1− r)

n
(j − k).(2.32)

Hence from (2.24), the fact that Υ2(ζ) is a periodic function with period 2π, and the
identity (see [20])

1

2π

∫ π

−π

[Υ(t)]
2

m+ 1
dt = 1,(2.33)

we get ∫ ζ(tj+2)

ζ(tj−1)

Λ(ζ) dζ ≤ πn

1− r

∫ ζ(tj+2)

ζ(tj−1)

[Υ(ζ)]
2

m+ 1
dζ

=
πn

1− r

∫ ζ(π)+2π(j+2)

ζ(π)+2π(j−1)

[Υ(ζ)]
2

m+ 1
dζ

≤ 6π2n

1− r
.

From (2.23), (2.33), (2.31), and (2.32),

∑
k �=j,j+1,j+2

∫ ζ(tk)

ζ(tk−1)

Λ(ζ) dζ ≤ 2π

j−1∑
k=1

π

tk
− 2π

n∑
k=j+3

π

tk−1

≤ 2πn

1− r


j−1∑
k=1

1

j − k
+

n∑
k=j+3

1

k − j − 2




≤ 4πn

1− r

n∑
k=1

1

k

≤ 4πn

1− r
(1 + lnn).

Hence

1

2π

∫ π

−π
|β(θ + t, θ)| |Υ(ζ(t))|2

m+ 1
dt ≤ 4 + 6π + 4 lnn

(1− r)2
.(2.34)

This bound takes care of the cases j < 2 and j > n−3 for all possible values of n. The
combination of the inequalities (2.29), (2.34), and (2.18) yields ‖σm(·, θ)‖1 ≤ C1 +cm.
Then taking the supremum with respect to θ completes the proof.
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Let Xk be the linear span of the general orthonormal basis functions Bj , |j| ≤ k,
and define

δk(f, C(T))
∆
= inf
g∈Xk

‖g − f‖∞, f ∈ C(T).(2.35)

Thus δk(f, C(T)) is the best approximation error of f by functions in Xk. A best ap-
proximation always exists since Xk is finite-dimensional. Furthermore, δk(f, C(T))→
0 (k →∞) because the basis functions defined by (1.3)–(1.4) and (1.7)–(1.8) are com-
plete in C(T).

Let f be a given function in C(T), and for k = n(m + 1) let g be a minimizing
solution in (2.35). Let h = f − g denote the approximation error. Observe that
Vmg = g since g ∈ Xn(m+1) and χm(j) = 1 for all |j| ≤ n(m+1). Due to the linearity
of Vm, notice also that Vmh = Vmf − Vmg. Thus from (2.3), Lemma 2.3, and (2.35)
we find

‖Vmf − f‖∞ = ‖Vmh− h‖∞
≤ (2‖F2m+1‖+ ‖Fm‖) ‖h‖∞ + ‖h‖∞
≤ (3C1 + 3 cm + 1) δn(m+1)(f, C(T)).(2.36)

Hence ‖Vmf − f‖∞ → 0 (m→∞) as claimed.
The inequality (2.36) shows that the approximation error of the estimate defined

by (2.3) is O(δn(m+1)(f, C(T))), which compares well with the best possible error
δn(2m+1)(f, C(T)). For example, if f(z) is analytic on a region that contains T, then

for some γ ∈ (0, 1), δk(f, C(T)) = O(γk) and thus ‖Vmf − f‖∞ = O(γn(m+1)). This
result is in sharp contrast with the Cesàro means defined in (2.2), where O( 1

n(m+1) )

is the best possible convergence rate for the same f using the trigonometric basis
functions e±ikθ.

In [7, 28], real-valued impulse response versions of the basis functions defined by
(1.3) and (1.7) have been formulated. (The details and examples can be found in [7,

section 5].) It was established that the new basis functions denoted by B̃k have the
same closure and approximation properties as the original basis functions (1.3) and
(1.7). In particular,

Skf =

k∑
j=−k

〈f, B̃j〉B̃j ∆
= S̃kf

whenever {z0, . . . , zk} contains complex conjugates as well. In this case, if f has a

real-valued impulse response, then both Skf and S̃kf will have real-valued impulse
responses. Thus the de la Vallée Poussin estimate of f defined by (2.3) always has a
real-valued impulse response, since the basis functions are generated by a complex-
conjugate closed pole-parameter set {z1, . . . , zn} through (1.3), (1.7), (1.4), and (1.8).

3. Overdetermined system of linear equations. In this section, the ap-
proximation results derived in section 2 will be linked to the identification problem
formulated in section 1.

Let p(N) be a nonnegative integer-valued function. Let

ΘN
∆
=




B−p(eiω1) · · · B0(e
iω1) · · · Bp(e

iω1)
...

. . .
...

. . .
...

B−p(eiωN ) · · · B0(e
iωN ) · · · Bp(e

iωN )


 , EN

∆
=




e1
...
eN


 .(3.1)
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For convenience of notation, the columns of ΘN are indexed from −p to p. Since the
frequencies {ωk} are distinct, ΘN has full column rank, provided that N ≥ 2p + 1.
Then we may compute the Moore–Penrose pseudo-inverse of ΘN defined by

Θ†
N

∆
= (Θ∗

NΘN )
−1

Θ∗
N ,

where Θ∗
N is the complex-conjugated transpose of ΘN . It is well known that Θ†

NEN
is the unique solution of the minimum distance problem:

min
x∈C2p+1

‖ΘNx− EN‖2.(3.2)

For each N , we define a map TN : C2p+1 → C(T) by

TNX(z)
∆
=

p∑
k=−p

wp(k) [Θ†
NX](k)Bk(z),(3.3)

where wp is a symmetric nonnegative window function.
Assuming that the frequencies in (1.5) satisfy the condition

0 ≤ ωk+1 − 2π

N
k <

2π

N
, k = 0, . . . , N − 1,(3.4)

we extend the discrete data {e1, . . . , eN} into L∞ as follows:

PNEN (eiω)
∆
= ek if ω ∈

[
2π

N
(k − 1),

2π

N
k

)
, k = 1, 2, . . . , N.(3.5)

Next we define a sequence of operators WN : L∞ → C(T) as follows:

WNf(z)
∆
=

p∑
k=−p

wp(k) 〈f,Bk〉Bk(z).(3.6)

Thus the composite operator WNPN maps EN ∈ C2p+1 into C(T).
In the following result, we derive an upper bound on the difference between the

operators TN and WNPN , assuming that the frequencies in (1.5) are in one-to-one
correspondence with the uniformly spaced frequencies: 2πk

N , k = 0, . . . , N − 1.
Lemma 3.1. Consider the basis functions defined by (1.3) and (1.7). Suppose that

they are uniformly bounded and let r be as in (2.9). Let TN , PN , WN be as in (3.3),
(3.5), (3.6), respectively. Assume that the frequencies in (1.5) satisfy (3.4). Suppose
also that

N ≥ 26p2

(
1 + r

1− r

)2

.(3.7)

Then for all p ≥ 3,

‖TN −WNPN‖ ≤ ‖wp‖∞Kp,(3.8)

where

Kp
∆
= 76

(
1 + r

1− r

)5
2 p

5
2

N
.(3.9)
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Proof. Let

ẽN (z)
∆
=

p∑
k=−p

wp(k)
1

N
[Θ∗
NEN ] (k)Bk(z).(3.10)

Then the sums

1

N
[Θ∗
NEN ](k) =

1

N

N∑
j=1

ej Bk(eiωj ), k = 0,±1, . . . ,

are approximations to the Fourier coefficients of PNEN ,

〈PNEN , Bk〉 =
1

2π

∫ 2π

0

PNEN (eis)Bk(eis) ds, k = 0,±1, . . . ,

since from (3.5) and the mean value theorem for integrals we have

1

2π

∫ 2π

0

PNEN (eis)Bk(eis) ds =
1

2π

N∑
j=1

ej

∫ 2π
N j

2π
N (j−1)

Bk(eis) ds

=
1

N

N∑
j=1

ej Bk(eisj ),

where for each j, sj lies in the interval (2π
N (j − 1), 2π

N j). Then the approximation
errors can be bounded from (3.4) as follows:

∣∣∣∣ 1

N
[Θ∗
NEN ](k)− 〈PNEN , Bk〉

∣∣∣∣ ≤ ΩBk

(
2π

N

)
‖EN‖∞

≤ 2π

N
max
s

∣∣∣∣ ddsBk(eis)
∣∣∣∣ ‖EN‖∞, k = 0,±1, . . . ,(3.11)

where Ωf is the modulus of continuity of f defined by

Ωf (8)
∆
= sup

|x−y|≤�
|f(x)− f(y)| .

It is known from [13] (see also [2, Lem. 13]) that if g(z) is a rational function with
poles outside the disk {z : |z| < R} (R > 1) and with numerator and denumerator
degrees p and q, then ∥∥∥∥dgdz

∥∥∥∥
∞
≤ max{p, q} R + 1

R− 1
‖g‖∞.

Applying this result to the basis functions Bk, k ≥ 0, with R = 1/r, where r is as
defined in (2.9), we get from (2.19)

∥∥∥∥dBk
dz

∥∥∥∥
∞
≤
(

1 + r

1− r

) 3
2

k.(3.12)
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By the substitution z �→ z−1, note that the same inequality holds for k < 0 with |k|
replacing k on the right-hand side. Hence from (3.11) and (3.12) we have

p∑
k=−p

∣∣∣∣ 1

N
[Θ∗
NEN ](k)− 〈PNEN , Bk〉

∣∣∣∣ ≤ 2π

N

(
1 + r

1− r

) 3
2

‖EN‖∞
p∑

k=−p
|k|

≤ 2π

N
p(p + 1)

(
1 + r

1− r

) 3
2

‖EN‖∞.

Thus

‖WNPNEN − ẽN‖∞ ≤ ‖wp‖∞ max
−p≤k≤p

‖Bk‖∞
p∑

k=−p

∣∣∣∣ 1

N
[Θ∗
NEN ](k)− 〈PNEN , Bk〉

∣∣∣∣
(3.13)

≤ 2π

N
p(p + 1)

(
1 + r

1− r

)2

︸ ︷︷ ︸
∆
=γ

‖wp‖∞ ‖EN‖∞.

Next, from

TNEN − ẽN =

p∑
k=−p

wp(k)

(
I − 1

N
Θ∗
NΘN

)
[Θ†
NEN ](k)Bk,(3.14)

where I denotes the 2p + 1 by 2p + 1 identity matrix, we have

‖TNEN − ẽN‖∞ ≤ ‖wp‖2
∥∥∥∥I − 1

N
Θ∗
NΘN

∥∥∥∥
2

‖Θ†
NEN‖2 max

−p≤k≤p
‖Bk‖∞,(3.15)

where ‖A‖2 denotes the spectral norm of A. For the entries of the second term in
(3.14), upper bounds are derived as follows:∣∣∣∣Ik,j − 1

N
[Θ∗
NΘN ]k,j

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ 2π

0

Bk(eis)Bj(e
is) ds− 1

N
[Θ∗
NΘN ]k,j

∣∣∣∣
=

1

N

N∑
l=1

∣∣∣∣∣N2π
∫ 2π

N l

2π
N (l−1)

Bk(eis)Bj(e
is) ds−Bk(eiωl)Bj(e

iωl)

∣∣∣∣∣
=

1

N

N∑
l=1

∣∣∣Bk(eisl)Bj(eisl) ds−Bk(eiωl)Bj(e
iωl)

∣∣∣
≤ ΩBkBj

(
2π

N

)

≤ 2π

N

(
‖Bj‖∞

∥∥∥∥dBkdz

∥∥∥∥
∞

+ ‖Bk‖∞
∥∥∥∥dBjdz

∥∥∥∥
∞

)

≤ 2π

N

(
1 + r

1− r

)2

(|k|+ |j|) ,

where the last equality has followed from the mean-value theorem for integrals and,
for each l, sl, lies in the interval (2π

N (l − 1), 2π
N l). Thus from ‖A‖22 ≤

∑
k,l |Ak,l|2,

p ≥ 3, and the last inequality above, we get∥∥∥∥I − 1

N
Θ∗
NΘ

∥∥∥∥
2

≤ 4π

N

(
1 + r

1− r

)2

p2 ≤ 2γ.(3.16)
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Hence using ‖A‖22 = ‖A∗A‖2 and
√

1 + x ≤ 1+(x/2), |x| ≤ 1, we obtain the following
inequalities: ∥∥∥∥ΘN

N
1
2

∥∥∥∥
2

≤ 1 + γ,

∥∥∥∥ΘN

N
1
2

∥∥∥∥
min
≥ 1− γ,(3.17)

where ‖A‖min denotes the smallest nonzero singular value of A. Therefore

‖Θ†
NEN‖2 ≤

‖ΘN‖2 ‖EN‖2
N

1
2 ‖ΘN‖2min

≤ 1 + γ

1− γ
‖EN‖∞.(3.18)

Thus from (3.15), (3.16), and (3.18) we get

‖TNEN − ẽN‖∞ ≤ 2γ ‖wp‖2 1 + γ

1− γ

(
1 + r

1− r

) 1
2

‖EN‖∞
(3.19)

≤ 4γ
1 + γ

1− γ

(
1 + r

1− r

) 1
2

p
1
2 ‖wp‖∞ ‖EN‖∞,

where the second inequality follows from ‖wp‖2 ≤ (2p + 1)
1
2 ‖wp‖∞.

Assuming p ≥ 3 and γ ≤ 1
3 , an application of the triangle inequality to (3.13) and

(3.19) yields

sup
‖EN‖∞≤ε

‖TNEN −WNPNEN‖∞ ≤
{
p−

1
2 + 4

1 + γ

1− γ

(
1 + r

1− r

) 1
2

}
p

1
2 γ ‖wp‖∞ ε

≤ 9

(
1 + r

1− r

) 1
2

p
1
2 γ ‖wp‖∞ ε.

Hence, from the above inequality and p ≥ 3, we have

‖TN −WNPN‖ ≤ 76

(
1 + r

1− r

) 5
2

‖wp‖∞ p
5
2

N
,

which we set out to prove. Finally, γ ≤ 1
3 is implied by (3.7).

Since the system to be identified has a real-valued impulse response, its transfer
function G(z) must satisfy the complex-conjugate symmetry:

G(e−iωk) = G(eiωk), k = 1, . . . , N.(3.20)

Therefore it suffices to measure the frequency response at frequencies up to π. Then
the frequency response on (π, 2π) is obtained from (3.20). Thus without loss of gen-
erality we assume that EN defined in (3.1) obeys (3.20), which forces EN to be real-
valued at the frequencies 0 and π. That can simply be satisfied by taking the real parts
of EN at those frequencies. Assuming that the frequencies are ordered as ωk < ωk+1,
k = 1, . . . , N , a subset satisfying (3.4) can be extracted from {ωk, k = 1, . . . , N} by
the following process.

Regularization. Let κN be the maximum frequency gap defined by

κN
∆
= max

{
max

1≤k<N
(ωk+1 − ωk) , 2π + ω1 − ωN

}
.(3.21)
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Let N ′ be the largest integer rounding 2π
κN

down. For j = 1, . . . , N ′, pick one frequency

ωkj from each interval [2π(j−1)
N ′ , 2πj

N ′ ) and let e′j
∆
= ekj and ω′

j
∆
= ωkj .

Thus {ω′
j , j = 1, . . . , N ′} satisfies (3.7), and Lemma 3.1 applies to the subset of

the data {e′j , j = 1, . . . , N ′}. Henceforth, without loss of generality, we set N = N ′

and kj = j for all j. The regularization process does not require two adjacent points
to be well separated. Recall the robustness definition that excludes prior information
beyond G(z) ∈ A(D). By removing closely spaced frequencies, we don’t expect to
lose much information.

Since ‖PN‖ = 1, from Lemma 3.1 we have

‖TN‖ ≤ ‖WN‖+ ‖wp‖∞Kp.(3.22)

Assuming supp ‖wp‖∞ < ∞ and p = o(N
2
5 ), (3.22) then implies supN ‖TN‖ < ∞ if

supN ‖WN‖ <∞. In addition to supN ‖WN‖ <∞, if the following holds

lim
p→∞wp(k) = 1 for all k,(3.23)

then ‖WNf − f‖∞ → 0 for all f ∈ C(T) [11]. This implies by Lemma 3.1 that the
sequence of operators TN defined in (3.3) asymptotically recovers continuous functions
from noise-free samples.

Given a set of arbitrary uniformly bounded basis functions, the problem of finding
a window function that satisfies

sup
N
‖WN‖ = sup

p
max
s

∫ π

−π

∣∣∣∣∣∣
p∑

k=−p
wp(k)Bk(eis)Bk(e

iθ) dθ

∣∣∣∣∣∣ <∞(3.24)

is nontrivial. In section 2, we demonstrated that (3.24) holds for the general or-
thonormal basis functions and the de la Vallée Poussin window function. We combine
Lemma 2.3 and Lemma 3.1 to obtain the following important result.

Lemma 3.2. Consider the general orthonormal basis functions defined by (1.3),
(1.7), (1.4), and (1.8). Let m(N) be a nonnegative integer-valued function. Let p =
n(2m+ 1) and

δ̂m(G)
∆
= inf

{
‖f −G‖∞ : f ∈ sp{Bj}n(m+1)

j=0

}
.(3.25)

Let χm be as in (2.4). Define the preidentified model:

G̃N (z)
∆
=

p∑
k=−p

χm(k) [Θ†
NEN ](k)Bk(z).(3.26)

Let C1, cm, and Kp be as in (2.17) and (3.9). Then for all G(z) ∈ A(D),

sup
‖ν‖∞≤ε

‖G̃N −G‖∞ ≤ δ̂m(G) + (3C1 + 3cm +Kp)
(
δ̂m(G) + ε

)
.(3.27)

Proof. Decompose G as G = g + h, where g ∈ sp{Bj}n(m+1)
j=0 and h is a min-

imizing solution in (3.25). Let UN
∆
= [g(eiω1) · · · g(eiωN )]T and YN

∆
= [h(eiω1) +

ν1 · · · h(eiωN ) + νN ]T . Consider TN in (3.3) with wp = χm. Thus EN = UN + YN
and WN = Vm. Since TN is linear,

G̃N = TNEN = TNUN + TNYN .
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Note that TNUN = g(z) since g ∈ sp{Bj}n(m+1)
j=0 and χm(k) = 1, k = 0, . . . , n(m+1).

To bound TNYN , we first derive an upper bound for ‖TN‖ as follows:

‖TN‖ ≤ ‖WN‖+ ‖wp‖∞Kp

= ‖Vm‖+Kp

≤ (2‖F2m+1‖+ ‖Fm‖) +Kp

≤ 3(C1 + cm) +Kp,

where the second inequality follows from (2.3), and the third from (2.10) and Lemma 2.3.
Hence

‖TNYN‖∞ ≤ ‖TN‖‖YN‖
≤ (3C1 + 3cm +Kp) (‖h‖∞ + ‖ν‖∞)

≤ (3C1 + 3cm +Kp)
(
δ̂m(G) + ε

)
,

where the last inequality follows from ‖h‖∞ = δ̂m(G). Thus

‖G− G̃N‖∞ = ‖h− TNYN‖∞
≤ ‖h‖∞ + ‖TNYN‖∞
≤ δ̂m(G) + (3C1 + 3cm +Kp)

(
δ̂m(G) + ε

)
.

Taking the supremum of the left-hand side with respect to ν completes the
proof.

Now we are in a position to state the main result of this paper in the next section.

4. Two-stage nonlinear algorithm. In the previous section, we computed
an approximant to the system from the noisy data. Although this estimate is close
enough to the system so that it satisfies the criterion in (1.6), it can not be taken as
the identified model since it contains unstable dynamics. The stable identified model
is then obtained from G̃N by solving the following nonlinear optimization problem
known as the Nehari distance problem:

ĜN
∆
= arg min

f∈H∞
‖G̃N − f‖∞.(4.1)

The Nehari problem was first used by Helmicki, Jacobson, and Nett [18] to solve
the identification problem in H∞ formulated in section 1. Notice from (4.1) the
following inequality:

‖ĜN −G‖∞ ≤ 2 ‖G̃N −G‖∞(4.2)

from which the main result of this paper follows.
Theorem 4.1. Let ĜN and κN be as in (4.1) and (3.21). Suppose κN → 0.

Then

lim
ε→0

N→∞
sup

‖ν‖∞≤ε
‖ĜN −G‖∞ = 0 for all G ∈ A(D),(4.3)

and the convergence is robust. Furthermore,

sup
‖ν‖∞≤ε

‖ĜN −G‖∞ ≤ 2δ̂m(G) + 2 (3C1 + 3cm +Kp)
(
δ̂m(G) + ε

)
,(4.4)
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where p = n(2m+ 1), and C1, cm, Kp, δ̂m(G) are defined by (2.17), (3.9), (3.25).

Assuming m = o(N
2
5 ), then from (4.4) asymptotically in N

sup
‖ν‖∞≤ε

‖ĜN −G‖∞ ≤ 2(1 + 3C1) δ̂m(G) + 6C1ε.

The right-hand side converges to zero at a geometric rate of m when the data are
noise-free and the identified system is exponentially stable. This bound is similar
to the asymptotic error bound computed in [6] for the trigonometric basis {eikθ}.
This is not unexpected for the general orthonormal basis functions, since H2(D) can
be decomposed into at most n orthogonal subspaces by means of an inner function
constructed from the chosen n basis poles. Then, intuitively, a system lying in A(D)
can be approximated on the decomposing subspaces, although how this could be
achieved is not clear.

A drawback of the algorithm is the amount of required data. The requirement
m = o(N

2
5 ) is severe. The minimax algorithm studied in [2] principally due to Mäkilä

and Partington, on the other hand, has a modest requirement m = O(N). The
minimax algorithm is, however, computationally expensive, in particular for large
values of m.

5. Example. In this section, we use a simulation example to illustrate the use
of the generalized basis functions defined by (1.3)–(1.4) in an iterative-identification
scheme. In the example, the Nehari step is omitted and each iteration step involves
the estimation of a large-order model followed by a model reduction step leading to a
new set of basis poles.

We consider the identification of a fifth-order system with poles (in the usual
stability notion) 0.95±0.20i, 0.85±0.10i, 0.55, and zeros 0.96±0.28i, 0.96±0.17i. The
transfer function of the system is normalized so that its H∞ norm satisfies ‖G‖∞ = 1.
This system was used in [39, 7] to illustrate the use of the basis functions in a one-step
identification algorithm.

As in [7], we assume N = 500 frequency response measurements

ek = G(eiωk) + νk, k = 1, . . . , N,(5.1)

are available, where ωk are equally spaced on the interval [0, 3] and the disturbances
νk are bounded random variables

νk = 0.1 eiαk ,

where αk are independent and uniformly distributed random variables in the interval
[0, 2π]. Note that, by this choice of frequencies, the frequency response is not on a
uniform grid of frequencies. For a comparison with approximation results, we also
consider the possibility ν = 0 in (5.1).

We will estimate G from the data (5.1) by the following iterative algorithm. First,
using the basis functions in (1.3) with

zk =

{
0.2, k odd,
0.9, k even,

a high-order model is computed from (5.1) by the simple least-squares method as

H(0)(z) =

2m∑
k=0

[Φ†EN ]kBk(z),(5.2)
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where EN is as defined in (3.1), and

Φ =




1 · · · B2m(eiω1)
...

. . .
...

1 · · · B2m(eiωN )


 .(5.3)

This simple choice of basis functions represents both slow and fast dynamics in the
model structure by the Laguerre functions. In the simulation, we fixed the number of
basis functions as 21.

We reduced H(0) to a fifth order model denoted by Ĝ
(0)
N , by using the subspace-

based identification algorithm in [26] for model reduction purposes. The input to the
algorithm in [26] was 4096 equally spaced frequency response data on [0, 2π]. Note
that this amounts to evaluating Φ on a uniform grid of 4096 frequencies for which
fast algorithms are known to exist. The size of the Hankel matrix in the subspace
algorithm was chosen to be 256 by 256. These values will be used throughout the
iterations. The step prior to forming a Hankel matrix was a 4096-point inverse fast
Fourier transform.

The reduced model starts the iterations. Let z
(1)
1 , . . . , z

(1)
5 denote the inverses of

the poles of Ĝ
(0)
N (z). The updated basis functions B

(1)
0 , . . . , B

(1)
20 are computed from

(1.3) with z
(1)
0 = 0 and

z
(1)
j+5m = z

(1)
j , j = 1, . . . , 5, m = 1, 2, 3.

Then H(0) in (5.2) is updated to

H(1)(z) =

20∑
k=0

[Φ†EN ]kB
(1)
k (z),

where Φ in (5.3) is computed with the updated basis functions. Next H(1) is reduced

to a fifth order model Ĝ
(1)
N , using the same model reduction technique. This completes

the first iteration. The next iteration starts with the inverses of the poles of Ĝ
(1)
N (z)

in place of z
(2)
1 , . . . , z

(2)
5 , and so on.

The quality of the estimated models will be assessed by a measure based on the
fit between the data and the model. For this purpose, the maximum error defined as

‖Ĝ(k)
N − EN‖m,∞ ∆

= max
1≤j≤N

∣∣∣Ĝ(k)
N (eiωj )− ej

∣∣∣
will be used. The iterations are then terminated when the sequence {‖Ĝ(k)

N −EN‖m,∞}
seems to have reached a steady state.

5.1. Results. The results of the simulation are given in Tables 5.1 and 5.2. The
iterations converged at k = 2 for the noise-free data and at k = 1 for the noisy data.

For the noisy data, the poles of Ĝ
(1)
N are 0.94± 0.20i, 0.86± 0.10i, 0.53, and the four

significant zeros are 0.96±0.16i, 0.96±0.28i. They all agree well with the system poles
and zeros. Thus the major source of the identification errors in Table 5.2 appears to
be the measurement error ν. This observation is justified by computing the poles of

Ĝ
(0)
N as 0.91± 0.12i, 0.90± 0.17i, 0.52. In Figure 5.1, the magnitudes of G(eiωk) and

Ĝ
(1)
N (eiωk), and the identification error Ĝ

(1)
N (eiωk)−G(eiωk), are plotted for the noisy

data. In the reduction of H(1)(z) for the noisy data, the first seven singular values of
the Hankel matrix were computed as 0.5471, 0.2407, 0.1926, 0.0973, 0.0963, 0.0369,
0.0367. The choice of (final) model order was based on this distribution.
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Table 5.1
Results for the noise-free data, where k is the number of iterations.

k ‖H(k) − EN‖m,∞ ‖Ĝ(k)N − EN‖m,∞
0 1.07× 10−1 1.00× 10−1
1 3.48× 10−3 5.21× 10−4
2 3.58× 10−12 5.54× 10−6
3 8.31× 10−13 5.54× 10−6
4 8.24× 10−13 5.54× 10−6

Table 5.2
Results for the noisy data, where k is the number of iterations.

k ‖H(k) − EN‖m,∞ ‖Ĝ(k)N − EN‖m,∞
0 0.1890 0.1859
1 0.1383 0.1237
2 0.1387 0.1228
3 0.1390 0.1229
4 0.1390 0.1229
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Fig. 5.1. The magnitude plots of G(eiωk ), Ĝ
(1)
N (eiωk ), computed from the noisy data, and the

identification error Ĝ
(1)
N (eiωk )−G(eiωk ).

5.2. Discussion. This example has demonstrated that the iterative-identification
scheme works. The convergence analysis of this scheme and its relation to other
iterative-identification schemes [35, 23] need to be studied. The convergence proper-
ties of this scheme with respect to unknown-but-bounded noise are studied in [5].

6. Conclusions. In this paper, we presented a robust two-stage algorithm that
uses general orthonormal basis functions to identify linear-time invariant systems
from nonuniformly spaced frequency response measurements. We also derived worst-
case identification error bounds in the H∞ norm, assuming that the number of basis
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functions does not increase faster than a certain rate relative to the amount of data.
The error convergence rate of the algorithm as a function of the number of basis
functions, for every choice of basis functions, was shown to be on the order of the best
possible.

The work initiated in this paper could be continued in several directions. First,
the possibility of extending these results to arbitrary complete bases in A(D) is worth
investigating. The second, and practically more relevant, problem is the development
of iterative pole updating schemes to improve the quality of transfer function estimates
in applications where model complexity is restricted.
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Abstract. We study the existence of positive and negative semidefinite solutions of algebraic
Riccati equations (ARE) corresponding to linear quadratic problems with an indefinite cost func-
tional. The formulation of reasonable necessary and sufficient conditions for the existence of such
solutions is a long-standing open problem. A central role is played by certain two-variable polynomial
matrices associated with the ARE. Our main result characterizes all unmixed solutions of the ARE
in terms of the Pick matrices associated with these two-variable polynomial matrices. As a corollary
of this result, we find that the signatures of the extremal solutions of the ARE are determined by
the signatures of particular Pick matrices.

Key words. algebraic Riccati equation, existence of semidefinite solutions, two-variable poly-
nomial matrices, Pick matrices, dissipative systems

AMS subject classifications. 93C05, 93C15, 49N05, 49N10

PII. S036301290036851X

1. Introduction and problem statement. Let A ∈ R
n×n and B ∈ R

n×m be
such that (A,B) is a controllable pair. Let Q ∈ R

n×n be symmetric and let R ∈ R
m×m

be nonsingular and symmetric. Finally, let S ∈ R
m×n. The quadratic equation

ATK +KA+Q− (KB + ST )R−1(BTK + S) = 0(1)

in the unknown n × n matrix K is called the (continuous-time) algebraic Riccati
equation (the ARE). Since its introduction in control theory at the beginning of the
sixties, the ARE has been studied extensively because of its prominent role in linear
quadratic optimal control and filtering, H∞-optimal control, differential games, and
stochastic filtering and control. We refer to the papers collected in [2] for a discussion
of the ARE and its applications and for an overview of the existing literature.

In this paper, we restrict ourselves to the case in which R is positive definite.
However, the weighting matrix

M :=

(
Q ST

S R

)

is allowed to be indefinite. Our aim is to address a long-standing open problem
concerning the ARE, namely, the problem of formulating reasonable necessary and
sufficient conditions for the existence of at least one real positive semidefinite solution
or of at least one real negative semidefinite solution. We want to stress that the main
difficulty is the indefiniteness of M . For the case in which M is positive semidefinite,
the problem is already well understood. For this case, necessary and sufficient condi-
tions for the existence of at least one real positive semidefinite solution were obtained
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in [5] and [6]. Basically, these necessary and sufficient conditions can be formulated as
follows: factor M = (C D)T (C D). Then the ARE (1) has at least one real positive
semidefinite solution if and only if the system (A,B,C,D) is output stabilizable (see
also [17], [23], or [24]).

For indefinite weighting matricesM , the problem was listed in [13] among a series
of open problems in the field of systems and control. Partial results for this problem
were obtained in [19, 20, 1, 7, 8]. For an overview and a discussion of these results, as
well as their relation to the classical problem of the existence of nonnegative storage
functions for dissipative systems, we refer to [13].

In the present paper we will present a solution to this open problem, under the
assumption that the pair (A,B) is controllable. It will be proven that the signs of the
smallest and largest real symmetric solution, respectively, depend on the signs of cer-
tain constant n×n matrices (so called Pick matrices, associated with the ARE), which
are easily constructed from the parameters appearing in the ARE. A necessary and
sufficient condition for the existence of a real symmetric positive semidefinite solution
of the ARE (1) will turn out to be that (i) it has at least one real symmetric solu-
tion, and (ii) a suitable Pick matrix is negative semidefinite. Likewise, the existence
of at least one negative semidefinite solution is determined by the positive semidef-
initeness of a suitable Pick matrix. In the process of establishing these conditions
we obtain a number of intermediate results, among which are a new characterization
of all unmixed real symmetric solutions of the ARE, and a new characterization of
the supremal and infimal real symmetric solutions, all in terms of the Pick matrices
associated with the ARE.

A few words on notation are required at this point. In this paper we adopt the
usual symbols R and C in order to denote the real and complex numbers, respectively.
The open and closed right half-planes of C are denoted, respectively, by C

0
+ and C+.

Given λ ∈ C, its complex conjugate is denoted by λ̄. The space of n-dimensional
real, respectively complex, vectors is denoted by R

n, respectively C
n, and the space

of m× n real, respectively complex, matrices, by R
m×n, respectively C

m×n.

The symbol R
•×n denotes the space of real matrices with n columns, and R

m×•

denotes the space of real matrices with m rows. Given two column vectors x and y,
we denote with col(x, y) the vector obtained by stacking x over y. If A ∈ R

m×n,
then AT ∈ R

n×m denotes its transpose, and if A ∈ C
m×n, then A∗ ∈ C

n×m denotes
its conjugate transpose ĀT . If A ∈ C

n×n is Hermitian, i.e., A∗ = A, then we define
the signature of A as the triple sign(A) = (n−, n0, n+), where n− is the number of
negative eigenvalues of A, n0 the algebraic multiplicity of 0 as an eigenvalue of A, and
n+ the number of positive eigenvalues of A.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted
by R[ξ]; analogously, the ring of two-variable polynomials with real coefficients in the
indeterminates ζ and η is denoted by R[ζ, η]. The space of all n × m polynomial
matrices in the indeterminate ξ is denoted by R

n×m[ξ], and that consisting of all
n ×m polynomial matrices in the indeterminates ζ and η by R

n×m[ζ, η]. The space
of polynomial matrices with real coefficients in the indeterminate ξ with n columns
is denoted by R

•×n[ξ], and R
m×•[ξ] is the space of polynomial matrices with m rows.

Given a matrix R ∈ R
n×m[ξ], we define R∼(ξ) := RT (−ξ) ∈ R

m×n[ξ]. If F ∈ R
m×n[ξ],

then F can be written as F (ξ) = F0 + F1ξ + · · · + FLξ
L, where Fj ∈ R

m×n for
j = 0, 1, . . . , L. We call the m × (L + 1)n matrix F̃ :=

(
F0 F1 . . . FL

)
the

coefficient matrix of F . It is easy to see that
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F (ξ) = F̃




In
Inξ
...

Inξ
L


 .

For a given finite-dimensional Euclidean space X, we denote by C∞(R, X) the set
of all infinitely differentiable functions from R to X, and by D(R, X) the subset of
C∞(R, X) consisting of those functions having compact support. Finally, if K is a
symmetric n× n matrix, the quadratic form on R

n defined by x �→ xTKx is denoted
by | x |2K .

2. Linear differential systems and quadratic differential forms. In this
section we give a brief review of the notion of linear differential systems. The reader is
referred to the textbook [9] or to [21] for a thorough exposition. A linear differential
system is a linear subspace B of C∞(R,Rq) of all solutions w of a given system of linear,
constant coefficient, higher order differential equations. Such a system of differential
equations can always be represented as a single equation

R

(
d

dt

)
w = 0,(2)

where R ∈ R
•×q[ξ] is a real polynomial matrix with q columns. The linear space B is

called the behavior of the linear differential system, and (2) is called a kernel repre-
sentation of B. The variable w is called the manifest variable of B. An alternative way
to represent the behavior of a linear differential system is as an image representation.
If M ∈ R

q×d[ξ] and B = {w ∈ C∞(R,Rq) | ∃ l ∈ C∞(R,Rd) such that w = M( ddt )l},
then we call

w =M

(
d

dt

)
l(3)

an image representation of B. Not all behaviors admit an image representation; in-
deed, a behavior can be represented in image form if and only if every one of its
kernel representations is associated with a polynomial matrix R ∈ R

•×q[ξ] such that
rank(R(λ)) is constant for all λ ∈ C, or equivalently, such that B is controllable. The
image representation (3) of B is called observable if (M( ddt )l = 0) =⇒ (l = 0). It can
be shown that this is the case if and only if the matrix M(λ) has full column rank for
all λ ∈ C.

We proceed to review the notion of state maps introduced in [12]. We will consider
only the case of image representations in this paper. Let (3) be an image represen-
tation of the behavior B. A polynomial matrix X ∈ R

n×d[ξ] is said to induce a state
map for B (or, simply, for M) if the latent variable x := X( ddt )l satisfies the axiom of
state. This means that if we define the full behavior as

Bfull =
{
(w, x) ∈ C∞(R,Rq × R

n) | there exists

l ∈ C∞(R,Rd) such that w =M

(
d

dt

)
l, x = X

(
d

dt

)
l

}
,

then (w1, x1), (w2, x2) ∈ Bfull and x1(0) = x2(0) imply that (w1, x1) ∧ (w2, x2), the
concatenation of (w1, x1) and (w2, x2) at t = 0, belongs to the closure in the topology
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of L1
loc of Bfull (see [12]). Now assume that the image representation (3) is observable.

Then a state map for the system can be computed as follows. If necessary, permute
the components of w so that

M =

(
U
Y

)
(4)

with U ∈ R
d×d[ξ], det(U) �= 0, and Y U−1 is a proper rational matrix (it can be shown

that such a permutation always exists). Now consider the set

{r ∈ R
1×d[ξ] | rU−1 is strictly proper}.(5)

It is not difficult to show that this set is a vector space over R. It has been proved in
[12] that X is a state map for (3) if and only if its rows (interpreted as elements of the
vector space R

1×d[ξ] over R) span the vector space (5), and is a minimal state map
(i.e., inducing a state variable of minimal possible dimension) if and only if its rows
form a basis for (5). If this holds true, the number of rows of X is called the McMillan
degree of M , denoted n(M), or, referring to the behavior being represented in image
form, the McMillan degree of B, denoted n(B). It can be shown (see Proposition 3.5.5
of [12]) that n(M) = deg(det(U)).

In many modeling and control problems it is necessary to study certain function-
als of the system variables and their derivatives. In the context of linear systems
these functionals are often taken to be quadratic. An efficient representation for such
quadratic functionals by means of two-variable polynomial matrices has been proposed
in [18]. In this section we review the definitions and results of such a two-variable
polynomial framework, which are used in the rest of the paper.

Let Φ ∈ R
q1×q2 [ζ, η]; then Φ can be written in the form

Φ(ζ, η) =
N∑

h,k=0

Φh,kζ
hηk,

where Φh,k ∈ R
q1×q2 and N is an integer. The two-variable polynomial matrix Φ

induces a bilinear functional acting on infinitely differentiable trajectories as follows:

LΦ : C
∞(R,Rq1)× C∞(R,Rq2) −→ C∞(R,R),

LΦ(w1, w2) =

N∑
h,k=0

(
dhw1

dth

)T
Φh,k

dkw2

dtk
.

If Φ is a symmetric two-variable polynomial matrix, i.e., if q1 = q2 and Φh,k = ΦTk,h
for all h, k, then it induces also a quadratic functional QΦ : C

∞(R,Rq) −→ C∞(R,R)
defined byQΦ(w) := LΦ(w,w). We will callQΦ the quadratic differential form (QDF)
associated with Φ. We denote the set of all symmetric q × q two-variable polynomial
matrices by R

q×q
s [ζ, η]. The QDF QΦ is called nonnegative, denoted QΦ ≥ 0, if

QΦ(w) ≥ 0 for all w ∈ C∞(R,Rq).
With every Φ ∈ R

q×q
s [ζ, η] we associate its coefficient matrix, which is defined as

the infinite symmetric matrix with a finite number of nonzero elements, given by

Φ̃ :=




Φ0,0 Φ0,1 . . . Φ0,N . . .
Φ1,0 Φ1,1 . . . Φ1,N . . .
...

...
...

...
...

ΦN,0 ΦN,1 . . . ΦN,N . . .
...

...
...

...
...



.
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Clearly, QΦ ≥ 0 if and only if Φ̃ ≥ 0.
The association of two-variable polynomial matrices with QDFs allows us to de-

velop a calculus that has applications in stability theory, optimal control, and H∞-
control (see [18], [16] and [22]). We restrict our attention to a couple of concepts that
are used extensively in this paper. One of them is the map ∂ : Rq×qs [ζ, η] −→ R

q×q[ξ],
defined by

∂Φ(ξ) := Φ(−ξ, ξ).
Observe that for every Φ ∈ R

q×q
s [ζ, η], ∂Φ is para-Hermitian, i.e., ∂Φ = (∂Φ)∼.

Another feature of the calculus of QDFs that is used in this paper is the derivative
of a QDF. Given a QDF QΦ we define its derivative as the QDF d

dtQΦ defined by

( ddtQΦ)(w) :=
d
dt (QΦ(w)). QΦ is called the derivative of QΨ if d

dtQΨ = QΦ. In terms
of the two-variable polynomial matrices associated with the QDFs, this relationship
is expressed equivalently as (ζ + η)Ψ(ζ, η) = Φ(ζ, η).

In this paper, we also use integrals of QDFs. In order to make sure that the
integrals exist, we assume that the trajectories on which the QDF acts are of compact
support, that is, they belong to D(R,Rq). Given a QDF QΦ, we define its integral as
the functional ∫

QΦ : D(R,R
q) −→ R,∫

QΦ(w) =

∫ +∞

−∞
QΦ(w)dt.

Questions such as when the integral of a QDF is a positive semidefinite operator arise
naturally in the study of dissipativity. We call a QDF QΦ average nonnegative if∫
QΦ ≥ 0, i.e.,

∫∞
−∞QΦ(w)dt ≥ 0 for all w ∈ D(R,Rq). A QDF can be tested for

average nonnegativity by analyzing the behavior of the para-Hermitian matrix ∂Φ on
the imaginary axis. Indeed, it is proven in [18] that∫

QΦ ≥ 0⇐⇒ ∂Φ(iω) ≥ 0 ∀ ω ∈ R.(6)

3. Storage functions and polynomial spectral factorization. In the con-
text of dissipative systems, a QDF measures the power going into a system: its
integral over the real line then measures the net flow of energy going into the system.
The concept of storage function emerges in the framework of QDFs as follows. Let
Φ ∈ R

q×q
s [ζ, η]; the QDF QΨ is said to be a storage function for QΦ (or Ψ is a storage

function for Φ) if the following dissipation inequality holds:

d

dt
QΨ ≤ QΦ.

Storage functions are related to dissipation functions, which we now define. A QDF
Q∆ is a dissipation function for QΦ (or ∆ is a dissipation function for Φ) if Q∆ ≥ 0
and

∫
QΦ =

∫
Q∆. There is a close relationship between storage functions, average

nonnegativity, and dissipation functions.
Proposition 1. Let Φ ∈ R

q×q
s [ζ, η]. The following conditions are equivalent:

1.
∫
QΦ ≥ 0;

2. Φ admits a storage function;
3. Φ admits a dissipation function.
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Moreover, there exists a one-to-one relation between storage functions Ψ and dissipa-
tion functions ∆ for Φ, defined by

d

dt
QΨ = QΦ −Q∆

or, equivalently,

(ζ + η)Ψ(ζ, η) = Φ(ζ, η)−∆(ζ, η).(7)

Since storage functions measure the energy stored inside a system, it is to be
expected that they are related to the memory, to the state, of the system. This
intuition has been formalized in [15] in more general terms than those needed in the
rest of this paper. For our purposes, the following result from [15] will do.

Proposition 2. Let B be represented by w = M( ddt )l, and let X ∈ R
n×d[ξ]

induce a state map for B. Let P be a symmetric q × q matrix, and define the two-
variable polynomial matrix Φ(ζ, η) = MT (ζ)PM(η). Let QΨ be a storage function
for QΦ. Then QΨ is a quadratic function of the state, i.e., there exists a symmetric
n × n matrix K such that QΨ(l) = | X( ddt )l |2K for all l ∈ C∞(R,Rd); equivalently,
Ψ(ζ, η) = XT (ζ)KX(η).

Given an average nonnegative QDF, in general there exist an infinite number
of storage functions. It turns out that they all lie between two extremal storage
functions.

Proposition 3. Let
∫
QΦ ≥ 0. Then there exist storage functions Ψ− and Ψ+

such that any other storage function Ψ for Φ satisfies

QΨ− ≤ QΨ ≤ QΨ+ .

In the following we call QΨ− the smallest and QΨ+ the largest storage function
of QΦ.

In many cases it is of interest to compute explicitly a storage function for a given
QDF. We review here a procedure to compute the extremal storage functions QΨ−
and QΨ+ introduced in Proposition 3. For this we need to introduce the notion
of polynomial spectral factorization of a para-Hermitian polynomial matrix. Let P
be a para-Hermitian polynomial matrix. A factorization P = F∼F , with F a real
polynomial matrix, is called a polynomial spectral factorization of P , and F is called
a spectral factor of P . The factorization is called Hurwitz if F is square and the roots
of det(F ) lie in C−. It is called semi-Hurwitz if the roots of det(F ) lie in C

0
−. The

factorization is called (semi-)anti-Hurwitz if F is square and the roots of det(F ) lie
in C+ (respectively, in C

0
+). It is well known (see, for example, [10]) that P has a

semi-Hurwitz and a (semi-)anti-Hurwitz spectral factorization if and only if P (iω) ≥ 0
for all ω ∈ R, and a Hurwitz and an anti-Hurwitz spectral factorization if and only
if P (iω) > 0 for all ω ∈ R. The following result shows how to use semi-Hurwitz and
semi-anti-Hurwitz polynomial spectral factorizations of ∂Φ to compute the extremal
storage functions of Φ.

Proposition 4. Let Φ(ζ, η) ∈ R
•×•
s [ζ, η]. Assume det(∂Φ) �= 0 and ∂Φ(iω) ≥ 0

for all ω ∈ R. Then the smallest and the largest storage functions Ψ− and Ψ+ of Φ
can be constructed as follows. Let H and A be semi-Hurwitz, respectively semi-anti-
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Hurwitz, polynomial spectral factors of ∂Φ. Then

Ψ+(ζ, η) =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η
,

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

It also turns out that if P is para-Hermitian, and if P (iω) > 0 for all ω ∈ R, then
for every factorization of the scalar polynomial det(P ) as det(P ) = f∼f , where f and
f∼ have no common roots, there exists a polynomial spectral factorization of P as
P = F∼F , with det(F ) = f . This result is taken from [3].

Proposition 5. Let P ∈ R
m×m[ξ] be para-Hermitian. Assume that P (iω) > 0

for all ω ∈ R. Then for every factorization det(P ) = f∼f , with f ∈ R[ξ] such that f
and f∼ are coprime, there exists F ∈ R

m×m[ξ] such that P = F∼F and det(F ) = f .

4. Pick matrices. In this section we discuss Pick matrices associated with aver-
age nonnegative quadratic differential forms. In the following, let Φ(ζ, η) ∈ R

q×q[ζ, η].
Assume that ∂Φ(iω) > 0 for all ω ∈ R. Since ∂Φ is para-Hermitian, the degree of the
polynomial det(∂Φ) is even, say 2n. Also, det(∂Φ(iω)) > 0 for all ω ∈ R, so det(Φ)
can be factored as f∼f with f ∈ R[ξ] such that f and f∼ are coprime. Of course,
for a given Φ there are many f ’s that satisfy these properties. With any such f , we
associate a Pick matrix, denoted by Tf .

Pick matrices are most easily introduced in the special case in which the singu-
larities of ∂Φ are semisimple, i.e., every singularity λ of ∂Φ has the property that its
algebraic multiplicity (its multiplicity as a root of det(∂Φ)) is equal to its geometric
multiplicity (i.e., q− rank(∂Φ(λ)), the rank deficiency at λ). For the moment, assume
this to be the case.

Let f ∈ R[ξ] be such that det(∂Φ) = f∼f and (f, f∼) coprime. Let λ1, λ2, . . . , λn
be the roots of f . We use the convention that if the algebraic multiplicity of λi is
mi, then it appears in this list mi times, and we have ordered the roots in such a
way that λ1, λ2, . . . , λm1 are equal, that λm1+1, λm1+2, . . . , λm1+m2 are equal, etc.
Clearly, the other singularities of ∂Φ are then −λ1,−λ2, . . . ,−λn, the roots of f∼.
Now for i = 1, 2, . . . , n, let vi ∈ C

q be such that

∂Φ(λi)vi = 0,

and such that v1, v2, . . . , vn are linearly independent. The Pick matrix associated
with f is now defined as the matrix

Tf :=




v∗1Φ(λ̄1,λ1)v1

λ̄1+λ1

v∗1Φ(λ̄1,λ2)v2

λ̄1+λ2
· · · v∗1Φ(λ̄1,λk)vn

λ̄1+λn

v∗2Φ(λ̄2,λ1)v1

λ̄2+λ1

v∗2Φ(λ̄2,λ2)v2

λ̄2+λ2
· · · v∗2Φ(λ̄2,λk)vn

λ̄2+λn
...

...
. . .

...
v∗nΦ(λ̄n,λ1)v1

λ̄n+λ1

v∗nΦ(λ̄n,λ2)v2

λ̄n+λ2
· · · v∗nΦ(λ̄n,λn)vn

λ̄n+λn



.(8)

Note that Tf = T ∗
f ∈ C

n×n, where 2n is the degree of det(∂Φ). Note that the n func-
tions eλ1tv1, e

λ2tv2, . . . , e
λntvn span an n-dimensional subspace of the 2n-dimensional

complex linear space of solutions of the system of differential equations

(∂Φ)

(
d

dt

)
w = 0.(9)
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In the general case in which the singularities of ∂Φ are not all semisimple, the def-
inition of Tf is also straightforward but notationally more involved. We will introduce
the Pick matrix in the general case now.

The definition is most easily understood against the background of computing
solutions to the system of differential equations (9). In general, a basis for the linear
space of solutions of (9) is obtained by analyzing the structure of the singularities of
the polynomial matrix ∂Φ. Again let det(∂Φ) = f∼f be a given factorization, with
deg(f) = n. Let λ1, λ2, . . . , λk be the roots of f . Again, this list of roots does not
necessarily consist of distinct complex numbers. In fact, we use the convention that if
a given root λi has geometric multiplicity ni, then we include it ni times in our list of
roots. Hence, λ1, λ2, . . . , λn1 are equal, λn1+1, λn1+2, . . . , λn1+n2

are equal, etc. It is
well known that there exist integers d1, d2, . . . , dk ≥ 1 such that d1+ d2+ · · ·+ dn1

=
m1, the algebraic multiplicity of λ1, dn1+1+ dn1+2+ · · ·+ dn1+n2 = m2, the algebraic
multiplicity of λn1+1, etc. The sum

∑
imi of the algebraic multiplicities is equal to

n, the degree of f .

The n-dimensional subspace of solutions of (9) with exponents in {λ1, λ2, . . . , λk}
is then computed as follows. Let ∂Φ(i) be the ith derivative of ∂Φ. For each i =
1, 2, . . . , k there exist di complex vectors ai,0, ai,1, . . . , ai,di−1 ∈ C

q such that




( 00 ) ∂Φ
(0)(λi) ( 10 ) ∂Φ

(1)(λi) · · · · · ·
(
di−1

0

)
∂Φ(di−1)(λi)

0 ( 11 ) ∂Φ
(0)(λi) · · · · · ·

(
di−1
1

)
∂Φ(di−2)(λi)

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0
(
di−1
di−1

)
∂Φ(0)(λi)







ai,0
ai,1
...
...

ai,di−1



= 0

(10)

and such that the n vectors ai,j are linearly independent. Using these vectors we form
the matrices Vi ∈ C

diq×di defined by

Vi :=




( 00 ) ai,0 ( 11 ) ai,1 · · · (
di−2
di−2

)
ai,di−2

(
di−1
di−1

)
ai,di−1

( 10 ) ai,1 ( 21 ) ai,2 · · · (
di−1
di−2

)
ai,di−1 0

...
... 0 0(

di−2
0

)
ai,di−2

(
di−1
1

)
ai,di−1

...
...(

di−1
0

)
ai,di−1 0 · · · 0 0



.

(11)

For i = 1, 2, . . . , k, define the matrix function Wi : R→ R
q×di by

Wi(t) := eλit
(
Iq×q tIq×q · · · tdi−1Iq×q

)
Vi,

and the matrix function W : R→ R
q×n by

W (t) :=
(
W1(t) W2(t) · · · Wk(t)

)
.

Then the columns of W form a basis for the n-dimensional subspace of solutions of
(9) with exponents in {λ1, λ2, . . . , λk}.

We now introduce the Pick matrix Tf associated with Φ and the factorization
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det(∂Φ) = f∼f . For i, j = 1, 2, . . . , k, define the nonsingular dj × dj matrix Λi,j by

Λi,j =




1 0 0 · · · · · · 0
−1

λ̄i+λj
1 0 · · · · · · 0

2!

(λ̄i+λj)2
−2!

λ̄i+λj
1 0 · · · 0

−3!

(λ̄i+λj)3
3!

(̄λi+λj)
2

−3!

λ̄i+λj
1

. . . 0

...
...

. . .
. . .

. . . 0
(−1)dj−1(dj−1)!

(λ̄i+λj)
dj−1 · · · · · · (dj−1)!

(λ̄i+λj)2
−(dj−1)!

λ̄i+λj
1



.(12)

Also, for i, j = 1, 2, . . . , k we define Θi,j ∈ C
diq×djq by

Θi,j :=




Φ(λ̄i, λj)
∂Φ
∂η (λ̄i, λj) · · · ∂dj−1Φ

∂ηdj−1 (λ̄i, λj)

∂Φ
∂ζ (λ̄i, λj)

∂2Φ
∂ζ∂η (λ̄i, λj) · · · ∂djΦ

∂ζ∂ηdj−1 (λ̄i, λj)

...
...

. . .
...

∂di−1Φ
∂ζdi−1 (λ̄i, λj)

∂diΦ
∂ζdi−1∂η

(λ̄i, λj) · · · ∂di+dj−2Φ

∂ζdi−1∂ηdj−1 (λ̄i, λj)


 .(13)

Here, ∂i+jΦ
∂ζi∂ηj (ζ, η) denotes the (i, j)th partial derivative with respect to ζ and η of

Φ(ζ, η). We define the shift operator σ : C
diq×djq → C

diq×djq acting on matrices M
that are partitioned into q × q blocks as follows: if

M =




M1,1 M1,2 · · · M1,dj

M2,1 M2,2 · · · M2,dj
...

...
. . .

...
Mdi,1 Mdi,2 · · · Mdi,dj ,


 ,

then

σ(M) :=



0 0 · · · 0
0 M1,1 · · · M1,dj−1

...
...

. . .
...

0 Mdi−1,1 · · · Mdi−1,dj−1


 .

In terms of Θi,j and the shift-operator σ, for i, j = 1, 2, . . . , k, we define the matrices
Σi,j ∈ C

diq×djq by

Σi,j :=
1

λ̄i + λj
Θi,j +

1

(λ̄i + λj)2
σ(Θi,j) +

1

(λ̄i + λj)3
σ2(Θi,j) + · · ·

+
1

(λ̄i + λj)max(di,dj)−1
σmax(di,dj)−1(Θi,j).(14)

Here, for a given M , σ2(M) is defined as σ(σ(M)), etc. The Pick matrix associated
with Φ and the factorization det(∂Φ) = f∼f is now defined as the matrix Tf ∈ C

n×n,
Tf = (Ti,j)i,j=1,2,... ,k, where the (i, j)th block is the complex di × dj matrix given by

Ti,j := Λ
∗
j,iV

∗
i Σi,jVjΛi,j .(15)

Note that Tf is a Hermitian matrix.
For related material on Pick matrices, their application in interpolation problems,

and connections with systems and control, see [4], [25].
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5. The Riccati equation, linear matrix inequalities, and storage func-
tions. In this section we study the connection between the existence of real symmetric
solutions of the ARE and average nonnegativity of a given QDF associated with the
ARE.

We associate with the ARE (1) the system with manifest variable w = col(x, u)
represented by d

dtx = Ax+Bu, or equivalently

(
d
dtIn −A −B )( x

u

)
= 0.(16)

Equation (16) constitutes a kernel representation of the behavior

B = {col(x, u) ∈ C∞(R,Rn)× C∞(R,Rm) | (16) is satisfied}.(17)

A standing assumption in the remainder of this paper is that the pair (A,B) is
controllable. Under this assumption, B can be represented in image form. One such
representation can be computed as follows. LetX ∈ R

n×m[ξ] and U ∈ R
m×m[ξ] induce

a right coprime factorization of the rational matrix (ξIn−A)−1B, i.e., (ξIn−A)−1B =
X(ξ)U(ξ)−1 and

rank

(
X(λ)
U(λ)

)
= m

for all λ ∈ C. Then B is represented in observable image form as

(
x
u

)
=

(
X( ddt )

U( ddt )

)
l.(18)

Observe that any such X yields a minimal state map X( ddt ) for B.
Given the matrices Q = QT ∈ R

n×n, R = RT ∈ R
m×m, and S ∈ R

m×n, and the
polynomial matricesX and U , we define the symmetricm×m two-variable polynomial
matrix Φ by

Φ(ζ, η) =
(
X(ζ)T U(ζ)T

)( Q ST

S R

)(
X(η)
U(η)

)
.(19)

Note that if l and col(x, u) are related by (18), then the QDF QΦ associated with Φ
satisfies

QΦ(l) =
(
xT uT

)( Q ST

S R

)(
x
u

)
.

Of course, (ξIn − A)−1B admits many right coprime factorizations. If X1U
−1
1 =

X2U
−1
2 are two right coprime factorizations, then they are related by a unimodular

transformation: there exists a unimodular V such that X2 = X1V and U2 = U1V .
Hence the associated two-variable polynomial matrices are related by Φ1(ζ, η) =
V T (ζ)Φ2(ζ, η)V (η).

Example 6. In the Riccati equation (1), let A = ( 0 0
0 1 ) , B = ( 1 0

0 1 ) , Q = ( 1 aa 3 ) , R =
( 1 0
0 1 ), and S = (

0 0
0 0 ). Here a is a parameter taking values in R. Clearly, (ξI−A)−1B =

X(ξ)U(ξ)−1, withX(ξ) = ( 1 0
0 1 ), and U(ξ) =

( ξ 0
0 ξ−1

)
. The corresponding two-variable

polynomial matrix is Φ(ζ, η) =
( 1+ζη a

a 3+(ζ−1)(η−1)

)
.
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The next result connects the average nonnegativity of the QDF associated with
(19) with the existence of real symmetric solutions to the linear matrix inequality
associated with the ARE (1) and with the existence of storage functions for QΦ.

Theorem 7. Let Φ(ζ, η) be defined by (19), where X and U are such that
X(ξ)U(ξ)−1 is a right coprime factorization of (ξIn − A)−1B. Then the following
statements are equivalent:

1.
∫
QΦ ≥ 0;

2. there exists K = KT ∈ R
n×n such that | X( ddt )l |2K is a storage function for

QΦ;
3. there exists K = KT ∈ R

n×n such that the (n + m) × (n + m) symmetric
matrix

L(K) :=

(
Q−ATK −KA −KB + ST

−BTK + S R

)

satisfies L(K) ≥ 0.
In fact, for every K = KT ∈ R

n×n there holds

d

dt

∣∣∣∣X
(
d

dt

)
l

∣∣∣∣
2

K

= QΦ(l)−
∣∣∣∣∣
(

X( ddt )l

U( ddt )l

)∣∣∣∣∣
2

L(K)

(20)

for all l ∈ C∞(R,Rm); equivalently,

(ζ + η)XT (ζ)KX(η) = Φ(ζ, η)− ( X(ζ)T U(ζ)T
)
L(K)

(
X(η)
U(η)

)
.

Consequently, for K = KT ∈ R
n×n the following statements are equivalent:

(i) L(K) ≥ 0;
(ii) | X( ddt )l |2K is a storage function for QΦ;
(iii) ∣∣∣∣∣

(
X( ddt )l

U( ddt )l

)∣∣∣∣∣
2

L(K)

is a dissipation function for QΦ.
Proof. We prove the equivalence of (i),(ii), and (iii). The first part of the theorem

follows easily from this and from Proposition 1. We need the following lemma.
Lemma 8. Let X ∈ R

n×m[ξ] and U ∈ R
m×m[ξ] be such that X(ξ)U(ξ)−1 is a

right coprime factorization of (ξI −A)−1B. Then the mapping

C∞(R,Rm)→ R
n × R

m,

l �→
(
(X( ddt )l)(0)

(U( ddt )l)(0)

)

is surjective.
Proof of Lemma 8. Let (x0, u0) ∈ R

n × R
m. Let ũ ∈ C∞(R,Rm) be such that

ũ(0) = u0. Consider the differential equation ẋ = Ax + Bũ, x(0) = x0, and let
x̃ ∈ C∞(R,Rn) be its solution. Evidently,

col(x̃, ũ) ∈ im
(

X( ddt )

U( ddt )

)
,
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so there exists l ∈ C∞(R,Rm) such that
(

x̃
ũ

)
=

(
X( ddt )

U( ddt )

)
l.

Consequently,

(
x0
u0

)
=

(
x̃(0)
ũ(0)

)
=

(
(X( ddt )l)(0)

(U( ddt )l)(0)

)
.

This concludes the proof of the lemma.
We resume the proof of Theorem 7. Let K = KT ∈ R

n×n. We first prove that,
for all l, (20) holds; equivalently,

(ζ + η)X(ζ)TKX(η) = Φ(ζ, η)− ( X(ζ)T U(ζ)T
)
L(K)

(
X(η)
U(η)

)
.(21)

Indeed, from the fact that X(ξ)U(ξ)−1 = (ξI − A)−1B it follows that ξX(ξ) =
AX(ξ) +BU(ξ). Consequently,

(ζ + η)X(ζ)TKX(η) = X(ζ)TATKX(η) + U(ζ)TBTKX(η)

+ X(ζ)TKAX(η) +X(ζ)TKBU(η),

which can be rewritten as

(
X(ζ)T U(ζ)T

)( ATK +KA KB
BTK 0

)(
X(η)
U(η)

)
.

With Φ(ζ, η) defined by (19), equation (21) then follows immediately. Since, by
Lemma 8, the map

l �→
(
(X( ddt )l)(0)

(U( ddt )l)(0)

)

is surjective, we have∣∣∣∣∣
(

X( ddt )l

U( ddt )l

)∣∣∣∣∣
2

L(K)

≥ 0 ∀ l ∈ C∞(R,Rm)

if and only if L(K) ≥ 0. Thus the equivalence of (i), (ii), and (iii) follows immediately
from (20).

The equivalence of statements 1. and 2. follows from Propositions 1 and 2. The
equivalence of 2. and 3. is an immediate consequence of the equivalence of (i) and
(ii).

If we assume that the matrix R is positive definite, the result of Theorem 7 can
be sharpened, and a connection can be established between the QDF Φ(ζ, η) defined
in (19) and the ARE (1).

Theorem 9. Let Φ(ζ, η) be defined by (19), where X and U are such that
X(ξ)U(ξ)−1 is a right coprime factorization of (ξIn −A)−1B. Assume R > 0. Then
the following statements are equivalent:
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1.
∫
QΦ ≥ 0;

2. There exists a real symmetric solution to the ARE.
In fact, for every K = KT ∈ R

n×n the following conditions are equivalent:
(i) −K satisfies the ARE;
(ii) | X( ddt )l |2K is a storage function for QΦ with associated dissipation function

∆(ζ, η) =
(
X(ζ)T U(ζ)T

)
L(K)

(
X(η)
U(η)

)
= F (ζ)TF (η),

where

F (ξ) := R− 1
2 (−BTK + S)X(ξ) +R

1
2U(ξ);

(iii) | X( ddt )l |2K is a storage function for QΦ, and the rank of the coefficient

matrix of the QDF QΦ(l)− d
dt | X( ddt )l |2K is equal to m.

Proof. We begin by proving the implication 1. ⇒ 2. From condition 1. and the
equivalence in (6), we obtain ∂Φ(iω) ≥ 0 for all ω ∈ R. Since det(∂Φ) �= 0, there exists
a semi-Hurwitz factorization ∂Φ = H∼H, with det(H) �= 0. According to Proposition
4, this yields the smallest storage function as induced by the two-variable polynomial
matrix

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

By Proposition 2, there exists K = KT ∈ R
n×n such that Ψ−(ζ, η) = XT (ζ)KX(η).

We claim that −K satisfies the ARE. Indeed, as in the proof of Theorem 7, we have

HT (ζ)H(η) =
(
X(ζ)T U(ζ)T

)
L(K)

(
X(η)
U(η)

)
.(22)

Since det(H) �= 0, the coefficient matrix H̃ of H has full row rankm. Since by Lemma
8 the mapping l �→ col((X( ddt )l)(0), (U(

d
dt )l)(0)) is surjective, the coefficient matrix

of col(X(η), U(η)) has full row rank. Consequently, L(K) has rank m. Since R > 0,
rank(L(K)) = m if and only if the Schur complement of R in L(K) is zero, that is, if
and only if

Q−ATK −KA− (−KB + ST )R−1(−BTK + S) = 0,

in other words, if and only if −K satisfies the ARE. This concludes the proof of the
implication 1. ⇒ 2. The implication 2. ⇒ 1. follows from the implication (i) ⇒ (ii)
below.

Next, we prove the equivalence of (i), (ii), and (iii) of Theorem 9.
(i) ⇒ (ii). Assume −K satisfies the ARE. Then it is easily seen that

L(K) =
(
R−1/2(−BTK + S) R1/2

)T (
R−1/2(−BTK + S) R1/2

) ≥ 0.
From Theorem 7 it then follows that | X( ddt )l |2K is a storage function for QΦ, with

associated dissipation function FT (ζ)F (η), where F (ξ) = R−1/2(−BTK + S)X(ξ) +
R1/2U(ξ).

(ii) ⇒ (iii). According to (ii), rank(L(K)) = m. The coefficient matrix of the
QDF QΦ(l)− d

dt | X( ddt )l |2K is equal to

(
X̃

Ũ

)T
L(K)

(
X̃

Ũ

)
,
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with col(X̃, Ũ) the coefficient matrix of col(X,U). By Lemma 8 this coefficient matrix
has full row rank. This proves the implication.

(iii) ⇒ (i). Assume L(K) has rank m. Since rank(R) = m, this implies that
the Schur complement of R is equal to zero, equivalently that −K satisfies the
ARE.

Example 6, continued. For the Riccati equation of Example 6 we have ∂Φ(ξ) =( 1−ξ2 a

a 4−ξ2
)
, so ∂Φ(iω) =

(
1+ω2 a
a 4+ω2

)
. By (6), the Riccati equation has a real

symmetric solution if and only if ∂Φ(iω) ≥ 0 for all ω ∈ R. This holds if and only if
−2 ≤ a ≤ 2.

Connections between the ARE and the linear matrix inequality in statement 3.
of Theorem 7 are well-known. See, for example, Chap. 8 of [2], where solutions K of
the linear matrix inequality such that rank(L(K)) = m are called rank minimizing.
In a behavioral framework, connections between such concepts and storage functions
were established in [14]; see also Chapter 5 of [11].

6. Pick matrices and the algebraic Riccati equation. In this section we
derive the main result of this paper, a characterization of all unmixed real symmetric
solutions of the ARE in terms of the Pick matrices associated with the two-variable
polynomial matrix (19). As a corollary of this result, we obtain necessary and suffi-
cient conditions for the existence of sign-definite solutions of the ARE. These condi-
tions are in terms of the Pick matrices associated with the Hurwitz and anti-Hurwitz
factorizations of det(∂Φ).

In this section, let X(ξ)U(ξ)−1 be an arbitrary right coprime factorization of
(ξIn − A)−1B, and let the two-variable polynomial matrix Φ associated with the
ARE be given by (19). From the fact that ∂Φ is para-Hermitian, we know that
det(∂Φ) has even degree. In fact, the degree of det(∂Φ) is twice the dimension of the
underlying state space system (17).

Lemma 10. Let Φ(ζ, η) be defined as in (19), and assume R > 0. Then the degree
of det(∂Φ) is 2n.

Proof. Observe that ∂Φ = X∼QX + X∼STU + U∼SX + U∼RU. Multiplying
this equality on the right by U−1 and on the left by (U∼)−1 yields (U∼)−1∂ΦU−1 =
(U∼)−1X∼QXU−1 + (U∼)−1X∼ST +SXU−1+R. Now observe that X(ξ)U−1(ξ) =
(ξIn − A)−1B is a matrix of strictly proper rational functions. It follows that
(U∼)−1∂ΦU−1 is a matrix of proper rational functions and consequently
deg(det(∂Φ)) ≤ deg(det(U))+deg(det(U∼)) = 2n.We now show that deg(det(∂Φ)) =
2n. Indeed, since lim|λ|−→∞(U∼(λ))−1∂Φ(λ)U(λ) = R > 0, it follows that (U∼)−1∂ΦU
has an inverse whose entries are also proper rational functions. Consequently
deg(det(∂Φ)) = 2n.

Assume now that
∫
QΦ ≥ 0, equivalently ∂Φ(iω) ≥ 0, for all ω ∈ R (see (6)).

According to Theorem 9 this is equivalent to the existence of a real symmetric solution
of the ARE. Observe that every polynomial spectral factorization of ∂Φ as ∂Φ = F∼F
with F ∈ R

m×m[ξ] yields a factorization of det(∂Φ) as det(∂Φ) = f∼f , with f =
det(F ) and deg(f) = n. Let F be the set of all polynomials of degree n, with positive
highest degree coefficient, that can occur as the determinant of a polynomial spectral
factor of ∂Φ:

F := {f ∈ R[ξ] | f(ξ) = f0 + f1ξ + · · ·+ fnξ
n, fn > 0,

and there exists F ∈ R
m×m[ξ] such that ∂Φ = F∼F and det(F ) = f}.(23)
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Also, let S be the set of all real symmetric solutions of the ARE:
S := {K ∈ R

n×n | K = KT and K satisfies the ARE}.
For any K ∈ S, denote AK := A−BR−1(BTK+S) and let χAK be the characteristic
polynomial of AK . Our basic result states that there is a one-to-one correspondence
between F and S.

Theorem 11. S �= ∅ if and only if ∂Φ(iω) ≥ 0 for all ω ∈ R. In that case there
exists a bijection between F and S. Such bijection Ric : F → S is defined as follows.
For any f ∈ F , let F ∈ R

m×m[ξ] be such that f = det(F ) and ∂Φ = F∼F . Then
define Ric(f) = K, where K = KT ∈ R

n×n is the unique solution of

Φ(ζ, η)− FT (ζ)F (η)

ζ + η
= XT (ζ)(−K)X(η).(24)

For any K ∈ S we have ∂Φ = (FK)
∼FK , where

FK(ξ) := R−1/2(BTK + S)X(ξ) +R1/2U(ξ).

Furthermore, for any K ∈ S we have det(FK) =
√
det(R) χAK , whence det(∂Φ) =

det(R) (χAK )
∼χAK and

K = Ric(
√
det(R) χAK ).

Proof. We begin by showing that the map Ric : F → S is well defined. Let f1 and
f2 be two elements of F , and let F1, F2 ∈ R

m×m[ξ] be such that ∂Φ = F∼
1 F1 = F∼

2 F2
and det(Fi) = fi, i = 1, 2. It is well known (see, for example, Theorem 5.3 of [10])
that there exists an orthogonal m×m matrix L such that F2 = LF1. Now let K1 and
K2 be n× n symmetric matrices such that

Φ(ζ, η)− FTi (ζ)Fi(η)

ζ + η
= XT (ζ)(−Ki)X(η),

i = 1, 2. (Such matrices exist because of Theorem 2.) Then necessarily

XT (ζ)(−K1)X(η) = XT (ζ)(−K2)X(η).

It follows from the fact that X( ddt ) is a minimal state map that the map l →
(X( ddt )l)(0) is surjective. Hence for all x0 ∈ R

n there holds xT0 (−K1)x0 = xT0 (−K2)x0,
which implies K1 = K2. This shows that Ric is well defined.

We proceed to show that Ric is bijective. We first prove that it is injective.
Assume that Ric(f1) = K1 = Ric(f2) = K2. Let F1 and F2 be m × m polynomial
matrices such that ∂Φ = F∼

1 F1 = F∼
2 F2 and det(Fi) = fi, i = 1, 2. From the fact

that K1 = K2 and from (24) it follows that FT1 (ζ)F1(η) = FT2 (ζ)F2(η). This implies
that

det(F1(ζ)) det(F1(η)) = det(F2(ζ)) det(F2(η)),

so that f1(ζ)f1(η) = f2(ζ)f2(η). Given that the highest degree coefficient of f1 and
f2 is positive (see (23)), we conclude that f1 = f2. This concludes the proof of the
injectivity of Ric. In order to prove that Ric is surjective, let K = KT be a solution
to the ARE. According to Theorem 9 there holds

(ζ + η)XT (ζ)(−K)X(η) = Φ(ζ, η)− FK(ζ)
TFK(η),
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where FK ∈ R
m×m[ξ] is defined by

FK(ξ) = R− 1
2 (BTK + S)X(ξ) +R

1
2U(ξ).

Note that ∂Φ = (FK)
∼FK . Define now f := det(FK). Then K = Ric(f). This also

proves the second statement of the theorem.
Next we prove that for all K ∈ S we have det(FK) = det(R1/2)χAK . Consider

the (n+m)× (n+m) polynomial matrix

P (ξ) :=

(
ξI −A B

−R−1/2(BTK + S) R1/2

)
.

Computing the determinant of P yields

det(P (ξ)) = det(ξI −A) det(R1/2 +R−1/2(BTK + S)(ξI −A)−1B)

= det(R1/2) det(ξI −A+BR−1(BTK + S)).

Using the fact that X(ξ)U(ξ)−1 is a right coprime factorization of (ξI − A)−1B and
that (A,B) is a controllable pair, we have det(U(ξ)) = det(ξI − A), so we obtain
det(R1/2)χAK = det(FK). The remaining statements of the theorem follow immedi-
ately from this.

In the above, we have assumed that ∂Φ(iω) ≥ 0 for all ω ∈ R. In the case that,
in addition, ∂Φ is nonsingular along the imaginary axis, equivalently ∂Φ(iω) > 0
for all ω ∈ R, the one-to-one correspondence between polynomials and the set of
real symmetric solutions of the ARE can be made even more explicit. This will be
explained next.

Define Fcop as the set of all real polynomials f such that the determinant of ∂Φ
admits a factorization f∼f such that f and f∼ are coprime:

Fcop = {f ∈ R[ξ] | f(ξ) = f0 + f1ξ + · · ·+ fnξ
n, fn > 0, (f, f∼) coprime

and det(∂Φ) = f∼f}.

It is easily seen that if ∂Φ(iω) ≥ 0 for all ω ∈ R, then Fcop �= ∅ if and only if
∂Φ(iω) > 0 for all ω ∈ R. Hence it follows from Proposition 5 that Fcop ⊂ F . In the
remainder of this section we assume that ∂Φ(iω) > 0 for all ω ∈ R.

Note that if f ∈ Fcop and K = Ric(f), then, according to Theorem 11, f =√
det(R)χAK , so χAK and (χAK )

∼ are coprime; equivalently, σ(AK) ∩ σ(−AK) = ∅.
If a solution K of the ARE satisfies this property, we call it unmixed. The set of
all unmixed solutions of the ARE is denoted by Sunm. It follows immediately from
Theorem 11 that Ric defines a bijection between Fcop and Sunm.

We now explain the connection between the bijection Ric and the Pick matrices
Tf associated with Φ. Recall that the bijection Ric between Fcop and Sunm is defined
as follows. For a given f ∈ Fcop, let F ∈ R

m×m[ξ] be such that ∂Φ = F∼F and
det(F ) = f , and take K = Ric(f) to be the unique solution of (24). For the sake of
exposition, assume for the moment that the singularities of ∂Φ are semisimple. We
show how to compute, for f ∈ Fcop, the corresponding unmixed solution K = Ric(f),
using the Pick matrix Tf .

Let λ1, λ2, . . . , λn be the roots of f , with the convention that if a root has algebraic
multiplicity mi, then it appears in this list mi times, and λ1, λ2, . . . , λm1 are equal,
λm1+1, λm1+2, . . . , λm1+m2 are equal, etc. Let vi ∈ C

m be such that ∂Φ(λi)vi =
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0 and v1, v2, . . . , vn are linearly independent. Evaluating (24) at (ζ, η) = (λ̄i, λj),
premultiplying the result by v∗i and postmultiplying it by vj , we get

v∗iΦ(λ̄i, λj)vj
λ̄i + λj

− v∗i F
T (λ̄i)F (λj)vj
λ̄i + λj

= −v∗iXT (λ̄i)KX(λj)vj .

Note that, by coprimeness of f and f∼, λ̄i+λj �= 0 for all (i, j). Now make the crucial
observation that for all j

F (λj)vj = 0.

Indeed, by definition of vj we have F
T (−λj)F (λj)vj = 0. Since, however, FT (−λj)

is nonsingular (by coprimeness of f and f∼), the claim follows. Thus we immediately
obtain

v∗iΦ(λ̄i, λj)vj
λ̄i + λj

= −v∗iXT (λ̄i)KX(λj)vj ,

which is equivalent to

Tf = −(Sf )∗KSf ,

where Sf is the zero state matrix associated with f , defined by

Sf :=
(
X(λ1)v1 . . . X(λn)vn

)
.

For a motivation of the terminology zero state matrix, we refer to the proof of Theorem
12 below. Note that Sf ∈ C

n×n. In Theorem 12 we will prove that for any f ∈ Fcop
the zero state matrix Sf is nonsingular. This immediately implies that the solution
K = Ric(f) is given by

K = Ric(f) = −(S∗
f )

−1Tf (Sf )
−1.(25)

The above argument can be generalized to the case in which not all singularities of
∂Φ are semisimple. In the general case, the zero state matrix Sf associated with the
polynomial factor f is defined in the following way. Let λ1, λ2, . . . , λk be the roots
of f . As in section 4, we use the convention that if a given root λi has geometric
multiplicity ni, then we include it ni times in our list of roots. For i = 1, 2, . . . , k,
let Vi ∈ C

dim×di be defined by (10) and (11) (with q = m). Furthermore, define the
n× di matrix Si by

Si :=
(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Vi,

where X(j) denotes the jth derivative of X. The zero state matrix in the general case
is then defined by

Sf :=
(
S1 S2 . . . Sk

)
.(26)

Again, Sf ∈ C
n×n.

The following theorem is the main result of this paper. It yields the representation
(25) of the bijection Ric in the general, not necessarily semisimple, case.

Theorem 12. Assume ∂Φ(iω) ≥ 0 for all ω ∈ R. Then the following three
statements are equivalent:
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(i) ∂Φ(iω) > 0 for all ω ∈ R;
(ii) Fcop �= ∅;
(iii) Sunm �= ∅.

Assume that this holds. Then Ric : Fcop → Sunm is a bijection. For all f ∈ Fcop the
zero state matrix Sf defined by (26) is nonsingular. Furthermore, for any f ∈ Fcop,
the corresponding solution Ric(f) ∈ Sunm is given by

Ric(f) = −(S∗
f )

−1TfS
−1
f .(27)

Proof. The claim that conditions (i), (ii), and (iii) of Theorem 12 are equivalent,
and the claim that under this condition Ric defines a bijection between Fcop and
Sunm, follow from Theorem 11.

We prove that the zero state matrix (26) is nonsingular. Let F ∈ R
m×m[ξ]

be such that det(∂Φ) = f∼f and det(F ) = f . Let ξ = col(ξ1, ξ2, . . . , ξk), with
ξi = col(ξi,1, ξi,2, . . . , ξi,di) ∈ C

di , satisfy Sfξ = 0, equivalently,

k∑
i=1

(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Viξi = 0.

We will show that ξi = 0 for i = 1, 2, . . . , k.
Recall that the system d

dtx = Ax+Bu has an observable image representation

(
x
u

)
=

(
X( ddt )

U( ddt )

)
l,(28)

and that X( ddt ) is a minimal state map for this system. Consider the extended system

Bext, obtained by including f = F ( ddt )l as a manifest variable, represented by the
image representation


 x

u
f


 =




X( ddt )

U( ddt )

F ( ddt )


 l.

We claim that in the system Bext, col(x, u) is output and f is input, and that X( ddt )
is a minimal state map also for Bext.

To prove this, first note that

F∼F = X∼QX +X∼STU + U∼SX + U∼RU.

Multiplying this equality on the right by U−1 and on the left by (U∼)−1 yields

(U∼)−1F∼FU−1 = (U∼)−1X∼QXU−1 + (U∼)−1X∼ST + SXU−1 +R.

Since XU−1 is strictly proper and R > 0, this implies that FU−1 is a proper rational
matrix with nonsingular feedthrough term. This implies that also its inverse, UF−1,
is proper, and XF−1 = XU−1UF−1 is strictly proper. Since, therefore,(

X
U

)
F−1

is a proper rational matrix, in the system Bext, col(x, u) is output and f is input.
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Next we prove that X( ddt ) is a minimal state map for Bext. To prove this,
we show that the rows of X form a basis for the real linear space S1 = {r ∈
R
1×m[ξ] | rF−1 is strictly proper}. Since X induces a minimal state map for our

original system (28), the rows of X form a basis for the real linear space S2 =
{r ∈ R

1×m[ξ] | rU−1 is strictly proper}. Since UF−1 and FU−1 are proper, rF−1 is
strictly proper if and only if rU−1 is strictly proper. Hence the two linear spaces S1
and S2 coincide, so the rows of X indeed form a basis for S1.

Define a particular latent variable trajectory for Bext by

l̃(t) =

k∑
i=1

eλit
(
Im×m tIm×m . . . tdi−1Im×m

)
Viξi.

Then we clearly have ∂Φ( ddt )l̃ = 0. Using the fact that none of the λi’s is a singularity

of F∼, this implies that F ( ddt )l̃ = 0. Our aim is to prove that l̃ = 0. Indeed, look at

the trajectory of the system Bext corresponding to the choice of latent variable l̃. The
input f = F ( ddt )l̃ is equal to zero. Furthermore, a straightforward calculation shows
that the value of the corresponding state trajectory at time t = 0 equals(

X

(
d

dt

)
l̃

)
(0) =

k∑
i=1

(
X(λi) X(1)(λi) . . . X(di−1)(λi)

)
Viξi = 0.

Hence the output (x, u) = (X( ddt )l̃, U(
d
dt )l̃ of Bext is zero. By observability of the

image representation (28), this implies l̃ = 0, as claimed.
Next, we prove that this implies ξi = 0 for all i. Indeed, since l̃ = 0 we have

l̃(0) =

k∑
i=1

(
Im×m 0 . . . 0

)
Viξi = 0.

Consequently, l̃(0) =
∑k
i=1

∑di−1
j=0 ai,jξi,j = 0. Since the vectors ai,j are linearly

independent, this yields ξi,j = 0 for all i = 1, 2, . . . , k and j = 1, 2, . . . , di. This
proves that the zero state matrix Sf is nonsingular.

To prove (27) we use that Kf = Ric(f) is uniquely defined by

Φ(ζ, η)− FT (ζ)F (η) = −(ζ + η)XT (ζ)KfX(η),(29)

with F ∈ R
m×m[ξ] such that ∂Φ = F∼F and det(F ) = f . The idea is to evaluate

(29) and its partial derivatives with respect to ζ and η at the points (λ̄i, λj). For all
indices (r, s) we have

∂r+sΦ

∂ηr∂ζs
(ζ, η)− F (s)T (ζ)F (r)(η)

= sX(s−1)T (ζ)KfX
(r)(η) + rX(s)T (ζ)KfX

(r−1)(η)

+(ζ + η)X(s)T (ζ)KfX
(r)(η).

Using this, for i, j = 1, 2, . . . , k, we form the matrices Φi,j defined by (13). Next, with
Σi,j defined by (14) and Λi,j defined by (12), a straightforward calculation shows that

Λ∗
j,iV

∗
i Σi,jVjΛi,j

= −V ∗
i




XT (λ̄i)
X(1)T (λ̄i)

...
X(di−1)T (λ̄i)


Kf

(
X(λj) X(1)(λj) . . . X(dj−1)(λj)

)
Vj .(30)
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The crucial point here is that the terms involving F (r)T (λ̄i)F
(s)(λj) vanish, since for

i = 1, 2, . . . , k we have


( 00 ) ∂F
(0)(λi) ( 10 ) ∂F

(1)(λi) · · · · · ·
(
di−1

0

)
∂F (di−1)(λi)

0 ( 11 ) ∂F
(0)(λi) · · · · · ·

(
di−1
1

)
∂F (di−2)(λi)

0 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0
(
di−1
di−1

)
∂F (0)(λi)



Vi = 0.(31)

The latter follows from (10), combined with the fact that for i = 1, 2, . . . , k the
matrices FT (−λi) are nonsingular. Since (30) holds for all i, j = 1, 2, . . . , k, we
obtain Tf = S∗

fKfSf . This completes the proof.
This result yields a procedure for computing all unmixed solutions of the ARE

(1). We sum up the steps that are required here.
1. Compute a right coprime factorization X(ξ)U(ξ)−1 of (ξI −A)−1B.
2. Form the corresponding two-variable polynomial matrix Φ given by (19).
3. Check whether ∂Φ(iω) > 0 for all ω ∈ R.
4. Factor det(∂Φ) = f∼f with f and f∼ coprime.

The following then computes the unique solution K = KT of the ARE such that its
“closed loop characteristic polynomial” χAK equals

√
det(R) f .

5. Compute the zero state matrix Sf .
6. Compute the Pick matrix Tf .
7. Solve the equation Tf = −S∗

fKSf .
8. Set K = Ric(f).
It is worthwhile to observe that similar results have been obtained in Chapter 5 of

[11] for QDFs not necessarily associated with a state space representation (16). Note
that the procedure circumvents the need to do a polynomial spectral factorization of
∂Φ.

We now go back to the problem of establishing necessary and sufficient conditions
for the existence of sign-definite solutions to the ARE. Our main result here is an
immediate consequence of Theorem 12 and is based on the result of Proposition 3,
namely, that the largest (smallest) storage function for Φ is associated with an anti-
Hurwitz (Hurwitz) factorization of ∂Φ. Let K− and K+ be the smallest, respectively
the largest, real symmetric solution of the ARE.

Corollary 13. Let Φ(ζ, η) be defined as in (19). Assume that ∂Φ(iω) > 0 for
all ω ∈ R. Factor det(∂Φ) = (fA)

∼fA = (fH)∼fH , where fA and fH have their roots
in the open right half plane and open left half plane, respectively. Then we have

K− = −(S∗
fA)

−1TfAS
−1
fA
,

K+ = −(S∗
fH )

−1TfHS
−1
fH
.

Consequently, sign(K−) = −sign(TfH ) and sign(K+) = −sign(TfA). In particular,
the ARE (1) has a negative semidefinite (negative definite) solution if and only if
the Pick matrix TfA is positive semidefinite (respectively, positive definite). It has a
positive semidefinite (positive definite) solution if and only if the Pick matrix TfH is
negative semidefinite (respectively, negative definite).

Example 6, continued. For the Riccati equation of Example 6 we have ∂Φ(ξ) =( 1−ξ2 a

a 4−ξ2
)
, and we have ∂Φ(iω) > 0 for all ω ∈ R if and only if −2 < a < 2. Assume
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this to be the case. We have det(∂Φ(ξ)) = (1−ξ2)(4−ξ2)−a2. Set k = 3+√9 + 4a2.
The singularities of ∂Φ are then equal to λ1 = −

√
1 + 1

2k, λ2 = −
√
4− 1

2k, −λ1,
and −λ2. Clearly, det(∂Φ) can be factored as f∼f with (f∼, f) coprime in four
different ways, and the Riccati equation has four real symmetric solutions, all of them
unmixed. Here we compute the largest real symmetric solution, i.e., the solution
K satisfying χAK = fH , with fH(ξ) = (ξ +

√
1 + 1

2k)(ξ +
√
4− 1

2k). Note that
we are in the semisimple situation, i.e., the algebraic multiplicity of each singularity
equals its corresponding rank deficiency. Solving ∂Φ(λ1)v1 = 0 and ∂Φ(λ2)v2 = 0
yields v1 =

(
2a/k
1

)
and v2 =

(
1

−2a/k

)
. The zero state matrix SfH is hence given by

SfH =
( 2a/k 1

1 −2a/k

)
. Next we compute the Pick matrix corresponding to fH . Clearly,

TfH =


 v∗1Φ(λ1,λ1)v1

2λ1

v∗1Φ(λ1,λ2)v2
λ1+λ2

v∗2Φ(λ2,λ1)v1
λ2+λ1

v∗2Φ(λ2,λ2)v2
2λ2


 ,

which is equal to

TfH =




1
2λ1

( 4a
2

k2
(2 + k) + 2a2

k
+ k

2
+ 5− 2λ1)

1
λ1+λ2

( 2a
k
(1 + λ1λ2) + a − 4a3

k2
− 8a

k
+ 2a

k
(λ1 + λ2))

1
λ1+λ2

( 2a
k
(1 + λ1λ2) + a − 4a3

k2
− 8a

k
+ 2a

k
(λ1 + λ2))

1
2λ2

( 4a
2

k2
(8 + 2λ2)− 6a2

k
− k

2
+ 5)


.

(32)

This yields K+ = −(STfH )−1TfHSfH as the solution corresponding to fH . Note that
this gives the largest real symmetric solution for each value of a between −2 and
2. For example, if a = 0, then k = 6, so λ1 = −2 and λ2 = −1. This yields
K+ = ( 0 1

1 0 ) (
3 0
0 1 ) (

0 1
1 0 ) = ( 1 0

0 3 ). Recall that Q = ( 1 aa 3 ), so for a = 0 we have Q > 0.
In this particular case it follows immediately that the ARE has a positive semidefinite
solution (the corresponding linear quadratic problem is positive semidefinite). For
values of a satisfying−2 < a < −√3 or√3 < a < 2, Q is indefinite, so for this case it is
a nontrivial matter to check whether the ARE has a positive (semi-) definite solution.
According to Corollary 13, for a given a ∈ (−2, 2) the ARE has a positive (semi-)
definite solution if and only if for that value of a the Pick matrix (32) is negative
(semi-) definite. As an example, take a = 1.8. In this case Q is indefinite. The
Pick matrix corresponding to this value of a is computed as TfH =

(−3.6835 0.3111
0.3111 −0.2637

)
.

The eigenvalues of TfH are computed as −3.7116 and −0.2356, so we conclude that
for a = 1.8 our ARE has a positive definite solution. For a = 1.98 we compute
TfH =

(−3.7839 0.4375
0.4375 0.0894

)
, which has eigenvalues −3.8327 and 0.1382. For this value of

a our ARE does not have a positive semidefinite solution.
In order to check whether for a given a the ARE of this example has at least one

negative (semi-) definite solution, one should compute the Pick matrix TfA associated

with the polynomial fA(ξ) = (ξ −
√
1 + 1

2k)(ξ −
√
4− 1

2k), and check whether it is
positive (semi-) definite.

7. Conclusions. In this paper we applied ideas from the calculus of two-variable
polynomial matrices to the problem of characterizing all umixed solutions of the al-
gebraic Riccati equation and formulating necessary and sufficient conditions for the
existence of (semi) definite solutions.

We started from the two-variable polynomial matrix corresponding to the un-
derlying quadratic functional, and associated with this a nonsingular one-variable
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polynomial matrix. Then we showed that there is a bijection between the set of all
scalar polynomial spectral factors of the determinant of this one-variable polynomial
matrix and the set of all unmixed solutions of the ARE. For every such scalar polyno-
mial spectral factor we defined a constant Hermitian matrix, called the Pick matrix,
and we expressed the unmixed solution corresponding to this polynomial spectral fac-
tor in terms of its Pick matrix. This enabled us to conclude that the signatures of the
extremal solutions of the ARE are determined by the Pick matrices corresponding to
these solutions.

In this paper, we have restricted ourselves to the case in which (A,B) is a con-
trollable pair, mainly in order to be able to use image representations. As a possible
direction for future research, we mention the extension of our results to the noncon-
trollable case. Another interesting problem would be to generalize our results to the
discrete-time algebraic Riccati equation.
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Abstract. Output tracking for nonlinear systems is complicated by the existence of “singular
submanifolds.” These are surfaces on which the decoupling matrix loses rank. To provide additional
control action we identify a class of smooth vector fields whose integral curves can be incrementally
tracked using rapidly switched piecewise constant controls. At discrete times the resulting piecewise
smooth state trajectories approach the integral curve being tracked. These discontinuous controllers
are applied to sliding mode control—we use incremental tracking to move the state toward the sliding
surface. The resulting controller achieves approximate output tracking in situations where the usual
approach to sliding mode control fails due to the loss of control action on the singular submanifold.

Key words. output tracking, sliding mode control, singularities, Lie brackets, discontinuous
state feedback

AMS subject classification. 93C10
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1. Introduction. Tracking in the case where the decoupling matrix loses rank
on a “singular submanifold” has been considered by a number of authors (cf. [2, 5,
6, 7, 9, 15]). In [2] the problem of exact tracking is studied using results on singular
ordinary differential equations and on the multiplicity of solutions. Conditions under
which the singular tracking control is smooth or analytic are given in [9], assuming
that the inputs and some of their derivatives are related to the outputs and their
derivatives via a singular ordinary differential equation. In [7], output trajectories
which the system can track using continuous open loop controls are identified for
systems which satisfy a suitable observability condition, and a discontinuous feedback
controller is introduced which achieves robust tracking in the face of perturbations.
In [5] the relative order is locally increased by keeping the state trajectory near a
codimension 1 submanifold. In some sense our approach takes the opposite point of
view in that we seek to reduce the relative order by using vibratory controls. These
switched controls allow motion in directions other than those of the drift vector field
or vector fields in the Lie algebra generated by the control vector fields.

Recently there has been increased interest in the use of patterns in control. The
pioneering work of Brockett [1], Pomet [12], Lui and Sussmann [10], and others looks
at curves that can be approached by state trajectories of smooth affine systems. For
single-input systems these results highlight the very limited class of smooth paths
which can be closely approximated by the state trajectory. We introduce the notion
of incremental tracking of smooth integral curves by state trajectories. The state
trajectories are permitted to move far from the integral curve being tracked but are
required to approach them arbitrarily closely arbitrarily often. This weaker notion
of approximation by the state trajectory lends itself well to sliding mode control
where we wish to steer the state to a sliding surface. This is a surface on which the
state evolves so that the tracking errors go to zero. We are not concerned about the
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path along which the trajectory approaches the sliding surface, as long as any large
deviations take place in directions which are not seen directly by the output.

Sliding mode control utilizing discontinuous feedback controllers can achieve ro-
bust asymptotic output tracking (cf. [16, 13, 14] and the references therein) under the
implicit assumption that the state trajectory can always be steered toward the “slid-
ing surface.” That is, the decoupling matrix is of full rank everywhere (cf. [8, 11]). In
[6], sliding mode control is studied in the case where the decoupling matrix loses rank,
and there exists a “singular submanifold” near which the state trajectory cannot be
steered toward the sliding surface. For systems whose “singular submanifold” satisfies
suitable transversality conditions, a class of smooth output functions yd is identified
which can be approximately tracked using a truncated sliding mode controller. For
these outputs the state trajectory passes through the “singular submanifold” a finite
number of times. There are, however, many simple systems in which truncated con-
trollers cause the state trajectory to “stick” to the “singular submanifold,” so that
the state moves ever farther from the sliding surface. For such systems the standard
approaches to output tracking are also not very successful. The following example
illustrates the difficulties which can arise.

Example 1.1. Consider the affine nonlinear system in R
3

ẋ1 = x2
3 − x2,

ẋ2 = x3,
ẋ3 = u.

(1.1)

Suppose that we wish to regulate the output y = x1 so that y(t) stays close to
yd(t) while keeping the state vector bounded. If s = ė + e, where e = y − yd, then
we can regulate y by keeping the state trajectory on or near to the “sliding surface”
Spt = {s = 0} = {x1 + x2

3 − x2 = yd + ẏd}. We note that without the term x2
3 this

system is linear with relative order 3, but here ÿ = −x3 +2x3u and the relative order
of y is 2 (cf. [6, 8]). In particular,

ṡ = a(x) + b(x)u,

where a(x, t) = x2
3 − x2 − x3 − ẏd − ÿd and b(x) = 2x3. The natural sliding mode

controller usm = −(a + K) sign(s)/b achieves ṡ = −K sign(s), whence x(t) reaches
Spt and stays in Spt after a finite time has elapsed (cf. [16], [13]). Inherent in this
control scheme is the assumption that b does not vanish along the state trajectory.
Of course, in our case b vanishes on the “singular manifold” N = {x3 = 0}, and hence
usm can become unbounded as x(t) approaches N . One natural solution is to use the
truncated controller min{usm, L sign(usm)} or the simpler controller

uLsm = −L sign(sb).(1.2)

For linear systems, such truncated controllers work on a neighborhood of the origin
which expands as L grows. This is not the case here. In fact, suppose that we wish to
track yd = 0, where x1 is positive, x2 negative, and x3 = 0 (x ∈ N , s(x) is positive).
If we perturb x3 so that x3 = ε > 0, we have uLsm < 0; hence ẋ3 < 0 and x returns to
N . For x3 = −ε we have ẋ3 = uLsm > 0, and once again x returns to N . In essence
the state trajectory will “stick” to the submanifold N = {x3 = 0}. Of course, on N
we have ṡ = −x2, ẋ2 = 0, so that ṡ = −x2 > 0 and the state trajectory evolves on
N in such a way that

s(e(t)) −→∞.
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Fig. 1. Tracking of sin t using a truncated sliding mode controller.

We can track yd = 0 using this approach if the initial state x2(0) > 0. The larger x2(0)
is, the more we can insulate the system from the above phenomena. On the other
hand, if we track yd(t) = sin t, even with x2(0) > 0, we will inevitably find that x2

becomes negative and the above problem dominates. This phenomenon is illustrated
by Figure 1, which shows the results of a simulation performed using SIMNON/PCW
for Windows, Version 2.01 (SSPA Maritime Consulting AB, Sweden). If x2(0) < 0,
then the divergence of s and e is immediate. With x(0) = (1, 11, 0) (x2(0) = 11) and
controller (1.2) with L = 30, the onset of this divergence is only delayed.

It is of interest to note that if we could enforce s ≡ 0 exactly in the case yd ≡ 0,
then x1, ẋ1 → 0, x2 → x2

3 ≥ 0. Thus if x3 > 0, then ẋ2 = x3 =
√
x2, and the resulting

“zero dynamics” are unstable.

The approximate input-output linearization scheme of [5] applied to this example
has similar problems. Tracking schemes which are based on differentiating y until u
appears come up against this same obstruction. Tomlin and Sastry have observed a
similar phenomenon in the ball and beam example [15], where their switched control
scheme is not effective. The above example presents similar obstructions.

Instead of taking more derivatives of s to deal with the singular submanifold N ,
we use fewer derivatives. As a result we lose direct control over s (as ṡ is independent
of u) but avoid the problems associated with the “singular manifold.” We introduce
a switched periodic controller which causes the state to “incrementally track” the
integral curve of a vector field obtained from Lie brackets of the drift and control
vector fields. The resulting continuous but nonsmooth state trajectory approaches
the sliding surface. We will return to this example in section 4.

The rest of the paper is organized as follows. In section 2 we formulate the sliding
mode control problem for single-input single-output affine nonlinear systems. In sec-
tion 3 we introduce our switched controllers and present our results on approximate
trajectory tracking for systems with drift. In section 4 we state and prove our main
results—applications of incremental tracking to sliding mode control—and continue
the above example. Finally, some concluding remarks are offered in section 5.
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2. Output tracking and sliding surfaces. Suppose that M is a smooth
manifold. Given a smooth function h : M → R and a vector field X(x) on M ,
Xh(x) = dhxX(x) denotes the Lie derivative of h(x) along X(x), and Xt(x0) the
integral curve of X passing through x0 at t = 0, so that d

dtXt(x0) = X(Xt(x0)). If
Y is a smooth vector field on M , then [X,Y ](x) = dYxX(x)− dXxY (x) denotes the
Lie bracket of X and Y , and adXY = [X,Y ]. Let {X,Y }LA denote the Lie algebra
generated by {X,Y }, i.e., the smallest vector space containing X and Y and closed
under Lie brackets. Suppose that N is a codimension 1 submanifold of M . A vector
field X is transversal to N if X(x) 
∈ TxN ∀x ∈ N , where TxN is the tangent space
to N at x. If P ⊂ Q is a submanifold and f : M → Q a smooth map of manifolds,
then f is transversal to P if Image(dfx) + Tf(x)P = Tf(x)Q.

Consider the nonlinear control system model

ẋ = f(x) + g(x)u, x(t0) = x0 ∈M,
y = h(x),

(2.1)

where M ⊂ R
� is a smooth m-dimensional embedded submanifold of R

�, u : [t0,∞)→
R is a piecewise smooth input, f(x) and g(x) are smooth vector fields on M , and h is
a smooth output function on M . If x ∈M , we denote by ||x|| the norm on M which
is induced by the standard norm on R

�.
Suppose that yd : [t0,∞)→ R is a smooth function which we wish the output y of

(2.1) to track. The standard approach in sliding mode control (cf. [13, 16]) is to force
the evolution of the output tracking error e = y − yd to be governed by a stable dif-
ferential equation of the form s(ep(t)) = 0, where ep(t) = (e(t), e(1)(t), . . . , e(p−1)(t))
and s : R

p → R is linear, so that

s(ep(t)) = e(p−1)(t) + a2e
(p−2)(t) + · · ·+ ape(t).(2.2)

Definition 2.1. The output of (2.1) can approximately track yd to degree p
if, given any δ > 0, there exists an admissible input uδ and time tδ > t0 such that
|s(ep(t))| ≤ δ and the resulting state x(t) is bounded on [tδ,∞). We say that y
asymptotically tracks yd to degree p if s(ep(t)) = 0 and x(t) is bounded on [t0,∞).

The relative degree r of the output y is the least positive integer for which the
derivative y(r)(t) is an explicit function of the input u. More precisely, r is the least
positive integer for which gf (r−1)h 
≡ 0 (cf. [7, 8]). For single-input systems, the
“decoupling matrix” is the 1 × 1 matrix whose entry is gf (r−1)h. Thus the rank of
the decoupling matrix changes where gf (r−1)h vanishes. We choose p ≤ r to avoid a
possibly singular differential equation for u. Thus y = h(x), y(1) = fh(x), . . . , y(p−1) =
fp−1h(x). If we set hp = (h, fh, . . . , fp−1h), then s(ep(t)) = 0 is equivalent to the
requirement that sp(x(t), t) = 0, where

sp(x, t) = s(hp(x)− yp
d (t))

= s(hp(x))− s(yp
d (t)).

(2.3)

In particular, if we let Spt denote the sliding surface

Spt = {x|sp(x, t) = 0},(2.4)

then x(t) ∈ Spt ∀t ≥ tf implies asymptotic tracking. Similarly, if

Ep
t = {x|hp(x) = yp

d (t)},(2.5)
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then Ep
t ⊂ Spt , and x(t) ∈ Ep

t ∀t ≥ tf implies yp ≡ yp
d and perfect tracking. Our first

assumption is that Spt is submanifold.
A1. Spt is an embedded codimension 1 submanifold of M for all t ∈ [t0,+∞).
Remark 2.2. It is straightforward to show that A1 holds if the map hp is transver-

sal to the hyperplane s−1(0) + yp
d (t) (see [4, 6]).

The standard sliding mode controller approach (cf. [6, 13, 16]) is to pick p = r, the
relative order of the output y. Then u appears explicitly in d

dts
r(x(t), t) = a(x(t), t)+

b(x(t))u(t), where a(x, t) = frh(x) − y
(r)
d (t) +

∑r−2
i=0 ai(f

i+1h(x) − y
(i+1)
d (t)) and

b(x) = gfr−1h(x). The standard sliding mode controller takes the form usm(x, t) =
−(a(x, t) + K sign(sr(x, t)))/b(x), where K > 0. Using this control, d

dts
r(x(t), t) =

−K sign(sr(x(t), t)) and hence, after some finite time tf ≥ t0, we will have s
r(x(t), t) =

0∀t ≥ tf . If, in addition, the system has bounded “zero dynamics” on Ep
t , then asymp-

totic tracking of an output yd will be achieved (see [8]). We note that systems which
fail to be strongly observable in the sense of [7] can have unstable zero dynamics (cf.
[6, 15]). Of course, the assumption that b does not vanish along the state trajectory
is strong. It holds in the linear case but is rarer in the nonlinear case. Typically b
vanishes on the singular submanifold N = {gfr−1h(x) = 0}, and usm becomes un-
bounded when the state trajectory reaches N . A natural solution is to use a truncated
controller, but the resulting state trajectory can “stick” to N and evolve in such a
way that one travels away from Spt on N (such is the case in Example 1.1). We now
introduce switched controllers, which permit us to move toward the sliding surface
even if b(x) vanishes.

3. Incremental tracking. The set of curves which can be approximately tracked
by the state trajectories of affine systems has been characterized in [12]. For single-
input systems the state trajectory can only be made to stay close to integral curves
of vector fields of the form f + αg, where α is a smooth function on M . Thus to
make the state approach the sliding surface Srt (where r is the relative degree of y)
we are limited to the standard sliding mode controller and the problems associated
with singular submanifolds. We seek instead to identify vector fields whose integral
curves can be approached arbitrarily closely at discrete times by the state trajectory
(see Figure 2). If the deviations from the integral curve are “parallel” to Spt for some
p ≤ r, we can use these state trajectories to implement sliding mode controllers for
which singular manifolds do not pose a problem.

Definition 3.1. The integral curves of a smooth vector field X are said to be
incrementally tracked by the state of (2.1) if there exist controllers {un} with the
following properties:

(a) each un(x, t) is smooth with respect to x and is piecewise constant and periodic
with respect to t with period τn = βn

n , where 0 < βn ≤ 1;
(b) if α(t) is an integral curve of X on [0, 1], xn(t) the state trajectory when

u = un, xn(0) = α(0), and ε > 0, then, for n sufficiently large,

|| α(k/n)− xn(βnk/n) || < ε

for k = 0, 1, . . . , n.
While not essential, we will assume that vector fields are complete. Let I denote

the set of vector fields on M whose integral curves can be incrementally tracked by
the state of system (2.1), and I0 the subset of I consisting of vector fields X with
γX ∈ I for all smooth functions γ : M → R.

Theorem 3.2. The set of vector fields I and I0 whose integral curves can be
incrementally tracked by the state of (2.1) have the following properties:
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xn(n( 3β//n)

xn(β)

Fig. 2. Incremental tracking of α(t).

(i) f ∈ I, g ∈ I0.
(ii) I0 is a Lie algebra over R. If X ∈ I and Y ∈ I0, then X + Y ∈ I.
(iii) Suppose that Y ∈ I and X, adk+1

X Y ∈ I0. Then

(a) if [adiXY, ad
j
XY ] = 0 for j ≤ k, i ≥ 3k − j, then adkXY ∈ I (I0 if

k is odd);
(b) if ad2k

X Y = 0, then adkXY ∈ I (I0 if k is odd).
(iv) If adk+1

g f = 0, then adkgf ∈ I (I0 if k is odd) and adkgf can be incremen-
tally tracked by the state of (2.1) using the periodic switched controllers {un}
defined by

un(t− t0) =



−n(2k+1)/k, 0 ≤ t− t0 < 1/n2,

0, 1/n2 ≤ t− t0 < 2/n2,
n(2k+1)/k, 2/n2 ≤ t− t0 < 3/n2,

and un(t+ 3/n2) = un(t).

Remark 3.3. For the linear system model ẋ = Ax + bu, x ∈ R
n, we have f(x) =

Ax ∈ I, g(x) = b ∈ I0, adgf = Ab, ad2
gf = 0. Thus (iii)(b) or (iv) of Theorem

3.2 implies that adgf = Ab ∈ I0. Repeating these steps with adgf = Ab in place of
g = b, etc., we find that b, Ab, . . . , An−1b ∈ I0, and hence these constant vector fields
can be incrementally tracked by the state. From this, one can deduce the standard
linear result on controllability. We also note that (ii) above implies that incremental
tracking of the drift vector field is preserved under smooth static state feedback. We
also point out the fact that condition (iv) is nongeneric and will hold only for certain
special systems.

We are interested in incremental tracking where large deviations of the state
trajectory from the integral curve have only a small effect on the output of the system.
We now make this notion more precise.

Definition 3.4. Suppose that ε > 0 and X is a vector field on M whose integral
curves can be incrementally tracked by the state {xn(t)} of (2.1) using controllers
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{un}. If, for n sufficiently large,

|| hp(α(t))− hp(xn(βnt)) || < ε ∀t ∈ [0, 1],

we say that the integral curves of X can be incrementally tracked preserving hp.
Let Ip denote the set of vector fields on M whose integral curves can be incre-

mentally tracked preserving hp, and Ip0 the subset of Ip consisting of vector fields X
with γX ∈ Ip if γ : M → R is smooth. We assume that p ≤ r.

Theorem 3.5. The set of vector fields Ip and Ip0 have the following properties:
(i) f ∈ Ip, g ∈ Ip0 .
(ii) Ip0 is a Lie algebra over R. If X ∈ Ip and Y ∈ Ip0 , then X + Y ∈ Ip.
(iii) Suppose that Y ∈ Ip, X, adk+1

X Y ∈ Ip0 , and Xhp = adk+1
X Y hp = 0. Then

(a) If [adiXY, ad
j
XY ] = 0 for j ≤ k, i ≥ 3k − j, then adkXY ∈ Ip (Ip0 if

k is odd).
(b) If ad2k

X Y = 0, then adkXY ∈ Ip (Ip0 if k is odd).
(iv) If adk+1

g f = 0 and the output of system (2.1) has relative order r > p, then

adkgf ∈ Ip (Ip0 if k is odd).
Example 3.6 (Example 1.1 continued). Here we have f(x) = (x2

3 − x2, x3, 0),
g(x) = (0, 0, 1), ad2

gf(x) = (2, 0, 0), ad3
gf(x) = (0, 0, 0), and h(x) = x1, with p = 1

and relative order r = 2. Thus condition (iv) of Theorem 3.5 holds and ad2
gf ∈ Ip.

Proof (Theorem 3.2).
(i) An integral curve α(t) = ft(x) of f can be tracked exactly using un = 0, βn = 1.

In this case the corresponding state trajectory xn(t) = ft(x) = α(t); hence f ∈ I.
Now let γ : M → R be smooth, and set tk = k/n, α(t) = γ(x)gt(x), un(x, t) = γ(x)n,
and βn = 1/n. Then

xn(βntk) = xn

(
k

n2

)
= (f + γng) k

n2
(x) =

(
1

n
f + γg

)
k
n

(x),

which approximates α(tk). In particular, we can guarantee that || α(tk)−xn(βntk) || <
ε for k = 0, 1, . . . , n and n sufficiently large. This means that γg ∈ I, hence g ∈ I0.
Note that in both of the above cases xn(t) stays close to α(t) ∀t ∈ [0, 1].

(ii) Suppose that X,Y ∈ I0, α(t) is an integral curve for X + Y on [0, 1], and
ε > 0. Then 2X, 2Y ∈ I0, and if + > 0, we define the “switched integral curve”
γ(t) = 2Yt(x) for 0 ≤ t < 1/2+, and γ(t) = 2Xt(2Y1/2�(x)) for 1/2+ ≤ t < 1/+. It
follows that

γ(1/+) = (2X)1/2�((2Y )1/2�(x)) = X1/�(Y1/�(x)) = Z(+)1/�(x) = (Z(+)/+)1(x),

where Z(+) = (X + Y ) + 1
2� [X,Y ] + · · · (cf. [17, 18]). Continuing to switch between

integral curves of X and Y we get

γ(2/+) = X1/�(Y1/�(X1/�(Y1/�(x)))) = (Z(+)/+)21(x), · · · , γ(k/+) = (Z(+)/+)k1(x).

Here Z(+) → X + Y as + → ∞; hence (Z(+)/+)�1(x) → (X + Y )1(x) as k → + and
+ → ∞ (cf. [17]). In particular, for + sufficiently large, || α(tk) − γ(tk) || < ε/2,
where tk = k/+ and k = 0, 1, . . . , +. Since 2Y ∈ I0 we know that given ε′ > 0 there
exist piecewise constant periodic w.r.t. t controllers {un}, with period τn = βn/n
(0 < βn ≤ 1), such that the integral curves of 2Y are incrementally tracked by the
corresponding state trajectory xn(t). Thus we have || 2Yk/n(α(0)) − xn(βnk/n) || <
ε′/2 for k = 0, 1, . . . , n and n sufficiently large. In particular, if p = 2Y1/2�(α(0)),
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we can arrange that || p − xn(βnk/n) || < ε′/2 for some k and n sufficiently large.
Similarly, 2Y ∈ I0, so there exist controllers {u′

n} with period τ ′n = β′
n/n such

that || 2X1/2�(p) − x′
n(β

′
nk

′/n′) || < ε′/2 for some k′, n′. Thus this concatenation
of {u′

n} and {un} results in a piecewise smooth state trajectory x̃n which achieves
|| α(t1)− x̃n(β̃nt1) || < ε′ for appropriate β̃n and n sufficiently large. Now we repeat
the pattern (un followed by u′

n) to generate a piecewise smooth state trajectory x̃n for
which || α(tk)−x̃n(β̃ntk) || < kε′ holds (k applications of the triangle inequality). Thus
we can choose ε′ = ε/n to achieve incremental tracking of X + Y , hence X + Y ∈ I.
Now we can repeat the above argument using αX,αY to conclude that α(X+Y ) ∈ I,
hence X + Y ∈ I0. To show that [X,Y ] ∈ I0 we argue as above. If + > 0, then√
+X,
√
+Y ∈ I. Consider the “switched integral curve” γ(t) produced by following

the integral curve for −√+Y for 1/4+ units of time, then the integral curve for −√+X
for 1/4+ units of time, then the integral curve for

√
+Y followed by that of

√
+X. Then

γ(1/+) = 4
√
+X1/4�(4

√
+Y1/4�(4

√
+X−1/4�(4

√
+Y−1/4�(x)))),

so that γ(1/+) = X1/
√
�(Y1/

√
�(X−1/

√
�(Y−1/

√
�(x)))) = (Z(+)/+)1(x), where Z(+) →

[X,Y ] as + → ∞, hence (Z�/+)
�
1(x) → [X,Y ]1(x) as + → ∞, assuming X,Y, x fixed

(cf. [18]). Continuing to switch between these integral curves, we generate γ(k/+) for
k = 0, . . . , +. Thus, for + sufficiently large,

|| α(tk)− γ(tk) || < ε/2,

where α(t) is an integral curve for [X,Y ] on [0, 1], tk = k/+, and k = 0, 1, . . . , +.
Since 4

√
+X, 4

√
+Y ∈ I0, they can be incrementally tracked using periodic switched

controllers {un} and {u′
n}. We then argue as above to show that [X,Y ] ∈ I. Re-

peating these steps with
√
aX,
√
aY shows that a[X,Y ] ∈ I, hence [X,Y ] ∈ I0.

Finally, suppose that X ∈ I, Y ∈ I0. Let α(t) be an integral curve for X + Y on
[0, 1], m a positive integer, and ε > 0. Then mY ∈ I, and we define the “switched
integral curve” γ(t) = mYt(x) for 0 ≤ t < 1/m+, and γ(t) = Xt(mY1/m�(x)) for
1/m+ ≤ t < (m+ 1)/m+. Thus

γ

(
m+ 1

m+

)
= (X)1/�((mY )1/m�(x)) = X1/�(Y1/�(x)) = (Z(+)/+)1(x),

where Z(+) = (X + Y ) + 1
2� [X,Y ] + · · · (cf. [17, 18]). Continuing to switch between

integral curves of X and Y , we get

γ

(
2(m+ 1)

m+

)
= X1/�(Y1/�(X1/�(Y1/�(x)))) =

(
Z(+)

+

)2

1

(x), . . . , γ

(
k

+

)
=

(
Z(+)

+

)k
1

(x).

Then Z(+)→ X + Y as k → + and +→∞ [17]. Now k(m+1)
m� → k

� as m→∞ so, for +
and m sufficiently large, || α(tk)− γ(tk) || < ε/2, where tk = k/+ and k = 0, 1, . . . , +.
Now repeat the argument used to show that I0 is closed under sums to conclude that
X + Y ∈ I.

(iii)(a) Suppose that Y ∈ I, X, adk+1
X Y ∈ I0, and [adiXY, ad

j
XY ] = 0 for j ≤ k,

i ≥ 3k − j. Set X+ = n(2k+1)/kX, X− = −n(2k+1)/kX ∈ I0, and denote by ψ(t)
the switched integral curve which results from following the integral curve for X− for
1/n2 units of time, where ψ(0) = x ∈ M , then following the integral curve for Y for
1/n2 units of time, and finally following the integral curve for X+ for 1/n2 units of
time. By construction,

ψ(3/n2) = Xn1/k(Y1/n2(X−n1/k(x))).
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Noting that

Xt(Ys(X−t(x))) = s

∞∑
n=0

tn

n!
adiXY (x),

an absolutely convergent series for all t (cf. [17, 18]), we see that

ψ(3/n2) = (G(n) +B(n)) 1
n
(x),

where

G(n) = 1
nY + n1/k

n adXY + · · ·+ adkXY,

B(n) = n1/kadk+1
X Y + · · ·+ n�/kadk+�X Y + · · · .(3.1)

Since X and adk+1
X Y ∈ I0, a Lie algebra from (ii) above, it follows that B(n) ∈

I0 ∀n > 0. In particular, the integral curve for −B (writing B,G for B(n), G(n)) can
be incrementally tracked by the state. This means that the switched integral curve
γ(t) which results from following the integral curve for −nB for time 1/n2, followed
by the switched integral curve ψ(t), results in

γ(4/n2) = (G+B) 1
n
((B)− 1

n
(x)).(3.2)

Using the Baker–Campbell–Hausdorff formula [17], which converges for n sufficiently
large, we have

γ

(
1

n2

)
=

(
G+

1

2n
[G,B] +

1

12n3
{2[B, [G,B]] + [G, [G,B]]}+ · · ·

)
1
n

(x).

From the definitions forG(n) andB(n) and in light of hypothesis of Theorem 3.2(iii)(a)
we have

1

2n
[G(n), B(n)] =

k∑
j=0

k−j−1∑
�=1

n
j+�
k

n
[adjXY, ad

k+�
X Y ];

hence 1
2n [G(n), B(n)] → 0 as n → ∞. Tedious applications of the Jacobi identity

show that 1
12n3 {2[B(n), [G(n), B(n)]] + [G(n), [G(n), B(n)]]} → 0 as n → ∞ as a

consequence of Theorem 3.2(iii)(a), and the same conclusion applies to the higher
order terms in the Baker–Campbell–Hausdorff series. In particular, we see that
γ(4/n2) = (Z(n)/n)1(x), where Z(n) → adkXY as n → ∞. Repeating + times the
switched integral curves used to generate γ(t), we arrive at the state γ(4+/n2) and
observe that γ(4/n) = (Z(n)/n)n1 (x)→ adkXY1(x) as n→∞. Thus γ(t) is a switched
integral curve of vector fields which can be incrementally tracked by the state of system
(2.1). Furthermore, if βn = 4/n and t� = +/n, then γ(βnt�)→ (ad�XY )t�(x) as n→∞.
If α(t) is the integral curve for adkXY with α(0) = x, we have || α(t�)−γ(βnt�) || < ε/2
for n sufficiently large and + = 0, 1, . . . , n. Here γ switched between integral curves of
vector fields which can be incrementally tracked. Thus we can repeat the argument
used in (ii) above to show that there exist piecewise constant periodic controllers {un}
with periods τn = βn/n, where β = 4/n such that || α(t�) − xn(βnt�) || < ε for n
sufficiently large and + = 0, 1, 2, . . . n. This implies that adkXY ∈ I. If k is odd, we
replace X with −X and proceed as above to conclude that −adkXY ∈ I, from which
we deduce that adkXY ∈ I0.
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(iii)(b) This is a particular case of (iii)(a).
(iv) This result is a consequence of (i) and (iii)(a). If we set Y = f and X = g,

then Y ∈ I, X ∈ I0 as a consequence of (i). Since adk+1
X Y = 0, it follows that

ad2k
X Y = 0; hence adixY = 0 for i ≥ 3k − j and j ≤ k, and (iii)(a) holds (and also

(iii)(b)). In particular, we can conclude that adkXY = adkgf ∈ I. One can check that
the controller un defined in (iv) is precisely the one used in the proof of (iii)(a). A
more direct approach to the proof of (iv) is illuminating and is outlined below. Using
the control un(t) defined in (iv) (and t0 = 0, to save accounting) we have

xn(3/n
2) = (f + n(2k+1)/kg)1/n2(f1/n2((f − n(2k+1)/kg)1/n2(x0))).

Applying the Baker–Campbell–Hausdorff formula (cf. [17]) two times, we can write
xn(3/n

2) = (X(n)/n)1(x0). In the case k = 2 this yields (with the help of MAPLE
V, Version 5.00 (Waterloo Maple, Waterloo, ON)) the expression

X(n) = 3
nf + 2

n1/2 [g, f ] +
5
6 [g, [g, f ]] +

1
144n4 [[f, g], [f, [f, g]]]

+ 1
72n3/2 [[f, g], [g, [f, g]]] +

1
96n7/2 [[f, [f, g]], [g, [f, g]]]

+ 1
576n11/2 [[f, g], [[f, g], [f, [f, g]]]]− 1

576n3 [[f, g], [[f, g], [g, [f, g]]]]

+ 1
3456n5 [[g, [f, g]], [[f, g], [f, [f, g]]]]

− 1
3456n5/2 [[g, [f, g]], [[f, g], [f, [f, g]]]] + · · · .

Because ad3
gf = 0 it is not hard to show that all terms in X(n), other than ad2

gf =

0, are multiplied by negative powers of n. In particular, limn→∞ X(n) = 5
6 [g, [g, f ]]. A

similar situation holds for other values of k, that is, limn→∞ X(n) = ck[g, [g, f ]], where
ck > 0. Repeating the above, we find that xn(3+/n

2) = (X(n)/n)�1(x0) and xn(3/n) =
(X(n)/n)n1 (x0). But limn→∞(X(n)/n)n(x0) = limn→∞ X(n)1(x0) = ckad

k
gf1(x0),

and hence adkgf is incrementally tracked by the state of system (2.1).
Proof (Theorem 3.5).
(i) We can track an integral curve α(t) of f exactly using un = 0; thus || hp(α(t))−

hp(xn(t)) || = 0 ∀t ∈ [0, 1]. This means that f ∈ Ip. As noted in the proof of
Theorem 3.2, we can find controllers un such that the corresponding state trajectory
xn closely follows the integral curves for γg for all t ∈ [0, 1] (not just for discrete
times). Since the state trajectory xn makes no large deviation from the integral curve
of γg we have incremental tracking preserving hp.

(ii) In the proof of Theorem 3.2(ii) we saw that an integral curve α(t) of X + Y
can be tracked by switched integral curves of X and Y which stay close to α(t) for
all t ∈ [0, 1]. Since X,Y ∈ Ip, we can find switched controllers un, u′

n such that
the corresponding state trajectories xn, x′

n incrementally track the integral curves
of X and Y while preserving hp. Thus the image under hp of the concatenation of
xn, x

′
n used to incrementally track α(t) will stay close to hp(α(t)), and we will have

incremental tracking of X + Y preserving hp. The same situation holds in the case
of [X,Y ].

(iii)(a) In the proof of Theorem 3.2(iii)(a), we constructed switched integral
curves of X and Y which incrementally track integral curves of adkXY but need not
closely approximate these curves except at a discrete set of times. Thus the con-
trollers un produce state trajectories xn which incrementally track the integral curve
α : t �→ (adkXY )(x) while making frequent and large deviations from α(t). By con-
struction, these large motions are along integral curves for the vector fields X and
B(n) =

∑∞
�=1 n

�/kadk+�X Y . Since Xh = adk+1
X Y hp = 0, we have (Xadk+1

X Y hp −
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adk+1
X Y Xhp) = [X, adk+1

X Y ]hp = 0, and hence ∀Z ∈ {X, adk+1
X Y }LA we have Zhp =

0. In particular, B(n)hp = 0, and it follows that the large motions of the state tra-
jectory xn are in directions in which hp does not vary. Thus we achieve incremental
tracking of α(t) preserving hp.

(iii)(b) This is a particular case of (iii)(a).
(iv) Since adk+1

g f = 0 we have g, adk+1
g f ∈ Ip0 . Clearly adk+1

g fhp = 0 and

ghp = (gh, gfh, · · · , gfp−1h). Since p < r and gf ih = 0 if i ≤ r − 2 (definition of
relative order) we have ghp = 0, and the result follows from (iii)(b) above.

4. Incremental sliding mode controllers. In the nonsingular case, the simple
sliding mode controller (1.2) gives rise to vector fields f +Lg and f −Lg with several
noteworthy properties. Given any compact subset C there exists L > 0, σ1, σ2, δ > 0
such that

(i) on the set C

(f − Lg)s(hr) < −δ − σ1,
(f + Lg)s(hr) > +δ + σ2;

(ii) (f ± Lg)hr−1(x) = fhr−1(x) if r > 1.
Remark 4.1. Suppose that yd is a smooth function satisfying

−σ1 ≤ d

dt
s(yr

d(t)) ≤ σ2

on [t0,+∞). Then condition (i) implies that if the state stays in C, then the output
will asymptotically track yd using the simplified controller (1.2). In particular, if
sp(x(t), t) > 0 (so that we are “above” the sliding surface {sp(x, t) = 0}) and u = −L,
we have

d

dt
sp(x(t), t) =

d

dt
s(hp(x(t))− d

dt
s(yr

d(t)).

From the definition of s (s is linear) we have d
dts(y

p(t)) = s(ẏp(t)). Furthermore,
d
dts(h

p(x(t))) = d(s◦hp)x(t)ẋ(t) = d(s◦hp)x(t)(f−Lg)(x(t)) = (f−Lg)(s◦hp)(x(t)) =
(f − Lg)s(hp(x(t))) < −δ − σ1. This, combined with our assumption that −σ1 ≤
s(ẏr

d(t)) or − d
dts(y

r
d(t)) ≤ σ1, yields

d
dts

p(x(t), t) ≤ −δ1−σ1+σ1 = −δ1. In particular,
the state trajectory returns to the sliding surface {sp(x, t) = 0}. A similar situation
results when sp(x(t), t) < 0 and u = L.

Remark 4.2. Condition (ii) follows from the definition of the relative order r,
since gf ih = 0 for i < r − 1. That this is important in sliding mode control can be
seen as follows: when the state “slides” on the sliding surface Srt , the trajectory is
the integral curve of the “equivalent vector field” on Srt , which has the form X =
α(f + Lg) + (1 − α)(f − Lg), where |α(x)| ≤ 1 and Xs(hr) = 0 (cf. [3]). Note that
Xhr−1 = (αf + (1− α)f)hr−1 = fhr−1. As a consequence, along this integral curve
the tracking error satisfies the stable differential equation s(er(t)) = 0, where s is
defined by (2.2).

We seek to weaken the above in several ways. First we use the sliding surface
Spt , where p is allowed be smaller than the relative order r of y. As a consequence
of Theorem 3.5, f ± Lg ∈ Ip. We relax (ii) by allowing vector fields of the form
d+, d− ∈ Ip such that d±hp−1 = fhp−1 and only require (i) above to hold on an
open subset of Z of M which is invariant under the integral curves of d+, d−. We
summarize these observations as follows.
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Definition 4.3. Let X be a vector field on M . An open subset Z of M is said
to be invariant with respect to a vector field X if, for all x ∈ Z, the integral curve
t �→ Xt(x) stays in Z.

A2. There exists an open subset Z ⊂ M , invariant with respect to vector fields
d+, d− ∈ Ip, and constants α1, α2 ∈ R, σ1, σ2, δ > 0 such that

(i) on Z

d−s(hp) < −δ − σ1, when {s(hp) ≥ α1},
d+s(hp) > +δ + σ2, when {s(hp) ≤ α2};

(ii) d±hp−1(x) = fhp−1(x) if p > 1.
If A2 holds for constants α1, α2, σ1, σ2, we define the following restricted class of

desired output functions:

Yd = {yd | α1 ≤ s(yp
d (t)) ≤ α2, −σ1 ≤ s(ẏp

d (t)) ≤ σ2 ∀t ≥ t0}.

We will show that these outputs can be approximately tracked. We note that in the
nonsingular case, A2 holds with Z = M , d+ = f + Lg, and d− = f − Lg for L
sufficiently large. If A2 holds with d± ∈ Ip, we define the set-valued map Fd(x, t) by

Fd(x, t) =




d+(x), x ∈ {sp(x, t) < 0},
d−(x), x ∈ {sp(x, t) > 0},
co {d+(x), d−(x)}, x ∈ {sp(x, t) = 0},

(4.1)

where co {d+(x), d−(x)} is the closed convex hull generated by the {d+(x), d−(x)}.
Theorem 4.4. Suppose A1, A2 hold for system (2.1). Then there exist d+, d− ∈

Ip and an open subset Z ⊂M such that, for all smooth functions yd ∈ Yd,
(i) the differential inclusion ẋ ∈ Fd(x, t) with x(t0) ∈ Z has a unique solution

xF (t) ∈ Z defined on [t0,+∞);
(ii) for any solution xf to ẋ ∈ Fd(x, t) there exists tf ≥ t0 such that xF (t) ∈

Z ∩ Spt on [tf ,+∞);
(iii) for t ≥ tf the curve t �→ yF (t) = h(xF (t)) is a smooth function of t which

satisfies s(yp
F (t)− yp

d (t)) = 0. In particular, limt→∞(yp
F (t)− yp

d (t)) = 0.
Proof. By construction, Fd(x, t) is nonempty, compact, and convex, and it is

straightforward to show that Fd is upper semicontinuous with respect to x, t. Thus
the basic conditions of [3, p. 76] are satisfied; the proof that local solutions to the
differential inclusion ẋ(t) = Fd(x(t), t) exist can be found in [3, pp. 67–68 and pp. 77–
78] and is omitted here. That solutions stay in Z follows from A2, i.e., the assumption
that Z is strongly invariant with respect to d+, d−. To establish uniqueness we note
that both d+ and d− are transversal to SPt ∩Z as a consequence of A2(i). Furthermore,
the limiting vector fields on SPt ∩Z, which result from d+(x)(d−(x)) when x approaches
{sp = 0} from {sp > 0}({sp < 0}), define the opposite orientations on SPt ∩ Z. Thus
[3, Corollary 2, p. 108] implies that there is exactly one solution to this differential
inclusion starting at x(t0) ∈ Z.

(ii) Suppose that yd ∈ Yd and sp(xF (t0), t0) < 0. Then, from the definition of
Yd, we have −σ1 ≤ s(ẏp

d (t)) ≤ σ2. But d+s(hp(xF (t))) > δ + σ2 by A2(i). Thus
d
dts

p(xF (t), t) = d+s(hp(xF (t))) − s(ẏp
d (t)) ≥ δ + σ2 − σ2 = δ > 0, and sp(x, t) is

strictly increasing along integral curves of d+ if {sp < 0}. Similarly, sp(x, t) is strictly
decreasing along integral curves of d− in {sp > 0}. Since xF (t) ∈ Z ∀t ≥ t0 by (i), we
have established (ii).
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(iii) For t ≥ tf , xF is a smooth integral curve for the equivalent vector field
X defined in Remark 4.2. Here Xhp−1 = fhp−1 as a consequence of A2(ii), hence
y(i) = Xih = f ih for i = 1, 2, . . . , p− 1. From section 2 we know that if y(i) = f ih for
i = 1, 2, . . . , p− 1, then s(yp(t)− yp

d (t)) = s(ep(t)) = 0 is equivalent to sp(x(t), t) = 0
or x(t) ∈ Spt . In particular, since xF (t) ∈ Spt from (ii), we have s(ep(t)) = 0 ∀t > tf
and limt→∞(yp

F (t)− yp
d (t)) = 0.

A necessary condition for approximate tracking of yd is that both yp
d and the

state trajectory remain bounded. In the nonsingular case the state trajectory and the
solution to the differential inclusion ẋ ∈ Fd(x, t) are identical, and it suffices to ensure
that solutions to ẋ ∈ Fd(x, t) with x(t0) ∈ Ep

t ∩ Z remain bounded. In our case the
same assumption suffices.

A3. Suppose that A2 holds for system (2.1) and yd ∈ Yd. Then solutions to the
differential inclusion ẋ ∈ Fd(x, t), with initial state x(t0) ∈ Ep

t ∩ Z, remain bounded
for t ∈ [t0,+∞).

Remark 4.5. Note that in light of Theorem 4.4 (ii) it suffices to study the trajectory
on Spt . Since there is a unique vector field G(x, t) in co {d+(x), d−(x)} that makes
∂
∂t +G(x, t) tangent to Spt , it suffices to check that this one integral curve is bounded.
A sufficient (but far from necessary) condition for A3 to hold is that Z ∩ Spt be
bounded.

Suppose that A1, A2, A3 hold for system (2.1) with initial state x(t0) ∈ Z, where
Z is an open subset of M invariant with respect to vector fields d+, d− ∈ Ip. If
we could make the state of (2.1) exactly track the solution xF (t) to ẋ ∈ Fd(x, t),
then Theorem 4.4 would imply asymptotic tracking of yd. We now describe a “digital
controller” which allows us to incrementally track xF and approximately track yd. We
are motivated by the typical “sample and hold” digital controller with fixed sample
rate T . That is, if u(x, t) is a smooth function of x and t, the digital controller uk(t)
takes the form

uk(t) = u(xk, tk) for tk ≤ t < tk+1,
tk+1 = tk + T,
xk = x(tk),

where x(tk) is the state at time tk which results from using the control uk on the
time interval [tk−1, tk). We have controllers u+

n (x, t) and u−
n (x, t), which are piecewise

constant periodic functions of t with periods τ+
n = β+

n /n and τ−n = β−
n /n, respectively,

and which cause the state of (2.1) to incrementally track integral curves of d+, d−,
respectively. Thus we require a digital controller with variable sampling rate. We
define our digital controller for system (2.1) as follows:

uk(x, t) =

{
u+
n (x, t) for tk ≤ t < tk+1, s

p(xk, tk) < 0,
u−
n (x, t) for tk ≤ t < tk+1, s

p(xk, tk) ≥ 0,

tk+1 =

{
tk + τ+

n if sp(xk, tk) < 0,
tk + τ−n if sp(xk, tk) ≥ 0,

xk = x(tk).

(4.2)

We observe that while uk(x, t) is not constant with respect to t over [tk, tk+1), it is
piecewise constant due to the piecewise constant time dependence of u+

n and u−
n .

Theorem 4.6. Under assumptions A1, A2, A3, the switched controller (4.2)
achieves the following property for the closed loop system: if x(t0) = x0 ∈ Z and
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yd ∈ Yd, then, for n sufficiently large, the output y of (2.1) approximately tracks yd
to degree p.

Proof. Let xF (t) denote the solution to the differential inclusion ẋ ∈ Fd(x, t);
x(t0) = x0 ∈ Z and let ε > 0. From Theorem 4.4 there exists tf ≥ t0 such that
xF (t) ∈ Z ∩Spt ∀t ≥ tf and limt→∞(yp

F (t)− yp
d (t)) = limt→∞(hp(xF (t))− yp

d (t)) = 0.
This implies that xF (t) → Ep

t ∩ Z as t → ∞ and, in light of A3, xF (t) is a bounded
function of t. We first consider the case where sp(x0, t0) < 0. Then for t0 ≤ t < tf we
have sp(xF (t), t) < 0, Fd(xF (t), t) = d+(xF (t)), uk = u+

n , t1 = t0 + τ+
n = t0 + β+

n /n,
t2 = t0 + 2β+

n /n, . . . , and tk = t0 + kβ+
n /n. The vector field d+ is incrementally

tracked by the state trajectory x+
n produced by u+

n . We now calculate the rate of
change of sp(x(t), t) when x(t) is the integral curve xF (t) of d

+ but time t is rescaled
to match the time rescaling which occurs in incremental tracking. For t < tf we have,
from A2 and the linearity of s,

d
dts

p(xF (t0 + t), t0 + β+
n t) = d+s(hp(xF (t0 + t)))− d

dts(y
p(t0 + β+

n t))

≥ δ + σ2 − s(β+
n ẏ

p(t0 + β+
n t))

= δ + σ2 − β+
n s(ẏ

p(t0 + β+
n t))

≥ δ + σ2 − β+
n σ2

≥ δ

as 0 < βn ≤ 1. Thus there is some least time t1 > 0 such that sp(xF (t0 + t1), t0 +
β+
n t1) = 0 and some positive integer k1 (depending on n) such that xF (t0 + k/n) ≤

xF (t0 + t1) ≤ xF (t0 + (k + 1)/n). We can make ||xF (t0 + t1)− xF (t0 + (k1 + 1)/n)||
arbitrarily small by increasing n, and hence

||sp(xF (t0 + (k1 + 1)/n), t0 + β+
n (k1 + 1)/n)|| < ε/4

for n sufficiently large. Since xF (t) is incrementally tracked by x+
n (t), we have

||xF (t0 + k/n) − x+
n (t0 + β+

n k/n)|| → 0 as n → ∞. Therefore by picking n large
enough we ensure that ||sp(x+

n (t0 + β+
n k/n), t0 + β+

n k/n)|| < ε/2 for k = 0, . . . , n.
In particular, using the “digital” controller (4.2) results in a state trajectory x+

n (t)
for (2.1) with the property that, for n sufficiently large, sp(x+

n (tk), tk) < 0 for k =
0, 1, . . . , +1 − 1, sp(x+

n (t�1), t�1) > 0, and ||sp(x+
n (t�1), t�1)|| < ε/2. Thus uk = u+

n

for k = 0, . . . , +1 − 1 and u�1 = u−
n . We can now repeat the above, starting from the

initial state x(t�1) = x+
n (t�1). Since sp(x+

n (t�1), t�1) > 0 we now incrementally track
the integral curve of d− until sp(x−

n (t�2), t�2) < 0 and ||sp(x−
n (t�2), t�2)|| < ε/2 (in-

creasing n if necessary). Because the integral curve xF (t) is bounded, we can choose n
sufficiently large to continue the above switching and ensure that the state trajectory
xn resulting from the controller (4.2) satisfies

||sp(xn(tk), tk)|| < ε/2 ∀k ≥ +1.

Incremental tracking ensures that xn is close to xF at discrete times {tk}, but for tk <
t < tk+1 we may have xn(t) far from xF (t). We now use the fact that d± ∈ Ip, and
thus are incrementally tracked preserving hp, to show that sp is unaffected by these
deviations. In particular, on [t0, tf ] we have ||hp(xF (t0 + t))−hp(x+

n (t0 +βnt))|| → 0
as n → ∞, by definition of incrementally tracking. This allows us to ensure that
||sp(xn(t), t)|| < ε ∀t ≥ t0 + +1/n for n sufficiently large. Because β ≤ 1 this implies
that, for n sufficiently large,

||sp(xn(t), t)|| < ε ∀t ≥ tf ,
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and xn(t) is bounded; hence the output y of (2.1) approximately tracks yd to degree
p.

Let R(x0) denote the set of states which can be reached from the initial state
x(t0) = x0. Theorem 4.6 ensures approximate tracking if x0 ∈ Z, and so it is natural
to look for a controller which steers x0 to the open set Z in finite time. It will often be
the case thatR(x0)∩Z 
= ∅. In particular, we need to use the above theorem when the
state trajectory “sticks” to the singular submanifold under the naive truncated sliding
mode controller. Thus if Z intersects the singular submanifold it is likely reachable
from the initial state. Suppose that C is compact, Z is an open subset of M , and
u0(x, t) is a controller for system (2.1) which transfers the state from x(t0) = x0 ∈M
to x(t1) = x1 ∈ Z ∩ C. Define the hybrid controller as

ud(x, t) =

{
u0(x, t), t ∈ [t0, t1),
uk(x, t), t ∈ [tk, tk+1),

(4.3)

where uk is the digital controller (4.2), and k ≥ 1.

Theorem 4.7. Suppose that A1, A2, A3 hold, C ⊂ M is compact, and there
exists a controller u0(x, t) which transfers the state of system (2.1) to Z ∩ C at time
t1 ≥ t0. Then, for n sufficiently large, the hybrid switched controller (4.3) achieves
the following property for the closed loop system: if yd ∈ Yd, then the output y of (2.1)
approximately tracks yd to degree p.

Proof. For an initial state x(t1) = x1 ∈ Z ∩ C, Theorem 4.6 implies that, for n1

sufficiently large, the controller (4.3) achieves approximate tracking of yd. From the
continuity of solutions to ẋ ∈ Fd(x, t) with respect to the initial conditions (cf. [3]), we
have approximate tracking of yd for any initial state in some open neighbourhood U1

of x1. Because Z ∩C is compact we can obtain a finite open covering ∪mi=1Ui of Z ∩C
by such open sets. Thus the hybrid switched controller (4.3) with n ≥ max{ni|i =
1, . . . ,m} results in approximate tracking of yd.

Remark 4.8. We note that the hypotheses of Theorem 4.7 are satisfied for affine
systems whose singular set {gfr−1h(x) = 0} is empty. In this case we use p = r,
Z = M , and d± = f ±Lg, and u0 is not needed. To verify the hypotheses of Theorem
4.7 for a given system model, one could start by using Theorems 3.2 and 3.5 to find
vector fields which the state trajectory can incrementally track. If the natural sliding
mode controller has a singular submanifold N , check to see if the vector fields which
can be incrementally tracked preserving the output map are sufficient for A2 to hold.
Then, if A3 holds as well (see Remark 4.5), Theorems 4.6 and 4.7 yield a controller.
Example 1.1 is a case in point.

Example 4.9 (Example 1.1 continued). We have seen that f, ad2
gf ∈ Ip for p = 1,

and so it is natural to choose a sliding surface with p = 1. We set s(ep) = e, where e =
y−yd. Then p = 1, s1(x, t) = x1−yd(t), s(h

p(x)) = x1, and S1
t = E1

t = {x1 = yd(t)}.
Clearly the set S1

t is an embedded submanifold (2-dimensional) for each fixed time t,
so that A1 holds. Here gs(hp) = 0, but fs(hp(x)) = x2

3−x2 and (ad2
gf)s(h

p(x)) = 2.
To satisfy A2(i) we want (ad2

gf)s(h
p) > 0 and fs(hp) < 0 on some open set Z, so it is

natural to look for a set invariant with respect to f, ad2
gf and on which x2 ≈ q2 > 0,

x3 ≈ 0. For many systems a systematic approach to finding a suitable subset Z
may not be possible, but for the example under consideration x2, x3 satisfy a linear
differential equation. Thus we can find such a set by constructing a Lyapunov function.
In particular, let z1(x) = x2 − q2, z2(x) = x3, and u = −a0z1 − a1z2 (a0, a1 > 0).
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Then ż = Az for

A =

[
0 1
−a0 −a1

]
.

We can find a Lyapunov function V = zTQz for ż = Az by solving Lyapunov equations
ATQ+QA = −I for the positive definite matrix

Q =

[
a b
b c

]
,

where a = (a2
1+a0(a0+1))/(2a0a1), b = 1/2a0, c = (a0+1)/(2a0a1). Then for q0 > 0

we define

Z(q0) = {x ∈ R
3 | z(x)TQz(x) < q0} = {a(x2 − q2)

2 + 2b(x2 − q2)x3 + cx2
3 < q0},

where q0 > 0. By construction, Z(q0) is invariant with respect to f−(a0z1+a1z2)g =
f + γg, where γ(x) = −a0(x2 − q2) − a1x3. Since g ∈ Ip0 and f ∈ Ip, we have d− =
f +γg ∈ Ip as a consequence of Theorem 3.2. Since, by construction, V is decreasing
along the integral curves of d−, we have Z(q0) invariant with respect to d−. Because
Z(q0) puts no restrictions on x1 it is also invariant with respect to d+ = q1ad

2
gf ∈ Ip,

where q1 > 0. To verify that A2 holds we first note that s(hp(x)) = x1; hence
d−s(hp(x)) = (f+γg)x1 = x2

3−x2 and d+s(hp(x)) = q1ad
2
gfx1 = 2q1 > 0. Note that

by shrinking q0 we can ensure that in the set Z(q0) we have x3 arbitrarily close to 0 and
x2 arbitrarily close to q2. In particular, given any constants α1, α2 ∈ R, σ1, σ2, δ > 0,
we can choose q0, q1, q2 such that on the set Z = Z(q0) we have

d−s(hp) < −δ − σ1 when {s(hp) ≥ α1},
d+s(hp) > +δ + σ2 when {s(hp) ≤ α2}.

Thus A2(i) holds and A2(ii) holds automatically as p = 1. In light of Remark 4.5,
assumption A3 will hold if Z ∩ Spt is bounded. Here Z = Z(q) is a bounded set by
construction, and hence A3 holds. Thus A1, A2, A3 hold and Theorem 4.7 implies
that we can approximately track to degree 1 the set of output paths

Yd = {yd | α1 ≤ s(yp
d (t)) ≤ α2, −σ1 ≤ s(ẏp

d (t)) ≤ σ2 ∀t ≥ t0}.
The construction of the controller u0 which moves the state into Z is simplified here
because Z is the level set {V (z(x)) = q0} of a Lyapunov function for ż = Az, where
u = γg. We set u0(x, t) = γ(x). For any x(t0) there will be t1 ≥ t0 such that x(t1) ∈ Z.
We incrementally track d− using u−

n (x, t) = γ(x) (β−
n = 1) and incrementally track

d+ using the controller from Theorem 3.2(iv) with k = 2, namely,

u+
n (x, t) =



−n5/2, tk ≤ t < tk + 1/n2,
0, tk + 1/n2 ≤ t < tk + 2/n2,
n5/2, tk + 2/n2 ≤ t < tk + 3/n2,

where β+
n = 3/n, τ−n = 1/n, and τ+

n = 3/n2. If we want yd(t) = sin t ∈ Yd, we
can define Z by choosing q0 = 0.5, q1 = 1, q2 = 2, a1 = 40, a2 = 400. To ensure
close tracking we pick ε = 0.1. Figure 3 shows a SIMNON simulation using the
controller (4.3) with n = 5 and x(0) = (2, 2, 0) ∈ Z. The tracking performance is
not particularly sensitive to variations in these parameters. Increasing n gives tighter
tracking but requires more control effort.
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Fig. 3. Approximate tracking of a yd(t) = sin t with x0 ∈ Z.
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Fig. 4. Approximate tracking of a yd(t) = sin t with x0 �∈ Z.

In Figure 4 we show the effect of an initial state which is initially well outside of
Z (x2(0) = −0.1 < 0).

We note that in this situation state trajectories resulting from controllers based on
relative degree will stick to the singular manifold N = {x3 = 0} and send s(er(t))→
∞. Our approach has the state passing back and forth across N . The initial delay
is due to the requirement that the state must enter Z before our switched controller
can act to reduce s.
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5. Conclusions. There are situations in which it is useful to be able to control
the state of a system so that it closely approaches a given curve at discrete times. We
have introduced the concept of incremental tracking of integral curves, where the state
trajectory (with reparametrized time) closely approaches an integral curve at discrete
times. These controllers were then applied to sliding mode control, where the state
trajectory used to reach the sliding surface is not very critical. Our discontinuous
“digital sliding mode controller” achieved approximate tracking in situations where
the natural truncated sliding mode controller (and the natural truncated smooth
controller based on inversion) fails.
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Abstract. There is a large literature on the rate of convergence problem for general uncon-
strained stochastic approximations. Typically, one centers the iterate θn about the limit point θ̄ and
then normalizes by dividing by the square root of the step size εn. Then some type of convergence in
distribution or weak convergence of Un, the centered and normalized iterate, is proved. For example,
one proves that the interpolated process formed by the Un converges weakly to a stationary Gaussian
diffusion, and the variance of the stationary measure is taken to be a measure of the rate of conver-
gence. See the references in [A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximation, Springer-Verlag, Berlin, New York, 1990; L. Gerencér, SIAM J. Control
Optim., 30 (1992), pp. 1200–1227; H. J. Kushner and D. S. Clark, Stochastic Approximation for
Constrained and Unconstrained Systems, Springer-Verlag, Berlin, New York, 1978; H. J. Kushner
and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-Verlag, Berlin, New
York, 1997; M. T. Wasan, Stochastic Approximation, Cambridge University Press, Cambridge, UK,
1969] for algorithms where the step size either goes to zero or is small and constant. Large deviations
provide an alternative approach to the rate of convergence problem [P. Dupuis and H. J. Kushner,
SIAM J. Control Optim., 23 (1985), pp. 675–696; P. Dupuis and H. J. Kushner, SIAM J. Control
Optim., 27 (1989), pp. 1108–1135; P. Dupuis and H. J. Kushner, Probab. Theory Related Fields,
75 (1987), pp. 223–244; A. P. Korostelev, Stochastic Recurrent Processes, Nauka, Moscow, 1984;
H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-Verlag,
Berlin, New York, 1997]. When the iterates of the algorithm are constrained to lie in some bounded
set, the limit point is frequently on the boundary. With the exception of the large deviations type [P.
Dupuis and H. J. Kushner, SIAM J. Control Optim., 23 (1985), pp. 675–696; P. Dupuis and H. J.
Kushner, Probab. Theory Related Fields, 75 (1987), pp. 223–244], the rate of convergence literature
is essentially confined to the case where the limit point is not on a constraint boundary.

When the limit point is on the boundary of the constraint set the usual steps are hard to carry
out. In particular, the stability methods which are used to prove tightness of the normalized iterates
cannot be carried over in general, and there is the problem of proving tightness of the normalized
process and characterizing the limit process.

This paper develops the necessary techniques and shows that the stationary Gaussian diffusion
is replaced by an appropriate stationary reflected linear diffusion, whose variance plays the same
role as a measure of the rate of convergence. An application to constrained function minimization
under inequality constraints qi(x) ≤ 0, i ≤ p, is given, where both the objective function and the
constraints are observed in the presence of noise. The iteration is on both the basic state variable
and a Lagrange multiplier, which is constrained to be nonnegative. If a limit multiplier value for an
active constraint is zero, then the classical method for computing the rate cannot be used, but (under
appropriate conditions) it is a special case of our results. Rate of convergence results are important
because, among other reasons, they immediately yield the advantages of iterate averaging methods,
as noted in [H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications,
Springer-Verlag, Berlin, New York, 1997].
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1. Introduction. There is an extensive theory concerning the rate of conver-
gence of the SA (stochastic approximation)-type algorithms of the forms

θεn+1 = θεn + εY ε
n , constant step size,(1.1)

and

θn+1 = θn + εnYn, decreasing step size, εn → 0.(1.2)

Here the adjustable parameter or state θ is in R
r, Euclidean r-space. See [21] for

a comprehensive development of rate results under both probability one and weak
convergence assumptions on the {θεn} or {θn}. The theory also covers correlated and
state dependent noise. See also [2, 14]. Let us write

Y ε
n = g(θεn) + ξεn,(1.3)

Yn = g(θn) + ξn,

where g(·) plays the role of a “mean” or “centering” function and ξεn, ξn are the so-
called “noises” on which we will make further assumptions below.

In proving rate of convergence results, one usually starts by assuming some appro-
priate type of convergence of θn or θ

ε
n to a limit point θ̄. For θn, this convergence might

be in either the probability one or in the weak convergence senses, and for θεn it is in the
weak convergence sense. Define the matrix gθ(·), whose ith row is the gradient of the
ith component of the “centering” vector g(·) with respect to θ. Define A = gθ(θ̄). The
usual procedure is to work with the normalized iterates defined by U ε

n = (θεn − θ̄)/
√
ε

and Un = (θn − θ̄)/
√
εn, resp. Define the interpolated processes U ε(·) by U ε(t) = U ε

n

for t ∈ [nε, nε + ε). For the decreasing step case, define tn =
∑n−1

i=0 εi. Then, define
Un(·) by Un(0) = Un and, for t > 0, Un(t) = Un+i for t ∈ [tn+i− tn, tn+i+1− tn). Let
m(t) denote the unique value of n such that tn ≤ t < tn+1.

One starts the proof of the “rate” result for the unconstrained case by proving
tightness of the set of interest (under appropriate conditions, and where nε might
have to go to infinity as ε→ 0)

(1.4a) {U ε
n; ε > 0, n ≥ nε}

or of

(1.4b) {Un, n <∞} .

Given this tightness, one continues the proof by proving the weak convergence of
either U ε(tε + ·) (as ε → 0, with tε going to infinity fast enough) or of Un(·) (as
n→∞) to a stationary diffusion process of the type

(1.5a) dU = AUdt+ σdw

or of the type

(1.5b) dU =

[
A+

I

2

]
Udt+ σdw.

Here σ is a constant matrix, and w(·) is a standard vector-valued Wiener process.
Equation (1.5a) is the goal under (2.5a) or if the step size is ε. Equation (1.5b) is
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the goal under (2.5b). In (1.5a) it is assumed that A is Hurwitz, and in (1.5b) that
A+ I/2 is Hurwitz. The stationary covariance ΣU of U(·) is taken to be the desired
measure of the rate of convergence. Note that the result implies that Un converges in
distribution to a normally distributed random variable with mean zero and covariance
ΣU , and similarly for U ε

n if n → ∞ fast enough as ε → 0. If A (resp., A + I/2) is
Hurwitz, then the theory is well known under quite general conditions.

The constrained problem. The SA algorithm is often constrained by some
mechanism that keeps the iterates in some desired set H, by a projection or other
means. The convergence of the θn or θεn for constrained versions of the algorithms
(1.1) and (1.2) is also well treated in the literature. Convergence with probability one
for constrained forms of (1.2) is treated in [21, Chapter 5] under a martingale noise
condition. In [21, Chapter 6] more general noise conditions are used. The essential
condition is that there be a point θ̄ which is asymptotically stable for the constrained
ODE, analogously to what is required for the unconstrained problem. This reference
also contains more general results concerning convergence to local minima or chain
recurrent points. One can then treat the rate of convergence to such points. A
quite general result for probability one convergence for the constrained problem is
in [10, Section 8]. That section verifies a basic condition (Assumption 2.2) of [10]
for constrained algorithms under a variety of conditions on the noise (those in [10,
Section 5], which cover a large proportion of those commonly used). Then under the
above-mentioned stability condition, the probability one convergence theorem [10,
Theorem 3.1] holds. The classical reference [18, Chapter 5] also contains probability
one convergence results for the constrained problem. Additionally, [21, 18] contain
extensive results concerning weak convergence for the constrained forms of both (1.1)
and (1.2), under very general conditions.

There is virtually nothing available concerning the rate of convergence for the
constrained problem. Reference [21] did deal with this rate problem but where the
limit point θ̄ was interior to the constraint set H. In this case, the results are the
same as for the unconstrained case. When θ̄ is on the boundary of H, then additional
problems arise. In this paper, we will give a fairly complete treatment for a large class
of systems, when θ̄ ∈ ∂H. We write the ith component of a vector x as xi. For an
R
r-valued function g(·) = {gi(·), i ≤ r} on R

r, we write gθ(·) as the matrix whose ith
row is the gradient of gi(·) with respect to θ.

Unless noted otherwise, we will suppose that the physical constraint set is

H =
{
θ : 0 ≤ θi ≤ bi, some subset of components i

}
,(1.6)

where 0 < bi ≤ ∞. Thus, some components might not be constrained. The constraint
is enforced by using an orthogonal projection onto H if the iterate attempts to leave
H [21]; i.e., the iterate is returned to the closest point in H. To simplify notation, it
will always be assumed that if θ̄i is at the end of its allowed interval, then θ̄i = 0.

By simple affine transformations, coordinate by coordinate, the constraint set
includes the cases where the ith components θi,εn and θin of the iterates are constrained
to lie in some finite interval [ai, bi]. Keep in mind that, under Assumption 2.4 (below)
or its weak convergence counterpart, all that matters is the shape of the constraint set
in a small neighborhood of the limit point θ̄. This local description will be referred
to as L. For example, in the two dimensional case where the physical constraint set
is the bounded box [a1, b1] × [a2, b2] and θ̄1 = a1, a2 < θ̄2 < b2, the local description
about θ̄, after an affine change in each coordinate, is the half plane L = {x : x1 ≥
0, x2 unconstrained}.
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The constrained form of the algorithms can be written as

θεn+1 = θεn + εY ε
n + εZε

n,(1.7)

θn+1 = θn + εnYn + εnZn,(1.8)

where εZε
n and εnZn are the correction terms due to the projection back onto H, if

any.
The methods and results follow the general outline used for the case where bound-

aries are not a factor and (1.5a) and (1.5b) are replaced by a stationary reflected linear
diffusion process. There are additional complications in the tightness proofs and in
characterizing the mean drift at the limit point. The basic issues are well illustrated
by two dimensional problems, with martingale difference noise. Thus for maximal
clarity we start with those cases and discuss the extensions afterwards. For appropri-
ate definitions of the matrices A and Σ = σσ′, σ = {σij ; i, j}, the weak sense limit
of the Un(·) will be a stationary solution to a Skorohod problem (reflected diffusion
process) of either the form

(1.9a) dU = AUdt+ σdw + dz, when εn = ε or εn → 0, under (2.5a)

or of the form

(1.9b) dU =

[
A+

I

2

]
Udt+ σdw + dz, when εn → 0, under (2.5b),

where z(·) is the reflection term which keeps the values in the correct set. Given
A, σ,w(·), U(0), and the reflection directions (orthogonal to the boundary faces), there
are unique strong sense and adapted solutions U(·), z(·) to (1.9a) and (1.9b), and they
are continuous. The process zi(·) can increase only at t where U i(t) = 0, and it is
the minimum such process which forces U i(t) ≥ 0 [7]. The precise definition of the
Skorohod problem is given below (see (6.5)). The exact forms of the limit equation
will be given in section 5 for the various cases.

As is usual in rate of convergence studies, we make an assumption about con-
vergence. In order not to overencumber the development, unless otherwise noted we
will work with the form (1.8) with probability one convergence assumed. Much effort
was spent in [21] on the weak convergence case as well. The theory of convergence
for this case is usually much simpler than the probability one case, particularly when
the noise structure is complicated, and it contains virtually the same information (see
[21]). Additionally, it is the only type of convergence that can be used with (1.7), and
even with (1.8), if the step sizes go to zero slowly enough, or if the noise structure is
complex. With probability one convergence, by starting at a large enough time, we
can suppose that the iterate is always in an arbitrarily small neighborhood of the limit
point, and this facilitates the proofs of the rate results. This is not necessarily true
under weak convergence. However, in [21], it is shown that (under weak convergence
and with a probability arbitrarily close to unity) the iterate remains in an arbitrarily
small neighborhood of the limit point for a long enough time before possibly leaving
so that the probability one “localization” technique can still be used. Such a method
will work here as well but is omitted due to lack of space and because the adaptation
is similar. Details will be found in [5]. Thus the entire theory holds for the “small
constant” step size algorithm (1.7).

Section 6 deals with various results in ergodic theory that are needed to complete
the proof that the weak sense limit processes are stationary. For simplicity throughout



RATE OF CONVERGENCE 1015

the paper, the main development assumes martingale difference noise. Section 7 shows
the changes that are needed when more general noise is used. An application to
a Lagrangian algorithm is given in section 8. Section 9 contains a few comments
concerning generalizing the constraint set. Under suitable conditions the basic ideas
carry over, but verification of some conditions becomes more complicated. Since
one cannot readily compute the stationary covariance matrix for reflected diffusions,
even of the simple type which occurs here, combined analysis/simulation was used to
get some feeling for the effect of the constraint on the asymptotic variances. A few
comments appear in section 10.

The proof of the tightness of {Un} is one of the crucial steps of the development.
In general, this requires a special Liapunov function which accounts for the constraint
or reflection. Its construction motivated by [11] and the necessary changes in their
proof to get the form that we need are in the appendix.

2. Two dimensional problems: Martingale difference noise; assump-
tions. Let En denote the expectation conditioned on {θ0, Yi, i < n}.

Assumption 2.1. There is θ̄ such that θn → θ̄ with probability one.
Assumption 2.2. There is an R

r-valued “centering” function g(·) on R
r whose

partial derivatives up to second order are continuous in some neighborhood of θ̄, and,
for small ρ > 0 and some positive definite symmetric matrix Σ = {Σij ; i, j}, (1.3)
holds and

Enξn = 0,(2.1)

En [ξnξ
′
n − Σ] I{|θn−θ̄|≤ρ} → 0(2.2)

in the mean as n→∞.
Write Σ = σσ′, where σ is a square root of Σ.
Assumption 2.3. Suppose that, for each small ρ > 0,{

|ξn|2I{|θn−θ̄|<ρ}, n <∞
}

is uniformly integrable,(2.3)

sup
n

En|ξn|2I{|θn−θ̄|<ρ} <∞ with probability 1.(2.4)

Assumption 2.4. εn > 0, εn → 0,
∑

n εn =∞, and either

(2.5a)

√
εn
εn+1

= 1 + o(εn),

or

(2.5b) εn = 1/n.

Even for the martingale difference noise case, [21] uses weaker conditions (second
order asymptotic stationarity not required) on the noise for the case where θ̄ ∈ H0,
the interior of H, and those same conditions will work here. Essentially, one needs
only that (5.5) converges weakly to a Wiener process. Comments on the correlated
noise case are in section 7. Expand

g(θn) = g(θ̄) + gθ(θ̄)(θn − θ̄) + µn,(2.6)
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where

µn =

∫ 1

0

[
gθ(θ̄ + s(θn − θ̄))− gθ(θ̄)

]
(θn − θ̄)ds.

In the classical unconstrained case where θ̄ ∈ H0, we must have g(θ̄) = 0. Then,
under (2.5a) and appropriate conditions on the noise, the method in [18, 21] shows that
Un(·) converges weakly to the stationary Gauss–Markov process satisfying (1.5a) and
then computes the stationary variance [21]. Under (2.5b), and with A+ I/2 assumed
Hurwitz, the limit is the stationary solution to (1.5b).

It is not necessarily the case that g(θ̄) = 0 when θ̄ ∈ ∂H, the boundary of H. Of
course, in any case one must have gi(θ̄) ≤ 0, i ≤ r, since otherwise the limit point
cannot be on the boundary. If gi(θ̄) < 0, we say either that there is a forcing term
to the boundary or that coordinate i has a forcing term to the boundary. There are
several natural divisions of the possibilities, depending on whether there are boundary
forcing terms and whether θ̄i > 0 for any i ≤ r.

To gain insight into the various issues, in the remainder of this section and in
the next, we confine ourselves to the two dimensional problem. In all cases, bi > 0.
The general dimensional problem is dealt with in subsequent sections. The first case
to be treated is for H having either of the forms H = {θ : bi ≥ θi ≥ 0, i ≤ 2} or
H = {θ : b1 ≥ θ1 ≥ 0} and where

g1(θ̄) < 0, g2(θ̄) = 0 and θ̄1 = 0, b2 > θ̄2 > 0.(2.7)

Here θ̄ is on an open face of H, coordinate 1 has a forcing term to the boundary,
and the limit for coordinate 2 is interior to its constraint set. The second case is for
H = {θ : bi ≥ θi ≥ 0, i ≤ 2} and

g1(θ̄) < 0, g2(θ̄) = 0 and θ̄1 = θ̄2 = 0.(2.8)

Here θ̄ is in a corner of H, so that both coordinates are on the ends of their constraint
sets, and coordinate 1 has a forcing term to the boundary. In the third and fourth
cases, defined by (2.9) and (2.10), respectively, there are no forcing terms to the
boundary:

g(θ̄) = 0 and θ̄1 = 0, θ̄2 > 0, H = {θ : bi ≥ θi ≥ 0, i ≤ 2}, or {θ : b1 ≥ θ1 ≥ 0}.(2.9)

g(θ̄) = 0 and θ̄ = 0, H = {θ : θi ≥ 0, i ≤ 2}.(2.10)

The results for the remaining possibilities can be read off from the results for these.

The crucial problem in the proofs of rate of convergence is the proof of tightness
(equivalently, boundedness in probability) of the set (1.4b). This will be dealt with in
section 3 for the above cases and in section 4 for the general case. Owing to the fact
that θ̄ ∈ ∂H for all cases, the traditional Liapunov function cannot always be used
for the proof. Then, after showing the tightness of (1.4b), section 5 treats the weak
convergence of Un(·) to a solution of (1.9) and characterizes the limit reflection term.
The stationarity of the limit is easy to show when θ̄ ∈ H0, since the initial time for
(1.5) is arbitrary in that we can work with Un(−T + ·) for arbitrary large positive T
and use the linearity of (1.5). This is harder for (1.9) and is dealt with in section 6.
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Fig. 3.1. Projection to b increases V (·).

3. Tightness of {Un, n < ∞}. Part I. In this section, we work with a two
dimensional problem, where the Liapunov function V (U) = |U |2/2 can be used. The
same methods work in any dimension where this Liapunov function works. This would
be the case if the centering function g(·) is the negative of the gradient of a smooth
function f(·), which we are minimizing via the SA, and the Hessian of f(·) at θ̄ is
positive definite. The problem with a quadratic form Liapunov function that is not
of the type V (U) = |U |2/2 is that the reflection or projection onto H will increase its
value in part of the state space. This is illustrated in Figure 3.1. Reflection to point b
increases V (θ). The simpler cases of this section more clearly illustrate the role of the
forcing term to the boundary. When the Liapunov function |U |2/2 cannot be used,
we need to use a Liapunov function which accounts for the boundary behavior (i.e.,
the reflection or projection). This is much more complicated and is the subject of the
next section.

3.1. Cases (2.7), (2.8). Let

cg1(θ̄) < 0, g2(θ̄) = 0, θ̄1 = 0, b2 > θ̄2 > 0,(3.1)

g2
θ2(θ̄) < 0 under (2.5a), and g2

θ2(θ̄) < −1/2 under (2.5b).

Theorem 3.1. Assume that Assumptions 2.1–2.4 and (3.1) hold. Then {Un, n <
∞} is tight. The tightness also holds for the case (2.8).

The localization method. The proof uses the localization method [21], which
is defined as follows, and will be used frequently in the subsequent analysis. Since
θn → θ̄ with probability one, for any δ > 0, ρ > 0,

P

{
sup
m≥n

∣∣θm − θ̄
∣∣ ≥ ρ

}
≤ δ

for large n. Thus, for the purposes of proving tightness and characterizing the limits of
Un(·) (which involves only the “tail” of the sequence {θn}), without loss of generality
we can modify the process on a set of arbitrarily small measure and reset the time
origin so that we can suppose that∣∣θn − θ̄

∣∣ ≤ ρ for all n
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for any desired ρ > 0. The value of ρ will usually be chosen small enough so that
errors due to linearization are dominated by the linear terms.

Proof. The development will be for the case (2.5a). The proof under (2.5b) differs
only in the following expansion: Under (2.5a),

√
εn/
√
εn+1 = 1+ o(εn). Under (2.5b),

the ratio equals 1 + εn/2 + o(εn).
The case (2.7). The proof for case (2.7) is essentially classical and uses the

Liapunov function V (U) = U ′U/2. Since θ̄2 > 0, by the localization argument, we
can suppose that Z2

n = 0. By the hypotheses, θ1
n − θ̄1 ≥ 0, U1

n ≥ 0. Define

Ũn+1 =

√
εn√
εn+1

[Un +
√
εnYn] .

Then, by centering (1.8) at θ̄ and dividing each side by
√
εn+1, we can write

Un+1 = Ũn+1 +

√
εn√
εn+1

√
εnZn.(3.2)

Note that Ũn+1 is the normalized value before projection back onto H (or is Un+1 if
no projection is needed).

Define δn = θn − θ̄ and expand (via a truncated Taylor series)

g(θ̄ + δn)− g(θ̄) =

(
g1
θ1(θ̄)δ

1
n + g1

θ2(θ̄)δ
2
n

[g2
θ(θ̄)]

′δn

)
+ ynδn = gθ(θ̄)δn + ynδn,(3.3)

where

ynδn =

∫ 1

0

[
gθ(θ̄ + sδn)− gθ(θ̄)

]
δnds.

Using the above expansion and (2.5a), write

Ũn+1 = Un +
√
εng(θ̄) + εnĀUn + εnynUn +

√
εnξn + o(εn) [g(θn) + ξn + Un] ,(3.4)

where Ā = gθ(θ̄). By the localization hypothesis and the continuity of g(·) at θ̄,
without loss of generality we can suppose that |εnynUn|+o(εn)|Un| ≤ c1εn|Un|, where
c1 is as small as desired, and that the g(θn) are bounded. The o(εn) in (3.4) is due
to the expansion εn/

√
εn+1 =

√
εn + o(εn), under (2.5a).

Using the localization argument again, and Assumption 2.3, yields

En|Ũn+1|2/2−|Un|2/2 = √εnU1
ng

1(θ̄)+ εnU
′
n

[
gθ(θ̄)Un

]
+o(εn) |Un|2+O(εn).(3.5)

Since the projection onto H, if any, does not increase the norm |u| defined by the
Liapunov function,

En |Un+1|2 /2− |Un|2 /2 ≤ right-hand side of (3.5).(3.6)

By the localization argument, without loss of generality, for any K < ∞ we can
suppose that

√
εnU

1
ng

1(θ̄) ≤ −εnK[U1
n]

2.(3.7)

The second term on the right-hand side of (3.5) is

εn
[
[U1
n]

2g1
θ1(θ̄) + U1

nU
2
n

[
g2
θ1(θ̄) + g1

θ2(θ̄)
]
+ [U2

n]
2g2
θ2(θ̄)

]
.(3.8)
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The first term of (3.8) is dominated by εnK[U1
n]

2/8 (see (3.7)) sinceK can be supposed
to be arbitrarily large. The middle term of (3.8) is dominated in absolute value by
|g2
θ1(θ̄) + g1

θ2(θ̄)| = K1 times

[U1
n]

2/c+ c[U2
n]

2

for any c > 0. Choose c small, but so that K1/c < K/8. Write γ = −g2
θ2(θ̄) > 0.

Then, summarizing, we have

En |Un+1|2 /2− |Un|2 /2 ≤ −εnK|U1
n|2/2− εn(γ − δ)|U2

n|2 +O(εn),(3.9)

where K is as large and δ is as small as desired. Equation (3.9) implies that, under the
localization method, supnE|Un|2 < ∞, which yields the tightness (see [21, Chapter
10]).

The case (2.8). The main difference between the treatment of (2.7) and (2.8) is
that now we can no longer assume that Z2

n = 0, since θ̄2 = 0. However, the projection
still does not increase the norm |u| defined by the Liapunov function, so the analysis
for (2.7) carries over with no change.

Note that g1(θ̄) < 0 created a “force” pushing U1
n to zero (hence the appellation

“forcing term to the boundary”). This simplified the analysis, since it dominated the
interactions between U1

n and U2
n.

3.2. A simple form of the cases (2.9) and (2.10).
Theorem 3.2. Assume that Assumptions 2.1–2.4 hold. Let A = gθ(θ̄) be Hurwitz,

and suppose that A + I/2 is Hurwitz, under (2.5b). Let V (x) = |x|2 be a Liapunov
function for the ODE ẋ = Ax, in that A+A′ is negative definite. Then {Un, n <∞}
is tight for the cases of (2.9) and (2.10).

Comment on the proof. Under the localization method, the right-hand side of
(3.5) can be written as

εn [A+A′]Un/2 + o(εn)|Un|2 +O(εn).

Since the projection does not increase the norm defined by the Liapunov function, a
standard argument of the type used for the unconstrained case [21, Chapter 10] shows
the tightness of {Un, n <∞}.

A comment on the general case of (2.9) or (2.10). Suppose that A + A′ is not
negative definite. Then, given any positive definite and symmetric C, there is a
positive definite symmetric P such that A′P + PA = −C. Thus x′Px is a Liapunov
function for the ODE ẋ = Ax and could be used to get tightness if θ̄ ∈ H0 for
the classical unconstrained case. However, for the constrained case, under the norm
defined by x′Px (unless P is diagonal), some of the possible projections will not be
norm reducing, in the sense that we will not always have U ′

n+1PUn+1 ≤ Ũ ′
n+1PŨn+1.

1

See Figure 3.1.
Thus U ′PU cannot be used as a Liapunov function for the general constrained

problem. When |U |2/2 fails, we need to construct a Liapunov function which takes
the projection (equivalently, the boundary behavior) into account. This is another
major distinction between the constrained and unconstrained cases. The construction
of the needed Liapunov function is given in the appendix and is based on that of [11].
The result is stated and used in the next section. This same Liapunov function will
serve as the basis of the stability argument for the more general correlated noise case.

1As noted earlier, if g(·) is the negative of the gradient of a smooth function f(·), and the Hessian
of f(·) is positive definite at θ̄, then |U |2/2 can be used.
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4. A general Liapunov function. Tightness, part II. A high dimensional
extension of the cases of section 3. There is one important extension of the results
of section 3 to an arbitrary number of dimensions. It is convenient to partition the
coordinates to separate out those which have forcing terms to the boundary, i.e., those
for which gi(θ̄) < 0. Thus, suppose that gi(θ̄) = 0, i ≤ k, gi(θ̄) < 0, i = k+1, . . . , r. Let
ga(·), θ̄a, Ua,n, Ua, θa,n, etc., denote the vectors composed of the first k components.
Let gb(·), etc., denote the vectors composed of the last r − k components. Of course,
we could have k = r.

Assumption 4.1. Define A to be the k × k matrix whose ith row is the gradient
of gi(·) with respect to θa at θ = θ̄ for i ≤ k. Suppose that A is Hurwitz under (2.5a)
and A+ I/2 is Hurwitz under (2.5b). Finally, suppose that θ̄i > 0, i ≤ k, and θ̄i = 0
for the other coordinates. Let H be the set where θi ∈ [0, bi], i = k + 1, . . . , r, and
either the other coordinates are unconstrained or else θ̄i lies in the interior of [0, bi].

Theorem 4.1. Assume that Assumptions 2.1–2.4 and Assumption 4.1 hold. Then
{Un, n <∞} is tight.

Proof. Assumption 4.1 says that the only components of θ̄ which lie on the
boundary are those associated with forcing terms to the boundary. In this case, using
the localization argument, we can suppose that θin, i > k, are always within their
constraints, hence never projected.

For some positive definite symmetric matrix P , let θ′aPθa be a Liapunov function
for θ̇a = Aθa, with PA+A′P = −C (or for θ̇a = (A+ I/2)θa, according to the case),
where C is positive definite and symmetric. Now with the Liapunov function

V (U) = |Ub|2 /2 + Ua
′PUa/2,

we follow the analysis of Theorem 3.1 to get the desired result. Actually the method
is that used in [21], with the addition of the method of Theorem 3.1 to exploit the
negativity of the gi(θ̄) for the i associated with forcing terms to the boundary.

The general case. We now turn to the general case. First, we state a result
(Theorem 4.2) concerning the existence of a Liapunov function for a deterministic
Skorohod problem. The construction and proof are based on [11] and are given in the
appendix. The state space here is assumed to satisfy the following condition. The
integer k is as in Assumption 4.1. As noted in section 1, the set L in Assumption
4.2 is supposed to represent the “local structure” of H about the point θ̄ for those
components that do not have forcing terms to the boundary.

Assumption 4.2. There is an integer ν ≤ k such that

L =
{
x : xi ≥ 0, i ≤ ν

} ⊂ R
k.

Thus the first ν coordinates are constrained, and the last k−ν are not. Let ∂Li denote
the faces of L, and ni the interior normal to ∂Li. Interior to ∂Li, the reflection
direction is denoted by the unit vector di, and 〈di, ni〉 > 0 for each i. The reflection
directions on the intersections of the ∂Li are arbitrary vectors in the convex hull of
the directions on the adjoining faces. At each edge and corner, there is a convex
combination of the directions on the adjoining faces that points strictly interior to L.

The conditions are more general than we need for our original SA problem, where
the reflection directions are orthogonal to the boundary faces, but are useful for the
extension in which the reflections are oblique to the boundary faces. In any case, it is
the form set up in [11]. For x ∈ R

k, let In(x) denote the indices i ≤ ν such that xi ≤ 0.
For an index set I, let cone{di, i ∈ I} denote the closed infinite cone generated by the
linear combinations (with nonnegative coefficients) of the vectors di, i ∈ I. Under the
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Fig. 4.1. Flow for Hurwitz A, but nonconvergence to the origin.

conditions on the reflection directions in Assumption 4.3, there are unique continuous
solutions (x(·), z(·)) to (4.1a) and (4.1b) for each initial condition [7].

Assumption 4.3. Consider the deterministic Skorohod problem for x ∈ R
k:

(4.1a) dx = Axdt+ dz, x(t) ∈ L, under (2.5a),

(4.1b) dx =

[
A+

I

2

]
xdt+ dz, x(t) ∈ L, under (2.5b),

where z(·) is the reflection term, which can change only when x(t) ∈ ∂L. For almost
all t, ż(t) takes values in the convex cone cone{di, i ∈ In(x(t))}. For each initial
condition x(0) ∈ L, the corresponding solution x(·) converges to zero as t→∞.

Note on Assumption 4.3 and the convergence of the SA algorithm. The key part of
the assumption is the convergence of x(·) to zero. This is not necessarily guaranteed
(for (4.1a)) even if A is Hurwitz, L an orthant, and the reflection directions normal
to the faces. Refer to Figure 4.1 for an illustration of nonconvergence with Hurwitz
A. Figure 4.2 illustrates a convergent case.

The hypothesis of convergence Assumption 2.1 would not hold under the situation
in Figure 4.1, where A corresponds to the coordinates without forcing terms to the
boundary, but it would hold for the case of Figure 4.2. A crucial difference between
the unconstrained and constrained cases is that stability of the linearization of the
averaged dynamics does not necessarily imply even local convergence of the algorithm.

The proof of the next theorem is in the appendix. For ε > 0, let Nε(B) denote
the ε-neighborhood of the set B ∈ R

k.
Theorem 4.2. Assume that Assumptions 4.2 and 4.3 hold. Then there exists a

real-valued function V (·) on R
k − {0} with the following properties. It is continuous,

together with its partial derivatives up to second order. There is a (twice continuously
differentiable) surface ∂S such that any ray from the origin crosses ∂S only once and
for a scalar α > 0 and x ∈ ∂S, V (αx) = αV (x).2 Thus, the second partial derivatives

2Thus the gradient is the same at all points on any ray from the origin.
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are of the order of 1/|x| as |x| → ∞ and

Vv(v)

∣∣∣∣
v=αx

= Vx(x).

Also, for some real ci, di

c1|x|+ c2 ≥ V (x) ≥ d1|x|.
There are c > 0 and ε > 0 such that, for x ∈ R

k − Nε(0), V
′
x(x)Ax ≤ −c|x|. For

x ∈ R
k − L − Nε(0), V ′

x(x)di ≤ −1, i ∈ In(x). If x̃ ∈ R
k − L − {0}, and x is the

closest point on ∂L in a reflection direction in cone{di, i ∈ In(x̃)}, then V (x) ≤ V (x̃).
Define V (0) = 0. Then V (·) is globally Lipschitz continuous.

The Liapunov function V (·) can be applied to our problem. This will be done in
several steps, depending on whether there are forcing terms to the boundary.

No forcing terms to the boundary: g(θ̄) = 0. Here, k = r. Some components θin of
θn are constrained to the interval [0, bi], and others are unconstrained. In the proofs
of the results of this section, the localization argument will be used without specific
mention. Now, L ∈ R

r is the intersection of the half spaces corresponding to xi ≥ 0
for those i (and only those i) for which θin is constrained to [0, bi] and θ̄i = 0.

Theorem 4.3. Let A be the matrix whose ith row is the gradient of gi(·) with re-
spect to θ at θ = θ̄. Assume that g(θ̄) = 0, Assumptions 2.1–2.4 hold, and Assumption
4.3 holds. Let di = ni, an orthogonal reflection. Then {Un, n <∞} is tight.

Proof. Only the case (2.5a) will be dealt with. We first work with Un such that
|Un| is larger than some arbitrarily large K1, and suppose (without loss of generality)
that E|U0| <∞. Recall the definition of Ũn+1 above (3.2). For the V (·) of Theorem
4.2, we can write

EnV (Ũn+1)− V (Un) = εnV
′
x(Un)g(θn) + εnO(1) |Vxx(θn)|+O(εn).(4.2)
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By expanding g(θn) as in Theorem 3.1, we dominate the right-hand side by

εnV
′
x(Un)AUn + εnO(1) |Vxx(θn)|+O(εn).

Since the projection is norm decreasing (norm V (·)), we have V (Un+1) ≤ V (Ũn+1).
By Theorem 4.2, V ′

x(Un)AUn ≤ −c|Un|, c > 0. By this and the linear bounds on V (·)
in Theorem 4.2, there are positive qi such that V

′
x(Un)AUn ≤ −q1V (Un)+q2. Putting

all of this together, we see that there are αi > 0 such that

EnV (Un+1) ≤ (1− α1εn)V (Un) + α2εn.(4.3)

Now, consider |Un| ≤ K1. Under Assumption 2.3 and the global Lipschitz condi-
tion on V (·), there is real K0 such that EnV (Un+1) − V (Un) ≤ K0

√
εn. Thus, there

is real K2 such that if |Un| ≤ K1, then EnV (Un+1) ≤ K2. Thus,

EnV (Un+1) ≤ max {(1− α1εn)V (Un) + α2εn,K2} .
Define V̂ (U) = V (U)−K2. Then

EnV̂ (Un+1) ≤ max
{
(1− α1εn)V̂ (Un) +O(εn), 0

}
.(4.4)

Equation (4.4) implies that V (Un) = O(1), which yields the theorem.
Forcing terms to the boundary. Now, let us consider the general case in which

there are forcing terms to the boundary. The procedure is similar to that used in
Theorem 3.1. Suppose that gi(θ̄) < 0 for i = k + 1, . . . , r. Partition the coordinates
such that Un = (Ua,n, Ub,n), where Ua,n (resp., Ub,n) consists of the first k (resp., last
r − k) components of Un. Partition θ, θ̄, and g(·) analogously.

Theorem 4.4. Assume that gi(θ̄) = 0, i ≤ k, and gi(θ̄) < 0, i > k. Let di = ni,
an orthogonal reflection. Let A denote the matrix whose ith row is the gradient of
ga(·) with respect to θa at θ̄. Assume that Assumptions 2.1–2.4 and 4.3 hold. Then
{Un, n <∞} is tight.

Proof. Again, only the case (2.5a) will be dealt with. Since manipulations with
Liapunov functions can be tedious, we will present only the main steps. Let V (·)
be the Liapunov function of Theorem 4.2, but which is applied to the k dimensional
system dx = Axdt+ dz, x ∈ L. We will use the expansion

g(θ)− g(θ̄) =

[
A B

C D

](
θa − θ̄a

θb − θ̄b

)
+ higher order terms,

where B,C,D are matrices and the higher order terms are∫ 1

0

[
gθ(θ̄ + s(θ − θ̄)− gθ(θ̄)

] (
θ − θ̄

)
ds,

as in (3.3).
For some large C0, which will be determined later, define the Liapunov function

V̄ (U) = V 2(Ua)/2 + C0|Ub|2/2. We can write

EnV̄ (Ũn+1)− V̄ (Un) ≤ V (Ua,n)V
′
x(Ua,n) [εnAUa,n + εnBUb,n + o(εn)|Un|](4.5)

+ o(εn)|Un|+O(εn)|Vx(Ua,n)|2 +O(εn) +O(εn)|Vxx(Ua,n)||V (Ua,n)|
+C0U

′
b,n

[√
εngb(θ̄) + εnCUa,n + εnDUb,n

]
+ C0O(εn).



1024 ROBERT BUCHE AND HAROLD J. KUSHNER

First, suppose that |Ua,n| ≥ K1, large. The value of C0 is not important at
this step. Then bound (see Theorem 3.1)

√
εngb(θ̄) ≤ −εnK̄Ub,n, where K̄ is a

diagonal matrix whose diagonal components are K > 0, which (using the localization
argument) is as large as desired. Thus we can bound

√
εnC0U

′
b,ngb(θ̄) ≤ −εnC0K |Ub,n|2 .(4.6)

Following the idea in Theorem 3.1, we trade off by selecting K large enough (and
using properties P5 and P7 at the end of the appendix) so that, for some α > 0,

−C0K |Ub,n|2 + C0U
′
b,nCUa,n + C0U

′
b,nDUb,n + V (Ua,n)V

′
x(Ua,n)[AUa,n +BUb,n]

≤ −C0K

2
|Ub,n|2 − α|Ua,n|2 +O(1).(4.7)

As |Ua,n| → ∞, |Vxx(Ua,n)| → 0, as 1/|Ua,n| and |Vxx(Ua,n)||V (Ua,n)| = O(1).
Using the above bounds, property P6 at the end of the appendix, and the fact

that V̄ (Un+1) ≤ V̄ (Ũn+1), we have for some α2 > 0

EnV̄ (Un+1)− V̄ (Un) ≤ −εnα2V̄ (Un) +O(εn).(4.8)

This estimate is for |Ua,n| ≥ K1, some large number.
Now, consider the case where |Ua,n| ≤ K1 but |Ub,n| ≥ K1. As in Theorem 4.3,

EnV
2(Ua,n+1)− V 2(Ua,n) ≤ O(εn).(4.9)

The difference |Ub,n+1|2 − |Ub,n|2 is expanded as in (4.5), and we use the bound in
(4.6). Choose C0 large enough so that −εnC0K|Ub,n|2/4 ≤ −εn|Ua,n|2. Then, for
some α3 > 0 we can write

EnV̄ (Un+1)− V̄ (Un) ≤ −εnα3C0|Ub,n|2 − εnα3|Ua,n|2 +O(εn).(4.10)

Thus, unless both |Ua,n| and |Ub,n| are less than K1, (4.10) holds for some α3 > 0.
When both are less than K1, the estimate is obtained as in Theorem 4.3, and then
the proof is completed as there.

5. Weak convergence of the Un(·) to a reflected diffusion. Let U i,n(·)
denote the ith component of Un(·). The weak convergence uses the Skorohod topology
on the path space D(Rr; 0,∞), the space of R

r-valued functions on [0,∞) which are
right continuous and have limits from the left. See [3, 13] for the general theory of
weak convergence, and [21] for the details of the theory as it applies to the SA problem
and for further references.

Now that tightness of the set {Un, n < ∞} has been shown under the various
conditions used in section 4, we need to prove the weak convergence of the continuous
time interpolations Un(·) and characterize the weak sense limit process. The local-
ization argument noted at the beginning of Theorem 3.1 will be used where needed,
usually without explicit mention. The tightness proof concerned the behavior of the
iterates Un for all time. Given this, to deal with the weak convergence of the Un(·)
we need only work with these processes on an arbitrary finite time interval. The
possible unboundedness of Un is a complication in proving tightness of the set of
processes {Un(·), n <∞} (as opposed to the tightness of the set of random variables
{Un, n < ∞}). The most convenient approach for proving tightness and character-
izing the weak sense limits uses a truncation device, which is discussed in detail in
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[17]. It is designed to avoid the problem of unbounded dynamical terms. The idea is
to truncate the processes Un(·), prove the weak convergence of the truncated forms,
and then use the properties of the associated weak sense limits of these to show that
(asymptotically) the truncation is actually unnecessary.

The truncated processes. To facilitate working with the shifted processes Un(·)
which start at iterate n, for j ≥ 0 define εnj = εn+j , θ

n
j = θn+j , ξ

n
j = ξn+j , Z

n
j = Zn+j ,

and ynj = yn+j . For each integer M , let qM (·) be a continuous real-valued function on
R
r satisfying 0 ≤ qM (x) ≤ 1, qM (x) = 1 for |x| ≤M, and qM (x) = 0 for |x| ≥M +1.

Let Ā denote the matrix whose ith row is the gradient of gi(·) with respect to θ at θ̄.

Define the truncated iterates Un,M
j by UM,n

0 = Un, and for j ≥ 0 set

UM,n
j+1 = UM,n

j +
√
εnj g(θ̄) + εnj ĀU

M,n
j qM (UM,n

j ) + εnj y
M,n
j UM,n

j qM (UM,n
j )

+
√
εnj ξ

n
j +

√
εnj Z

M,n
j + o(εnj )

[
g(θnj ) + UM,n

j qM (UM,n
j ) + ξnj + ZM,n

j

]
.(5.1)

By comparing (3.4) and (5.1), we see that UM,n
j = Un+j , until the first index j > 0 at

which Un+j exceeds M in norm, and that the terms with coefficient
√
εnj in (5.1) are

not truncated. The ZM,n
j are the reflection terms which serve to keep the iterate in H.

Define the interpolation UM,n(·) analogously to the way in which the interpolation

Un(·) was defined but using the truncated iterates UM,n
j .

No forcing terms to the boundary. We will first work with the case where there
is no forcing term to the boundary. Hence k = r and g(θ̄) = 0 in Theorems 4.1 and
4.3. Define the state space H ⊂ R

r to be the set of x such that xi ∈ [0, bi] for some
subset of coordinates, with the others unconstrained. To get L, center about θ̄ and
use “local” coordinates. Thus L ⊂ R

r is the set of points x for which xi ≥ 0 for all
coordinates i that are constrained and such that θ̄i = 0.

Theorem 5.1. Assume that Assumptions 2.1–2.4 and 4.3 hold. Suppose that
there are no forcing terms to the boundary and define L and H as above. Then Un(·)
is tight, and the weak limit of any weakly convergent subsequence satisfies (1.9a) or
(1.9b), according to the case, where σ is defined below Assumption 2.2 and U(t) ∈
L. Thus, the weak sense limits differ only in the initial condition. The processes
(U(·), z(·)) are nonanticipative with respect to the Wiener process.

Proof. Again, we work with (2.5a) only. Tightness of the set of initial conditions
Un = Un(0) was proved in Theorems 4.1 and 4.3. Given this tightness, one first
proves tightness of the set of truncated random processes {UM,n(·), n <∞} and then
characterizes the limit of any weakly convergent subsequence. Abusing terminology,
we suppose that the chosen subsequence is indexed by n also. The result will not
depend on the chosen subsequence.

It will be shown that the weak sense limit UM (·) of the truncated processes
UM,n(·) satisfies

dUM = AUMqM (UM )dt+ σdw + dzM ,(5.2)

where A = Ā and w(·) is a standard vector-valued Wiener process. By the tightness
of {Un, n < ∞}, the set of all possible UM (0) (over all convergent subsequences and
all M) is tight. Then, the process (5.2) has the property that, for any T > 0, and
where the limit (as C →∞) is taken on uniformly in the chosen subsequence,

lim
C→∞

sup
M

P

{
sup
t≤T

∣∣UM (t)
∣∣ ≥ C

}
= 0.(5.3)
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(Equation (5.3) is obtained using the Lipschitz condition on the map taking the driving
process w(·) to the reflection process for the Skorohod problem, which was proved in
[7].) Then (5.2), together with the weak convergence of UM,n(·) to UM (·), implies
that the original sequence Un(·) satisfies

lim
C→∞

sup
n

P

{
sup
t≤T
|Un(t)| ≥ C

}
= 0.(5.4)

This boundedness in probability, in turn, together with the tightness of {UM,n(·), n <
∞} for eachM , implies that the untruncated sequence is also tight and satisfies (1.9a).
The weak sense limits can differ only in the initial condition.

Now, return to the proof of (5.2). Fix M until further notice. Using the local-
ization method, we will suppose without loss of generality that |θn − θ̄| is as small
as desired. Hence the Zi,M,n

j (the ith component of ZM,n
j ) can be supposed to equal

zero for those i for which θ̄i �= 0. Define the process

Wn(t) =

m(tn+t)−1∑
i=n

√
εiξi.(5.5)

Then, Wn(·) converges weakly to a Wiener process with covariance matrix Σ [21,
Theorem 10.2.1]. Now, keep in mind that |UqM (U)| is bounded by M . Hence, the
processes defined by the interpolation of the fourth term on the right-hand side of
(5.1) clearly converge weakly to the “zero” process. The processes defined by the
interpolations of the first two terms in the bracket on the right-hand side of (5.1)
also converge weakly to the “zero” process. Recall that the state space of concern is
L = {x : xj ≥ 0, for j such that θ̄j = 0 and coordinate j is constrained}.

It remains to treat the effects of Zi,n,M
j for those coordinates i which are con-

strained and for which θ̄i = 0. We next outline the proof that ZM,n(·) is “asymptot-
ically continuous.” Adapting a method of [19], it will be shown that for each T > 0
and ν > 0

lim
δ→0

lim sup
n

P

{
sup
t≤T

sup
s≤δ

∣∣Zn,M (t+ s)− Zn,M (t)
∣∣ ≥ ν

}
= 0,(5.6)

where Zn,M (·) is the continuous time interpolation of the Zn,M
i . The limit equality

(5.6) implies the tightness and that each weak sense limit process has continuous paths
with probability one. We refer to the property (5.6) as “asymptotic continuity.”

It is clear that (5.6) holds for the processes defined by the interpolations of any
of the terms on the right-hand side of (5.1), except possibly that due to the Z-term.
Suppose that (5.6) does not hold for some T > 0 and ν > 0. Then there are 0 < δn → 0
and η > 0 such that

lim sup
n

P

{
sup
t≤T

∣∣ZM,n(t+ δn)− ZM,n(t)
∣∣ ≥ ν

}
≥ η.(5.7)

By the truncation and the convergence of the process defined by the sum of the noise
terms to a Wiener process, for any T > 0, the maximum value of the (non-Z) terms
on the right-hand side of (5.1) goes to zero as n → ∞, where the maximum is taken
over i ≤ m(tn + T )− n.

Consider only coordinates i which are constrained and are such that θ̄i = 0. The
Zi,M,n
j can be nonzero only for those j such that the unprojected iterate Ũ i,M,n

j+1 is
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negative, and then εjZ
i,M,n
j is the minimum value which keeps U i,M,n

j+1 ≥ 0. By the
comments in the last paragraph,

sup
i≤m(tn+T )−n

√
εni Z

i,M,n
j → 0

in probability as n → ∞, and (with an arbitrarily high probability) Zi,M,n
j can be

nonzero only when U i,M,n
j is arbitrarily close to zero. These facts imply that (5.7) is

not possible. Hence (5.6) holds.
Now, take a weakly convergent subsequence of all of the interpolated processes

(indexed also by n). By what has been said, the limit satisfies (5.2), where zM (·) is
the reflection term. The proof (except for the nonanticipativity) is now concluded as
discussed in the second paragraph of the proof.

It only remains to show the nonanticipativity. This also follows a standard pro-
cedure. Let Ft denote the filtration engendered by {U(s), z(s), w(s), s ≤ t}, h(·)
be a bounded real-valued function of its arguments, and f(·) be a twice continu-
ously differentiable real-valued function on R

r with compact support. For arbitrary
p, t, τ, si ≤ t < t+ τ, i ≤ p, suppose that

Eh(U(si), z(si), w(si), i ≤ p)

×

f(w(t+ τ))− f(w(t))− 1

2

∫ t+τ

t

∑
i,j

fwiwj (w(s))ds


 = 0.

(5.8)

Then w(·) is an Ft-martingale and an Ft-Wiener process. To prove (5.8), one shows
that

Eh(Un(si), Z
n(si), w

n(si), i ≤ p)

×

f(wn(t+ τ))− f(wn(t))− 1

2

∫ t+τ

t

∑
i,j

fwiwj (w
n(s))Σijds


→ 0

and uses the weak convergence. Details for many such computations can be found in
[17] and are omitted.

Forcing terms to the boundary. Define H as for Theorem 5.1. Since Un
b (·) will be

shown to converge weakly to the “zero” process, L is defined only for the remaining
coordinates. It is the state space of the limit process Ua(t).

Theorem 5.2. Suppose that there are forcing terms to the boundary, in that
k < r in Theorem 4.1 or 4.4. Redefine A to be the matrix whose ith row is the
gradient of gia(·) with respect to θa, at θ̄. Assume that Assumptions 2.1–2.4 and 4.3
hold. Then Un(·) is tight. The sequence Un

b (·) converges weakly to the “zero” process.
The limit of any weakly convergent subsequence of Un

a (·) satisfies

(5.9a) dUa = AUadt+ σadwa + dza, under (2.5a),

or

(5.9b) dUa =

[
A+

I

2

]
Uadt+ σadwa + dza when εn → 0, under (2.5b).

In (5.9), Ua(t) ∈ L, σa is the square root of the upper left hand k × k submatrix of
Σ, wa(·) is a standard R

k-valued Wiener process, and za(·) is the reflection term.
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Thus the weak sense limits differ only in the initial condition. The (Ua(·), za(·)) is
nonanticipative with respect to wa(·).

Proof. The proof is similar to that of Theorem 5.1. In view of the proof of Theorem
5.1 and the tightness of {Un, n <∞}, we need only show that Un

b (·) converges weakly
to the “zero” process. The truncation method will be used again. Thus we need only
show that UM,n

b (·) converges weakly to the “zero” process for each M .
Return to (5.1), and using the fact of the truncation write the b-component as

UM,n
b,j+1 = UM,n

b,j +
√
εnj gb(θ̄) + εnjO(1) +

√
εnj ξ

n
b,j +

√
εnj Z

M,n
b,j(5.10)

+ o(εnj )
[
gb(θ

n
j ) +O(1) + ξnb,j + ZM,n

b,j

]
.

First note that the continuous time interpolation of the components of
√
εnj gb(θ̄)

converges to −∞. It is then apparent from the weak convergence of the interpolation
of the noise terms to a Wiener process and the boundedness of the coefficients of εn
and of o(εn) that U

n,M
b (·) converges weakly to the zero process. Given this, use the

proof in Theorem 5.1 for Un,M
a (·). The Un,M

b (·) does not appear in the limit.

6. Stationarity of the limit solution.

6.1. Convergence to invariant measures: General results. The proof of
the stationarity of the limit processes (1.9) or (5.9) rests on the following ergodic
results.

Assumption 6.1. Let L ⊂ R
k be the intersection of a finite number of half-planes

and the closure of its interior. Let x(·) be a Markov–Feller process with a stationary
transition function and with paths in D(L; 0,∞). Let P (x, t, ·) denote the measure of
x(t), given that x(0) = x, and let it be mutually absolutely continuous with respect to
Lebesgue measure for each t > 0 and each x ∈ L.

Recall that the process x(·) with values in L is a Feller process if for each bounded
continuous real-valued function f(·) on L and each t > 0,∫

f(y)P (x, t, dy) is continuous in x.(6.1)

Also, a Markov–Feller process is a strong Markov process. The process is said to be
strong Feller if the continuity holds for any bounded and measurable f(·).

Comment. The crucial result (6.2) is implied by Theorem 4 of [6] (with modified
notation). The rest of the proof is straightforward and the details are omitted. More
detail is in [5].

Theorem 6.1. Assume that Assumption 6.1 holds. Let µ(·) be an invariant
probability measure for x(·), which we suppose exists. Then, µ(·) is mutually absolutely
continuous with respect to Lebesgue measure. Also,

P (x, t, E)→ µ(E) for each x ∈ L and Borel set E ⊂ L.(6.2)

Hence µ(·) is the unique invariant probability measure. Furthermore, (i) x(·) is
a strong Feller process; (ii) for any nonempty compact set C ⊂ L and t > 0,
{P (x, t, ·), x ∈ C} is uniformly absolutely continuous with respect to Lebesgue mea-
sure l(·) on L, in that for each ε > 0 there is δ > 0 such that l(E) ≤ δ implies that
P (x, t, E) ≤ ε, x ∈ C. Assume, in addition, that for each ε > 0 and compact set
C1 ⊂ L

lim
t→0

sup
x∈C1

Px {|x(t)− x| ≥ ε} = 0.(6.3)
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Then (iii) the uniformity in the absolute continuity holds for (x, t) ∈ C × [t0, t1] for
any t0, t1 satisfying 0 < t0 < t1 <∞.

Now, assume (6.1) in addition. Let µ(·) be an invariant measure for x(·). For α
in some index set, let {qα(·)} be a tight family of probability measures on L. Then for
each Borel set E ⊂ L ∫

qα(dx)P (x, t, E)→ µ(E)(6.4)

uniformly in α as t→∞.

6.2. Ergodic results for the Skorohod problem. We will be concerned with
the solution to the Skorohod problem in a state space L satisfying Assumption 4.2
and the following conditions. The condition is more general than needed, but it is the
natural formulation.

Assumption 6.2. There are constants ai > 0 such that for all i

ai〈ni, di〉 >
∑
j =i

aj |〈ni, dj〉| .

The condition needs to hold only for the faces adjoining each individual edge or corner
of L separately.

Assumption 6.3. σ(·) is an r × r matrix, bounded and Hölder continuous, with
a(x) = σ(x)σ′(x) positive definite, uniformly in x. Let b(·) be Hölder continuous and
|b(x)| ≤ K(1 + |x|) for some K <∞.

These conditions hold for the case of interest for the SA in this paper. Indeed,
for our cases, the reflection directions are normal to the boundary (di = ni), and
L is the set used in section 4 where some components are unconstrained and others
are constrained to be nonnegative. Also for our case, b(x) = Ax, and σ(x) = σ is
constant.

Let r(x) denote the set of reflection directions at x ∈ L. The Skorohod problem
of interest is defined by

dx = b(x)dt+ σ(x)dw + dz, x(t) ∈ L for all t,(6.5)

where z(·) is the reflection term and w(·) is a standard vector-valued Wiener process.
Let |z|(t) denote the variation of z(·) on [0, t]. Suppose (as holds for our case) that
b(·) and σ(·) are Lipschitz continuous. Then [7] |z|(t) < ∞ with probability one for
each t, and

|z|(t) =
∫ t

0

I{x(s)∈∂L}d|z|(s),

z(t) =

∫ t

0

γ(s)d|z|(s),

where γ(·) is a measurable function such that, for almost all (ω, t), γ(t) ∈ r(x(t)).
It is a consequence of the results in [7] that a strong sense solution to (6.5) exists
on [0,∞) and is unique in the strong sense for each initial condition x(0) = x ∈
L. (Thus x(·) is a well-defined Markov–Feller process with a transition function
P (x, t, ·).) Also, by Assumption 4.2 the variation of z(·) on any finite time interval
is bounded in probability, uniformly in the initial condition in any bounded set [19,
Theorem 11.1.1.]. Consider the Skorohod problem x(t) = φ(t) + z(t), where φ(·) ∈
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D(Rk; 0,∞) and the reflection directions and state space satisfy Assumption 4.2. Let
(x1, φ1, z1) and (x2, φ2, z2) be any solutions of the corresponding Skorohod problem.
Then Assumption 6.2 implies that [7] there is a real K1 such that for all t

sup
s≤t

[|z1(s)− z2(s)|+ |x1(s)− x2(s)|] ≤ K1 sup
s≤t
|φ1(s)− φ2(s)|.

This Lipschitz condition can be used to prove strong sense existence and uniqueness of
the solution to (6.5) under a Lipschitz condition on b(·), σ(·). This is its only purpose
here.

We now restate and slightly extend (with essentially the same proof) the material
from Harrison and Williams [15, section 7]. The proof of the next theorem is just that
of [15, Lemma 7.2], nearly word for word, and the details are omitted. Theorems 6.3
and 6.4 together imply uniform mutual absolute continuity of the transition function
and Lebesgue measure which is needed to apply Theorem 6.1.

Theorem 6.2. Assume that Assumptions 4.2 and 6.2–6.3 hold. Suppose that the
nonanticipative solution to (6.5) exists and is unique in the weak sense for each initial
condition. Then

Ex

∫ ∞

0

I∂L(x(s))ds = 0(6.6)

for each initial value x ∈ L. Furthermore,

P (x, t, ∂L) = 0, t > 0, and all x ∈ L.(6.7)

More strongly, for any compact set C ⊂ L and t > 0,

lim
δ→0

sup
x∈C

P (x, t,Nδ(∂L)) = 0,(6.8)

where Nδ(∂L) is a δ-neighborhood of the boundary.

The next theorem essentially follows from Theorems 6.1 and 6.2, the properties of
the unconstrained process from [12], and the argument in [15, Lemma 7.9]; the details
are omitted. Theorem 6.4 is a consequence of Theorems 6.1 and 6.3. See [5] for more
detail.

Theorem 6.3. Assume that Assumptions 4.2 and 6.2–6.3 hold. Suppose that the
nonanticipative solution to (6.5) exists and is unique in the weak sense for each initial
condition. Then for t > 0 the transition probability P (x, t, ·) is mutually absolutely
continuous with respect to Lebesgue measure for each x ∈ L and is absolutely contin-
uous with respect to Lebesgue measure uniformly for (x, t) in any compact set of the
form C × [t0, t1], where C ⊂ L is compact and t1 > t0 > 0.

Theorem 6.4. Assume that Assumptions 4.2 and 6.2–6.3 hold. Suppose that the
nonanticipative solution to (6.5) exists and is unique in the weak sense for each initial
condition. Then x(·) is a strong Feller process. Let the sets E below be contained in
a compact set C1 ⊂ L, and suppose that C ⊂ C0

1 is compact. Let ε > 0 be arbitrary.
Then there is δ > 0 such that, for t1 > t0 > 0,

inf
t1≥t≥t0

inf
x∈C

inf
{E:l(E)≥ε}

P (x, t, E) ≥ δ.(6.9)
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6.3. Stationarity of the limit U(·) process.
Theorem 6.5. Under the conditions of Theorem 5.1, any weak sense limit U(·)

of Un(·) is stationary and the stationary process is unique. The analogous result holds
for the weak sense limit Ua(·) under the conditions of Theorem 5.2.

Outline of proof. We apply Theorem 6.1 and work with the case of Theorem
5.1 only (the case of Theorem 5.2 is treated identically). Owing to the tightness of
{Un, n <∞}, the set

{U(t), t <∞, all possible weak sense limits U(·)}

is tight. This and the Markov–Feller property of U(·) imply that there is an invariant
measure. Theorem 6.3 ensures the absolute continuity property (with respect to
Lebesgue measure) needed in Theorem 6.1. Let µ(·) denote the unique invariant
measure, and P (u, t, ·) the transition function for the process U(·). Let {πα(·)} denote
a tight set of probability measures. The next step is to show that∫

πα(du)P (u, t, A)→ µ(A)

as t→∞, uniformly in α. However, this is implied by Theorem 6.1.
To complete the proof, we use a “time shift” argument analogous to what was

done in [21, Chapter 10]. Define Un = U0 for n ≤ 0. We start the Un(·) processes
“earlier.” Let s > 0 be an integer. Define the process Us,n(·) by Us,n(0) = Um(tn−s)
and, for t > 0, Us,n(t) = Um(tn+t−s). Thus Un(0) = Us,n(s). The set {Un(·), Us,n(·)}
is tight for each fixed s. Take a subsequence ni such that (Uni(·), Us,ni(·)) converges
weakly to weak sense limits denoted by (U(·), Us(·)). The processes U(·) and Us(·)
satisfy (1.9a) or (1.9b), according to the case. Also, U(0) = Us(s). As s → ∞, take
further weakly convergent subsequences. Owing to the tightness of {Us(0), s > 0}
and (6.4), we see that U(0) must be the stationary initial condition.

7. More general noise. The tightness results of sections 3 and 4 depended on
the assumption that the ξn were martingale differences. The proof of weak convergence
in section 5 did not need the martingale difference condition. It required only that
the process defined by (5.5) converge weakly to a Wiener process. (This, in itself,
will not get the nonanticipativity, but the required addition is minor and is dealt
with in [21].) Still, the key issue is the tightness of {Un, n < ∞}. For a large class
of correlated noise processes, this can be proved by use of the perturbed Liapunov
function method [4, 17, 21]. We will make a few comments concerning the method
for the case of Theorem 4.3. The cases of Theorems 4.1 and 4.4 are similar.

The main problem with correlated noise is that we no longer have EnV
′
x(Un)ξn = 0

and En|ξn|2 uniformly bounded when θn − θ̄ is small. To simplify the development,
work with (2.5a) and suppose that ξn is bounded. Then, the term [

√
εn + o(εn)]ξn =

εnξn/
√
εn+1 in (3.4) leads to the additional term

√
εnV

′
x(Un)Enξn in (4.1). Following

the perturbed Liapunov function method used in [17, 21], define the perturbation

δFn =

∞∑
j=n

Enξj .(7.1)

Assume that it is well defined and that the conditional expectations go to zero fast
enough so that it is bounded by some constant B, uniformly in all variables. Now,
define the Liapunov function perturbation δV n = [εn/

√
εn+1]V

′
x(Un)δFn. We will
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use the perturbed Liapunov function V n = V (Un) + δV n. Modifying the method in
Theorem 4.3 by following the procedures for the perturbed Liapunov functions in
[17, 21], one can prove the tightness of {Un, n <∞}.

8. An application: Constrained stochastic approximation via a La-
grangian method. Consider the problem of minimizing the real-valued function
f(x) on R

r subject to constraints qi(x) ≤ 0, i ≤ p. Both f(x) and the qi(x) are un-
known but are observed with additive noise. A “Lagrangian” SA method for dealing
with this problem was introduced in [18, 20], where convergence (with probability
one) was proved.

Suppose that f(·) is strictly convex and twice continuously differentiable, and that
the qi(·) are twice continuously differentiable and convex. To simplify the discussion,
suppose that we observe the derivatives plus (martingale difference) noise. Otherwise,
the Kiefer–Wolfowitz procedure is used, and the finite difference bias error needs to
be accounted for. Define the Lagrangian

L(x, λ) = f(x) +
∑
i

λiqi(x), λi ≥ 0.

There is a unique saddle point (X̄, λ̄) and λ̄i ≥ 0. Suppose that finite ai, bi, ci are
known for which λ̄i < ai and bi < X̄i < ci. The SA algorithm is [18, 20]

Xn+1 = Xn − εnLx(Xn, λn) + εnξx,n + εnZx,n,

λn+1 = λn + εnLλ(Xn, λn) + εnξλ,n + εnZλ,n,

where the Zx,n, Zλ,n are reflection terms, which keep the iterate within the hard
boundary, 0 ≤ λi ≤ ai, bi ≤ xi ≤ ci. The ξx,n, ξλ,n are observation noises. Define
θ = (X,λ), and suppose that ξn = (ξx,n, ξλ,n) satisfies Assumptions 2.2 and 2.3. For
specificity, suppose that (2.5a) holds. Then [18] θn converges weakly to its unique limit
θ̄ = (X̄, λ̄).Under stronger conditions on the εnξn, there is probability one convergence
[18]. Let us suppose probability one convergence. Under our assumptions, X̄ is inside
its hard constraint box and λ̄i < ai. Then, by the localization hypothesis, we can
suppose that Zx,n = 0. Also, we can suppose that Zi

λ,n = 0 for all i such that λ̄i > 0.
Define

Ux,n =
Xn − X̄√

εn
, Uλ,n =

λn − λ̄√
εn

.

If 0 < λ̄i for all i, then θ̄ is interior to its hard constraint set, and the classical rate
of convergence theory can be used. Thus, suppose that λ̄i = 0 for some i. Then the
classical theory cannot be used. If λ̄i = 0, then we could have either qi(X̄) < 0 or
qi(X̄) = 0.

Let us next deal with the latter case, where qi(X̄) = 0 for all i. Define the matrix

A =

[ −Lxx(X̄, λ̄) −q′x(X̄)
qx(X̄) 0

]
.

Note that Lxx(X̄, λ̄) is positive definite. Suppose that the vectors qi,x(X̄), i ≤ p, are
linearly independent. Consider the deterministic Skorohod problem(

ẋ

λ̇

)
= A

(
x
λ

)
+

(
0
żλ

)
.
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The solution corresponding to any initial condition goes to zero as t→∞. This can
be seen from the following Liapunov function argument. Use V (θ) = |x|2/2 + |λ|2/2.
Then, using the fact that λ′żλ = 0, we have

V̇ (θ) = −x′Lxx(x)x.

This implies that V (θ(t)) is bounded for each initial condition and that the solution
goes to the set where x = 0. But this, in turn (using the linear independence of the
qix(X̄), i ≤ p), implies that the solution θ(t) tends to zero.

With this result in hand, Theorem 4.3 and the results of sections 5 and 6 yield
that Un(·) converges weakly to the stationary solution to(

dUx
dUλ

)
= A

(
Ux
Uλ

)
dt+ σdw(t) +

(
0
dzλ

)
,

where żiλ(t) = 0 unless λ̄i = 0.
The case where qi(X̄) < 0 for some i corresponds to a forcing term to the bound-

ary for the component λin, and the process defined by U i
λ,n will converge to zero. Then

such U i
λ,n can be dropped, and the rate of convergence equation can be developed for

the remaining components.

9. Nonorthogonal reflection directions. The convergence results for con-
strained algorithms in [21] are for reflections which return the iterate to the closest
point in the hyperrectangular constraint set. However, the proofs can be modified to
allow constraint sets which are just the closures of their interiors and have piecewise
linear boundaries. Suppose that the constraint set H and the reflection directions
simply satisfy Assumption 4.2 and that Assumption 4.3 holds. Then Theorem 4.2
holds, so one can construct the Liapunov function V (·).

Suppose that there are no forcing terms to the boundary. Then one can repeat all
of the steps in Theorem 4.3. With the tightness of {Un, n <∞} given, the only new
problem is the proof of the tightness of the reflection processes ZM,n(·) in Theorem
5.1. This can be done by essentially the method in Theorem 5.1, since the condition on
the reflection directions in Assumption 4.2 can be used to show asymptotic continuity
of these processes. While there is no analytical problem when there are no forcing
terms to the boundary, the interaction of the oblique reflection directions and the limit
linearized dynamics ẋ = Ax + ż can be very complicated. When there are forcing
terms to the boundary, as under the assumptions of Theorem 3.1, the individual
components of Un(·) can be separated into two subsets. One converges to the “zero”
process, and the other to the limit reflected diffusion.

10. Discussion: Comparisons with the unconstrained case. For the un-
constrained case, the stationary distribution of either form of (1.5) is normal with zero
mean, and the covariance can be computed analytically. Consider the constrained
problem. Suppose that the components of θ can be divided into two classes, where
the first corresponds to forcing terms to the boundary and, for the latter, θ̄i is in-
terior to the constraint interval. Then the steady state distribution is simple: The
normalized mean square errors of the components with forcing terms to the boundary
are zero. The others are unconstrained in the limit, and their distribution is normal
with zero mean and can be computed analytically. The variances can be much smaller
than those for the original unconstrained problem, since the dimension is smaller. It
is common for constrained problems to have some components with forcing terms to
the boundary.
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If, however, some components without forcing terms to the boundary have θ̄i at
the end of the constraint interval, then we have to deal with the general reflected
diffusion of one of the forms in (1.9). The form of the stationary distribution of (1.9)
is not known, and some sort of simulation seems to be called for to evaluate it. The
stationary means and covariances were evaluated for several two dimensional systems.
For those examples, where there were no forcing terms to the boundary, the constraints
did not increase the mean square values. Generally, the mean square values of the limit
variances for the constrained problem were close to the variances for the unconstrained
problem, perhaps a little smaller. However, the mean of the limit distribution was
not zero. Thus, the limit variances were smaller than those for the unconstrained
problem, suggesting that the constrained problem has less asymptotic variability, even
when the limit point is the same as that for the unconstrained problem. If one of the
components did have a forcing term to the boundary, then even if the other component
of the limit was on the boundary, its stationary variance was smaller (again, perhaps
much smaller), since the effective dimension is reduced. A method for analytically
evaluating or approximating the first two moments for the constrained problem is
needed.

Appendix. Construction of the Liapunov function V (·). Theorem 4.2
will be proved in this section. Consider an unconstrained system ẋ = b(x). Uniform
asymptotic stability of this ODE implies the existence of a Liapunov function. This
Liapunov function can be smoothed to make it twice continuously differentiable and
then used to prove the recurrence of the process defined by the unconstrained SDE
dx = b(x)dt+ σ(x)dw if σ(·) is bounded. The aim is to do this for the reflected SDE
of concern, where the deterministic (fluid) model is (4.1a) ((4.1b) is obviously similar)
and the reflected SDE is (1.9a). If the result is to be adapted for use on the discrete
parameter SA algorithm, then we need to allow reflection from a neighborhood “a
little outside” of L, the state space of the limit process (1.9). A serious problem,
which is not present in the unconstrained case, is that there are two vector fields to
be dealt with, the drift in L and the reflection on the boundary and just outside of
the boundary.

This problem was solved in [11] for the case where the drift vector b(x) was
simply a constant vector b̄. The general idea of the proof there can be extended to
cover our case, where b(x) = Ax, but a number of alterations need to be made. Since
the proof in [11] is complicated, we will provide a detailed guide to the necessary
changes. Their state space was the orthant {x : xi ≥ 0, i ≤ k}. In our case, some
components are unconstrained, and we use the L defined in Assumption 4.2, where
components 1, . . . , ν are constrained and components ν + 1, . . . , k are unconstrained.
This alteration is insignificant and, in itself, requires only a minor notational change
in [11]. The radial homogeneity of the dynamical terms, drift, and reflection (i.e.,
they have the same value at all points on each ray from the origin) was heavily used
in [11]. This is the reason for the use of the form dx = [Ax/|x|] dt + dz below. The
paths of this normalized model, when plotted in phase space, are the same as those of
the original fluid model (1.5a), and actual paths differ only by a time scaling. Thus,
we work with

dx =
Ax

|x| dt+ dz, x ∈ L,(A.1)

and assume that Assumption 4.2 holds.
The method of analysis uses an extension of the dynamics to all of R

k−{0}. The
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major difficulty concerns the need to get a smooth Liapunov function in R
k − {0},

where the dynamical term is discontinuous on ∂L, where it switches from the drift to
the reflection.

The main steps of the proof in [11], adjusted to our form of L but where dx =
b̄dt+ dz, are the following.

1. First define the extended system ẋ = v(x) : For x ∈ L − {0}, set v(x) = b̄,
where b̄ is their constant drift vector. For x ∈ R

k−L−{0}, set v(x) = r0(x),
where r0(x) is any unit vector in cone{di : i ∈ In(x)}, where In(x) = {i : xi =
0}. The definitions at the origin are arbitrary.

2. Smooth v(·) : Let ρ(·) be a smoothing kernel and for small a > 0 define

va(x) = c(a|x|)
∫

ρ

(
x− y

a|x|
)
v(y)dy,

where c(a) is the normalizing constant which ensures that the integral is unity
when v(·) ≡ 1.

3. Form a convex combination of va(·) and the original dynamics as follows.
Let d(x,M) = infy∈M |x − y| denote the distance between x and the set M .
Define the real-valued, infinitely differentiable, and nonincreasing function on
[0,∞) by g(s) = 1, s ∈ [0, .5], g(s) = 0, s ∈ [1,∞). Define

vai (x) = g

(
d(x, ∂Li)

a|x|
)
di +

[
1− g

(
d(x, ∂Li)

a|x|
)]

va(x), 1 ≤ i ≤ ν,

va0 (x) = g

(
d(x, L)

a|x|
)
b̄+

[
1− g

(
d(x, L)

a|x|
)]

va(x).

4. Define the set-valued function

Ka(x) = conv {vai (x), 0 ≤ i ≤ ν} ,

where conv denotes the set of all convex combinations. For each x, define
K(x) as the “limit” set containing points y satisfying the following condition:
there exists an → 0, xn → x, yn → y, where yn ∈ Kan(xn). Define the ODE
with the set-valued right-hand side

φ̇ ∈ Ka(φ), φ(0) ∈ some compact set.(A.2)

5. Let k(·) be a [0, 1]-valued, infinitely differentiable, and nondecreasing function
on [0,∞) such that k(s) = 0 for s ∈ [0, 1] and k(s) = 1 for s ∈ [2,∞). Define
the first “tentative” Liapunov function

V a(x) = sup
φ

∫ ∞

0

k(|φ(s)|)ds,

where the sup is over all solutions to (A.2) with φ(0) = x.
6. For small b > 0, smooth V a(·) as

V a,b(x) = c(b)

∫
ρ

(
x− y

b

)
V a(y)dy.
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7. There is a star-shaped set S ⊂ R
k such that, for some v̄ > 0,

∂S =
{
x : V a,b(x) = v̄

}
is twice continuously differentiable. Now define the final Liapunov function
V (y), y ∈ R

k − {0} by

V (αx) = αV a,b(x), α > 0, x ∈ ∂S, for y = αx.

8. V (·) is twice continuously differentiable in R
k − {0}. For α > 0, x �= 0,

V (αx) = αV (x) and αVyy(y)
∣∣
y=αx

= Vxx(x), and hence Vxx(x) goes to zero

as O(1/|x|) as x→∞. There is ε > 0 such that for x ∈ L−Nε(0), V
′
x(x)b̄ ≤

−c, c > 0, and for x ∈ R
k − L −Nε(0), V

′
x(x)d ≤ −c, d ∈ r(x). The bounds

in Theorem 4.2 hold.

In our case, Ax/|x| replaces the constant vector b̄ in steps 1 and 3, but all other
steps and definitions are the same. The radial homogeneity which played such an
important part in [11] holds. Suppose that the Liapunov function has the same
properties for our case but with Ax/|x| replacing b̄. Then V ′

x(x)Ax/|x| ≤ −c for
x ∈ L−Nε(0). Hence V

′
x(x)Ax ≤ −c|x| there. For x ∈ R

k − L−Nε(0), the fact that
V ′
x(x)d ≤ −c for all d ∈ r(x) implies that V (x) ≤ V (x̃), where x̃ ∈ R

k−L−Nε(0) and
x is its “projection” onto L in any feasible reflection direction. This fact is used to get
that V (Un+1) ≤ V (Ũn+1) for large Un. We next outline the required modifications of
the proof in [11]. This will be done in a series of lemmas which go over the main steps
in the reference but are adjusted for our case.

The properties of Ka(·) and K(·) given in [11] are easily seen to still hold. Specif-
ically, we have the following:

1. For each a > 0, Ka(·) is the convex hull of ν +1 vector-valued functions that
are locally Lipschitz continuous on R

k−{0}. This holds since Ax/|x| is locally
Lipschitz at x �= 0.

2. For each a > 0, α > 0 , and x ∈ R
k, Ka(αx) = Ka(x).

3. Let x �= 0. If d(x, L) ≤ a|x|/2, then Ax/|x| ∈ Ka(x). If d(x, ∂Li) ≤ a|x|/2,
then di ∈ Ka(x).

4. Let λ(x) = {i ≤ ν : xi < 0}. If d(x, L) > 0, then K(x) is contained in
conv{di : i ∈ λ(x)}.

5. If x ∈ L0, the interior of L, then K(x) = {Ax/|x|}, and if x ∈ ∂L, then

K(x) = conv ({Ax/|x|} ∪ {di : i ∈ In(x)}) .

6. K(x) is an upper-semicontinuous function of x ∈ R
k − {0}, in the sense that

xn → x, vn → v, and vn ∈ K(xn) implies that v ∈ K(x).

We say that a solution φ(·) to a reflected ODE is attracted to the origin if for any
ε > 0 there exists T <∞ such that t ≥ T implies that |φ(t)| ≤ ε. This is the same as
saying that all solutions converge to the origin.

Lemma A.1 (see Proposition 3.3 in [11]). Let Γ(a) denote the set of solutions to

φ̇(t) ∈ Ka (φ(t)) , φ(0) = xa,

where {xa, a ∈ (0, 1]} is any bounded set in R
k. We then have the following conclu-

sions:

(i) The set {Γ(a), a ∈ (0, 1]} is precompact.
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(ii) Suppose that an → 0. Suppose that φan(·)→ φ(·) uniformly on each bounded
time interval, where φan(·) ∈ Γ(an), and xan = φan(0) → x. Then we have
the following: (a) If x ∈ L, then modulo a rescaling of time, φ(·), φ(0) = x
solves (A.1). (b) If x /∈ L, then φ(τ) ∈ L for some τ < ∞. Furthermore,
modulo a rescaling of time, φ(·+ τ) solves (A.1).

Comment on the proof. Since Ka(x) is uniformly bounded over all x and a,
Ascoli’s theorem can easily be applied to prove (i) exactly the same as in [11].

For part (ii), it is first shown in [11] that if φa(·) → φ(·), as a → 0, where
φa(·) ∈ Γ(a), then φ(·) satisfies

φ̇(t) ∈ K(φ(t)), almost all t ∈ [0,∞).(A.3)

The proof of this relies on the uniform boundedness of Ka(u), which we still have,
and the proof is the same as in the reference, except for one point. The proof is
slightly different by the fact that a Lipschitz continuous function φ(·), which satisfies
φ̇(t) ∈ K(φ(t)) for almost all t, can be written as the convex combination

φ̇(t) = q0(t)
Aφ(t)

|φ(t)| +
∑

i∈In(φ(t))

qi(t)di,

q0(t) +
∑

i∈In(φ(t))

qi(t) = 1,

where qi(t) are nonnegative measurable functions. Following the general approach
in the reference, Michael’s selection theorem [1] is used to obtain the functions qi(·),
i = 0, . . . , ν. The details are omitted here and can be found in [5].

Lemma A.2 (see Proposition 3.4 in [11]). Assume that all solutions of (A.1) are
attracting to the origin. Then the following conclusions hold: (i) Given α > 0, there
exist r > 0 and a0 > 0 such that for all a ∈ (0, a0)

φ̇ ∈ Ka(φ) and |φ(0)| ≤ r

implies that

|φ(t)| ≤ α for all t ≥ 0.

(ii) Given r > 0 and R < ∞, there exist T < ∞ and a0 > 0 such that, for all
a ∈ (0, a0),

φ̇ ∈ Ka(φ) and |φ(0)| ≤ R

implies that

|φ(t)| ≤ r for some t ≤ T.

Comment on the proof. The proof is the same as in [11]. If part (ii) did not hold,
then the assumption that the solutions to (A.1) are attracting to the origin would be
violated in view of Lemma A.1. To prove part (i), choose R = 1 and r = 1/2 in part
(ii) of this lemma and define

κ = sup
a∈(0,a0)

sup
φ(·):|φ(0)|≤1,φ̇(t)∈Ka(φ(t))

sup
0≤t≤τφ

|φ(t)|,(A.4)
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where τφ = inf{t : |φ(t)| ≤ 1
2}. We have κ <∞ for a0 > 0 sufficiently small; otherwise

the assumption of the lemma is violated.
So far we have shown part (i) for the case in which α = κ, and r = 1 can be used.

We will now show that given an arbitrary α > 0, we may choose r = α/κ. Given φα(0)
satisfying |φα(0)| ≤ α/κ, define φ(0) such that φα(0) = αφ(0)/κ. For any path φ(·)
with such an initial condition and φ̇ ∈ Ka(φ), define τφ,α,κ = inf{t : |φ(t)| ≤ α/(2κ)}.
Then from the radial homogeneity of the vector field and (A.4),

α = sup
a∈(0,a0)

sup
φκ(·):φ̇κ(t)∈Ka(φκ(t)),|φκ(0)|≤α/κ

sup
0≤t≤τφ,α,κ

|φ(t)|,

This proves part (i).
The following lemmas give some properties of V a(u).
Lemma A.3 (see Proposition 3.5 in [11]). Recall the definition of k(·) given below

(A.2). There exist a0 > 0 and r0 > 0 such that, for all a ∈ (0, a0), V
a(x) = 0 for

|x| ≤ r0, V
a(·) is finite and locally Lipschitz continuous on R

k, and

[V a
x (x)]

′y ≤ −k(x)(A.5)

for almost all x ∈ R
k − {0} and every y ∈ Ka(x).

Comment on the proof. The proof is the same as in [11], but we will make a few
comments. The fact that V a(x) = 0 for a ∈ (0, a0) and |x| ≤ r0 follows easily from
Lemma A.2. Specifically we have, for r = r0 small enough, that for any a ∈ (0, a0),
|φ(t)| ≤ 1 ∀t ≥ 0, where φ̇ ∈ Ka(φ). Thus k(φ(t)) = 0 ∀t ≥ 0, and the result follows
from the definition of V a(·).

That V a(·) is finite also follows easily from Lemma A.2. By part (ii), for given
r > 0 and |x| < R, there is an a0 such that for any a ∈ (0, a0), |φ(t)| ≤ r for some
t < T . Choosing r small enough and using the analysis in the previous paragraph
gives that 0 ≤ V a(x) <∞ for |x| < R. Finally, the radial homogeneity of Ka(·) gives
that 0 ≤ V a(x) <∞ for all x, and where a > 0 is sufficiently small.

The proof that V a(·) is locally Lipschitz follows from the same method given in
[11, pp. 693–694]. In particular, recall that Ka(·) is the convex hull of vector value
functions that are locally Lipschitz continuous in R

k − {0}. The proof that V a(·) is
locally Lipschitz follows from this property and the local Lipschitz continuity of k(·).

We now show (A.5). Let V a(·) be differentiable at x. From the definition of V a(·)
we know that, for any γ > 0,

V a(x) ≥
∫ γ

0

k(φ(s))ds+

∫ ∞

γ

k(φ(s))ds,(A.6)

where φ(0) = x and φ̇ ∈ Ka(φ). First we will specify a path φ(·) in the time intervals
[0, γ] and [γ, ∞), where γ is small and γ > 0. Then we examine (A.6) using this φ(·).

For s ∈ [0, γ] choose φ(·) such that φ̇(s) ∈ Ka(φ(s)), but φ̇(s) → φ̇(0) as s → 0.
Write w = φ(γ). Let ε > 0 be arbitrary. For s ∈ [γ, ∞), choose φ(s) = φε,w(s − γ),
where φε,w(·) is such that

φε,w(0) = w, φ̇ε,w(s) ∈ Ka (φε,w(s)) ,

and

V a(w) ≤
∫ ∞

0

k(φε,w(s))ds+ ε.(A.7)



RATE OF CONVERGENCE 1039

By the continuity of k(·), the first integral in (A.6) can be written as γk(x)+o(γ).
The second integral can be written as∫ ∞

0

k(φ(s+ γ))ds =

∫ ∞

0

k (φε,w(s)) ds.

Thus

V a(x) ≥ γk(x) + o(γ) + V a(w)− ε.(A.8)

By the fact that φ̇(s)→ φ̇(0), w = x+ γφ̇(0) + o(γ). Let ε→ 0. Then we can write

V a(x) ≥ γk(x) + o(γ) + V a(x+ γφ̇(0) + o(γ)).

Sending γ → 0 and using the differentiability of V a(·) at x gives the result.
Lemma A.4 (see Proposition 3.6 in [11]). There exist constants d1 > 0 and d2

such that

V a(x) ≥ d1|x| − d2.(A.9)

Comment on the proof. The proof is the same as in [11]. Since Ka(·) is uniformly
bounded, φ̇(t) ∈ Ka(φ(t)) is uniformly bounded. Thus there is a lower bound on the
time it takes for a solution to the differential inclusion to reach a small neighborhood
of the origin. This leads to (A.9).

Lemma A.5 (see Proposition 3.7 in [11]). Let x �= 0 be a point at which V a(·) is
differentiable. Then

[V a
x (x)]

′x/|x| ≥ V a(x)/|x|.
Comment on the proof. The proof is the same as in [11]. Let α > 0. By radial

homogeneity, the evolution of a path φ(t) satisfying the differential inclusion (A.2)
and φ(0) = x can be used to construct a path θα(t) satisfying the same differential
inclusion and θα(0) = (1+α)x. That is, we let θα(t) = (1+α)φ(t/(1+α)). From this
we can get V a((1 +α)x)− V a(x) ≥ αV a(x), and the conclusion of the lemma follows
from this inequality.

The construction and properties of V (·). Since V a(·) is only Lipschitz continuous
and our final Liapunov function V (·) needs to be twice continuously differentiable,
V a(·) was smoothed to create V a,b(·):

V a,b(x) = c(b)

∫
ρ

(
x− y

b

)
V a(y)dy.

From (A.5), for large enough M <∞ and b ∈ (0, 1] we have[
V a,b
x (x)

]′
Ax/|x| ≤ −1, |x| ≥M,

and [
V a,b
x (x)

]′
di ≤ −1, i ∈ In(x), |x| ≥M.(A.10)

Let

E = sup
x:|x|≤M1

V a(x),

where M ≤ M1 < ∞ and is such that [V a
x (x)]

′
x/|x| ≥ C0 for some C0 > 0 when

|x| ≥M1 − 1.
The existence of such M and M1 follows from Lemmas A.4 and A.5. We have

the following properties for V a(·):
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(i) {x : V a(x) = E+2} ⊂ {x : M1 < |x| < M2}, where M < M1 < M2 <∞ and
M2 is such that |x| ≥M2 implies V a(x) ≥ E + 3.

(ii) [V a
x (x)]

′
x/|x| ≥ C0, for |x| ≥M1 − 1 and some C0 > 0.

(iii) V a(x) ≤ E for |x| ≤M1.

By the local Lipschitz continuity of V a(·) given in Lemma A.3 and the definition
of V a,b(·) it is easy to see that, for small enough b, properties (i)–(iii) hold for V a,b(·)
if for part (ii) we substitute C0/2 for C0 and for part (iii) we substitute E + 1 for E.
Define the set

S =
{
x : V a, b(x) ≤ E + 2

}
.

These properties imply that S is star-shaped; i.e., a segment containing the origin
and a point in S is contained in the interior of S. Then, as in [11], the final Liapunov
function V (·) is defined by its level sets as

{x : V (x) ≤ l} = {lx : x ∈ S}.

The star-shaped property implies that V (·) is well defined; i.e., for each u ∈ R
r there

exists a unique l such that u ∈ ∂(lS). These details are in [11, pp. 697–698].

There are several easily seen properties of V (·) which are useful for the tightness
proofs of the normalized iterates in section 4. We list these properties and briefly
comment on some of them.

P1. V (·) is twice continuously differentiable on R
k − {0}. The proof uses the

implicit function theorem, and the details are in [11, pp. 697–698].
P2. V (αx) = αV (x). This is easily seen from the construction of V (·).
P3. Vy(y)

∣∣
y=αx

= Vx(x).

P4. αVyy(y)
∣∣
y=αx

= Vxx(x). Hence |Vxx(x)| → 0 as 1/|x|.
P5. For some real c1 > 0, c2 > 0, and d1 > 0, c1|x|+ c2 ≥ V (x) ≥ d1|x|. This is a

consequence of the fact that the gradient in the radial direction is constant.
P6. For x ∈ R

k −{0}, 0 < V (x)/|x| ≤ C for some C > 0. To see this, from P5 we
have

c1 +
c2
|x| ≥

V (x)

|x| ≥ d1 > 0.

Since V (αx)/|αx| = V (x)/|x|, substituting αx for x in the above inequality,
where α is arbitrarily large, we have that for some C > c1

0 <
V (x)

|x| ≤ C for x ∈ R
K − {0}.

P7. There exists a c > 0 such that
V ′
x(x)Ax/|x| ≤ −c and

V ′
x(x)di ≤ −c, i ∈ In(x).

This follows from the analogous inequalities for V a,b(·).
P8. With the definition V (0) = 0, V (·) is continuous on R

k and globally Lips-
chitz continuous. The continuity follows from the construction. The global
Lipschitz continuity follows from property P6.

P9. V (x) ≤ V (x̃), where x̃ ∈ R
k −L−Nε(0) and its projection onto L is x. This

follows from P7.



RATE OF CONVERGENCE 1041

REFERENCES

[1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, New York, 1980.
[2] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Ap-

proximation, Springer-Verlag, Berlin, New York, 1990.
[3] P. Billingsley, Convergence of Probability Measures, John Wiley, New York, 1968.
[4] G. Blankenship and G. C. Papanicolaou, Stability and control of stochastic systems with

wide-band noise disturbances I, SIAM J. Appl. Math., 34 (1978), pp. 437–476.
[5] R. Buche, Stochastic Approximation: Rate of Convergence for Constrained Algorithms; Asyn-

chronous Algorithms and Analysis of a Competitive Resource Sharing System, Ph.D. thesis,
Applied Mathematics Department, Brown University, Providence, RI, 2000.

[6] J. L. Doob, Asymptotic properties of Markov transition probabilities, Trans. Amer. Math. Soc.,
63 (1948), pp. 393–421.

[7] P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod
problem, with applications, Stochastics Stochastics Rep., 35 (1991), pp. 31–62.

[8] P. Dupuis and H. J. Kushner, Stochastic approximations via large deviations: Asymptotic
properties, SIAM J. Control Optim., 23 (1985), pp. 675–696.

[9] P. Dupuis and H. J. Kushner, Asymptotic behavior of constrained stochastic approximations
via the theory of large deviations, Probab. Theory Related Fields, 75 (1987), pp. 223–244.

[10] P. Dupuis and H. J. Kushner, Stochastic approximation and large deviations: Upper bounds
and w.p.1 convergence, SIAM J. Control Optim., 27 (1989) pp. 1108–1135.

[11] P. Dupuis and R. J. Williams, Lyapunov functions for semimartingale reflecting Brownian
motions, Ann. Probab., 22 (1994), pp. 680–702.

[12] E. B. Dynkin, Markov Processes, Springer-Verlag, Berlin, New York, 1965.
[13] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John

Wiley, New York, 1986.
[14] L. Gerencér, Rate of convergence of recursive estimators, SIAM J. Control Optim., 30 (1992),

pp. 1200–1227.
[15] J. M. Harrison and R. J. Williams, Brownian models of open queueing networks with ho-

mogeneous customer populations, Stochastics Stochastics Rep., 22 (1987), pp. 77–115.
[16] A. P. Korostelev, Stochastic Recurrent Processes, Nauka, Moscow, 1984.
[17] H. J. Kushner, Approximation and Weak Convergence Methods for Random Processes with

Applications to Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.
[18] H. J. Kushner and D. S. Clark, Stochastic Approximation for Constrained and Uncon-

strained Systems, Springer-Verlag, Berlin, New York, 1978.
[19] H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Con-

tinuous Time, Springer-Verlag, Berlin, New York, 1992.
[20] H. J. Kushner and E. Sanvicente, Stochastic approximation for constrained systems with

observation noise on the system and constraint, Automatica J. IFAC, 11 (1975), pp. 375–
380.

[21] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-
Verlag, Berlin, New York, 1997.

[22] M. T. Wasan, Stochastic Approximation, Cambridge University Press, Cambridge, UK, 1969.



NONLINEAR TRACKING OVER COMPACT SETS WITH LINEAR
DYNAMICALLY VARYING H∞ CONTROL∗

STEPHAN BOHACEK† AND EDMUND JONCKHEERE†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. 1042–1071

Abstract. Linear dynamically varying H∞ controllers are developed for tracking natural trajec-
tories of a broad class of nonlinear systems defined over compact sets. It is shown that the existence
of a suboptimal H∞ controller is related to the existence of a bounded solution to a functional
algebraic Riccati equation. Even though nonlinear systems running over compact sets could exhibit
sensitive dependence on initial conditions, the Riccati solution is continuous in the suboptimal case,
but it may be discontinuous in the optimal case.
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1. Introduction. Nonlinear tracking has been thoroughly investigated. A pop-
ular approach is to linearize the system around an operating point, generate a linear
controller for each operating point, and “schedule” the controllers in such a way that
the closed-loop system remains stable as the operating point changes. In this ap-
proach, the nonlinear tracking error system is modeled, approximately, as a linear
system with parameters that vary as the operating point varies. Such systems have
been extensively studied [3], [4], [5], [6], [25], [28], [33] and are known as linear para-
metrically varying (LPV) systems.

For the purpose of comparing the various LPV concepts, it is convenient to in-
troduce linear set-valued dynamically varying (LSVDV) systems [11]:

[
x (k + 1)

z (k)

]
=

[
Aθ(k) B1θ(k) B2θ(k)

Cθ(k) D1θ(k) D2θ(k)

] x (k)
w (k)
u (k)


 ,(1)

θ (k + 1) ∈ F (θ (k)) ⊆ Θ,
with θ (0) = θo and x (0) = xo.

Here the parameter vector θ varies according to a set-valued dynamical system, con-
tinuous for the Hausdorff metric; w is the disturbance input, u the control, and z the
controlled output.

In the most traditional LPV approach [4], [6], [5], [23], [25], all that is known
about the parameter dynamics is that F(θ) = Θ. The advantage of this model is that
if Θ is a convex polytope, then there are many computationally efficient controller
synthesis methods [14]. Most of these approaches generate a suboptimal solution via
a linear matrix inequality (LMI). However, these approaches can be conservative.

A slight refinement of the above LPV method consists of putting bounds on the
rate at which the system parameters vary, i.e., F(θ(k)) = Bθ(k)(∆), the ball with
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radius ∆ and with its center at θ(k). There are efficient methods based on func-
tional LMIs for designing controllers for these modified LPV systems [16], [33], [34],
[35]. However, these design methods could fail when the parameters vary drastically,
for example, when the controller needs to account for failures which lead to sudden
changes in the system parameters [21]. Also, typically, these methods are conservative.
Nonconservative LPV approaches are pursued in [11] and [29].

Another popular type of LPV system is the jump linear (JL) system [15], [19].
Here Θ = {Θ1,Θ2, . . . } is discrete, and F(θ(k)) is equipped with a probability measure
depending on θ(k) only, so that the transition among the Θi’s is a Markov chain. The
jump linear method for designing a controller for a such system is optimal (hence,
nonconservative). The controller is provided by the solution to a system of coupled
Riccati equations. Furthermore, there are efficient methods to compute the optimal
controller [1], [2], [12].

A linear dynamically varying (LDV) system is a LSVDV system in which the pa-
rameter dynamics are completely known, that is, F(θ(k)) is reduced to a point f(θ(k)).
In [8] it was shown that a linear-quadratic (LQ) controller for such a system (with
w = 0) can be found by solving a functional algebraic Riccati equation (FARE). It
should be noted that this functional algebraic Riccati equation is the LDV substitute
for the functional linear matrix inequality of most other LPV approaches. Further-
more, the FARE of LDV design provides the optimal solution, while the functional
LMI only provides a suboptimal solution. The mathematical difficulty with the LDV
approach is proving that the solution to the FARE is continuous, in which case the
feedback gain matrix is a continuous function of the parameters. The LPV approaches
described above avoid this continuity question by assuming a priori that the solution
to the relevant functional LMI is continuous [33], polynomial [35], affine [16], [34], or
even constant [4], [6], [5], [23], [25]. Since an arbitrary accuracy approximation of a
discontinuous function has to duplicate the exact behavior at the discontinuity points,
which are potentially uncountable in number, a discontinuous solution is numerically
intractable, so that the continuity assumption is justifiable. However, it is important
to know how constraining this continuity assumption is.

Tracking trajectories of the important class of hyperbolic nonlinear systems on
compact sets can be accomplished by modeling the dynamics as a Markov chain
[22] and resorting to JL methods. However, the resulting closed-loop system is only
stochastically stable, and it is not possible to show directly that the system is robustly
stable. For this reason, the typical JL approach is not appropriate for the nonlinear
tracking problem. The connection between JL and LDV control systems designs is
examined in [10].

While in [8] LDV systems were stabilized using LQ methods, here the same sys-
tems are stabilized by means of H∞ methods. This paper shows that, if the parameter
dynamics are completely known, then the existence of a suboptimal H∞ controller
is equivalent to the existence of a continuous solution to the FARE. Of particular
interest are LDV systems that arise as linearized versions of nonlinear tracking error
dynamics. In this case, it can be shown that the linearization error is a bounded
feedback around the linearized system, so that the H∞ formulation is well-suited
to minimize the effect of the error due to linearization and amplify the domain of
attraction.

The paper proceeds as follows. The next section formalizes the tracking control
problem of interest and shows how the tracking error dynamics can be approximated
as an LDV system. Section 3 formally develops LDV systems. Section 4 develops the
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suboptimal H∞ controller for this class of systems. Section 5 provides the proofs of
the main technical results. Section 6 shows that these linear controllers are suitable
for stabilization of nonlinear dynamical systems.

Notation: |x (k)| := (x′ (k)x (k))1/2, ‖x‖[k,j] := (
∑j
i=k x

′ (i)x (i))1/2, and ‖x‖l2 :=
‖x‖[0,∞). If x ∈ R

n, then ‖x‖∞ := maxi≤n |xi| and, if x ∈ R
n×Z, then ‖x‖l∞ :=

supk∈Z |x (k)|. If A is a matrix, then ‖A‖ := sup|x|=1 |Ax|, whereas, if T : l2 → l2,
then ‖T‖ := sup‖x‖l2=1 ‖Tx‖l2 ; the context in which these norms are used will re-

solve potential confusion. If f : Θ × R
m → Θ with Θ ⊂ R

n, then ∂f∂θ (θ, u) denotes
the Jacobian matrix of f where the derivatives are taken with respect to θ and are
evaluated at (θ, u) ∈ Θ × R

m. Define ∂f∂u (θ, u) similarly. With reference to system
(1), let zθo (u,w, xo) denote the output signal z due to initial conditions θ (0) = θo
and x (0) = xo, and input signals u and w. Let zθo (u,w, xo; k) denote this output
at time k. Let zθo (F,w, xo) and zθo (F,w, xo; k) be defined similarly, except that the
control u is replaced by the control law defined by F . For succinctness, we often write
f (θ) := f (θ, 0) .

2. Problem statement. A dynamical system θ(k + 1) = f(θ(k)), where f ∈
C1 (Rn,Rn), gives rise to a string of nested invariant subsets P (f) ⊆ P (f) ⊆ R(f) ⊆
NW (f), where P (f) is the periodic set, P (f) its closure, R(f) the closure of the
recurrent set, and NW (f) the nonwandering set [22]. We specifically consider systems
where NW (f) is bounded, in which case P (f), R(f), and NW (f) are compact, and
we choose the domain Θ to be any of those compact invariant sets. More generally,
Θ could be taken to be any compact invariant subset. In particular, if f is an Axiom
A diffeomorphism satisfying the strong transversality condition, then NW (f) is a
disjoint union of attractors [27], which by definition are compact and invariant and
hence could be taken to be Θ. If the uniform hyperbolic conditions fails, f could still
have an attractor, which could be taken to be Θ.

We take the control u to be a small perturbation of the parameters of the nominal
dynamics f . More specifically, the nominal and perturbed dynamics are, respectively,

θ (k + 1) = f (θ (k) , 0) + v1 (k) , with θ (0) = θo,(2)

ϕ (k + 1) = f (ϕ (k) , u (k)) + v2 (k) , with ϕ (0) = ϕo,(3)

where
1.

f ∈ C1 (Rn × R
m,Rn) ;(4)

2. f (Θ, 0) ⊂ Θ, i.e., Θ is f -invariant, and f (·, 0) : Θ→ Θ;
3. Θ is a compact subset of R

n.
Here {θ (k) : k ≥ 0} is the desired trajectory, and ϕ (k) is the state of the sys-

tem under control. The exogenous inputs v1 (k) and v2 (k) are typically small with
θ (k + 1) ∈ Θ. The purpose of v1 is to allow the desired trajectory to occasionally
jump from a point on one orbit to a nearby point on another orbit [9]. On the other
hand, v2 is to allow for some modeling inaccuracies. At time k, it is assumed that both
θ (k) and ϕ (k) are known. The basic objective is to find a control u such that, when
v1 = v2 = 0 and for |θ(0)− ϕ(0)| small enough, we have limk→∞ |ϕ (k)− θ (k)| = 0.

A distinguishing feature of the present approach is that the tracking controller
takes the form of a spatially varying gain F : Θ → R

m×n, guaranteed to be con-
tinuous under suitable conditions. As the first and most generic application, given
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an arbitrary desired trajectory {θ (k) : k = 0, . . . }, evaluating the controller F along
the trajectory {θ (k) : k = 0, . . . } yields the time-varying controller Fθ(k) that makes
the nonlinear system ϕ (k + 1) = f(ϕ (k) , Fθ(k) (ϕ (k)− θ (k))) asymptotically track
θ (k + 1) = f (θ (k)). More importantly, the globally defined controller F becomes
fully motivated in those specialized applications where there is a need to quickly
adapt the tracking controller to a new reference trajectory without recomputing a
new time-varying controller along the new trajectory [9], [13], [20], [21].

If v1 = v2 = 0, then stability of the closed-loop system, which implies asymptotic
tracking, is guaranteed if |ϕ (0)− θ (0)| < RCapture, where RCapture > 0. If v1 �= 0
and/or v2 �= 0, then asymptotic tracking can still be guaranteed if ‖v1 − v2‖l∞ and
|ϕ (0)− θ (0)| are small enough and v1(k) − v2(k) is intermittent enough. If v1 − v2

is persistent, then one cannot expect asymptotic tracking; however, under suitable

conditions, the gain
‖θ−ϕ‖�∞
‖v1−v2‖�∞

can easily be shown to be bounded [7]. Besides, the

effect of the model uncertainty v2 can be minimized using standard H∞ methods.
Therefore we shall not pursue investigation of the effects of v1, v2 any further.

The tracking controller design relies on linearizing the tracking error dynamics as
follows. Define the tracking error

x (k) := ϕ (k)− θ (k) .

Then

x (k + 1) = f (ϕ (k) , u (k))− f (θ (k) , 0) .

The first-degree Taylor approximation of f (ϕ (k) , u(k)) around ϕ (k) = θ (k) and
u (k) = 0 yields

f (ϕ (k) , u (k)) = f (θ (k) , 0) +Aθ(k) (ϕ (k)− θ (k))

+B2θ(k)u (k) + η (x (k) , u (k) , θ (k)) ,

where

Aθ :=
∂f

∂θ
(θ, 0) , B2θ :=

∂f

∂u
(θ, 0) ,(5)

and η (x (k) , u (k) , θ (k)) accounts for nonlinear terms. Thus

x (k + 1) = Aθ(k)x (k) +B2θ(k)u (k) + η (x (k) , u (k) , θ (k)) .(6)

Since f ∈ C1, η can be decomposed as

η (x (k) , u (k) , θ (k)) = ηx (x (k) , u (k) , θ (k))x (k) + ηu (x (k) , u (k) , θ (k))u (k) ,
(7)

where

ηx (x, u, θ)i,j =

∫ 1

0

(
∂fi
∂xj

(tx+ θ, tu)− ∂fi
∂xj

(θ, 0)

)
dt(8)

and

ηu (x, u, θ)i,j =

∫ 1

0

(
∂fi
∂uj

(tx+ θ, tu)− ∂fi
∂uj

(θ, 0)

)
dt.(9)
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Since f ∈ C1 and Θ is compact, if x and u are bounded, then ∂fi
∂xj

(tx+ θ, tu) −
∂fi
∂xj

(θ, 0) is uniformly continuous. In particular, for any ε > 0 there is a δ > 0 such

that, if |x| , |u| < δ, then | ∂fi∂xj (tx+ θ, tu)− ∂fi∂xj (θ, 0) | < ε. Therefore,

lim
x̄→0,ū→0

sup {‖ηx (x, u, θ)‖ : |x| < x̄, |u| < ū, θ ∈ Θ} = 0(10)

and

lim
x̄→0,ū→0

sup {‖ηu (x, u, θ)‖ : |x| < x̄, |u| < ū, θ ∈ Θ} = 0.(11)

If u and x are small, we can approximate the error dynamics as

x (k + 1) = Aθ(k)x (k) +B2θ(k)u (k) ,(12)

θ (k + 1) = f (θ (k) , 0) .

This system is linear in the tracking error x, but the coefficient matrices A and B
vary (generally in a nonlinear way) as θ varies. Since θ (k) varies according to (2), the
system described in (12) is an LDV system. Before controllers can be developed for
such systems, linear systems with dynamically varying parameters must be formalized.

3. Linear dynamically varying systems and LQ control. Motivated by the
preceding considerations, a general LDV system is defined as

[
x (k + 1)

z (k)

]
=

[
Aθ(k) B1θ(k) B2θ(k)

Cθ(k) D1θ(k) D2θ(k)

] x (k)
w (k)
u (k)


 ,(13)

θ (k + 1) = f (θ (k)) ,

with θ (0) = θo and x (0) = xo,(14)

subject to the following general conditions:
1. Θ ⊂ R

n is compact and f : Θ→ Θ is a continuous function.
2. A : Θ → R

n×n, B1 : Θ → R
n×l, B2 : Θ → R

n×m, C : Θ → R
p×n, D1 : Θ →

R
p×l, and D2 : Θ→ R

p×m are functions that need not be continuous.
In the above, θ(k) ∈ Θ is the state of the dynamic system, x (k) ∈ R

n is the state
of the linear system, u (k) ∈ R

m is the control input, w (k) ∈ R
l is the disturbance

input, and z (k) ∈ R
p is the output to be controlled.

It is often assumed that the system coefficient matrices A, B1, B2, C, D1, and D2

are continuous. We will refer to such systems as continuous LDV systems. In section
2 it was assumed that f ∈ C1, and since A and B are matrices of partial derivatives
of f , A and B are indeed continuous. Thus the tracking error system associated with
(2) and (3) can be approximated by a continuous LDV system. However, if a feedback
F : Θ→ R

m×n is used to stabilize a continuous LDV system, then the resulting closed-
loop system is a continuous LDV system if and only if F is continuous. Although this
paper will focus on stabilizing continuous LDV systems, we cannot assume a priori
that the feedback is continuous. Therefore the definition of an LDV system must
allow for possibly discontinuous coefficient matrices.

Since an LDV system is an uncountable collection of linear time-varying systems
indexed by θ (0), the concept of stability is slightly more complex in the dynamically
varying case than it is in the time-varying case.
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Definition 3.1. The LDV system (13) is uniformly exponentially stable if, for
u (k) = 0 and w (k) = 0, there exist an α ∈ [0, 1) and a β < ∞ such that, for all
θ (0) ∈ Θ,

|x (k)| ≤ βαk |x (0)| .
System (13) is exponentially stable if, for u (k) = 0, w (k) = 0, and for each θ (0) ∈ Θ,
there exist an αθ(0) ∈ [0, 1) and a βθ(0) <∞ such that, for all x (j) and j ≤ k,

|x (k)| ≤ βθ(0)α
k−j
θ(0) |x (j)| .

System (13) is asymptotically stable if, for u (k) = 0, w (k) = 0, any |x (0)| <∞, and
any θ (0) ∈ Θ,

|x (k)| → 0 as k →∞.

Note that an exponentially stable system is stable uniformly in time k, but not
necessarily uniformly in the initial condition θ (0). That is, along any given positive
trajectory

{
fk (θ (0)) : k ≥ 0

}
, an exponentially stable system is (uniformly in time)

exponentially stable; however, if {θ(0)i : i ≥ 0} is a convergent sequence, with θ(0) =
limi→∞ θ(0)i, it is possible that αθ(0)i → 1 while αθ(0) < 1, in which case the system
is exponentially stable, but not θ(0)-uniformly exponentially stable. To emphasize
the difference between exponential and uniformly exponential stability, exponential
stability will occasionally be referred to as uniform in time exponential stability.

In the case of continuous LDV systems, asymptotic, exponential, and uniform
exponential stability are equivalent (Proposition 2 in [8]). Since uniformly exponen-
tially stable systems are inherently more robust than exponentially stable systems, it
is preferable to remain within the confines of continuous LDV systems. Thus, when
synthesizing a feedback for controlling a continuous LDV system, it is important to
ensure that the feedback is not only asymptotically stabilizing but also continuous.
However, to maintain generality, an LDV system is considered stabilizable if there
exists an exponentially stabilizing feedback, that is, the following holds.

Definition 3.2. System (13) is stabilizable if there exists a (not necessarily
continuous) function F : Z × Θ → R

m×n with bound F θ(0) < ∞ such that, for all

θ (0) ∈ Θ and for all k ≥ 0, we have
∥∥Fθ(0) (k)∥∥ ≤ F θ(0), and the system

x (k + 1) =
(
Aθ(k) +B2θ(k)Fθ(0) (k)

)
x (k) ,

θ (k) = fk (θ (0))

is exponentially stable. That is, there exist αθ(0) ∈ [0, 1) and βθ(0) < ∞ such that,
for any θ (0) ∈ Θ, there exists a time-varying, bounded feedback Fθ(0) (k), which may
depend on θ (0), such that∥∥∥∥∥∥

k−1∏
i=j

(
Afi(θ(0)) +B2fi(θ(0))

Fθ(0) (i)
)∥∥∥∥∥∥ ≤ βθ(0)α

k−j
θ(0),

where the factors of the matrix product are taken in the proper order.
Therefore, along every trajectory

{
fk (θ (0)) : k ≥ 0

}
, the time-varying system is

(uniformly in time) exponentially stabilizable by means of a function F which, as
defined in Definition 3.2, depends on the initial condition θ (0). In this sense, the
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control is not quite “closed-loop,” and more importantly there are no assumptions
about the global properties of the feedback F . In particular, the feedback may not
be a continuous nor even a uniformly bounded function of θ(0). However, in the
case of continuous LDV systems, it was shown in [8] that a stabilizable system has a
continuous, uniformly exponentially stabilizing feedback F : Θ→ R

m×n. In this case,
the feedback gain takes the form Fθ(k) and does not depend on the initial condition
θ (0), but only the current state θ (k). Hence the controller is “closed-loop.”

The dual concept of detectability has two versions. The first one is uniform
detectability.

Definition 3.3. System (13) is uniformly detectable if there exists a (not neces-
sarily continuous) function H : Θ→ R

n×p with uniform bound H̄ <∞ such that, for
all θ ∈ Θ, we have ‖Hθ‖ ≤ H̄, and the system

x (k + 1) =
(
Aθ(k) +Hθ(k)Cθ(k)

)
x (k) ,

θ (k) = fk (θ (0))

is uniformly exponentially stable. That is, there exist an αd ∈ [0, 1) and a βd < ∞
such that, for all θ (0) ∈ Θ,

‖x (k)‖ ≤ βdα
k
d ‖x (0)‖ .

Definition 3.4. System (13) is detectable if there exists a (not necessarily con-
tinuous), function H : Z × Θ → R

n×p with bound H̄θ(0) < ∞ such that, for all

θ (0) ∈ Θ and all k, we have
∥∥Hθ(0) (k)∥∥ ≤ Hθ(0) <∞, and the system

x (k + 1) =
(
Aθ(k) +Hθ(0) (k)Cθ(k)

)
x (k) ,

θ (k) = fk (θ (0))

is exponentially stable.
If f is invertible, the LDV system has an adjoint system running backwards in

time. If a continuous LDV is detectable and f is invertible, then the adjoint system
is stabilizable. It is easily shown that this implies that the adjoint LDV is in fact
uniformly stabilizable and therefore that the LDV system is uniformly detectable.
Thus, if f is invertible and the LDV system is continuous, then uniform detectability
and detectability are equivalent. Although stabilizability and uniform detectability
are slightly asymmetric, to avoid putting extra assumptions on f , stabilizable and
uniformly detectable continuous LDV systems will be considered.

Since stabilizability only depends on A, B2, and f , we will say that the triple
(A,B2, f) is stabilizable to mean that system (13) is stabilizable. Similarly, we say
that the triple (A,C, f) is uniformly detectable to mean that system (13) is uniformly
detectable.

Since an LDV system is a collection of time-varying systems, the following time-
varying Lyapunov stability theorem is useful.

Theorem 3.5. Assume that system (13) is uniformly detectable and w ≡ 0.
Then there exist an αθo ∈ [0, 1) and a βθo < ∞ such that, for θ (0) = θo and any
x (j) ∈ R

n,

|x (k)| ≤ βθoα
k−j
θo
|x (j)|

if and only if there exists a sequence
{
Xfk(θo) : k ≥ 0

}
with bound X̄ : Θ → R such

that
∥∥Xfk(θo)∥∥ ≤ X̄θo <∞, Xfk(θo) = X ′

fk(θo)
≥ 0, and

A′
fk(θo)

Xfk+1(θo)Afk(θo) −Xfk(θo) ≤ −C ′
fk(θo)

Cfk(θo).(15)
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Furthermore, if (15) is satisfied, then αθo and βθo can be taken to depend only on the
bound X̄θo and on αd and βd in the definition of detectability.

Proof. For θ (0) fixed, the system is a time-varying system. Thus the theorem
is simply a statement about the stability of linear time-varying systems and can be
found on page 41 in [18].

Corollary 3.6. Assume that system (13) is uniformly detectable and w ≡ 0.
Then there exist an α ∈ [0, 1) and a β <∞ such that

|x (k)| ≤ βαk |x (0)|
if and only if there exists a uniformly bounded function X : Θ → R

n×n with Xθ =
X ′
θ ≥ 0 such that, for all θo ∈ Θ,

A′
fk(θo)

Xfk+1(θo)Afk(θo) −Xfk(θo) ≤ −C ′
fk(θo)

Cfk(θo).(16)

Proof. Since Xθ is uniformly bounded and the system is uniformly detectable,
Theorem 3.5 can be applied at each θo ∈ Θ.

The main result of [8] is the following.
Theorem 3.7. Suppose that these conditions hold.
1. f : Θ→ Θ is continuous and Θ is compact.
2. The functions A, B2, C, D2 are continuous.
3. D′

2θ
D2θ > 0.

4. C ′
θD2θ = 0 for all θ ∈ Θ, and (A,C, f) is uniformly detectable.

Then the triple (A,B2, f) is stabilizable if and only if there exists a unique, uniformly
bounded solution X2 : Θ→ R

n×n such that
1. X2 satisfies the FARE

X2θ = A′
θX2f(θ)Aθ

− A′
θX2f(θ)B2θ

(
D′

2θ
D2θ +B′

2θ
X2f(θ)B2θ

)−1
B′

2θ
X2f(θ)Aθ + C ′

θCθ;(17)

2. X2θ ≥ 0.
In this case, the closed-loop control

uLQ (k) := −
(
D′

2θ(k)
D2θ(k) +B′

2θ(k)
X2f(θ(k))B2θ(k)

)−1

B′
2θ(k)

X2f(θ(k))Aθ(k)x (k)(18)

uniformly exponentially stabilizes system (13). Moreover, for |x (0)| <∞ and w ≡ 0,

x′ (0)X2θ(0)x (0) = inf

{ ∞∑
k=0

|z (k)|2 : u ∈ l2

}
,(19)

where the infimum is attained for u = uLQ. Furthermore, X2 is a uniformly contin-
uous function. Finally, if X2θ (k,N + 1) solves the finite horizon Riccati equation,
i.e.,

X2θ (k,N + 1) = A′
fk(θ)X2θ (k + 1, N + 1)Afk(θ) + C ′

fk(θ)Cfk(θ)(20)

−A′
fk(θ)X2θ (k + 1, N + 1)B2

fk(θ)

×
(
D′

2
fk(θ)

D2
fk(θ)

+B′
2
fk(θ)

X2θ (k + 1, N + 1)B2
fk(θ)

)−1

×B′
2
fk(θ)

X2θ (k + 1, N + 1)Afk(θ)
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with

X2θ (N + 1, N + 1) = C ′
fN+1(θ)CfN+1(θ),

then X2θ (0, N + 1)→ X2θ uniformly in θ.

4. Linear dynamically varying H∞ control. In the following, the H∞ con-
trol problem for LDV systems of the general form (13) will be formulated and the
solution will be provided. There are two related problems.

The first is the finite horizon problem. For all θ ∈ Θ, let the terminal weighting
Xθ (N + 1, N + 1) ≥ 0 be given. The objective in this problem is to find a controller
Fu such that, if

u (k) = Fuθo (k,N + 1)

[
x (k)
w (k)

]
for k ≤ N ,

then we have the following.
Objective A. For x (0) = 0 there exists an ε > 0 such that, for w ∈ l2 [0, N ] and

θo ∈ Θ,

‖z‖2[0,N ] − γ2 ‖w‖2[0,N ] + x′ (N + 1)Xθo (N + 1, N + 1)x (N + 1) ≤ −ε ‖w‖2[0,N ] .

The second problem is the infinite horizon problem, where the objective is to find
a uniformly exponentially stabilizing controller Fu such that, if

u (k) = Fuθo (k)

[
x (k)
w (k)

]
,

then our objective becomes the following.
Objective B. For x (0) = 0 there exists an ε > 0 such that, for w ∈ l2 and θo ∈ Θ,

‖z‖2l2 − γ2 ‖w‖2l2 ≤ −ε ‖w‖
2
l2
,

and if w = 0 and x (0) �= 0, then x (k)→ 0.
If Objective B is achieved, then

‖z‖l2
‖w‖l2

< γ.

It will be shown that the solution to Objective B is the limit as N → ∞ of
solutions to Objective A.

4.1. Finite horizon full information controller. For notational simplicity,
we define

[
Aθ B̄θ
C̄θ D̄θ

]
:=


 Aθ B1θ B2θ

Cθ D1θ D2θ

0 Il 0


 and J =:

[
Ip 0
0 −γ2Il

]
.

Let Xθo (N + 1, N + 1) ≥ 0 be given. In a recursive manner, define

Xθo (k,N + 1) = A′
fk(θo)

Xθo (k + 1, N + 1)Afk(θo) + C ′
fk(θo)

Cfk(θo)(21)

− Lθo (k,N + 1)
′
R−1
θo

(k,N + 1)Lθo (k,N + 1) ,
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where

Rθo (k,N + 1) := D̄′
fk(θo)

JD̄fk(θo) + B̄′
fk(θo)

Xθo (k + 1, N + 1) B̄fk(θo),(22)

Lθo (k,N + 1) := D̄′
fk(θo)

JC̄fk(θo) + B̄′
fk(θo)

Xθo (k + 1, N + 1)Afk(θo).(23)

We partition R = [ R1 R′
2

R2 R3
] and L = [ L1

L2
] such that R3 ∈ R

m×m and L2 ∈ R
m×n.

With the assumption that Rθo (k,N + 1) is nonsingular, the Schur decomposition
yields

Rθo (k,N + 1)

=

[
I R′

2θo
(k,N + 1, θo)R

−1
3θo

(k,N + 1)

0 I

] [ ∇θo (k,N + 1) 0
0 R3θo

(k,N + 1)

]

×
[

I 0
R−1

3θo
(k,N + 1)R2θo

(k,N + 1) I

]
,

where

∇θo (k,N + 1) := R1θo
(k,N + 1)−R′

2θo
(k,N + 1)R−1

3θo
(k,N + 1)R2θo

(k,N + 1) .
(24)

Note that since R3θo
(k,N + 1) = D′

2
fk(θo)

D2
fk(θo)

+ B′
2
fk(θo)

Xθo (k,N + 1)B2
fk(θo)

and D′
2
fk(θo)

D2
fk(θo)

> 0, we have

R3θo
(k,N + 1) > 0(25)

whenever Xθo (k,N + 1) ≥ 0. Hence, if

Xθo (k,N + 1) ≥ 0,(26)

∇θo (k,N + 1) ≤ −+I,(27)

then Rθo (k,N + 1) is nonsingular.
For X, R, and ∇ defined as above, it is possible to show by completion of squares

(see [17, p. 485]) that for all x (k) and all u,w ∈ l2 [0, N ] we have

‖z‖2[k,N ] − γ2 ‖w‖2[k,N ] + x′ (N + 1)Xθo (N + 1, N + 1)x (N + 1)(28)

= x′ (k)Xθo (k,N + 1)x (k)

+
N∑
j=k

(u (j)− uN (j))
′
R3θo

(j,N + 1) (u (j)− uN (j))

+
N∑
j=k

(w (j)− wN (j))
′∇θo (j,N + 1) (w (j)− wN (j)) ,

with

wN (k) := −∇−1
θo

(k,N + 1)L∇θo (k,N + 1)x (k) ,

uN (k) := −R−1
3θo

(k,N + 1)
[

L2θo
(k,N + 1) R2θo

(k,N + 1)
] [ x (k)

w (k)

]
,

(29)
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and where

L∇θo (k,N + 1) := L1θo
(k,N + 1)−R′

2θo
(k,N + 1)R−1

3θo
(k,N + 1)L2θo

(k,N + 1) .
(30)

From (25), (27), and (28), it is clear that, for θ (0) = θo,

x′
oXθo (0, N + 1)xo

(31)

= sup
w∈l2[0,N ]

inf
u∈l2[0,N ]

{
‖z‖2[0,N ] − γ2 ‖w‖2[0,N ] + x′ (N + 1)Xθo (N + 1, N + 1)x (N + 1)

}
.

The above is summarized by the following theorem, which is a straightforward
extension of [17, p. 484].

Theorem 4.1. Let us suppose that D′
2
fk(θo)

D2
fk(θo)

> 0 for all k ≤ N and

Xθo (N + 1, N + 1) ≥ 0. In this case, there exists a causal full information control

u (k) = Fuθo (k,N + 1) [ x (k)
w (k) ] that satisfies Objective A if and only if, for 0 ≤ k ≤

N + 1, the following conditions hold:
1. Xθo(k,N + 1) satisfies the time-varying Riccati recursion (21).
2. For some + > 0, (26) and (27) hold.

In this case, the control given by (29) achieves Objective A.

4.2. Infinite horizon full information controller. The second problem is
the infinite horizon problem where the objective is to find a (uniformly in time)
exponentially stabilizing controller F such that, if

u (k) = Fθo (k)

[
x (k)
w (k)

]
,

then Objective B can be achieved. The following assumptions on system (13) are
needed:

1. f : Θ→ Θ is continuous and Θ is compact.
2. The system parameters A, B1, B2, C,D1, and D2 are matrix-valued contin-

uous functions of θ.
3. D′

2θ
D2θ > 0 for all θ ∈ Θ.

4. For all θ ∈ Θ, we have D′
2θ

[
Cθ D1θ

]
= 0, and the triple (A,C, f) is

uniformly detectable.
5. The triple (A,B2, f) is stabilizable.

Assumption 4 is equivalent to the following.
4′ The triple (A− B2 (D

′
2D2)

−1
D′

2C, (I −D2 (D
′
2D2)

−1
D′

2)C, f ) is uniformly
detectable.

Indeed, if Assumption 4′ holds, then the feedback

u (k) = −
(
D′

2
fk(θ)

D2
fk(θ)

)−1

D′
2
fk(θ)

Cfk(θ)x (k)

−
(
D′

2
fk(θ)

D2
fk(θ)

)−1

D′
2
fk(θ)

D1
fk(θ)

w (k) + r (k)

converts it to Assumption 4. Perhaps these assumptions could be weakened (for
example, see [30]), but they are common.

The main result of the paper is the following.
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Theorem 4.2. Suppose Assumptions 1–5 hold. There exists a (uniformly in

time) exponentially stabilizing controller u (k) = Fuθo (k) [
x (k)
w (k) ] such that Objective

B can be achieved if and only if there exists a uniformly bounded map X∞ : Θ→ R
n×n

such that the following hold:
1. X∞ satisfies the FARE

X∞θ
= C ′

θCθ +A′
θX∞f(θ)

Aθ − L′
θR

−1
θ Lθ,(32)

where

Rθ := D
′
θJDθ + B̄′

θX∞f(θ)
B̄θ,(33)

Lθ := D
′
θJC̄θ + B̄′

θX∞f(θ)
Aθ.

2. For some + > 0 and all θ ∈ Θ,

X∞θ
≥ 0,(34)

∇θ := R1θ −R′
2θ
R−1

3θ
R2θ ≤ −+I.

3. The closed-loop system

x (k + 1) =
(
Aθ(k) − B̄θ(k)R

−1
θ(k)Lθ(k)

)
x (k)(35)

is uniformly exponentially stable.
In this case, the control

u∞ (k) := −R−1
3θ(k)

[
L2θ(k) R2θ(k)

] [ x (k)
w (k)

]
(36)

achieves Objective B, X∞ is continuous, and the closed-loop system with control (36),
that is,

x (k + 1) =
(
Afk(θo) −B2

fk(θo)
R−1

3
fk(θo)

L2
fk(θo)

)
x (k)

+
(
B1

fk(θo)
−B2

fk(θo)
R−1

3
fk(θo)

L2
fk(θo)

)
w (k) ,

is a uniformly (in θ) exponentially stable system.
The proof of this theorem is withheld until section 5. The proof entails the major

difficulty of proving continuity relative to θ (0), an issue that does not exist in the
traditional time-varying case of [18] and [26]. Even though our approach is inspired
by [17], [30], and [31], the continuity issue of the LDV case makes it of interest in its
own right.

The control u (k) produced by Theorem 4.2 depends on w (k). Since w (k) is
meant to model the linearization error (see section 6), it will likely depend on u (k).
Thus u (k) and w (k) are linked by some algebraic relationship, which may not be
easily solved. The following shows how to find a control u (k) that depends on the
information x (k) only. This type of control is referred to as strictly causal.

Corollary 4.3. Suppose the assumptions of Theorem 4.2 hold and there exists
a controller as described. Suppose also that R1θ ≤ −+I. Then the above control can
be taken to be strictly proper. In particular, the control

u∗ (k) := −
(
R3θ(k) −R2θ(k)R

−1
1θ(k)

R′
2θ(k)

)−1

×
(
L2θ(k) −R2θ(k)R

−1
1θ(k)

L1θ(k)

)
x (k)

= −∆−1
θ(k)L∆θ(k)

x (k) ,
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where

∆θ := R3θ −R2θR
−1
1θ

R′
2θ

and

L∆θ
:= L2θ −R2θR

−1
1θ

L1θ ,

achieves Objective B.
Proof. This corollary follows as a minor variation of the proof of Theorem

4.2.
Remark 1. The above results show the importance of the FARE (32). Solving

a functional equation may be computationally difficult. However, in [8], [10] several
methods for solving the FARE associated with a LQ objective were developed. These
methods can easily be extended to solving the FARE (32). Furthermore, the stability
of (35) can be checked via their respective FAREs.

Remark 2. The continuity of the solution to the FARE is crucial when numeri-
cally computing it. For example, suppose that Θ = [0, 1] , that there exists a jump
discontinuity at some point 0 ≤ ρ ≤ 1, and that

Xθ :=

{
0 if θ ≤ ρ,
δ otherwise.

Consider the construction of X̂, an approximation of X, with error ε < δ, i.e., ‖Xθ −
X̂θ‖ < ε for all θ ∈ Θ. In general, the point ρ would be estimated via some search
method. However, unless ρ is known exactly (which entails an infinite search), ‖Xθ∗−
X̂θ∗‖ > ε for some θ∗ ∈ Θ. If θ∗ is a fixed point of f , then ‖Xfk(θ∗) − X̂fk(θ∗)‖ > ε
for all k, and a similar problem occurs if θ∗ is a recurrent point of f . In general, if
X : Θ→ R

n×n is continuous and Θ is compact, then X can be estimated by its value
at a finite number of points. If X is not continuous, such an estimate is not possible
in general. It is this continuity issue, and hence the ability to numerically evaluate
the Riccati solution, that is the main distinction between an LDV controller and a
family of infinite horizon, time-varying controllers.

Remark 3. Another difference between an LDV controller and a family of in-
finite horizon, time-varying controllers is that the LDV controller guarantees that
the closed-loop system is uniformly exponentially stable, whereas the family of time-
varying controllers only guarantees stability along every trajectory {θ (k) : k ≥ 0}.
One situation in which this distinction is important is noise rejection. For example,
suppose that the signal w in system (13) is bounded as ‖w‖l∞ ≤ w̄. Such a situ-
ation arises when the f in (2) is different from the f in (3). Then it follows from
section 6 that the maximum allowable w̄ depends on the parameters αθo and βθo in
the definition of stability. Hence we write w̄θo . Now suppose that the system is not
uniformly exponentially stable, i.e., there exists a sequence {θ(0)i : i ≥ 0} such that
either limi→∞ αθ(0)i = 1 or limi→∞ βθ(0)i =∞. In this case, even though w̄θo > 0 for
each θo, we have limi→∞ w̄θ(0)i = 0; that is, there is no positive bound on the noise
that results in a stable system for all initial conditions θo.

5. Proof of main theorem.

5.1. Necessity. In the subsequent discussion, we assume the following.
Assumption A. Assumptions 1–5 of Theorem 4.2 hold, and there exists a stabi-

lizing controller that achieves Objective B.
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Since (A,C, f) is uniformly detectable, D′
2θ
D2θ > 0, and (A,B2, f) is stabilizable,

the optimal stabilizing LDV linear-quadratic controller exists (Theorem 3.7). That
is, there exists a unique, continuous, bounded function X2 : Θ → R

n×n such that
X ′

2θ
= X2θ ≥ 0 solves (17). Furthermore, for w ≡ 0,

inf
u∈l2
‖z‖2l2 = x′

oX2θxo,(37)

and this infimum is attained for u given by (18).
Define Xθo (k,N + 1) as in (21) with terminal cost X2fN+1(θo)

. It will be shown

(in Lemma 5.10) that

X∞θ
= lim
N→∞

Xθ (0, N + 1)(38)

provides a solution to (32) (see Lemma 5.6) such that system (35) is uniformly expo-
nentially stable (see Lemma 5.9) and inequalities (34) are satisfied (see inequalities
(59) and (60)). Furthermore, the convergence in (38) is uniform in θ, and hence X∞θ

is a continuous function in θ (see Lemma 5.10) and the control given by (36) satisfies
Objective B (see Lemma 5.4).

The proof of the following lemma follows from an easy adaptation of the arguments
of Section B.2.3 of [17] and from [31].

Lemma 5.1. If Assumption A holds, Xθo (k,N + 1) is given by (21), and
∇θo (k,N + 1) is given by (24), then

1. for θo = θ (0) ∈ Θ, all k ≤ N + 1, and N ≥ 0, we have ∇θo (k,N + 1) ≤ −+I
and Xθo (k,N + 1) ≥ 0;

2. for all θo ∈ Θ, there exists a X̄∞θo
<∞ such that ‖Xθo (k,N + 1)‖ ≤ X̄∞θo

for all k ≤ N + 1 and all N ≥ 0;
3. Xθo (k,N + 1) is monotone increasing in N .

The bound X̄∞θo
depends on θo, so we cannot say that there exists a single bound

on Xθo (k,N + 1) for all θo ∈ Θ. Since Θ is compact, if X̄∞ is continuous, then X̄∞
is bounded. However, we have not yet shown that X̄∞ is continuous.

For fixed θo, Xθo (k,N + 1) exists, is bounded, and is nondecreasing in N . Thus

Xθo (k) := lim
N→∞

Xθo (k,N + 1)

exists for k <∞. Furthermore, Xθo (k) solves

Xθo (k) = A′
fk(θo)

Xθo (k + 1)Afk(θo) + C ′
fk(θo)

Cfk(θo) − L′
θo (k)R

−1
θo

(k)Lθo (k) ,
(39)

where

Rθo (k) := D
′
fk(θo)JDfk(θo) + B̄′

fk(θo)
Xθo (k + 1) B̄fk(θo),

Lθo (k) := D
′
fk(θo)JC̄fk(θo) + B̄′

fk(θo)
Xθo (k + 1)Afk(θo).

This is simply the Riccati equation associated with the infinite horizon, time-varying
H∞ control problem. Note that, since Xθo (k,N + 1) ≥ 0,

Xθo (k) ≥ 0.(40)

Next, since Xθo (k,N + 1) converges, ∇θo (k) := limN→∞∇θo (k,N + 1) exists. Fur-
thermore, ∇θo (k,N + 1) ≤ −+I (from the finite horizon problem) implies that∇θo (k)
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≤ −+I. Furthermore, since Xθo (k) is bounded and D′
2θ
D2θ > 0 for all θ ∈ Θ, it is

clear from (24) that ∇θo (k) is bounded from below. Hence

−∞ < ∇θo (k) ≤ −+I.(41)

Similarly, define L∇θo (k) as the limit of (30).
Next define

u∞ (k) := Fuθo (k)

[
x (k)
w (k)

]
:= −R−1

3θo
(k)
[

L2θo
(k) R2θo

(k)
] [ x (k)

w (k)

]
(42)

and

w∞ (k) := Fwθo (k)x (k) := −∇−1
θo

(k)L∇θo (k)x (k) .(43)

It will be shown that, with θ (0) = θo, (42) is the best control and (43) is the worst
disturbance (in the sense of Objective B).

Lemma 5.2. For w = 0, the control u (k) = u∞ (k) given by (42) makes the
closed-loop system x(k + 1) = Auθo (k)x(k), where

Auθo (k) := Aθ(k) −B2θ(k)R
−1
3θo

(k)L2θo
(k) ,(44)

exponentially stable.
Proof. Since u∞ (k) = −R−1

3θo
(k)L2θo

(k)x (k)−R−1
3θo

(k)R2θo
(k)w (k), the closed-

loop system with w = 0 and u = u∞ is

x (k + 1) =
(
Aθ(k) −B2θ(k)R

−1
3θo

(k)L2θo
(k)
)
x (k)

= Auθo (k)x (k) .

Set Γθo (k) = Xθo (k) − X2
fk(θo)

. By Lemma 5.1, Xθo (k,N + 1) ≥ Xθo (k, k) =

X2
fk(θo)

. Thus Xθo (k) = limN→∞ Xθo (k,N + 1) ≥ X2
fk(θo)

and Γθo (k) ≥ 0. It is

possible to show (see [17, equation (B.2.39)]) that

Γθo (k) ≥ A′
uθo

(k) Γθo (k + 1)Auθo (k)(45)

+A′
uθo

(k) Γθo (k + 1)B2θ(k)

×
(
R3θo

(k)−B′
2θ(k)

Γθo (k + 1)B2θ(k)

)−1

B′
2θ(k)

Γθo (k + 1)Auθo (k) .

However,

Aθ −B2θ

(
D′

2θ
D2θ +B′

2θ
X2f(θ)B2θ

)−1
B′

2θ
X2f(θ)Aθ

is the closed-loop system if the LQ feedback is used, that is, if w = 0 and u = uLQ,
where uLQ is given by (18). After some manipulation, we find

Afk(θo) −B2
fk(θo)

(
D′

2
fk(θo)

D2
fk(θo)

+B′
2
fk(θo)

X2
fk+1(θo)

B2
fk(θo)

)−1

×B′
2
fk(θo)

X2
fk+1(θo)

Afk(θo)

= Auθo (k)

+B2
fk(θo)

(
R3θo

(k)−B′
2
fk(θo)

Γθo (k + 1)B2
fk(θo)

)−1

B′
2
fk(θo)

Γθo (k + 1)Auθo (k)
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and

B2
fk(θ)

(
R3θo

(k)−B′
2
fk(θ)

Γθo (k + 1)B2
fk(θ)

)−1

= B2
fk(θ)

(
D′

2
fk(θ)

D2
fk(θ)

+B′
2
fk(θ)

X2
fk+1(θo)

B2
fk(θ)

)−1

,

which is bounded since D′
2θ
D2θ > 0 and X2θ ≥ 0 for all θ ∈ Θ. Therefore

ξ (k + 1) = Auθo (k) ξ (k) ,

υ (k) = B′
2θ(k)

Γθo (k + 1)Auθo (k) ξ (k)

is a uniformly detectable system. Moreover,

(
R3θo

(k)−B′
2
fk(θo)

Γθo (k + 1)B2
fk(θo)

)−1

> 0

and ‖Γθo (k) ‖ = ‖Xθo (k)−X2
fk(θo)

‖ ≤ ‖Xθo (k)‖ ≤ X̄∞θo
< ∞. Therefore (45) is a

Lyapunov equation, and Theorem 3.5 implies that

x (k + 1) = Auθo (k)x (k)

is an exponentially stable system.
We cannot as yet claim that Au as defined by (44) is uniformly exponentially

stable in the sense of Definition 3.1. To conclude uniformly exponential stability,
Γθo (k) , the solution to the Lyapunov equation (45), must be uniformly bounded for
all θo ∈ Θ and all k. Γθo (k) is uniformly bounded only if Xθo (k), the solution to
(39), is uniformly bounded. Lemma 5.7 will show that Xθo (k) is uniformly bounded.

Lemma 5.3. Let u∞ (k) = Fuθo (k) [
x (k)
w (k) ], where Fu is given by (42). Let

w∞ (k) = Fwθo (k)x (k) be defined as in (43). Then, for w ∈ l2,

‖zθo (Fu, w, xo)‖2l2 − γ2 ‖w‖2l2

= x′
oXθo (k)xo +

∞∑
k=0

(w (k)− w∞ (k))
′∇θo (k) (w (k)− w∞ (k)) .(46)

(See the end of section 1 for the definition of the notation zθo (Fu, w, xo).)

Proof. By the previous lemma, u∞ (k) = Fuθo (k) [
x (k)
w (k) ] is exponentially stabi-

lizing. Hence if w ∈ l2, then x ∈ l2 and x (k) → 0. Furthermore, Xθo (k) is bounded
and, by (41), −∞ < ∇θo (k) ≤ −+I. Thus Fwθo (k) is bounded, where Fw is defined
by (43). Hence w∞ ∈ l2. Thus letting N →∞ in (28) yields (46).

Now it is shown that the control u∞ achieves Objective B.

Lemma 5.4. If x (0) = 0 and u (k) = u∞ (k) = Fuθo (k) [
x (k)
w (k) ], then, for all

w ∈ l2, ‖z‖2l2 − γ2 ‖w‖2l2 ≤ −ε ‖w‖
2
l2
.

Proof. By Assumption A, there exists an exponentially stabilizing control u∗
that satisfies Objective B, that is, if u = u∗, x (0) = 0, and w ∈ l2, then x ∈ l2 and

‖zθo (u∗, w, 0)‖2l2−γ2 ‖w‖2l2 ≤ −ε ‖w‖
2
l2
. Since Xθo (k) is bounded and ∇θo (k) ≤ −+I,

Fuθo (k) and Fwθo (k) are bounded. Therefore u∞ (k) = Fuθo (k) [
xθo (u∗, w, 0; k)
w (k) ] ∈ l2,

and w∞ (k) = Fwθo (k)xθo (u∗, w, 0; k) ∈ l2. Thus we can take the limit of (28) as
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N →∞, which yields

−ε ‖w‖2l2 ≥ ‖zθo (u∗, w, 0)‖2l2 − γ2 ‖w‖2l2(47)

=

∞∑
k=0

(u∗ (k)− u∞ (k))
′
R3θo

(k) (u∗ (k)− u∞ (k))

+

∞∑
k=0

(w (k)− w∞ (k))
′∇θo (k) (w (k)− w∞ (k))

≥
∞∑
k=0

(w (k)− w∞ (k))
′∇θo (k) (w (k)− w∞ (k))

= ‖zθo (Fu, w, 0)‖2l2 − γ2 ‖w‖2l2 ,

where the last equality follows from Lemma 5.3.
From (47), it is clear that u∞ is the best control and w∞ is the worst disturbance

in the sense of Objective B.
Lemma 5.5. supw∈l2 infu∈l2 ‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2 = ‖zθo (Fu, w∞, xo)‖2l2 −

γ2 ‖w∞‖2l2 = x′
oXθo (0)xo.

Proof. Since ∇θo (k) ≤ −+I, if u (k) = u∞ (k) = Fuθo (k) [
x (k)
w (k) ], then (46)

implies that

sup
w∈l2
‖zθo (Fu, w, xo)‖2l2 − γ2 ‖w‖2l2

= x′
oXθo (0)xo + sup

w∈l2

∞∑
k=0

(w (k)− w∞ (k))
′∇θo (k) (w (k)− w∞ (k))

= x′
oXθo (k)xo,

where w∞ (k) = Fwθo (k)x (k). Therefore

sup
w∈l2

inf
u∈l2
‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2 ≤ sup

w∈l2
‖zθo (Fu, w, xo)‖2l2 − γ2 ‖w‖2l2(48)

= x′
oXθo (k)xo.

Similarly, if w = w∞, then infu∈l2 ‖zθo (u,w∞, xo)‖2l2−γ2 ‖w∞‖2l2 = ‖zθo (Fu, w∞, xo)‖2l2−
γ2 ‖w∞‖2l2 = x′

oXθo (k)xo. Therefore

sup
w∈l2

inf
u∈l2
‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2 ≥ inf

u∈l2
‖zθo (u,w∞, xo)‖2l2 − γ2 ‖w∞‖2l2

= x′
oXθo (k)xo.(49)

Combining inequalities (48) and (49) yields the desired result.
Up to this point, θ (0) = θo ∈ Θ has been fixed. Xθo (k) is nothing more than

the stabilizing solution of the time-varying Riccati equation associated with the time-
varying system

x (k + 1) = Afk(θo)x (k) +B1
fk(θo)

w (k) +B2
fk(θo)

u (k) ,

z (k) = Cfk(θo)x (k) +D1
fk(θo)

w (k) +D2
fk(θo)

u (k) .
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Since θo is arbitrary, for all θ ∈ Θ, define X∞ : Θ→ R
n×n by

X∞θ
:= lim
N→∞

Xθ (0, N + 1) .(50)

Lemma 5.6. The function

X∞ : Θ→ R
n×n,

θ �→ X∞θ

satisfies the FARE (32)–(33), viz.,

X∞θ
= A′

θX∞f(θ)
Aθ + C ′

θCθ

(51)

− (D̄′
θJC̄θ + B̄′

θX∞f(θ)
Aθ
)′ (

D̄′
θJD̄θ + B̄′

θX∞f(θ)
B̄θ
)−1 (

D̄′
θJC̄θ + B̄′

θX∞f(θ)
Aθ
)
.

Proof. Let f (θ1) = θ2. Clearly,

Xθ1 (N + 1, N + 1) = X2fN+1(θ1)
= X2fN (θ2)

= Xθ2 (N,N) .(52)

Next, by (21),

Xθ1 (N,N + 1)(53)

= A′
fN (θ1)

Xθ1 (N + 1, N + 1)AfN (θ1) + C ′
fN (θ1)

CfN (θ1)

−
(
D̄′
fN (θ1)

JC̄fN (θ1) + B̄′
fN (θ1)

Xθ1 (N + 1, N + 1)Af(θ1)

)′
×
(
D̄′
fN (θ1)

JD̄fN (θ1) + B̄′
fN (θ1)

Xθ1 (N + 1, N + 1) B̄fN (θ1)

)−1

×
(
D̄′
fN (θ1)

JC̄fN (θ1) + B̄′
fN (θ1)

Xθ1 (N + 1, N + 1)AfN (θ1)

)
= A′

fN−1(θ2)
Xθ2 (N,N)AfN−1(θ2) + C ′

fN−1(θ2)
CfN−1(θ2)

−
(
D̄′
fN−1(θ2)

JC̄fN−1(θ2) + B̄′
fN−1(θ2)

Xθ2 (N,N)AfN−1(θ2)

)′
×
(
D̄′
fN−1(θ2)

JD̄fN−1(θ2) + B̄′
fN−1(θ2)

Xθ2 (N,N) B̄fN−1(θ2)

)−1

×
(
D̄′
fN−1(θ2)

JC̄fN−1(θ2) + B̄′
fN−1(θ2)

Xθ2 (N,N)AfN−1(θ2)

)
= Xθ2 (N − 1, N) .

Repeating the above, we reach the result:

Xθ1 (k,N + 1) = Xθ2 (k − 1, N) .(54)

Setting k = 0 and θ = θ1 in (21) and substituting Xθ2 (0, N) for Xθ1 (1, N + 1) into
the right-hand side yields

Xθ1 (0, N + 1) = A′
θ1Xθ2 (0, N)Aθ1 + C ′

θ1Cθ1

− (D̄′
θ1JC̄θ1 + B̄′

θ1Xθ2 (0, N)Aθ1
)′ (

D̄′
θ1JD̄θ1 + B̄′

θ1Xθ2 (0, N) B̄θ1
)−1

× (D̄′
θ1JC̄θ1 + B̄′

θ1Xθ2 (0, N)Aθ1
)
.(55)

Next we take the limit as N →∞. In order to take this limit, we must ensure that the
right-hand side is continuous in Xθ2 (0, N). Since R3θ2

(0, N) ≥ D′
2θ2

D2θ2
> 0 and
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∇θ2 (0, N) ≤ −+I for allN , and since R3 and∇ are continuous functions ofXθ2 (0, N),
we have limN→∞ R3θ2

(0, N) ≥ D′
2θ2

D2θ2
> 0 and limN→∞∇θ2 (0, N) ≤ −+I. Thus(

D̄′
θ1
JD̄θ1 +B′

θ1
Y Bθ1

)−1
exists for Y in a neighborhood of X∞θ2

. Therefore

lim
N→∞

(
D̄′
θ1JD̄θ1 + B̄′

θ1Xθ2 (0, N) B̄θ1
)−1

=
(
D̄′
θ1JD̄θ1 + B̄′

θ1X∞θ2
B̄θ1
)−1

.(56)

Likewise,

lim
N→∞

(
D̄′
θ1JC̄θ1 + B̄′

θ1Xθ2 (0, N)Aθ1
)
=
(
D̄′
θ1JC̄θ1 + B̄′

θ1X∞θ2
Aθ1
)
.(57)

Thus

X∞θ1
= lim
N→∞

Xθ1 (0, N + 1)

= lim
N→∞

(
A′
θ1Xθ2 (0, N)Aθ1 + C ′

θ1Cθ1

− (D̄′
θ1JC̄θ1 + B̄′

θ1Xθ2 (0, N)Aθ1
)′ (

D̄′
θ1JD̄θ1 + B̄′

θ1Xθ2 (0, N) B̄θ1
)−1

× (D̄′
θ1JC̄θ1 + B̄′

θ1Xθ2 (0, N)Aθ1
))

= A′
θ1X∞θ2

Aθ1 + C ′
θ1Cθ1

− (D̄′
θ1JC̄θ1 + B̄′

θ1X∞θ2
Aθ1
)′ (

D̄′
θ1JD̄θ1 + B̄′

θ1X∞θ2
B̄θ1
)

× (D̄′
θ1JC̄θ1 + B̄′

θ1X∞θ2
Aθ1
)
.(58)

Since f (θ1) = θ2, equation (51) follows.
Now we can drop the dependence on the initial condition θo in R, L, and ∇, that

is, Rθ(k) := Rθo (k), Lθ(k) := Lθo (k), ∇θ(k) := ∇θo (k). As a simple consequence of
(40), we find

X∞θ
≥ 0,(59)

and by (41), we get

∇θ ≤ −+I.(60)

Thus the best control u∞ and worst disturbance w∞ feedback matrices depend only
on the current state θ (k). That is, (42) and (43) can be rewritten as

u∞ (k) = Fuθ(k)

[
x (k)
w (k)

]
:= −R−1

3θ(k)

[
L2θ(k) R2θ(k)

] [ x (k)
w (k)

]
(61)

and

w∞ (k) = Fwθ(k)x (k) := −∇−1
θ(k)L∇θ(k)x (k) .(62)

Lemma 5.7. The function X∞ given by (50) is uniformly bounded. That is, there
exists a X̄∞ <∞ such that ‖X∞θ

‖ < X̄∞.
Proof. Let X2θ = X ′

2θ
≥ 0 be the solution to (17), and define

ALQθ := Aθ −B2θ

(
D′

2θ
D2θ +B′

2θ
X2f(θ)B2θ

)−1
B′

2θ
X2f(θ)Aθ

to be the closed-loop state transition matrix with w = 0 and u = uLQ given by (18).
Define

v(k) :=
∞∑
i=k


 i∏
j=k

ALQfj(θo)




′ (
X2fi+1(θo)

B1fi(θo)
w (i) + C ′

fi+1(θo)
D1fi+1(θo)

w (i+ 1)
)
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and

Gθo (w, xo; k) :=
(
D′

2
fk(θo)

D2
fk(θo)

+B′
2
fk(θo)

X2
fk+1(θo)

B2
fk(θo)

)−1

B′
2
fk(θo)

(63)

×
(
X2

fk+1(θo)
Afk(θo)x (k)− v (k)

)
.

It is possible to show (see [26, Claim 3, p. 257] or [30, Lemma 9.6]) that if w ∈ l2,
then

Gθo (w, xo) = arg inf
{‖zθo (u,w, xo)‖l2 : u ∈ l2

}
,(64)

where the notation zθo (u,w, xo) was introduced at the end of section 1. Note that
Gθo (w, xo) and therefore zθo (Gθo (w, xo) , w, xo) are linear in (w, xo).

By assumption, there exists a control satisfying Objective B. Thus Gθo (w, 0) must
also satisfy Objective B, that is,

‖zθo (Gθo (w, 0) , w, 0)‖2l2 − γ2 ‖w‖2l2 ≤ −ε ‖w‖
2
l2

(65)

and

‖zθo (Gθo (w, 0) , w, 0)‖l2 < γ ‖w‖l2 .(66)

If w ≡ 0, then v = 0, and by comparing (18) and (63) we see that Gθo (0, xo; k) =
uLQ (k), that is, Gθo (0, xo; k) is the optimal LQ control given by (18). Thus, if w = 0,
then by (19) we obtain

‖zθo (Gθo (0, xo) , 0, xo)‖2l2 = inf
u∈l2
‖zθo (u, 0, xo)‖2l2 = x′

oX2θo
xo,(67)

where X2θ is the solution to the Riccati equation (17). It was shown in [8] that X2 is
uniformly bounded. Denote this bound by X̄2, that is, for all θ ∈ Θ, ‖X2θ‖ ≤ X̄2 <∞.
Hence

‖zθo (Gθo (0, xo) , 0, xo)‖2l2 = x′
oX2θo

xo ≤ X̄2 |xo| <∞.(68)

Combining (65), (66), and (68) yields

‖zθo (Gθo (w, xo) , w, xo)‖2l2 − γ2 ‖w‖2l2(69)

= ‖zθo (Gθo (0, xo) , 0, xo) + zθo (Gθo (w, 0) , w, 0)‖2l2 − γ2 ‖w‖2l2
= ‖zθo (Gθo (0, xo) , 0, xo)‖2l2 + 2 〈zθo (Gθo (w, 0) , w, 0) , zθo (Gθo (0, xo) , 0, xo)〉
+ ‖zθo (Gθo (w, 0) , w, 0)‖2l2 − γ2 ‖w‖2l2
≤ ‖zθo (Gθo (0, xo) , 0, xo)‖2l2
+ 2 〈zθo (Gθo (w, 0) , w, 0) , zθo (Gθo (0, xo) , 0, xo)〉 − ε ‖w‖2l2
≤ x′

oX2θo
xo + 2γ ‖w‖l2

√
x′
oxoX̄2 − ε ‖w‖2l2

= x′
oX2θo

xo + ‖w‖l2
(
2γ|
√

x′
oxoX̄2 − ε ‖w‖l2

)

≤ x′
oX2θo

xo + max
‖w‖∈R

{
‖w‖l2

(
2γ |xo|

√
X̄2 − ε ‖w‖l2

)}

≤ x′
oX2θo

xo +
γ2X̄2 |xo|2

ε
≤ |xo|2

(
X̄2 +

γ2X̄2

ε

)
<∞.
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Thus

sup
w∈l2

inf
u∈l2
‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2

= sup
w∈l2
‖zθo (Gθo (w, xo) , w, xo)‖2l2 − γ2 ‖w‖2l2 ≤ |xo|

2

(
X̄2 +

γ2X̄2

ε

)
<∞.

Lemma 5.5 implies that

x′
oX∞θo

xo = sup
w∈l2

inf
u∈l2
‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2 ≤ |xo|

2

(
X̄2 +

γ2X̄2

ε

)
<∞,

(70)

which concludes the proof.
Note that the worst disturbance has the property,

‖w∞‖2l2 ≤ P |xo|2 ,(71)

where

P :=
4γ2X̄2

ε2
|xo|2 .(72)

To see this, observe that if ‖w∞‖2l2 > P |xo|2, equation (69) implies that

‖zθo (Gθo (w∞, xo) , w∞, xo)‖2l2 − γ2 ‖w∞‖l2
≤ x′

oX2θo
xo + ‖w‖l2

(
2γ |xo|

√
X̄2 − ε ‖w‖l2

)
< x′

oX2θo
xo = ‖zθo (Gθo (0, xo) , 0, xo)‖2l2 .

That is, the cost resulting from w ≡ 0 is larger than the cost resulting from w = w∞,
which contradicts the maximizing property of w∞.

Lemma 5.8. For w = 0, u (k) = u∞ (k) uniformly exponentially stabilizes the
system.

Proof. Since X∞ is uniformly bounded, X̄∞ (θ) defined in Lemma 5.1 is uniformly
bounded. The proof of Lemma 5.2 can be applied with no changes to conclude that
Au is uniformly exponentially stable.

Lemma 5.9. The closed-loop system with u (k) = u∞ (k) and w (k) = w∞ (k)
is uniformly exponentially stable. In other words, the system x (k + 1) = (Aθ(k)−
B̄θ(k)R

−1
θ(k)Lθ(k))x (k) is uniformly exponentially stable.

Proof. Let |xo| ≤ 1. Define w∞ as

w∞ (k) = Fwθ(k)xθo (Fu, w∞, xo; k) .

Then w∞ is a linear function of xo. By Lemmas 5.5 and 5.7,

sup
w∈l2

inf
u∈l2
‖zθo (u,w, xo)‖2l2 − γ2 ‖w‖2l2 = ‖zθo (Fu, w∞, xo)‖2l2 − γ2 ‖w∞‖2l2

= x′
oX∞θo

xo ≤ X̄∞ |xo|2 ,

and, by (71), ‖w∞‖2l2 ≤ P |xo|2. Thus

‖zθo (Fu, w∞, xo)‖2l2 = γ2 ‖w∞‖2l2 + x′
oX∞θo

xo ≤
(
γ2P + X̄∞

) |xo|2 .(73)
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Note that, if w (k) = w∞ (k) and u (k) = Fuθ(k) [
x (k)
w∞ (k) ], then x (k + 1) = (Aθ(k)−

B̄θ(k)R
−1
θ(k)Lθ(k))x (k).

Define the system

x (k + 1) =
(
Aθ(k) − B̄θ(k)R

−1
θ(k)Lθ(k)

)
x (k) + r (k) ,(74)

v (k) =

[ −∇−1
θ(k)L∇θ(k)

C̃θ(k)

]
x (k) ,

where

C̃ = C −D1∇−1L∇ +D2

(
R−1

3 R2∇−1L∇ −R−1
3 L2

)
.

Then v = [ w∞
zθo (Fu, w∞, xo) ]. Fix j ≥ 0 and set r (k) = roδ (k − j), that is, r (k) = 0 for

k �= j and r (j) = ro. Then (73) implies that
∥∥zfj(θo) (Fu, w∞, ro)

∥∥2
l2
≤ (γ2P + X̄∞

) |ro|2.
Likewise, ‖w∞‖2l2 ≤ P |ro|2. Therefore

‖v‖2l2 =
∥∥zfj(θo) (Fu, w∞, ro)

∥∥2
l2
+ ‖w‖2l2 ≤

((
γ2P + X̄∞

)
+ P
) |ro|2 .(75)

Note that there exists a matrix
[

H1 H2

]
such that

(
A− B̄R−1L

)
+
[

H1 H2

] [ −∇−1L∇(
C −D1∇−1L∇ +D2

(
R−1

3 R2∇−1L∇ −R−1
3 L2

)) ]
(76)

is uniformly exponentially stable. For example, set H1 = −B1 − H2D1 and H2 =
HdC (C ′C)

+
C ′ − B2 (D

′
2D2)

−1
D′

2, where Hd is the feedback such that A − HdC
is uniformly exponentially stable, the existence of which is guaranteed by the de-
tectability assumption, and (C ′C)

+
is the pseudoinverse of C ′C. Since Hd is bounded,

D′
2D2 > 0, D2, B1, C, D1 are uniformly continuous, Θ is compact, and C (C ′C)

+
C ′

is bounded,1 there is an H̄ <∞ such that
[

H1 H2

]′ [
H1 H2

] ≤ H̄.
Now, let

y (k + 1) =

((
Aθ(k) − B̄θ(k)R

−1
θ(k)Lθ(k)

)
+
[

H1θ(k) H2θ(k)

] [ C̃θ(k)
∇−1
θ(k)L∇θ(k)

])
y (k)

(77)

− [ H1θ(k) H2θ(k)

]
v (k) + roδ (k − j) ,

that is, y is an estimate of x. Since system (77) is uniformly exponentially stable,
there exists an R <∞ such that

‖y‖l2 ≤ R
∥∥r − [ H1 H2

]
v
∥∥
l2
≤ R ‖r‖l2 + H̄R ‖v‖l2

≤ R |ro|+ H̄R
√((

γ2P + X̄∞
)
+ P
) |ro|

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
)) |ro| .

1Although C (C′C)+ C is not continuous, ‖C (C′C)+ C‖ ≤ 1.
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On the other hand, if the system is initially at rest, that is, y (0) = x (0) = 0, then
y (k) = x (k). Thus ‖y‖l2 = ‖x‖l2 , and therefore

‖x‖l2 ≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
)) |ro| .

Let Φθo (k, j) be the state transition matrix of system (74) with initial conditions
θ (0) = θo, x (0) = 0, and let r (i) = roδ (i− j). Then we have

‖x‖2[j,∞) =

∞∑
i=j

x′ (i)x (i) =
∞∑
i=j

‖Φθo (i, j) r (j)‖2

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
))2

|ro|2 .

Furthermore, for i ≥ j, ‖Φθo (i, j)‖2 ≤ (R + RH̄
√((

γ2P + X̄∞
)
+ P
)
)2. Applying

standard techniques, we find that

K ‖Φθo (j +K, j)‖2 =
K∑
i=j

‖Φθo (j +K, j)‖2

≤
K∑
i=j

‖Φθo (j +K, i)‖2 ‖Φθo (i, j)‖2

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
))2 K∑

i=j

‖Φθo (i, j)‖2

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
))4

.

Choosing K ∈ Z such that K ≥ √
2(R + RH̄

√
((γ2P + X̄∞) + P ))4 yields

‖Φ (j +K, j, θo)‖2 ≤ 1/
√
2. Since this is true for all j and all θo, setting M ∈ Z

with M ≥ 0 and k − (j +MK) < K, we conclude that

‖Φθo (k, j)‖ ≤ ‖Φθo (k, j +MK)‖
M∏
m=1

‖Φθo (j +mK, j + (m− 1)K)‖

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
))(1

2

)M

≤
(
R+RH̄

√((
γ2P + X̄∞

)
+ P
))

2

(
1

2

) k−j
K

.

That is, system (74) is uniformly exponentially stable.
Lemma 5.10. As N → ∞, Xθ (0, N + 1) → X∞θ

uniformly in θ and X∞ is a
continuous function.

Proof. Let x (k + 1) = (Aθ(k) − B̄θ(k)R
−1
θ(k)Lθ(k))x (k). Then, by Lemma 5.9,

x (k) → 0 uniformly exponentially fast. Set w∞ (k) = Fwθ(k)x (k) as in (62) and
define

w̃N (k) :=

{
w∞ (k) for k ≤ N,
0 otherwise.
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Since X∞ is uniformly bounded and ∇θ ≤ −+I, it follows that Fw is uniformly
bounded. Since x (k) → 0 uniformly exponentially fast and Fw is bounded,
w∞ → 0 uniformly exponentially fast. Therefore limN→∞ ‖w∞ − w̃N‖l2 =
limN→∞ ‖w∞‖[N+1,∞) = 0, where the convergence is uniformly exponentially fast.

Recall the following: (31) states that

x′
oXθo (0, N + 1)xo(78)

= sup
w∈l2[0,N ]

inf
u∈l2[0,N ]

{
‖z‖2[0,N ] − γ2 ‖w‖2[0,N ]

+ x′ (N + 1)Xθo (N + 1, N + 1)x (N + 1)
}
.

From (19) of Theorem 3.7, it follows that

x (N + 1)
′
X2fN+1(θo)

x (N + 1) = inf
u∈l2
‖z‖2[N+1,∞) .(79)

From (64), we have

inf
u∈l2
‖zθo (u,w, xo)‖2[0,∞) − γ2 ‖w‖2[0,∞) = ‖zθo (Gθo (w, xo) , w, xo)‖2[0,∞) − γ2 ‖w‖2[0,∞) .

(80)

Combining (64) and Lemma 5.5 yields

‖zθo (Gθo (w∞, xo) , w∞, xo)‖2[0,∞) − γ2 ‖w∞‖l2 = x′
oX∞θo

xo.(81)

From (66), we have

‖zθo (Gθo (w, 0) , w, 0)‖2[0,∞) < γ2 ‖w‖2[0,∞) ,(82)

and, from inequality (71), we have

‖w∞‖2l2 ≤ P |xo|2 .(83)

Combining the preceding relations yields the following string:

x′
oXθo (0, N + 1)xo

= sup
w∈l2[0,N ]

inf
u∈l2[0,N ]

{
‖zθo (u,w, xo)‖2[0,N ] − γ2 ‖w‖2[0,N ]

+ x′ (N + 1)X2fN+1(θo)
x (N + 1)

}
= sup

{w∈l2:w(k)=0, k≥N}
inf
u∈l2

{
‖zθo (u,w, xo)‖2[0,∞) − γ2 ‖w‖2[0,∞)

}

= sup
{w∈l2:w(k)=0, k≥N}

{
‖zθo (Gθo (w, xo) , w, xo)‖2[0,∞) − γ2 ‖w‖2[0,∞)

}
≥ ‖zθo (Gθo (w̃N , xo) , w̃N , xo)‖2[0,∞) − γ2 ‖w̃N‖2[0,∞)

= ‖zθo (Gθo (w∞, xo) , w∞, xo) + zθo (Gθo (w̃N − w∞, 0) , w̃N − w∞, 0)‖2[0,∞)

− γ2 ‖w̃N‖2[0,∞)
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= ‖zθo (Gθo (w∞, xo) , w∞, xo)‖2[0,∞) + ‖zθo (Gθo (w̃N − w∞, 0) , w̃N − w∞, 0)‖2[0,∞)

− γ ‖w̃N‖2[0,∞)

+ 2 〈zθo (Gθo (w∞, xo) , w∞, xo) , zθo (Gθo (w̃N − w∞, 0) , w̃N − w∞, 0)〉
≥ ‖zθo (Gθo (w∞, xo) , w∞, xo)‖2[0,∞) − γ2 ‖w̃N‖2[0,∞)

+ 2 〈zθo (Gθo (w∞, xo) , w∞, xo) , zθo (Gθo (w̃N − w∞, 0) , w̃N − w∞, 0)〉
≥ ‖zθo (Gθo (w∞, xo) , w∞, xo)‖2[0,∞) − γ2 ‖w∞‖2[0,∞)

− 2 ‖zθo (Gθo (w∞, xo) , w∞, xo)‖[0,∞) ‖zθo (Gθo (w̃N − w∞, 0) , w̃N − w∞, 0)‖[0,∞)

≥ x′
oX∞θo

xo − 2

(√
γ2 ‖w∞‖2 + x′

oX∞θo
xo

)
γ ‖w∞ − w̃N‖[0,∞)

≥ x′
oX∞θo

xo − 2 |xo|
(√

γ2P + X̄∞

)
γ ‖w∞ − w̃N‖[0,∞) .

Lemma 5.1 implies that X∞θo
−Xθo (0, N + 1) ≥ 0. Thus

0 ≤ x′
o

(
X∞θo

−Xθo (0, N + 1)
)
xo ≤ 2γ |xo|

(√
γ2P + X̄∞

)
‖w∞ − w̃N‖[0,∞) .

Since ‖w∞ − w̃N‖[0,∞) → 0 uniformly in θ and exponentially in N , and since

2γ(
√

γ2P + X̄∞) does not depend on θo, we have Xθo (0, N + 1) → X∞θo
uniformly

in θ and exponentially in N .
Since X2 is continuous, Xθ (0, N + 1) is continuous in θ for N < ∞. Since Θ

is compact, and X (0, N + 1) → X∞ in the uniform metric, Theorem 7.1.4 in [24]
implies that X∞ is continuous.

The time-invariant version of the first claim of this lemma can be found in [31].

5.2. Sufficiency. Suppose that the assumptions of the theorem hold and that
(32), (33), and (34) hold. It will be shown that the control given by (36) is internally
stabilizing and, if u = u∞ as defined by (42), then Objective B is satisfied. This proof
is similar to the proof given in [17].

Under the above conditions, (32) can be written as

X∞θ
= C ′

θCθ +A′
θX∞f(θ)

Aθ − L′
2θ
R−1

3θ
L2θ − L′

∇θ∇−1
θ L∇θ .

It follows that[
A′
θ C ′

θ

B′
2θ

D′
2θ

] [
X∞f(θ)

0
0 I

] [
Aθ B2θ

Cθ D2θ

]

=

[
X∞θ

+ L′
∇θ∇−1

θ L∇θ 0
0 0

]
+

[
L′

2θ
R3θ

]
R−1

3θ

[
L2θ R3θ

]
.

Multiplying both sides of this equality, by [
I 0

−R−1
3θ
L2θ

I ] on the right and by the

transpose on the left, and taking the (1,1) block yields

X∞θ
=
(
Aθ −B2θR

−1
3θ

L2θ

)′
X∞f(θ)

(
Aθ −B2θR

−1
3θ

L2θ

)
(84)

− L′
∇θ∇−1

θ ∇θ∇−1
θ L∇θ +

(
Cθ −D2θR

−1
3θ

L2θ

)′ (
Cθ −D2θR

−1
3θ

L2θ

)
.
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Since Aθ − B̄θR
−1
θ Lθ = Aθ − B2θR

−1
3θ

L2θ −
(
B1θ −B2θR

−1
3θ

L2θ

)∇−1
θ L∇θ is assumed

to be uniformly exponentially stable, we conclude that the triple((
Aθ −B2θR

−1
3θ

L2θ

)
,
(∇−1
θ L∇θ

)
, f
)

is uniformly detectable. Since ∇θ ≤ −+I, ∇−1
θ is uniformly bounded. Since X∞ is

uniformly bounded,∇−1
θ L∇θ is uniformly bounded. Thus (84) is a Lyapunov equation,

and Corollary 3.6 implies that

ξ (k + 1) =
(
Aθ(k) −B2θ(k)R

−1
3θ(k)

L2θ(k)

)
ξ (k)(85)

is a uniformly exponentially stable system. Therefore the control u = u∞ is uniformly
exponentially stabilizing.

Since system (85) is uniformly exponentially stable, if u = u∞ and w ∈ l2, then
x ∈ l2 and limk→∞ x (k) = 0. Thus, if u = u∞, then (28) implies that, for all N ,

‖z‖2[0,N ] − γ2 ‖w‖2[0,N ] + x′ (N + 1)X∞fN+1(θo)
x (N + 1)(86)

= x′ (0)X∞θo
x (0) +

N∑
k=0

(w (k)− w∞ (k))
′∇fk(θo) (w (k)− w∞ (k)) ,

where w∞ (k) := −∇−1
fk(θo)

L∇
fk(θo)

x (k). Since x,w ∈ l2, it follows that u, z ∈ l2.

Furthermore, ∇ is bounded. Thus we can let N →∞ in (86), and for xo = 0,

‖z‖2l2 − γ ‖w‖2l2 =
∞∑
k=0

(w (k)− w∞ (k))
′∇fk(θo) (w (k)− w∞ (k)) .(87)

Since system (85) is stable and causal, the closed-loop system with u = u∞, viz.,

[
x (k + 1)
w (k)− w∞ (k)

](88)

=



(
Aθ(k) −B2θ(k)R

−1
3θ(k)

L2θ(k)

) (
B1θ(k) −B2θ(k)R

−1
3θ(k)

R2θ(k)

)
(
∇−1
θ(k)

L∇
θ(k)

)
I


[ x (k)

w (k)

]
,

is l2-stable and causal. The inverse of this system (see [36]) is[
ξ (k + 1)
w (k)

]
=

[
Ãθ(k) −B̃θ(k)
C̃θ(k) D̃θ(k)

] [
ξ (k)
w (k)− w∞ (k)

]

with

Ãθ = Aθ −B2θR
−1
3θ

L2θ −
(
B1θ −B2θR

−1
3θ

R2θ

)∇−1
θ L∇θ

= Aθ − B̄θR
−1
θ Lθ,

B̃θ = −
(
B1θ −B2θR

−1
3θ

R2θ

)
,

C̃θ = −∇−1
θ L∇θ ,

D̃θ = I.
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Since ξ (k + 1) = (Aθ(k)− B̄θ(k)R
−1
θ(k)Lθ(k))ξ (k) is uniformly exponentially stable, the

inverse of system (88) is uniformly exponentially stable and hence l2 stable. Thus
there exists a δ > 0 such that, for all θo ∈ Θ,

‖w‖2l2 ≤
1

δ
‖w − w∞‖2l2 .

Since ∇ ≤ −+I, equation (87) implies that

‖z‖2l2 − γ2 ‖w‖2l2 ≤ −+ ‖w − w∞‖2l2 ≤ −δ+ ‖w‖
2
l2
= −ε ‖w‖2l2 .

6. Controlling nonlinear systems with linear dynamically varying H∞

controllers. In the preceding section, a technique for stabilizing an LDV system
subject to an H∞ disturbance rejection requirement was developed. Here, it will first
be shown that the LDV controller for the linearized tracking error system can also be
used to stabilize the nonlinear tracking error dynamics, in a scheme that works along
every trajectory, provided that the initial tracking error is small enough (section 6.1).
Next, some issues quite specific to the H∞ implementation of the tracking scheme (to
be published elsewhere) will be briefly surveyed.

6.1. Stability of a closed-loop nonlinear system. To make H∞ design rele-
vant to nonlinear tracking performance improvement, the guiding idea is to write the
nonlinearity η in the tracking error dynamics (6) as a feedback from an output z(k)
to a disturbance w(k). To this end, we introduce the factorization

η(x, u, θ) =
[

ηx (x, u, θ) ηu (x, u, θ)
] [ x

u

]
= B1θ η̃ (x, u, θ)

[
Cθ D2θ

] [ x
u

]
.

(89)

Here we simply take

B1θ := In×n, Cθ : =

[
In×n
0m×n

]
, D2θ :=

[
0n×m
Im×m

]
,(90)

η̃ (x, u, θ) :=
[

ηx (x, u, θ) ηu (x, u, θ)
]
,

where ηx and ηu are defined by (8) and (9). The error due to linearization can be
modeled as a feedback from z to w:

η(x(k), u(k), θ(k)) = B1θ(k)w (k) ,

w(k) = η̃ (x (k) , u (k) , θ (k)) z (k) ,

z (k) = Cθ(k)x (k) +D2θ(k)u (k) .

Here D1 = 0. Clearly B1 : Θ→ R
n×n, C : Θ→ R

(n+m)×n, and D2 : Θ→ R
(n+m)×m

are continuous functions, and the triple (A,C, f) is detectable. Hence, assuming that
(A,B2, f) is stabilizable, Theorem 4.2 or Corollary 4.3 can be applied to generate a
controller.

Theorem 6.1. Let (4) hold. Define A, B1, B2, C, D1, and D2 as above and
assume that the triple (A,B2, f) is stabilizable. Let F be the H∞ controller such that
supw∈l2 ‖z‖l2/‖w‖l2 < γ for some γ < ∞. Then there exists an RCapture > 0 such
that, if u (k) = Fθ(k) (ϕ (k)− θ (k)) and |ϕ (0)− θ (0)| < RCapture, then |ϕ (k)− θ (k)| →
0 as k →∞.
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Proof. Define η̄ (x̄, ū) := sup {‖η̃ (x, u, θ)‖ : |x| ≤ x̄, |u| ≤ ū, θ ∈ Θ}. By (10) and
(11), we obtain

η̄ (x̄, ū)→ 0 as x̄, ū→ 0.(91)

It follows that there exist x∗, u∗ > 0 such that η̄ (x∗, u∗) ≤ 1
γ . Now define

h (x, u, θ) :=

{
η̃ (x, u, θ) for |x| < x∗ and |u| < u∗,
0n×(n+m) otherwise.

(92)

Thus, for all x and u, supθ∈Θ ‖h (x, u, θ)‖ ≤ 1
γ . Consider the following closed-loop

LDV system:

ξ (k + 1) = Aθ(k)ξ (k) +B1θ(k)ω (k) +B2θ(k)υ (k) ,(93)

ζ (k) = Cθ(k)ξ (k) +D2θ(k)υ (k) ,

ω (k) = h (ξ (k) , υ (k) , θ (k)) ζ (k) ,

υ (k) = Fθ(k)ξ (k) ,

θ (k + 1) = f (θ (k)) .

Since supw∈l2 ‖z‖l2/‖w‖l2 < γ, the small gain theorem of [32] implies that system (93)
is externally l2 stable. Since Aθ + B2θFθ is uniformly exponentially stable, system
(93) is also internally l2 stable. Therefore there exist a Gx ≥ 1 and a Gu > 0 such
that ‖ξ‖l∞ ≤ ‖ξ‖l2 < Gx |ξ (0)| and ‖υ‖l∞ ≤ ‖υ‖l2 < Gu |ξ (0)|. Now set

RCapture := min

(
x∗

Gx
,
u∗

Gu

)
.

If |ξ (0)| ≤ RCapture, then

‖ξ‖l∞ < Gx |ξ (0)| ≤ x∗

and

‖υ‖l∞ < Gu |ξ (0)| ≤ u∗.

By the above inequalities and (92), we conclude that, for all k, h (ξ (k) , υ (k) , θ (k)) =
η̃ (ξ (k) , υ (k) , θ (k)). Thus, if

|x (0)| < min

(
x∗

Gx
,
u∗

Gu

)
,

then, by the uniqueness of solutions to difference equations, the closed-loop LDV
system

x (k + 1) = Aθ(k)x (k) +B1θ(k)w (k) +B2θ(k)u (k) ,(94)

z (k) = Cθ(k)x (k) +D2θ(k)u (k) ,

w (k) = η̃ (x (k) , u (k) , θ) z (k) ,

u (k) = Fθ(k)x (k) ,

θ (k + 1) = f (θ (k))

is l2 stable, and furthermore, ‖x‖l∞ < x∗ and ‖u‖l∞ < u∗. Since (94) is the tracking
error of the closed-loop nonlinear system, we conclude that |x (k)| = |ϕ (k)− θ (k)| →
0 as k →∞.
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6.2. Further considerations. Writing the nonlinearity η (x, u, θ) as a bounded
feedback η̃ (x, u, θ) from an output z to the input w (see (10), (11), (89)) yields an
H∞ design that attenuates the effect of the nonlinearity and hence amplifies the
initial allowable tracking error. It is further possible to optimize this procedure by
factoring η̃ in such a way that ‖η̃‖ ≤ 1 (see [7] for details). The suboptimal H∞

controller is continuous, and therefore an approximation of the LDV H∞ controller
can be constructed in the same way that an approximation of the LDV quadratic
controller was constructed in [8]. The fact that the H∞ controller is guaranteed to
be continuous under the condition that it be suboptimal does not prove that the
suboptimality condition for continuity is necessary. In fact, an example based on
the Hénon map shows that the suboptimal controller becomes discontinuous as γ
approaches γo, the optimal H∞ tolerance.

7. Conclusion. Suboptimal H∞ controllers for LDV systems have been de-
veloped. Like the LDV quadratic controllers, these H∞ controllers are continuous
functions. The H∞ method has distinct advantages over the LQ method, in that H∞

can be tuned to minimize the effect of linearization and it is possible to find a lower
bound on the maximum allowable initial tracking error.
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Abstract. By a multidimensional behavior, we mean the solution space of a linear constant-
coefficient system of partial difference or differential equations. Within the behavioral framework, a
natural concept of interconnection has been introduced by J. C. Willems. The regular interconnection
problem can be formulated as follows: Given a behavior (the plant), find—if possible—another
behavior (a controller) such that their interconnection is not redundant and is equal to a certain
desired behavior. We give a constructive solution to this problem, which is in terms of polynomial
matrix equations that can be solved using the theory of Gröbner bases. We also study a dual problem
concerning the existence of direct sum decompositions of multidimensional behaviors. Finally, we
present a unified framework for studying both problems as special cases of constructing relative
complements in the lattice of behaviors.

Key words. multidemensional systems, behavioral approach, regular interconnection, direct
sum decomposition, multivariate polynomial modules, split exact sequences
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1. Introduction. Feedback control is based on the interconnection of systems:
Given a dynamical system (the plant), the goal of feedback control is to design another
system (a controller) in such a way that the interconnection of the two systems has
certain desired properties. As an example, consider a plant given in classical state
space form

ẋ = Ax + Bu

and let the controller be specified by the feedback law u = Fx + v. Then the inter-
connection (the closed loop system) is

ẋ = (A + BF )x + Bv.(1.1)

A typical aim of the controller design in this setting is spectral assignment; that is, a
condition is given on the desired location of the eigenvalues of A + BF .

Note that interconnection means nothing more than combining the equations that
determine plant and controller, respectively, and looking at their common solutions.
For instance, combining the plant given by

[
d
dtI −A, −B, 0

]  x
u
v


 = 0
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with the controller given by

[
F, −I, I

]  x
u
v


 = 0

yields the interconnected system
 d

dtI −A, −B, 0

F, −I, I




 x

u
v


 =

[
0
0

]
,

from which we may eliminate u to get (1.1). It is worth noting that this interconnec-
tion is regular in a sense to be defined below.

The behavioral approach to systems theory developed by J. C. Willems—see [14]
for a survey—provides an elegant framework for dealing with such interconnection
problems as well as more general ones. A behavior is the set of signals w that obey a
certain system law, say a system of linear differential equations, which may be written
as

P1( ddt )w = 0.

In the example above, w = (x, u, v)t, where (·)t denotes transposition, and

P1

(
d
dt

)
=
[

d
dtI −A, −B, 0

]
.

Similarly, let the controller be determined by P2( ddt )w = 0. Then the interconnection
is determined by the system law [

P1

P2

]
( ddt ) w = 0.

In what follows, we will consider the multidimensional case, that is, systems of partial
instead of ordinary differential equations.

A dual problem concerns direct sum decompositions of behaviors: Is it possible to
write a behavior as the superposition of two smaller systems such that each trajectory
of the overall behavior has a unique representation as the sum of two trajectories of
the respective building blocks? A prominent example from classical one-dimensional
systems theory is the so-called controllable-autonomous decomposition. Consider ẋ =
Ax+Bu. In a suitably chosen basis of the state space, these equations take the form

d

dt

[
x1

x2

]
=

[
A1 A2

0 A3

] [
x1

x2

]
+

[
B1

0

]
u,

where (A1, B1) is a reachable matrix pair. This is the well-known Kalman reachability
decomposition. Now each trajectory w = (x1, x2, u)t can be uniquely written in the
form w = w1 +w2, where w1 belongs to the controllable part of the system (governed
by ẋ1 = A1x1 + B1u, x2 = 0) and w2 belongs to a suitably defined autonomous part
of the system.

For one-dimensional behaviors, i.e., systems governed by ordinary differential
equations, the regular interconnection problem was formulated and solved by J. C.
Willems [14, 15]. In the multidimensional situation, the problem was first tackled by
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P. Rocha and J. Wood [10, 11], who provided a foundation for the control theory of
multidimensional behaviors, based on prior work of U. Oberst [9]. Several authors
have noted that the controllable-autonomous decomposition is, in general, no longer
a direct sum decomposition in dimensions greater than one [6]. A more general treat-
ment of decompositions of two-dimensional systems has been offered by M. E. Valcher
and M. Bisiacco [2, 13]. Both problems can be treated within the unified framework
of lattice theory; see [9, 12].

This paper is organized as follows. In section 2, we give some introductory mate-
rial as well as the main mathematical tool for the subsequent discussion. We use this
tool to solve the regular interconnection problem in section 3. Section 4 is devoted to
the dual problem of direct sum decompositions. Finally, a unified approach to study-
ing both problems is proposed in section 5. We conclude with three worked examples
which are collected in section 6.

2. Preliminaries. Let K be a field, n a positive integer, and D = K[s1, . . . , sn]
the polynomial ring over K in n indeterminates s1, . . . , sn.

By a linear n-dimensional system Σ with signal number q, we mean a submodule
N of Dq. Such a module admits a representation

N = im(P t) = P tDg for some P ∈ Dg×q,
where g is a suitable integer and P t is the transpose of P . The matrix P is called a
representation of Σ.

The connection with behaviors, as described in the introduction, is as follows.
Let P ∈ Dg×q be given. Consider the solution space of the associated system of linear
constant-coefficient partial differential equations, that is,

B = kerA(P ) = {w ∈ Aq | P (∂)w := P (∂1, . . . , ∂n)w = 0}.
The signal space A is either the space of smooth functions or of distributions on R

n.
(The base field K is assumed to be either R or C.) Oberst [9] showed that B ⊆ Aq
and the submodule of Dq generated by the columns of P t are in fact equivalent data,
and this motivates our definition of a system given above. Indeed,

B = kerA(P ) → M(B) := {pt ∈ Dq | p(∂)w = 0 ∀w ∈ B}
and

B(N) := {w ∈ Aq | p(∂)w = 0 ∀pt ∈ N} ← N = im(P t) = P tDg

are order-reversing bijections between behaviors in Aq and submodules of Dq, and
they are inverse to each other. We have the correspondences

B1 ∩ B2 ↔ N1 + N2

(that is to say, M(B1 ∩ B2) = M(B1) + M(B2) and B(N1 + N2) = B(N1) ∩ B(N2))
and similarly

B1 + B2 ↔ N1 ∩N2.

A similar interpretation is valid for discrete systems, i.e., for behaviors given by dif-
ference instead of differential equations. For the sake of simplicity, we will restrict our
analysis to the continuous case throughout this paper.
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Given two behaviors B1,B2 ⊆ Aq, their interconnection B is defined as [15]

B = B1 ∩ B2.

Thus, the interconnected behavior consists of the trajectories that obey the system
laws of both B1 and B2; that is, if Bi = kerA(Pi), then B = kerA(P ) with

P =

[
P1

P2

]
.(2.1)

The module-theoretic counterpart is the following: Given two systems Σ1 and Σ2

with the same signal number q, we define their interconnection Σ := Σ1 ∧ Σ2 by

N := N1 + N2.

A representation P of Σ is obtained from representations Pi of Σi by (2.1).
The interconnection is said to be regular if we have

N = N1 ⊕N2,

that is, if N1 ∩N2 = {0}. In terms of behaviors, this signifies

B1 + B2 = Aq,
and in terms of representations, an interconnection (2.1) is regular if

rank(P ) = rank(P1) + rank(P2).

We say that a system Σ1 is less powerful than Σ if N1 ⊆ N. This implies the reverse
relation for the corresponding behaviors: B1 ⊇ B. In terms of representations, this
means P1 = CP for some polynomial matrix C. Certainly, Σ1 and Σ2 themselves are
always less powerful than Σ1 ∧ Σ2.

The basic mathematical tool for the following discussion is the notion of a split
exact sequence. Let R be a commutative ring, and let L,L1, L2 be R-modules. Let
f : L1 → L and g : L→ L2 be R-linear maps. The sequence

0→ L1
f−→ L

g−→ L2 → 0(2.2)

is called exact if f is injective, g is surjective, and im(f) = ker(g). An exact sequence
(2.2) is said to be split if the following equivalent conditions are satisfied:

1. There exists a homomorphism k : L → L1 such that kf is the identity map
on L1, denoted by idL1 .

2. There exists a homomorphism h : L2 → L such that gh = idL2 .
3. im(f) = ker(g) is a direct summand of L.
Theorem 2.1. Let R be a commutative ring. Let F0, F1 be finitely generated

free R-modules, and let L,L1, L2 be arbitrary R-modules. Suppose that the following
diagram is commutative with exact rows:

F1
α−→ F0

β−→ L2 → 0
π ↓ ‖

0 → L1
f−→ L

g−→ L2 → 0.

Then the following are equivalent:
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1. The lower sequence is split.
2. There exists a homomorphism ξ : F0 → L1 such that

fξα = πα.(2.3)

Proof. 1 ⇒ 2. Suppose there exists a homomorphism h : L2 → L such that
gh = id. Then gπ = β = ghβ, and thus

im(π − hβ) ⊆ ker(g) = im(f).

Let B be a basis of F0. Since f is injective, there exists, for any b ∈ B, a unique
ξ(b) ∈ L1 such that

f(ξ(b)) = (π − hβ)(b).

This defines a homomorphism ξ : F0 → L1 with

fξα = (π − hβ)α = πα.

2⇒ 1. Let ξ : F0 → L1 be such that (π − fξ)α = 0, that is,

ker(β) = im(α) ⊆ ker(π − fξ).

Then there is a well-defined homomorphism h : L2 → L that assigns to each l2 = β(x),
independently of the choice of such an x ∈ F0,

h(l2) := (π − fξ)(x).

We have gh(l2) = g(π − fξ)(x) = gπ(x) = β(x) = l2 for all l2 ∈ L2.
There is a close connection between the above theorem and the theory of extension

modules. The reader is referred to [5] for a general introduction to this concept, and
to [8] for its application to the regular interconnection problem.

3. The regular interconnection problem. We will consider the following
control problem: Given Σ1 and Σ, with Σ1 less powerful than Σ, does there exist a
system Σ2 such that

Σ1 ∧ Σ2 = Σ

and the interconnection is regular? If yes, we say that Σ can be achieved from Σ1

by regular interconnection. Moreover, in that case, we are looking for an explicit
construction of such a Σ2.

One should think of these systems as follows: Σ1 is the given plant, Σ is a specified
desired system, and Σ2 is the controller to be constructed.

For this, let P1 ∈ Dg1×q and P ∈ Dg×q be representations of Σ1 and Σ, re-
spectively, and define N1 := im(P t1), N := im(P t). By assumption, N1 ⊆ N , that
is, P1 = CP for some polynomial matrix C. Define M := coker(P t) = Dq/N and
M1 := coker(P t1).

The problem is to decide whether N1 is a direct summand of N and, if so, to
construct a complementary summand N2. By the definition of a split exact sequence,
the regular interconnection problem is solvable, i.e., N1 is a direct summand of N if
and only if the exact sequence

0→ N1↪→N→N/N1 → 0
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is split. In view of Theorem 2.1, consider the diagram

Dk A−→ Dg → N/N1 → 0
P t ↓ ‖

0 → N1 ↪→ N → N/N1 → 0.

The construction of A with the desired property, that is, exactness of the upper
sequence, or equivalently

Dg/im(A) ∼= N/N1,

will be discussed in section 3.1. Note that the matrix representation of any homo-
morphism ξ : Dg → N1 = im(P t1) has the form P t1Y , where Y ∈ Dg1×g. Thus we can
write (2.3) in terms of the following polynomial matrix equation:

(P t1Y − P t)A = 0.(3.1)

The regular interconnection problem is solvable if and only if this linear matrix equa-
tion possesses a polynomial solution Y . In [8], this condition was derived using the
concept of extension modules. Here, we have given an alternative proof without mak-
ing use of that tool.

To check the solvability of (3.1), we rewrite it using the Kronecker product of two
matrices; see, e.g., [3]. This is defined as follows: Let

A =




a11 . . . a1l

...
...

ak1 . . . akl




be a k × l matrix, and let B be an m× n matrix; then the Kronecker product A⊗B
is the km× ln matrix defined by

A⊗B =




a11B . . . a1lB
...

...
ak1B . . . aklB


 .

The vector vec(·) is obtained from a matrix by stacking its columns into one long
column vector, that is,

vec(A) = [a11, . . . , ak1, . . . , a1l, . . . , akl]
t.

For any three matrices A,B, Y of compatible size, we have

vec(BY A) = (At ⊗B)vec(Y ).

Using this in (3.1), we get

(At ⊗ P t1) vec(Y ) = vec(P tA).(3.2)

This reduces the problem to checking whether vec(P tA) is contained in the module
spanned by the columns of At⊗P t1 . Also this question can be answered algorithmically,
and the computations are based on Gröbner basis techniques, as discussed in the next
section.
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3.1. Computational issues. We need the following basic tools from the con-
structive theory of Gröbner bases, which was developed by Buchberger [4]; see also
[1]. We list the algorithms briefly, and without detail.

Division with remainder. Given a polynomial matrix P ∈ Dg×q and a vector
f ∈ Dq, this algorithm constructs h ∈ Dg and r ∈ Dq such that

f = P th + r and r is in normal form modulo P.(3.3)

Note that, in general, neither h nor the “remainder” r are uniquely determined.
Deciding module membership. We call P a Gröbner matrix if the columns of P t

are a Gröbner basis of the module N = im(P t) that they generate. If P is a Gröbner
matrix, then f admits a representation f = P th (that is, f ∈ N) if and only if
r = 0 in one, or equivalently, in all, representations (3.3). For any matrix P , we may
compute a Gröbner matrix PG such that im(P tG) = im(P t). Thus module membership
is decidable for arbitrary polynomial matrices.

Computing minimal annihilators. Given a polynomial matrix P ∈ Dg×q, this
algorithm yields a matrix Q such that ker(P t) = im(Qt); that is,

1. QP = 0, and
2. any polynomial matrix Q1 with Q1P = 0 has a representation Q1 = XQ,

where X is a polynomial matrix.
We call Q a minimal left annihilator of P .

Application to the regular interconnection problem. Given polynomial matrices
P ∈ Dg×q and P1 ∈ Dg1×q with im(P t1) ⊆ im(P t), there exists a polynomial matrix
C ∈ Dg1×g such that P1 = CP . Such a C can be constructed by means of the division
with remainder algorithm.

Next, we look for a matrix A ∈ Dg×k (where k is suitably chosen) such that

coker(A) = Dg/im(A) ∼= im(P t)/im(P t1) = P tDg/P tCtDg1 .
We give the following easy lemma without proof.

Lemma 3.1. There is an isomorphism

P tDg/P tCtDg1 ∼= Dg/(ker(P t) + CtDg1).

Let Q be a minimal left annihilator of P , that is, ker(P t) = im(Qt). Then the
preceding lemma suggests the definition

A =
[
Qt, Ct

]
,(3.4)

and this will be used in Theorem 3.2 below.

3.2. Constructing controllers. In the case where the regular interconnection
problem is solvable for given systems Σ and Σ1, the following theorem yields a concrete
formula for a controller Σ2; that is, it allows us to construct a representation P2 of
Σ2 directly from the data, i.e., from P and P1. Note that the expression for A found
in (3.4) is used to reformulate (3.1).

Theorem 3.2. Let P and P1 be polynomial matrices with im(P t1) ⊆ im(P t).
Let C be such that P1 = CP , and let Q be a minimal left annihilator of P . The
following are equivalent:

1. There exists a polynomial matrix P2 such that

im(P t) = im(P t1)⊕ im(P t2).(3.5)
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2. The matrix equation

(P t1Y − P t)
[
Qt, Ct

]
= 0(3.6)

possesses a polynomial solution Y .

Moreover, if such a Y exists, then P t2 := P t1Y − P t is a matrix satisfying (3.5).

Proof. It suffices to show that P t2 = P t1Y − P t satisfies (3.5). As P t1 = P tCt, we
have P t2 = P t(CtY − I). It is easy to see that im(P t) = im(P t1) + im(P t2) as

[
P t1 , P t2

]
= P t

[
Ct, CtY − I

]
and

P t =
[
P t1 , P t2

] [ Y
−I

]
.

It remains to show that im(P t1) ∩ im(P t2) = {0}. Suppose that

a = P t1x = P t2y = (P t1Y − P t)y.

Define z := Y y − x; then

P tCtz = P t1z = P ty.

Thus y − Ctz ∈ ker(P t) = im(Qt), that is, y ∈ im[Qt, Ct], and hence, due to (3.6),
a = (P t1Y − P t)y = 0.

Note that in the situation of Theorem 3.2, (3.6) can be rewritten as

(P t1Y − P t)Qt = P t1Y Q
t = 0 and (P t1Y − P t)Ct = P t1(Y Ct − I) = 0.

This has interesting consequences for the one-dimensional case (n = 1), as discussed
in the following corollary. In particular, we recover a result of Willems [15]. Recall
that a univariate polynomial matrix is said to be left prime if it possesses a polynomial
right inverse.

Corollary 3.3. Let P, P1, C,Q be as described above. The regular intercon-
nection problem is solvable if and only if there exists a polynomial matrix Y such
that

P t1Y Q
t = 0 and P t1(Y Ct − I) = 0.

In the one-dimensional case (n = 1), we may assume without loss of generality that
P and P1 have full row rank. Then Q = 0 and the equations simplify to

Y Ct = I;

i.e., the regular interconnection problem is solvable if and only if C is left prime.
Certainly, left primeness of P1 implies left primeness of C. Hence, the regular in-
terconnection problem is always solvable provided that P1 is left prime. In terms of
behaviors, any subsystem of a controllable behavior B1 can be achieved from B1 by
regular interconnection [15, Theorem 6].
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4. The direct sum decomposition problem. In the previous section, we have
considered the direct sum decomposition

N1 + N2 = N and N1 ∩N2 = {0},
where N1, N2, N are submodules of Dq. The dual problem, corresponding to a direct
sum decomposition of the associated behaviors, is

N1 ∩N2 = N and N1 + N2 = Dq.
Theorem 4.1. Let P1 and P be polynomial matrices with

N = im(P t) ⊆ N1 = im(P t1) ⊆ Dq.
The following are equivalent:

1. There exists a polynomial matrix P2 such that

im(P t1) ∩ im(P t2) = im(P t) and im(P t1) + im(P t2) = Dq.(4.1)

2. There exists a polynomial matrix P2 such that

coker(P t) ∼= coker(P t1)⊕ coker(P t2).

In particular, N1/N ∼= coker(P t2) is a direct summand of Dq/N = coker(P t).
3. There exist polynomial matrices X and Y such that

P tX + P t1Y P
t
1 = P t1 .(4.2)

Proof. The implication 1 ⇒ 2 is straightforward. For 2 ⇒ 3, we again invoke
Theorem 2.1. Consider the diagram

Dg1 P t1−→ Dq → coker(P t1) → 0
‖ ‖

0 → N1 ↪→ Dq → Dq/N1 → 0.

The splitting condition for the lower sequence reads

(P t1Y − I)P t1 = 0.

However, we are actually interested in the splitting of

0→ N1/N ↪→ Dq/N → Dq/N1 → 0;

that is, the condition becomes

(P t1Y − I)P t1 ≡ 0 modulo N = im(P t).

That is to say,

(P t1Y − I)P t1 + P tX = 0

for some polynomial matrix X.
Finally, for showing 3 ⇒ 1, suppose that (4.2) is satisfied. We show that

P t2 =
[
P t1Y − I, P t

]
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satisfies (4.1). By construction, im(P t) ⊆ im(P t1)∩im(P t2). For the converse direction,
let a = P t1x = P t2y = (P t1Y−I)y1+P ty2. This implies that y1 ∈ im(P t1); say, y1 = P t1z.
Then

a = P t1x = (P t1Y P
t
1 − P t1)z + P ty2 = −P tXz + P ty2,

showing that a ∈ im(P t) as desired.
To see that Dq = im(P t1) + im(P t2), it suffices to note that any x ∈ Dq can be

written as x = P t1Y x + (I − P t1Y )x. The first summand is contained in im(P t1), and
the second in im(P t2).

Again, condition (4.2) can be tested by means of the Kronecker product. Rewrite
(4.2) as

(I ⊗ P t)vec(X) + (P1 ⊗ P t1)vec(Y ) = vec(P t1).

The test amounts to checking whether vec(P t1) is in the module spanned by the
columns of [

I ⊗ P t, P1 ⊗ P t1
]
.

4.1. Constructing complementary behaviors. It is worth noting that the
proof of Theorem 4.1 contains an actual construction procedure for the desired com-
plementary cokernel module (if it exists). The following corollary summarizes the
resulting decomposition result for behaviors

B = kerA(P ) = {w ∈ Aq | P (∂1, . . . , ∂n)w = 0},
where P ∈ Dg×q. The signal space A is supposed to satisfy Oberst’s duality [9]. This
is true, e.g., for the spaces of smooth functions or of distributions on R

n.
Corollary 4.2. Let B1 ⊆ B ⊆ Aq be behaviors with kernel representations P1

and P , respectively. The following are equivalent:
1. There exists a behavior B2 such that B1 ⊕ B2 = B.
2. There exist polynomial matrices X and Y such that

P tX + P t1Y P
t
1 = P t1 .

Moreover, if such matrices X,Y exist, a complementary behavior may be constructed
as follows:

B2 = kerA

[
Y tP1 − I

P

]
= kerA(Y tP1 − I) ∩ B.

For the two-dimensional case (n = 2), an equivalent condition has been derived by
Bisiacco and Valcher [2]; see also Valcher’s earlier work [13]. The following corollary
concerns the one-dimensional case. We recover a well-known decomposition result on
controllable subsystems being direct summands.

Corollary 4.3. Let n = 1. Then we may assume that P1 has full row rank. Let
P = EP1; then (4.2) reduces to

EtX + Y P t1 = I.

In particular, when P1 is left prime, this equation is always solvable (take X = 0 and
let Y be a polynomial left inverse of P t1). Thus any controllable subbehavior of B is a
direct summand of B.
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5. A unified view of interconnection and decomposition. The two prob-
lems discussed in this paper are special cases of finding relative complements in the
lattice of behaviors [12] in Aq or in the lattice of submodules of Dq, respectively. The
set of submodules of Dq is partially ordered by inclusion, and it becomes a lattice via

inf(N1, N2) = N1 ∩N2 and sup(N1, N2) = N1 + N2.

Given three modules Nl ⊆ N1 ⊆ Nu ⊆ Dq, the problem is to decide whether there
exists a relative complement N2 of N1, that is, a submodule of Dq with

inf(N1, N2) = Nl and sup(N1, N2) = Nu.

In terms of matrix representations, this problem has a solution if and only if there
exist polynomial matrices X and Y such that

P tlX + (P t1Y − P tu)A = 0,

where A = [Qt, Ct] with P1 = CPu and Q being a minimal left annihilator of Pu. A
solution is then given by

P t2 =
[
P t1Y − P tu, P tl

]
.

The problem reduces to the regular interconnection problem when Nl = {0} (i.e.,
Pl = 0) and to the direct sum decomposition problem if Nu = Dq (i.e., without loss
of generality, Pu = I and A = P t1). Specializing even more, we may decide whether
a given module N1 = im(P t1) possesses a complement, that is, a module N2 with
N1 ⊕N2 = Dq. This is true if and only if the equation

P t1Y P
t
1 = P t1(5.1)

has a polynomial solution Y . This is equivalent to the splitting of

0→ N1 ↪→ Dq → Dq/N1 → 0

or

im(P t1)⊕ coker(P t1) ∼= Dq.

In particular, im(P t) is projective and hence free, due to the Quillen–Suslin theorem
(see, e.g., [16]). Then we may assume without loss of generality that P1 has full row
rank, and thus (5.1) simplifies to

Y P t1 = I.

These considerations are summarized in the following corollary.
Corollary 5.1. Let N1 be a submodule of Dq. The following are equivalent:
1. N1 has a complement; that is, there exists a submodule N2 of Dq such that

N1 ⊕N2 = Dq.
2. For any polynomial matrix P1 with N1 = im(P t1), there exists a polynomial
matrix Y such that

P t1Y P
t
1 = P t1 .
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3. There exist polynomial matrices P1, Y such that N1 = im(P t1) and

Y P t1 = I.

Moreover, in that case, N2 = im(P t2) with P t2 = I − P t1Y is a complement of N1.
In terms of behaviors, we say that B1 has a complement if there exists B2 such

that B1 ⊕ B2 = Aq. In other words, the question is whether the zero behavior can
be achieved from a given behavior B1 by regular interconnection. Let us call this
property controllability to zero. Parts of the following result can also be found in [11].

Corollary 5.2. Let B1 be a behavior in Aq. The following are equivalent:
1. B1 is controllable to zero.
2. B1 has a complement, i.e., there exists a behavior B2 with B1 ⊕ B2 = Aq.
3. B1 is strongly controllable, i.e., it possesses a zero left prime representation
matrix; that is, B1 = kerA(P1) with Y P t1 = I for some polynomial matrix Y .

4. For any kernel representation P1 of B1,

P t1Y P
t
1 = P t1

has a polynomial solution Y .
Moreover, if such a Y exists, then B2 = kerA(P2) with P2 = I−Y tP1 is a complement
of B1.

6. Examples. The first two examples are taken from [11], and the third one is
taken from [2].

Example 1. Let

P1 =
[
s21 − 1, s1 − s2

]
and

P =

[
s1 + 1 s2

0 −s1
]
.

Certainly, P1 is less powerful than P , as

P1 =
[
s1 − 1, s2 − 1

]
P.

As P has full row rank, we may take Q = 0 and A = Ct; thus

A =

[
s1 − 1
s2 − 1

]
.

We compute

At ⊗ P t1 =

[
(s1 − 1)(s21 − 1) (s2 − 1)(s21 − 1)
(s1 − 1)(s1 − s2) (s2 − 1)(s1 − s2)

]

and

vec(P tA) =

[
s21 − 1
s1 − s2

]
.

Equation (3.2) possesses the solution[
1

s1−1 − t(s2−1)
s1−1

t

]
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over the field of rational functions (t is a rational parameter). It is impossible to
choose t such that the solution becomes polynomial. Thus (3.2) has no polynomial
solution, and we conclude that the regular interconnection problem is not solvable in
this example.

Example 2. Consider

P1 =
[
s1s2, s1 + 1, s2

]
and

P =


 0 s1 + s2 + 1 s2

s1s2 −s21 − s1s2 + 1 −s1s2 + s2
−s21 − s1s2 s1 + s2 0


 .

Clearly, P1 is less powerful than P , as P1 = CP with

C =
[
s1, 1, 0

]
.

Using the computer algebra system SINGULAR [7], we obtain the following reduced
expression for A:

A =


 −s2 s1

1 1
s2 0


 .

We compute

At ⊗ P t1 =




−s1s22 s1s2 s1s
2
2

−s1s2 − s2 s1 + 1 s1s2 + s2
−s22 s2 s22
s21s2 s1s2 0

s21 + s1 s1 + 1 0
s1s2 s2 0




and

vec(P tA) =




s1s2 − s1s
2
2 − s21s2

−s1s2 − s2 − s21 + 1
−s22 − s1s2 + s2

s1s2
s1 + 1
s2



.

It is easily checked that (3.2) is solvable; in fact, a solution is given by

Y =
[

1, 1− s1, 0
]
.

As a controller, we get

P2 =


 s1s2 −s2 0
−s21s2 s1s2 0

s21 + s1s2 −s1 − s2 0


 .
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Noting that the second row is a multiple of the first one, we may replace this solution
by

P2 =

[
s1s2 −s2 0
s21 −s1 0

]
.

Using different methods, Rocha and Wood [11] derive another controller for the
present example.

Example 3. Let

P1 = [s1 + s2 + 1] and P =

[
s1 + 1
s2 + 1

]
P1.

In order to test whether kerA(P1) is a direct summand of kerA(P ), we have to check
whether there exist polynomials x1, x2, y such that (compare (4.2))

(s1 + s2 + 1)
[
s1 + 1, s2 + 1

] [ x1

x2

]
+ y(s1 + s2 + 1)2 = s1 + s2 + 1.

This is obviously solvable; take

x1 = 1, x2 = 1, y = −1.

To find a complementary behavior kerA(P2) as indicated in the proof of Theorem 4.1,
we compute

P2 =

[
yP1 − 1

P

]
=


 −(s1 + s2 + 2)

(s1 + 1)(s1 + s2 + 1)
(s2 + 1)(s1 + s2 + 1)


 .

This representation may be simplified by computing a Gröbner matrix P2G of P2. We
obtain the equivalent solution

P2G =

[
s1 + 1
s2 + 1

]
.

7. Conclusion. The behavioral approach to systems theory provides a neat set-
ting for modeling the interconnection of systems. We have considered the following
basic linear control problem: Given a system Σ1 (the plant), does there exist a system
Σ2 (a controller) such that the regular interconnection Σ1 ∧ Σ2 equals a certain pre-
scribed system Σ (a desired controlled system)? Based on a homological approach, we
have given an algebraic criterion for the solvability of this problem. This criterion boils
down to a certain linear matrix equation when dealing with concrete representations
of the systems Σ and Σ1.

Using different methods, Rocha and Wood [11] give another solution of the regular
interconnection problem. Their approach is based on a characterization of behaviors
with direct sum decompositions, which is in terms of zero skew-coprimeness of poly-
nomial matrices. For bivariate matrices, an analogous characterization comes from
Bisiacco and Valcher [2]; see also [13]. The condition used there is actually equivalent
to the one given in Corollary 4.2 of the present paper. Indeed, the regular intercon-
nection problem and the direct sum decomposition problems are dual. The present
paper provides a unified framework for treating both in terms of relative complements
in the lattice of behaviors.
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Moreover, our solution to the regular interconnection problem features an appeal-
ing simplicity. In particular, the polynomial matrix equation (3.1) allows us to decide
whether the problem is solvable, by means of basic tools from the theory of Gröbner
bases: computing minimal annihilators, division with remainder, and testing module
membership. Moreover, the solution is constructive, as it provides a concrete formula
for a controller (if one exists).
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Abstract. The Nash equilibria of two two-person nonzero-sum differential games with hard
constraints on the controls are studied. For both games the open-loop as well as the closed-loop
solutions, and their relationships, are discussed. As is well-known for “smooth” nonzero-sum games,
these solutions are generally different. Because of the constraints, the optimal controls are of the
bang-bang type, and the solutions of the two problems under consideration are nonsmooth. One
deals with non-Lipschitzian differential equations (considering the problem as an optimal control
problem for one player while the bang-bang feedback control of the other player is assumed to be
fixed), and the corresponding value functions possess singular surfaces. General conditions for the
existence and uniqueness of the feedback solutions in this framework are not yet known. It is shown
that in the two examples the open-loop and closed-loop solutions differ. As a by-product, the paper
aims at a modest exploration of singular surfaces in nonzero-sum games.

Key words. bang-bang control, nonzero-sum game, differential game, feedback, singular surface,
switching surface, value function, open-loop control, Nash equilibrium
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1. Introduction. This paper deals with open-loop as well as closed-loop (equiv-
alently, feedback) bang-bang control in nonzero-sum games. The author knows of only
one other paper in this direction, viz., [14]. The goal originally set was to extend the
definition of viscosity solutions (see [1],[2]) to nonzero-sum differential games in which
discontinuities in the solutions appear. For that purpose some simple nonzero-sum
differential games with bang-bang solutions have been formulated in the hope that
open-loop as well as feedback solutions can be obtained that can be intuitively under-
stood. With such solutions in mind one might then get a feeling for the “suitability”
of possible definitions of viscosity solutions in this context. With respect to the equi-
librium concept, only Nash solutions are considered.

As it soon turned out, this goal was set too high. What remains is the presenta-
tion of two examples for which the optimal open-loop as well as the optimal feedback
solutions are given. The latter solution is surrounded by some question marks, how-
ever, for both examples. The optimal open-loop solutions by themselves have some
interesting singular curves and other features. These examples may have an interest
by themselves and can function as benchmark problems for further studies. What has
been shown is that the synthesis of the optimal open-loop solutions does not lead to
the optimal feedback solutions. Thus the optimal feedback solutions, generally hard
to obtain and with no results on uniqueness, are fundamentally different from the
optimal open-loop ones.

The models that we will consider can formally be described by

ẋ = f(x, u1, u2)
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with a given initial condition, and where the state x ∈ Rn and the controls ui ∈ Rmi .
The dot on x refers to the time derivative; ẋ = dx

dt , where time itself is (as usual)
indicated by the variable t. Decision maker i chooses ui(·), i = 1, 2. Sometimes one
has restrictions on the controls of the form ui ∈ Ui ⊂ Rmi ; Ui is called the admissible
region for ui. This model will be considered on an interval 0 ≤ t ≤ T , where T is
defined as

T = inf{t|l(t, x(t)) = 0}
for a given scalar function l. Thus the final time T is not necessarily fixed, but can
depend on the controls chosen. The decision makers have different cost functions,
which they try to minimize: minui Ji(u1, u2), i = 1, 2, where

Ji(u1, u2) =

(∫ T

0

gi(x, u1, u2)dt+ qi(x(T ))

)
.

(If one would add a minus sign to the cost functions, the minimization becomes a
maximization; therefore there is no essential difference in whether the players are
maximizing or minimizing.) The problem just formulated belongs to the realm of
game theory. To emphasize the time aspect in these problems one also talks about
the theory of differential, or dynamic, games. If it happens that g1 = −g2 and
q1 = −q2, then one talks about a zero-sum game. The two problems to be discussed
in this paper are both nonzero-sum. In the literature (as well as in this paper) the
notation varies somewhat. Instead of the controls u1 and u2 one also sees the notation
u and v; this is the case in problem statement 2 of this paper, for instance.

The problem statement is not yet complete. One needs an equilibrium concept.
The one adopted here is the Nash equilibrium (u∗

1, u
∗
2), which satisfies, by definition

[3],

J1(u
∗
1, u

∗
2) ≤ J1(u1, u

∗
2), J2(u

∗
1, u

∗
2) ≤ J2(u

∗
1, u2) ∀ admissible u1 and u2.(1.1)

For an additional remark on “admissible controls,” see Remark 1.1 below.
The last item needed to make the problem statement complete is the information

on which the players base their decisions. Both players know the model, the initial
condition, their own and their opponent’s cost functions, and the equilibrium concept
according to which the game will be played. If the control functions are furthermore
based only on time, written as ui(t), then we talk about open-loop solutions. If the
control functions can (also) depend on the current state x (i.e., at time t), then we
write ui(t, x) and such controls are called feedback or closed-loop controls, or simply
strategies. In the case of closed-loop control, at time t the player has the state x(t)
at his disposition; in the case of open-loop control, the player knows only the time t
upon which he must base his decision. Apart from robustness considerations, it is also
necessary to make the distinction between open-loop and closed-loop controls, since
the corresponding optimal solutions will generally be different; this was first observed
in [15], [16] (see further [3]).

Please note the following. The open-loop solution depends on the initial condition,
although this is not explicitly shown in the conventional notation ui(t). (We could
have written ui(t, x(0)).) To be precise, and strictly speaking in contradiction with
the foregoing, the feedback solution ui(t, x) will, by definition, not depend on the
initial state. If we allow such a dependence, which could be written as ui(t, x, x(0)),
a plethora of informationally nonunique Nash equilibria arises; see [3], section 6.3.2.
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If the functions f , l, and gi are independent of t, then the feedback controls (as well
as the value functions to be introduced later in this section) will also be independent
of t, i.e., we can write ui(x).

The usual necessary and/or sufficient conditions for the optimal controls to satisfy
are either given in terms of the so-called maximum principle of Pontryagin or in terms
of the Hamilton–Jacobi–Bellman (HJB) theory, the latter of which essentially is a
mathematical consequence of the principle of dynamic programming. Well-known
references are [4] and [5]. We will give these conditions in some detail for optimal
control problems (i.e., problems with only one player). The reason why it is useful to
consider optimal control theory is that in a game with the Nash equilibrium concept,
each player tries to solve an optimal control problem, keeping the control or strategy
of the other player fixed. For the application of the maximum principle, one defines
(for a single player, with obvious notation) the Hamiltonian

H = λ(t)f(x, u) + g(x, u),

where λ(t) ∈ Rn, and where λf is the innerproduct of the vectors λ and f . The

costate function λ(t) satisfies λ̇ = −∂H∂x with boundary condition λ(T ) = dq(x(T ))
dx

along l(t, x) = 0. The optimal u satisfies u∗ = argmaxuH. With this approach one
obtains u∗ as a function of t, i.e., as an open-loop control. In contrast, application of
the HJB theory yields the optimal u as a function of the current time and the current
state: u∗(t, x). It is obtained by introduction of the so-called value function V , which
is, by definition,

V (t, x) = min
u

(∫ T

t

g(x, u)dt+ q(x(T ))

)
,

with the assumption that at time t the state is x (these t and x are the arguments of
V ). It satisfies the HJB PDE

−∂V

∂t
= min

u

(
∂V

∂x
f + g

)
,

with boundary condition V (T, x) = q(x(T )) along l(t, x) = 0.
Remark 1.1. The conditions on f , l, g, and q under which the maximum prin-

ciple and/or the HJB theory are applicable have not been formulated explicitly; the
reader is referred to the literature. In addition, one must also carefully define the
class of admissible u1 and u2 in (1.1). The formalization is involved, and for the so-
called regularity conditions, especially for feedback controls, the reader is referred to
[10].

Remark 1.2. The difference in these two approaches (optimal open-loop solutions
with conditions based on the Pontryagin maximum principle and optimal closed-loop
solutions with conditions based on the HJB equation) also shows up if one tries to
apply Pontryagin when all players would play closed-loop strategies. For the games
to be discussed in the paper, the Hamiltonian and the costate vector corresponding
to the first player are indicated by H1, respectively λ. For the second player these
quantities are, respectively, H2 and µ. Expressed in these quantities, the difference in
the conditions given for the closed-loop case is that the differential equations for the
costate vectors must be adapted to λ̇ = −∂H1

∂x − ∂H1

∂u2

∂u2

∂x and µ̇ = −∂H2

∂x − ∂H2

∂u1

∂u1

∂x .
For the so-called linear quadratic games (see [3]) with no restrictions on the con-

trols, more explicit results exist in terms of Riccati differential equations; the form of
these equations depends on whether open-loop or closed-loop solutions are considered.
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As formulated above, the HJB equation is a necessary condition for the optimal
control and value function to satisfy. A sufficiency condition in terms of the HJB
equation is known under the name of verification theorem. For that purpose an
essential condition is that V (t, x) must be twice differentiable in x. Solutions of many
optimal control problems do not have such smooth value functions; in particular, when
bang-bang controls are involved, this is usually not the case. One speaks of bang-
bang control if the optimal control jumps from one boundary point of the admissible
region to another. In such cases, V is often only piecewise continuous or piecewise
continuously differentiable. The boundaries between areas in the (t, x) space where
V is smooth are called singular surfaces or singular lines. Especially in zero-sum
differential game theory such singular surfaces are a well-studied subject [7],[11]. See
also [12] for some in-depth discussions on singular surfaces. In nonzero-sum differential
games such singular surfaces are largely unexplored. As a by-product, this paper yields
one of the first (see also [14]), though modest, explorations in this direction.

It is worth mentioning that other definitions of closed-loop equilibrium solutions
exist. One such equilibrium is based on the threat or punishment principle that one
often encounters in the theory of repeated games. Briefly, if one player decides to
deviate from his optimal strategy within the context of this equilibrium, then the
other player immediately plays worst-case against this deviating player. In other
words, the threat is that the other player will try to maximize the cost function of
the deviating player (who himself wants to minimize this function), thereby totally
disregarding his own cost function. More information on this equilibrium concept,
which does not satisfy the dynamic programming principle, can be found in [8], [9].

2. Problem statement 1. The problem studied is a nonzero-sum differential
game with two players. The model is

ẋ = (1− x)u1 − xu2,(2.1)

and the criteria are

max
u1

∫ T

0

(c1x− u1)dt, max
u2

∫ T

0

(c2(1− x)− u2)dt.(2.2)

The state x as well as the controls ui are one-dimensional quantities. The choice of
the controls is subject to

0 ≤ ui(t) ≤ 1, i = 1, 2.(2.3)

The quantities ci are positive constants. The final time T is supposed to be fixed.
This model and both criteria are known to both players (they have full information).
We are interested in the Nash equilibrium solutions of this game. In the next section
such open-loop solutions will be studied, and in section 4 we get to the heart of this
paper, the study of feedback solutions.

This model was mentioned in [13]. A possible interpretation is as follows. Players
P1 and P2 are firms on the same market and produce the same product. The number
of customers allotted to P1 at time t is x(t); the number of customers allotted to P2 at
time t are those remaining, i.e., 1− x(t). The total number of customers is assumed
to be constant and has been normalized to 1. The controls ui refer to advertising
intensities (amount of money spent on advertising per unit of time). If P1 advertises,
then his number of customers will increase proportionally to the advertising rate and
the number of customers not already allotted to him (the term (1 − x)u1 in the
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model). On the other hand, advertising by P2 will decrease the number of customers
of P1, also proportionally to the advertising rate and the number of customers not
already allotted to P2 (the term −xu2 in the model). The criteria represent the profits
made by each player. This profit, per unit of time, is proportional to the number of
customers allotted to the player concerned (with a proportionality factor ci) minus
the amount of money spent on advertising.

3. Optimal trajectories—The open-loop case. Consider the two Hamilto-
nians

H1 = λ1(u1(1− x)− u2x) + c1x− u1,(3.1)

H2 = µ1(u1(1− x)− u2x) + c2(1− x)− u2.(3.2)

The costate variables λi satisfy

λ̇1 = −∂H1

∂x
= −(−λ1u1 − λ1u2)− c1, λ1(T ) = 0,(3.3)

µ̇1 = −∂H2

∂x
= −(−µ1u1 − µ1u2) + c2, µ1(T ) = 0.(3.4)

Notice that

µ1 ≡ −c2λ1

c1
.(3.5)

The optimal controls must satisfy

u1 = Heav(λ1(1− x)− 1),(3.6)

u2 = Heav(−µ1x− 1),(3.7)

where Heav stands for the Heaviside function, i.e.,

Heav(x) =




0 if x < 0,
undetermined if x = 0,
1 if x > 0.

The switching function for u1 is

λ1(t)(1− x(t))− 1.

Close to T we have ui = 0, i = 1, 2, and the switching curve, to be denoted by l1, in
the (t, x)-plane is

λ1(t)(1− x(t))− 1 = −c1(t− T )(1− x)− 1 = 0.

We have to check whether this switching curve is a real one (i.e., instead of a real
switch one might get shattering or a singular arc). It easily follows that the switching
function indeed will change sign (hence shattering is not possible, provided u2 remains
zero). Moreover, it follows from some elementary though tedious calculations not
shown here that neither control will have another switch (i.e., in retrograde time u1

switches from 0 to 1 and u2 does not switch at all), provided that c1 < 4.
A similar reasoning holds with respect to the switching curve (l2) for u2, which

satisfies

−µ1(t)x(t)− 1 = −c2(t− T )x− 1 = 0.
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These two curves intersect at

xs =
c1

c1 + c2
, ts = T − c1 + c2

c1c2
.

Suppose that this point lies in the area of interest, i.e., 0 < xs < 1 and 0 < ts < T . A
singular arc (ls) exists to left of the point ts, xs, along which

u1 =
c21c2

(c1 + c2)2
, u2 =

c1c
2
2

(c1 + c2)2
,(3.8)

provided that these values lie in the interval [0, 1], which is satisfied for 0 ≤ ci ≤ 4.
This singular arc has been obtained by studying

λ1(1− x)− 1 ≡ 0, −µ1x− 1 ≡ 0,

and calculating their time derivatives:

λ1u2 − c1(1− x) ≡ 0, c2x+ µ1u1 ≡ 0.

Together with (3.5) it is then easily shown that the singular arc given above is the only
one possible. Along the same lines it can be shown that a singular arc with respect
to only one control (its switching function being zero and the switching function of
the other control being nonzero) does not exist.

4. Optimal trajectories—The feedback case.

4.1. By means of HJB.

4.1.1. Synthesis approach. The meaning of “synthesis” is the following. Since
the whole (t, x) space (at least the relevant part) is covered with open-loop trajectories
(see Figure 4.1) to each point (t, x) there corresponds a unique trajectory (in forward
time direction) with corresponding local ui values. If these values are written as
ui(t, x), we speak of synthesis. The central question in this subsection will be whether
these feedback functions constitute the optimal feedback strategies. The answer will
turn out to be no. The space R2, with one axis being the t-axis and the other one the
x-axis, will be denoted by Ω.

The two HJB equations are

−∂V1

∂t
= max

u1

(
∂V1

∂x
((1− x)u1 − xu2) + c1x− u1

)

=

[
∂V1

∂x
(1− x)− 1

]+
− x

∂V1

∂x
Heav

(
−∂V2

∂x
x− 1

)
+ c1x,(4.1)

−∂V2

∂t
= max

u2

(
∂V2

∂x
((1− x)u1 − xu2) + c2(1− x)− u2

)

=

[
−x∂V2

∂x
− 1

]+
+

∂V2

∂x
(1− x)Heav

(
∂V1

∂x
(1− x)− 1

)
+ c2(1− x),(4.2)

where [a]+ = 0 if a ≤ 0, and [a]+ = a if a > 0. Formally ∂Vi
∂x , i = 1, 2, satisfy

d

dt

(
∂V1

∂x

)
=

∂V1

∂x
(u1 + u2)− c1 +

∂V1

∂x
x
∂u2

∂x
,

∂V1(T, x)

∂x
= 0,(4.3)

d

dt

(
∂V2

∂x

)
=

∂V2

∂x
(u1 + u2) + c2 − ∂V2

∂x
(1− x)

∂u1

∂x
,

∂V2(T, x)

∂x
= 0,(4.4)
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Fig. 4.1. The open-loop trajectories in the (state, time) plane.

where

u2 = Heav

(
−∂V2

∂x
x− 1

)
,(4.5)

u1 = Heav

(
∂V1

∂x
(1− x)− 1

)
.(4.6)

Above we wrote “formally,” since the partial derivatives ∂ui
∂x do not necessarily exist.

Since the open-loop solutions cover the whole Ω space, we can calculate the cost
to go from each point in Ω. If we obtain identities by substituting these costs into
(4.1) and (4.2), then the conclusion would be that the optimal open-loop solutions
also form a set of optimal feedback solutions (tacitly assuming that an extension of
the verification theorem, without the differentiability assumptions, will hold for this
situation). For this purpose, Ω will be split up into five subregions as indicated in
Figure 4.1; Ω4, for instance, consists of those starting points for which first u1 = 0,
u2 = 1, then a singular part and, during the last part, both controls are zero. For a
point (t̃, x̃) ∈ Ω4 it is a straightforward calculation to show that

(4.7)

V1(t̃, x̃) = c1

(
x̃− c1

c1 + c2

)
+

c31
(c1 + c2)2

(T − t∗) +
c1

c1 + c2
,

(4.8)

V2(t̃, x̃) = (c2 − 1) ln

(
x̃
c1 + c2

c1

)
+ c2

(
−x̃+

c1
c1 + c2

)
+

c32
(c1 + c2)2

(T − t∗) +
c2

c1 + c2
.
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where t∗ = t̃+ln(x̃ c1+c2c1
). To simplify the calculations somewhat, suppose c1 = c2 = 2.

Then

V1(t̃, x̃) = 2x̃− 1

2
ln(2x̃) +

1

2
(T − t̃)− 1

2
,(4.9)

V2(t̃, x̃) = −2x̃+
1

2
ln(2x̃) +

1

2
(T − t̃) +

3

2
.(4.10)

These equations are now substituted into (4.1), together with u2 = 1 (which is the
open-loop u2-solution in Ω4), and into (4.2), together with u1 = 0 (which is the
open-loop u1-solution in Ω4), resulting in

1

2
= max

u1

((
2− 1

2x̃

)
((1− x̃)u1 − x̃) + 2x̃− u1

)

= max
u1

(
u1

(
3

2
− 2x̃− 1

2x̃

))
+

1

2
,(4.11)

1

2
= max

u2

((
−2 + 1

2x̃

)
(−x̃u2) + 2(1− x̃)− u2

)

= max
u2

(
u2

(
2x̃− 3

2

))
+ 2(1− x̃).(4.12)

Equation (4.11) is an identity; (4.12), however, is not. Equation (4.12) is an identity
only if x̃ > 3

4 (with u2 = 1). For 1
2 < x̃ < 3

4 it yields u2 = 0, however, which does not
lead to an identity and which does not coincide with the open-loop solution. Thus
we have shown that the optimal open-loop solution does not constitute an optimal
feedback solution.

4.1.2. Optimal feedback solution. If one would change the control values
along the singular arc from the values given in (3.8) to u1 = u2 = 0 (educated guess),
then the optimal trajectories obtained do not change in the (x, t)-space. Calculation
of the value functions with this change leads to (taking again c1 = c2 = 2 and a point
(x̃, t̃) ∈ Ω4)

V1(t̃, x̃) = T − 1− t̃+ 2x̃− ln(2x̃),(4.13)

V2(t̃, x̃) = T + 1− t̃− 2x̃.(4.14)

If one does the same exercise again as in the previous subsection, i.e., substitution
of these value functions into (4.1) and (4.2), then it turns out that two identities
result. Hence one may conclude that a set of optimal Nash feedback strategies has
been found. Nothing is known about its uniqueness.

5. Other approaches. In this section three other, as yet not very fruitful, ap-
proaches are briefly indicated.

5.1. Brute force numerical solutions. Numerical integration of (4.1) and
(4.2) by means of simple integration schemes did not seem to lead to any kind of
convergence of the numerical outcome if the stepsizes were made smaller and smaller.

5.2. By means of the maximum principle. In this subsection a method is
given for integrating (4.3) and (4.4) backward in time. The functions u1 and u2

are determined by the right-hand sides of (4.1) and (4.2). The crucial step is that
δ-functions (the derivatives of ui with respect to x) appear and that they will be
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replaced by rectangles of width ε and height 1
ε . After the calculations have been

made including this ε, we take limε↓0.
Consider (4.4), with u1 = u2 = 0, assuming that we integrate backwards starting

from t = T . Once we hit l1 at t = t1s, the right-hand side contains ∂u1

∂x , which will be
interpreted as a negative δ-function (along a line t = constant, u1 first equals 1 and
subsequently 0 for increasing x). Thus we obtain

∂V2

∂x
(t1s−) = e−(1−x(t1s)) ∂V2

∂x
(t1s+).

Thus ∂V2

∂x has a jump at t = t1s. Technically we can handle this jump, but is it not
known what its real meaning for the solution of the problem might be. Imagining
a horizontal singular arc in the feedback case, just as ls, then integrating along this
ls, one is faced with an ongoing δ-function. This does not make sense at all. It is
very possible that other kinds of singular surfaces will play a role. Such surfaces are
well-known in zero-sum pursuit evasion games; see [7] and [11].

5.3. The unpaved road of viscosity solutions. The standard definitions of
viscosity solutions do not apply here due to the discontinuous right-hand sides of (4.1)
and (4.2). In order to smooth the discontinuities, one can add noise to the system
equations (and then let the noise intensity go to zero). This approach does not seem
attractive from an analytic point of view.

6. Problem statement 2. Consider the model

d

dt

(
x1

x2

)
=

(
0 1
0 0

)(
x1

x2

)
+

(
0
1

)
u+

1

2

(
0
1

)
v.(6.1)

The constraints on the scalar controls are |u| ≤ 1 and |v| ≤ 1. The final time T
is defined as the first instant at which x1 = x2. Starting from an arbitrary initial
condition, the u-player wants to minimize T and the v-player wants to maximize
x1(T ). Thus a nonzero-sum differential game has been formulated. This game is time-
invariant in the sense that calendar time does not enter into the problem statement.
(This in contrast to the previous problem, where the calendar time is present in terms
of the fixed final time T .) Hence the value functions will be functions of the state
only (and not also of time, as was the case in the previous problem). No physical or
economical meaning is envisaged here. It is a generalization of the optimal control
problem in Example 5.2 of [3]. We will concentrate on the solution in the south-east of
the state space, defined by x1 > x2. The solution in the north-west is a point-mirrored
(through the origin) copy of the one to be obtained in the south-east.

7. Analysis. If the costate vectors are given by λ = (λ1, λ2) and µ = (µ1, µ2)
for the u-, respectively v-, player, the Hamiltonians are

H1 = 1 + λ1x2 + λ2

(
u+

1

2
v

)
,(7.1)

H2 = µ1x2 + µ2

(
u+

1

2
v

)
.(7.2)

The optimal controls satisfy

u∗ = −sgn(λ2), v∗ = sgn(µ2).
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In the open-loop case, the differential equations for the costate variables are

λ̇1 = 0, λ̇2 = −λ1, µ̇1 = 0, µ̇2 = −µ1.

In the feedback case, the differential equations for the costate variables are (provided
they make sense)

λ̇1 = −1

2
λ2

∂v

∂x1
, λ̇2 = −λ1 − 1

2
λ2

∂v

∂x2
,(7.3)

µ̇1 = −µ2
∂u

∂x1
, µ̇2 = −µ1 − µ2

∂u

∂x2
.(7.4)

Let the final state x(T ) be parametrized by x1 = x2 = a. Termination can be
enforced by the u-player as long as a ≤ 1

2 . With a “cooperative” v-player, termination
can occur for all a ≤ 3

2 . Later on we will see that the v-player will cooperate in this
sense of terminating the game—it is in his own interest, and thus it is not pure
cooperation.

Suppose a < 0. Then close to the end we will have u∗ = v∗ = 1 (obvious, but
which also can be seen as the outcome of a trivial static nonzero-sum game, assuming
that u and v are constant during the last part of the game), which leads to

λ1(T ) =
∂V1

∂x1
=

1
3
2 − a

, λ2(T ) =
∂V1

∂x2
=
−1

3
2 − a

,

µ1(T ) =
∂V2

∂x1
=

1

1− 2
3a

, µ2(T ) =
∂V2

∂x2
=
− 2

3a

1− 2
3a

.

As an example of how these terminal conditions have been calculated, see Figure 7.1.
Suppose that T1 is the terminal point and that a perturbation ∆x1 occurs such that
the state is temporarily in point B. From there onward, the game will end in the new
endpoint T. In this state space figure, the velocity vector ẋ1 = x2, ẋ2 = 3

2 has been
superimposed (the origin of this vector being situated at point B). Now we get

tanβ =
−x2

3
2

=
TC

TA
=

∆x1 − T1A

T1A
,

which leads to

T1A = TA =
3
2∆x1

−x2 +
3
2

.

Substitution of these expressions into

∆V1

∆x1
=

time needed to go from B to T

∆x1
=

2
3TA

∆x1
,

∆V2

∆x1
=

T1A

∆x1
,

leads immediately to the expressions for λ1(T ) and µ1(T ) given above. A bar over
a line segment denotes its length in these formulas. One can use the same figure for
deriving the expressions for λ2(T ) and µ2(T ) if one starts with T2 as the original
unperturbed termination point.
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Fig. 7.1. Perturbations at termination point; all quantities related to length are positively valued.

Now solving for the costate variables, the switching functions become

λ2(t) =
−1

3
2 − a

(t− T + 1), µ2(t) =
−1

1− 2
3a

(
t− T +

2

3
a

)
.

The control v will not have a switch. The control u will have a switch for t = T − 1.
Suppose now that 0 < a < 1

2 . Then close to the end we have u∗ = 1, v∗ = −1
and, performing an analysis similar to that given above, we obtain

λ1(T ) =
2

1− 2a
, λ2(T ) =

−2
1− 2a

,

µ1(T ) =
1

1− 2a
, µ2(T ) =

−2a
1− 2a

.

The switching functions now become

λ2(t) = − 2

1− 2a
(t− T + 1), µ2(t) = − t− T + 2a

1− 2a
.

The control u will have a switch for t = T − 1, and the control v will have a switch
for t = T − 2a.

8. Optimal trajectories—The open-loop case. Three cases will be distin-
guished: a < 0, 0 < a < 1

2 , and
1
2 < a < 3

2 .

8.1. The case a < 0. The optimal trajectories during T − 1 ≤ t ≤ T are, with
u∗ = v∗ = 1,

x1(t) =
3

4
(t− T )2 + a(t− T ) + a,(8.1)

x2(t) =
3

2
(t− T ) + a.(8.2)

At t = T−1, a switch (for u) occurs. The switching line is given by x1 = 3
4 , x2 = a− 3

2 .
In retrograde time the trajectories continue with u∗ = −1, v∗ = 1, leading to

x1(t) = −1

4
(t− T + 1)2 +

(
a− 3

2

)
(t− T + 1) +

3

4
,(8.3)

x2(t) = −1

2
(t− T + 1) + a− 3

2
.(8.4)
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8.2. The case 0 < a < 1
2
. Close to the line of termination we have u∗ = 1,

v∗ = −1, and the corresponding trajectories are

x1(t) =
1

4
(t− T )2 + a(t− T ) + a,(8.5)

x2(t) =
1

2
(t− T ) + a.(8.6)

A switch (for v) occurs at t = T−2a; the switching line is given by x1 = −a2+a, x2 =
0. In retrograde time the trajectories continue with u∗ = v∗ = 1, and another switch
(now for u) occurs for t = T − 1. At t = T − 1 we are at

x1(T − 1) =
3

4
(−1 + 2a)2 − a2 + a,(8.7)

x2(T − 1) =
3

2
(−1 + 2a).(8.8)

Elimination of a leads to the switching curve x1 = 2
9x

2
2 + 1

4 , with − 3
2 ≤ x2 ≤ 0.

In further retrogade time the trajectories are determined by u = −1, v = 1. The
trajectories of this case and the previous one fill the whole state space (i.e., the south-
eastern part). This is shown in Figure 8.1. Whether these trajectories are really the
optimal ones will be discussed in the next subsection. In Figure 8.1, the curve GA is
a barrier for the u-player, but not for the v-player.

8.3. The case 1
2

< a < 3
2
. The situation is somewhat subtle here. Of the

interval 1
2 < a ≤ 3

2 , only the point a = 3
2 will indicate a termination point. On this

interval the u-player by himself cannot force a termination; he needs the help of player
v. It is in the interest of the latter to terminate at the largest possible x1 (remember
the cost function). The optimal control v∗ is not unique here. This nonuniqueness
will not influence the outcome of the v-player; it will, however, influence the outcome
of the u-player. In order to continue with a unique v∗, assume that the v-player goes
as slowly as possible to the point a = 3

2 . This is the worst case from the u-player point
of view. Thus u∗ = 1, v∗ = −1 until the trajectory hits the parabola x1 = 1

3x
2
2 +

3
4 .

Once this parabola has been hit, the trajectory follows this parabola (u∗ = v∗ = 1)
until the termination point has been reached. The u-player may prefer terminating
the game at the point characterized by a = 3

2 and hence playing u = 1, rather than
playing u = −1, which will lead to a terminal point characterized by a ≤ 1

2 , which
may lead to a higher T . Hence a dispersal line (the direction in which to go is to be
chosen by the u-player) can be expected to exist.

In Figure 8.2 all results obtained so far have been put together; the trajectories
terminating on a = x1 = x2,

1
2 < a ≤ 3

2 , form a kind of patchwork in the previous
Figure 8.1. The optimal trajectories are provided with arrows (indicating the direction
in forward time). Point A corresponds to a = 1

2 , point B to a = 3
2 . The curve GKCH

is the switching curve for u; the line segment OG is the switching curve for v. The
curve MN is the dispersal line; its location has not been calculated explicitly. On
this line, the u-player determines whether to go north or south. (Remember that the
u-player minimizes T .) In the cone NABDM, the v-control is nonunique; the v-player
can always make sure that B will be the terminal point. The trajectories drawn refer
to the slowest possible such trajectories, i.e., first u = 1 and v = −1, until the barrier
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Fig. 8.1. The open-loop trajectories in the state space, terminating with a < 1
2
.

BD is hit. The curve DM is part of the parabola x1 = x2
2 + 3

4 (with u=1, v = −1).
Along the barrier BD, u = 1 and v = 1. One can calculate the coordinates of the point
M by realizing that the times needed to go in either direction towards the line x1 = x2

must be equal. This leads to x2(M) = −√9/52 and x1(M) = x2
2(M) + 3

4 . Both GA
and DB are barriers for both players. There is a third barrier, for the v-player only;
it is part of the parabola above and through point M, with formula x1 = −x2

2 + c
(corresponding to u = −1, v = 1), with c chosen such that point M is indeed part of
this parabola. Some level curves of constant time to go (for the u-player) are indicated
by means of dotted curves.
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Fig. 8.2. The optimal open-loop trajectories in the state space.

9. Optimal trajectories—The feedback case.

9.1. By means of the maximum principle.

9.1.1. a < 0. At t = T − 1 the control u switches from +1 to −1 in retro-
grade time. Will this have an influence on µ2, and hence on v? Towards that end
consider

µ̇1 = −µ2
∂u

∂x1
, µ̇2 = −µ1 − µ2

∂u

∂x2
.
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At the switch we make the plausible, though mathematically not well-funded, as-
sumption that

∂u

∂x1
= −2δ

(
x1 − 3

4

)
,

∂u

∂x2
= 0,

where δ denotes the Dirac-function. This leads to

µ2((T − 1)−) = µ2((T − 1)+) = 1,

µ1((T − 1)−) = µ1((T − 1)+) + 2 =
1

1− 2
3a

+ 2 =
9− 4a

3− 2a
> 0,

µ2(t) = −9− 4a

3− 2a
(t− T + 1) + 1 for t− T < −1.

The notation µ(t+) stands for lims↓t µ(s), and similarly µ(t−) stands for lims↑t µ(s).
Because µ2(t) > 0 for t < T − 1, v will have no switch (from +1 to −1) for t < T − 1.

9.1.2. 0 < a < 1
2
. The control v switches (in retrograde time from −1 to +1)

at t = T − 2a, which gives rise to the switching line OG and to a δ-function in (7.3).
Again, we make a plausible, though not well-funded, assumption:

∂v

∂x1
= 0,

∂v

∂x2
= −2δ(x2).

This leads to

λ1(t) =
2

1− 2a
∀t ≤ T,

λ2(t) = − 2

1− 2a
(t− T + 1), T − 2a < t ≤ T,

λ2((T − 2a)−) =
λ2((T − 2a)+)

e
= −2

e
,

λ2(t) =
−2

1− 2a
(t− T + 2a)− 2

e
∀t < T − 2a.

The control u will face a switch when λ2 = 0, i.e., for t = T − 2a− 1−2a
e . It is easily

shown that the corresponding curve has the equation

x1 =

(
1

3
− e2

9

)
x2

2 +
1

4
, − 3

2e
≤ x2 ≤ 0,(9.1)

which is different from the curve GKC in Figure 8.2.
Remark 9.1. In the latter case, some analysis, not shown here, has been per-

formed for the construction of the further backward trajectories starting from the last

switching curve x1 = ( 1
3− e2

9 )x2
2+

1
4 . A new switching curve, now again for v, seems to

result (depending on a; for a certain range of a no more switches arise). However, the
trajectories do not pass this new switching curve, but are reflected. This phenomenon
has not yet been investigated and/or clarified. Also a “void” (see [7]) seems to show
up here.

In subsection 9.3 we will see that this approach with δ-functions does not lead to
the correct answers, at least not when these δ-functions are considered as limits of
rectangles with arbitrarily small basis and with area 1.

Remark 9.2. It follows directly from (7.3) that u cannot be singular on a time
interval with positive length. The same remark holds for v.
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9.2. By means of HJB–The synthesis approach. The value functions
Vi(x1, x2), i = 1, 2, provided they exist, satisfy the coupled set of HJB equations

1 +
∂V1

∂x1
x2 −

∣∣∣∣∂V1

∂x2

∣∣∣∣+ 1

2

∂V1

∂x2
sgn

∂V2

∂x2
= 0,(9.2)

∂V2

∂x1
x2 +

1

2

∣∣∣∣∂V2

∂x2

∣∣∣∣− ∂V2

∂x2
sgn

∂V1

∂x2
= 0.(9.3)

The boundary conditions are

V1(x1 = x2) = 0, V2(x1 = x2) = x1.(9.4)

What we want to know is whether the synthesized open-loop solutions also form
feedback solutions. For this example the synthesized controls will have the format
u(x1, x2) and v(x1, x2). The central question of this section is whether these feedback
functions will constitute the feedback optimal strategies.

In principle, we can calculate such synthesized Vi functions by tracing the open-
loop trajectories and calculate the time till termination (for the u-player) and the
termination point (for the v-player). Take, for instance, a point (x1 = p, x2 = q) in
the neighborhood of the point (x1 = 1, x2 = −1). In this area ∂V1

∂x2
> 0 and ∂V2

∂x2
> 0,

and hence the set of two HJB equations becomes two uncoupled ones:

1 +
∂V1

∂x1
x2 − 1

2

∂V1

∂x2
= 0,(9.5)

∂V2

∂x1
x2 − 1

2

∂V2

∂x2
= 0.(9.6)

The (open-loop) optimal trajectory through the point (p, q) intersects the switching
curve CKG at a point (x1s, x2s), say. Then

x2s = −
√

9

11

(
p+ q2 − 1

4

)
.

The time needed to go from (x1 = p, x2 = q) to (x1s, x2s) equals 2(q − x2s), and
hence

V1(p, q) = 1 + 2

(
q +

√
9

11

(
p+ q2 − 1

4

))
.

Now it easily follows that this V1 is indeed a solution of (9.5). Along the same lines,

V2(p, q) =
1−

√
4
11 (p+ q2)− 1

11

2
,

and this function turns out to be a solution of (9.6).
Right away we cannot conclude that the V ’s found are the correct value functions,

since the verification theorem, a sufficiency result, does not hold. (This verification
theorem (see, e.g., [7]) would apply if the value functions found would be twice dif-
ferentiable, which is not true in our situation.) Despite the fact that V1 satisfies (9.5)
and V2 (9.6), the following argument will give rise to some doubts as to whether these
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value functions are the ones we are looking for. For that purpose consider initial
points in the first quadrant, to the right of curve BD, e.g., point (x1 = 3

2 , x2 = 1
2 ).

It pays here for the v-player to play v = −1 rather than v = +1 according to the
open-loop solution. With v = −1 the trajectory moves in direction south-south-east,
which leads to a better result for the v-player than the indicated open-loop solution
(with v = +1), which moves in the direction south-east. In this part of the state space
it therefore looks plausible that the optimal feedback strategies are u = −1, v = −1,
which have a smooth continuation with the trajectories in the fourth quadrant as
indicated in Figure 8.2.

Some further ad hoc calculations seem to point to the following feedback solution.
Starting from Figure 8.2, the switching curve GKC is replaced by the parabola x1 =
− 2

3x
2
2 + 1

4 for − 1
2 ≤ x2 ≤ 0 (see subsection 9.3 for the derivation) and the parabola

x1 = 1
3x

2
2 for − 3

2 ≤ x2 ≤ − 1
2 . The patchwork surrounded by the letters NABDG

remains roughly as it is (though the position of the curve NM will be slightly higher).
In the north-east of the state space, the optimal strategies are u = −1 and v = −1 as
made plausible in the previous paragraph.

9.3. By means of additional common sense. The real optimal feedback
solution as we think of it is given in Figure 9.1. Based on the remarks made earlier,
v = −1 for all points x for which x2 > 0, and v = +1 for all points x for which x2 < 0.
The switching curve GE for u, with formula x1 = − 2

3x
2
2 + 1

4 , has been obtained as
follows. It is assumed that the trajectory starting from x1, x2 with 1

4 ≤ x1 ≤ 1
3 and

x2 = 0 will do this with u = −1 and v = +1. At a certain time, indicated by the
point x2 = γ, the optimal u control will switch to +1, and then the trajectory will
continue with u = v = +1 until it reaches x2 = 0, where v will now switch to the
value −1, and finally the trajectory ends on a = x1 = x2, 0 ≤ a ≤ 1

2 . Minimizing the
total time needed with respect to γ leads to the curve GE. Note that the equation for
this curve is different from (9.1). This shows that one cannot formally proceed with
δ-functions as we did previously; that may lead to wrong answers.

What remains to be shown is that the trajectories starting at x with 1
3 < x1 < 3

and x2 = 0 will continue with u = −1 and v = +1 until they reach the parabola EFC
with equation x1 = 1

3x
2
2. This parabola is a semiuniversal surface as introduced in [7,

pp. 196, 197]. Other options for optimal trajectories are indicated in Figure 9.2. The
curved cone enclosed by FE with equation x1 = −x2

2 +
1
3 (i.e., the optimal trajectory

upstream point E in Figure 9.1) and by EC with equation x1 = 1
3x

2
2 can be considered

as a void. Point E in Figure 9.2 is the same as in Figure 9.1. Suppose the point J is an
arbitrary initial point within this void. Three possible candidate optimal trajectories
are given in the figure which all end up in point E. Which one is the optimal one?
It turns out to be the trajectory from J to P (with u = −1, v = +1) and then to E
(with u = v = +1). This follows if one applies the approach with Green’s theorem as
given in [6, pp. 120, 121].

Finally, the patchwork consisting of the optimal trajectories that terminate at
a = 3

2 has to be hung in the already constructed field of solutions. Note that the
dispersal line M’N’ has a slightly different position when compared to the dispersal
line MN of Figure 8.2. It is easy to show that the x2 coordinate of point M’ equals
2
3 (1−

√
2).

Now we would like to show that (9.2) and (9.3) hold for these claimed optimal
feedback trajectories. This is not straightforward, however. Take, for instance, again
a point (p, q) in the neighborhood of (x1 = 1, x2 = −1). In this area V2 ≡ 0
and subsequently ∂V2

∂x2
= 0, and (9.2) is not well-defined. Both V1, which equals
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Fig. 9.1. The optimal feedback solution.

2q + 4
3

√
3(p+ q2), and V2 ≡ 0 do satisfy (9.5) (respectively, (9.6)), however. Hence

if we choose sgn(∂V2

∂x2
) = sgn(0) = 1, then everything seems to fit. Suppose next

that we take a point (p, q) in the neighborhood of (x1 = 3
2 , x2 = 1). For this area,

V1 = 2
3 + 4

3

√
3p+ q2, V2 ≡ 0, and hence again ∂V2

∂x2
= 0. We try sgn(∂V2

∂x2
) = α, for

some suitable α with −1 ≤ α ≤ 1 to be determined. A little analysis then shows that
for α = −1 equation (9.2) becomes an identity.

A conclusion of all this analysis is that the set of equations (9.2) and (9.3), together
with the boundary conditions (9.4), allows at least two different solution sets (V1, V2),
one sketched in Figure 8.2 and the other in Figure 9.1. An important question to be
answered is whether a definition of viscosity solutions can be found such that a unique
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Fig. 9.2. Comparing candidate optimal trajectories by Green’s function method.

solution of the PDEs and the boundary conditions results (and appropriate for the
optimal feedback solutions). See [1], [2] for viscosity solution concepts for problems
not as wild (i.e., discontinuous) as those considered in the current paper. Another
reference in which differential equations are studied with non-Lipschitzian right-hand
sides is [10]. (If we keep the feedback bang-bang control of one player fixed and view
the remaining problem as an optimal control problem for the other player, then the
model is such a non-Lipschitzian differential equation.)

10. Conclusions. Two simple, at least in their formulation, nonzero-sum dy-
namic games with bang-bang control have been discussed. Both have a unique optimal
open-loop solution. For the first one, we found an optimal feedback solution which is
almost identical to the synthesized open-loop solution; the difference is in the control
values along a singular arc. For the second problem, two candidates for the opti-
mal feedback solutions have been found. Neither jumping nor corner conditions for
the costate equations along (or across) singular arcs nor appropriate extensions of
the viscosity solution concept have been attempted to answer questions related to
uniqueness of the optimality of the feedback solutions constructed. The solutions to
these examples may help in formulating such concepts and with related analysis in
the future.

It so happened that for both examples one could not uniquely solve the controls
ui, i = 1, 2, from ẋ = f(x, u1, u2) and thus express them in ẋ and x. In other words,
given a trajectory in the (t, x) space (or in the x space for time-independent problems),
there may be many controls which realize this given trajectory. Whether this feature
leads to specific difficulties and/or phenomena is not known.

REFERENCES

[1] M. Bardi, M.G. Crandall, L.C. Evans, and H.M. Soner, Viscosity Solutions and Applica-
tions, Springer-Verlag, New York, 1995.

[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
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Abstract. It is our aim to present a new treatment for some classical models of arches and
for their optimization. In particular, our approach allows us to study nonsmooth arches, while the
standard assumptions from the literature require W 3,∞-regularity for the parametric representation.
Moreover, by a duality-type argument, the deformation of the arches may be explicitly expressed by
integral formulas.

As examples for the shape optimization problems under study, we mention the design of the
middle curve of a clamped arch such that, under a prescribed load, the obtained deflection satisfies
certain desired properties. In all cases, no smoothness is required for the design parameters.

Key words. Lipschitz arches, flexural arches, shape optimization

AMS subject classifications. 49Q10, 35J35, 34A55

PII. S0363012900374427

1. Introduction. If ϕ: [0, 1] → R
2 is a smooth clamped arch and c: [0, 1] →

R denotes its curvature, then the classical Kirchhoff–Love model (with normalized
mechanical constants) is given by∫ 1

0

[
1

ε
(v′1 − c v2)(u

′
1 − c u2) + (v′2 + c v1)

′(u′2 + c u1)
′
]
ds

(1.1)

=

∫ 1

0

(f1 u1 + f2 u2) ds ∀ u1 ∈ H1
0 (0, 1) , ∀ u2 ∈ H2

0 (0, 1) .

Here,
√
ε is the constant thickness of the arch; v1 ∈ H1

0 (0, 1), v2 ∈ H2
0 (0, 1) are

the tangential, respectively the normal, components of the deformation in the local
coordinate system associated with the arch; and [f1, f2] is a similar representation of
the forces, including the internal and external loading of the arch, which are assumed
to act in the same plane.

A thorough presentation via Dirichlet’s principle and Korn’s inequality of the
existence and the uniqueness of the solution for (1.1) may be found in Ciarlet [11,
p. 432]. In Chenais and Paumier [8] the “locking” problem, in connection with the
numerical approximation of (1.1) and of shells, is discussed: If the discretization
parameter is of the same order as ε, then the obtained numerical approximation may
be meaningless, and special finite element schemes are necessary in order to solve
(1.1).

In section 1, we introduce a new variational formulation for (1.1), based on optimal
control theory, which is valid also for Lipschitz (or, by reparametrization—see Remark
2.8—absolutely continuous) mappings ϕ. Using duality-type arguments, we derive
explicit integration rules for (1.1). If ϕ is smooth, we show that our solution satisfies
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(1.1). In the general case, if ϕ is approximated by a sequence of smooth functions ϕδ
with δ → 0 (obtained by a regularization via Friedrichs mollifiers), the approximation
remains valid for the corresponding solutions as well.

This shows that our variational formulation is a natural extension of (1.1) to
the case of nonsmooth arches. It also provides, by its explicit character, a complete
solution of the above-mentioned “locking” problem in dimension one. We also study
the behavior for ε → 0 and obtain, under the weak optimal control formulation of
(1.1), the analogue of flexural models in the sense of Ciarlet [12]. Some of the results of
this section were announced without proofs in Sprekels and Tiba [22]. Our arguments
use neither the Dirichlet principle nor the Korn inequality. Moreover, although the
arch may have an infinity of corners, we do not impose transmission conditions as
were used by Geymonat and Sanchez-Palencia [14]—they are implicitly contained in
our approach. Models for shells and rods, under low geometrical regularity conditions,
are also discussed in Blouza and Le Dret [5] and Chapelle [7].

In order to make the basic ideas more transparent, we now present a very simple
example of how our variational approach based on optimal control theory works. To
this end, let us consider the fourth order boundary value problem:

y′′′′ = f in ]0, 1[ ,(1.2)

y(0) = y(1) = 0 ,(1.3)

y′′(0) = y′′(1) = 0 ,(1.4)

with f ∈ L2(0, 1) .
The usual variational approach to (1.2)–(1.4) is given by the minimization of the

energy,

Min
y∈H2(0,1)∩H1

0 (0,1)

{
1

2

∫ 1

0

(y′′)2 ds −
∫ 1

0

f y ds

}
.(1.5)

We rewrite (1.5) as an unconstrained optimal control problem, namely,

Min

{
1

2

∫ 1

0

z2 ds −
∫ 1

0

f y ds

}
,(1.6)

y′′ = z in ]0, 1[ ,(1.7)

y(0) = y(1) = 0 .(1.8)

Relations (1.6)–(1.8) define a standard control problem with the newly introduced
unknown z ∈ L2(0, 1) playing the role of the control. By coercivity and strict con-
vexity, the existence of a unique optimal pair [y∗, z∗] ∈ [H2(0, 1)∩H1

0 (0, 1)]×L2(0, 1)
follows immediately. The first order optimality conditions for (1.6)–(1.8) are expressed
by (1.7), (1.8) (where y = y∗, z = z∗), the adjoint system

p′′ = f in ]0, 1[ ,(1.9)

p(0) = p(1) = 0 ,(1.10)

and the Pontryagin maximum principle

z∗ = p in [0, 1] .(1.11)
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This can easily be inferred from the Euler equation associated with (1.6). Eliminating
p from (1.7)–(1.11), we obtain the usual decomposition of (1.2)–(1.4) as a system of
two second order differential equations. That is, (1.2)–(1.4), or (1.5), or (1.6)–(1.8), or
(1.7)–(1.11) all constitute equivalent formulations of the same problem. Notice as well
that (1.9)–(1.11) yield the regularity z∗ ∈ H2(0, 1) ∩ H1

0 (0, 1), although the control
space is only L2(0, 1). (Such regularity properties are specific for unconstrained control
problems.) This shows that the solution to (1.6)–(1.8) induces a strong solution for
(1.2) with maximal regularity corresponding to f ∈ L2(0, 1).

Next, we further modify (1.6) by integrating twice by parts in the second integral.
If we denote by g ∈ H2(0, 1)∩H1

0 (0, 1) the unique solution to g′′ = f, g(0) = g(1) = 0,
then the cost functional (1.6) can be rewritten as

1

2

∫ 1

0

z2 ds −
∫ 1

0

f y ds =
1

2

∫ 1

0

z2 ds −
∫ 1

0

g z ds =
1

2

∫ 1

0

(z − g)2 ds − 1

2

∫ 1

0

g2 ds.

We redenote z − g again by z . Then the control problem (1.6)–(1.8) becomes

(1.6)′ Min

{
1

2

∫ 1

0

z2 ds

}
,

(1.7)′ y′′ = z+ g in ]0, 1[ ,

(1.8)′ y(0) = y(1) = 0 .

Variants of such transformations and other mathematical modifications will be
applied in section 2 to (1.1). In this respect, the mapping g (or g1, g2 defined in (2.2),
(2.3)) will be used to write the explicit integration rules.

Moreover, in view of how the control problem (1.6)–(1.8) was introduced by start-
ing from the quadratic functional (1.5), in our approach to problem (1.1) the following
differential control system will play a key role:

v′1 − c v2 = z1 in ]0, 1[ ,(1.12)

v′2 + c v1 = z2 in ]0, 1[ .(1.13)

The corresponding correct boundary conditions, the control mappings z1, z2, and the
adequate notion of a weak solution to (1.12), (1.13) will be defined in detail in section
2.

In section 3, we use the optimal control formulation from the previous section in its
equivalent form obtained by a variant of Pontryagin’s maximum principle. For given
[f1, f2], we study the shape optimization problem of finding ϕ in a closed bounded
subset of the space of Lipschitz arches, such that the obtained deflection [v1, v2] has
certain desired properties.

It should be noted that in this setting the considered optimization problem ap-
pears as a nonconvex control-into-coefficients problem. We prove the existence of the
minimizer and derive the first order optimality conditions by computing the direc-
tional derivative of the cost. Similar problems were studied by Rousselet, Piekarski,
and Myslinski [17], Chenais and Rousselet [9], and Chenais, Rousselet, and Benedict
[10] under differentiability assumptions.

The last section collects numerical experiments related to arches and to their
optimization. For simple input functions, the deformations can be computed by
MAPLE. In the optimization case, local gradient methods are combined with some
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global search, due to the nonconvexity of the problem. We have succeeded in finding,
in some examples, global minimum points which have been theoretically justified a
posteriori.

Finally, we point out that the core of our methods is a variety of special decom-
positions of (1.1) obtained via the first order optimality conditions for appropriately
defined control problems. In this respect, the present work continues the investiga-
tions of Sprekels and Tiba from [18, 19, 20, 21, 22]. In particular, similar results may
be obtained in the case of clamped plate models involving a discontinuous thickness
(see Sprekels and Tiba [23]). The main tools that we use here are control theory and
duality.

2. The control approach. Let θ(t) denote the angle between the tangent
vector to the arch (given by ϕ′) and the horizontal axis. If ϕ is smooth, then θ′ = c
(see [11, p. 432]). If ϕ ∈ (W 1,∞(0, 1))2 , then θ ∈ L∞(0, 1), and this is the assumption
we impose in what follows. Note that in this case the variational formulation (1.1) is
not meaningful. However, it is still possible to define mild solutions for the system
(1.12), (1.13) by the variation of constants formula (see (2.4)).

To this end, we introduce the fundamental matrix W (see Pontryagin [16, p. 110])
of the homogeneous linear ODE system v′1 = c v2, v

′
2 = −c v1:

W (t) =

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
,(2.1)

which is meaningful for θ ∈ L∞(0, 1) . The affine part of the control system (compare
with (1.7)′) is here given by the functions l, h, g1, g2 that are constructed from f1, f2 ∈
L2(0, 1) as follows:

g1 = ε l, −g′′2 = h, g2(0) = g2(1) = 0,(2.2) [
l

h

]
(t) = −

∫ t

0

W (t)W−1(s)

[
f1(s)

f2(s)

]
ds.(2.3)

While (2.3) is similar to the definition of g from (1.7)′ and uses the state operator
(2.4), relation (2.2) takes into account the ε and the supplementary derivative from
the second integrand in (1.1). We then define the control system corresponding to
(1.12), (1.13) and with z1, z2 replaced by u+ g1, z + g2, respectively:

[
v1
v2

]
(t) :=

∫ t

0

W (t)W−1(s)

[
u + g1
z + g2

]
(s) ds.(2.4)

Since (2.4) takes into account just the initial conditions appearing in (1.1), the uncon-
strained problem (1.6)′–(1.8)′ is replaced by the constrained optimal control problem

(Pε) Min

{
1

2ε

∫ 1

0

u2 ds +
1

2

∫ 1

0

(z′)2 ds
}
,

subject to u ∈ L2(0, 1), z ∈ H1
0 (0, 1), such that the mappings [v1, v2] ∈ (L∞(0, 1))2,

given by (2.4), satisfy v1(1) = v2(1) = 0 in the sense that

∫ 1

0

W−1(s)

[
u(s) + g1(s)

z(s) + g2(s)

]
ds =

[
0

0

]
.(2.5)
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Clearly, u = −g1, z = −g2 give an admissible control pair for (Pε). From the
coercivity and strict convexity of the cost, there follows the existence of a unique
minimizer [uε, zε] ∈ L2(0, 1)×H1

0 (0, 1).
Denote by S ⊂ L2(0, 1) ×H1

0 (0, 1) the closed subspace of admissible variations
for (Pε). Then, [µ, ξ] ∈ S if and only if∫ 1

0

W−1(s)

[
µ(s)

ξ(s)

]
ds =

[
0

0

]
.(2.6)

The Euler equation associated with [uε, zε] is

1

ε

∫ 1

0

uε µds +

∫ 1

0

z′ε ξ
′ ds = 0 ∀ [µ, ξ] ∈ S.(2.7)

In particular, (2.7) says that [uε, zε] ∈ S⊥
ε , where S⊥

ε denotes the orthogonal subspace
of S ⊂ L2(0, 1)×H1

0 (0, 1) with respect to the modified scalar product defined by the
left-hand side of (2.7).

Remark 2.1. If θ ∈ W 1,1(0, 1), then c ∈ L1(0, 1), and relation (2.4) can be
written in differential form as

v′1 − c v2 = u + g1 a.e. in (0, 1) ,(2.8)

v′2 + c v1 = z + g2 a.e. in (0, 1) .(2.9)

Relation (2.4) gives the “mild” solution of (2.8), (2.9) with null initial conditions in
the sense of semigroup theory; see Bénilan [4], Barbu [3]. If (2.8), (2.9) give the state
equations of the control problem (Pε), then (2.5) is a state constraint. It is expressed
directly in the form of a control constraint, since the system (2.8), (2.9) is integrated
by (2.4), and W (t) is a nonsingular matrix.

We denote by [vε1, v
ε
2] ∈ (L∞(0, 1))2 the optimal state of (Pε), obtained from

[uε, zε] via (2.4).
Theorem 2.2. If ϕ ∈ (W 3,∞(0, 1))2, then [vε1, v

ε
2] is the solution to (1.1).

Proof. Under this regularity assumption, (2.4) can be written in the form (2.8),
(2.9).

For any u1 ∈ H1
0 (0, 1), u2 ∈ H2

0 (0, 1), we introduce

µ̃ = u′1 − c u2 ∈ L2(0, 1) ,(2.10)

ξ̃ = u′2 + c u1 ∈ H1
0 (0, 1) ,(2.11)

and we have, consequently,[
u1

u2

]
(t) =

∫ t

0

W (t)W−1(s)

[
µ̃

ξ̃

]
(s) ds.(2.12)

Since u1, u2 vanish at both ends of [0, 1], it follows from (2.12) and (2.6) that [µ̃ , ξ̃] ∈
S. Hence they may be used in (2.7). Taking into account relations (2.8), (2.9) satisfied
by vε1, v

ε
2, as well as (2.10), (2.11), and (2.2), we obtain that

0 =
1

ε

∫ 1

0

((vε1)
′ − c vε2 − g1)(u′1 − cu2)ds+

∫ 1

0

((vε2)
′ + c vε1 − g2)

′ (u′2 + c u1)
′ ds

=
1

ε

∫ 1

0

(
(vε1)

′ − c vε2
)
(u′1 − c u2) ds +

∫ 1

0

((vε2)
′ + c vε1)

′(u′2 + c u1)
′ ds

−
∫ 1

0

l(u′1 − c u2) ds −
∫ 1

0

h(u′2 + c u1) ds .
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By the regularity assumption, (2.3) can be rewritten in the differential form (2.8),
(2.9), and we can infer that∫ 1

0

l(u′1 − c u2) ds +

∫ 1

0

h(u′2 − c u1) ds

= −
∫ 1

0

u1(l
′ − c h) ds −

∫ 1

0

u2(h
′ + c l) ds =

∫ 1

0

(f1 u1 + f2 u2) ds.

The last two relations give (1.1) and the proof is finished.
Remark 2.3. The approach via problem (Pε) is constructive and does not use

either Dirichlet’s principle or Korn’s inequality. As the formulation of (Pε) is valid
for θ ∈ L∞(0, 1), this method may give solutions even in nonsmooth situations when
Korn’s inequality is not valid. For such cases, we refer to Geymonat and Gilardi [13].

In the general case, the following extension of Theorem 2.2 holds true.
Theorem 2.4. If ϕ ∈ (W 1,∞(0, 1))2, then we have for any [µ, ξ] ∈ S

1

ε

∫ 1

0

(uε + g1)µds +

∫ 1

0

(zε + g2)
′ ξ′ ds =

∫ 1

0

(f1 u1 + f2 u2) ds ,(2.13)

with u1, u2 ∈ L∞(0, 1) given by[
u1

u2

]
(s) = −

∫ 1

s

W (s)W−1(t)

[
µ(t)

ξ(t)

]
dt for almost every s ∈ (0, 1).(2.14)

Proof. Since [uε, zε] ∈ S⊥
ε (see (2.7)), we obtain that

1

ε

∫ 1

0

(uε + g1)µds +

∫ 1

0

(zε + g1)
′ξ′ ds

=
1

ε

∫ 1

0

g1 µds −
∫ 1

0

ξ g
′′
2 ds =

∫ 1

0

[µ, ξ]

[
l

h

]
dt

= −
∫ 1

0

[µ, ξ](t)

∫ t

0

W (t)W−1(s)

[
f1(s)

f2(s)

]
ds dt

= −
∫ 1

0

∫ t

0

[
f1(s), f2(s)

]
W (s)W−1(t)

[
µ(t)

ξ(t)

]
ds dt,

due to the orthogonality of the matrix W (t) and to (2.2), (2.3). Fubini’s theorem and
(2.14) imply the result.

Remark 2.5. It is possible to prove Theorem 2.2 via Theorem 2.4. These results
show that the problem (Pε) provides a notion of weak solution for the arch problem
which is a natural extension of the classical one. This will be further justified below
in Theorem 3.2 and Remark 3.6, via an approximation argument.

We now introduce the mappings w1, w2 ∈ H2(0, 1) ∩H1
0 (0, 1) given by

w′′
1 (s) = sin θ(s) a.e. in (0, 1),(2.15)

w′′
2 (s) = − cos θ(s) a.e. in (0, 1).(2.16)

Taking into account (2.1), relation (2.6) can be rewritten as∫ 1

0

[
µ(s) cos θ(s) − ξ(s) sin θ(s)

]
ds = 0,
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∫ 1

0

[
µ(s) sin θ(s) − ξ(s) cos θ(s)

]
ds = 0.

Replacing the coefficients of ξ(s) according to (2.15), (2.16) and integrating once by
parts, relation (2.6) may be put into the equivalent form

1

ε

∫ 1

0

ε cos θ(s)µ(s) ds +

∫ 1

0

w′
1(s) ξ

′(s) ds = 0,(2.17)

1

ε

∫ 1

0

ε sin θ(s)µ(s) ds +

∫ 1

0

w′
2(s) ξ

′(s) ds = 0.(2.18)

From the definition of S using the modified scalar product from (2.7) it follows that
the (linearly independent) vectors [ε cos θ(·), w1(·)] and [ε sin θ(·), w2(·)] provide a
basis of the two-dimensional space S⊥

ε .
In addition, from relations (2.5) and (2.6) we can infer that [uε+g1 , zε+g2] ∈ S.

Consequently, relation (2.7) gives us that

[uε, zε] = −projS⊥
ε
[g1, g2],(2.19)

where the projection is computed in the norm generated by the modified scalar prod-
uct from (2.7).

Then, (2.17)–(2.19) yield that

(2.19)′ [uε, zε] = λε1 [ε cos θ , w1] +λ
ε
2 [ε sin θ , w2]

for some λε1, λ
ε
2 ∈ R . By virtue of the definition of the projection operator, and owing

to (2.19), (2.19)′, we see that (λε1, λ
ε
2) is the unique minimizer of the unconstrained

optimization problem

(Dε) Min
λ1, λ2 ∈ R

{
1

2ε

∫ 1

0

(
λ1 ε cos θ(s) + λ2 ε sin θ(s) + ε l(s)

)2

ds

+
1

2

∫ 1

0

[
(λ1 w1 + λ2 w2 + g2)

′
]2
ds

}
.

Problem (Dε) can be solved explicitly by imposing that the derivatives of the
quadratic form with respect to λ1, λ2, are zero at the optimum point. This gives a
linear algebraic system with a strictly positive determinant (by the Cauchy–Schwarz
inequality and the structure of the basis of S⊥

ε ). We indicate the system for subse-
quent use:

ε λ1

∫ 1

0

cos2 θ(s) ds + λ1

∣∣w1

∣∣2
H1

0 (0,1)
+ ε λ2

∫ 1

0

cos θ(s) sin θ(s) ds

+ λ2

∫ 1

0

w′
1(s)w

′
2(s) ds + ε

∫ 1

0

l(s) cos θ(s) ds +

∫ 1

0

g′2(s)w
′
1(s) ds = 0,

(2.20)

ε λ1

∫ 1

0

cos θ(s) sin θ(s) ds + λ1

∫ 1

0

w′
1(s)w

′
2(s) ds + ε λ2

∫ 1

0

sin2 θ(s) ds

+ λ2

∣∣w2

∣∣2
H1

0 (0,1)
+ ε

∫ 1

0

l(s) sin θ(s) ds +

∫ 1

0

g′2(s)w
′
2(s) ds = 0.
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We have proved the following result.
Theorem 2.6. The solution of (1.1) (or of (Pε), if θ ∈ L∞(0, 1)) is given by

(2.19)′ and (2.4), with (λε1 , λ
ε
2) being the unique solution of (Dε), and with w1, w2,

g1, g2 defined by (2.2), (2.3), (2.15), (2.16).
Remark 2.7. In optimization theory, (Dε) is the dual problem of (Pε). Its

complete solution is possible since the constraints from (Pε) are affine and finite-
dimensional. In simple examples of mappings θ, f1, f2, explicit formulas can be de-
rived for the deformation [v1, v2]. In the general situation, numerical approximation
is needed just to evaluate the occurring integrals. See section 4 for examples. In par-
ticular, Theorem 2.6 provides a complete solution of the “locking” problem discussed
by Chenais and Paumier [8], in dimension one.

Remark 2.8. We also notice that, if ϕ̃: [a, b]→ R
2 is an absolutely continuous Jor-

dan arc of length one such that ϕ̃′ 
= 0 a.e. in (a, b), then, by the usual reparametriza-
tion via the arc length function s: [a, b] → [0, 1], s(0) = 0, s′(·) =

∣∣ϕ̃′(·)∣∣
R2 , we get

that ϕ(t) = ϕ̃(s−1(t)) satisfies
∣∣ϕ′(t)

∣∣
R2 = 1 for almost every t ∈ (0, 1), i.e., it is

Lipschitzian, and our results still apply.
Remark 2.9. If θ ∈ L∞(0, 1), then vε1, v

ε
2 as defined by Theorem 2.6 (see (2.4))

belong to L∞(0, 1). However, their global Cartesian representation is

W (t)−1

[
vε1
vε2

]
(t)

and belongs to (W 1,2(0, 1))2. This means that the lack of smoothness is due to the
local coordinates (θ is defined a.e. and may have jumps) and that the constructed
deformation is continuous.

The next result gives a characterization of the solution of the problem (Pε) (or,
equivalently, of the problem (Dε)) as a system of first order differential equations
which will be used frequently in what follows. Implicitly, it provides a nonstandard
decomposition of (1.1) in the case of nonsmooth coefficients. Basically, this is given
by the first order necessary conditions for (Pε), but the form is different from the
classical Pontryagin principle.

Theorem 2.10. The optimality system for the problem (Pε) is given by

[
vε1
vε2

]
(t) =

∫ t

0

W (t)W−1(s)

[
uε(s) + g1(s)

zε(s) + g2(s)

]
ds for almost every t ∈ (0, 1) ,(2.21)

∫ 1

0

W−1(s)

[
uε(s) + g1(s)

zε(s) + g2(s)

]
ds =

[
0

0

]
,(2.22)

[
pε
qε

]
(t) = W (t)

[
λε1
λε2

]
for almost every t ∈ (0, 1) ,(2.23)

uε = ε pε a.e. in (0, 1) ,(2.24)

z′′ε = − qε a.e. in (0, 1) , zε(0) = zε(1) = 0.(2.25)

Under smoothness hypotheses, it is possible to write (2.21)–(2.25) in differential form.
(Compare with (3.1)–(3.5) and (3.7)–(3.16) in the next section.)

Proof. Assume first that uε, zε satisfy (2.21)–(2.25) with some λε1, λ
ε
2 ∈ R,

pε, qε, v
ε
1, v

ε
2 ∈ L∞(0, 1). Then clearly, [uε + g1, zε + g2] ∈ S, i.e., [uε , zε] is ad-

missible for (Pε). Using (2.23)–(2.25), the definition of S, and the orthogonality of
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W (t), we find that for any [µ, ξ] ∈ S
1

ε

∫ 1

0

uε µds +

∫ 1

0

z′ε ξ
′ ds =

∫ 1

0

pε µds +

∫ 1

0

qε ξ ds =

∫ 1

0

[µ, ξ]W (s)

[
λε1
λε2

]
ds

= [λε1, λ
ε
2]

∫ 1

0

W (s)−1

[
µ

ξ

]
(s) ds = 0.

Consequently, [uε , zε] ∈ S⊥
ε . Together with the admissibility of [uε, zε], noticed

above, this immediately gives that [uε , zε] is the unique minimizer of (Pε).
Conversely, we remark that (2.23)–(2.25) give a complete description of the two-

dimensional space S⊥
ε when λ1, λ2 ∈ R are arbitrary. By (2.6), we know that the

optimal control [uε , zε] belongs to S⊥
ε . Hence, there are λε1, λ

ε
2 ∈ R such that [uε , zε]

can be represented via (2.23)–(2.25). (This is, in fact, the same representation as in
(2.19)′.) Moreover, [uε , zε] also satisfy (2.21), (2.22) by their admissibility for (Pε).
This ends the proof.

As a first application of Theorem 2.10, we study the behavior for ε → 0 of the
problem (Pε). Since arches are special cases of cylindrical shells, after passing to
the limit a “flexural” model will be obtained (Ciarlet [12]). The treatment that we
indicate below is valid under the weak regularity condition θ ∈ L∞(0, 1). We shall
also assume that θ is nonconstant in [0, 1], i.e., the arch is not a bar. For constant θ
the results also remain valid, but some adaptation of the argument is necessary, since
the dimension of S⊥

ε reduces to one in this case, if ε = 0.
Theorem 2.11. As ε↘ 0, the mappings vε1, v

ε
2, pε, qε are bounded in L∞(0, 1),

λε1 , λ
ε
2 are bounded in R, zε is bounded in H2(0, 1), and uε strongly converges to 0

in L∞(0, 1). If we denote without ε their weak or weak∗ limits (on a subsequence)
in the corresponding spaces, then these satisfy the conditions[

v1
v2

]
(t) =

∫ t

0

W (t)W−1(s)

[
0

z(s) + g2(s)

]
ds ,

∫ 1

0

W−1(s)

[
0

z(s) + g2(s)

]
ds =

[
0

0

]
,

[
p

q

]
(t) = W (t)

[
λ1

λ2

]
,

z′′ = −q , z(0) = z(1) = 0 .

Proof. The explicit calculus indicated in Theorem 2.6 and (2.20) shows directly
that λε1, λ

ε
2 are bounded in R for ε→ 0. For instance, the determinant of the system

is [
ε

∫ 1

0

cos2 θ(s) ds +
∣∣∣w1

∣∣∣2
H1

0 (0,1)

]
·
[
ε

∫ 1

0

sin2 θ(s) ds +
∣∣∣w2

∣∣∣2
H1

0 (0,1)

]

−
[
ε

∫ 1

0

cos θ(s) · sin θ(s) ds +

∫ 1

0

w′
1(s)w

′
2(s) ds

]2
−→
ε→0

∣∣∣w1

∣∣∣2
H1

0

·
∣∣∣w2

∣∣∣2
H1

0

−
〈
w1, w2

〉2

H1
0

> 0.

Here the assumption that θ is nonconstant is necessary, since for ε = 0 and
θ constant the vectors used in (2.19)′ become proportional. (In this case only one
parameter λ is necessary and a simpler argument works.)
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Thus, by (2.23), pε and qε are bounded in L∞(0, 1). Relation (2.24) gives uε → 0
strongly in L∞(0, 1), and (2.25) shows that zε is bounded in H2(0, 1), for instance.
By (2.21), we see that vε1, v

ε
2 are bounded in L∞(0, 1) as well. Definition (2.2) gives

that g1 depends on ε (and has the strong limit 0 in L∞(0, 1)), while g2 is indepen-
dent of ε.

Finally, we can pass to the limit in (2.21)–(2.25) on a subsequence, and we obtain
the desired conclusion.

Remark 2.12. The system obtained by Theorem 2.11 characterizes, in the sense
of Theorem 2.10, the following constrained optimal control problem:

Min

{
1

2

∣∣z∣∣2
H1

0 (0,1)

}
,

subject to z ∈ H1
0 (0, 1), such that the mappings[

v1
v2

]
(t) =

∫ t

0

W (t)W−1(s)

[
0

z(s) + g2(s)

]
ds

satisfy v1(1) = v2(1) = 0 in the sense that∫ 1

0

W−1(s)

[
0

z(s) + g2(s)

]
ds =

[
0

0

]
.

The structure of this problem is very similar to (Pε), and the proof follows closely
that of Theorem 2.10, by considering the subspace Z ⊂ H1

0 (0, 1), defined by∫ 1

0

W−1(s)

[
0

ξ(s)

]
ds =

[
0

0

]
,

and its orthogonal subspace Z⊥. If θ ∈ L∞(0, 1) is not constant, Z⊥ has dimension
two, and we can argue as above.

Remark 2.13. If θ ∈ W 2,∞(0, 1), then one can show, as in Theorem 2.2, that
v1, v2 defined in Remark 2.12 satisfy the “flexural” arch model:∫ 1

0

(v′2 + cv1)
′ (u′2 + c u1)

′ ds =

∫ 1

0

(f1 u1 + f2 u2) ds

∀ (u1, u2) ∈ VF =
{
(u1, u2) ∈ H1

0 (0, 1) × H2
0 (0, 1) ; u

′
1 − c u2 = 0

}
,

(v1, v2) ∈ VF .
Such asymptotic properties have been discussed in detail by Ciarlet [12] for the case
of shells. Theorem 2.11 shows that they remain valid for nonsmooth arches and under
our variational formulation via optimal control theory.

3. Optimization of nonsmooth arches. One advantage of the method pre-
sented in the previous section is that in the study of related optimization problems
nonsmooth arches may be taken into consideration. Let K ⊂ L∞(0, 1) be a closed
subset. We shall study the model problem

(Q) Min
θ ∈ K

{
1

2

∫ 1

0

v2
2 ds

}
,
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subject to

[
v1
v2

]
(t) =

∫ t

0

Wθ(t)W
−1
θ (s)

[
u(s) + g1(s)

z(s) + g2(s)

]
ds for almost every t ∈ (0, 1) ,(3.1)

∫ 1

0

W−1
θ (s)

[
u(s) + g1(s)

z(s) + g2(s)

]
ds =

[
0

0

]
,(3.2)

[
p

q

]
(t) = Wθ(t)

[
λε1
λε2

]
for almost every t ∈ (0, 1) ,(3.3)

u = ε p a.e. in (0, 1) ,(3.4)

z′′ = − q a.e. in (0, 1) , z(0) = z(1) = 0.(3.5)

The matrix Wθ is given by (2.1), and the new notation just puts into evidence the
dependence on the arch (characterized by θ ). The state system (3.1)–(3.5) is exactly
the decomposition of the Kirchhoff–Love model provided by Theorem 2.10. It should
be noted that all the quantities appearing in it (including the data g1, g2 defined by
(2.2), (2.3)) depend on θ. This is due to Wθ and to the fact that [f1, f2] (the load)
depends on θ by the local choice of the coordinates system. In what follows, we shall
write v1(θ), v2(θ), λ1(θ), λ2(θ), etc. ( ε is fixed now).

Remark 3.1. The shape optimization problem (Q) is a nonconvex control-into-
coefficients problem. In the given subset K , the arch that minimizes the normal
deflection (in the L2-norm) is sought. This is a natural safety requirement. Various
other cost functionals may be studied as well.

Theorem 3.2. If θn → θ in L∞(0, 1) and fi(θn) → fi(θ) in L1(0, 1), i = 1, 2,
then Wθn → Wθ in (L∞(0, 1))4, λ1(θn) → λ1(θ), λ2(θn) → λ2(θ), g1(θn) → g1(θ),
h(θn)→ h(θ), and l(θn)→ l(θ) in L∞(0, 1), g2(θn)→ g2(θ) in W 2,∞(0, 1), p(θn)→
p(θ), u(θn)→ u(θ), and q(θn)→ q(θ) in L∞(0, 1), z(θn)→ z(θ) in W 2,∞(0, 1), and
v1(θn) → v1(θ), v2(θn) → v2(θ) in L∞(0, 1). If θn → θ in C[0, 1], then the above
convergences are also valid in C[0, 1] and C2[0, 1], respectively.

Proof. If θn → θ in L∞(0, 1), then cos θn → cos θ and sin θn → sin θ in L∞(0, 1).
Consequently, Wθn →Wθ , W−1

θn
→W−1

θ , strongly in (L∞(0, 1))4 . Moreover, (2.15),

(2.16) show that w1(θn) → w1(θ) and w2(θn) → w2(θ) in W 2,∞(0, 1). If ∆(θn) is
the determinant associated with the system (2.20) (written for θn), a direct calculus
gives that ∆(θn)→ ∆(θ).

From the relation (2.3) we infer that for almost every t ∈ (0, 1)∣∣∣∣∣
[
l(θn)

h(θn)

]
(t) −

[
l(θ)

h(θ)

]
(t)

∣∣∣∣∣
R2

≤
∣∣∣Wθn − Wθ

∣∣∣
(L∞(0,1))4

∣∣∣W−1
θn

∣∣∣
(L∞(0,1))4

∣∣∣∣∣
[
f1(θn)

f2(θn)

] ∣∣∣∣∣
(L1(0,1))2

(3.6)

+
∣∣∣Wθ

∣∣∣
(L∞(0,1))4

∣∣∣W−1
θn
− W−1

θ

∣∣∣
(L∞(0,1))4

∣∣∣∣∣
[
f1(θn)

f2(θn)

] ∣∣∣∣∣
(L1(0,1))2

+
∣∣∣Wθ

∣∣∣
(L∞(0,1))4

∣∣∣W−1
θ

∣∣∣
(L∞(0,1))4

∣∣∣∣∣
[
f1(θn)

f2(θn)

]
−
[
f1(θ)

f2(θ)

] ∣∣∣∣∣
(L1(0,1))2

.
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It follows that l(θn)→ l(θ), h(θn)→ h(θ), strongly in L∞(0, 1). By (2.2), the same
is valid for g1(θn) → g1(θ), while g2(θn) → g2(θ) strongly in W 2,∞(0, 1). Then one
obtains λ1(θn)→ λ1(θ) and λ2(θn)→ λ2(θ) from (2.20).

Equations (3.3)–(3.5) give the assertion for p(θn), q(θn), u(θn) , z(θn). The
argument for the convergence v1(θn)→ v1(θ), v2(θn)→ v2(θ), strongly in L∞(0, 1),
is similar to that in the inequality (3.6). If θn → θ in C[0, 1], the proof follows the
same lines, with minor modifications.

Corollary 3.3. The shape optimization problem (Q) has at least one solution
if K is compact in L∞(0, 1).

Proof. This is a direct consequence of Theorem 3.2, observing that it is possi-
ble to pass to the limit in (3.2) and in the cost functional, if θn → θ strongly in
L∞(0, 1).

Remark 3.4. In addition to Remark 2.9, we notice that the convergence of the
global Cartesian representation of the displacement

W−1
θn

(t)

[
v1(θn)

v2(θn)

]
(t)

is valid in (W 1,∞(0, 1))2. Here, we also use the fact that by (3.4) the solution [u, z]
of the problem (Pε) belongs to (L∞(0, 1))2.

Remark 3.5. If the curvature c corresponding to the arches associated with θ ∈ K
is bounded in some Lr(0, 1), r > 1, then K is compact in C[0, 1]. This shows that
the compactness assumption from Theorem 3.2 and Corollary 3.3 is very weak in
comparison with those used in the existing literature.

Remark 3.6. For any θ ∈ L∞(0, 1), we may define a smooth sequence θn con-
verging to θ in Lr(0, 1)∀ r ≥ 1 by a regularization process with a Friedrichs mollifier.
Then, keeping [f1, f2] ∈ (L2(0, 1))2 fixed, it is possible to modify (3.6) and the other
arguments in the proof of Theorem 3.2 to show that for the corresponding solutions
we have v1

n → v1, v2
n → v2 in Lr(0, 1)∀ r ≥ 1. If θ is continuous, the obtained

convergences are uniform. We also note that the global Cartesian representation

W−1
θn

(t)

[
v1
n

v2
n

]
(t)

is convergent in (W 1,r(0, 1))2 ∀ r ≥ 1. Since for θn the corresponding solution of
(Pε) then coincides with the solution of (1.1) (by Theorem 2.2), we see that for any
θ ∈ L∞(0, 1) the optimal state of (Pε) can be approximated by usual solutions of
(1.1).

The remainder of this section is devoted to the sensitivity analysis of the Kirchhoff–
Love model. We proceed in two steps. First, we assume that c ∈ L1(0, 1) and that,
consequently, θ ∈ W 1,1(0, 1), and we compute the gradient of the cost in this case.
Then, we use an approximation argument to reduce the general case θ ∈ L∞(0, 1) to
the previous one.

Under the assumption c ∈ L1(0, 1) and recalling definition (2.1) of Wθ as a
fundamental matrix, the state system (3.1)–(3.5) for problem (Q) can be written in
differential form:

v′1 − c v2 = u + g1 ,(3.7)

v′2 + c v1 = z + g2 ,(3.8)

v1(0) = v2(0) = 0 ,(3.9)
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v1(1) = v2(1) = 0 ,(3.10)

p′ − c q = 0 ,(3.11)

q′ + c p = 0 ,(3.12)

p(0) = λ1 cos θ(0) + λ2 sin θ(0) , q(0) = −λ1 sin θ(0) + λ2 cos θ(0) ,(3.13)

u = ε p ,(3.14)

z′′ = − q ,(3.15)

z(0) = z(1) = 0 .(3.16)

We shall denote by v1(c), v2(c), . . . the dependence of the solution of (3.7)–(3.16) on
c ∈ L1(0, 1), which is now considered instead of the related dependence on θ. We
study its Gâteaux differentiability, and we take variations of the form c + δ d with
d ∈ L1(0, 1), δ ∈ R “small.”

The definitions of g1, g2, given in (2.2) and (2.3), can also be rewritten in differ-
ential form:

g1 = ε l ,(3.17)

g′′2 = −h ,(3.18)

g2(0) = g2(1) = 0 ,(3.19)

l′ − c h = − f1 ,(3.20)

h′ + c l = − f2 ,(3.21)

l(0) = h(0) = 0 .(3.22)

We have, by (3.20), (3.21),

l(c + δ d)′ − l(c)′

δ
− (c + δ d)

h(c + δ d) − h(c)

δ
= d h(c) − f1(c + δ d) − f1(c)

δ
,

(3.23)

l(c + δ d)′ − h(c)′

δ
+ (c + δ d)

l(c + δ d) − l(c)

δ
= − d l(c) − f2(c + δ d) − f2(c)

δ
.

(3.24)

We interpret f1, f2 : L1(0, 1) → L1(0, 1) as nonlinear operators, and we assume

that they are Gâteaux differentiable. Multiplying (3.23), (3.24) by [ l(c+ δ d)−l(c)
δ ,

h(c+ δ d)−h(c)
δ ] and integrating over [0, t], we find that

1

2

∣∣∣∣∣∣∣∣



l(c + δ d) − l(c)

δ
h(c + δ d) − h(c)

δ


 (t)

∣∣∣∣∣∣∣∣

2

R2

(3.25)

≤
∫ t

0

〈
d h(c) − f1(c + δ d) − f1(c)

δ

− d l(c) − f2(c + δ d) − f2(c)

δ

;

l(c + δ d) − l(c)

δ
h(c + δ d) − h(c)

δ

〉
R2

ds
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with obvious notations for the norm and the scalar product in R
2.

The Brezis [6] variant of Gronwall’s lemma and (3.25) imply that { l(c+δ d)−l(c)δ },
{h(c+δ d)−h(c)δ } are bounded in L∞(0, 1) for δ → 0. From (3.23), (3.24), we see that
the boundedness is even valid in W 1,1(0, 1), and we also have equi-uniform continuity

due to the equi-absolute integrability of { fi(c+δ d)−fi(c)δ }, i = 1, 2. Consequently,
by taking a subsequence, we get convergence and the Gâteaux differentiability of
l(c), h(c) in L2(0, 1), for instance. Relations (3.17)–(3.19) then show that g1(·) :
L1(0, 1)→ L2(0, 1), g2(·) : L1(0, 1)→W 2,2(0, 1) are also Gâteaux differentiable.

The auxiliary mappings w1, w2 defined in (2.15), (2.16) are clearly Gâteaux dif-
ferentiable. Recalling that θ′ = c and assuming that the perturbation θ̃′δ = c + δd
satisfies θ̃δ(0) = θ(0)+ δ η(0), if w̄1, w̄2 denote the directional derivatives at c in the
direction d, we see that

w̄′′
1 =

(
η(0) +

∫ t

0

d(s) ds

)
cos

(
θ(0) +

∫ t

0

c(s) ds

)
, w̄1(0) = w̄1(1) = 0 ,(3.26)

w̄′′
2 =

(
η(0) +

∫ t

0

d(s) ds

)
sin

(
θ(0) +

∫ t

0

c(s) ds

)
, w̄2(0) = w̄2(1) = 0 .(3.27)

Next we recall, by (2.20), that λ1(c), λ2(c) are solutions of an affine system with
∆(c) > 0 and coefficients which are Gâteaux differentiable, by (3.26), (3.27). Then,
λ1(c), λ2(c) are as well Gâteaux differentiable from L1(0, 1) into R. Moreover, (3.12),
(3.13) imply the Gâteaux differentiability of p, q : L1(0, 1) → L2(0, 1), for instance.
It follows immediately that u : L1(0, 1)→ L2(0, 1) and z : L1(0, 1)→W 2,2(0, 1) are
Gâteaux differentiable. Finally, applying arguments similar to (3.23)–(3.25) to (3.7)–
(3.9), we obtain that v1, v2 : L1(0, 1)→ L2(0, 1) are also Gâteaux differentiable.

We denote by v̄1, v̄2, . . . the directional derivatives of the mappings defined by
(3.7)–(3.16) with respect to c ∈ L1(0, 1) and in the direction d ∈ L1(0, 1).

We thus have established the following result.
Theorem 3.7. The mappings defined in (3.7)–(3.16) are Gâteaux differentiable,

and the directional derivatives satisfy the system

v̄′1 − c v̄2 = d v2(c) + ū + ḡ1 ,(3.28)

v̄′2 + c v̄1 = − d v1(c) + z̄ + ḡ2 ,(3.29)

v̄1(0) = v̄2(0) = 0 ,(3.30)

v̄1(1) = v̄2(1) = 0 ,(3.31)

p̄′ − c q̄ = d q(c) ,(3.32)

q̄′ + c p̄ = − d p(c) ,(3.33)

p̄(0) = λ̄1 cos θ(0) + λ̄2 sin θ(0) + η(0)
[
λ2 cos θ(0) − λ1 sin θ(0)

]
,(3.34)

q̄(0) = − λ̄1 sin θ(0) + λ̄2 cos θ(0) − η(0)
[
λ1 cos θ(0) + λ2 sin θ(0)

]
,

ū = ε p̄ ,(3.35)

z̄′′ = − q̄ ,(3.36)

z̄(0) = z̄(1) = 0 .(3.37)
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Remark 3.8. The system (3.28)–(3.37) admits a unique solution, since its ho-
mogeneous variant may be reformulated in the language of the control problem (Pε).
Here, homogeneous means that ḡ1 = 0, ḡ2 = 0, d = 0, η(0) = 0, and the corresponding
solution of (Pε) is in this situation clearly identically zero in [0, 1]. Consequently, the
limits defining v̄1, v̄2, . . . are valid without taking subsequences; we have convergence
of the entire sequences.

Next, we introduce the adjoint system associated with (3.28)–(3.37):

P ′
1 − c P2 = 0 ,(3.38)

P ′
2 + c P1 = − v2(c) ,(3.39)

P ′
3 − c P4 = R ,(3.40)

P ′
4 + c P3 = Q ,(3.41)

Q′′ = −P2 ,(3.42)

R = ε P1 ,(3.43)

Q(0) = Q(1) = P3(0) = P3(1) = P4(0) = P4(1) = 0 .(3.44)

Proposition 3.9. The system (3.38)–(3.44) has a unique solution such that
P1, P2, P3, P4, R ∈W 1,1(0, 1) and Q ∈W 2,∞(0, 1).

Proof. Let µ1, µ2 ∈ R
2 be some arbitrary initial conditions for (3.38), (3.39).

Then [
P1

P2

]
(t) = Wc(t)

[
µ1

µ2

]
+

[
γ1(t)

γ2(t)

]
,

where [
γ1(t)

γ2(t)

]
=

∫ t

0

Wc(t)W
−1
c (s)

[
0

− v2(c)
]
(s) ds,

and P1, P2 ∈ W 1,1(0, 1) if c ∈ L1(0, 1). Here, Wc is a new notation for the matrix
W that puts into evidence its dependence on c.

Consequently, R(t) = εP1 and Q(t) depend in an affine manner on µ1, µ2 and
belong to W 1,1(0, 1) andW 2,∞(0, 1), respectively. Then,[

P3

P4

]
(t) = −

∫ 1

t

Wc(t)W
−1
c (s)

[
R(s)

Q(s)

]
ds

belongs to (W 1,1(0, 1))2. We have used the final null conditions. Notice that the
constraint ∫ 1

0

W−1
c (s)

[
R(s)

Q(s)

]
ds =

[
0

0

]
(3.45)

should be fulfilled to obtain the initial null conditions (3.44) for P3, P4. By writing
(3.45) explicitly, we obtain a linear system like (2.20) for µ1, µ2. Since its determinant
is positive, it has a unique solution, and the proof is finished.

Theorem 3.10. The directional derivative of the cost functional in the problem
(Q) at the point c ∈ L1(0, 1) and in the direction d ∈ L1(0, 1) is given by∫ 1

0

d
(
P1 v2(c) − P2 v1(c) + g′1(c)

∗P1 + g′2(c)
∗P2 − P3 q(c) + P4 p(c)

)
ds .(3.46)
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Here, g′i(c), i = 1, 2, denote the Gâteaux derivative of gi at c ∈ L1(0, 1), and g′i(c)
∗ :

L2(0, 1)→ L∞(0, 1) is the adjoint operator.
Proof. We have (by (3.38), (3.39), partial integration, etc.) that

lim
δ→0

1

2δ

[∫ 1

0

(v2(c + δ d))
2
ds −

∫ 1

0

(v2(c))
2
ds

]
=

∫ 1

0

v2(c) v̄2 ds

= −
∫ 1

0

(P ′
2 + c P1)v̄2 ds −

∫ 1

0

(P ′
1 − c P2) v̄1 ds

=

∫ 1

0

P1(v̄
′
1 − c v̄2) ds +

∫ 1

0

P2(v̄
′
2 + c v̄1) ds

=

∫ 1

0

d(P1 v2(c) − P2 v1(c)) ds +

∫ 1

0

P1(ū + ḡ1) ds +

∫ 1

0

P2(z̄ + ḡ2) ds ,

owing to (3.28), (3.29). Now recall that

ḡ1 = g′1(c) d , ḡ2 = g′2(c) d .

Hence, using (3.40) and (3.41), we can write∫ 1

0

v2(c) v̄2 ds =

∫ 1

0

d(P1 v2(c) − P2 v1(c) + g′1(c)
∗P1 + g′2(c)

∗P2) ds

+

∫ 1

0

ε−1R ū ds−
∫ 1

0

Q′′ z̄ ds =

∫ 1

0

d(. . .) ds +

∫ 1

0

R p̄ ds +

∫ 1

0

Q q̄ ds

=

∫ 1

0

d(. . .) ds +

∫ 1

0

p̄(P ′
3 − c P4) ds +

∫ 1

0

q̄(P ′
4 + c P3) ds .

From this, again using partial integration together with (3.32), (3.33), we obtain
(3.46), and the proof is finished.

Next, we shall study the differentiability properties of (Q) in the general case
θ ∈ L∞(0, 1) . We consider variations of the form θ + σ η, η ∈ L∞(0, 1), σ ∈ R small.
We assume that fi : L∞(0, 1) → L2(0, 1), i = 1, 2, depend directly on θ and are
Gâteaux differentiable. A direct calculus starting from (2.3) and taking into account
the dependence of W (t) on θ leads to[

l̄

h̄

]
(t) = −

∫ t

0

Wθ(t)W
−1
θ (s)

[
f̄1(s)

f̄2(s)

]
ds −

(
0

−η(t)
η(t)

0

)[
l(θ)

h(θ)

]
(t)

(3.47)

+

∫ t

0

(
0

−η(s)
η(s)

0

)
Wθ(t)W

−1
θ (s)

[
f1(θ)

f2(θ)

]
(s) ds .

By (2.2), it holds that

ḡ1 = ε l̄ , − ḡ′′2 = h̄ , ḡ2(0) = ḡ2(1) = 0 .(3.48)

Comparing (3.47) with (3.20)–(3.22), we see that the integral formulation is more
difficult to handle since it involves more products which generate more terms via
differentiation.

For the auxiliary mappings w1, w2 defined in (2.15), (2.16), we write directly
the increment ratios corresponding to θ and θ + ση, and we compute the limit
corresponding to σ → 0 to obtain that

w̄′′
1 = η cos θ , w̄′′

2 = η sin θ ,
(3.49)

w̄i(0) = w̄i(1) = 0 , i = 1, 2 .
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Relations (3.47)–(3.49) also show the continuous dependence in L2(0, 1) of ḡi, w̄i,
i = 1, 2, and l̄, h̄ with respect to regularizations of η and θ, if the same is assumed for
fi, f̄i, i = 1, 2. For w̄i, i = 1, 2, and ḡ2, this is valid even in H2(0, 1). An elementary
calculus, starting from (2.20), shows that the same continuity property remains valid
for λ̄1, λ̄2.

From relation (3.3), we obtain that[
p̄

q̄

]
(t) =

(
0

−η(t)
η(t)

0

)
Wθ(t)

[
λ1(θ)

λ2(θ)

]
+ Wθ(t)

[
λ̄1

λ̄2

]
,(3.50)

with the same continuity property in (L2(0, 1))2 with respect to regularizations of η
and θ. By (3.4), (3.5), this property is preserved by ū, z̄, and we have

ū = ε p̄ , z̄′′ = − q̄ , z̄(0) = z̄(1) = 0 .(3.51)

Finally, (3.1) gives[
v̄1
v̄2

]
(t) =

∫ t

0

Wθ(t)W
−1
θ (s)

[
ū(s) + ḡ1(s)

z̄(s) + ḡ2(s)

]
ds +

(
0

−η(t)
η(t)

0

)[
v1(θ)

v2(θ)

]
(t)

−
∫ t

0

(
0

−η(s)
η(s)

0

)
Wθ(t)W

−1
θ (s)

[
u(θ) + g1(θ)

z(θ) + g2(θ)

]
(s) ds(3.52)

with the same conclusion on the continuous dependence on η, θ . Let us now explicitly
introduce the regularizations of θ and η,

θδ(t) =

∫
R

θ(t − δ y) ρ(y) dy , ηδ (t) =

∫
R

η(t − δ y) ρ(y) dy ,(3.53)

where θ and η are extended by 0 outside the interval [0, 1], δ > 0, and where
ρ ∈ C∞

0 (R) is a Friedrichs mollifier. We also define dδ = η′δ, cδ = θ′δ which exist
in L1(0, 1) but have no good convergence properties for δ → 0. Then, the systems
(3.7)–(3.16), (3.28)–(3.37), and (3.38)–(3.44) can be solved for the data cδ, dδ. Let
us denote the corresponding solutions with an index or an exponent δ. Then we can
prove the following result.

Theorem 3.11. The gradient of the cost functional of the problem (Q) at the
point θ ∈ L∞(0, 1) and in the direction η ∈ L∞(0, 1) is given by∫ 1

0

v2(θ) v̄2 ds =

∫ 1

0

η
[
g′1(θ)

∗P1 + g′2(θ)
∗P2 − v1(θ) v2(θ)

(3.54)
− P1(θ) (z(θ) + g2(θ)) + P2(θ) (u(θ) + g1(θ)) + q(θ)R(θ)− p(θ)Q(θ)

]
ds .

Here, v1(θ), v2(θ), u(θ), z(θ), p(θ), q(θ) are obtained by (3.1)–(3.5) with g1(θ), g2(θ)
given by (2.2), (2.3), and P1, P2, P3, P4, R,Q are computed via (3.38)–(3.44) rewritten
in integral form (which is obvious).

Proof. By (3.52), (3.53), we can write∫ 1

0

v2(θ) v̄2 ds = lim
δ→0

∫ 1

0

vδ2 v̄
δ
2 ds .(3.55)

From Theorem 3.10, we obtain that∫ 1

0

vδ2 v̄
δ
2 ds =

∫ 1

0

dδ
(
P δ1 v

δ
2 − P δ2 v

δ
1 − P δ3 q

δ + P δ4 p
δ + P δ1 ḡ

δ
1 + P δ2 ḡ

δ
2

)
ds.
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Using the boundary conditions and the differentiability properties, we first compute∫ 1

0

dδ
(
P δ1 v

δ
2 − P δ2 v

δ
1 − P δ3 q

δ + P δ4 p
δ
)
ds

= −
∫ 1

0

ηδ
(
(P δ1 )′ vδ2 + P δ1 (vδ2)

′ + · · · + (P δ4 )′ pδ + P δ4 (pδ)′
)
ds(3.56)

= −
∫ 1

0

ηδ
(
vδ1 v

δ
2 + P δ1 (zδ + gδ2) − P δ2 (uδ + gδ1) − qδ Rδ + pδ Qδ

)
ds.

We indicate only a partial calculation on how the last equality in (3.56) is established:

(P δ4 )′ pδ + P δ4 (pδ)′ − (P δ3 )′ qδ − P δ3 (qδ)′

= (P δ4 )′ pδ + P δ4 cδ q
δ − (P δ3 )′ qδ + P δ3 cδ p

δ

= qδ(− (P δ3 )′ + cδ P
δ
4 ) + pδ((P δ4 )′ + cδ P

δ
3 )

= − qδ Rδ + pδ Qδ

by (3.11), (3.12) and (3.40), (3.41).
We also consider the term∫ 1

0

(
P δ1 ḡ

δ
1 + P δ2 ḡ

δ
2

)
ds =

∫ 1

0

(
P δ1 g

′
1(θδ) ηδ + P δ2 g

′
2(θδ)ηδ

)
ds

(3.57)

=

∫ 1

0

ηδ
[
(gδ1)

′(θδ)∗P δ1 + (gδ2)
′(θδ)∗P δ2

]
ds.

The derivatives of g1, g2 may be taken directly with respect to θ. This can be clearly
seen from (3.23)–(3.25), where fi may depend on θ, without modifying the argument.

We combine (3.55)–(3.57), and we pass to the limit as δ → 0. The continuity
properties with respect to both ηδ and θδ have been explained in (3.47)–(3.52). We
remark that the continuous dependence on δ → 0 is valid for P δ1 , P

δ
2 , P

δ
3 , P

δ
4 , R

δ, Qδ

since the system (3.38)–(3.44) can be put into integral (mild) form as well.
Remark 3.12. The gradient provided by Theorem 3.11 will be used in section 4

in the computation of numerical examples of shape optimization. It is also possible
to write the first order optimality conditions for problem (Q) by requiring (3.54) to
be positive in the admissible directions of variation.

4. Numerical experiments. We have computed several examples of arches,
including their shape optimization, using the methods developed in this paper. Nu-
merical examples concerning plates and beams have been reported in the works of
Arnăutu, Langmach, Sprekels, and Tiba [2] and Sprekels and Tiba [23], where differ-
ent (but related) approaches were used.

In Figures 1–4, deformations of various arches (Roman, gothic, closed) with dif-
ferent thicknesses ε > 0 and under certain square integrable loads [f1, f2] are shown.
The algorithm is based on Theorem 2.6 with explicit solutions of (2.20) obtained via
MAPLE. The integrals appearing in the coefficients of (2.20) and elsewhere can be
computed explicitly in the case of simple arches and simple forces (purely tangential
or purely normal, etc.). Otherwise, standard numerical integration procedures on the
real line should be applied.

The parametric representation of an arch associated to some function θ on a
prescribed interval is given by [ϕ1, ϕ2] with ϕ′

1 = cos θ, ϕ′
2 = sin θ, and with null
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Fig. 1. θ(t) = t, t ∈ [0, π/3], θ(t) = t+ π/3, t ∈ [π/3, 2π/3], f1(t) = 0, f2(t) = 1(SE), E = 10.

Fig. 2. θ(t) = t, t ∈ [0, π], f1(t) = sin(t)/S, f2(t) = cos(t)/S.

initial conditions. Notice that in Figure 1, θ is discontinuous and ϕ = [ϕ1 , ϕ2] is
just Lipschitz, which shows the importance of relaxing the regularity assumptions in
(1.1) as is done in problem (Pε) in section 2. Figures 2 and 4 show the same type of
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Fig. 3. θ(t) = t, f1(t) = sin(t), f2(t) = 2cos(t), t ∈ [0, π].

Fig. 4. θ(t) = t, f1(t) = sin(t)/(SE), f2(t) = cos(t)/(SE), t ∈ [0, 2π], E = 100.

arch with similar loading. The difference in the shape of the obtained deformations
is due to the fact that the first arch is clamped at both ends, while the closed arch
is clamped only in the point (0, 0) . Figure 3 refers to the “flexural” model briefly
explained in Theorem 2.11 and Remark 2.8. The constant E is the Young modulus of
the material, while S = ε3/2 gives the influence of the thickness ε > 0. We indicate,
as a short example, the explicit form of the deformation [v1, v2] corresponding to the
situation described in Figure 2:
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Fig. 5. θ(t) ∈ [0, π], f1(t) = 1/S, f2(t) = 0, θ0(t) = t, t ∈ [0, π].

v1(t) = (6 ε sin t + 4 sin t + 2π ε sin t + π ε2 t sin t − 4 ε t cos t − 2 ε2 sin t

− 2 ε t2 sin t − ε2 t2 sin t + π t sin t − 4 t cos t − t2 sin t − 2π − 2 ε π

+2π cos t + 2π ε cos t)/4 ε3/2(ε + 1) ,

v2(t) = (ε + 1) (2 t sin t + π t cos t − π sin t − t2 cos t)/4 ε3/2 .

Figures 5–9 and Tables 1 and 2 concern optimization procedures for arches, ac-
cording to the theory developed in section 3. For the computation of the gradient of
the cost functional, as given in (3.54), it is necessary to obtain the numerical solution
of the state system (3.1)–(3.5), of the adjoint system (3.38)–(3.44), and the approxi-
mation of the mappings [g′1(θ)]

∗P1 and [g′2(θ)]
∗P2 . It is obvious that by the nature

of the data an explicit calculation is not possible in the optimization routine.
We have considered an equidistant division of the interval of definition, denoted

here by [0, L], into N0 (a natural number) subintervals [ti, ti+1], with ti = i h, h =
L
N0

. The mapping θ ∈ L∞(0, L) is approximated, in different examples, by piecewise
linear splines or by piecewise constant functions. The integrals are computed accord-
ingly by standard quadrature formulas, and the solution of the ordinary differential
system is obtained via linear finite elements. The scalars λε1, λ

ε
2 from (3.3) are found

from the algebraic system (2.20). Similarly, the unknown initial conditions µ1, µ2 for
(3.38), (3.39) satisfy a system of the same type as (2.20) with the mappings l, g2 re-
placed by γ1, γ with γ′′ = −γ2, γ(0) = γ(L) = 0 (see Proposition 3.9 and its proof).
The functions [g′1(θ)]

∗P1 and [g′2(θ)]
∗P2 have been approximated in the following

way:

[g′k(θ)]
∗Pk(ti) � 1

h

∫ ti+1

ti

[g′k(θ)]
∗
Pk(s) ds

=
1

h

∫ L

0

Pk(s)
(
ḡk χ[ti,ti+1]

)
(s) ds , k = 1, 2 , i = 0, N − 1 ,

[g′k(θ)]
∗Pk(L) � 0 , k = 1, 2 .
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Fig. 6. θ(t) ∈ [0, π], f1(t) = sin(θ(t))/S, f2(t) = cos(θ(t))/S, θ0(t) = t, t ∈ [0, π].

For the determination of ḡk the relation (3.48) is used, and χ[ti,ti+1] is the charac-
teristic function of [ti, ti+1].

Although the studied optimization problems are nonconvex, adaptations of Rosen’s
and Uzawa’s gradient algorithms with projection (Gruver and Sachs [15], Arnăutu [1]),
have been used. A maximal number of iterations (between 200 and 300) has been
prescribed, and the solution has been chosen as the one which gives the best value of
the cost. The algorithm stops as well if the value of the gradient or of the cost is zero.

For a given example, several tests have been performed with various values of
the parameters N0, α (the parameter from the Rosen algorithm) and with both algo-
rithms. In general, the Rosen algorithm gives better results than the Uzawa algorithm.
In the optimization problems, we have fixed ε = 0.1. A typical line search procedure
is to subdivide the open-closed interval ]0, 1] into N1 equal parts and to give the
line search parameter the values i

N1
, i = 1, N1. The one which gives the best cost

will generate the next iteration. We have avoided, with good numerical results, the
usual computation of the line search parameter by a one-dimensional optimization
problem, which may be very time-consuming. The procedure used combines in an
ad hoc manner the gradient algorithm principle and a global search. A projection on
the admissible set has been performed in each iteration. The optimization problem
(Q) looks for the shape of the arch which ensures the minimal normal deformation
(in some integral sense) under the action of a prescribed force. We have examined
purely tangential (f2 = 0) or normal (f1 = 0) forces (since they give the basis in the
local system of axes), as well as forces not depending on the unknown arch. This
last case is described in the local system of coordinates by f1(t) = sin(θ(t))/S and
f2(t) = cos(θ(t))/S (for the force of modulus one and parallel to the vertical axis),
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Fig. 7. θ(t) ∈ [π/3, 2π/3], f1(t) = cos(θ(t))/S, f2(t) = sin(θ(t))/S, t ∈ [0, π], θ01(t) =
(2t+ π)/3, t ∈ [0, π/2), θ01(t) = 2t/3, t ∈ [π/2, π], θ02(t) = (t+ π)/3, t ∈ [0, π].

and in converse order for forces parallel to the horizontal axis. It should be noticed
that the force is independent of the arch, but its local representation is dependent via
θ.

The constraints for θ were given by subintervals of [0, π] as indicated in the
figures. This suffices for many applications and avoids the self-intersection of arches.
However, some degenerate case is still possible, according to Figure 9.

In Figure 5, under the action of a tangential force, and starting with the initial
iteration given by the Roman arch, it is seen that the global solution is the beam,
which clearly has no normal deflection under such a load. In our representation, two
global solutions (beams) are put into evidence, associated to θ = 0 and to θ = π.
The figure shows some iterations produced by the algorithm and the corresponding
values of the cost. In this experiment, we have used N0 = 200, n1 = 10, α = 0, 75,
and the arch close to the beam was obtained in iteration I = 24. We underline that
in this example, an infinity of global solutions (beams of any slope) exists, and this
shows the difficulty of the numerical computations.

In Figure 6, the initial iteration is again the Roman arch, but the force is of
constant modulus one and parallel to the vertical axis. The iterations that are rep-
resented show how the routine again finds the (unique if θ is constrained in [0, π])
global solution which is given by a vertical beam characterized by θ = π

2 . In this con-
figuration, the prescribed force becomes purely tangential to the arch, and the global
solution is a special case of the previous example (but not the problem as a whole).
We have used N0 = 200, N1 = 10, α = 1, and the global optimum was obtained at
iteration I = 139.

The numerical results from Figures 5 and 6 match perfectly with the physical
interpretation. This gives a strong validation of the notion of weak solutions that we
are using and shows the stability of our methods.

In Figures 8 and 9, the case of a purely normal load is discussed, the difference
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Fig. 8. θ(t) ∈ [π/6, 5π/6], f1(t) = 0, f2(t) = 1/S, θ0(t) = t + π/3, t ∈ [0, 2π/3], Jinit =
2.779911, Jopt = 0.008977.

being given by the constraints imposed on θ :
[
π
6 ,

5π
6

]
, respectively [0, π]. In Figure 9,

the “optimal” found θ is represented, not the arch as usual. As the solution is bang-
bang, θ ∈ {0, π} a.e. t ∈ [0, π]; then the arch degenerates and cannot be graphically
represented. Suggested by the bang-bang structure of the obtained solution (the
computations were made with N0 = 200, N1 = 20, α = 1, 5, I = 27), we have simply
generated a sequence θN , by giving to the new parameter N the values listed in Table
2 and to θN the values 0 and π, alternatively on subsequent subintervals. We have
directly computed the costs J(θN ) associated with such oscillating arches and listed
them in Table 2. The conclusion is that the sequence θN is a very efficient minimizing
sequence for this problem, ensuring for N ≥ 50 lower values of the cost than the one
computed by the complete numerical procedure (although this provides a satisfactory
result as well). We stress that the oscillatory nature of the minimizing sequence {θN}
is related to the noncompactness of the constraint set {θ ∈ L∞(Ω) ; θ(t) ∈ [0, π] for
almost every t ∈ (0, π)} in L∞(0, π). This set is only bounded and closed, which
is not enough to ensure the existence of the optimal θ as discussed in Theorem 3.2
and Corollary 3.3. This numerical example can be interpreted as showing that the
assumptions of Corollary 3.3 are sharp. We also underline that such compactness
comments apply to Figures 5 and 6 as well, although global minimum points exist in
these examples.

Figure 8 represents the initial (Roman) arch and the obtained solution, in the
same problem as in Figure 9, with the constraints given by the set [π6 ,

5π
6 ] in order

to avoid degeneracy. The numerical test used N0 = 300, N1 = 10, α = 1, 5, and the
obtained optimum corresponded to the iteration I = 160. The bang-bang structure
of the solution is again clear (recall that θ is the angle between the tangent to the
arch and the horizontal axis). However, Table 1 shows that the simple sequence
{θN} , constructed as in the previous example but with the values π/6, 5π/6, is no
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Fig. 9. θ(t) ∈ [0, π], f1(t) = 0, f2(t) = 1/S, θ0(t) = t, t ∈ [0, π], Jinit = 82.922993, Jopt =
0.0024772.

Table 1
θ(t) ∈ {π/6, 5π/6}, f1(t) = 0, f2(t) = 1/S, t ∈ [0, 2π/3].

N J(θN )
30 0.0141367792
50 0.0247750769
100 0.0303698330
200 0.0318697376
300 0.0321519172
500 0.0322969269
800 0.0323467156
1000 0.0323582113

longer a minimizing sequence for this problem. The commuting points for the bang-
bang solution are not equidistant in this example. Finally, in Figure 7, a “realistic”
example is studied: the construction of a most resistant roof subject to a vertical
constant load of modulus one. The reader should note that in this figure we have
interchanged the axes to make the representation look more “physical.” To perform a
more precise calculation, we have fixed N0 = 500, N1 = 100, α = 10. Two experiments
are reported in Figure 7, one with the initial iteration given by a fragment of Roman
arch, and another with the initial iteration given by two coupled fragments of Roman
arch. In both cases, the numerical solutions were obtained in the first iteration, I = 1,
and are very similar. In this example (as in Figure 8), the theoretical optimal value
is “far” from zero, and the computed values are very good.

We close this presentation by underlining that working with low regularity as-
sumptions was essential for the optimization applications in view of the bang-bang
structure of the optimal θ, as found in many examples. However, in Figure 6 the
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Table 2
θ(t) ∈ {0, π}, f1(t) = 0, f2(t) = 1/S, t ∈ [0, π].

N J(θN )
30 0.0095834975
50 0.0012420426
100 0.0000776279
200 0.0000048517
300 0.0000009584
500 0.0000001242
800 0.0000000190
1000 0.0000000078

global solution is not bang-bang, and this property seems to be related just to the
applied force. That is why we did not study bang-bang properties in section 3, al-
though such properties are known for plates, according to Sprekels and Tiba [19, 20].
We also underline the nonlocal optimization character of our numerical experiments
as this is obvious from the reported results.

REFERENCES
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Abstract. The stability of a steady state solution of a neutral functional differential equation
can be sensitive to infinitesimal changes in the delays. This phenomenon is caused by the behavior
of the essential spectrum and is determined by the roots of an exponential polynomial. Avellar and
Hale [J. Math. Anal. Appl., 73 (1980), pp. 434–452] have considered the case of multiple fixed and
nonzero delays. In the first part of this paper their results are illustrated by means of spectral plots.
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1. Introduction. In this paper we study the behavior of the roots of the expo-
nential polynomial

H(λ) � 1−
N∑
j=1

aje
−λτj , τj ∈ R

+
0 , aj ∈ R, j = 1, . . . , N,(1.1)

in the complex plane. H(λ) = 0 is the characteristic equation of the functional

difference equation x(t) =
∑N

j=1 ajx(t− τj), which determines the essential spectrum
of the solution operator of the neutral functional differential equation (NFDE),

d

dt


x(t)−

N∑
j=1

ajx(t− τj)


 = b0x(t)−

N∑
j=1

bjx(t− τj).(1.2)

It is well known that the spectrum of (1.2) determines the stability of its zero solution,
since equations of this form satisfy the spectrum determined growth condition; see
[8, Corollary IX.3.1]. However, the stability of the zero solution may be sensitive
to arbitrarily small changes in the delays τj . Since this sensitivity is caused by the
essential spectrum, which is determined by (1.1) (see [9]), we perform a detailed study
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Neuve, Belgium (dochain@auto.ucl.ac.be).

1134



SENSITIVITY TO DELAYS IN NEUTRAL EQUATIONS 1135

of (1.1). In terms of the characteristic roots of (1.1), this sensitivity is caused by the
occurrence of so-called infinite root chains, sequences of roots whose imaginary parts
grow unbounded, yet whose real parts have a finite limit. It was shown by Avellar and
Hale [1] that, as a consequence, the smallest upper bound c = sup {�(λ) : H(λ) = 0} is
not continuous w.r.t. the delays τj . Hence it is possible that arbitrarily small changes
in the delays destabilize the NFDE system. This is of importance in control problems,
since such critical delay changes can be caused by a small delay in the application of
the control action.

NFDEs arise, for example, in models of distributed networks [13, 12], combus-
tion [20], and the control of structures through delayed forcing depending on the
acceleration [2].

The lack of robustness w.r.t. small changes in the delays is also observed for
boundary controlled (hyperbolic) PDEs [4, 5, 6, 7, 9, 10, 15, 19, 21] and feedback
controlled descriptor systems [14]: a small delay in the application of the control ac-
tion, which is inevitable in practice due to, e.g., measurements or AD-DA conversion,
can lead to instability of the stable undelayed system. Hence it is very important to
include all possible delays in the model.

In the literature, basically two approaches are used to analyze such problems.
A first approach, which will be followed in this paper, studies directly the influence
of delay perturbations on the characteristic roots of equations of the form (1.1). In
[1] Avellar and Hale consider (1.1) and show that the rational (in)dependency of the
delays plays a crucial role for the robustness properties of the given system. However,
in [1] only perturbations of fixed, nonzero delays are considered. These results do not
safely apply to the case discussed in this paper, where zero delays are perturbed to
(small nonzero) delays. In the latter case, infinite root chains occur, whose real part
may tend to +∞, a phenomenon which does not occur in the presence of perturbations
of (only) nonzero delays. As in [1], we allow a general dependency structure on the
delay perturbations and derive sufficient and necessary conditions for the occurrence
of characteristic roots with large real part for vanishing delays. Furthermore, we
discuss the occurrence of roots with large positive real but small imaginary part. We
prove that the occurrence of these phenomena is determined by what we call the
“small delay” part of the characteristic equation (except for some degenerate cases).

On the other hand, for the analysis of a small time-delay in feedback systems,
another approach can be followed. In [15, 16] Logemann and coworkers rewrite the
closed loop system as an input-output mapping H(s) with (delayed) unity feedback
e−εs, where ε represents a small feedback delay, and formulate conditions for robust-
ness and nonrobustness of stability against the small time-delay on the open loop
transfer function H(s). They show that, depending on the properties of H(s), a small
time-delay may not only result in instability but may also cause characteristic roots
with arbitrarily large imaginary and real part. While [16] assumes regularity of H(s),
some extensions are made in [15] to the case where H(s) is non well-posed. In [17]
Logemann and Townley use this approach to show that when a NFDE

d

dt
Dxt = Lxt + Bu(t), Dxt = x(t)−

∑
i

Dix(t− hi),(1.3)

with control input u(t), has an exponentially unstable difference operator D, any
stabilizing state feedback law is not robust against a small perturbation of the feedback
delays. Since the essential spectrum is determined by the difference equation inside
the differentiation operator, such a feedback law should include velocity feedback
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u = − d
dt (
∑

j Fjx(t − kj)), kj > 0, which leads to a closed loop system with the
essential spectrum determined by

det


I −∑

i

Die
−λhi +

∑
j

Fje
−λ(kj+ε)


 = 0,(1.4)

where ε represents a small perturbation in the feedback delays. Since there is only
one perturbation ε on the (fixed and nonzero) delays hi, kj in (1.4), the analysis of
this robustness problem can be recast in the framework of [16]. That procedure is not
possible for the broader class of delay perturbations considered in this paper.

Note that for some problems both approaches described above can be used. For
instance, in section 6 we apply the theory developed throughout this paper to a
boundary controlled wave equation, which was also analyzed in [16].

In section 2 we repeat the main results of [1] and introduce necessary notation. In
section 3 we visualize and interpret these results by means of plots of the characteristic
roots, thereby explaining the nature of the instability mechanisms. We explain that
the sensitivity of c to arbitrary small changes of the delays is necessarily caused by
roots with large imaginary part. In section 4 we demonstrate with a simple example
that the theory of [1, 17] is not sufficient to deal with vanishing delays. We prove
under which conditions characteristic roots with large real part can occur and give a
thorough discussion of these results. We conclude in section 6 with two illustrative
examples.

2. Analysis with fixed delays. In this section we briefly describe the main
results of [1], where the case of fixed and nonzero delays is considered.

2.1. Definitions and notation. Throughout this section we consider the roots
of exponential polynomials of the form

H(λ) � 1−
N∑
j=1

aje
−λτj ,(2.1)

where we assume that the delays τj are fixed and satisfy 0 < τ1 < τ2 < · · · < τN .
Define the collection of the real parts of all the roots of (2.1) as Z,

Z = {�(λ) : H(λ) = 0} ,

and denote its closure by Z̄. The smallest upper bound of Z̄, which is important for
stability considerations, is

c = sup {�(λ) : H(λ) = 0} .

Assume that the N delays τj , j = 1, . . . , N , depend on M ≤ N so-called inde-
pendent delays r1, . . . , rM :

τj =

M∑
k=1

γj,krk = γj · r,(2.2)

whereby γj = (γj,1, . . . , γj,M ) ∈ N
M are nonzero vectors with nonnegative integer

coefficients and r ∈ (0,∞)M . Dependency of the kind (2.2) often appears in difference
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equations arising from practical applications, as, for example, in (delayed) boundary
controlled wave equations (see section 6). The same holds when dealing with vector
valued difference equations. Indeed, the characteristic equation of

x(t) =

M∑
k=1

Akx(t− rk), x(t) ∈ R
n, Ak ∈ R

n×n, l = 1, . . . ,M,

is given by

det

(
I −

M∑
k=1

Ake
−λrk

)
= 0,

which is seen, using an explicit formula for the determinant, to be an exponential
polynomial with dependent delays.

2.2. Rationally dependent and rationally independent delays. The num-
bers r1, r2, . . . , rM are rationally independent if and only if

M∑
k=1

nkrk = 0, nk ∈ Z,

implies nk = 0, k = 1, . . . ,M . For example, two numbers are rationally independent if
their ratio is an irrational number. An important property of rationally independent
numbers which will be used throughout the paper is given by Kronecker’s theorem
[11, Theorem 444].

Theorem 2.1. Given r = (r1, r2, . . . , rM ) with rationally independent compo-
nents and θ = (θ1, . . . , θM ) arbitrary, there exists a sequence of real numbers {dn}n≥1

such that

lim
n→∞ ei(dnrk−θk) → 1, k = 1, . . . ,M.

We now provide a useful characterization of Z̄(r) and its dependence on r. First,
consider the following definitions. For any two sets E and F ⊂ R and any ρ ∈ R, let

d(ρ,E) = inft∈E |ρ− t|,
δ(E,F ) = supρ∈E d(ρ, F ), and

D(E,F ) = max {δ(E,F ), δ(F,E)} .
The number D(E,F ) is called the Hausdorff distance between the sets E and F .

We will illustrate with examples that Z̄(r) is not continuous w.r.t. the delays r ∈
(0,∞)M since arbitrarily small delay changes can change their rational (in)dependence.
However, the following weaker property holds [1, Lemma 2.5].

Theorem 2.2. Z̄(r) is lower semicontinuous in r; that is, for each r0 ∈ (0,∞)M ,

lim
r→r0

δ(Z̄(r0), Z̄(r)) = 0.

When the delays r are rationally independent, we have [1, Theorem 2.2].
Theorem 2.3. Z̄(r) is continuous in the Hausdorff metric for rationally inde-

pendent delays r.
This result is important because it implies the continuity of the supremum c(r) of

Z̄(r) at rationally independent r. In this case the set Z̄(r) is completely characterized
by [1, Theorem 3.1 and Corollary 3.2].
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Theorem 2.4. If the components of r are rationally independent, then the fol-
lowing statements are equivalent:

α ∈ Z̄(r)
�

∃θ = (θ1, . . . , θM ) with θk ∈ [0, 2π], k = 1, . . . ,M ,

such that 1−∑N
j=1 aje

−αγj ·re−iγj ·θ = 0.

Corollary 2.5. Z̄ is the union of a finite number of intervals.
The combination of Theorems 2.2 and 2.3 is very important for control problems

because the right-most characteristic roots determine stability: suppose, for example,
that r0 is given with rationally dependent components and denote the maximum of
Z̄(r0) by c(r0). On the other hand, consider a sequence of rationally independent
delays {rn}n≥1 with limit r0 and denote by c(rn) the maximum of Z̄(rn). Then from
Theorems 2.2 and 2.3 it follows that

c(r0) ≤ lim
n→∞ c(rn).(2.3)

In other words, the supremum of Z̄ is always higher when one considers the given
delays as independent. In section 3 it will be shown that inequality (2.3) can be
strict. This means that when the delays in the characteristic equation modelling
a physical system are results of independent phenomena (for example, independent
measurements), one has always to consider the delays as rationally independent in
order to obtain a reliable upper bound on the real parts of the spectrum. In section 3
will be explained what happens with the individual characteristic roots when one
deals with rationally independent delays close to rationally dependent delays.

2.3. Special cases.
Fully independent delays. This corresponds to the case where M = N , γj = ej ,

the jth unity vector in R
N , and the delays τ1, τ2, . . . , τN are rationally independent.

Theorem 2.4 can be rewritten as the following.
Theorem 2.6. When the delays are rationally independent,

c = sup {�(λ) : H(λ) = 0}
satisfies

1−
N∑
j=1

|aj |e−cτj = 0.(2.4)

The solution c of (2.4) also serves as a (nonstrict) upper bound in the case of
rationally dependent delays.

Commensurate delays. This is the case when M = 1. Thus delays τ1, . . . , τn are
commensurate if and only if there exists a real number r such that τj = njr with
nj ∈ N, j = 1, . . . , N ; i.e., all the delays are integer multiples of a same number. In
this case (2.1) can be rewritten as a polynomial in e−λr. As a consequence, Z̄(r)
consists of a finite number of points, and the spectrum is vertically periodic with
period 2π

r i.

3. Visualization and interpretation. In the previous section the delays r
were considered fixed. When one approaches rationally dependent delays r0, the
supremum of the real parts of the characteristic roots can have a discontinuity. First,
we illustrate how this discontinuity is compatible with the continuous movement of
individual roots as r approaches r0. Second, we discuss the consequences for control
applications.
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Fig. 3.1. Part of the spectrum of (3.1) on two different scales for h = 0.01.

3.1. Nonuniform convergence. Consider, as an example, the characteristic
equation

H(λ, h) � 1 + 1.1e−λ + 0.2e−λ(2+h) = 0,(3.1)

with delays 1 and 2 + h. When h is zero, (3.1) is a quadratic equation in e−λ and
the roots are λ ≈ −1.4704 + i(2l + 1)π, l ∈ Z, and λ ≈ −0.1391 + i(2l + 1)π, l ∈ Z.
When h > 0 and irrational (and therefore the two delays are rationally independent),
the supremum c(h) = sup{�(λ) |H(λ) = 0} satisfies

1− 1.1e−c(h) − 0.2e−c(h)(2+h) = 0,(3.2)

which yields limh→0 c(h) ≈ 0.2302 > c(0) ≈ −0.1391. Hence c(h), and the corre-
sponding stability of the associated essential spectrum changes discontinuously w.r.t.
h. Individual (single) roots, however, move continuously w.r.t. the delays. From

1 + 1.1e−λ + 0.2e−λ(2+h) = 0

one derives

dλ

dh
=

−0.2λe−λ(2+h)

1.1e−λ + 0.2(2 + h)e−λ(2+h)
.

But this “sensitivity” of the individual roots increases to infinity as their modulus
|λ| → ∞. Figure 3.1 shows part of the spectrum of (3.1) on two different scales
when h = 0.01. When h is reduced to zero, the spectrum converges pointwise and
nonuniformly to the limit case h = 0, as shown in Figure 3.2.

3.2. Unstable difference equations cannot be stabilized. Consider the
following control system with input u(t):

d

dt
(x(t) + 2x(t− 1)) = ax(t) + bx(t− τ) + u(t).(3.3)
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Fig. 3.2. Part of the spectrum of (3.1) for h = 0.01 and h = 0.002.

When u(t) ≡ 0, the difference equation

x(t) + 2x(t− 1) = 0(3.4)

determines the essential spectrum of the semigroup associated with (3.3); see [8]. The
zero solution of (3.4) is clearly unstable: all eigenvalues have real part log(2). In [17]
it is shown that such an equation cannot be stabilized robustly in the presence of a
small time-delay in the application of the feedback law.

When applying the velocity feedback u(t) = 3
2 ẋ(t−1−h), the difference equation

is modified to

x(t) + 2x(t− 1)− 3

2
x(t− 1− h) = 0,(3.5)

where h models the estimation error of the delay. For h = 0 the difference equation
is clearly stabilized: all roots have real part − log(2). However, for irrational h the
supremum c(h) of the real parts of the spectrum can be calculated from

1− 2e−c(h) − 3

2
e−c(h)(1+h) = 0,

from which follows limh→0 c(h) = log(3.5) > log(2). Thus a practical feedback desta-
bilizes the original system even more. This is shown in Figure 3.3.

Because sensitivity to small changes of the delays is caused by roots of (2.1) with
large modulus, and because the set of the real parts of the roots of (2.1) is contained
in a finite number of intervals, such roots have large imaginary part. Thus sensitivity
to infinitesimal changes in the delays is caused by modes of very high frequency.
This is shown in Figure 3.4. Note that the control of (3.3) works for low frequency
modes while it does not for high frequency modes (see Figure 3.3). We remark that
the question arises whether the model used is a valid description of the modelled
reality for such frequencies. In reality one (usually) expects larger damping for larger
frequencies. Whether this damping occurs strongly and soon enough depends on
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Fig. 3.3. Part of the spectrum of the uncontrolled system (3.4) and the controlled system (3.5)
for h = 0.01.

 (  )

Fig. 3.4. When h → 0, the spectrum of (3.5) converges pointwise to the spectrum of x(t) +
1
2
x(t− 1) = 0.

the particular application. In section 4 we will see that our generalization leads to
situations where sensitivity is not necessarily caused by high frequency modes.

4. Vanishing delays. The analysis in section 2 is valid under the assumption
that all the delays are fixed, different, and nonzero. These assumptions can be relaxed
to the requirements that, first, the smallest delays are not arbitrary close to zero and,
second, that the largest delays are not arbitrary close to each other. In this section
we explicitly deal with these limit cases. We show that vanishing delays can give rise
to roots with unbounded positive real parts and that, in a similar way, coinciding
largest delays can give rise to roots with unbounded negative real part. Since the
latter is of less importance for applications, we mention only briefly the occurrence of
this phenomenon.
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Fig. 4.1. Zeros of (4.1) for h = 0.01 in two different regions of the complex plane.

4.1. Introductory example. We investigate the zeros of

H(λ, h) = 1 + 2e−λh − 1

2
e−λ(4.1)

as h→ 0+.
If we set h to 0 in (4.1), all roots of H(λ, 0) are of the form λ = − log(6) + i2πl,

l ∈ Z, and the collection of real parts of the roots of H(λ, 0) is Z̄(0) = {− log(6)}.
However, from the analysis of section 2, we know that for h and 1 rationally inde-
pendent (i.e., h irrational), Z̄(h) coincides with the α-components of all solutions
(α, θ1, θ2) of

1 + 2e−αhe−iθ1 − 1

2
e−αe−iθ2 = 0.(4.2)

If h goes to 0 in (4.2), we are led to the conclusion that

lim
h→0+

Z̄(h) = [− log(6),− log(2)],(4.3)

i.e., that, although the real part of each individual root of H(λ, h) approaches − log(6)
as h goes to zero, at the same time the collection of all the real parts of all roots
converges to (4.3).

Figure 4.1 (left panel) shows part of the roots of (4.1) for h = 0.01. At first
glance this confirms the above conclusions. However, if we look at a larger region in
the complex plane (see the right panel of Figure 4.1) we see that there exist additional
roots of H(λ, h) with quite different behavior. When h is further reduced, the real
parts of the roots at �(λ) ≈ 69.3 move off to +∞, approximately as the solutions of

1 + 2e−λh = 0.(4.4)

Indeed, if the real part of λ is large, we cannot set λh to zero. Rather, we can neglect
1
2e

−λ, leading to (4.4) and

λ ≈ 1

h
(log 2 + i(2l + 1)π) , l ∈ Z.(4.5)
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Formula (4.5) clearly illustrates that arbitrarily small delays (0 < h� 1) can lead to
arbitrarily unstable characteristic roots (�(λ) � 1).

The situation can be summarized as follows. When h tends to zero, the spectrum
consists partly of roots with bounded real part, which can be analyzed along the lines
of section 2, and partly of “diverging” roots, whose real part grows without bound as
the solutions of the “small-delay part” (4.4) of (4.1). In the rest of this section these
properties will be generalized to the multiple delay case.

4.2. Notation. The general form of the exponential polynomial studied within
this section is

H(λ, r, s) = 1−
∑
i∈I

aie
−λτi −

∑
j∈J

bje
−λτj ,(4.6)

where

∀i ∈ I : τi = γi · r, ∀j ∈ J : τj = γj · r + νj · s,
and where

I = {1, 2, . . . , N1}, J = {N1 + 1, N1 + 2, . . . , N1 + N2}
are used for notational convenience. The components of r ∈ [0,+∞)M and s ∈
[0,+∞)L are the independent delays; γi ∈ N

M , γj ∈ N
M , and νj ∈ N

L are vectors
with nonnegative integer coefficients. γi and νj are nonzero vectors; that is, both have
at least one nonzero element for all i and j. Splitting the independent delays into r
and s opens the possibility of dealing with a combination of “normal” and arbitrarily
small delays by letting r → 0 combined with constant s > 0.

We also extend the definition of the inner product “·” to the situation with γi ∈
N
M and R ∈ [0,+∞]M . Then

γi ·R =

M∑
j=1

γi,jRj

has the usual meaning, except that γi,j × (Rj = +∞) is taken to be 0 when γi,j = 0,
and +∞ otherwise. The underlying rationale for this is that Rj = +∞ will be the
result of some limit while the γi,j are fixed.

4.3. Arbitrarily unstable characteristic roots. The “small-delay part” of
(4.6) is

1−
∑
i∈I

aie
−λτi .

We now prove how its solutions determine when arbitrarily small delays can lead to
arbitrarily unstable characteristic roots.

Theorem 4.1. The following statements are equivalent:

∃θ ∈ [0, 2π]M , ∃R ∈ [0,+∞]M such that 1−∑i∈I aie
−γi·Re−iγi·θ = 0

�
∃ {rn}n≥1 , {cn}n≥1 , {dn}n≥1 ,

with limn→∞ cn = ∞, rn ≥ 0, and limn→∞ ‖rn‖ = 0 and such that
limn→∞H(cn + idn, rn, s) = 0 for fixed s > 0.
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Proof of ⇓. Consider a (re)ordered partition of R = (R1, . . . , RK , RK+1, . . . , RM )
such that R1, . . . , RK are finite and RK+1, . . . , RM are infinite. That is, let R =
(R[1], R[2]) with R[1] = (R1, R2, . . . , RK) ∈ R

K and R[2] = (∞,∞, . . . ,∞) = ∞M−K .
Likewise, consider the corresponding partition for θ and γi: θ = (θ[1], θ[2])

and γi = (γ
[1]
i , γ

[2]
i ), with θ[1] = (θ1, θ2, . . . , θK) the first K components and θ[2] =

(θK+1, θK+2, . . . , θM ) the remaining M − K components of θ, and similarly for γ
[1]
i

and γ
[2]
i , i ∈ I. Define the set of indices I1 ⊆ I, whereby for i ∈ I1 the last M −K

components of γi are zero, that is, where γ
[2]
i = 0M−K , and set I2 = I \ I1. Obviously

1−
∑
i∈I

aie
−γi·Re−iγi·θ = 0

can be written as

1−
∑
i∈I1

aie
−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

= 0.

Because the components of R[1] may be rationally dependent, consider a sequence

{u[1]
n }n≥1 that converges to R[1] but whereby the components of u

[1]
n ∈ (0,+∞)K

are rationally independent for each n. Choose a (strictly positive) sequence of real
numbers {εn}n≥1 with limn→∞ εn = 0 such that

‖u[1]
n −R[1]‖ < εn.

Because u
[1]
n has rationally independent coefficients, due to Theorem 2.1, there exists,

for each n, a sequence of real numbers {vn,m}m≥1 such that

lim
m→∞ eiγ

[1]
i

.(vn,mu[1]
n −θ[1]) = 1 ∀i ∈ I1;

hence ∃m∗(n) such that |eiγ[1]
i

·(vn,m∗(n)u
[1]
n −θ[1]) − 1| < εn ∀i ∈ I1. Set vn = vn,m∗(n).

We have created {u[1]
n }n≥1 and {vn}n≥1 with

‖u[1]
n −R[1]‖ < εn,

|eiγ[1]
i

·(vnu[1]
n −θ[1]) − 1| < εn ∀i ∈ I1, and

limn→∞ εn = 0.

Choose further {u[2]
n }n≥1, with u

[2]
n ∈ (0,+∞)

M−K
and with limn→∞ u

[2]
n = ∞M−K ,

and define {un}n≥1 as un = (u
[1]
n , u

[2]
n ) ∈ (0,+∞)M .

We are now in a position to choose a sequence of real parts cn. Choose {cn}n≥1

with cn ∈ (0,+∞) such that cn goes to infinity faster than every component of un, that
is, such that limn→∞ cn = +∞ and limn→∞ 1

cn
un = 0M . Second, define a sequence of

imaginary parts {dn}n≥1 as dn = cnvn, and a sequence of vanishing delays {rn}n≥1

as rn = 1
cn
un.

We now have

H(cn + idn, rn, s)

= 1−
∑
i∈I

aie
−cnγi·rne−idnγi·rn −

∑
j∈J

bje
−cn(γj ·rn+νj ·s)e−idn(γj ·rn+νj ·s)

= 1−
∑
i∈I

aie
−γi·une−iγi·vnun −

∑
j∈J

bje
−cn(γj ·rn+νj ·s)e−idn(γj ·rn+νj ·s).
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The second term can be split into, first,
∑

i∈I1 aie
−γi·une−iγi·vnun , whereby the last

M − K components of γi are zero and thus γi · un = γ
[1]
i · u[1]

n , and, second,∑
i∈I2 aie

−γi·une−iγi·vnun , whereby limn→∞ γi · un = +∞.
Hence

H(cn + idn, rn, s)

= 1−
∑
i∈I1

aie
−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

e−γ
[1]
i

·(u[1]
n −R[1])e−iγ

[1]
i

·(vnu[1]
n −θ[1])

−
∑
i∈I2

aie
−γi·une−iγi·vnun −

∑
j∈J

bje
−cn(γj ·rn+νj ·s)e−idn(γj ·rn+νj ·s)

= 1−
∑
i∈I1

aie
−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

e−γ
[1]
i

·(u[1]
n −R[1])︸ ︷︷ ︸

→1

e−iγ
[1]
i

·(vnu[1]
n −θ[1])︸ ︷︷ ︸

→1

−
∑
i∈I2

aie
−

→∞︷ ︸︸ ︷
γi · une−iγi·vnūn −

∑
j∈J

bje
−

→∞︷ ︸︸ ︷
cn


=0︷ ︸︸ ︷
νj · se−cnγj ·rne−idn(γj ·rn+νj ·s)

tends to zero as n approaches infinity, which completes this part of the proof.

Proof of ⇑. The limn→∞H(cn + idn, rn, s) = 0 implies

lim
n→∞ 1−

∑
i∈I

aie
−γi·cnrne−iγi·dnrn = 0,(4.7)

because the other term vanishes at infinity.
Consider the sequence {cnrn}n≥1 with elements cnrn = (cnrn,1, . . . , cnrn,M ). For

each sequence of the kth component, {cnrn,k}n≥1, there are two possibilities as n tends

to infinity: either the sequence is unbounded (with or without limit) or the sequence
is bounded (with or without limit). Suppose that {cnrn,k}n≥1 is unbounded. Then

there exists a subsequence with limit infinity. When, on the other hand, {cnrn,k}n≥1
is bounded, a subsequence with finite limit exists.

This way one can repeatedly construct subsequences to obtain an infinite set of
indices S1 such that for each k ∈ {1, 2 . . . ,M}, limn→∞,n∈S1 cnrn,k exists in [0,+∞].
We still have

lim
n→∞,n∈S1

1−
∑
i∈I

aie
−γi·cnrne−iγi·dnrn = 0,(4.8)

and because each γi is a vector of integer coefficients, e−iγi·dnrn equals e−iγi·((dnrn) mod 2π)

and thus

lim
n→∞,n∈S1

1−
∑
i∈I

aie
−γi·cnrne−iγi·((dnrn) mod 2π) = 0.

Consider the sequence of vectors {(dnrn) mod 2π}n≥1,n∈S1
, which is bounded and

thus contained in a compact set (w.r.t. some norm). Consequently, it must have a
converging subsequence, denoted by the indices S2 ⊂ S1. Finally,

lim
n→∞,n∈S2

1−
∑
i∈I

aie
−γi·cnrne−iγi·((dnrn) mod 2π) = 0,
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and we define

Rk = lim
n→∞,n∈S2

cnrn,k ∈ [0,+∞], k = 1, 2, . . . ,M,

and

θk = lim
n→∞,n∈S2

(dnrn,k) mod 2π ∈ [0, 2π], k = 1, 2, . . . ,M.

Hence we have defined every component of R and θ in such a way that

1−
∑
i∈I

aie
−γi·Re−iγi·θ = 0,

which completes the proof.
We now strengthen the results of the previous theorem: we prove the existence

of a sequence of roots λn of H(λ, rn, s) = 0 with real part tending to +∞, in other
words, that arbitrarily small delays cause roots with arbitrarily large real part.

Theorem 4.2. Consider the statements
(a) ∃θ ∈ [0, 2π]M , ∃R ∈ [0,+∞]M such that 1−∑i∈I aie

−γi·Re−iγi·θ = 0;
(b) ∃i ∈ I such that γi ·R �= 0 and γi ·R �= +∞;
(c) ∃ {rn}n≥1 , {λn = en + ifn}n≥1 with limn→∞ en = +∞, rn ≥ 0, and limn→∞

rn = 0M such that H(λ, rn, s) = 0.
Then the following hold:

(1) (a) and (b) ⇒ (c),
(2) (c) ⇒ (a).
The special case where (a) holds but (b) is violated is treated separately in sub-

section 4.5. This corresponds to a degenerate case where the “small delay part” of
the characteristic equation doesn’t provide enough information about the existence of
roots with large real part for vanishing delays.

Proof of (2). This proof is trivial (Theorem 4.1).
Proof of (1). Following Theorem 4.1 there exist sequences {rn}n≥1, {cn}n≥1, and

{dn}n≥1, with limn→∞ cn = +∞, rn ≥ 0, and limn→∞ rn = 0M , such that

lim
n→∞H(cn + idn, rn, s) = 0,

and the proof has provided us with a way to construct such sequences.

Choose {εn}n≥1, {u[1]
n }n≥1, and {vn}n≥1 as in Theorem 4.1 and such that∣∣∣∣∣1−

∑
i∈I1

aie
−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

e−γ
[1]
i

·(u[1]
n −R[1])e−iγ

[1]
i

·(vnu[1]
n −θ[1])

∣∣∣∣∣ < e−n.

Further requirements on the decay-rate, which can be chosen arbitrarily fast, will be
given later in the proof (see formulae (4.9) and (4.10)). Choose {cn}n≥1 as cn = n,

{u[2]
n }n≥1 as u

[2]
n =

√
n(1, 1, . . . , 1), {dn}n≥1 as dn = vncn, {un}n≥1 as un = (u

[1]
n , u

[2]
n ),

and {rn}n≥1 as rn = 1
cn
un.

Consider the functions H̄n(λ) = cnH(λ, rn, s). Using the particular choices above
it is straightforward to show that

lim
n→∞ H̄n(cn + idn) = 0, lim

n→∞
dH̄n

dλ
(cn + idn) = Q,
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where

Q =
∑
i∈I1

aiγ
[1]
i ·R[1]e−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1] ∈ C

and

lim
n→∞

dkH̄n

dλk
(cn + idn) = 0, k ≥ 2.

Around cn + idn, the analytic function H̄n can be expanded as

H̄n(λ) =

∞∑
k=0

dkH̄n

dλk

∣∣∣∣
cn+idn

(λ− (cn + idn))k,

and when defining µ = λ− (cn + idn),

H̄n(µ) =

∞∑
k=0

dkH̄n

dλk

∣∣∣∣
cn+idn

µk.

We will now show that H̄n(µ) converges uniformly on |µ| ≤ 1 to the function H̄(µ) =
Qµ or, equivalently, that the function

Dn(µ) = H̄n(µ)−Qµ

converges uniformly to zero in |µ| ≤ 1. In the appendix it is shown (Lemma A.1) that
this implies that H̄n(µ) has a root near µ = 0 for sufficiently large n when Q �= 0. One
should emphasize that µ is in fact a local coordinate depending on n: we compare the
local behavior of each function H̄n(λ) near cn + idn with H̄(µ) = Qµ.

To construct an upper bound on |Dn(µ)| for |µ| ≤ 1, first define strictly positive
numbers ∆i, ∆j , βi and integer P such that, for n ≥ P ,

γj · rn ≤ ∆j , j ∈ J,

γi · cnrn ≤ γ
[1]
i ·R[1] + ∆i, i ∈ I1,

γi · rn ≤ 1, i ∈ I = I1 ∪ I2, and
γi · cnrn ≥ βi

√
n, i ∈ I2.

Second, the decay rate of {εn}n≥1 should be chosen in such a way that for n ≥ P

n

∣∣∣∣∣1−
∑
i∈I1

aie
−γi·cnrne−iγi·dnrn

∣∣∣∣∣ ≤ 1

n

∑
i∈I1

|ai|(4.9)

and ∣∣∣∣∣
∑
i∈I1

aiγi · cnrne−γi·cnrne−iγi·dnrn −Q

∣∣∣∣∣ ≤ 1

n

∑
i∈I1

|ai|(γ[1]
i ·R[1] + ∆i).(4.10)

In this way we can compute bounds for Dn(0) and its derivatives in µ = 0, n ≥ P :

|Dn(0)| ≤ n

∣∣∣∣∣1−
∑
i∈I1

aie
−γi·cnrne−iγi·dnrn

∣∣∣∣∣+ n

∣∣∣∣∣
∑
i∈I2

aie
−γi·cnrne−iγi·dnrn

∣∣∣∣∣
+n
∑
j∈J

∣∣bje−νj ·scne−γj ·cnrne−iγj ·dnrn∣∣
≤ 1

n

∑
i∈I1

|ai|+
∑
i∈I2

ne−βi
√
n|ai|+

∑
j∈J

ne−nνj ·s|bj |,
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and, concerning the derivatives,∣∣∣∣dDn

dµ
(0)

∣∣∣∣ ≤ 1

n

∑
i∈I1

|ai|(γ[1]
i ·R + ∆i) +

∑
i∈I2

ne−βi
√
n|ai|

+
∑
j∈J

n(∆j + νj · s)e−nνj ·s|bj |,

and for k ≥ 2,∣∣∣∣dkDn

dµk
(0)

∣∣∣∣ ≤ 1

n

∑
i∈I1

|ai|(γ[1]
i ·R[1] + ∆i) +

∑
i∈I2

ne−βi
√
n|ai|

+
∑
j∈J

n(∆j + νj · s)ke−nνj ·s|bj |.

Finally, for each µ with |µ| ≤ 1,

|Dn(µ)| ≤
∞∑
k=0

1

k!

∣∣∣∣dkDdµk
∣∣∣∣

≤
∑
i∈I1

1

n
|ai|(γ[1]

i ·R[1] + ∆i)

∞∑
k=0

1

k!
+
∑
i∈I2

ne−βi
√
n

∞∑
k=0

|ai| 1

k!

+
∑
j∈J

ne−nνj ·s|bj |
∞∑
k=0

(∆j + νj · s)k
k!

≤
∑
i∈I1

1

n
|ai|(γ[1] ·R[1] + ∆i)e +

∑
i∈I2

ne−βi
√
n|ai|e

+
∑
j∈J

ne−nνj ·s|bj |e(∆j+νj ·s)

can thus be bounded uniformly, whereby the upper bound tends to zero as n→∞.
Because the series {H̄n(µ)}n≥1 converges uniformly to a function H̄(µ) = Qµ, due

to Lemma A.1, there must be a number N ∈ N such that for ∀n ≥ N , H̄n(µ) has a root
which converges to zero as n→∞ whenever Q �= 0. Returning to the original problem,
this means that cn+idn asymptotically coincides with a root en+ifn of H̄n(λ), which
is of course a root of H(λ, rn, s). Thus ∀n ≥ N , ∃en + ifn : H(en + ifn, rn, s) = 0
and limn→∞(cn − en) + i(dn − fn) = 0. By renumbering the sequences starting from
n = N , the proof is complete in the case Q �= 0.

We will now show that when Q = 0 there always exists an integer k such

that
∑

i∈I1 ai(γ
[1]
i · R[1])le−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

= 0 for l < k and Q′ =
∑

i∈I1 ai(γ
[1]
i ·

R[1])ke−γ
[1]
i

·R[1]

e−iγ
[1]
i

·θ[1] �= 0. In this case, cknH(λ, rn, s) will converge locally to
Q′(λ− (cn + idn))k, and the proof proceeds as in the case Q �= 0.

We prove that if Q′ does not exist, (b) is necessarily violated. For notational

convenience, define âi = aie
−γ

[1]
i

·R[1]

e−iγ
[1]
i

·θ[1]

. Given
∑

i∈I1 âi = 1,
∑

i∈I1(γ
[1]
i ·

R[1])âi = 0, and
∑

i∈I1(γ
[1]
i · R[1])2âi = 0, . . . ( because Q′ does not exist), multiply

these equations with scalars and add them together to obtain

p(0) =
∑
i∈I1

âip(γ
[1]
i ·R[1])(4.11)
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for all polynomials p(λ). In (4.11) it is possible that for some indices k, l ∈ I1,

γ
[1]
k ·R[1] = γ

[1]
l ·R[1] or γ

[1]
k ·R[1] = 0. We group these factors:

g0p(0) +
∑

gjp(γ
[1]
j ·R[1]) = 0.

If we choose for p(λ) an interpolating (complex) polynomial such that p(0) = ḡ0 and

p(γ
[1]
j ·R[1]) = ḡj ∀j, this leads to

|g0|2 +
∑

|gj |2 = 0 ⇒ g0 = 0, gj = 0 ∀j ⇒ g0 +
∑

gje
γ
[1]
j

·R[1]

= 0

or

1−
∑
i∈I1

aie
−iγ

[1]
i

·θ[1]

= 0.

This means that in 1−∑i∈I aie
−γi·Re−iγi·θ = 0 ∀i ∈ I, γi ·R is zero or infinity, which

contradicts statement (b).
For control applications the following theorem is important. It provides sufficient

and necessary conditions for (4.6) to have roots with arbitrarily large real part but
small imaginary part in the presence of vanishing delays.

Theorem 4.3. Consider the statements
(a) ∃R ∈ [0,+∞]M such that 1−∑i∈I aie

−γi·R = 0;
(b) ∃i ∈ I such that γi ·R �= 0 and γi ·R �= +∞;
(c) ∃ {rn}n≥1 , {λn}n≥1 with λn ∈ C, limn→∞�(λn) = +∞, limn→∞ (λn) =

0, rn ≥ 0, and limn→∞ ‖rn‖ = 0 and such that H(λn, rn, s) = 0.
Then the following hold:

(1) (a) and (b) ⇒ (c),
(2) (c) ⇒ (a).
The above results can easily be shown by following the lines of the proofs of

Theorems 4.1 and 4.2. Note that the occurrence of arbitrarily large roots does not
depend on whether the small delays are rationally (in)dependent.

4.4. Interpretation and illustration. When the delays r in (4.6) approach
zero, the real part of each characteristic root remains bounded or moves to +∞. We
call the set of these roots the finite (respectively, the infinite) part of the spectrum.

The supremum of the real parts of the finite part of the spectrum, cf , can be
calculated as the right-most solution α of

1−
∑
i∈I

aie
−iγi·θ1 −

∑
j∈J

bje
−ανj ·se−i(γj ·θ1+νj ·θ2) = 0,(4.12)

which corresponds to applying Theorem 2.4 and putting αr to zero. This last step is
allowed because the delays r are arbitrarily small and α is infinite.

The infinite part of the spectrum is empty if

1−
∑
i∈I

aie
−γi·Re−iγi·θ = 0(4.13)

has no solution with R ∈ [0,+∞]M . Otherwise, we can conclude that arbitrarily
unstable roots exist, except in the degenerate case where all the solutions of (4.13)
with R ≥ 0 satisfy that γi·R is zero or infinite for all i ∈ I. For this degenerate case, the
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Fig. 4.2. Projection of solutions of (4.16).

small-delay part of the exponential polynomial does not provide enough information
about the existence of the infinite spectrum, as will be shown in section 4.5.

We now illustrate how the solutions of (4.13) determine the structure of the infinite
part of the spectrum and raise and partially answer an important open question which
naturally arises from our analysis.

In both Theorems 4.2 and 4.3 we have allowed complete freedom in the way the
independent delays approach zero. In practical applications it may be of interest to
know whether additional dependencies between the delays (like, e.g., r1 < r2 → 0)
can influence the stability results. For this consider the following example:

1− 2e−λ(r1+r2) + 4e−λ8r2 − 1

2
e−λ2 = 0,(4.14)

which has as small-delay part, when r1 and r2 → 0+,

1− 2e−λ(r1+r2) + 4e−λ8r2 = 0.(4.15)

The supremum of the real parts of the finite part of the spectrum is cf = − 1
2 log 2 < 0.

The infinite part of the spectrum is nonempty if and only if

1− 2e−(R1+R2)e−i(θ1+θ2) + 4e−8R2e−i8θ2 = 0(4.16)

has solutions with R1 and R2 ∈ [0,+∞]. In Figure 4.2 the area between curves A,
B, and C is the projection on the (R1, R2)-plane of the solutions of (4.16). Using
Theorem 4.3, (4.14) has roots with real part tending to +∞ but small imaginary part
if and only if (4.16) has a solution with R1 and R2 ∈ [0,+∞] and θ1 = θ2 = 0. These
solutions form the curve C in Figure 4.2.

Following Theorem 4.2 the solutions of 1 −∑i∈I aie
−γi·Re−iγi·θ = 0 determine

the existence of roots with large real part.
When the delays approach zero with a fixed ratio these solutions further provide

a complete characterization of the structure of the diverging characteristic roots. This
will be illustrated for the example discussed above. We will consider only the solu-
tions of (4.15), since one can show that these solutions asymptotically coincide with
solutions of (4.14) as (r1, r2) → (0, 0) (proof similar to that for Theorem 4.2).
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Suppose (4.16) has the following interval of solutions parameterized by α:

(R1, R2) = α(R∗
1, R

∗
2), 0 < α1 ≤ α ≤ α2,

whereby we assume at the moment that R∗
1 and R∗

2 are finite and rationally indepen-
dent. Then for each α we have

1− 2e−αk
R∗

1
+R∗

2
k e−(θ1+θ2) + 4e−8αk

R∗
2
k e−8θ2 = 0,

whereby θ1 and θ2 depend on α. Applying Theorem 2.4 to this formula, it is clear

that for the vanishing delays (R1, R2) = (
R∗

1

k ,
R∗

2

k ), k → ∞, (4.15) has solutions with
real part arbitrarily close to kα, α1 ≤ α ≤ α2. This leads to the following conclusion:
the intervals in Figure 4.2 which form the intersection of a line through the origin and
the projected solution surface of (4.16) correspond to intervals of Z̄ which move to
infinity (k →∞) when the delays approach zero in the ratio determined by the slope
of the line. Second, the number and lengths of these intervals, when existing, depend
on the way (with what ratio) the delays approach zero.

Using the same kind of arguments, the intersection of a line through the origin
with curve C in Figure 4.2 corresponds to a real root going to infinity. As can be
seen from the picture, the occurrence of this phenomenon depends on additional
dependencies between the delays such as their having a fixed ratio. Whether the
same is true for the occurrence of roots with large real part but arbitrary imaginary
part remains an open question.

Note that when
R∗

1

R∗
2

would be rational, the delays are commensurate and Z̄ consists

of a number of points. However, when the ratio is close1 to an irrational number
(due to the lower semicontinuity of Z̄ w.r.t. the delays), these points will fill up the
intervals (rationally independent case) quite well. Figure 4.3 shows some of the roots
of (4.15) for the delays (R1, R2) = ( 1

k ,
8
k ), which correspond to line D in Figure 4.2.

For computational convenience these delays are chosen to be rationally dependent,
but the resonance is relatively weak: the two intervals predicted by Figure 4.2 are
already visible. The two real roots correspond to the intersection of curves D and C
in Figure 4.2.

One can remark that when the delays approach zero the imaginary parts of the
nonreal roots increase to infinity. As already mentioned, when dealing with practical
control problems the question arises whether the damping at very high frequencies is
underestimated in the model (and the corresponding exponential polynomial) or not.
In any case the large real roots are important. When one can estimate the ratio of
the delays in the real system, one can predict whether such unstable behavior occurs,
using diagrams like Figure 4.2.

4.5. Degenerate case. We call the exponential polynomial (4.6) degenerate if
and only if all solutions with R ≥ 0 of

1−
∑
i∈I

aie
−γi·Re−iγi·θ = 0(4.17)

satisfy

γi ·R = 0 or γi ·R = +∞ ∀i ∈ I.

1A (positive) rational number a is close to an irrational number if and only if a = N1
N2

, whereby

N1 and N2 ∈ N are large and coprime.
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Fig. 4.3. Part of the spectrum of (4.15) for the delays (r1, r2) = ( 1
k
, 8
k
), corresponding to the

dashed line D in Figure 4.2.

For instance,

1−
N∑
i=1

ai
(
e−λ.r

)i −∑
j∈J

bje
−λ(γjr+νj ·s) = 0

is degenerate if and only if the polynomial 1−∑N
i=1 aix

i has some roots on, and all
other roots outside, the unit circle. For N = 2, the equation 1− a1e

−λr1 − a2e
−λr2 −∑

j∈J bje
−λ(γj ·r+νj ·s) = 0 is degenerate if and only if |a1|+ |a2| = 1.

Note that we are now in the case where statement (b) is not satisfied in Theorems
4.2 and 4.3. By means of an example, we show that in such a situation the large-delay
part plays a role in the existence of arbitrarily large characteristic roots for vanishing
delays. Therefore, consider first

H(λ, h) � 1 + e−hλ + e−2λ − e−(2+h)λ = 0,(4.18)

whose “small-delay” part is degenerate. With

hn = 1
n+ 1

2

, dn = (n + 1
2 )π,

we have

H(c + idn, hn) = 0 ⇔ e−chn = tanh(c);

hence there are roots with arbitrarily large real part as n → ∞. However, when one
modifies (4.18) to

1 + e−hλ + e−2λ + e−(2+h)λ = 0,(4.19)

degeneration is preserved while there are no roots with arbitrarily large real part since
(4.19) can be factored into (1 + e−hλ)(1 + e−2λ).
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5. Largest delays coincide. In the previous section we showed that in the
presence of both normal and arbitrarily small delays there may exist roots with arbi-
trarily large real part. An analogous phenomenon occurs when the largest delays are
arbitrarily close together. Then roots may exist with real part moving to −∞. From
a control point of view this phenomenon is less important (no stability problem), and
therefore we give only an illustrative example. Sufficient and necessary conditions can
be found in [18].

In the characteristic equation,

1 + e−λ − 3e−λ2 + 2e−λ(2+h) = 0,(5.1)

the largest delays 2 and 2 + h coincide as h → 0. Multiplying this equation by eλ2

yields

eλ2 + eλ − 3 + 2e−λh = 0,

and the roots of −3 + 2e−λh,

λ =
− log(3/2) + i2πl

h
, l ∈ N,

approximate corresponding roots of (5.1) as h→ 0+.

6. Applications and examples. We illustrate the results obtained in this pa-
per by means of two examples.

6.1. Boundary controlled PDE. This example and the phenomena which
occur are also described in [5, 16]. Consider

wxx = wtt, 0 ≤ t <∞, 0 ≤ x ≤ 1,(6.1)

subject to the boundary conditions{
w(0, t) = 0,
wx(1, t) = −kwt(1, t− h),

(6.2)

where h ≥ 0, k > 0. Formulae (6.1) and (6.2) describe the transversal movement of
a beam clamped at one side and stabilized by applying a force at the other side; h
represents a small delay in the velocity feedback. Substituting a solution of the form
w(x, t) = eλtz(x) into (6.1) and taking the boundary conditions into account, the
following characteristic equation is obtained:

eλh + k tanh(λ) = 0,(6.3)

which can be rewritten as

1 + e−λ2 + ke−λh − ke−λ(2+h) = 0.(6.4)

Remark. The damped wave equation w̄tt− w̄xx + 2aw̄t + a2w̄ = 0 with boundary
conditions w̄(0, t) = 0 and w̄x(1, t) = −k̄w̄t(1, t− h), which was analyzed in [16], can
be transformed into (6.1)–(6.2) using the relations k̄ = e−ahk, w̄ = e−atw, the latter
introducing a shift a of the spectrum.
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6.1.1. Analysis of the undelayed case. When h = 0, the characteristic roots
are

λ = −1

2
Log

(
1 + k

1− k

)
+ iπl, l ∈ Z,

where Log denotes the principal value of the logarithm. Because c(0) = �(Log( 1+k
1−k )) <

0 for k > 0, the undelayed system is stable, i.e., all roots lie in the left half plane.
When k approaches 1, the real part of the characteristic roots moves to −∞, which in-
dicates superstability. This can be explained as follows. The general solution of (6.1)
can be written as a combination of two travelling waves, a solution φ(x − t) moving
to the right and a solution ψ(x+ t) moving to the left. When k = 1, φ(x− t) satisfies
the second boundary condition, and thus the reflection coefficient at x = 1 is zero;
at x = 0 the wave φ(x + t) is reflected completely. Consequently, all perturbations
disappear in a finite time (at most 2 time-units).

6.1.2. Analysis for arbitrarily small delays. Equation (6.4) is very interest-
ing from a theoretical point of view. The three delays h, 2, and 2 + h are functions
of only two independent delays, 2 and h. When h → 0 there is an arbitrarily small
delay, and the largest delays asymptotically coincide.

When the delays 2 and h are rationally independent, cf is calculated as the right-
most solution α of

1 + e−2αe−iθ1 + ke−iθ2 − ke−2αe−i(θ1+θ2) = 0,(6.5)

which, after multiplication with e2αei(θ1+θ2), can be rewritten as

e2αeiθ1 =
k − eiθ2

k + eiθ2

and can be interpreted for each α as the intersection points of two circles in the
complex plane. Note that in this case the obtained upper bound will equal the upper
bound calculated when all delays are considered independent:

|1− k| − e−2cf − ke−2cf = 0.(6.6)

Indeed, (6.5) is transformed into (6.6) when choosing θ1 = θ2 = π if k < 1 and
θ1 = 0, θ2 = π if k > 1. Thus the upper bound cf in the case of rationally independent
delays satisfies

cf =
1

2
Log

(
1 + k

1− k

)
.(6.7)

Following Theorem 4.2 there are characteristic roots with arbitrarily large real
part (for arbitrarily small delays) if ∃R ∈ (0,+∞] and θ ∈ [0, 2π] such that 1 +
ke−Re−iθ = 0. This is the case when k > 1. These roots have large imaginary part
(no solution with θ = 0). When k = 1 we have a degenerate case: (6.4) becomes
(4.18), for which the existence of an infinite spectrum is shown in subsection 4.5.

One can prove that there are roots whose real part moves off to −∞ for vanishing
h when k < 1 [18].

The obtained results are summarized in Figure 6.1.
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Fig. 6.1. Upper bounds on the spectrum of (6.1): c(0) = c0 is the real part of all characteristic
roots in the undelayed case, cf the supremum of the finite part of the spectrum for an arbitrarily
small delay, h→ 0+.

6.2. Bifurcation diagram: Parameter dependence. As a last example, we
discuss the position of the roots of the characteristic equation

1 + ae−λh + be−λ2h(6.8)

as a function of the parameters a and b. Note that (3.1) is a special case of (6.8).
First we fix h. The delays h and 2h are clearly dependent, and the roots of (6.8)

can be calculated from

e−λh =
−a±√a2 − 4b

2b
.(6.9)

Hence when a2 − 4b < 0 (> 0) the spectrum is situated on one (two) vertical lines
in the complex plane. The positions of these lines depend on the parameters. For
a2 − 4b > 0, one can show that such a line crosses the imaginary axis when a = b+ 1
and when a = −b− 1, indicating a change of stability of the line under consideration.
When a2 − 4b < 0, the single line crosses the imaginary axis when b = 1. The
corresponding curves in two-parameter space (a, b) are shown in Figure 6.2.

When h and 2h should be considered to be independent, i.e., when these delays
are perturbed in such a way that their rational dependency is lost, the upper bound
c(h) can be calculated from

1− |a|e−c(h)h − |b|e−2c(h)h = 0,

and thus the system is stable when |a|+ |b| ≤ 1. Comparing the dependent with the
independent case, one can see that the dangerous area in the parameter space, i.e., the
parameter values for which small changes in the delays destroy stability, is enclosed
by the triangles (0, 1), (1, 0), (1, 2) and (0,−1), (1, 0), (1,−2) (see Figure 6.2).

Equation (6.8) corresponds to the small-delay part of

1 + ae−λh + be−λ2h + de−λ = 0(6.10)
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Fig. 6.2. Stability areas of (6.8). When the delays are dependent, “S” denotes a stable vertical
line of characteristic roots in the complex plane, and “U” an unstable line. When the delays are
independent, the system is stable for parameter values inside the curve |a|+ |b| = 1.

as h → 0+. One can show that when the three delays are considered to be indepen-
dent, (6.10) has roots with real part → ∞ for parameter values a and b outside the
curve |a|+ |b| = 1, and that there are arbitrarily unstable roots with small imaginary

part when b < a2

4 if a ≤ −2 and b < −a− 1 if a ≥ −2. All roots of (6.10) are in the
open left half plane when |a|+ |b| < 1 and |d| < 1− |a| − |b|.

7. Conclusions. Sensitivity of NFDEs to infinitesimal changes of the delays is
caused by the behavior of the essential spectrum which is determined by the roots of
an exponential polynomial. A remarkable conclusion of the theory developed in [1, 9],
concerning the roots of exponential polynomials, is that the supremum of the real parts
of the spectrum can change discontinuously w.r.t. the delays, whereas the individual
roots move continuously. In the first part of this paper the underlying mechanisms are
interpreted and explained by means of spectral plots. For example, when rationally
independent delays approach rationally dependent delays, this gives rise to a pointwise
but nonuniform convergence of the spectrum, whereby the sensitivity of an individual
root increases as its modulus increases. In a second part, we extend the theory
developed in [1] to the case where some of the delays are arbitrarily small, which can
result in characteristic roots with arbitrarily large real part. Sufficient and necessary
conditions are provided. Thereby we also treat the special case of roots with large
real part but small imaginary part. We further show that when the small delays are
brought to zero in a fixed ratio, the structure of the set of the roots with large real
part depends strongly on this ratio. The paper ends with two illustrative examples.

Appendix. We formulate a lemma which is used in the proof of Theorem 4.2.
The lemma is a modification of Hurwitz’s theorem; see, e.g., [3].

Lemma A.1. Let f(λ) and the sequence {fn(λ)}n≥1 be analytic functions on an
(open) domain D. Suppose that {fn(λ)}n≥1 converges uniformly to f(λ) on the disc
{λ : |λ| ≤ R} ⊂ D for some R > 0, and that on this disc f(λ) only has a zero in λ = 0
with multiplicity k. Then there exists a number N ∈ N such that, ∀n ≥ N , fn(λ) has
exactly k zeros λn,1, . . . , λn,k in |λ| ≤ R, whereby limn→∞ λn,j = 0 ∀j ∈ {1, . . . , k}.
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Proof. Consider for some 0 < r ≤ R the curve Γ : [0, 2π] → C : t → Γ(t) = reit.
The function |f(λ)| attains a minimum M on Γ whereby M > 0. Because the sequence
of functions fn(λ) is uniformly converging,

∃N such that ∀n ≥ N : |fn(λ)− f(λ)| < M ≤ |f(λ)| on Γ.

Consequently, ∣∣∣∣1− fn(λ)

f(λ)

∣∣∣∣ < 1

on Γ.
For each n ≥ N the curve γ(t) = fn(reit)

f(reit) , t ∈ [0, 2π], satisfies

|1− γn(t)| < 1,

and, because it can be embedded in a closed disc not containing the origin, the winding
number of the curve w.r.t. the origin, n(γn, 0), is zero:

n(γn, 0) =
1

2πi

∫
γn

dλ

λ
=

1

2πi

∫ 2π

0

γ′n(t)

γn(t)
dt = 0.

Using the definition of γn(t), 1
2πi

∫ 2π

0
γ′
n(t)

γn(t)dt can be written as 1
2πi

∫
Γ
(
f ′
n(λ)
fn(λ) − f ′(λ)

f(λ) )dλ.

This integral is well defined because from the previous it follows that neither fn nor
f are zero in {λ : r − εn < |λ| < r + εn} for some εn ∈ R

+
0 .

But this implies

1

2πi

∫
Γ

f ′

f
dλ =

1

2πi

∫
Γ

f ′
n

fn
dλ ∀n ≥ N.

Following the theorem of the principle of the argument (see, for example, [22]), these
integrals correspond to the zero-pole excess of f and fn (number of zeros − number
of poles) inside Γ and in this case to the number of zeros. When taking r = R the
first statement of the lemma is proven. The second statement follows from the fact
that r can be chosen arbitrarily small.
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Abstract. Viscosity solutions methods are used to pass to the limit in some penalization
problems for first order and second order, degenerate parabolic, Hamilton–Jacobi–Bellman equations.
This characterizes the limit of the value functions of singularly perturbed optimal control problems
for deterministic systems and for controlled degenerate diffusions. The results apply to cases where
the usual order reduction method does not give the correct limit, and to systems with fast state
variables depending nonlinearly on the control. Some connections with ergodic control and periodic
homogenization are discussed.
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Introduction. In this paper we study three penalization problems for fully non-
linear partial differential equations motivated by the optimal control theory for sys-
tems with different time scales. In all the problems the limit PDE is of lower di-
mension, and the limit operator is not obvious to guess. Problems of this kind were
first studied by Jensen and Lions [29] for classic solutions of quasilinear uniformly
elliptic PDEs. Here we study a first order Hamilton–Jacobi (H–J) equation and a
degenerate parabolic, fully nonlinear, Hamilton–Jacobi–Bellman (H–J–B) equation in
the framework of viscosity solutions.

The first problem we consider is the limit as ε→ 0+ of

−∂tuε +H
(
x, y,Dxuε,

Dyuε
ε

)
= 0 in (0, T )× R

n × Y(1)

for the Hamiltonian

H(x, y, p, q) = max
α∈A
{−(p, f(x, y, α))− (q, g(x, y, α))− l(x, y, α)},

where (·, ·) denotes the scalar product, and Y ⊆ R
m is open, bounded, connected,

and smooth. This is the H–J–B equation associated via dynamic programming with
the minimization of the functional

J(t, x, y, α·) :=
∫ T

t

l(xs, ys, αs) ds+ h(xT , yT )
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on the trajectories of the system

ẋs = f(xs, ys, αs), ẏs =
1

ε
g(xs, ys, αs),(2)

with xt = x, yt = y, where α· is the control function subject to αs ∈ A. Singular
perturbation problems for deterministic controlled systems were studied by many
authors; see, e.g., the books by Kokotović, Khalil, and O’Reilly [32], Bensoussan [12],
and Dontchev and Zolezzi [18], as well as the recent articles by Artstein and Gaitsgory
[22, 4, 3, 5], Veliov [40], Subbotina [39], Bagagiolo and Bardi [6], and the references
therein. We recall that the theory of singular perturbations has many important
applications, in particular to the order reduction of large scale systems.

As in [6] (see also [9, 7]) we assume the Hamiltonian H to be coercive in the
q = Dyu variables, which amounts to the complete controllability of the fast variables
y of the system, and consider the boundary condition on ∂Y corresponding to the
state-space constraint on the fast variables

ys ∈ Y for all t ≤ s ≤ T.
In [6] a separability assumption on the controls acting on the fast and the slow vari-
ables yielded a simple explicit formula for the Hamiltonian H of the limit PDE. Here
we show that in general the limit Hamiltonian H = H(x, p) is the unique constant
such that the boundary value problem

H(x, y, p,Dyχ) ≥ H in Y , H(x, y, p,Dyχ) ≤ H in Y

has a viscosity solution χ = χ(y) for fixed (x, p). The existence and uniqueness of the
effective Hamiltonian H was proved by Capuzzo-Dolcetta and Lions [16] in connection
with ergodic control problems. We prove that the viscosity solution uε(t, x, y) of (1)
with constrained boundary conditions on ∂Y and the terminal condition

uε(T, x, y) = h(x, y)

converges uniformly as ε→ 0+ to the viscosity solution u = u(t, x) of

−∂tu+H(x,Du) = 0 in (0, T )× R
n and u(T, x) = h(x) := inf

y
h(x, y) for x ∈ R

n.

The effective HamiltonianH admits a representation as the long time limit of the value
function of a control problem in Y ⊆ R

m; see [16, 9]. This formula shows the strong
connection between our result and the recent work of Artstein and Gaitsgory [5], even
if they do not consider state constraints, make somewhat different assumptions, and
use completely different methods. We also give a new representation of H as the
Bellman Hamiltonian associated to a suitable set of “limiting” relaxed controls. This
provides an interpretation of the limit u as the value function of an optimal control
problem with n-dimensional state space, which is therefore the appropriate limit of
the previous problem for the (n+m)-dimensional system (2) as ε→ 0+. One might
guess from (2) that in the limit the fast variables satisfy g(xs, ys, αs) ≡ 0 and the
Hamiltonian becomes

H0(x, p) := sup
{(α,y): g(x,y,α)=0}

{−(p, f(x, y, α))− l(x, y, α)}.

This is indeed the case in many classic problems [32, 12], and we give some examples
where H = H0. In general, however, H0(x, p) ≤ H(x, p) and the inequality can be
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strict when the fast variables oscillate very rapidly in the limit. In this case we can pass
to the limit because an averaging phenomenon occurs; this was studied, for instance,
in [22, 4, 5, 41], and see the references therein for earlier literature on averaging in
ordinary differential equations. Our main new contribution is a PDE approach to
the problem, where the theory of viscosity solutions provides many useful tools: the
characterization of the effective Hamiltonian, the perturbed test function method of
Evans [19, 20], and the relaxed semilimits of Barles and Perthame [11, 9] that we
slightly modify here.

The viscosity solutions methods allow us to treat our second and third problem
in a very similar way. They are the limits as ε→ 0+ of

−∂tuε +H
(
x, y,Dxuε,

Dyuε
ε

,D2
xxuε,

D2
yyuε

ε2γ
,
D2

xyuε

εγ

)
= 0 in (0, T )× R

n × Y

for γ = 1
2 and γ = 1, respectively, where

H(x, y, p, q,X, Y, Z) = sup
α∈A

{
−1
2
[tr(σσTX) + tr(ττTY ) + tr(τσTZ) + tr(ZτσT )]

−(p, f(x, y, α))− (q, g(x, y, α))− l(x, y, α)
}
,

and the coefficients σ, τ, f, g, l are functions of (x, y, α). This is the fully nonlinear,
degenerate parabolic, H–J–B equation arising in the minimization of the expectation
E J(t, x, y, α) for the singularly perturbed controlled degenerate diffusion process

dxs = f(xs, ys, αs) ds+ σ(xs, ys, αs) dWs,

dys =
1

ε
g(xs, ys, αs) ds+

1

εγ
τ(xs, ys, αs) dWs.

(3)

Problems of this nature with γ = 1/2 can be found in [12] for dispersion matrices σ, τ
that are not degenerate and are independent of α, and in the book by Kushner [33] for
possibly degenerate diffusions that are still independent of α and for uncontrolled fast
drift g. The more recent papers by Kabanov and colleagues [31, 30], for γ < 1/2 and
γ = 1/2, respectively, allow the fast drift to depend linearly on the control, whereas
both dispersion matrices are uncontrolled. Here we allow all the terms of the fast
dynamics to depend nonlinearly on the control. On the other hand, we limit ourselves
to the case of fast variables constrained on an m-dimensional torus, that is, Y =
[0, 1]m, all the data are 1-periodic in the y variable, and periodic boundary conditions
are imposed on ∂Y . In this case the existence, uniqueness, and representation of the
effective (second order) Hamiltonian can be taken from a recent article by Arisawa
and Lions [2], and the simplicity of the boundary conditions reduces the technical
difficulties of the proof. Moreover, we do not try here to represent the solution of
the limit problem as a value function, nor to prove the convergence of nearly optimal
controls. Among other technical conditions, we suppose that the terminal cost h is
independent of y and make some mild restrictions on the slow dynamics. Concerning
assumptions about fast dynamics, we shall make the one introduced by Arisawa and
Lions [2] that guarantees some averaging behavior (ergodicity) in the fast dynamics.

Section 2 is devoted to the classic scaling of (3) corresponding to γ = 1/2. Our
results include the following three cases as well as several combinations.
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– The diffusions (in the fast and slow variables) are uniformly nondegenerate.
– The problem is deterministic and the dynamical system in the fast variable
is controllable.

– The system in the fast variable is independent of x and y and satisfies the
nonresonance condition of [2] (see section 2 for a precise statement).

The second case is the one covered by the first section in the state constraint setting.
We remark that we have to make some nontrivial modifications to the perturbed
test function method of Evans [20] in order to avoid the crucial assumption that
the Hamiltonian be uniformly continuous in all variables. For control problems this
corresponds to the restrictive condition that the dynamics do not depend on the state
variables.

Section 3 discusses the less usual case γ = 1. Our motivation for studying this
scaling is homogenization. For this problem, the dynamical system is

dxs = f
(
xs,

xs
ε
, αs

)
ds+ σ

(
xs,

xs
ε
, αs

)
dWs.

This corresponds to the singular perturbation problem for the artificial fast variable
ys = xs/ε with γ = 1, g = f , and τ = σ. For homogenization, our assumption is one
of the following:

– The diffusion is uniformly nondegenerate.
– The problem is deterministic and controllable.
– The system is purely stochastic (f ≡ 0), is independent of x and y, and
satisfies the nonresonance condition.

In this generality, the results for the stochastic problems seem to be new. They ex-
tend in various ways previous work on periodic homogenization for uniformly elliptic,
nondivergence form, quasilinear equations by Bensoussan, Boccardo, and Murat [13]
and Evans [19, 20], and for first order H–J equations by Lions, Papanicolaou, and
Varadhan [35] and Evans [20]. See also the additional references on the viscosity
solutions approach to homogenization in section 3.

The main goal of this paper is to illustrate a unified PDE approach to singular
perturbations for deterministic and stochastic systems, and we do not pursue the
minimal assumptions. We believe our method works for several other problems such
as, for instance, deterministic systems under weaker controllability assumptions or
with state constraints on the slow variables x as well, and stochastic systems with
fast variables subject to more general state constraints or governed by a diffusion
reflected on ∂Y (giving raise to Neumann boundary conditions). We will come back
to some of these problems in future papers.

The first application of viscosity solutions methods to singular perturbation prob-
lems in control goes back to Lions [34], and more references can be found in [6]. To
our knowledge the present paper is the first using these methods for the second order
PDEs associated with controlled diffusion processes.

1. Deterministic control with state constraints on the fast variables.

1.1. The ε-problem. Let T > 0 be fixed. For every ε > 0, we consider the
control problem in (0, T ]× R

n × R
m with dynamics

ẋs = f(xs, ys, αs), ẏs =
1

ε
g(xs, ys, αs)

for s ≥ t, with xt = x, yt = y, and the constraint on the fast variables

ys ∈ Y for all t ≤ s ≤ T,
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where Y ⊆ R
m is a given compact set. The control functions are measurable α :

(0, T ]→ A, where A is a compact set, such that the corresponding trajectory satisfies
the state constraint; we denote this set with A(x,y). The value function is defined on

(0, T ]× R
n × Y by

uε(t, x, y) = inf
α∈A(x,y)

{∫ T

t

l(xs, ys, αs) ds+ h(xT , yT )

}
.

Now we begin to list the hypotheses of section 1. The list will end at the beginning
of the next subsection.

— A is a compact metric space.
— Y ⊆ R

m is a bounded connected open set with Lipschitz boundary in the
following sense: there exist η : Y → R

m bounded and uniformly continuous
and c > 0 such that

B(y + tη(y), ct) ⊆ Y for all y ∈ Y , 0 < t ≤ c.(4)

— The functions f , g, l, and h are continuous and bounded.
— The functions f and g are Lipschitz continuous in (x, y) uniformly in α; the

functions l and h are uniformly continuous in (x, y) uniformly in α.
We set

h(x) = inf
y
h(x, y).

It is easy to see that under the preceding hypotheses h is uniformly continuous and
bounded.

We continue the list of hypotheses.
— The problem is controllable in y, i.e., there exists r > 0 such that

B(0, r) ⊂ conv{g(x, y, α) | α ∈ A}.
— A(x,y) �= ∅ for all y ∈ Y , and uε is continuous in (0, T ]× R

n × Y .
Remark. The last assumption is not a consequence of the previous hypotheses

on the data if the boundary of Y has corners and g(x, y,A) is not convex, as it is
easy to see on simple examples. However, it is automatically satisfied if the boundary
is smooth, say C2, by a result of Soner (see [37] or sect. IV.5 of [9]), based on the
“interior field condition”

min
a∈A

g(x, y, a) · n(y) < 0 for all y ∈ ∂Y, x ∈ R
n,

where n(y) is the exterior normal to Y at y, which holds in our case because of the
controllability assumption on the fast variables. A more general sufficient condition
for the continuity of uε that allows for piecewise smooth ∂Y is the following:

Y = {y ∈ R
m | gi(y) ≤ 0 for all i = 1, . . . , p}

for some gi ∈ C1,1(Rm) with |Dgi| > 0, i = 1, . . . , p, and

min
a∈A

max
{i|gi(y)=0}

g(x, y, a) ·Dgi(y) < 0 for all y ∈ ∂Y, x ∈ R
n.(5)

This is proved in Theorem A.1 of [6]. Note that (5) is automatically satisfied if
g(x, y,A) is convex, in addition to the controllability assumption. In the general case
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of merely Lipschitz ∂Y , a suitable formulation of the interior field condition can be
found in the paper of Ishii and Koike [27], where the continuity of the value function
is proved for the infinite horizon problem.

Theorem 1. The value function uε is the unique viscosity solution in BC((0, T ]×
R

n × Y ) of the terminal-boundary value problem


−∂tuε +H(x, y,Dxuε,

Dyuε
ε ) ≥ 0 in (0, T )× R

n × Y ,
−∂tuε +H(x, y,Dxuε,

Dyuε
ε ) ≤ 0 in (0, T )× R

n × Y,
u(T, ·) = h in R

n × Y ,
(6)

for the Hamiltonian

H(x, y, p, q) = max
α∈A
{−(p, f(x, y, α))− (q, g(x, y, α))− l(x, y, α)}.

Proof. The fact that a continuous value function satisfies the appropriate H–J–B
equation in the viscosity sense is a standard consequence of the dynamic programming
principle; for the boundary condition on ∂Y due to the state constraint, see [37] or
[9]. The uniqueness can be proved by combining the proof of Theorem III.3.7 in [9]
with Soner’s argument on ∂Y (see [37] or sect. IV.5 of [9]).

1.2. The effective Hamiltonian and the limit problem. We introduce the
auxiliary m-dimensional system with the same vector field as the fast variables but
with ε = 1 and frozen x

ẏs = g(x, ys, αs), y0 = y,

and denote with Ay = Ax
y the set of measurable α : (0, T ] → A such that ys ∈ Y for

all s ≥ 0. In this subsection the notation ys will always be used for trajectories of this
system for some admissible α ∈ Ay and fixed x. Our last hypothesis is the following.

— For all y ∈ ∂Y , x ∈ R
n, and ε > 0 there are controls in Ay such that the

corresponding trajectory satisfies yε ∈ Y and y−ε ∈ Y , respectively.
Remark. This assumption follows immediately from the controllability hypoth-

esis if ∂Y is smooth or if g(x, y,A) is convex.
Theorem 2. For fixed (x, p) there exists a unique constant λ = H(x, p) such that

the problem

H(x, y, p,Dyχ) ≥ λ in Y , H(x, y, p,Dyχ) ≤ λ in Y(7)

has a Lipschitz continuous solution χ. Moreover, H(x, p) = limδ→0+ δwδ,x,p(y) uni-
formly in y, where

wδ,x,p(y) := sup
α∈Ay

{∫ +∞

0

e−δs
(− (p, f(x, ys, αs)) − l(x, ys, αs)

)
ds

| ẏs = g(x, ys, αs), y0 = y

}
,

and Lip(χ) ≤ Cr−1(||l||∞ + |p| ||f ||∞), where C depends only on the set Y and r is
the radius appearing in the controllability assumption.

For the proof we need the following property of sets with Lipschitz boundary.
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Lemma 3. Let Y be a bounded connected open set with Lipschitz boundary, i.e.,
(4) holds, and define

d(y, y) := inf{length(γ)| γ ⊆ Y polygonal with endpoints y and y}.

Then
(i) there exist ρ,C > 0 such that for all z ∈ Y

d(y, y) ≤ C|y − y| for all y, y ∈ Y ∩B(z, ρ);

(ii) there exists M > 0 such that all y, y ∈ Y can be joined by a polygonal γ ⊂ Y
with length(γ) ≤M .

Proof. Since Y is open and connected, d is finite for all y, y ∈ Y . Let us first
consider the case z ∈ ∂Y . By Proposition A.2 and Remark A.3 in [10] there exist
r′, L > 0 independent of z such that, in B(z, 2r′), Y is the epigraph of a Lipschitz func-
tion defined on the hyperplane orthogonal to a vector ξ and with Lipschitz constant
bounded by L. Then there is k independent of z such that

B(y + tξ, kt) ⊆ Y for all 0 < t < k, y ∈ Y ∩B(z, r′).

If we set v = y − y/|y − y|, the segments {y + tξ − tkv| 0 < t < k} and {y + tξ +
tkv| 0 < t < k} lie in Y , and they intersect for t = |y − y|/2k, which is acceptable
for |y − y| < 2k2. Thus, for ρ = r′ ∧ 2k2, two points y, y ∈ Y ∩B(z, ρ) can be joined
by a polygonal of length |y − y|/k and lying in Y , except possibly for the endpoints.
This proves (i) in a neighborhood of ∂Y , and (i) is trivial in the complement of this
neighborhood.

To prove (ii), we redefine d by allowing polygonals γ ⊆ Y . Since ∂Y is Lipschitz,
d(y, y) is finite for all y, y ∈ Y , and it is a metric on Y . Moreover, it is locally uniformly
equivalent to the Euclidean metric, because it satisfies (i) for all y, y ∈ Y ∩ B(z, ρ),
whereas the inequality |y − y| ≤ d(y, y) is trivial. Then the topology induced by d
is equivalent to the usual one, so Y is compact for this topology and therefore it is
bounded for the metric d, which gives the desired conclusion.

Proof of Theorem 2. The proof is essentially the same as that of Theorem VIII.1
in [16] or Theorem VII.1.1 in [9], once we prove that wδ(·) := wδ,x,p(·) is Lipschitz
with constant independent of δ. In fact, this implies that δwδ converges uniformly to
a constant λ as δ → 0+ and, for a fixed y∗ ∈ Y , wδ(y)−wδ(y

∗)→ χ(y) uniformly, at
least along a subsequence. By a standard viscosity solutions argument the pair (χ, λ)
satisfies (7). An argument based on the comparison principle for constrained viscosity
solutions shows the uniqueness of the constant λ in (7), so λ = limδ→0+ wδ(y).

To prove the Lipschitz estimate for wδ we claim that for some ρ > 0, for all z ∈ Y ,
y, y ∈ Y ∩B(z, ρ), ε > 0, there exists a control in Ay such that

ys = y, s ≤ C

r
|y − y|+ ε,

where C depends only on the set Y and r is the radius appearing in the controllability
assumption. Then a simple argument yields

|wδ(y)− wδ(y)| ≤ C

r
(||l||∞ + |p| ||f ||∞)|y − y|,(8)

as in Proposition III.2.3 of [9].
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To prove the claim we first consider y, y ∈ Y ∩ B(z, ρ), where ρ comes from
Lemma 3(i), so that there is a polygonal γ ⊆ Y of length σ ≤ C|y − y|+ ε/2 joining
y and y. By the controllability assumption and standard results in control theory,
γ can be approximated uniformly by trajectories y· in Y with speed r and y0 = y.
Then for any τ > 0 there is a control in Ay such that |yσ/r − y| ≤ τ , and by
using the controllability again we build a trajectory in Y joining y and y in a time
s ≤ σ/r + τC ′/r ≤ C|y − y|/r + ε, which proves the claim in this case.

If either y or y belongs to ∂Y , we use the assumption of this subsection to move
y forward to some y′ ∈ Y and y backward to y′ ∈ Y , spending a time 2ε, then piece
together these trajectories with the one previously built joining y′ and y′ and complete
the proof of the claim.

Finally, the estimate on the Lipschitz constant of χ is obtained by letting δ → 0+
in (8).

Remark. The effective Hamiltonian −H(x, p) is the optimal average cost of an
ergodic control problem in the y variable, i.e., it satisfies the formula

H(x, p) = sup
α∈Ay

lim sup
t→+∞

{
−1
t

∫ t

0

(
(p, f(x, ys, αs)) + l(x, ys, αs)

)
ds

| ẏs = g(x, ys, αs), y0 = y

}
(9)

for all y ∈ Y , by Prop. VII.1.3 in [9]. It is also the rescaled limit of the value functions
of finite horizon problems as the horizon goes to infinity:

H(x, p) = lim
t→+∞ sup

α∈Ay

{
−1
t

∫ t

0

(
(p, f(x, ys, αs)) + l(x, ys, αs)

)
ds

| ẏs = g(x, ys, αs), y0 = y

}
(10)

for all y ∈ Y , and the convergence is uniform in y as t → +∞. To see this, consider
the value function

v(t, y) = inf
α∈Ay

{∫ t

0

(
(p, f(x, ys, αs)) + l(x, ys, αs)

)
ds | ẏs = g(x, ys, αs), y0 = y

}
.

It solves the H–J equation

∂tv +H(x, y, p,Dyv) ≥ 0 in (0,+∞)× Y ,
∂tv +H(x, y, p,Dyv) ≤ 0 in (0,+∞)× Y ,

with the initial condition v(0, ·) ≡ 0. By Theorem 2, the function χ(y) − tH(x, p)
is a solution of the same Cauchy problem but with a different initial condition.
The comparison principle implies that v(t, y) − χ(y) + tH(x, p) is bounded, so that
v(t, y)/t→ −H(x, p) as t→ +∞, uniformly in y. See also Theorem VIII.1 in [16] and
Exercise VII.1.1 in [9].

Our next result gives the regularity of the effective Hamiltonian.
Proposition 4. The effective Hamiltonian H has the following properties:
(i) For all x, p

inf
y
inf
q
H(x, y, p, q) ≤ H(x, p) ≤ sup

y
H(x, y, p, 0);
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(ii) H is convex in p;
(iii) for all x, p, p′

|H(x, p)−H(x, p′)| ≤ ||f ||∞|p− p′|;

(iv) for all x, x′, p

|H(x′, p)−H(x, p)| ≤ Lip(f)|p| |x′−x|+ωl(|x′−x|)+Lip(g)C ||l||∞ + |p| ||f ||∞
r

|x′−x|,

where ωl is the modulus of continuity of l with respect to x and C depends only on Y ;
(v) H is uniformly continuous on R

n ×B(0, R) for all R > 0.
The proof is essentially the same as that of Proposition 3 in [1]. The bound for

the Lipschitz continuity in x follows easily from the bound on Lip(χ) of Theorem 2.
The last result of this subsection gives the solution of the limit problem.
Proposition 5. There exists a unique viscosity solution in BC((0, T ]× R

n) of

−∂tu+H(x,Du) = 0 in (0, T )× R
n and u(T, ·) = h on R

n.(11)

Proof. In view of the regularity of H, in particular of

|H(x′, p)−H(x, p)| ≤ C|p| |x′ − x|+ ω(|x′ − x|),

where ω is a modulus, a comparison theorem holds for (11); see, e.g., Theorem III.3.7
and Exercise V.1.5 in [9]. The existence can be proved by the Perron–Ishii method
(see, e.g., section V.2.2 of [9]), or by representing the effective Hamiltonian H as the
Bellman Hamiltonian of a control problem and then proving that the value function
of such a problem solves (11).

1.3. An example: Separated controls. In [6] the controls acting on the slow
and the fast variables are separated, in the sense that α = (β, γ) ∈ B × C with

f = f(x, y, β), l = l(x, y, β), g = g(x, y, γ).

In this case the Hamiltonian of the ε-problem is

H(x, y, p, q) = H1(x, y, p) +H2(x, y, q),

H1(x, y, p) := max
β∈B
{−(p, f(x, y, β))− l(x, y, β)}, H2(x, y, q) = sup

γ∈C
{−(q, g(x, y, γ))},

and we expect that the effective Hamiltonian will be

H(x, p) = max
y∈Y

H1(x, y, p).(12)

In fact, from the representation (10) of H we get, for all y ∈ Y ,

H(x, p) = lim
t→+∞ sup

γ.

{
1

t

∫ t

0

H1(x, ys, p) ds | ẏs = g(x, ys, γs), y0 = y, ys ∈ Y
}
.(13)

This gives immediately H(x, p) ≤ maxy∈Y H1(x, y, p). For the opposite inequality

we fix y such that H1(x, y, p) = maxyH1(x, y, p). If there is a control γ such that
g(x, y, γ) = 0, we choose y = y in the right-hand side of (13) and the sup is attained
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by γ = γ because the average cost is H1(x, y, p). If such a control γ does not exist, but
y ∈ Y , we deduce from the controllability assumption on the fast variables that for
any ε > 0 there is a control γ such that y0 = y implies |ys − y| ≤ ε for all s > 0. The
average cost associated with this control is bounded below by infB(y,ε)∩Y H1(x, y, p).

By taking the limit as ε→ 0, the continuity of H1 gives H(x, p) ≥ H1(x, y, p). In the
remaining case of y ∈ ∂Y we use the assumption of subsection 1.2 to move the system
from y0 = y to ỹ ∈ Y ∩B(y, ε/2) in a short time, and then we can use the controllability
assumption as before to keep the trajectory in B(y, ε) forever. Therefore we reach the
desired inequality as in the previous case.

In conclusion, the representation (12) of the effective Hamiltonian holds under the
current hypotheses, and we recover the main result of [6] as a special case of the con-
vergence theorem proved later in this section (under slightly different assumptions).

Remark. In this case the limit problem (11) has a simple control interpretation.
In fact its solution is the value function of the problem of minimizing the functional

J(t, x, α·, y·) :=
∫ T

t

l(xs, ys, αs) ds+ h(xT )(14)

on the trajectories of the system

ẋs = f(xs, ys, αs), xt = x,

with measurable controls α· : (0, T ] → A and y· : (0, T ] → Y . Therefore the fast
variables become controls in the limit problem.

1.4. Connections with the order reduction method. If we try to follow
the classical Levinson–Tichonov approach to singularly perturbed ordinary differ-
ential equations, we have to set formally ε = 0 in the dynamical system and get
g(xs, ys, αs) ≡ 0. This leads to the conjecture that the limit dynamics are governed
by the differential inclusion

ẋs = f(xs, ys, αs), (ys, αs) ∈ Z(xs),(15)

where

Z(x) := {(y, α) ∈ Y ×A| g(x, y, α) = 0},
and of course (15) makes sense if Z(xs) �= ∅ for almost every s. The conjecture turns
out to be true in many important problems that can be put in the reduced order form;
see, e.g., [32, 12] and the references therein. In this case the limit Hamiltonian is

H0(x, p) := sup
(y,α)∈Z(x)

F (x, y, α, p),

where

F (x, y, α, p) := −(p, f(x, y, α))− l(x, y, α).
Lemma 6. Assume in addition that Z(x) �= ∅. Then H0(x, p) ≤ H(x, p) for all

x, p ∈ R
n.

Proof. Fix (x, p) and (α, y) ∈ Z(x). Since ys ≡ y solves ẏs = f(x, ys, αs) for
αs ≡ α,

F (x, y, α, p) ≤ sup
α∈A

{
−1
t

∫ t

0

(
(p, f(x, ys, αs)) + l(x, ys, αs)

)
ds

}
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for all t > 0 and all solutions of ẏs = g(x, ys, αs), y0 = y, ys ∈ Y . Then (10) implies
F (x, y, α, p) ≤ H(x, p), and we conclude by the arbitrariness of (y, α).

If the multifunction Z(·) is regular enough, say Lipschitz continuous in the Haus-
dorff metrics, then the value function v(t, x) of the problem with dynamics (15) and
cost functional J defined by (14) is the viscosity solution of

−∂tv +H0(x,Dv) = 0 in (0, T )× R
n and v(T, ·) = h on R

n;

see, e.g., [15]. Then a comparison theorem gives v ≥ u, where u is the solution of the
limit problem (11).

Next we give three examples where H0 = H, and therefore v = u. In the
first two we make assumptions on the m-dimensional control problem of minimiz-
ing

∫ t

0
F (x, ys, αs, p) ds for fixed (x, p), that is connected to H by the formulas (9)

and (10).
Example 1: The affine-convex case. Suppose that A and Y are convex and, for all

fixed x, f and g are affine and l is convex with respect to (y, a). Note that g(x, y,A)
is convex, so it contains 0 by the controllability assumption and Z(x) �= ∅. We define

G(x, α, p) := lim sup
t→+∞

1

t

∫ t

0

F (x, ys, αs, p) ds, α ∈ Ay0
,(16)

where y0 is fixed and ẏs = g(x, ys, αs). By the representation formula (9),

H(x, p) = sup
α∈Ay0

G(x, α, p)

for any choice of y0. We fix α ∈ Ay0
and choose tn → +∞ such that

G(x, α, p) = lim
n

1

tn

∫ tn

0

F (x, ys, αs, p) ds.(17)

By the convexity and compactness of A and Y we can extract a subsequence such
that

lim
n

1

tn

∫ tn

0

ys ds = y ∈ Y , lim
n

1

tn

∫ tn

0

αs ds = α ∈ A.

The assumptions of this example imply the concavity of F (x, ·, ·, p) for all fixed (x, p),
so

G(x, α, p) ≤ lim
n
F

(
x,

1

tn

∫ tn

0

ys ds,
1

tn

∫ tn

0

αs ds, p

)
= F (x, y, α, p).

Moreover,

g

(
x,

1

t

∫ t

0

ys ds,
1

t

∫ t

0

αs ds

)
=

1

t

∫ t

0

g(x, ys, αs) ds =
1

t
(yt − y0).

Here we set t = tn and pass to the limit to get, by the boundedness of Y , g(x, y, α) = 0.
Then

G(x, α, p) ≤ sup
(y,α)∈Z(x)

F (x, y, α, p) = H0(x, p).
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Since α ∈ A is arbitrary we obtain H(x, p) ≤ H0(x, p), and we can conclude that
H = H0 by the preceding lemma.

Example 2: The case of an asymptotically stable optimal trajectory. Here we
follow Example 7.4 in [5] and suppose for all (x, p) that for some y0 there is a control
α∗ ∈ A such that∫ t

0

F (x, y∗s , α
∗
s , p) ds = sup

α∈A

∫ t

0

F (x, ys, αs, p) ds for all t > 0,

where ẏ∗s = g(x, y∗s , α
∗
s), y

∗
0 = y0, and

lim
s→+∞α

∗
s = α∗, lim

s→+∞ y
∗
s = y∗

for some α∗ = α∗(x, p) ∈ A, y∗ = y∗(x, p) ∈ Y . Then g(x, y∗(x, p), α∗(x, p)) = 0 and

lim
t→+∞

1

t

∫ t

0

F (x, y∗s , α
∗
s , p) ds = F (x, y∗(x, p), α∗(x, p), p).

By the representation formula (10) we get

H(x, p) = F (x, y∗(x, p), α∗(x, p), p) ≤ sup
(y,α)∈Z(x)

F (x, y, α, p) = H0(x, p),

and the equality H = H0 follows from the preceding lemma.
Example 3: Separated controls. In the case of subsection 1.3, formula (12) implies

H ≤ H0, and therefore H = H0, if for all x and y there exists γ∗ ∈ C such that
g(x, y, γ∗) = 0. Note that this condition follows from the controllability assumption
on the fast variables if in addition g(x, y, C) is a convex set for all x, y; this is the
case, for instance, if one uses relaxed controls γ..

It is obvious that the equality H0 = H cannot hold at points where Z(x) = ∅,
but it is known that the equality may also fail at points where Z(x) �= ∅; see, e.g.,
[4]. We end this subsection with a simple example that exhibits this phenomenon and
satisfies our assumptions.

Example 4: −∞ < H0 < H. Consider A = [−1, 1], Y =] − 1/2, 1/2[, g(y, α) =
α−y, l(x, y, α) = l1(x)+|y|2−|α|2, with l1 continuous and bounded, and any f so that
the assumptions of subsection 1.1 are satisfied. Then H0(x, 0) = −l1(x). On the other
hand, by switching fast enough from α = 1 to α = −1 we can keep the solution ys of
ẏs = g(x, ys, αs), y0 = 0, in any neighborhood of 0, so supα

1
t

∫ t

0
F (x, ys, αs, 0) ds =

−l1(x) + 1 and then H(x, 0) = −l1(x) + 1 by (10).

1.5. A control interpretation for the limit problem. Now we construct an
optimal control problem whose Hamiltonian is H. Let (Y ×A)r be the set of Radon
probability measures on Y × A, and extend ϕ = f, l, g to functions fr, lr, gr defined
on Rn × (Y ×A)r as it is usually done for relaxed controls, namely,

ϕr(x, µ) :=

∫
Y×A

ϕ(x, y, a)dµ(y, a), µ ∈ (Y ×A)r.

We call a limiting relaxed control a measure µ ∈ (Y ×A)r such that, for some α ∈ A,
tn → +∞, and y0,

µn :=
1

tn

∫ tn

0

δ(ys,αs)ds→ µ weak star,
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where δ(y,α) is the Dirac’s mass at (y, α) and ẏs = g(x, ys, αs). Note that, for any
Borel Q ⊆ Y ×A, µn(Q) is the proportion of time spent by (ys, αs) in Q, that is,

µn(Q) =
1

tn
|{s ∈ [0, tn] : (ys, αs) ∈ Q}|,(18)

where | · | denotes the Lebesgue measure, so µn is an occupational probability measure
in the terminology of [23]. We denote with Zl(x) the set of limiting relaxed control.
The reason for the notation is that

Zl(x) ⊆ Zr(x) := {µ ∈ (Y ×A)r| gr(x, µ) = 0}.

In fact,

gr
(
x,

1

tn

∫ tn

0

δ(ys,αs)ds

)
=

1

tn

∫ tn

0

gr(x, δ(ys,αs))ds =
1

tn

∫ tn

0

g(x, ys, αs)ds

=
1

tn
(ytn − y0),

and the limit as n→ +∞ gives gr(x, µ) = 0 by definition of weak star convergence.
Now we define

Hr
l (x, p) := sup

µ∈Zl(x)

F r(x, µ, p), F r(x, µ, p) := −(p, fr(x, µ))− lr(x, µ).

Theorem 7. For all x, p ∈ R
n, H(x, p) = Hr

l (x, p).
Proof. The proof is similar to the affine-convex example of the previous subsection

and we use the same notations. Let µ ∈ Zl(x) be generated by α., y., and the sequence
tn → +∞. Then

1

tn

∫ tn

0

F (x, ys, αs, p)ds =
1

tn

∫ tn

0

F r(x, δ(ys,αs), p)ds = F r

(
x,

1

tn

∫ tn

0

δ(ys,αs)ds, p

)
,

and the right-hand side converges to F r(x, µ, p) as n → +∞ by definition of weak
star convergence. This proves

G(x, α, p) = F r(x, µ, p),(19)

where G is defined by (16). By taking the sup over µ ∈ Zl(x) we get

Hr
l (x, p) ≤ sup

α∈A
G(x, α, p) = H(x, p).

To prove the opposite inequality we fix α, y0, and tn → +∞ such that

G(x, α, p) = lim
n

1

tn

∫ tn

0

F (x, ys, αs, p)ds.

By the compactness of (Y ×A)r we can extract a subsequence, that we do not relabel,

such that 1
tn

∫ tn
0
δ(ys,αs)ds converges weak star to some µ, and µ ∈ Zl(x). By taking

the sup over α ∈ A in (19) we then get, again by using (10),

H(x, p) ≤ Hr
l (x, p),



1172 OLIVIER ALVAREZ AND MARTINO BARDI

which completes the proof.
Remark. The control problem associated with the Hamiltonian Hr

l and the
terminal cost h is the minimization of

Jr(t, x, µ) :=

∫ T

t

lr(xs, µs) ds+ h(xT )

for the system

ẋs = fr(xs, µs), µs ∈ Zl(xs), xt = x,

and measurable control functions µ : [0, T ] → (Y × A)r. If the multifunction Zl(·)
is regular enough, say it takes compact values and is Lipschitz continuous with re-
spect to the Hausdorff metrics [15], then the value function of this control problem is
continuous and it is the solution of the limit problem (11). We postpone to a future
paper the investigation of the properties of Zl and the connections with Artstein’s
invariant measures [3] and the related limit control problems of Vigodner [41].

After this paper was completed, Gaitsgory pointed out to us that under the
current assumptions Zl coincides with the limit occupational measures set constructed
in his paper with Leizarowitz [23]; indeed, it is easy to deduce from (18) that any
limiting relaxed control is a limit occupational measure, while the converse statement
is based on the controllability of the fast variables and the results and methods of
[23].

Remark. In connection with the reduced order method, we note that

H0 ≤ H = Hr
l ≤ Hr

0 := sup
µ∈Zr(x)

F r(x, µ, p).

1.6. Convergence.
Theorem 8. As ε → 0+ the functions {uε} converge uniformly on compact

subsets of (0, T ) × R
n × Y to the unique solution u of (11); if h does not depend on

y, the convergence is uniform on compact subsets of (0, T ]× R
n × Y .

Proof. We define the weak limits in the viscosity sense, or relaxed semilimits

u(t, x) := lim inf
*ε→0 inf

y
uε(t, x, y) := lim inf

ε→0, t′→t, x′→x
inf
y
uε(t

′, x′, y)

and u = lim sup * supy uε.
We redefine u at t = T by setting

ũ(T, x) := lim sup
t′→T−, x′→x

u(t′, x′) and ũ(t, x) := u(t, x) for 0 < t < T .

We will show that u is a supersolution of (11) and ũ is a subsolution of (11). By
comparison this gives u = u = u in (0, T ) × R

n and implies the convergence of {uε}
to u uniformly on compact subsets of (0, T )× R

n × R
m.

To prove that ũ is a subsolution of the limit H–J equation we consider a strict
maximum point (t, x) of u− ϕ with 0 < t < T and ϕ smooth. We want to show that

−∂tϕ(t, x) +H(x,Dϕ(t, x)) ≤ 0(20)

and suppose by contradiction that

−∂tϕ(t, x) + λ > 0 for λ = H(x, p), p = Dϕ(t, x).
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Let χ be the solution of the cell problem at (x, p), and define the perturbed test
function as

ϕε(t, x, y) = ϕ(t, x) + εχ(y).

We claim that for some r > 0, ϕε is a viscosity supersolution of

−∂tϕε +H

(
x, y,Dxϕε,

Dyϕε

ε

)
≥ 0 in Ir ×B(x, r)× Y ,(21)

where Ir = (t − r, t + r). To prove the claim we take a smooth ψ such that ϕε − ψ
attains its minimum over Ir ×B(x, r)× Y at (t̃, x̃, ỹ), and (ϕε −ψ)(t̃, x̃, ỹ) = 0. Then
the function y �→ χ(y)− ε−1ψ(t̃, x̃, y) has a minimum at ỹ, so the definition of χ gives

H

(
x, ỹ, p,

Dyψ

ε
(t̃, x̃, ỹ)

)
≥ λ.

Since χ is Lipschitz continuous it is easy to check that |ε−1Dyψ(t̃, x̃, ỹ))| ≤ Lip(χ).
Now we set γ := (−∂tϕ(t, x) + λ)/2 and use the continuity of H in (x, p), uniformly
for y ∈ Y and |ε−1Dyψ| ≤ Lip(χ), to find δ such that

H

(
x, ỹ, p,

Dyψ

ε
(t̃, x̃, ỹ)

)
≥ λ− γ

for |x− x| < δ and |p− p| < δ. Now choose 0 < r ≤ δ such that∣∣Dxϕ(t, x)−Dxϕ(t̃, x̃)
∣∣ < δ and

∣∣∂tϕ(t, x)− ∂tϕ(t̃, x̃)∣∣ < γ.
Note that the choice of r is independent of ψ. Since Dxψ(t̃, x̃, ỹ) = Dxϕ(t̃, x̃) and
∂tψ(t̃, x̃, ỹ) = ∂tϕ(t̃, x̃), we get[

−∂tψ +H

(
·, ·, Dxψ,

Dyψ

ε

)]
(t̃, x̃, ỹ) ≥ −∂tϕ(t, x)− γ + λ− γ = 0,

which completes the proof of the claim.
In view of (21), we can use a comparison principle for the mixed boundary value

problem with prescribed data on ∂(Ir × B(x, r)) and state-constrained condition at
∂Y (see, e.g., Theorem IX.1 in [16]) to obtain

sup
Ir×B(x,r)×Y

(uε − ϕε) ≤ sup
∂(Ir×B(x,r))×Y

(uε − ϕε).

It is not hard to deduce from this and the definitions of u and ϕε that

(u− ϕ)(t, x) ≤ sup
∂(Ir×B(x,r))

(u− ϕ),

and this is in contradiction to the fact that (t, x) is a strict maximum point of u−ϕ.
This completes the proof of (20).

Next we show that u is a supersolution of the limit H–J equation. Now (t, x) is a
strict minimum point of u−ϕ and we assume by contradiction that −∂tϕ(t, x)+λ < 0,
where λ = H(x,Dϕ(t, x)) as before. We also define χ and ϕε as before, and now claim
that ϕε is a viscosity subsolution of

−∂tϕε +H

(
x, y,Dxϕε,

Dyϕε

ε

)
≤ 0 in Ir ×B(x, r)× Y.
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The proof is essentially the same as the proof of (21). Now we exploit the fact
that uε is a (constrained) supersolution of the same PDE in Ir × B(x, r) × Y and
the comparison principle for the mixed Dirichlet-constrained boundary value problem
(see, e.g., Theorem IX.1 in [16]) to get

inf
Ir×B(x,r)×Y

(uε − ϕε) ≥ inf
∂(Ir×B(x,r))×Y

(uε − ϕε).

This implies

(u− ϕ)(t, x) ≥ inf
∂(Ir×B(x,r))

(u− ϕ),

a contradiction with the choice of (t, x). Therefore

−∂tϕ(t, x) +H(x,Dϕ(t, x)) ≥ 0,

and so u is a supersolution of the limit H–J equation.
Finally we check the terminal condition. The hypotheses on f and l imply easily

the estimate

uε(t, x, y) ≥ −(T − t)||l||∞ + inf{h(x′) : |x′ − x| ≤ ||f ||∞(T − t)}
for all ε > 0. Since h is continuous, in the limit we obtain u(T, x) ≥ h(x).

For ũ, we note that

uε(t, x, y) ≤ (T − t)||l||∞ + inf
α∈A(x,y)

h(x, ytT ) + ωh(|x− xtT |),

where (xtT , y
t
T ) denote the position of the system at time T if the position at time t

is (x, y), and ωh is the modulus of continuity of h. Since |x − xtT | ≤ (T − t)||f ||∞,
the first and third term on the right-hand side of the preceding estimate tend to 0 as
t→ T−. To reach the conclusion we are going to prove that

lim sup
ε→0, t′→t, x′→x

sup
y

inf
α∈A(x′,y)

h(x′, yt
′
T ) ≤ h(x)

for all t < T .
Without loss of generality we can assume that

B(0, r) ⊂ {g(x, y, α) | α ∈ A}.
In fact, if we take relaxed controls or use Carathéodory’s theorem (as in Lemma
2.7 of [6]) to convexify g(x, y,A), the value function uε does not change because the
Hamiltonian H is the same. Then it is easy to see by means of a standard selection
lemma (e.g., as in Lemma 2.8 of [6]) that any polygonal γ ⊂ Y is the trajectory of
a solution yt of the system, with speed r/ε. Therefore, by Lemma 3(ii), for some
constant M the system can reach any point y ∈ Y from any y ∈ Y within the time
Mε/r. Then, for any initial position y ∈ Y of the system,

inf
α∈A(x′,y)

h(x′, yt
′
T ) = h(x′) if t′ ≥ t+ Mε

r
.

For any t < T we can restrict ε < r(T − t)/M and get

lim sup
ε→0, t′→t, x′→x

sup
y

inf
α∈A(x′,y)

h
(
x′, yt

′
T

)
= lim sup

x′→x
h(x′) = h(x),
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where in the last equality we used the continuity of h. Therefore ũ(T, x) ≤ h(x) and
the proof of the first statement is complete.

In the case of h = h(x) we have, for 0 ≤ (T − t)||f ||∞ ≤ 1, |x− x′| ≤ 1, and all y,

|uε(t, x′, y)− h(x)| ≤ (T − t)||l||∞ + ω(|x− x′|+ (T − t)||f ||∞),

where ω is the modulus of continuity of h in B(x, 2). Therefore u(T, x) = u(T, x) =
ũ(T, x) = h(x), and the convergence of uε is uniform on compact subsets up to time
t = T .

2. Stochastic control with periodic fast variables.

2.1. The ε-control problem. For ε > 0 fixed, we now consider the following
finite horizon stochastic control problem in (0, T ] × R

n × R
m. Let (Ω,F , P ) be a

probability space, endowed with a right-continuous filtration (Ft)0≤t≤T and an r-
dimensional adapted Brownian motion Wt. Given a progressively measurable α with
values in a compact set A, the stochastic differential equation

dxs = f(xs, ys, αs) ds+ σ(xs, ys, αs) dWs,

dys = ε−1g(xs, ys, αs) ds+ ε
−1/2τ(xs, ys, αs) dWs

for s ≥ t, starting from xt = x ∈ R
n, yt = y ∈ R

m, has a pathwise unique adapted
strong solution when the functions f , g, σ, τ are Lipschitz continuous in (x, y) uni-
formly in α. The variable x is called the slow variable and y the fast variable. We
refer to Fleming and Soner [21] for a presentation of the theory of stochastic control
and its relationship to the theory of viscosity solutions. We shall always assume that
all of the functions are Z

m-periodic in the fast variable y.
The associated value function with running cost l and terminal cost h is given by

uε(t, x, y) = inf
α
E

{∫ T

t

l(xs, ys, αs) ds+ h(xT )

}
.

Under the assumptions we recall below, it is continuous and bounded on (0, T ]×R
n×

R
m uniformly in ε. It is also periodic in the fast variable y.

We shall make throughout the following set of assumptions that are classic in the
theory of stochastic control.

— The control set A is a compact metric space.
— The functions f , g, σ, τ , and l are bounded continuous functions in R

n ×
R

m × A with values, respectively, in R
n, R

m, M
n,r (the set of the n× r real

matrices), M
m,r, and R. They are Z

m-periodic in the fast variable y.
— The drift vectors f and g and the dispersion matrices σ and τ are Lipschitz

continuous in (x, y), uniformly in α.
— The running cost l is uniformly continuous in (x, y), uniformly in α.
— The terminal cost h : R

n → R is bounded uniformly continuous.

2.2. The H–J–B equation. Consider the diffusion matrices

a =
σσT

2
, b =

ττT

2
, c =

τσT

2
,

and associate the Hamiltonian

H(x, y, p, q,X, Y, Z) = max
α∈A
{−tr(a(x, y, α)X)− tr(b (x, y, α)Y )− tr(c (x, y, α)Z)

−tr(Zc (x, y, α))− (p, f(x, y, α))− (q, g(x, y, α))− l(x, y, α)}.
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It is defined on R
n×R

m×R
n×R

m×S
n×S

m×M
n,m, where S

n designates the set of the
symmetric n×n matrices. Given a function u(t, x, y) defined on (0, T ]×R

n×R
m, we

consider the partial gradients ∂tu, Dxu, and Dyu. We also define the partial Hessian
matrices D2

xxu, D
2
yyu, and D

2
xyu =

(
∂2
xi,yju

)
1≤i≤n,1≤j≤m

, so that the full Hessian

matrix of u with respect to (x, y) is

D2u =

(
D2

xxu D2
xyu

(D2
xyu)

T D2
yyu

)
.

By the dynamic programming principle, the value function uε is a viscosity solution
of the second order degenerate parabolic H–J–B equation{

−∂tuε +H(x, y,Dxuε,
Dyuε

ε , D2
xxuε,

D2
yyuε
ε ,

D2
xyuε√
ε

) = 0 in (0, T )× R
n × R

m,

uε(T, ·) = h on R
n × R

m.
(22)
The following theorem records these facts. We refer to [21] for a proof and a detailed
discussion.

Theorem 9. For every ε > 0, the value function uε is the unique bounded
continuous viscosity solution of (22) in (0, T ]× R

n × R
m.

For further use, we recall that the uniqueness statement in the theorem takes
the form of the following comparison principle. If u is a bounded u.s.c. viscosity
subsolution of (22) and v is a bounded l.s.c. viscosity supersolution, then we have
u ≤ v in (0, T ] × R

n × R
m. We refer to [17, 21] for the precise definitions of a

subsolution and a supersolution and for the proof of the comparison principle.

2.3. The ergodic control problem in the fast variable and the effective
Hamiltonian. We shall make one of the following three assumptions to guarantee
some averaging properties of the fast dynamics.

(I) The diffusions in the fast variable are uniformly nondegenerate, i.e., there is
a constant ν > 0 such that

b(x, y, α) ≥ νIm for all (x, y, α),

where Im denotes the m-dimensional identity matrix. Moreover, the running
cost l(x, ·, α) is Hölder continuous for some exponent 0 < β ≤ 1, uniformly
on (x, α).

(II) The diffusions in the fast variable are independent of x (b ≡ b(y, α)) and
there is a deterministic controllable subsystem in the fast variable, i.e., there
is some r > 0 and some A′ ⊂ A so that

b(y, α) = 0 for all α ∈ A′ and B(0, r) ⊂ conv{g(x, y, α) | α ∈ A′}
for all (x, y).

(III) The drifts and diffusions in the fast variable do not depend on x, y (g ≡ g(α)
and b ≡ b(α)) and satisfy the nonresonance condition

for every k ∈ Z
m there is α ∈ A such that (g(α), k) �= 0 or b(α)k �= 0.

In terms of the Hamiltonian, case (I) corresponds to the uniform ellipticity of H
in Y ,

H(x, y, p, q,X, Y +W,Z) ≤ H(x, y, p, q,X, Y, Z)− νtrW, W ≥ 0,
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while (II) corresponds to the coercivity with respect to q:

H(x, y, p, q,X, Y, Z) ≥ r|q| − C(1 + |p|+ |X|).

The preceding assumptions are of two different natures. Some of them demand
that some quantities in the fast dynamics are independent of the slow variable. They
are needed to ensure enough regularity of the averaged quantities with respect to
the slow variables. It is an open question whether they can be dispensed with. The
second kind of assumption is more fundamental. They guarantee the solvability of
the ergodic control problem in the fast variable. These assumptions correspond to
some of the cases studied by Arisawa and Lions [2]. In our context, their results read
as follows.

Theorem 10. Assume that either (I) or (II) or (III) holds. Let (x, p,X) be fixed.
For every δ > 0, let wδ denote the unique viscosity solution of the stationary problem
in the fast variable

δwδ +H(x, y, p,Dywδ, X,D
2
yywδ, 0) = 0 in R

m, wδ periodic.(23)

Then, as δ → 0+, the family {δwδ} converges to a constant −H(x, p,X), uniformly
with respect to y.

When one looks at the solution wδ of the H–J–B equation (23) as the value
function of a discounted control problem in the fast variable, the theorem asserts that

H(x, p,X)

= lim
δ→0+

sup
α

{
δE

∫ ∞

0

e−δs
(− tr(a(x, ys, αs)X)− (p, f(x, ys, αs))− l(x, ys, αs)

)
ds

| dys = g(x, ys, αs) ds+ τ(x, ys, αs) dWs, y0 = y

}
,(24)

the convergence being uniform in y.
In cases (I) and (II), one can characterize the effective Hamiltonian in the more

convenient form of section 1. It is the unique constant H for which the cell problem

H(x, y, p,Dyχ,X,D
2
yyχ, 0) = H in R

m, χ periodic,

has a continuous solution χ. However, such a characterization is not available in case
(III), for it may happen that the cell problem has no solution. We refer to [2] for an
explicit example.

The above assumptions are three of the five cases studied by Arisawa and Lions [2].
Among the remaining two cases, the one-dimensional one in the fast variable (m = 1)
can be handled in a similar way as (II); we omit it for simplicity. On the other hand,
for the viscosity solution techniques to apply, the uniform convergence of {δwδ} is
essential. This is why we do not consider the fifth case that assumes (roughly) that
at least one diffusion is uniformly nondegenerate (and not all, as in (I)), because the
convergence of {δwδ} may not be uniform (but in Lp for every 1 ≤ p < ∞). An
example in which this happens is given in [2].

2.4. Examples for the effective Hamiltonian.
Example 1: The coercive and separated case. The first example, as in section 1, is

the case of separated controls. We assume that the fast variable is controlled indepen-
dently of the slow variable and that there is a controllable deterministic subsystem
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(case (II)). The controls are of the form α = (β, γ) and f = f(x, y, β), σ = σ(x, y, β),
g = g(x, y, γ), and τ = τ(x, y, γ). We also assume that l = l(x, y, β). Under these
assumptions, the representation formula reads as

H(x, p,X)

= lim
δ→0

sup
(β,γ)

{
δE

∫ ∞

0

e−δs
(− tr(a(x, ys, βs)X)− (p, f(x, ys, βs))− l(x, ys, βs)

)
ds

| dys = g(x, ys, γs) ds+ τ(x, ys, γs) dWs

}
,

= lim
δ→0

sup
γ

{
δE

∫ ∞

0

e−δsH1(x, ys, p,X) ds | dys = g(x, ys, γs) ds+ τ(x, ys, γs) dWs

}

for

H1(x, y, p,X) = sup
β
{−tr(a(x, y, β)X)− (p, f(x, y, β))− l(x, y, β)}.

Arguing as in section 1, we deduce from the controllability assumption that

H(x, p,X) = sup
y
H1(x, y, p,X).

Thus the effective Hamiltonian corresponds to the original control problem where the
fast variable plays the role of an additional control.

Example 2: Uncontrolled and nondegenerate diffusion of the fast variables. The
second example assumes that the fast variable is an uncontrolled uniformly nonde-
generate diffusion. Since we are in case (I), we know that the effective Hamiltonian
is characterized by the solvability of the linear cell problem

H1(x, y, p,X)−tr(b(x, y)D2
yyχ)−(Dyχ, g(x, y)) = H(x, p,X) in R

m, χ periodic

(where H1 is given above, with α instead of β). Assuming that the functions b and g
are smooth in y, there is a unique solution µx (the invariant measure) of the adjoint
equation

−
∑
i,j

∂2

∂yi∂yj
(bij(x, y)µx) +

∑
i

∂

∂yi
(gi(x, y)µx) = 0 in R

m, µx periodic,

with mean
∫
(0,1)m

µx(y) dy = 1. This follows from the Fredholm alternative (see, for

instance, [14] or [13]). A necessary and sufficient condition for the cell problem to
have a solution is that

H(x, p,X) =

∫
(0,1)m

H1(x, y, p,X)µx(y) dy.

If, in addition, b and g are independent of y (and more generally when gi =
∑

j
∂bij
∂yj

),

we have µx ≡ 1. The effective Hamiltonian is therefore the average

H(x, p,X) =

∫
(0,1)m

H1(x, y, p,X) dy.

This example is a variant of the results of Jensen and Lions [29] and Evans [19].
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2.5. Regularity properties of the effective Hamiltonian.
Proposition 11. The effective Hamiltonian H is degenerate elliptic in X and

convex in (p,X). Moreover, we have the bounds

inf
y
H(x, y, p, 0, X, 0, 0) ≤ H(x, p,X) ≤ sup

y
H(x, y, p, 0, X, 0, 0).(25)

Proof. The bounds for H are a consequence of the observation that the constant
functions

−δ−1 sup
y
H(x, y, p, 0, X, 0, 0), −δ−1 inf

y
H(x, y, p, 0, X, 0, 0)

are, respectively, a subsolution and a supersolution of (23). Therefore, by the com-
parison principle, we get

− sup
y
H(x, y, p, 0, X, 0, 0) ≤ δwδ ≤ − inf

y
H(x, y, p, 0, X, 0, 0).

Sending δ → 0 yields (25).
Degenerate ellipticity and convexity can be derived by analytical means as in [1].

They are also simple consequences of the representation formula (24). Indeed, for
every δ fixed and every control αs, the function

δE

∫ ∞

0

e−δs
(− tr(a(x, ys, αs)X)− (p, f(x, ys, αs))− l(x, ys, αs)

)
ds

is linear in (p,X) and nonincreasing in X. Taking the supremum over the controls
yields a function that is convex in (p,X) and nonincreasing in X, as is the limit as
δ → 0.

The continuity of the effective Hamiltonian is a consequence of the following
result.

Proposition 12. There are a constant C > 0 and a modulus ω such that

|H(x, p′, X ′)−H(x, p,X)| ≤ C(|p′ − p|+ |X ′ −X|)(26)

for all (x, p, p′, X,X ′) and

|H(x′, p,X)−H(x, p,X)| ≤ C|x′ − x|(1 + |p|+ |X|) + ω(|x′ − x|)(27)

for all (x, x′, p,X).
Proof. The first inequality follows at once from the representation formula (24)

by taking the constant C = max(‖f‖L∞ , ‖a‖L∞).
The second inequality is more delicate. When the drift and diffusion in the fast

variable are independent of x (case (III)), the inequality follows from the representa-
tion formula for the constant C = max

(
Lip(f), Lip(a)

)
and for the modulus ω = ωl.

We give a second proof of this elementary result, which we shall modify in the other
two cases. Since the drift and diffusion for the fast variable are independent of x, the
Hamiltonian H satisfies

H(x′, y, p, q,X, Y, 0) ≤ H(x, y, p, q,X, Y, 0)+C|x′−x|(1+|p|+|X|)+ω(|x′−x|).(28)

Therefore, the function wδ(·, x, p,X) is a subsolution of

δwδ +H(x′, y, p,Dywδ, X,D
2
yywδ, 0) ≤ C|x′ − x|(1 + |p|+ |X|) + ω(|x′ − x|).
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By the comparison principle, we obtain the uniform bound

δwδ(·, x, p,X) ≤ δwδ(·, x′, p,X) + C|x′ − x|(1 + |p|+ |X|) + ω(|x′ − x|).
Sending δ → 0 yields

H(x, p,X) ≥ H(x′, p,X)− C|x′ − x|(1 + |p|+ |X|)− ω(|x′ − x|).
We get (27) after exchanging x and x′.

We now assume (II). As g may now depend on x (but not b), we have to replace
(28) by

H(x′, y, p, q,X, Y, 0) ≤ H(x, y, p, q,X, Y, 0)+C|x′−x|(1+|p|+|q|+|X|)+ω(|x′−x|).
(29)
The controllability assumption gives the coercivity of H in q, uniformly in Y , as

H(x, y, p, q,X, Y, 0) ≥ r|q| − C(1 + |p|+ |X|).
Since

‖δwδ‖L∞ ≤ sup
y
|H(x, y, p, 0, X, 0, 0)| ≤ C(1 + |p|+ |X|),

we deduce that the solution of (23) is Lipschitz continuous with the bound

‖Dywδ(·, x, p,X)‖L∞ ≤ r−1
(‖δwδ‖L∞ + C(1 + |p|+ |X|)) ≤ C(1 + |p|+ |X|).(30)

We deduce from (29) that wδ(·, x, p,X) is a subsolution of

δwδ +H(x′, y, p,Dywδ, X,D
2
yywδ, 0)

≤ C|x′ − x|(1 + |p|+ |X|+ ‖Dywδ‖L∞) + ω(|x′ − x|)
≤ C|x′ − x|(1 + |p|+ |X|) + ω(|x′ − x|).

The inequality for H is deduced as before from the comparison principle.
We finally consider case (I). As g and b now depend on x, the inequality for H

reads as

H(x′, y, p, q,X, Y, 0) ≤ H(x, y, p, q,X, Y, 0)

+C|x′ − x|(1 + |p|+ |q|+ |X|+ |Y |)+ ω(|x′ − x|).(31)

We claim that the solution wδ of (23) is in C2,β for some exponent 0 < β ≤ β with

‖wδ(·, x, p,X)− wδ(0, x, p,X)‖
C2,β(Rm)

≤ C(1 + |p|+ |X|).(32)

Admitting this temporarily, we deduce that wδ(·, x, p,X) is a subsolution of

δwδ +H(x′, y, p,Dywδ, X,D
2
yywδ, 0)

≤ C|x′ − x|(1 + |p|+ |X|+ ‖Dywδ‖L∞ + ‖D2
yywδ‖L∞) + ω(|x′ − x|)

≤ C|x′ − x|(1 + |p|+ |X|) + ω(|x′ − x|).
Inequality (27) for H follows as before by comparison.

The proof of (32) relies on the regularity theory for uniformly elliptic H–J–B equa-
tions (see Gilbarg and Trudinger [24] and Safonov [36]). Our argument is patterned
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after the one of Arisawa and Lions [2]. We give a sketch of it to exhibit the linear
growth in (p,X) of the bound. The first step is to establish the uniform bound

‖wδ(·, x, p,X)− wδ(0, x, p,X)‖L∞(Rm) ≤ C(1 + |p|+ |X|)(33)

for all (x, p,X) and 0 < δ < δ, for some constant C and some δ > 0. Suppose that
(33) is false. Then there is a sequence (δκ, xk, pk, Xk) with δk → 0 for which the
solution wk = wδk(·, xk, pk, Xk) of (23) satisfies

‖wk − wk(0)‖L∞ ≥ k(1 + |pk|+ |Xk|).

We set ηk = ‖wk−wk(0)‖−1
L∞ and w̃k = ηk(wk−wk(0)). Then, w̃k(0) = 0, ‖w̃k‖L∞ = 1,

and w̃k is a solution of

δkw̃k + ηkδkwk(0) + sup
α∈A
{ − tr(b(xk, y, α)D

2w̃k)

−(Dw̃k, g(xk, y, α))− ηkL(y, α, xk, pk, Xk)} = 0

for

L(y, α, x, p,X) = tr(a(x, y, α)X) + (p, f(x, y, α)) + l(x, y, α).

Since

‖δwδ‖L∞ ≤ C(1 + |p|+ |X|)

and

‖L(·, α, x, p,X)‖C0,β ≤ C(1 + |p|+ |X|),

we have

|ηkδkwk(0)|+ ‖ηkL(·, α, xk, pk, Xk)‖C0,β ≤ Cηk(1 + |pk|+ |Xk|) ≤ C

k
.

The regularity theory for uniformly elliptic H–J–B equations therefore yields the uni-

form boundedness of w̃k in C2,β for some β, depending only on m, the ellipticity
constant ν, and β. Moreover, for α0 fixed, the families {b(xk, ·, α0)} and {g(xk, ·, α0)}
are equi-bounded and equi-continuous. Therefore, along a subsequence, the functions
w̃k and their derivatives of order ≤ 2, respectively b(xk, ·, α0) and g(xk, ·, α0), converge

uniformly to some function w̃ in C2,β and its derivatives of order ≤ 2, respectively

to b and g. The function b is clearly ≥ νIp, while w̃ is a periodic function in C2,β

such that w̃(0) = 0 and ‖w̃‖L∞ = 1. Since δkw̃k, ηkδkwk(0), and ηkL(·, α, xk, pk, Xk)
converge to 0 uniformly, we deduce from the stability results for viscosity solutions
that w̃ is a classic subsolution of the uniformly elliptic linear equation

−tr(b(y)D2w̃)− (Dw̃, g(y)) ≤ 0.

Since w̃ is periodic, it achieves its maximum at some point. By the strong maximum
principle, it must be constant. This is impossible, for we must have w̃(0) = 0 and
‖w̃‖L∞ = 1.

Recalling that the running cost L(·, α, x, p,X) is Hölder continuous with C0,β

norm growing linearly in p and X, we deduce from the bound (33) and from the
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regularity theory for uniformly elliptic H–J–B equations that there is some 0 < β ≤ β,
β depending only on m, ν, and β, such that

‖wδ − wδ(0)‖C2,β ≤ C
(
‖wδ − wδ(0)‖L∞ + |δwδ(0)|+ sup

α
‖L(·, α, x, p,X)‖C0,β

)
≤ C(1 + |p|+ |X|).

This is (32).
In order to solve the limit equation with Hamiltonian H, one needs to strengthen

slightly the regularity of H in Proposition 12. One of the following properties is
sufficient to invoke results from the theory of viscosity solutions.

— The effective Hamiltonian is uniformly elliptic and satisfies (27).
— The effective Hamiltonian is of first order and satisfies (27).
— The effective Hamiltonian is degenerate elliptic and satisfies the following

structure condition (see [17]): there is a modulus ω such that, for every κ > 0
and every x, x′ ∈ R

n, X,X ′ ∈ S
n so that

−3κ
(
I 0
0 I

)
≤
(
X 0
0 −X ′

)
≤ 3κ

(
I −I
−I I

)
,

we have

H (x′, κ(x− x′), X ′) ≤ H(x, κ(x−x′), X)+ω
(
κ|x′ − x|2 + |x′ − x|) .(34)

Condition (34) is the most general but it is an open question whether it is true
in general. We can only prove it when the drift and diffusion in the fast variable do
not depend on x. This leads us to make one of the following assumptions about the
dynamics.

(IV) The diffusions in the slow variable are uniformly nondegenerate, i.e., there is
a constant µ > 0 such that

a(x, y, α) ≥ µIn for all (x, y, α).

(V) The problem in the slow variable is deterministic (a ≡ 0).
(VI) The drifts and diffusions in the fast variable are independent of x (g ≡ g(y, α)

and b ≡ b(y, α)).
From the representation formula (24), it is obvious that H is uniformly elliptic

with constant µ in case (IV) and that it is of first order in case (V). Condition
(34) also follows in case (VI) from the representation formula, since the fast dy-
namics are independent of x (and because we have classically −tr(a(x′, y, α)X ′) ≤
−tr(a(x, y, α)X) +Cκ|x′ − x|2 when the matrices X and X ′ satisfy the inequality in
(34)).

We can now invoke the theory of viscosity solutions to obtain the solvability of
the limit equation. We refer to [17] as well as to [28] for the results and proofs.

Proposition 13. Assume either (I) or (II) or (III), and either (IV) or (V)
or (VI). Then there is a unique bounded continuous viscosity solution of the limit
equation

−∂tu+H(x,Du,D2u) = 0 in (0, T )× R
n, u(T, ·) = h on R

n.(35)

Moreover, if u is a bounded u.s.c. subsolution and v is a bounded l.s.c. supersolution,
then u ≤ v on (0, T ]× R

n.
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2.6. Convergence.

Theorem 14. Assume either (I) or (II) or (III) and either (IV) or (V) or (VI).
Then, as ε → 0+, the collection {uε} converges uniformly on the compact subsets of
(0, T ]× R

n × R
m to the unique viscosity solution u of (35).

Proof. The functions uε are bounded in (0, T ]×R
n×R

m uniformly in ε. We can
therefore define the half-relaxed limits on (0, T ]× R

n:

u(t, x) = lim inf
ε→0, t′→t, x′→x

inf
y
uε(t

′, x′, y), u(t, x) = lim sup
ε→0, t′→t, x′→x

sup
y
uε(t

′, x′, y).

As in the first section, we shall prove that u is a supersolution of (35) and that u
is a subsolution of (35). By the comparison principle, we shall get u = u = u in
(0, T ]×R

n. This gives classically the uniform convergence on the compact subsets of
(0, T ]× R

n × R
m of {uε} to u.

We only check that u is a subsolution of (35), the proof that u is a supersolution
being analogous. Let w(t, x) be the continuous viscosity solution of

−∂tw + inf
y
H(x, y,Dxw, 0, D

2
xxw, 0, 0) = 0 in (0, T )× R

n, w(T, ·) = h on R
n.

It is clearly a viscosity supersolution of (22). By the comparison principle, we have
uε(t, x, y) ≤ w(t, x) for all ε > 0, 0 < t ≤ T , x, y. Taking the semilimit, we deduce
that u(T, ·) ≤ h on R

n. This proves that u is a subsolution at the terminal boundary.

We next prove that u is a subsolution in (0, T ) × R
n. Let (t, x) ∈ (0, T ) × R

n

be a strict maximum point of u(t, x) − ϕ(t, x) with u(t, x) = ϕ(t, x). We argue by
contradiction, assuming that

−∂tϕ(t, x) +H(x,Dϕ(t, x), D2ϕ(t, x)) > 0.

Put H = H(x,Dϕ(t, x), D2ϕ(t, x)). Let vε be the periodic solution of

εvε +H(x, y,Dϕ(t, x), Dyvε, D
2ϕ(t, x), D2

yyvε, 0) = H in R
m.

By Theorem 10 and the definition of the effective Hamiltonian, we know that
ε
(
vε − ε−1H) converges uniformly to −H. Therefore, εvε converges uniformly to

0. For ε > 0, we consider the perturbed test function

ψε(t, x, y) = ϕ(t, x) + εvε(y).

We will show that there is a small r ∈ (0, t ∧ (T − t)) so that ψε is a supersolution of
(22) in Qr = (t−r, t+r)×B(x, r)×R

m for ε small. We suppose this has been proved
and reach a contradiction. Since {ψε} converges uniformly to ϕ on Qr, we have

lim sup
ε→0, t′→t, x′→x

sup
y
(uε − ψε) = u(t, x)− ϕ(t, x).

But (t, x) is a strict maximum point of u − ϕ, so the above relaxed upper limit is
< 0 on ∂Qr. By compactness (recall that uε and ψε are periodic in y), one can find
η > 0 so that uε − ψε ≤ −η on ∂Qr for ε small, i.e., ψε ≥ uε + η on ∂Qr. Since
ψε is a supersolution of (22) in Qr, we deduce from the comparison principle that
ψε ≥ uε + η in Qr for ε small. Taking the upper semilimit, we get ϕ ≥ u + η in
(t− r, t+ r)×B(x, r). This is impossible for ϕ(t, x) = u(t, x).
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We have to show that ψε is a supersolution of (22) in Qr for r small, for all ε
small. For every (t, x, y) ∈ Qr, we have

−∂tψε + H

(
x, y,Dxψε,

Dyψε

ε
,D2

xxψε,
D2

yyψε

ε
,
D2

xyψε√
ε

)

= −∂tϕ(t, x) +H(x, y,Dϕ(t, x), Dyvε(y), D
2ϕ(t, x), D2

yyvε(y), 0).

(36)

When g and b are independent of x (case (III)), the Hamiltonian satisfies

H(x, y, p, q,X, Y, 0) ≥ H(x, y, p, q,X, Y, 0)

−C|x− x|(1 + |p|+ |X|)− ω(|x− x|)− C|p− p| − C|X −X|
for p = Dϕ(t, x) and X = D2ϕ(t, x). Therefore, the quantity in (36) is bounded from
below by

−∂tϕ(t, x) +H(x, y,Dϕ(t, x), Dyvε(y), D
2ϕ(t, x), D2

yyvε(y), 0)− o(1)
= −∂tϕ(t, x)− εvε +H − o(1),(37)

where o(1) goes to 0 as (t, x) → (t, x) uniformly in ε. Since εvε converges uniformly
to 0 and since −∂tϕ(t, x) +H > 0, we can find r > 0 so that the quantity is ≥ 0 in
Qr for ε small. We conclude that

−∂tψε +H

(
x, y,Dxψε,

Dyψε

ε
,D2

xxψε,
D2

yyψε

ε
,
D2

xyψε√
ε

)
≥ 0 in Qr.

The inequality was derived a bit formally. Using the smoothness of ϕ, it is an easy
exercise to check that the inequality holds in the viscosity sense (see section 1).

The modifications for the cases (I) and (II) are analogous to those performed in
Proposition 12. We only sketch them here. When b is independent of x (case (II)), the
Hamiltonian now satisfies (29), where the additional q term appears. In (37) there is
therefore the extra term |x− x| |Dyvε|. By the coercivity of H, we know that |Dyvε|
is bounded uniformly in y and ε by C(1 + |p| + |X|) (see (30)). So the extra term
converges uniformly on ε and y to 0 as x→ x. The above argument therefore applies
and guarantees the existence of a small r > 0 so that ψε is a supersolution in Qr for
ε small.

When both g and b may depend on x (case (I)), we must use the inequality (31)
for the Hamiltonian. But one now controls Dyvε and D

2
yyvε uniformly on ε (see (32)).

Thus, the extra term |x − x|(|Dyvε| + |D2
yyvε|) converges uniformly to 0 as x → x,

and the argument still works.

3. Homogenization and stochastic control.

3.1. Homogenization. In the case of a periodic fast variable, a special singular
perturbation problem is homogenization. We briefly illustrate this and refer to [19,
20, 8, 25, 26, 1, 38] for recent developments in the theory of homogenization of H–J
equations, which was introduced by Lions, Papanicolaou, and Varadhan [35]. For an
optimal control problem, homogenization corresponds to dynamics of the form

dxs = f
(
xs,

xs
ε
, αs

)
ds+ σ

(
xs,

xs
ε
, αs

)
dWs
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and the value function

vε(t, x) = inf
α
E

{∫ T

t

l
(
xs,

xs
ε
, αs

)
ds+ h(xT ) | xt = x

}
.

All the functions are of course assumed to be periodic in the second variable. Adding
the new variable ys = xs/ε, the dynamical system becomes

dxs = f(xs, ys, αs) ds+ σ(xs, ys, αs) dWs,

dys = ε−1f(xs, ys, αs) ds+ ε
−1σ(xs, ys, αs) dWs

(38)

with starting point xt = x and yt = x/ε.
When the problem is deterministic (σ ≡ 0) or when there is no drift (f ≡ 0), the

value function vε can be expressed in terms of the value function uε of the singular
perturbation problem of the preceding section (with g ≡ f and τ ≡ σ) as follows:

vε(t, x) = uε

(
t, x,

x

ε

)
and vε(t, x) = uε2

(
t, x,

x

ε

)
, respectively.

The convergence of uε to the solution of the limit equation (which will be uniform in
y by periodicity) of course implies the convergence of vε to the same limit. In general,
however, the scaling in (38) differs from that of the previous section. We explain
briefly how the results can be adapted.

3.2. The associated singular perturbation problem. For ε > 0 fixed, we
therefore consider a finite horizon stochastic control problem in (0, T ] × R

n × R
m

similar to the one of the preceding section but with the dynamics

dxs = f(xs, ys, αs) ds+ σ(xs, ys, αs) dWs,

dys = ε−1g(xs, ys, αs) ds+ ε
−1τ(xs, ys, αs) dWs.

The value function

uε(t, x, y) = inf
α
E

{∫ T

t

l(xs, ys, αs) ds+ h(xT )

}

is now the unique bounded continuous viscosity solution of the H–J–B equation

−∂tuε +H

(
x, y,Dxuε,

Dyuε
ε

,D2
xxuε,

D2
yyuε

ε2
,
D2

xyuε

ε

)
= 0 in (0, T )× R

n × R
m,

uε(T, ·) = h on R
n × R

m

(39)
for the Hamiltonian of the preceding section.

In an attempt to apply the method of the preceding section, we were lead to
assume that σ ≡ 0 in case (II) and g ≡ 0 in case (III). As explained above, the scaling
is unchanged under one of these assumptions. The new result therefore concerns case
(I) in which drifts and diffusions appear. We recall the assumption for convenience.

(I) The diffusions in the fast variable are uniformly nondegenerate and the run-
ning cost l(x, ·, α) is Hölder continuous uniformly on (x, α).

Theorem 15. Assume that (I) holds and let (x, p,X) be fixed. For every δ > 0,
let wδ denote the unique viscosity solution of the stationary problem in the fast variable

δwδ +H
(
x, y, p, 0, X,D2

yywδ, 0
)
= 0 in R

m, wδ periodic.
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Then, as δ → 0+, the family {δwδ} converges to a constant −H(x, p,X) uniformly
with respect to y.

The theorem is a special case of Theorem 10 of the preceding section, because
the actual Hamiltonian in the theorem corresponds to the original one with g ≡ 0.
The new effective Hamiltonian therefore has the regularity stated in Propositions 11
and 12. As a consequence, the limit equation (35) has a unique bounded continuous
viscosity solution under either (IV) or (V) or (VI), provided we drop the reference to
g in this last condition:

(VI) the diffusions in the fast variable are independent of x (b ≡ b(y, α)).
Theorem 16. Assume (I) and either (IV) or (V) or (VI). Then, as ε→ 0+, the

collection {uε} converges uniformly on the compact subsets of (0, T ]×R
n×R

m to the
unique viscosity solution u of (35).

Proof. We keep the notations of the proof of Theorem 14 and mention only the
changes. To prove that u is a subsolution in (0, T )×R

n, we consider a strict maximum
point (t, x) ∈ (0, T ) × R

n of u(t, x) − ϕ(t, x) with u(t, x) = ϕ(t, x) and assume that
−∂tϕ(t, x) +H > 0 for H = H(x,Dϕ(t, x), D2ϕ(t, x)). If vε is the periodic solution
of

ε2vε +H
(
x, y,Dϕ(t, x), 0, D2ϕ(t, x), D2

yyvε, 0
)
= H in R

m,

the family {ε2vε} converges uniformly to 0. A contradiction is achieved by showing
that the perturbed test function

ψε(t, x, y) = ϕ(t, x) + ε2vε(y)

is a supersolution of (22) in Qr = (t− r, t+ r)×B(x, r)×R
m for some r > 0 and for

ε small. For every (t, x, y) ∈ Qr, we compute

−∂tψε + H

(
x, y,Dxψε,

Dyψε

ε
,D2

xxψε,
D2

yyψε

ε2
,
D2

xyψε

ε

)

= −∂tϕ(t, x) +H
(
x, y,Dϕ(t, x), εDyvε(y), D

2ϕ(t, x), D2
yyvε(y), 0

)
≥ −∂tϕ(t, x) +H

(
x, y,Dϕ(t, x), 0, D2ϕ(t, x), D2

yyvε(y), 0
)− Cε|Dyvε|,

where C = ‖g‖L∞ . The term ε|Dyvε| converges uniformly to 0 as ε → 0 because
we have the bound ‖Dyvε‖L∞ ≤ C under (I) (see (32)). The remaining two terms
correspond to the case g ≡ 0; they can be handled as in the proof of Theorem 14. We
conclude that the expression is ≥ 0 in Qr for some r > 0 and for ε small, so that ψε

is a supersolution. This completes the proof.
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Abstract. We consider an infinite-horizon linear-quadratic minimax optimal control problem for
stochastic uncertain systems with output measurement. A new description of stochastic uncertainty
is introduced using a relative entropy constraint. For the stochastic uncertain system under consid-
eration, a connection between the worst-case control design problem and a specially parametrized
risk-sensitive stochastic control problem is established. Using this connection, a minimax optimal
LQG controller is constructed which is based on a pair of algebraic matrix Riccati equations arising
in risk-sensitive control. It is shown that this minimax optimal controller absolutely stabilizes the
stochastic uncertain system.
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1. Introduction. One of the important ideas in modern robust control theory
emerges from the fact that many robust control problems can be formulated as op-
timization problems. The advantage of this approach is that it allows one to readily
convert a problem of robust controller design into a mathematically tractable game-
type minimax optimization problem. For linear systems with full state measurement,
this methodology leads to a robust version of the linear quadratic regulator (LQR)
approach to state feedback controller design [15, 18]. However, the development of
a robust version of the LQG technique appears to be a challenging problem. The
problem becomes especially difficult in situations in which one wishes to take into
account the fact that in real physical systems, noise disturbances entering into the
controlled plant differ from Gaussian white noise. A suitable way of introducing noise
disturbances in this case may be to treat the disturbances as uncertain stochastic
processes. A formalization of this idea leads to the concept of an uncertain stochastic
system introduced in recent papers [11, 12, 19].

Note that in the case of a finite time horizon, the uncertain systems framework
introduced in [12, 19] allows one to extend the standard LQG design methodology
into a partial information minimax optimal control methodology for stochastic uncer-
tain systems. The problem considered in [12, 19] involves constructing a controller
which minimizes worst-case performance in the face of system uncertainty which sat-
isfies a certain stochastic uncertainty constraint. This constraint restricts the relative
entropy between an uncertain probability measure related to the distribution of the
uncertainty input and the reference probability measure. This relative entropy con-
straint can be thought of as a stochastic counterpart of the deterministic integral
quadratic constraint uncertainty description; see [15, 23]. One advantage of the rela-
tive entropy uncertainty description is that it allows for stochastic uncertainty inputs
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to depend dynamically on the uncertainty outputs.

In this paper, we address an infinite-horizon version of the robust LQG prob-
lems considered in [12, 19]. As we proceed from a finite time interval to an infinite
time interval, the fact that the systems under consideration are those with additive
noise becomes important. The solutions of such systems do not necessarily belong
to L2[0,∞). Hence, the approaches used to describe admissible uncertainties in the
deterministic case (e.g., see [15]) and the multiplicative noise case [18] are not appli-
cable here. Note that the class of admissible uncertainties defined using the approach
of [15, 18] is consistent with the notion of absolute stabilizability defined in terms of
the L2[0,∞)-summability of uncertainty inputs and corresponding solutions to the
closed-loop system. However, in the present paper the uncertainty inputs and solu-
tions need not be L2[0,∞)-summable. Instead, we will consider the time-averaged
properties of the system solutions. This requires us to correspondingly modify the
definitions of admissible uncertainty and absolute stabilizability in order to properly
account for the nature of the systems under consideration. In particular, our new
definition of the class of admissible uncertainties is one of the contributions of this
paper. In the case of an uncertain system with additive noise considered on the infi-
nite time interval, we use an approximating sequence of martingales to describe the
class of admissible uncertainties. In particular, we give an example which shows that
H∞ norm-bounded uncertainty can be incorporated into the proposed framework by
constructing a corresponding sequence of martingales.

The main result of the paper is a robust LQG control synthesis procedure based
on a pair of algebraic Riccati equations arising in risk-sensitive optimal control; see
[9]. We show that solutions to a certain specially parametrized risk-sensitive control
problem provide us with a controller which guarantees an optimal upper bound on
the time-averaged performance of the closed-loop system in the presence of admissible
uncertainties.

2. Definitions. Let (Ω,F , P ) be a complete probability space on which a p-
dimensional standard Wiener process W (·) and a Gaussian random variable x0 : Ω→
Rn with mean x̌0 and nonsingular covariance matrix Y0 are defined, p = r + l. The
first r entries of the vector process W (·) correspond to the system noise, while the
last l entries correspond to the measurement noise. The space Ω can be thought
of as the noise space Rn × Rl × C([0,∞),Rp) [1]. The probability measure P can
then be defined as the product of a given probability measure on Rn ×Rl and the
standard Wiener measure on C([0,∞),Rp). The space Ω is endowed with a filtration
{Ft, t ≥ 0} which has been completed by including all sets of probability zero. The
filtration {Ft, t ≥ 0} can be thought of as the filtration generated by the mappings
{Πt, t ≥ 0}, where Π0(x, η,W (·)) = (x, η) and Πt(x, η,W (·)) = W (t) for t > 0 [1].
The random variable x0 and the Wiener process W (·) are stochastically independent
in (Ω,F , P ).

2.1. The nominal system. On the probability space (Ω,F , P ) defined above,
we consider the system and measurement dynamics driven by the noise input W (·)
and a control input u(·). These dynamics are described by the following stochastic
differential equation:

dx(t) = (Ax(t) +B1u(t))dt+B2dW (t), x(0) = x0,(1)

z(t) = C1x(t) +D1u(t),

dy(t) = C2x(t)dt+D2dW (t), y(0) = 0.
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In the above equations, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
z(t) ∈ Rq is the uncertainty output, and y(t) ∈ Rl is the measured output. System
(1) is referred to as the nominal system. All coefficients in (1) are assumed to be
constant matrices of corresponding dimensions. Also, we assume that D2D

′
2 > 0.

In the minimax optimal control problem to be considered in this paper, our at-
tention will be restricted to linear output-feedback controllers of the form

dx̂ = Acx̂+Bcdy,

u = Kx̂,(2)

where x̂ ∈ Rn̂ is the state of the controller and Ac ∈ Rn̂×n̂, K ∈ Rm×n̂, and
Bc ∈ Rn̂×q. Let U denote this class of linear controllers. Note that the controller (2)
is adapted to the filtration {Yt, t ≥ 0} generated by the observation process y. The
closed-loop nominal system corresponding to controller (2) is described by a linear
Ito differential equation of the form

dx̄ = Āx̄dt+ B̄dW (t),(3)

z = C̄x̄,

u =
[
0 K

]
x̄

and is considered on the probability space (Ω,F , P ). In (3), x̄ = [x′ x̂′]′ ∈ Rn+n̂ is
the state of the closed-loop system. Also, the following notation is used:

Ā =

[
A B1K

BcC2 Ac

]
, B̄ =

[
B2

BcD2

]
, C̄ =

[
C1 D1K

]
.(4)

2.2. The stochastic uncertain system. In this paper, we introduce an uncer-
tainty description for stochastic uncertain systems with additive noise which can be
regarded as an extension of the uncertainty description considered in [12, 19] to the
case of an infinite time horizon. As in [12, 19], the stochastic uncertain systems to be
considered are described by the nominal system (1) considered over the probability
space (Ω,F , P ), and also by a set of perturbations of the reference probability mea-
sure P . These perturbations are defined as follows. Consider the setM of continuous
positive martingales (ζ(t),Ft, t ≥ 0) such that for each T ≥ 0, Eζ(T ) = 1; here, E
denotes the expectation with respect to the probability measure P . Note that the set
M is convex.

Every martingale ζ(·) ∈ M gives rise to a probability measure QT on the mea-
surable space (Ω,FT ) defined by the equation

QT (dω) = ζ(T )PT (dω).(5)

Here, PT denotes the restriction of the reference probability measure P to (Ω,FT ).
From this definition, for every T > 0, the probability measure QT is absolutely contin-
uous with respect to the probability measure PT , QT  PT . The uncertain system
is described by the stochastic differential equation (1) considered over the probabil-
ity space (Ω,FT , QT ) for every T > 0. The expectation in this probability space is

denoted EQ
T

.
We now present an infinite-horizon uncertainty description for stochastic uncer-

tain systems with additive noise. This uncertainty description may be regarded as
an extension of the uncertainty description considered in [19] to the infinite-horizon
case. Also, this uncertainty description can be thought of as an extension of the
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deterministic integral quadratic constraint uncertainty description [15, 16, 23] and
the stochastic integral quadratic constraint uncertainty description [18] to the case of
stochastic uncertain systems with additive noise. Recall that the integral quadratic
constraints arising in [15, 16, 23, 18] exploit a sequence of times {ti}∞i=1 to “localize”
the uncertainty inputs and uncertainty outputs to time intervals [0, ti]. The consid-
eration of the system dynamics on these finite time intervals then allows one to deal
with bounded energy processes. However, in this paper the systems under consider-
ation are those with additive noise. For this class of stochastic systems, it is natural
to consider bounded power processes rather than bounded energy processes. This
motivates us to propose the relative entropy uncertainty description given below in
Definition 1 to accommodate bounded power processes.

In contrast to the case of deterministic integral quadratic constraints, the uncer-
tainty description considered in this paper exploits a sequence of continuous positive
martingales {ζi(t),Ft, t ≥ 0}∞i=1 ⊂M which converges to a limiting martingale ζ(·) in
the following sense: For any T > 0, the sequence {ζi(T )}∞i=1 converges weakly to ζ(T )
in L1(Ω,FT , PT ). Using the martingales ζi(t), we define a sequence of probability
measures {QTi }∞i=1 as follows:

QTi (dω) = ζi(T )P
T (dω).(6)

From the definition of the martingales ζi(t), it follows that for each T > 0 the sequence
{QTi }∞i=1 converges to the probability measure QT corresponding to a limiting mar-
tingale ζ(·) in the following sense: For any bounded FT -measurable random variable
η,

lim
i→∞

∫
Ω

ηQTi (dω) =

∫
Ω

ηQT (dω).(7)

We denote this fact by QTi ⇒ QT as i→∞.
Remark 1. The property QTi ⇒ QT implies that the sequence of probability

measures QTi converges weakly to the probability measure QT . Indeed, consider the
Polish space of probability measures on the measurable space (Ω,FT ) endowed with
the topology of weak convergence of probability measures. Note that Ω is a metric
space. Hence, such a topology can be defined; e.g., see [2]. For the sequence {QTi } to
converge weakly to QT , it is required that (7) hold for all bounded continuous random
variables η. Obviously, this requirement is satisfied if QTi ⇒ QT .

As in the finite-horizon case [12, 19], we describe the class of admissible uncertain-
ties in terms of the relative entropy functional h(·‖·); for the definition and properties
of the functional h(·‖·), see Appendix A and also [2].

Definition 1. Let d be a given positive constant. A martingale ζ(·) ∈M is said
to define an admissible uncertainty if there exists a sequence of continuous positive
martingales {ζi(t),Ft, t ≥ 0}∞i=1 ⊂M which satisfies the following conditions:
(i) For each i, h(QTi ‖PT ) <∞ for all T > 0;
(ii) For all T > 0, QTi ⇒ QT as i→∞;
(iii) The following stochastic uncertainty constraint is satisfied: For any sufficiently

large T > 0, there exists a constant δ(T ) such that limT→∞ δ(T ) = 0 and

inf
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

‖z(t)‖2dt− h(QT
′
i ‖PT

′
)

]
≥ −d

2
+ δ(T )(8)

for all i = 1, 2, . . . . In (8), the uncertainty output z(·) is defined by (1) considered
on the probability space (Ω,FT , QTi ).
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In the above conditions, QTi is the probability measure defined by (6) corresponding to
the martingale ζi(t) and time T > 0. We let Ξ denote the set of martingales ζ(·) ∈M
corresponding to admissible uncertainties. Elements of Ξ are also called admissible
martingales.

Observe that the reference probability measure P corresponds to the admissible
martingale ζ(t) ≡ 1. Hence, the set Ξ is not empty. Indeed, choose ζi(t) = 1 for all i
and t. Then QTi = PT for all i. It follows from the identity h(PT ‖PT ) = 0 that

inf
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

‖z(t)‖2dt− h(QT
′
i ‖PT

′
)

]
= inf
T ′>T

1

2T ′ E
∫ T ′

0

‖z(t)‖2dt.

Note that the expectations are well defined. Also, the infimum on the right-hand
side of the above equation is nonnegative for any T > 0. Therefore, for any constant
d > 0, one can find a sufficiently small δ = δ(T ) such that limT→∞ δ(T ) = 0 and the
constraint (8) is satisfied strictly in this case.

Remark 2. Note that condition (8) implies that

lim inf
T→∞

1

T

[
1

2
EQ

T
i

∫ T
0

‖z(t)‖2dt− h(QTi ‖PT )
]
≥ −d

2

for all i = 1, 2, . . . .
In what follows, we will use the following notation. Let PT be the set of probability

measures QT on (Ω,FT ) such that h(QT ‖PT ) < ∞. Also, the notation M∞ will
denote the set of martingales ζ(·) ∈ M such that h(QT ‖PT ) < ∞ for all T > 0. It
is readily verified that the set M∞ is convex. Note that the martingales ζi(·) from
Definition 1 belong toM∞.

2.3. A discussion of the class of stochastic uncertain systems under con-
sideration. In this section, we give more insight into the class of stochastic uncertain
systems under consideration. In the integral quadratic constraint approach to robust
control theory, the uncertainty is described in terms of a given set of uncertainty in-
put signals. In contrast, Definition 1 presents a martingale uncertainty description or,
equivalently, a probability measure uncertainty description. The motivation behind
Definition 1 is as follows. The proposed uncertain system model allows us to obtain a
tractable solution to the corresponding problem of minimax optimal LQG controller
design. Also, the stochastic uncertainty description presented in Definition 1 encom-
passes many important classes of uncertainty arising in robust control theory. In
particular, it includes H∞ norm-bounded linear time-invariant (LTI) uncertainties
and cone-bounded nonlinear uncertainties. This makes the approach developed in
this paper applicable to a broad range of control system design problems. We show
below that H∞ norm-bounded uncertainties satisfy the requirements of Definition 1.

The definition of admissible uncertainties given above involves a collection of mar-
tingales {ζi(·)}∞i=1 which has a given uncertainty martingale ζ(·) as its limit point.
In the deterministic case and the multiplicative noise case, similar approximations
have been defined by restricting uncertainty inputs to finite time intervals and then
extending the restricted processes by zero beyond these intervals; e.g., see [15, 16, 18].
In the case of a stochastic uncertain system with additive noise considered on an infi-
nite time interval, we apply a similar idea. However, in contrast to the deterministic
and multiplicative noise cases, we use a sequence of martingales and corresponding
probability measures in Definition 1. This procedure may be thought of as involving
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a spatial restriction rather than the temporal restriction used previously. Indeed, a
natural way to define the required sequence of martingales and corresponding prob-
ability measures is to consider martingales corresponding to the uncertainty inputs
as “truncated” at certain Markov times ti. For example, this can be achieved by
choosing an expanding sequence of compact sets Ki in the uncertainty input space
and letting ti be the Markov time when the uncertainty input reaches the boundary
of the set Ki. In this case, we focus on spatial domains rather than time intervals
on which the uncertainty inputs and uncertainty outputs are then constrained. An
illustration of this idea will be given in section 2.3.2.

2.3.1. A connection between uncertainty input signals and martingale
uncertainty. A connection between the uncertainty input signal uncertainty model
and the perturbation martingale uncertainty model is based on Novikov’s theorem
[6]. Using the result of Novikov’s theorem, a given uncertainty input ξ(·) satisfying
the conditions of this theorem on every finite interval [0, T ] can be associated with a
martingale ζ(·) ∈M. This result is summarized in the following lemma.

Lemma 1. Suppose a random process (ξ(t),Ft), 0 ≤ t ≤ T , satisfies the condi-
tions:

P

(∫ T
0

‖ξ(s)‖2ds <∞
)
= 1,

E exp

(
1

2

∫ T
0

‖ξ(s)‖2ds
)

<∞.(9)

Then the equation

ζ(t) = 1 +

∫ t
0

ζ(s)ξ(s)′dW (s)(10)

defines a continuous positive martingale ζ(t). Furthermore, the stochastic process

W̃ (t) = W (t)−
∫ t

0

ξ(t)dt(11)

is a Wiener process with respect to the system {Ft, 0 ≤ t ≤ T} and the probability
measure QT defined by (5), where ζ(·) is defined by (10).

Proof. Conditions (9) are the conditions of Novikov’s theorem (e.g., see Theo-
rem 6.1 on page 216 of [6]). It follows from this theorem that the random process
(ζ(t),Ft), 0 ≤ t ≤ T , defined by (10) is a continuous martingale and, in particular,
Eζ(T ) = 1. Furthermore, this martingale is given by

ζ(t) = exp

(∫ t
0

ξ′(s)dW (s)− 1

2
‖ξ(s)‖2ds

)
.(12)

The statement of the lemma now follows from Girsanov’s theorem; e.g., see Theo-
rem 6.3 on page 232 of [6].

We now consider an uncertain system with H∞ norm-bounded LTI uncertainty
and driven by a Gaussian white noise process v(t) as shown in Figure 1. We will show
that such an uncertain system can be described in terms of the stochastic uncertain
system framework defined above. Note that if ∆(s) ≡ 0 and ξ(·) = 0, then w(t) = v(t).
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Fig. 1. An uncertain system.

That is, the nominal system is driven by a Gaussian white noise. However, in the
presence of uncertainty, the input w(·) ceases to be a Gaussian white noise.

For each T > 0, a rigorous mathematical description of the system shown in
Figure 1 can be given by the equations

dx = (Ax+B1u+B2ξ)dt+B2dW̃ (t),(13)

z = C1x+D1u,

dy = (C2x+D2ξ)dt+D2dW̃ (t)

considered on the probability space (Ω,FT , QT ), where QT is the probability measure
constructed in Lemma 1. Also, the uncertainty input is related to the uncertainty
output by the relation ξ = ∆(s)z. Now, the substitution of (11) into (13) leads to a set
of equations of the form (1) considered on the probability space (Ω,FT , QT ). Thus,
the uncertain system shown in Figure 1 can be considered in the stochastic uncertain
system framework defined above. In what follows, we will show that an H∞ norm
bound on the LTI uncertainty ∆(s) implies the satisfaction of the relative entropy
constraint described above. Note that the case ξ(·) = 0 corresponds to ζ(t) ≡ 1 and
QT = PT .

2.3.2. H∞ norm-bounded uncertainty and the relative entropy con-
straint. In this section we will show that if the LTI uncertainty ∆(s) shown in Figure
1 satisfies an H∞ norm bound, then the corresponding stochastic uncertain system
satisfies the relative entropy constraint defined above. This completes the proof of
our assertion that the standard H∞ norm-bounded uncertainty description can be
incorporated into the framework of Definition 1. In a similar fashion, one can also
show that a cone-bounded nonlinear uncertainty defines an admissible uncertainty
according to Definition 1. This proof has been removed for the sake of brevity.

In what follows, we will use the following well-known property of linear stochastic
systems. On the probability space (Ω,F , P̃ ), consider the following linear system
driven by the Wiener process W̃ (·) and a disturbance input ξ(t), t ∈ [0, T ]:

dx̄ = (Āx̄+ B̄ξ(t))dt+ B̄dW̃ (t).(14)
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Proposition 1. If for some constant ρ > 0

Ẽ

∫ T
0

‖ξ(t)‖2dt ≤ ρ,(15)

then the corresponding solution to (14) is mean square bounded on the interval [0, T ].
Here Ẽ denotes the expectation with respect to the probability measure P̃ .

Proof. The proof of the proposition follows straightforwardly using standard
Lyapunov arguments.

Consider an uncertain system of the form (1) on the probability space (Ω,F , P ),
driven by a controller (2). Associated with the system (1) and controller (2), consider
the disturbance input ξ(·) defined by the convolution operator

ξ(t) =

∫ t
0

g(t− θ)z(θ)dθ(16)

corresponding to a given causal uncertainty transfer function ∆(s) which belongs to
the Hardy space H∞. In (16), z(·) is the uncertainty output of the closed-loop system
corresponding to the system (1) and the given controller (2).

Lemma 2. Let an uncertainty transfer function ∆(s) ∈ H∞ be given which
satisfies the norm bound condition

‖∆(s)‖∞ ≤ 1.(17)

Also, suppose that the random process (ζ(t),Ft) defined by (10) is a martingale; here
ξ(·) is the disturbance input generated by the operator (16). Then this martingale
satisfies the conditions of Definition 1.

Remark 3. The requirements of Lemma 2 are satisfied if ∆(s) is a stable rational
transfer function satisfying condition (17). Indeed, in this case one can show that the
augmented dynamics [x′(·), x̂′(·), η′(·), z′(·), ξ′(·)]′ are described by a linear system
driven by a Wiener process, with Gaussian initial condition; here η denotes the state
of the uncertainty. Hence for any T > 0 there exists a constant δT such that

sup
t≤T

E exp(δT ‖ξ(t)‖2) <∞;

see the remark on page 138 of [6]. This implies that ζ(t) is a martingale; see Example
3 on page 220 of [6]. Hence, any uncertainty described by a stable rational transfer
function satisfying condition (17) will belong to the class Ξ of uncertainties admissible
for system (1) controlled by a linear output-feedback controller of the form (2).

Proof of Lemma 2. Since the random process (ζ(t),Ft), 0 ≤ t ≤ T , defined
by (10) is a martingale and Eζ(T ) = 1, it follows from Girsanov’s theorem that the
random process W̃ (·) defined by (11) is a Wiener process with respect to the filtration
{Ft, 0 ≤ t ≤ T} and the probability measure QT defined as in (5); see [6]. Note that
on the probability space (Ω,FT , QT ), system (1) becomes a system of the form (13).

To verify that the martingale ζ(t) corresponding to the H∞ norm-bounded un-
certainty under consideration defines an admissible uncertainty, we need to prove the
existence of a sequence of martingales {ζi(t)}∞i=1 satisfying the conditions of Defini-
tion 1. To construct such a sequence, consider the following family of Markov stopping
times {tρ, ρ > 0} [6]. For any ρ > 0, define

tρ :=

{
inf{t ≥ 0 :

∫ t
0
‖ξ(s)‖2ds > ρ} if

∫∞
0
‖ξ(s)‖2ds > ρ,

∞ if
∫∞
0
‖ξ(s)‖2ds ≤ ρ.
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The family {tρ} is monotonically increasing and tρ →∞ P -a.s.
We now are in a position to construct an approximating sequence of martingales

{ζi(t)}∞i=1 using the above sequence of Markov stopping times. First, note that the

stochastic integral µ(t) :=
∫ t
0
ξ(s)′dW (s) defines a local continuous martingale; see

Definition 6 on page 69 of [6]. Also, for any stopping time tρ defined above,

µ(t ∧ tρ) =

∫ t∧tρ

0

ξ(s)′dW (s) =

∫ t
0

ξρ(s)
′dW (s) =

∫ t
0

ξ(s)′dW (s ∧ tρ),

where the process ξρ(·) is defined as follows:

ξρ(t) = ξ(t)χ{tρ≥t}.(18)

Here, χΛ denotes the indicator function of a set Λ ⊆ Ω. In the above definitions, the
notation t ∧ t := min{t, t} is used.

Associated with the positive continuous martingale ζ(t) and the family of stopping
times {tρ, ρ > 0} defined above, consider the stopped process

ζρ(t) = ζ(t ∧ tρ).

From this definition, ζρ(t) is a continuous martingale; e.g., see Lemma 3.3 on page
69 of [6]. Furthermore, using the representation (10) of the martingale ζ(t), it follows
that ζρ(t) is an Ito process with the stochastic differential

dζρ(t) = ζρ(t)ξ
′
ρ(t)dW (t) = ζρ(t)dµ(t ∧ tρ); ζρ(0) = 1.(19)

From (19), the martingale ζρ(t) admits the following representation:

ζρ(t) = exp

(∫ t
0

ξ′ρdW (s)− 1

2

∫ t
0

‖ξρ(s)‖2ds
)

.(20)

Also, Eζρ(t) = Eζρ(0) = 1. Hence, ζρ(·) ∈M.
Using the martingale ζρ(t) defined above, we define probability measures QTρ on

(Ω,FT ) as follows:

QTρ (dω) = ζ(T ∧ tρ)P
T (dω).

From (20), the relative entropy between the probability measures QTρ and PT is given
by

h(QTρ ‖PT ) =
1

2
EQ

T
ρ

∫ T
0

‖ξρ(s)‖2ds = 1

2
EQ

T
ρ

∫ tρ∧T

0

‖ξ(s)‖2ds.(21)

From this equation and from (18), it follows that h(QTρ ‖PT ) ≤ (1/2)ρ < ∞ for all
T > 0. Thus, condition (i) of Definition 1 is satisfied.

Also, using part 1 of Theorem 3.7 on page 62 of [6], we observe that for every
T > 0 the family {ζ(tρ ∧ T ), ρ > 0} is uniformly integrable. Also, since tρ →∞ with
probability one as ρ→∞, then ζρ(T )→ ζ(T ) with probability one. This fact together
with the property of uniform integrability of the family {ζρ(T ), ρ > 0} implies that

lim
ρ→∞E(|ζ(T ∧ tρ)− ζ(T )|∣∣G) = 0 P -a.s.(22)
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for any σ-algebra G ⊂ FT ; see the Corollary on page 16 of [6]. We now observe that
for any FT -measurable bounded random variable η with values in R

E|ηζ(T ∧ tρ)− ηζ(T )| ≤ sup
ω
|η| ·E|ζ(T ∧ tρ)− ζ(T )|.

Therefore, it follows from the definition of the probability measures QTρ and QT and

from (22) that QTρ ⇒ QT as ρ → ∞ for all T > 0. Thus, we have verified that the
family of martingales ζρ(t) satisfies condition (ii) of Definition 1.

We now consider system (1) on the probability space (Ω,FT , QTρ ). Equivalently,
we consider system (13) driven by the uncertainty input ξρ(t) on the probability space

(Ω,FT , QTρ ). Note that since
∫ T
0
‖ξρ(t)‖2 ≤ ρ P -a.s., Proposition 1 implies that the

corresponding output z(·) of system (1) satisfies the conditions

EQ
T
ρ

∫ T
0

‖z(s)‖2ds <∞,

∫ T
0

‖z(s)‖2ds <∞ QTρ -a.s.(23)

for any T > 0. We now use the fact that condition (17) implies that for any pair
(z̃(·), ξ̃(·)), z̃(·) ∈ L2[0, T ], T > 0, related by (16)

∫ T
0

‖ξ̃(t)‖2dt ≤
∫ T

0

‖z̃(t)‖2dt;

e.g., see [25]. Hence from this observation and from (23), it follows that the pair
(z(·), ξ(·)), where z(·) and ξ(·) are defined by system (1) and the operator (16), satisfies
the condition ∫ T

0

‖ξ(t)‖2dt ≤
∫ T

0

‖z(t)‖2dt QTρ -a.s.(24)

Then, the definition of the uncertainty input ξρ(·) and condition (24) imply that for
each T > 0

1

T

∫ T
0

[‖z(s)‖2 − ‖ξρ(s)‖2] ds ≥ 0 QTρ -a.s.(25)

From the above condition, it follows that for each ρ > 0

inf
T ′>T

1

T ′

∫ T ′

0

EQ
T ′
ρ
[‖z(s)‖2 − ‖ξρ(s)‖2] ds ≥ 0.

Note that the expectation on the left-hand side of the above inequality exists by virtue
of (23). Obviously in this case, one can find a constant d > 0 and a variable δ(T )
which is independent of ρ and such that limT→∞ δ(T ) = 0 and

inf
T ′>T

1

2T ′ E
QT

′
ρ

∫ T ′

0

[‖z(s)‖2 − ‖ξρ(s)‖2] ds ≥ −d

2
+ δ(T ).

This, along with the representation of the relative entropy between the probability
measure QTρ and the reference probability measure PT given in (21), leads us to
the conclusion that for the H∞ norm-bounded uncertainty under consideration, the
corresponding martingale ζρ(t), ρ > 0, satisfies the constraint (8). This completes the
proof of the lemma.
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Remark 4. In the special case where the uncertainty is modeled by the operator
(16) with L2-induced norm less then one, and where the uncertainty output z(·) of the
closed-loop system is known to be QT mean square–integrable on any interval [0, T ],
the above proof shows that such an uncertainty can be characterized directly in terms
of the martingale ζ(t) and the associated probability measures QT . That is, one can
choose ζi(t) = ζ(t) and QTi = QT in Definition 1. This will be true, for example, if the
chosen controller is a stabilizing controller; see Definition 2. However, in the general
case, the connection between the uncertainty output z(·) and the uncertainty input
ξ(·) can be of a more complex nature than that described by (16). In this case, the QT

mean square–integrability of the uncertainty output z(·) is not known a priori. Hence,
one cannot guarantee that h(QT ‖PT ) <∞ for all T > 0. Also, the expectation

1

T

[
EQ

T

∫ T
0

‖z(t)‖2dt− h(QT ‖PT )
]

may not exist for all T > 0 unless it has already been proved that the controller (2) is
a stabilizing controller. In this case, the approximations of the martingale ζ(t) allow
us to avoid the difficulties arising when defining an admissible uncertainty for the
uncertain system (1) controlled by a generic linear output-feedback controller.

3. Absolute stability and absolute stabilizability. An important issue in
any optimal control problem on an infinite time interval concerns the stabilizing prop-
erties of the optimal controller. For example, a critical issue addressed in [15, 16, 18]
was to prove the absolutely stabilizing property of the optimal control schemes pre-
sented in those papers. In this paper, the systems under consideration are subject to
additive noise. Hence, we need a definition of absolute stabilizability which properly
accounts for this feature of the systems under consideration.

Definition 2. A controller of the form (2) is said to be an absolutely stabilizing
output-feedback controller for the stochastic uncertain system (1), (8) if the process
x(·) defined by the closed-loop system corresponding to this controller satisfies the
following condition. There exist constants c1 > 0, c2 > 0 such that for any admissible
uncertainty martingale ζ(·) ∈ Ξ

lim sup
T→∞

1

T

[
EQ

T

∫ T
0

(‖x(t)‖2 + ‖u(t)‖2) dt+ h(QT ‖PT )
]
≤ c1 + c2d.(26)

The property of absolute stability is defined as a special case of Definition 2
corresponding to u(·) ≡ 0. In this case, system (1) becomes a system of the form

dx(t) = Ax(t)dt+B2dW (t),(27)

z(t) = C1x(t).

Definition 3. The stochastic uncertain system corresponding to the state equa-
tions (27) with uncertainty satisfying the relative entropy constraint (8) is said to be
absolutely stable if there exist constants c1 > 0, c2 > 0 such that for any admissible
uncertainty martingale ζ(·) ∈ Ξ

lim sup
T→∞

1

T

[
EQ

T

∫ T
0

‖x(t)‖2dt+ h(QT ‖PT )
]
≤ c1 + c2d.(28)
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In what follows, the following property of mean square stable systems will be
used; see [21]. For the sake of completeness, the proof of the following lemma is given
in Appendix B.

Lemma 3. Suppose the stochastic nominal system (27) is mean square stable;
i.e.,

lim sup
T→∞

1

T
E

∫ T
0

‖x(t)‖2dt <∞.(29)

Also, suppose the pair (A,B2) is stabilizable. Then, the matrix A must be stable.

4. Infinite-horizon minimax optimal control problem. Associated with
the stochastic uncertain system (1), (8), consider a cost functional J(·) of the form

J(u(·), ζ(·)) = lim sup
T→∞

1

2T
EQ

T

∫ T
0

F (x(t), u(t))dt,(30)

defined on solutions x(·) to (1). In (30),
F (x, u) := x′Rx+ u′Gu,

and R and G are positive-definite symmetric matrices, R ∈ Rn×n, G ∈ Rm×m. Also,
in (30), QT is the probability measure corresponding to the martingale ζ(·); see (5).

In this paper, we are concerned with a minimax optimal control problem associ-
ated with system (1), cost functional (30), and uncertainty set Ξ. In this problem, we
seek to find a controller u∗(·) of the form (2) which minimizes the worst-case value of
the cost functional J in the face of uncertainty ζ(·) ∈ Ξ satisfying the constraint (8):

sup
ζ(·)∈Ξ

J(u∗(·), ζ(·)) = inf
u(·)∈U

sup
ζ(·)∈Ξ

J(u(·), ζ(·)).(31)

The derivation of a solution to the above minimax optimal control problem relies
on a duality relationship between free energy and relative entropy established in [1];
see Lemma 8 of Appendix A. Associated with system (1), consider the parameter-
dependent risk-sensitive cost functional

�τ,T (u(·)) := 2τ

T
logE

{
exp

(
1

2τ

∫ T
0

Fτ (x(t), u(t))dt

)}
,(32)

where τ > 0 is a given constant and

Fτ (x, u) := x′Rτx+ 2x′Υτu+ u′Gτu,(33)

Rτ := R+ τC ′
1C1,

Gτ := G+ τD′
1D1,

Υτ := τC ′
1D1.(34)

We will apply the duality result of Lemma 8 of Appendix A; also, see [1]. When
applied to system (1) and the risk-sensitive cost functional (32) (see Corollary 3.1
and Remark 3.2 of [1]), this result states that for each admissible controller u(·)

sup
QT∈PT

Jτ,T (u(·), QT ) = 1

2
�τ,T (u(·)),(35)
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where

Jτ,T (u(·), QT ) := 1

T

[
1

2
EQ

T

∫ T
0

Fτ (x(t), u(t))dt− τh(QT ‖PT )
]
.(36)

The use of the duality result (35) is a key step that enables us to replace the
minimax optimal control problem by a risk-sensitive optimal control problem. Hence,
we will be interested in constructing an output-feedback controller of the form (2)
solving the following stochastic risk-sensitive optimal control problem:1

inf
u(·)∈U

lim
T→∞

�τ,T (u(·)).(37)

5. A connection between risk-sensitive optimal control and minimax
optimal control. In this section, we present results establishing a connection be-
tween the risk-sensitive optimal control problem (37) and the minimax optimal control
problem (31).

For a given constant τ > 0, let Vτ denote an optimal value of the risk-sensitive
control problem (37); i.e.,

Vτ := inf
u(·)∈U

lim
T→∞

�τ,T (u(·))

= inf
u(·)

lim
T→∞

2τ

T
logE

{
exp

[
1

2τ

∫ T
0

Fτ (x(s), u(s))ds

]}
.

Theorem 1. Suppose that for a given τ > 0 the risk-sensitive control problem
(37) admits an optimal controller uτ (·) ∈ U of the form (2) which guarantees a finite
optimal value: Vτ < ∞. Then this controller is an absolutely stabilizing controller
for the stochastic uncertain system (1) satisfying the relative entropy constraint (8).
Furthermore,

sup
ζ(·)∈Ξ

J(uτ (·), ζ(·)) ≤ 1

2
(Vτ + τd).(38)

Proof. It follows from the condition of the theorem that

Vτ = lim
T→∞

2τ

T
logE

{
exp

[
1

2τ

∫ T
0

Fτ (x(s), uτ (s))ds

]}
<∞,

where uτ (·) is the risk-sensitive optimal controller of the form (2) corresponding to the
given τ . We wish to prove that this risk-sensitive optimal controller satisfies condition
(26) of Definition 2.

1A risk-sensitive control problem of the form (37) was considered in [9]. That paper defines the
class of admissible infinite-horizon risk-sensitive controllers as those controllers which satisfy a certain
causality condition. This causality condition is formulated in terms of corresponding martingales and
ensures that the probability measure transformations required in [9] are well defined. As observed in
[9], linear controllers satisfy this causality condition. Furthermore, it is shown in [9] that a solution
to the risk-sensitive optimal control problem (37), in the broader class of nonlinear output-feedback
controllers satisfying such a causality condition, is attained by a linear controller of the form (2).
This implies that the class of admissible controllers in the risk-sensitive control problem (37) can be
restricted to include only linear output-feedback controllers.
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Using the duality result (35), we obtain

lim
T→∞

sup
QT∈PT

1

T

[
1

2
EQ

T

∫ T
0

Fτ (x(s), uτ (s))ds− τh(QT ‖PT )
]
=

Vτ
2

.(39)

Equation (39) implies that, for any sufficiently large T > 0, one can choose a suffi-

ciently small positive constant δ̂ = δ̂(T ) > 0 such that limT→∞ δ̂(T ) = 0 and

sup
QT ′∈PT ′

1

T ′

[
1

2
EQ

T ′
∫ T ′

0

Fτ (x(s), uτ (s))ds− τh(QT
′‖PT ′

)

]
≤ Vτ

2
+ δ̂(T )(40)

for all T ′ > T . Thus, for the chosen constants T > 0 and δ̂(T ) > 0 and for all T ′ > T ,

1

T ′

[
1

2
EQ

T ′
∫ T ′

0

Fτ (x(s), uτ (s))ds− τh(QT
′‖PT ′

)

]
≤ Vτ

2
+ δ̂(T )

for any QT
′ ∈ PT ′ . Furthermore, if QT

′ ∈ PT ′ for all T ′ > T , then

sup
T ′>T

1

T ′

[
1

2
EQ

T ′
∫ T ′

0

Fτ (x(s), uτ (s))ds− τh(QT
′‖PT ′

)

]
≤ Vτ

2
+ δ̂(T ).(41)

Let ζ(·) ∈ Ξ be a given admissible uncertainty martingale and let ζi(·) be a cor-
responding sequence of martingales as in Definition 1. Recall that the corresponding
probability measures QTi belong to the set PT for all T > 0. Hence each probability
measure QTi satisfies condition (41); i.e.,

sup
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

Fτ (x(s), uτ (s))ds− τh(QT
′
i ‖PT

′
)

]
≤ Vτ

2
+ δ̂(T ).(42)

Note that in condition (42), δ̂(T ) and T are the constants which are independent of i.

Since F (x, u) ≥ 0 and τ > 0, condition (42) implies

sup
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

‖z(s)‖2ds− h(QT
′
i ‖PT

′
)

]
<∞.

From this, it follows from (42) that for each integer i

sup
T ′>T

1

2T ′ E
QT

′
i

∫ T ′

0

F (x(s), uτ (s))ds

+ τ inf
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

‖z(s)‖2ds− h(QT
′
i ‖PT

′
)

]

≤ sup
T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

(
F (x(s), uτ (s)) + τ‖z(s)‖2) ds− τh(QT

′
i ‖PT

′
)

]

≤ 1

2
Vτ + δ̂(T ).
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This implies

sup
T ′>T

1

2T ′ E
QT

′
i

∫ T ′

0

F (x(s), uτ (s))ds

≤ Vτ
2
+ δ̂(T )− τ inf

T ′>T

1

T ′

[
1

2
EQ

T ′
i

∫ T ′

0

‖z(s)‖2ds− h(QT
′
i ‖PT

′
)

]

≤ 1

2
(Vτ + τd) + δ̂(T )− τδ(T ).(43)

The derivation of the last line of inequality (43) uses the fact that the probability
measure QTi satisfies condition (8). Also, note that in condition (43), the constants

δ̂(T ), δ(T ), and T are independent of i and T ′ > T .
We now let i→∞ in inequality (43). This leads to the following proposition.
Proposition 2. For any admissible uncertainty ζ(·) ∈ Ξ,

sup
T ′>T

1

2T ′ E
QT

′
∫ T ′

0

F (x(s), uτ (s))ds ≤ 1

2
(Vτ + τd) + δ̂(T )− τδ(T ).(44)

To establish this proposition, consider the space L1(Ω,FT ′ , PT
′
) endowed with

the topology of weak convergence of random variables, where T ′ > T . We denote this
space by Lw1 . Define the functional

φ(ν) :=
1

T ′ E

[
ν

∫ T ′

0

F (x(s), uτ (s))ds

]
,(45)

mapping Lw1 into the space of extended reals R = R ∪ {−∞,∞}. Also, consider a
sequence of functionals mapping Lw1 → R defined by

φN (ν) :=
1

T ′ E

[
ν

∫ T ′

0

FN (x(s), uτ (s))ds

]
, N = 1, 2, . . . ,(46)

where each function FN (·) is defined as follows:

FN (x, u) :=

{
F (x, u) if F (x, u) ≤ N,

N if F (x, u) > N.

Note that from the above definition, the sequence φN (ν) is monotonically increasing
in N for each ν. Also, we note that for any N > 0

P

(
1

T ′

∫ T ′

0

FN (x(s), uτ (s))ds ≤ N

)
= 1.

Hence, if νi → ν weakly, then φN (νi) → φN (ν). That is, each functional φN (·) is
continuous on the space Lw1 . Therefore, the functional

φ(ν) = lim
N→∞

φN (ν)

is lower semicontinuous; e.g., see Theorem 10 on page 330 of [13]. Now let ν = ζ(T ′)
be the Radon–Nikodým derivative of the probability measure QT

′
, and let νi = ζi(T

′)
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be the Radon–Nikodým derivative of the probability measure QT
′
i . Then, the fact

that ζi(T
′)→ ζ(T ′) weakly implies

1

2T ′ E
QT

′
∫ T ′

0

F (x(s), uτ (s))ds ≤ lim inf
i→∞

1

2T ′ E
QT

′
i

∫ T ′

0

F (x(s), uτ (s))ds

≤ 1

2
(Vτ + τd) + δ̂(T )− τδ(T ).(47)

Since the constants on the right-hand side of (47) are independent of T ′ > T , condition
(44) of the proposition now follows. This completes the proof of the proposition.

Note that from the above proposition, (38) follows. Indeed, for any ζ(·) ∈ Ξ,

Proposition 2 and the fact that δ̂(T ), δ(T )→ 0 as T →∞ together imply

J(uτ (·), ζ(·)) = lim
T→∞

sup
T ′>T

1

2T ′ E
QT

′
∫ T ′

0

F (x(s), uτ (s))ds

≤ 1

2
(Vτ + τd).(48)

From condition (48), equation (38) of the theorem follows.
We now establish the absolute stabilizing property of the risk-sensitive optimal

controller uτ (·). Indeed, since the matrices R and G are positive-definite, inequality
(44) implies

lim sup
T→∞

1

T
EQ

T

∫ T
0

(‖x(s)‖2 + ‖uτ (s)‖2) ds ≤ α (Vτ + τd) ,(49)

where α is a positive constant which depends only on R and G.
To complete the proof, it remains to prove that there exist constants c1, c2 > 0

such that

lim sup
T→∞

1

T
h(QT ‖PT ) < c1 + c2d.(50)

To this end, we note that for any sufficiently large T and for all T ′ > T , the constraint
(8) implies

1

T ′h(Q
T ′
i ‖PT

′
) ≤ 1

2T ′ E
QT

′
i

∫ T ′

0

‖z(s)‖2ds+ d

2
− δ(T )(51)

for all i = 1, 2, . . . . We now observe that condition (43) implies that for all T ′ > T

1

2T ′ E
QT

′
i

∫ T ′

0

‖z(s)‖2ds ≤ c̄

(
1

2
(Vτ + τd) + δ̂(T )− τδ(T )

)
,(52)

where c̄ is a positive constant determined only by the matrices R, G, C1, and D1.
From conditions (51), (52), Remark 1, and the fact that the relative entropy functional
is lower semicontinuous, it follows that

1

T ′h(Q
T ′‖PT ′

) ≤ lim inf
i→∞

1

T ′h(Q
T ′
i ‖PT

′
)

≤ c̄

(
1

2
(Vτ + τd) + δ̂(T )− τδ(T )

)
+

d

2
− δ(T )
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for any T ′ > T . This inequality and the fact that δ(T )→ 0 and δ̂(T )→ 0 as T →∞
together imply that

lim sup
T→∞

1

T
h(QT ‖PT ) ≤ 1

2
(c̄Vτ + (1 + c̄τ)d).

Combining this condition and inequality (49), we obtain condition (26), where the
constants c1, c2 are defined by Vτ , τ , α, c̄, and hence independent of ζ(·) ∈ Ξ.

Remark 5. It is straightforward to extend the result of Theorem 1 to the case in
which the uncertainty output is structured; i.e.,

z1(t) = C1,1x(t) +D1,1u(t),

...

zk(t) = C1,kx(t) +D1,ku(t).

In this case, we need k relative entropy uncertainty constraints of the form (8) to
define the admissible uncertainty. The corresponding risk-sensitive control problem
involves k scaling parameters τ1 ≥ 0, . . . , τk ≥ 0,

∑k
j=1 τj > 0.

To formulate conditions under which a converse to Theorem 1 holds, we con-
sider the closed-loop system corresponding to system (1) and a linear time-invariant
output-feedback controller of the form (2). Recall that the closed-loop nominal sys-
tem corresponding to controller (2) is described by the linear Ito differential equation
(3) on the probability space (Ω,F , P ). In what follows, we will consider the class of
linear controllers of the form (2) satisfying the following assumptions: the matrix Ā
is stable, the pair (Ā, B̄) is controllable, and the pair (Ā, R̄) is observable, where

R̄ =

[
R 0
0 K ′GK

]
.(53)

Also, let D0 be the set of all linear functions φ(x̄) = Φx̄ such that the matrix Ā+ B̄Φ
is stable. Note that the pair (Ā + B̄Φ, B̄) is controllable since the pair (Ā, B̄) is
controllable. Under these assumptions, the Markov process generated by the linear
system

dx̄φ(t) = (Ā+ B̄Φ)x̄φ(t)dt+ B̄dW (t)(54)

has a unique invariant probability measure νφ on Rn+n̂; e.g., see [24]. It is shown in
[24] that the probability measure νφ is a Gaussian probability measure.

Lemma 4. For every function φ(x̄) = Φx̄, φ(·) ∈ D0, there exists a martingale
ζ(·) ∈M∞ such that for any T > 0 the process

W̃ (t) = W (t)−
∫ t

0

Φx̄(s)ds(55)

is a Wiener process with respect to {Ft, t ∈ [0, T ]} and the probability measure QT

corresponding to the martingale ζ(·). In (55), x̄(·) is the solution to the nominal
closed-loop system (3) with initial probability distribution νφ.

Furthermore,

dx̄ = (Ā+ B̄Φ)x̄dt+ B̄dW̃ (t),(56)
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considered on the probability space (Ω,FT , QT ), admits a stationary solution x̄ζ(·)
such that

QT (x̄ζ(t) ∈ dx̄) = νφ(dx̄).(57)

Proof. Let νφ be the Gaussian invariant probability measure corresponding to
a given φ(·) ∈ D0. Consider a stochastic process x̄(t) defined by (3) and having
initial probability distribution νφ; i.e., P (x̄(0) ∈ dx̄) = νφ(dx̄). Since the probability
measure νφ is Gaussian, there exists a constant δ0 > 0 such that

E exp(δ0‖x̄(0)‖2) =
∫
exp(δ0‖x̄‖2)νφ(dx̄) <∞.

Hence, using the multivariate version of Theorem 4.7 on page 137 of [6] along with Ex-
ample 3 on page 220 of [6], this leads to the satisfaction of the conditions of Lemma 1,
which shows that the random process W̃ (·) defined by (55) is a Wiener process with
respect to {Ft, t ∈ [0, T ]} and the probability measure QT defined in Lemma 1.

We now consider system (56) on the probability space (Ω,FT , QT ) with initial
distribution νφ. Also, consider system (54) on the probability space (Ω,FT , PT )
with initial distribution νφ. It follows from Proposition 3.10 on page 304 of [4] that
the stochastic process x̄ζ(·) defined by (56) and the corresponding stochastic process
x̄φ(·) defined by (54) have the same probability distribution under their respective
probability measures. Also, as in [2, 1],

h(QT ‖PT ) = 1

2
EQ

T

∫ T
0

‖Φx̄(t)‖2dt = 1

2

∫
‖Φx̄‖2νφ(dx̄) <∞

for each T < ∞, since x̄(t) is the solution to system (3) with Gaussian initial distri-
bution νφ. Thus, QT ∈ PT for all T > 0. Hence, ζ(·) ∈ M∞. From this, the lemma
follows.

We now present a converse to Theorem 1.

Theorem 2. Suppose that there exists a controller u∗(·) ∈ U such that the
following conditions are satisfied:

(i) supζ(·)∈Ξ J(u∗(·), ζ(·)) < c <∞.
(ii) The controller u∗(·) is an absolutely stabilizing controller such that the corre-

sponding closed-loop matrix Ā is stable, the pair (Ā, B̄) is controllable, and the
pair (Ā, R̄) is observable.

Then there exists a constant τ > 0 such that the corresponding risk-sensitive optimal
control problem (37) has a solution which guarantees a finite optimal value. Further-
more,

1

2
(Vτ + τd) < c.(58)

The proof of this theorem follows along the same lines as the proof of the necessity
part of the main result of [21]. For the sake of completeness, the modification of this
proof adapted to the condition of Theorem 2 is presented below.

We first establish the following lemma.
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Lemma 5. Consider the uncertain closed-loop system (3), (8) in which the pair
(Ā, B̄) is controllable. Also, consider a nonnegative-definite matrix R̄ such that the
pair (Ā, R̄) is observable. If the system (3), (8) is absolutely stable, then there exists
a positive constant τ0 > 0 such that the Riccati equation

Ā′Π+ΠĀ+ R̄+ τ0C̄
′C̄ +

1

τ0
ΠB̄B̄′Π = 0(59)

admits a positive-definite stabilizing solution.
Proof. Since the uncertain system (3), (8) is absolutely stable, there exists a

positive constant c̃ such that for all ζ(·) ∈ Ξ

lim inf
T→∞

1

2T
EQ

T

∫ T
0

x̄(s)′R̄x̄(s)ds+ ε̄ lim inf
T→∞

1

2T
EQ

T

∫ T
0

‖x̄(t)‖2dt ≤ c̃.(60)

Here ε̄ > 0 is a sufficiently small positive constant.
Consider the functionals

G0(ζ(·)) := c̃− lim inf
T→∞

1

2T
EQ

T

∫ T
0

x̄(s)′R̄x̄(s)ds

− ε̄ lim inf
T→∞

1

2T
EQ

T

∫ T
0

‖x̄(t)‖2dt,

G1(ζ(·)) := −d

2
− lim inf

T→∞
1

T

[
1

2
EQ

T

∫ T
0

‖z(s)‖2ds− h(QT ‖PT )
]
.(61)

Note that since the system (3), (8) is absolutely stable, both of these functionals are
well defined on the set Ξ.

Now consider a martingale ζ(·) ∈M∞ such that

G1(ζ(·)) ≤ 0.(62)

This condition implies that the martingale ζ(·) satisfies the conditions of Definition 1
with ζi(·) = ζ(·). Indeed, condition (i) of Definition 1 is satisfied since ζ(·) ∈ M∞.
Condition (ii) is trivial in this case. Also, let δ(T ) be any function chosen to satisfy
the conditions limT→∞ δ(T ) = 0 and

inf
T ′>T

1

T ′

[
1

2
EQ

T ′
∫ T ′

0

‖z(s)‖2ds− h(QT
′‖PT ′

)

]
≥ −d

2
+ δ(T )

for all sufficiently large T > 0. The existence of such a function δ(T ) follows from
condition (62). Then condition (8) of Definition 1 is also satisfied. Thus, condition
(62) implies that each martingale ζ(·) ∈M∞ satisfying this condition is an admissible
uncertainty martingale. That is, ζ(·) ∈ Ξ. From condition (60), it follows that
G0(ζ(·)) ≥ 0.

We have now shown that the satisfaction of condition (60) implies that the fol-
lowing condition is satisfied:

If G1(ζ(·)) ≤ 0, then G0(ζ(·)) ≥ 0.(63)

Furthermore, the set of martingales satisfying condition (62) has an interior point
ζ(t) ≡ 1; see the remark following Definition 1. Also, it follows from the properties
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of the relative entropy functional that the functionals G0(·) and G1(·) are convex. We
have now verified all of the conditions needed to apply the Lagrange multiplier result
(e.g., see [7]). Indeed, Theorem 1 on page 217 of [7] implies that there exists a constant
τ0 ≥ 0 such that

G0(ζ(·)) + τ0G1(ζ(·)) ≥ 0(64)

for all ζ(·) ∈ M∞. We now show that the conditions of the theorem guarantee that
τ0 > 0.

Proposition 3. In inequality (64), τ0 > 0.
Consider system (56) where φ(x̄) := Φx̄ belongs to D0. From Lemma 4, the

corresponding martingale ζΦ(·) belongs to the setM∞.
Now consider the quantity

lim inf
T→∞

1

2T
EQ

T
Φ

∫ T
0

x̄(t)′R̄x̄(t)dt.

Here, QTΦ is the probability measure corresponding to the martingale ζΦ(·), and x̄(·)
is the solution to the corresponding system (1) considered on the probability space
(Ω,FT , QTΦ). Also, consider the Lyapunov equation

(Ā+ B̄Φ)′Π+Π(Ā+ B̄Φ) + R̄ = 0.(65)

Since the matrix Ā+ B̄Φ is stable, then this matrix equation admits a nonnegative-
definite solution Π. Using Ito’s formula, it is straightforward to show that (65) leads
to the inequality

lim inf
T→∞

1

T
EQ

T
Φ

∫ T
0

x̄(t)′R̄x̄(t)dt ≥ tr B̄B̄′Π.

This condition implies that

sup
ζ(·)∈M∞

lim inf
T→∞

1

2T
EQ

T

∫ T
0

x̄(t)′R̄x̄(t)dt ≥ sup
Φ:Ā+B̄Φ is stable

1

2
tr B̄B̄′Π =∞.(66)

Using (66), the proposition follows. Indeed, suppose that τ0 = 0. Then condition
(64) implies that

sup
ζ(·)∈M∞

[
lim infT→∞ 1

2T EQ
T ∫ T

0
x̄(t)′R̄x̄(t)dt

+ε̄ lim infT→∞ 1
2T EQ

T ∫ T
0
‖x̄(t)‖2dt

]
≤ c̃ <∞.(67)

Inequality (67) leads to a contradiction with condition (66). From this, it follows that
τ0 > 0.

Proposition 4. The Riccati equation (59) with τ0 defined above admits a positive-
definite stabilizing solution.

We first note that the pair (Ā, R̄ + τ0C̄
′C̄) is observable, since the pair (Ā, R̄)

is observable. Hence, if Π ≥ 0 satisfies (59), then Π > 0. Thus, it is sufficient to
prove that (59) admits a nonnegative-definite stabilizing solution. This is true if and
only if the following bound on the H∞ norm of the corresponding transfer function
is satisfied:

‖Hτ0(s)‖∞ ≤ 1,(68)
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where

Hτ0(s) :=




1√
τ0

R̄1/2

C̄√
ε̄√
τ0

I


 (sI − Ā)−1B̄;

see Lemma 5 and Theorem 5 of [22].
In order to prove the above claim, we note that condition (64) implies that for

any martingale ζ(·) ∈M∞

lim inf
T→∞

1

T
EQ

T

∫ T
0

1

2τ0
x̄(t)′R̄x̄(t)dt+

ε̄

τ0
lim inf
T→∞

1

2T
EQ

T

∫ T
0

‖x̄(t)‖2dt

+ lim inf
T→∞

1

T

[
1

2
EQ

T

∫ T
0

‖z(s)‖2ds− h(QT ‖PT )
]

≤ c̃

τ0
− d

2
.(69)

We will show that the satisfaction of condition (68) follows from (69).
Suppose condition (68) is not true. That is, suppose that

‖Hτ0(s)‖∞ > 1.(70)

Consider a set P+ of deterministic power signals ξ(t), t ∈ (−∞,∞), for which the
autocorrelation matrix exists and is finite and for which the power spectral density
function exists. Furthermore, ξ(t) = 0 if t < 0. It can be shown that ‖Hτ0‖P+ =
‖Hτ0‖∞, where ‖Hτ0‖P+ denotes the induced norm of the convolution operator P+ →
P+ defined by the transfer function Hτ0(s). The proof of this fact is a minor variation
of the proof of the corresponding fact given in [25].

Now consider the following state space realization of the transfer function Hτ0(s):
dx̄1

dt
= Āx̄1 + B̄ξ(t),(71)

z1 =




1√
τ0

R̄1/2

C̄√
ε̄√
τ0

I


 x̄1.

Then, the fact that ‖Hτ0‖P+ = ‖Hτ0‖∞ > 1 leads to the following conclusion:

sup
ξ(·)∈P+

lim
T→∞

1

T

∫ T
0

(‖z1(t)‖2dt− ‖ξ(t)‖2
)
dt =∞.(72)

In (72), z1(·) is the output of system (71) corresponding to the input ξ(·) ∈ P+ and
an arbitrarily chosen initial condition x̄1(0).

2 That is, for any N > 0 there exists an
uncertainty input ξN (·) ∈ P+ such that

lim
T→∞

1

T

∫ T
0

(‖z1(t)‖2dt− ‖ξN (t)‖2
)
dt > N.

2Note that the limit on the left-hand side of (72) is independent of the initial condition of system
(71).
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This condition implies that for a sufficiently small ε > 0 there exists a constant
T (ε,N) > 0 such that

1

T

∫ T
0

(‖z1(t)‖2dt− ‖ξN (t)‖2
)
dt > N − ε(73)

for all T > T (ε,N). We now suppose that the initial condition of system (71) is a
random variable x̄0. This system is driven by the input ξN (·). In this case, system
(71) gives rise to an F0-measurable stochastic process x̄1(·). Furthermore, for all T >
T (ε,N), inequality (73) holds with probability one. Now note that the signal ξN (·)
is a deterministic signal; hence, it satisfies the conditions of Lemma 1. Therefore, for
this process, the martingale ζN (·) ∈M, the probability measure QTN , and the Wiener
process W̃ (·) can be constructed as described in Lemma 1. Also, since ξN (·) ∈ P+

and is deterministic, then for any T > 0

EQ
T
N

∫ T
0

‖ξN (t)‖2dt =
∫ T

0

‖ξN (t)‖2dt <∞.

From this observation, it follows that ζN (·) ∈ M∞, and also the random variable
on the left-hand side of inequality (73) has the finite expectation with respect to the
probability measure QTN . Furthermore, using inequality (73), one can prove that the
system

dx̄ = (Āx̄+ B̄ξN (t))dt+ B̄dW̃ (t), x̄(0) = x̄0,(74)

considered on the probability space (Ω,FT , QTN ), satisfies the following condition:

1

T
EQ

T
N

∫ T
0

(
x̄′(t)

(
1

τ0
R̄+ C̄ ′C̄

)
x̄(t) +

ε̄

τ0
‖x̄(t)‖2 − ‖ξN (t)‖2

)
dt > N − ε.

This condition can be established using the same arguments as those used in proving
the corresponding fact in [19]. Hence,

lim
T→∞

1

T
EQ

T
N

∫ T
0

(
x̄′(t)

(
1

τ0
R̄+ C̄ ′C̄

)
x̄(t) +

ε̄

τ0
‖x̄(t)‖2 − ‖ξN (t)‖2

)
dt ≥ N.(75)

LettingN →∞ in (75) and using the representation of the relative entropy h(QTN‖PT ),
we obtain a contradiction with (69):

sup
ζ∈M∞




lim infT→∞ 1
T EQ

T ∫ T
0

1
2τ0

x̄(t)′R̄x̄(t)dt

+ ε̄
τ0
lim infT→∞ 1

2T EQ
T ∫ T

0
‖x̄(s)‖2ds

+ lim infT→∞ 1
T

[
1
2EQ

T ∫ T
0
‖z(s)‖2ds− h(QT ‖PT )

]



≥ sup
N>0




limT→∞ 1
T EQ

T
N

∫ T
0

1
2τ0

x̄(t)′R̄x̄(t)dt

+ ε̄
τ0
limT→∞ 1

2T EQ
T
N

∫ T
0
‖x̄(s)‖2ds

+ limT→∞ 1
2T EQ

T
N

∫ T
0
(‖z(s)‖2 − ‖ξN (s)‖2)ds




=∞.
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Thus, condition (68) holds. As observed above, the proposition follows from this
condition. Consequently, Lemma 5 follows from Proposition 4.

Proof of Theorem 2. This proof exploits a large deviation result established in
[14].

We first note that since the given controller u∗(·) is an absolutely stabilizing
controller and the pair (Ā, R̄) is observable, the uncertain closed-loop system (3), (8)
is absolutely stable. Furthermore, condition (i) of the theorem implies that there
exists a sufficiently small positive constant ε̄ > 0 such that for all ζ(·) ∈ Ξ

lim inf
T→∞

1

2T
EQ

T

∫ T
0

x̄(s)′R̄x̄(s)ds+ ε̄ lim inf
T→∞

1

2T
EQ

T

∫ T
0

‖x̄(t)‖2dt ≤ c− ε̄.(76)

Here R̄ is the matrix corresponding to the controller u∗(·) as defined in (53). Also,
c > 0 is the constant defined in condition (i) of the theorem. Then, it follows from
Lemma 5 that there exists a positive constant τ0 > 0 such that the Riccati equation
(59) has a positive-definite stabilizing solution. The existence of such a constant τ0
is established using condition (76) in the same manner as in the proof of Lemma 5.
Also, as in the proof of Lemma 5, it follows that for any martingale ζ(·) ∈M∞,

lim inf
T→∞

1

T
EQ

T

∫ T
0

1

2
x̄(t)′R̄x̄(t)dt+ ε̄ lim inf

T→∞
1

2T
EQ

T

∫ T
0

‖x̄(t)‖2dt

+ lim inf
T→∞

1

T

[
1

2
EQ

T

∫ T
0

‖z(s)‖2ds− h(QT ‖PT )
]

≤ c− ε̄− d

2
τ0.(77)

Furthermore, the matrix Ā is stable, the pair (Ā, B̄) is controllable, and the pair
(Ā, R̄ + τ0C̄

′C̄) is observable. The above conditions and the condition that Riccati
equation (59) has a positive-definite stabilizing solution are the conditions of Example
2.2 of [14]. It follows from this example that

lim
T→∞

τ0
T
logE exp

{
1

2τ0

∫ T
0

x̄′(t)(R̄+ τ0C̄
′C̄)x̄(t)dt

}

=
1

2

∫ [
x̄′(R̄+ τ0C̄

′C̄)x̄− τ0‖φ(x)‖2
]
νφ(dx̄),(78)

where φ(x̄) = 1/τ0B̄
′Πx̄ and Π is the positive-definite stabilizing solution to Riccati

equation (59). On the left-hand side of (78), x̄(·) is the solution to (3) corresponding
to the given controller of form (2) and a given initial condition. It is shown in [14]
that the value on both sides of (78) is independent of this initial condition.

For the function φ(·) defined above, consider the martingale ζ(·) ∈ M∞ and
the corresponding stationary solution x̄(·) to system (56) with initial distribution νφ

constructed as in Lemma 4. For this martingale ζ(·) and stationary solution x̄(·),
condition (78) leads to the following expression for the risk-sensitive cost:
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lim
T→∞

τ0
T
logE exp

{
1

2τ0

∫ T
0

x̄′(t)(R̄+ τ0C̄
′C̄)x̄(t)dt

}

=
1

2

∫ [
x̄′(R̄+ τ0C̄

′C̄)x̄− τ0‖φ(x)‖2
]
νφ(dx̄)

= lim inf
T→∞

1

2T
EQ

T

∫ T
0

F (x(s), u∗(s))ds

+ τ0 lim inf
T→∞

1

T

[
1

2
EQ

T

∫ T
0

‖z(s)‖2ds− h(QT ‖PT )
]
.

(79)

Also, note that the right-hand side of the above equation is independent of the initial
condition of system (56). This fact is readily established using Ito’s formula and the
fact that the matrix Ā + 1

τ0
B̄B̄′Π is stable. Therefore, on the right-hand side of

inequality (79), the stationary process x̄(·) can be replaced by the solution x̄(·) to
system (56) corresponding to the given initial condition. Then, (79) and (77) imply
that

lim
T→∞

τ0
T
logE exp

{
1

2τ0

∫ T
0

x̄′(t)(R̄+ τ0C̄
′C̄)x̄(t)dt

}
≤ c− ε̄− τ0

2
d.(80)

Thus,

Vτ0 ≤ lim
T→∞

2τ0
T

logE exp

[
1

2τ0

∫ T
0

x̄′(t)(R̄+ τ0C̄
′C̄)x̄(t)dt

]
< 2c− τ0d.

Hence the optimal value of the corresponding risk-sensitive control problem (37) is
finite.

6. Design of the infinite-horizon minimax optimal controller. In this
section, we present the main result of the paper. This result shows that the solution to
an infinite-horizon minimax optimal control problem of the form (31) can be obtained
via optimization over solutions to a scaled risk-sensitive control problem of the form
(37). Therefore, this result extends the corresponding result of [19] to the case where
the underlying system is considered on an infinite time interval.

Consider the class U of linear controllers of the form (2). In what follows, we will
focus on linear output feedback controllers of the form (2) having a controllable and
observable state-space realization. The class of such controllers is denoted by U0.

The derivation of the main result of this paper makes use of parameter-dependent
algebraic Riccati equations. Let τ > 0 be a constant. We consider the algebraic
Riccati equations

(A−B2D
′
2(D2D

′
2)

−1C2)Y∞ + Y∞(A−B2D
′
2(D2D

′
2)

−1C2)
′

− Y∞

(
C ′

2(D2D
′
2)

−1C2 − 1

τ
Rτ

)
Y∞ +B2(I −D′

2(D2D
′
2)

−1D2)B
′
2 = 0,(81)

X∞(A−B1G
−1
τ Υ′

τ ) + (A−B1G
−1
τ Υ′

τ )
′X∞

+ (Rτ −ΥτG−1
τ Υ′

τ )−X∞

(
B1G

−1
τ B′

1 −
1

τ
B2B

′
2

)
X∞ = 0.(82)

The subsequent development relies on Theorem 3 of [9]. We now present a version
of this theorem adapted to the notation used in this paper. We first note that some
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of the conditions of Theorem 3 of [9] are automatically satisfied. Indeed, using the
notation

C̃1 :=


 1√

τ
R1/2

0
C1


 , D̃1 :=


 0

1√
τ
G1/2

D1


 ,

we obtain Rτ − ΥτG
−1
τ Υ′

τ = τC̃ ′
1(I − D̃1(D̃

′
1D̃1)

−1D̃′
1)C̃1 ≥ 0. Also, the pair (A −

B1G
−1
τ Υ′

τ , Rτ −ΥτG−1
τ Υ′

τ ) is detectable since the matrix


A− sI B1

R1/2 0
0 G1/2√
τC1

√
τD1




has full column rank for all s such that Res ≥ 0.
Lemma 6. Consider the risk-sensitive optimal control problem (37) with under-

lying system (1). Suppose the pair

(A−B2D
′
2(D2D

′
2)

−1C2, B2(I −D′
2(D2D

′
2)

−1D2))(83)

is stabilizable. Also, suppose that there exists a constant τ > 0 such that the following
assumptions are satisfied:
(i) Algebraic Riccati equation (81) admits a minimal positive-definite solution Y∞.
(ii) Algebraic Riccati equation (82) admits a minimal nonnegative-definite solution

X∞.
(iii) The matrix I− 1

τ Y∞X∞ has only positive eigenvalues; that is, the spectral radius
of the matrix Y∞X∞ satisfies the condition

ρ(Y∞X∞) < τ ;(84)

ρ(·) denotes the spectral radius of a matrix.
If Y∞ ≥ Y0, then there exists a controller solving risk-sensitive optimal control problem
(37) where the infimum is taken over the set U . This optimal risk-sensitive controller
is a controller of the form (2) with

K := −G−1
τ (B′

1X∞ +Υ′
τ ),

Ac := A+B1K −BcC2 +
1

τ
(B2 −BcD2)B

′
2X∞,

Bc :=

(
I − 1

τ
Y∞X∞

)−1

(Y∞C ′
2 +B2D

′
2)(D2D

′
2)

−1.(85)

The corresponding optimal value of the risk-sensitive cost is given by

Vτ := inf
u∈U

lim
T→∞

�τ,T (u(·))

= tr

[
Y∞Rτ+
(Y∞C ′

2 +B2D
′
2)(D2D

′
2)

−1(C2Y∞ +D2B
′
2)X∞(I − 1

τ Y∞X∞)−1

]
.

(86)

Proof. See Theorem 3 of [9].
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Remark 6. The condition Y∞ ≥ Y0 required by Lemma 6 is a technical condition
needed to apply the results of [9] to risk-sensitive control problem (37). However, it
can be seen from Lemma 6 that the resulting optimal risk-sensitive controller and the
optimal risk-sensitive cost are independent of the matrix Y0. Therefore, the condition
of Lemma 6 requiring Y∞ ≥ Y0 can always be satisfied by a suitable choice of the
matrix Y0.

Reference [9] does not address the issue of stability for the closed-loop system
corresponding to the optimal risk-sensitive controller. However, Theorem 1 shows
that the controller (2), (85) leads to a robustly stable closed-loop system. This fact is
consistent with results showing that risk-sensitive controllers enjoy certain robustness
properties; e.g., see [3, 20]. The following results show that the conditions of Lemma 6
are not only sufficient conditions, but also necessary conditions for the existence of a
solution to the risk-sensitive optimal control problem under consideration, if such a
solution is sought in the class of linear stabilizing controllers; cf. [8].

Lemma 7. Suppose the pair (83) is controllable and for some τ ′ > 0 there exists
an absolutely stabilizing controller ũ(·) ∈ U0 such that

V 0
τ ′ := lim

T→∞
�τ ′,T (ũ) = inf

u∈U0

lim
T→∞

�τ ′,T (u) < +∞.(87)

Then there exists a constant τ > 0 which satisfies conditions (i)–(iii) of Lemma 6.
Furthermore, if for this τ the corresponding pairs (Ac, Bc) and (Ac,K) defined by

(85) are controllable and observable, respectively, then

V 0
τ = tr

[
Y∞Rτ+
(Y∞C ′

2 +B2D
′
2)(D2D

′
2)

−1(C2Y∞ +D2B
′
2)X∞(I − 1

τ Y∞X∞)−1

]
.(88)

In the proof of Lemma 7, the following proposition is used.
Proposition 5. Suppose the pair (83) is controllable. Then, for any controller

u(·) ∈ U0, the pair (Ā, B̄) in the corresponding closed-loop system is controllable and
the pair (Ā, R̄) is observable.

The proof of this proposition is given in Appendix B.
Proof of Lemma 7. We prove the lemma by contradiction. Suppose that for any

τ > 0 at least one of conditions (i)–(iii) of Lemma 6 does not hold. That is, either
(81) does not admit a positive-definite stabilizing solution, or (82) does not admit a
nonnegative-definite stabilizing solution, or (84) fails to hold. Note that conditions
(i)–(iii) of Lemma 6 are standard conditions arising in H∞ control. Since for any
stabilizing controller u(·) ∈ U0 the corresponding matrix Ā is stable (see Proposition 5
and Lemma 3), then it follows from standard results on H∞ control that if at least
one of conditions (i)–(iii) of Lemma 6 fails to hold, then for any controller of the form
(2)

‖[ C̃1 D̃1K
]
(jωI − Ā)−1B̄‖∞ ≥ 1;(89)

see Theorem 3.1 of [10]. It is straightforward to verify that the conditions of Theo-
rem 3.1 of [10] are satisfied. Furthermore, the strict bounded real lemma implies that
the Riccati equation

Ā′X̄ + X̄Ā+
1

τ
X̄B̄B̄′X̄ + R̄+ τC̄ ′C̄ = 0(90)

does not have a stabilizing positive definite solution. In this case, Lemma 5 implies
that none of the controllers u(·) ∈ U0 leads to an absolutely stable closed-loop sys-
tem. This leads to a contradiction with the assumption that an absolutely stabilizing



MINIMAX LQG CONTROL 1215

controller exists and belongs to U0. This completes the proof by contradiction that
there exists a constant τ which satisfies conditions (i)–(iii) of Lemma 6.

It remains to prove (88). Note that Lemma 6 states that for each τ > 0 satisfying
the conditions of that lemma, the optimal controller solving risk-sensitive control prob-
lem (86) is the controller (2), (85). Furthermore, it is assumed that the state-space
realization of this controller is controllable and observable, and hence the optimal
controller from Lemma 6 belongs to the set U0. Therefore,

V 0
τ = inf

u∈U0

lim
T→∞

�τ,T (u(·)) = inf
u∈U

lim
T→∞

�τ,T (u(·)) = Vτ .(91)

From this observation, (88) follows.
We now define a set T ⊂ R as the set of constants τ ∈ R satisfying the conditions

of Lemma 6. It follows from Lemma 6 that, for any τ ∈ T , the controller of form (2)
with coefficients given by (85) represents an optimal controller in the risk-sensitive
control problem (37), which guarantees the optimal value (88).

Theorem 3. Assume that the pair (83) is controllable.
(i) Suppose that the set T is nonempty and that τ∗ ∈ T attains the infimum in

inf
τ∈T

1

2
(V 0
τ + τd),(92)

where V 0
τ is defined in (88). Then the corresponding controller u∗(·) := uτ∗(·)

of the form (2) defined by (85), with the pair (Ac, Bc) being controllable and the
pair (Ac,K) being observable, is an output-feedback controller guaranteeing that

inf
u∈U0

sup
ζ∈Ξ

J(u, ζ) ≤ sup
ζ∈Ξ

J(u∗, ζ) ≤ inf
τ∈T

1

2
(V 0
τ + τd).(93)

Furthermore, this controller is an absolutely stabilizing controller for the stochas-
tic uncertain system (1), (8).

(ii) Conversely, if there exists an absolutely stabilizing minimax optimal controller
ũ(·) ∈ U0 for the stochastic uncertain system (1), (8) such that

sup
ζ∈Ξ

J(ũ, ζ) <∞,

then the set T is nonempty. Moreover,

inf
τ∈T

1

2
(V 0
τ + τd) ≤ sup

ζ∈Ξ
J(ũ, ζ).(94)

Proof. Part (i). The conditions of this part of the theorem guarantee that u∗(·) ∈
U0. Then V 0

τ∗ = Vτ∗ . This fact together with Theorem 1 implies that

inf
u∈U0

sup
ζ∈Ξ

J(u, ζ) ≤ sup
ζ∈Ξ

J(u∗, ζ) ≤ 1

2
(V 0
τ∗ + τ∗d) = inf

τ∈T
1

2
(V 0
τ + τd).(95)

Also from Theorem 1, the controller u∗(·) solving the corresponding risk-sensitive
control problem is an absolutely stabilizing controller. From this observation, part (i)
of the theorem follows.

Part (ii). Note that the controller ũ(·) ∈ U0 satisfies the conditions of Theorem 2;
see Proposition 5. Let c be a constant such that

sup
ζ∈Ξ

J(ũ, ζ) < c.



1216 VALERY A. UGRINOVSKII AND IAN R. PETERSEN

When proving Theorem 2, it was shown that there exists a constant τ > 0 such that
Riccati equation (90) has a stabilizing positive-definite solution and

1

2
lim
T→∞

�τ,T (ũ) < c− τ

2
d <∞;(96)

see (80). Hence, V 0
τ <∞. From the above conditions and using Lemma 7, we conclude

that the set T is nonempty.

We now prove (94). Consider a sequence {ci}, i = 1, 2, . . . , such that

ci ↓ sup
ζ∈Ξ

J(ũ, ζ) as i→∞.

From (96) it follows that

inf
τ∈T

1

2
(V 0
τ + τd) < ci.

Hence, letting i approach infinity leads to the satisfaction of (94).

The first part of Theorem 3 provides a sufficient condition for the existence of
an optimal solution to the minimax LQG control problem considered in this section.
This condition is given in terms of certain Riccati equations. This makes the result
useful in practical controller design since there is a wide range of software available
for solving such Riccati equations.

In the control literature, there is a great deal of interest concerning the issue of
conservatism in robust controller design. For example, a significant issue considered
in [15, 16, 18] is to prove that the results on the minimax optimal control considered in
those papers are not conservative, in that the corresponding Riccati equations fail to
have stabilizing solutions if the minimax optimal controller does not exist. Thus, the
conditions for the existence of a minimax optimal controller presented in those sections
are necessary and sufficient conditions. The second part of Theorem 3 is analogous
to the necessity results of [15, 16, 18, 19]. It follows from this part of Theorem 3 that
the controller u∗(·) constructed in the first part of Theorem 3 represents a minimax
optimal controller in the subclass U0,stab ⊂ U0 of stabilizing linear output feedback
controllers. This result is summarized in the following theorem.

Theorem 4. Assume that the conditions of part (i) of Theorem 3 are satisfied.
Then, the controller u∗(·) constructed in part (i) of Theorem 3 is the minimax optimal
controller such that

inf
u∈U0,stab

sup
ζ∈Ξ

J(u, ζ) = sup
ζ∈Ξ

J(u∗, ζ) = inf
τ∈T

1

2
(V 0
τ + τd).(97)

Proof. It was shown in part (i) of Theorem 3 that the controller u∗(·) belongs to
the set U0,stab. Hence,

inf
u∈U0,stab

sup
ζ∈Ξ

J(u, ζ) ≤ sup
ζ∈Ξ

J(u∗, ζ) ≤ inf
τ∈T

1

2
(V 0
τ + τd).(98)

Furthermore, condition (98) implies that

inf
u∈U0,stab

sup
ζ∈Ξ

J(u, ζ) <∞.
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Fig. 2. A two mass spring system.

That is, for any sufficiently small ε > 0, there exists a controller ũ(·) ∈ U0,stab such
that

sup
ζ∈Ξ

J(ũ, ζ) ≤ inf
u∈U0,stab

sup
ζ∈Ξ

J(u, ζ) + ε.

This controller satisfies the conditions of part (ii) of Theorem 3. Therefore, it follows
from Theorem 3 that

inf
τ∈T

1

2
(V 0
τ + τd) ≤ inf

u∈U0,stab

sup
ζ∈Ξ

J(u, ζ) + ε.

The above inequality holds for any infinitesimal ε > 0. Therefore,

inf
τ∈T

1

2
(V 0
τ + τd) ≤ inf

u∈U0,stab

sup
ζ∈Ξ

J(u, ζ).

This inequality together with (98) implies (97).

7. Illustrative example. We now consider the tracking problem which was
used as an illustrative example in [15, 17]. In this tracking problem, the goal is to
design an output-feedback controller so that the controlled output of a two-cart system
tracks a reference step input. The system to be controlled is shown in Figure 2.

As in [15, 17], the masses of the carts are assumed to be m1 = 1 and m2 = 1.
Furthermore, the spring constant k is treated as an uncertain parameter subject to
the bound 0.5 ≤ k ≤ 2.0. From this, a corresponding uncertain system was derived
in [17]. This uncertain system is described by the following state equations:

ẋ =




0 0 1 0
0 0 0 1

−1.25 1.25 0 0
1.25 −1.25 0 0


x+



0
0
0
1


u+




0 0 0
0 0 0

−0.70 0 0
0.80 0 0


 ξ,

z =
[
1 −1 0 0

]
x,

y =

[
1 0 0 0
0 1 0 0

]
x+

[
0 0.05 0
0 0 0.05

]
ξ,

yT =
[
1 0 0 0

]
x.

(99)

Here, the uncertainty is subject to an integral quadratic constraint which will be
specified below. The output yT is the output which is required to track a step input.
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The control problem solved in [17] involved finding a controller which absolutely
stabilized the system and also ensured that the output yT tracks a reference step
input. In [17], the system was transformed into the form:

˙̄x =



0 1 0 0
0 0 0 0
0 0 0 1
0 0 −2.5 0


 x̄+




0
0.5
0
−0.5


u+




0 0 0
0.05 0 0
0 0 0

−0.75 0 0


 ξ,

z =
[
0 0 2 0

]
x̄,

ȳ =

[
1 0 1 0
1 0 −1 0

]
x̄+

[
0 0.05 0
0 0 0.05

]
ξ,

yT − ỹT =
[
1 0 1 0

]
x̄,

(100)

where

ȳ := y −
[
1
1

]
η.

Here, η denotes the state of the reference input signal model:

η̇ = 0, η(0) = 1,

ỹT = η.(101)

The above transformation involved the following change of variables:

x̄1 = (x1 + x2)/2− η,

x̄2 = (ẋ1 + ẋ2)/2 = (x3 + x4)/2,

x̄3 = (x1 − x2)/2,

x̄4 = (ẋ1 − ẋ2)/2 = (x3 − x4)/2.(102)

To construct the required controller, the following cost function was used:∫ ∞

0

[(yT − ỹT )
2 + 0.1‖x̄‖2 + u2]dt.(103)

Hence, the matrices R and G are as defined in [17]:

R =



1.1 0 1 0
0 0.1 0 0
1 0 1.1 0
0 0 0 0.1


 > 0, G = 1.

In (100), the uncertainty input ξ(·) has three components,

ξ(·) = [ξ1(·), ξ2(·), ξ3(·)]′.

The uncertainty input ξ1(·) describes the uncertainty in the spring rate. This uncer-
tainty satisfies the constraint

|ξ1(t)| ≤ |z(t)|.
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The components ξ2 and ξ3 of the uncertainty input vector ξ are fictitious uncertainty
inputs which were added to system (99) in [17] in order to fit this system into the
framework of the method presented in that paper. Specifically, it was assumed in [17]
that the uncertainty input ξ(·) satisfies the following integral quadratic constraint:

∫ ti
0

‖ξ(t)‖2dt ≤
∫ ti

0

‖z(t)‖2dt+ x̄′
0Sx̄0,(104)

where {ti} is a sequence of times as discussed in [17]. Also, in [17], the initial condition
of system (100) was chosen to be x̄0 = [−1 0 0 0]′. This choice of the initial condition
corresponds to a zero initial condition on the system dynamics and an initial condition
of η(0) = 1 on the reference input dynamics. Also, the mismatch matrix S was chosen
to be

S =



0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1


 > 0.

The output-feedback robust controller designed in [17] was a suboptimal time-
varying controller. We now apply the controller design procedure presented in this
paper to design a time-invariant output-feedback minimax optimal controller solving
the above tracking problem. We will use the state space transformation (102), which
reduces the original tracking problem to a regulator problem. However, in order to
apply the results of this paper to this robust control problem, we must introduce a
stochastic description of the system. To satisfy this requirement, a noise input will be
added to the system, and the controller will be designed for the system with additive
noise. That is, we replace the nominal system corresponding to (100) with ξ(·) ≡ 0
with a stochastic system described by the following stochastic differential equation:

dx̄ =





0 1 0 0
0 0 0 0
0 0 0 1
0 0 −2.5 0


 x̄+




0
0.5
0
−0.5


u


 dt+




0 0 0
0.05 0 0
0 0 0

−0.75 0 0


 dW (t),

z =
[
0 0 2 0

]
x̄,

dȳ =

[
1 0 1 0
1 0 −1 0

]
x̄dt+

[
0 0.05 0
0 0 0.05

]
dW,

yT − ỹT =
[
1 0 1 0

]
x̄,

(105)

where W (t) = [W1(t), W2(t), W3(t)]
′ is a 3-dimensional Wiener process on a certain

measurable space (Ω,F , P ). Here, P is the reference probability measure. Also, the
uncertain system (100) is replaced by an uncertain system of the form (105) considered
on an uncertain measurable space defined using an uncertain martingale ζ(·). Also, as
noted in section 2, uncertain systems of this type can be described using a stochastic
differential equation of the form (13). System (105) is a system of the form (1) to
which the design technique presented in this paper is applicable.

Note that in this example, a robust controller is sought which stabilizes the sys-
tem in the face of stochastic uncertainty. It can readily be shown using Lemma 5
that the absolute stability of the stochastic closed-loop system consisting of system
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(105) and this controller implies the robust stability of the closed-loop system corre-
sponding to the deterministic system (100) driven by the same linear output-feedback
controller. Indeed, Lemma 5 shows that the corresponding Riccati equation (59) has
a nonnegative-definite stabilizing solution. Then, using the strict bounded real lemma
leads to the conclusion that the corresponding deterministic closed-loop system with
norm-bounded uncertainty is quadratically stable [5]. Also, the corresponding deter-
ministic closed-loop system with the uncertainty modeled using an integral quadratic
constraint of the form (104) is absolutely stable [23]. It follows from this observation
that a robust output-feedback controller designed for the uncertain stochastic sys-
tem (105) also serves as a robust controller for the original uncertain system (100).
Thus, a controller designed for stochastic uncertain system (105) will solve the original
tracking problem.

We now proceed to the derivation of a robust output-feedback controller for sys-
tem (105). We first replace the integral quadratic constraint (104) by the following
stochastic uncertainty constraint: For any T > 0

1

2T
EQ

T

∫ T
0

‖ξ(t)‖2dt ≤ 1

2T
EQ

T

∫ T
0

‖z(t)‖2dt+ d, d =
1

2
x̄′

0Sx̄0.(106)

It was shown in section 2 that the uncertainty class defined by the constraint (106)
can be embedded into an uncertainty class described by the corresponding relative
entropy uncertainty constraint of the form (8).

The cost functional is chosen to have the form

lim sup
T→∞

1

2T

∫ T
0

EQ
T

[(yT − ỹT )
2 + 0.1‖x̄‖2 + u2]dt.(107)

We are now in a position to apply the design procedure outlined in Theorem 3.
For each value of τ > 0, the Riccati equations (81) and (82) are solved, and then a
line search is carried out to find the value of τ > 0 which attains the minimum of
the function 1/2(V 0

τ + τd) defined in Theorem 3. A graph of 1/2(V 0
τ + τd) versus

τ for this example is shown in Figure 3. It was found that the optimal value of the
parameter τ is τ = 5.6931.

With this optimal value of τ , the following positive-definite stabilizing solutions
to Riccati equations (82) and (81) were obtained:

X∞ =




4.0028 6.8156 −6.3708 3.8312
6.8156 18.3891 −20.6541 9.3784
−6.3708 −20.6541 48.5330 −5.8268
3.8312 9.3784 −5.8268 12.5738


 ,

Y∞ =




0.0007 0.0003 −0.0005 −0.0014
0.0003 0.0008 −0.0017 −0.0108
−0.0005 −0.0017 0.0077 0.0236
−0.0014 −0.0108 0.0236 0.1641


 .

Furthermore, a corresponding time-invariant controller of the form (2), (85) was
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Fig. 3. Cost bound 1
2

(V 0τ + τd) versus the parameter τ .

constructed to be

dx̂ =



−0.5868 1.0000 0.4581 0
−1.0384 −2.3064 5.7466 0.7202
0.4581 0 −7.6627 1.0000
2.6530 3.0582 −34.7464 0.3817


 x̂dt

+




0.0643 0.5225
−0.8702 1.1403
3.6023 −4.0604
13.2633 −14.8366


 dy(t),

u =
[ −1.4922 −4.5053 7.4137 1.5977

]
x̂.

Then referring to system (99), the required tracking control system is constructed by
replacing the time-varying controller of [17] with the above time-invariant controller
as shown in Figure 4. To verify the robust tracking properties of this control sys-
tem, Figure 5 shows the step response of the system for various values of the spring
constant parameter k. It can be seen from these plots that the stochastic minimax
optimization approach of this paper leads to a robust tracking system which exhibits
transient behavior similar to the behavior of the tracking system designed using the
deterministic approach of [17]. However, the controller designed using the approach
of this paper is time-invariant.

Appendix A. Relative entropy. This appendix presents a result on the duality
between free energy and relative entropy which is exploited in this paper. This result
is taken from [1].

Let (Ω,F) be a measurable space, and let P(Ω) be the set of probability measures
on (Ω,F).
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Fig. 4. Block diagram of a tracking control system.
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Fig. 5. Control system step response for various spring constants.

Definition 4. Let P ∈ P(Ω), and ψ : Ω → R be a measurable function. The
quantity

E := log

(∫
eψP (dω)

)

is called the free energy of ψ with respect to P .
Definition 5. Given any two probability measures Q,P ∈ P(Ω), the relative

entropy of the probability measure Q with respect to the probability measure P is
defined by

h(Q‖P ) :=
{∫

log
(
dQ
dP

)
Q(dω) if Q P and log

(
dQ
dP

)
∈ L1(Ω,F , Q),

+∞ otherwise.
(A.1)

In the above definition, dQdP is the Radon–Nikodým derivative of the probability
measure Q with respect to the probability measure P . Note that the relative entropy
is a convex, lower semicontinuous functional of Q; e.g., see [2]. It is shown in [1]
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that the functions E(ψ) and h(Q‖P ) are in duality with respect to a Legendre-type
transform as follows.

Lemma 8.
(i) For every Q ∈ P(Ω),

h(Q‖P ) = sup
eψ∈L1(Ω,F,P ),
ψ bounded below

{∫
ψQ(dω)− E(ψ)

}
;(A.2)

(ii) For every ψ bounded from below,

E(ψ) = sup
h(Q‖P )<∞

{∫
ψQ(dω)− h(Q‖P )

}
.(A.3)

Moreover, if ψeψ ∈ L1(Ω,F , P ), then the supremum in (A.3) is attained at Q∗ given
by

dQ∗

dP
=

eψ∫
eψP (dω)

.

Proof. See [1].

Appendix B. Proofs.
Proof of Lemma 3. Since the stochastic nominal system (27) satisfies condition

(29), then for any vector y

lim sup
T→∞

1

T

∫ T
0

y′E [x(t)x′(t)] ydt <∞.(B.1)

We will prove that the stability of the matrix A follows from condition (B.1). This
proof is by contradiction.

Suppose that the matrix A is not stable and therefore it has a left eigenvalue λ
such that Reλ ≥ 0. Consider the left eigenvector y of the matrix A corresponding to
the eigenvalue λ. Hence, y′A = y′λ. Here, y′ denotes the Hermitian conjugate of y.
Since the pair (A,B2) is stabilizable, it follows that y′B2 �= 0 and, consequently,

y′B2B
′
2y > 0.(B.2)

We now consider the following two cases.
Case 1. Reλ > 0. In this case, we obtain the following bound on y′E [x(t)x′(t)] y:

y′E [x(t)x′(t)] y = y′eAtE [x(0)x′(0)] eA
′ty +

∫ t
0

y′eA(t−s)B2B
′
2e
A′(t−s)yds

= e2Reλty′E [x(0)x′(0)] y +
∫ t

0

e2Reλ(t−s)y′B2B
′
2yds

≥ e2Reλt − 1
2Reλ

y′B2B
′
2y.

Thus for any T > 0

1

T

∫ T
0

y′E [x(t)x′(t)] ydt ≥ y′B2B
′
2y ·

1

T

∫ T
0

e2Reλt − 1
2Reλ

dt.(B.3)
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Case 2. Reλ = 0. In this case, we obtain the following bound on y′E [x(t)x′(t)] y:

y′E [x(t)x′(t)] y = y′eAtE [x(0)x′(0)] eA
′ty +

∫ t
0

y′eA(t−s)B2B
′
2e
A′(t−s)yds

= y′E [x(0)x′(0)] y +
∫ t

0

y′B2B
′
2yds

≥ t · y′B2B
′
2y.

Thus for any T > 0

1

T

∫ T
0

y′E [x(t)x′(t)] ydt ≥ y′B2B
′
2y ·

1

T

T 2

2
= y′B2B

′
2y

T

2
.(B.4)

Since y′B2B
′
2y > 0, the expressions on the right-hand side of inequalities (B.3)

and (B.4) both approach infinity as T →∞. That is, in both cases,

lim sup
T→∞

1

T

∫ T
0

y′E [x(t)x′(t)] ydt =∞.

This yields the desired contradiction with (B.1).
Proof of Proposition 5. Note that by definition, for any controller u(·) ∈ U0, the

corresponding pair (Ac, Bc) is controllable and the pair (Ac,K) is observable.
To prove the controllability of the pair (Ā, B̄), we first note that the matrix[

A′ − sI C ′
2

B′
2 D′

2

]
(B.5)

has full column rank for all s ∈ C [25].
Next, consider the matrix pair

(Ā, B̄) =

([
A B1K

BcC2 Ac

]
,

[
B2

BcD2

])
.(B.6)

For this matrix pair to be controllable, the equations

(A′ − sI)x1 + C ′
2B

′
cx2 = 0,(B.7a)

B′
2x1 +D′

2B
′
cx2 = 0,(B.7b)

K ′B′
1x1 + (A′

c − sI)x2 = 0(B.7c)

must imply that x1 = 0 and x2 = 0 for every s ∈ C. Equations (B.7a) and (B.7b) can
be written as follows: [

A′ − sI C ′
2

B′
2 D′

2

] [
x1

B′
cx2

]
= 0.

It was noted above that the matrix (B.5) has full column rank for all s ∈ C. Hence,
the above equation and (B.7c) imply that

x1 = 0, B′
cx2 = 0, (A′

c − sI)x2 = 0.

Since the pair (Ac, Bc) is controllable, then the two last equations imply that x2 = 0.
Thus, the pair (B.6) is controllable.
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In order to prove the observability of the pair (Ā, R̄), we need to show that the
equations

(A− sI)x1 +B1Kx2 = 0,(B.8a)

BcC2x1 + (Ac − sI)x2 = 0,(B.8b)

R1/2x1 = 0,(B.8c)

G1/2Kx2 = 0(B.8d)

imply that x1 = 0, x2 = 0 for every s ∈ C. Indeed, since the matrices R, G are
positive-definite, then it follows from (B.8c) and (B.8d) that x1 = 0 and Kx2 = 0.
Using these equations, we also obtain from (B.8b) that (Ac − sI)x2 = 0. Since the
pair (Ac,K) is observable, this implies that x1 = 0 and x2 = 0. Thus, the pair (Ā, R̄)
is observable.
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A CHARACTERIZATION OF THE LIE ALGEBRA RANK
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PASCAL MORIN† AND CLAUDE SAMSON†

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. 1227–1249

Abstract. The Lie algebra rank condition plays a central role in nonlinear systems control
theory. The present paper establishes that the satisfaction of this condition by a set of smooth
control vector fields is equivalent to the existence of smooth transverse periodic functions. The proof
here enclosed is constructive and provides an explicit method for the synthesis of such functions.

Key words. controllability, driftless system, transversality, Lie algebra
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1. Introduction. LetX1, . . . , Xm denote smooth vector fields (v.f.) on a smooth
n-dimensional manifold M . By definition, the Lie algebra rank condition at a point
p0 ∈M (LARC(p0)) is the property that

1

Mp0 = Span{X(p0) : X ∈ Lie(X1, . . . , Xm)},
where Lie(X1, . . . , Xm) denotes the Lie algebra of v.f. generated by X1, . . . , Xm. This
condition plays a major role in the study of controllability properties of nonlinear
control systems, as shown in the classical works of Chow [2], Lobry [10], Hermann
[4], Sussmann and Jurdjevic [18], and others. For example, the well-known “Chow’s
theorem” states that if LARC(p0) is satisfied for the v.f. X1, . . . , Xm, then the set of
points reachable from p0 by trajectories of the control system

ṗ =

m∑
i=1

uiXi(p)(1)

contains a neighborhood of p0. While the Lie algebra rank condition provides a
systematic tool to test the controllability of system (1), its use at the control design
level is usually not direct. For instance, even though LARC(p0) implies the existence
of elements Xm+1, . . . , Xn̄ of Lie(X1, . . . , Xm) such that

∀p ∈ V , Mp = Span{X1(p), . . . , Xm(p)}+ Span{Xm+1(p), . . . , Xn̄(p)},(2)

where V denotes a neighborhood of p0, the “generation of motion” in the direction of
the v.f. Xm+1, . . . , Xn̄ by means of the control variables ui is not simple. Although
general results have been obtained for this problem in both the open-loop [9] and
closed-loop [11] contexts, their application to physical systems usually raises several
difficult issues—complexity, robustness, etc.

In this paper, we present a characterization of the Lie algebra rank condition which
allows us to consider the control of system (1) from a slightly different perspective.
More precisely, the following result is proved.

∗Received by the editors January 20, 2000; accepted for publication (in revised form) May 22,
2001; published electronically December 7, 2001.

http://www.siam.org/journals/sicon/40-4/36605.html
†INRIA, B.P. 93, 06902 Sophia-Antipolis Cedex, France (pascal.morin@inria.fr,claude.samson@

inria.fr).
1Throughout the paper, the notation Nq is used to denote the tangent space of a manifold N at

q, whereas TqF denotes the tangent mapping of a smooth map F at q.
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Theorem 1. Let T = R/2πZ denote the one-dimensional torus, and let X1, . . . , Xm

denote smooth v.f. on a smooth n-dimensional manifold M , such that the accessibility

distribution ∆(p)
∆
= Span {X(p) : X ∈ Lie(X1, . . . , Xm)} is of constant dimension n0

in a neighborhood of p0. Then the following properties are equivalent:
1. n0 = n; i.e., the Lie algebra rank condition at p0, LARC(p0), is satisfied for

the v.f. X1, . . . , Xm.
2. There exist n̄ ∈ N and, for any neighborhood U of p0, a function F ∈
C∞(Tn̄−m;U) such that

∀θ ∈ T
n̄−m, MF (θ) = Span {X1(F (θ)), . . . , Xm(F (θ))}+ TθF (T

n̄−m
θ ) .

(3)

Remark 1.
1. Relation (3) is reminiscent of the transversality property for functions—see,

e.g., [1, Section 3.5] for a definition.
2. It is clear that n̄ is at least equal to n. For some systems—in particular, for

free systems introduced later—it can be chosen equal to n, so that the sum in
the right-hand side of (3) becomes direct, and F is an immersion.

Roughly speaking, by comparison with (2), equality (3) implies that at any point
F (θ) ∈M , the directions Xm+1(F (θ)), . . . , Xn̄(F (θ)), which are not directly available
for control, are spanned by the partial derivatives of the smooth function F . An
important property of this characterization is that the function F can be directly
used for control design purposes. In order to briefly illustrate this fact (for more
details on potential applications, the reader is referred to [13]), let us consider the
well-known chain system on R

3, where p = (p1, p2, p3)
T ∈ R

3:

ṗ = u1X1(p) + u2X2 , X1(p) = (1, 0, p2)
T , X2 = (0, 1, 0)

T(4)

for which LARC(0) is clearly satisfied. For this system, (3) is satisfied with n̄ = 3—so
that T

n̄−m = T—and, for example, any function Fε (ε > 0) defined by

Fε(θ) =




ε sin θ
ε cos θ
ε2

4
sin 2θ


 .

Indeed, (3) is in this case equivalent to the condition

∀θ ∈ T , Det

(
H(θ)

∆
=

[
X1(Fε(θ)) X2 − ∂Fε

∂θ
(θ)

])
	= 0,(5)

the satisfaction of which is readily verified. Let us now introduce a new state vector
ϕ defined by

ϕ(p, θ)
∆
=


 p1 − Fε,1(θ)

p2 − Fε,2(θ)
p3 − Fε,3(θ)− p1 (p2 − Fε,2(θ))


 .

A direct calculation shows that for any function of time θ(.) the time derivative of ϕ
along any solution to (4) satisfies

ϕ̇(p, θ) = C(p)H(θ)(u1, u2, θ̇)
T
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with

C(p) =


1 0 0
0 1 0
0 −p1 1


 .

Since both matrices C(p) and H(θ) are invertible for any p ∈ R
3 and any θ ∈ T,

it is straightforward, by considering (u1, u2, θ̇) as a new control vector, to globally
asymptotically stabilize ϕ to zero. For instance, uniform exponential stabilization of
ϕ = 0 is obtained by setting

(u1, u2, θ̇)
T = −kH−1(θ)C−1(p)ϕ(p, θ), k > 0 .

In terms of the state p, this yields a control law which globally stabilizes a neighbor-
hood of the origin, the size of which can be made arbitrarily small by choosing ε as
small as needed. Let us remark that, although it was not formalized in this way, this
idea has been used implicitly in [3] for the problem of tracking a unicycle-type vehicle.

Based on this simple example, potential applications of Theorem 1 to various
control problems are easily envisioned. Direct applications concern practical feedback
stabilization of either systems without drift—as illustrated in the above example—or
systems with a nonvanishing drift v.f. (see, e.g., [13], where potential application to
nonholonomic motion planning is also briefly discussed). Other applications in the
domain of nonlinear observer design or control of PDEs might also be considered.

This paper is organized as follows: Theorem 1 is proved2 in section 2, and an ex-
ample to illustrate the construction of transverse functions F is provided in section 3.
Let us finally indicate that a presentation of Theorem 1 was accepted at the IEEE
Conference on Decision and Control 2000 [12] in the form of a regular paper which
did not contain the proof.

The following notation is used throughout the paper.
• δji denotes the Kronecker delta.
• Bn(0, δ) denotes the closed ball in R

n centered at zero and of radius δ.
• For h ∈ C∞(Rn;Rm) and g ∈ C∞(Rn;R) with g(x) 	= 0 for x 	= 0, we write
h = o(g) when |h(x)|/|g(x)| −→ 0 as x −→ 0.

• d denotes the exterior derivative.

2. Proof of Theorem 1. By considering a system of local coordinates x =
(x1, . . . , xn) on M , which maps p0 to 0 ∈ R

n, and a—globally defined—frame3

{ ∂
∂θm+1

, . . . , ∂
∂θn̄
} on T

n̄−m, Theorem 1 rewrites as follows.

Corollary 1. Let g1, . . . , gm denote smooth v.f. on R
n such that the accessi-

bility distribution is of constant dimension in a neighborhood of the origin. Then the
following properties are equivalent:

1. LARC(0): the system

S : ẋ =
m∑
i=1

uigi(x)

satisfies the Lie algebra rank condition at the origin.

2Note added in proof: A simpler proof has recently been obtained. More details are available
from the authors.

3The dual basis—coframe—will be denoted (dθm+1, . . . , dθn̄).
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2. TC(0): there exist n̄ ∈ N and a family of functions fε ∈ C∞(Tn̄−m;Bn(0, ε))
(ε > 0) such that, for any ε > 0, the following transversality condition holds:

(6) ∀θ ∈ T
n̄−m,

Rank

(
g1(fε(θ)) . . . gm(fε(θ))

∂fε
∂θm+1

(θ) . . .
∂fε
∂θn̄

(θ)

)
= n .

We now focus on the proof of this equivalent formulation of Theorem 1.

2.1. TC(0) =⇒ LARC(0). We assume that LARC(0) is not satisfied and show
that TC(0) cannot be satisfied either. By assumption, the accessibility distribution
is of constant dimension n0 in a neighborhood of the origin. Therefore, if n0 < n, the
Frobenius theorem guarantees the existence of local coordinates φ(x) such that φn is
constant along the trajectories of S, i.e., for some neighborhood U of the origin,

∀x ∈ U , ∀i = 1, . . . ,m, ∂φn
∂x

(x) 	= 0, and
∂φn
∂x

(x)gi(x) = 0 .(7)

Now assume that TC(0) is satisfied, and choose any fε satisfying (6) and such that
Bn(0, ε) ⊂ U . By the compactness of T

n̄−m, the smooth function θ �−→ φn(fε(θ))
from T

n̄−m to R attains its maximum value for some θ̄, i.e.,

∀i = m+ 1, . . . n̄,
∂φn
∂x

(fε(θ̄))
∂fε
∂θi

(θ̄) = 0 .(8)

From (8) and from (7) evaluated at x = fε(θ̄), we obtain

∂φn
∂x

(fε(θ̄))

(
g1(fε(θ̄)) . . . gm(fε(θ̄))

∂fε
∂θm+1

(θ̄) . . .
∂fε
∂θn̄

(θ̄)

)
= 0 ,

which is in contradiction with TC(0).

2.2. LARC(0) =⇒ TC(0).

2.2.1. Notation and recalls. Prior to addressing the proof itself, we specify
some notation and recall a few basic definitions and results that are extensively used in
what follows. These recalls are about homogeneity on one hand and free Lie algebras
on the other hand. For a more complete survey about these issues, we refer the reader
to [5, 6] for the properties associated with homogeneity, and to [7, 17] for the role of
free Lie algebras in control theory.

About homogeneity. Given µ > 0 and a weight vector r = (r1, . . . , rn) (ri >
0 ∀i), a dilation ∆r

µ on R
n is a map from R

n to R
n defined by ∀z = (z1, . . . , zn) ∈

R
n, ∆r

µz
∆
= (µr1z1, . . . , µ

rnzn). A function f ∈ C0(Rn;R) is homogeneous of degree
l with respect to the family of dilations (∆r

µ)µ>0 or, more concisely, ∆
r-homogeneous

of degree l if ∀µ > 0, f(∆r
µz) = µlf(z). A ∆r-homogeneous norm is defined as a

positive definite function on R
n, ∆r-homogeneous of degree one. A smooth v.f. X

on R
n is ∆r-homogeneous of degree d if, ∀i = 1, . . . , n, the function x �−→ Xi(x) is

∆r-homogeneous of degree d+ ri. The system

Sap : ż =

m∑
i=1

bi(z)ui(9)
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is a ∆r-homogeneous approximation of S if there exists a change of coordinates
φ : x �−→ z which transforms S into

ż =

m∑
i=1

(bi(z) + hi(z))ui ,(10)

where bi is ∆
r-homogeneous of degree −1, and hi denotes higher-order terms; i.e.,

for any j, the jth component hi,j of hi satisfies hi,j = o(ρrj−1), where ρ is any
∆r-homogeneous norm.

The main motivation for introducing such approximations comes from the follow-
ing result.

Proposition 1 (see [5, 15]). For any system S of smooth v.f. which satis-
fies LARC(0), there exists a ∆r-homogeneous approximation Sap which also satisfies
LARC(0).

Finally, we say that a set {b1, . . . , bm} of v.f., or the associated system (9), is
nilpotent of order d+ 1 if any Lie bracket of these v.f. of length larger than, or equal
to, d+1 is identically zero. It is simple to verify that any set {b1, . . . , bm} of smooth
v.f. with the bi’s ∆

r-homogeneous of degree −1 is nilpotent of order 1 +Max{ri : i =
1, . . . , n}.

About free Lie algebras. Let us consider a finite set of indeterminatesX1, . . . , Xm

and denote by Lie(X) the free Lie algebra over R generated by the Xi’s. We also de-

note by F(X) the set of formal brackets in the Xi’s. For any set b
∆
= {b1, . . . , bm}

of smooth v.f. and any B ∈ F(X), we denote by Evb(B) the evaluation map, i.e.,
Evb(Xi) = bi, and

Evb([Bλ, Bρ]) = [Evb(Bλ),Evb(Bρ)] .

The definition of a (generalized) P. Hall basis of Lie(X) is recalled below.
Definition 1. A P. Hall basis B of Lie(X) is a totally ordered subset of F(X)

such that
1. each Xi belongs to B;
2. if B = [Bλ, Bρ] ∈ F with Bλ, Bρ ∈ F , then B ∈ B if and only if Bλ, Bρ ∈ B

with Bλ < Bρ, and either (i) Bρ is one of the Xi’s or (ii) Bρ = [Bλρ, Bρ2 ]
with Bλρ ≤ Bλ;

3. if B ∈ B is a bracket of length +(B) ≥ 2, i.e., B = [Bλ, Bρ], with Bλ, Bρ ∈ B,
then Bλ < B.

In order to simplify the forthcoming analysis we choose a specific P. Hall basis B
associated with a specific total order. The P. Hall basis so obtained is in fact a Hall
basis in the original (narrow) sense (see, e.g., [14, Section IV.5]).

Specific order.


+(B) < +(B′) =⇒ B < B′,
Xi < Xj ⇐⇒ i < j,
For +(B) = +(B′) > 1, B < B′ ⇐⇒ Bλ < B′

λ, or Bλ = B′
λ and Bρ < B′

ρ .
(11)

We denote by

B = {B1, B2, . . . , Bq, . . . }, B1 < B2 < · · · < Bq < · · · ,(12)
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the P. Hall basis associated with the total order (11), and also by +(i) the length of
any bracket Bi of this basis. From (11) and the definition of a P. Hall basis, we deduce
the following properties which will be extensively used in what follows:

i ∈ {1, . . . ,m} ⇐⇒ +(i) = 1⇐⇒ Bi = Xi,(13)

i > m⇐⇒ +(i) > 1⇐⇒ Bi = [Bλ(i), Bρ(i)],(14)

where λ(i) and ρ(i) are uniquely defined integers. By extension of this notation, and
whenever this will make sense, we will use the symbols λ2(i), λρ(i), ρ2(i), . . . , to index
the elements of B. For instance, if +(ρ(i)) ≥ 2, we can write Bρ(i) = [Bλρ(i), Bρ2(i)].
Finally, it also follows from (11) and the definition of a P. Hall basis that

+(i) > 1 =⇒ λ(i) < ρ(i) < i .

Letting 0 < d ∈ N, we denote by Lied(X) the subspace of Lie(X) generated by
brackets of length at most equal to d. Then the subset of B composed of all brackets
Bj such that +(j) ≤ d is a basis of Lied(X) denoted as Bd. Let n(d) denote the
dimension of Lied(X) so that

Bd = {B1, . . . , Bn(d)} and +(n(d)) = d .

One can associate the following free system with Bd:{
ẋi = ui, i = 1, . . . ,m,
ẋi = xλ(i)ẋρ(i), i = m+ 1, . . . , n(d).

(15)

Remark 2. Since there is a one-to-one correspondence between the components
of the state vector x associated with the free system (15) and the element of Bd, it
would be natural to index each component of x by the corresponding element of Bd,
as done, for example, in [7]. We have preferred here to write Bi for an element of Bd
and xi for the corresponding component of x in order to lighten the notation.

It is straightforward to verify that (15) defines a control-affine driftless system:

S(m, d) : ẋ =
m∑
i=1

uibi(x),(16)

where the components bi,j of the v.f. bi are defined by

bi,j(x) =

{
δji if +(j) = 1,
xλ(j)bi,ρ(j) otherwise.

(17)

The following properties of free systems will be used in what follows. For the
first two properties, we refer to [7]. The third property has been proved in [8, Section
3] in a formal algebraic framework. A proof of the fourth property is given in the
appendix.

Lemma 1. For i = m + 1, . . . , n(d), let bi denote the v.f. Evb(Bi), where
b = {b1, . . . , bm}. Then the following properties hold.

1. For any i ∈ {1, . . . , n(d)}, bi = ai∂/∂xi +
∑

j>i bi,j∂/∂xj for some nonzero
constant ai and some smooth functions bi,j so that S(m, d) satisfies LARC(x)
for any x ∈ R

n(d).
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2. The v.f. bi are ∆-homogeneous of degree −+(i) with ∆µ (µ > 0), the dilation
defined by

∆µx = (µ
�(1)x1, . . . , µ

�(n(d))xn(d))(18)

so that S(m, d) is nilpotent of order d+ 1.
3. For any p ∈ C∞(Rn(d);R), ∆-homogeneous of degree d′ < d, and any j ∈
{1, . . . ,m}, there exists qj ∈ C∞(Rn(d);R), ∆-homogeneous of degree d′ + 1,
such that

∀i ∈ {1, . . . ,m}, Lbiq
j =

{
p if i = j,
0 otherwise.

(19)

4. For any i ∈ {1, . . . , n(d)} and any p ∈ C∞(Rn(d);R), ∆-homogeneous of
degree d′ − +(i) with d′ ≤ d, there exist h1 and h2,j (1 < +(j) ≤ d′) in
C∞(Rn(d);R), ∆-homogeneous of degree d′ and d′ − +(j), respectively, such
that

p(x)dxi = dh1 +
∑

j:1<�(j)≤d′
h2,j(x)

(
dxj − xλ(j)dxρ(j)

)
.(20)

Remark 3.
1. The functions p, qj, h1, and h2,j in properties 3 and 4 are polynomial in x

because they are smooth and homogeneous.
2. Since the smooth functions qj in property 3 are homogeneous of degree d′+1,

it can depend only on the n(d′ + 1) first components of x.
After these preliminary recalls, we can now proceed with the proof of Theorem 1.

It is composed of three steps which are summarized in the following three propositions.
Proposition 2. If TC(0) holds for a homogeneous approximation Sap of a

system S, then TC(0) holds for S also.
Proposition 3. If, for any d ∈ N−{0}, TC(0) holds for the free system S(m, d)

with n̄ = n(d), then TC(0) holds for any smooth driftless system Shom which satisfies
LARC(0) and whose control v.f. are ∆r-homogeneous of degree −1 for some dilation
∆r

µ.
Proposition 4. For any d ∈ N−{0}, TC(0) holds for the free system S(m, d)

with n̄ = n(d).
From Proposition 1, if S satisfies LARC(0), it has a homogeneous approximation

which also satisfies LARC(0). This property, combined with the three propositions
above, clearly implies that LARC(0) =⇒ TC(0). There remains to prove these three
propositions.

2.2.2. Proof of Proposition 2. S rewrites, in some coordinates z = φ(x), as

ż =
m∑
i=1

ui

(
b̃i(z) + hi(z)

)
,(21)

where the b̃i’s, ∆
r-homogeneous of degree −1 (for some dilation ∆r), are the v.f. of

the homogeneous approximation Sap, and hi denotes higher-order terms, i.e.,

hi,j = o(ρrj−1) ,(22)

with ρ denoting any ∆r-homogeneous norm. We want to show that if TC(0) holds for
Sap, then it also holds for S. Since TC(0) is independent of the system of coordinates,
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it is sufficient to show that TC(0) holds in the coordinates z. Let n̄ and (fε)ε>0 denote
an integer and a family of functions which satisfy (6) with the v.f. of the approximation
Sap. We show below that S satisfies TC(0) by considering the same integer n̄ and the
family of functions (f̄ε)ε>0 defined by

f̄ε(θ) = ∆
r
µ(ε)f1(θ) ,(23)

with µ(ε) denoting a strictly positive number which is (i) smaller than some adequately
chosen µ0 > 0 and (ii) such that supθ∈Tn̄−m |∆r

µ(ε)f1(θ)| ≤ ε. Note that µ(ε) always

exists because f1(T
n̄−m) is a compact set so that limµ→0 supθ∈Tn̄−m |∆r

µf1(θ)| = 0.
With z denoting a vector in R

n, one deduces from (22) that

lim
µ→0

hi,j(∆
r
µz)

ρrj−1(∆r
µz)

= lim
µ→0

hi,j(∆
r
µz)

µrj−1ρrj−1(z)
= 0.

Therefore,

hi,j(∆
r
µz) = ci,j(µ, z)µ

rj−1,

where |ci,j(µ, z)| tends to zero as µ tends to zero. Moreover, the convergence is
uniform with respect to the z variable when z ∈ Bn(0, 1). The above equation can
also be written in vectorial form as

hi(∆
r
µz) = µ−1∆r

µci(µ, z)(24)

with ci = (ci,1, . . . , ci,n)
T .

Let us now evaluate the rank of the matrix

A(ε, θ)
∆
=

(
(b̃1 + h1)(f̄ε(θ)) . . . (b̃m + hm)(f̄ε(θ))

∂f̄ε
∂θm+1

(θ) . . .
∂f̄ε
∂θn̄

(θ)

)
.

Using (23), (24), and the fact that each b̃i is homogeneous of degree −1,
A(ε, θ) = Ā(ε, θ) D(µ(ε))

with

Ā(ε, θ)
∆
=

(
∆r

µ(ε)b̃1(f1(θ)) . . . ∆r
µ(ε)b̃m(f1(θ)) ∆r

µ(ε)

∂f1

∂θm+1
(θ) . . . ∆r

µ(ε)

∂f1

∂θn̄
(θ)

)
+
(
∆r

µ(ε)c1(µ(ε), f1(θ)) . . . ∆r
µ(ε)cm(µ(ε), f1(θ)) 0 . . . 0

)
,

and

D(µ(ε))
∆
= diag{1/µ(ε), . . . , 1/µ(ε), 1, . . . , 1} .

Since D(µ(ε)) is nonsingular, it readily follows that

Rank A(ε, θ) = Rank
(
b̃1(f1(θ)) + c1(µ(ε), f1(θ)) . . . b̃m(f1(θ)) + cm(µ(ε), f1(θ))

∂f1

∂θm+1
(θ) . . .

∂f1

∂θn̄
(θ)

)
.

(25)
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Now, by assumption,

∀θ ∈ T
n̄−m, Rank

(
b̃1(f1(θ)) . . . b̃m(f1(θ))

∂f1

∂θm+1
(θ) . . .

∂f1

∂θn̄
(θ)

)
= n .

(26)

In view of (25) and (26) and using the facts that f1(θ) ∈ Bn(0, 1) and that |ci,j(µ, z)|
tends uniformly (with respect to z ∈ Bn(0, 1)) to zero as µ tends to zero, there exists
a strictly positive number µ0 such that

µ(ε) ≤ µ0 =⇒ ∀θ ∈ T
n̄−m , Rank A(ε, θ) = n.

This concludes the proof of Proposition 2.
Remark 4. The previous analysis implies—by setting ∀i, hi ≡ 0 in (21)—that

for a homogeneous system, if a function f ∈ C∞(Tn̄−m;Rn) satisfies (6), then, for
any µ > 0, ∆µf also satisfies (6). Therefore, TC(0) is satisfied for this homogeneous

system with the functions fε
∆
= ∆µ(ε)f , where µ(ε) is any strictly positive value such

that supθ∈Tn̄−m |∆µ(ε)f(θ)| ≤ ε.

2.2.3. Proof of Proposition 3. Consider a smooth driftless system

Shom : ż =

m∑
i=1

b̃i(z)ui,(27)

whose v.f. b̃i (i = 1, . . . ,m) are ∆r-homogeneous of degree −1 for some dilation ∆r
µ

and satisfy LARC(0). Since Shom is nilpotent of some order d+1, it can be associated
with the free system S(m, d) whose v.f. bi are defined in (17). We show below that
any family (fε)ε>0 which satisfies TC(0) for the free system S(m, d) induces a family
(f̃ε)ε>0 which satisfies TC(0) for Shom. In fact, from Remark 4 above, we need only
to show the existence of a single function f̃ ∈ C∞(Tn(d)−m;Rn), which satisfies the
transversality condition (6) for Shom.

Let f denote any of the functions fε which satisfy the transversality condition
for S(m, d). From property 1 of Lemma 1, the vectors b1(x), . . . , bn(d)(x) are linearly

independent at any x ∈ R
n(d). Therefore, there exist (unique) smooth functions ui,j

such that

∀j = m+ 1, . . . , n(d), ∀θ ∈ T
n(d)−m ,

∂f

∂θj
(θ) =

n(d)∑
i=1

ui,j(θ)bi(f(θ)).(28)

Also, using the fact that f satisfies the transversality condition (6) for S(m, d),

∀θ ∈ T
n(d)−m, DetU(θ) 	= 0 with U(θ)

∆
=
(
ui,j(θ)

)
i,j=m+1,... ,n(d)

.(29)

Let us now define the function f̃ . To this purpose, let us pick an arbitrary couple
(θ0, z0) ∈ (Tn(d)−m × R

n) and consider an element θ of T
n(d)−m. Consider also a

smooth path γ : t ∈ [0, 1] −→ γ(t) ∈ T
n(d)−m which connects θ0 to θ, i.e., such that

γ(0) = θ0 and γ(1) = θ. Let zγ(t) denote the solution, for t ∈ [0, 1], of

ż =

n(d)∑
i=1

Ūi(γ(t), γ̇(t)) b̃i(z), z(0) = z0 ,(30)
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where

Ūi(γ, γ̇) =

n(d)∑
j=m+1

ui,j(γ)dθj(γ̇) ,(31)

and, for i = m + 1, . . . , n(d), b̃i
∆
= Evb̃(Bi). Note that zγ(t) is well defined for

t ∈ [0, 1]. Indeed, finite-time escape is not possible because the v.f. b̃i are homogeneous
of negative degree (by assumption). Let us show that zγ(1) is independent of the path
γ chosen to connect θ0 to θ. To this purpose, consider two paths γi (i = 1, 2) which
map 0 to θ0 and 1 to θ. We must show that the solution zγ1(1) of (30) at t = 1 with
γ = γ1 is the same as the solution zγ2(1) of (30) at t = 1 with γ = γ2. To show this,
we will use the properties stated in the following lemma, which are easily derived from
well-known results. (See the appendix for details.)

Lemma 2. Consider the P. Hall basis B of Lie(X1, . . . , Xm) defined by (12).
Then there exist mappings (T, u) �−→ ci(T, u) such that, for any set g = {g1, . . . , gm}
of v.f. nilpotent of order d+ 1, and any u ∈ C∞([0, T ];Rn(d)), the solution at time T
of

ẋ =

n(d)∑
i=1

ui(t) gi(x) , x(0) = x0,(32)

is

x(T ) = exp


n(d)∑

i=1

ci(T, u) gi


x0,(33)

where gi
∆
= Evg(Bi) (i = m + 1, . . . , n(d)). Furthermore, if g1, . . . , gm are the con-

trol v.f. of the (n(d)-dimensional) free system S(m, d), then for any x0 ∈ R
n(d) the

mapping

(c1, . . . , cn(d)) �−→ exp


n(d)∑

i=1

ci gi


x0(34)

from R
n(d) to R

n(d) is one-to-one.
Applying the first result stated in the lemma to (30) yields

∀k = 1, 2, zγk(1) = exp


n(d)∑

i=1

ci
(
1, Ū(γk, γ̇k)

)
b̃i


 z0 .(35)

Consider now the following equation parameterized by k = 1, 2 (compare with (30)):

ẋ =

n(d)∑
i=1

Ūi(γk(t), γ̇k(t)) bi(x), x(0) = f(θ0) .(36)

From (28) and (31), f(γk(.)) is a solution to (36). Therefore, applying the first result
stated in the lemma to this equation and using the fact that f(θ) = f(γk(1)) for
k = 1, 2 yields

exp


n(d)∑

i=1

ci
(
1, Ū(γ1, γ̇1)

)
bi


 f(θ0) = exp


n(d)∑

i=1

ci
(
1, Ū(γ2, γ̇2)

)
bi


 f(θ0) .
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The second result stated in the lemma then implies that

∀i = 1, . . . , n(d), ci
(
1, Ū(γ1, γ̇1)

)
= ci

(
1, Ū(γ2, γ̇2)

)
,(37)

and it follows, in view of (35), that zγ1
(1) = zγ2

(1). This in turn establishes that the

mapping (θ, γ)→ zγ(1) is a function of θ solely. This is the function f̃ which we were

looking for. At this point, it remains only to verify that the function f̃ so defined
satisfies the transversality condition (6) for Shom. Recalling that f̃(θ) is obtained as
the solution of (30) at t = 1 and that this solution does not depend on the path γ
which passes thru θ at time t = 1, one deduces that along any smooth curve θ(.) the
mapping t �−→ f̃(θ(t)) is differentiable with

d

dt
f̃(θ(t)) =

n(d)∑
i=1

Ūi(θ(t), θ̇(t)) b̃i(f̃(θ(t))) .

This in turn implies that f̃ is smooth and satisfies

∀θ ∈ T
n(d)−m,

∂f̃

∂θj
(θ) =

n(d)∑
i=1

ui,j(θ) b̃i(f̃(θ)) .(38)

This implies that

(
b̃1(f̃(θ)), . . . , b̃m(f̃(θ)),

∂f̃

∂θm+1
(θ), . . . ,

∂f̃

∂θn(d)
(θ)

)

=
(
b̃1(f̃(θ)), . . . , b̃n(d)(f̃(θ))

)(
Im 7
0 U(θ)

)
,

where Im ∈ R
m×m is the identity matrix. Using (29) and the fact that Shom satisfies

LARC(x) for x ∈ R
n—indeed, it satisfies LARC(0) so that, by continuity it satisfies

LARC(x) in a neighborhood of the origin and therefore, by homogeneity, in R
n itself—

one easily deduces from the above equality that f̃ satisfies the transversality condition
(6) for Shom.

2.2.4. Proof of Proposition 4. From Remark 4 and property 2 of Lemma
1, it is sufficient to prove the existence of a single function f ∈ C∞(Tn(d)−m;Rn(d))
for which the transversality condition (6) is satisfied. In order to simplify some of
the forthcoming analysis, we will use the formalism of differential forms, from which
condition (6) can be written as

∀θ ∈ T
n(d)−m, (dx1 ∧ · · · ∧ dxn(d))

(
b1, . . . , bm,

∂f

∂θm+1
, . . . ,

∂f

∂θn(d)

)
|x=f(θ)

	= 0.

By skew-symmetry of the wedge product, this is equivalent to the condition that

(39) ∀θ ∈ T
n(d)−m,

(dx1∧· · ·∧dxm∧ωx
m+1∧· · ·∧ωx

n(d))

(
b1, . . . , bm,

∂f

∂θm+1
, . . . ,

∂f

∂θn(d)

)
|x=f(θ)

	= 0,
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where ωx
i = dxi − xλ(i)dxρ(i) (i = m+ 1, . . . , n(d)). From (17),

∀j = 1, . . . ,m
{
dxi(bj) = δji if i ∈ {1, . . . ,m},
ωx
i (bj) = 0 if i ∈ {m+ 1, . . . , n(d)}

so that one easily rewrites (39) as

∀θ ∈ T
n(d)−m,

(
ωm+1 ∧ · · · ∧ ωn(d)

)
(θ) 	= 0,(40)

with ωi the differential one-form on T
n(d)−m defined by

ωi = dfi − fλ(i)dfρ(i) .(41)

Design algorithm. The function f is defined by setting f
∆
= fn(d), with the

function fn(d) denoting the last function obtained via a recursive construction which
starts with some function fm+1. For each k = m + 1, . . . , n(d), the function fk ∈
C∞(Tk−m;Rn(d)) is required to verify the following property:

∀θk = (θm+1, . . . , θk) ∈ T
k−m,

(
ωk
m+1 ∧ · · · ∧ ωk

k

)
(θk) 	= 0 ,(42)

with ωk
i the differential one-form on T

k−m defined by

ωk
i = dfki − fkλ(i)df

k
ρ(i) .(43)

fm+1. A possible choice for fm+1 is as follows:

fm+1
i (θm+1) =




sin θm+1 for i = λ(m+ 1),
cos θm+1 for i = ρ(m+ 1),

1

4
sin 2θm+1 for i = m+ 1,

0 otherwise .

(44)

Indeed, it readily follows from this definition that

∀θm+1 ∈ T, ωm+1
m+1(θ

m+1) =
1

2
.

fk−1 −→ fk. Assume now that, for some k − 1 ∈ {m + 1, . . . , n(d) − 1}, a
function fk−1 ∈ C∞(Tk−1−m;Rn(d)) which verifies the property (42) for k − 1 has
been obtained. We show below how to construct from this function a new function
fk ∈ C∞(Tk−m;Rn(d)) which verifies the property (42).

Let ∆k
µ (µ > 0) denote the dilation defined on R× R× R

n(d) by

∆k
µ(s, c, f) =

(
µ�(λ(k))s, µ�(ρ(k))c,∆µ(f)

)
with ∆µ(f)

∆
=
(
µ�(1)f1, . . . , µ

�(n(d))fn(d)

)
.

(45)

Denote also pki (i = 1, . . . , n(d)) the functions defined on R× R by

pki (s, c) = s δ
λ(k)
i + c δ

ρ(k)
i +

mk
k

2
sc δki(46)
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with

mk
i =

{
0 if +(i) ≤ +(λ(k)) or λ(i) 	= λ(k),
1 +mk

ρ(i) otherwise .
(47)

The next step consists in finding polynomial functions qki,j ∈ C∞(Rn(d);R) for i =

1, . . . , n(d) and j = 1, . . . , ji,k
∆
= max{j : +(i) − j+(λ(k)) ≥ 0}) such that the two

following properties are verified.
P1(i) (for i = 1, . . . , n(d)). Each function qki,j is ∆-homogeneous of degree +(i)−

j+(λ(k)).
P2(i) (for i = m+ 1, . . . , k).

ω̄k
i =

(
dfi − fλ(i)dfρ(i) + γ̄ki

)
+

i−1∑
j=m+1

ti,j(s, f)
(
dfj − fλ(j)dfρ(j) + γ̄kj

)
,(48)

where

∀i = m+ 1, . . . , k, ω̄k
i

∆
= df̄ki − f̄kλ(i)df̄

k
ρ(i),(49)

f̄ki : (s, c, f) �−→ fi + pki (s, c) +

ji,k∑
j=1

sjqki,j(f),(50)

the ti,j ’s are smooth functions, and γ̄
k
i is a differential one-form on R×R×R

n(d) such
that

γ̄ki = γ̄ki,1ds+ γ̄ki,2dc

with γ̄i,1, γ̄i,2, ∆
k-homogeneous of degree +(i)−+(λ(k)) and +(i)−+(ρ(k)), respectively,

and

(51)


γ̄ki,1 ≡ 0 if i < λ(k),
γ̄ki,1 ≡ 1 if i = λ(k),
γ̄ki,1(s, c, 0) = 0 if λ(k) < i < k,

γ̄ki,1(s, c, 0) =
mk

k

2
c for i = k,




γ̄ki,2 ≡ 0 if i < ρ(k),
γ̄ki,2 ≡ 1 if i = ρ(k),
γ̄ki,2(s, c, 0) = 0 if ρ(k) < i < k,

γ̄ki,2(s, c, 0) = −
mk

k

2
s for i = k .

Lemma 3. There exist functions qki,j, which are solutions to the problems P1(i)
and P2(i). In particular, one can always choose


qki,j ≡ 0 if i ∈ {1, . . . ,Max{m,λ(k)}} ∪ {k + 1, . . . , n(d)}

and j ∈ {1, . . . , ji,k},
qki,1 ≡ 0 if Max{m,λ(k)} < i ≤ k and λ(i) < λ(k),

qki,1(f) = mk
i fρ(i) if Max{m,λ(k)} < i ≤ k and λ(i) = λ(k).

(52)

Once suitable functions qki,j are determined so that the functions f̄
k
i in (50) are

also defined, we set

fk
∆
= f̄k ◦ ḡkη with ḡkη(θ

k)
∆
=
(
η�(λ(k)) sin θk, η

�(ρ(k)) cos θk, f
k−1(θk−1)

)
.(53)
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Lemma 4. For η larger than some positive value η0, (42) is satisfied with the
function fk defined by (53).

Therefore, Proposition 4 is proved once Lemmas 3 and 4 are proved.
Remark 5. It is simple to verify that each function f̄ki in (53) is polynomial in

its arguments and ∆k-homogeneous of degree +(i) with respect to the dilation defined
by (45). The proof of the lemmas much relies on this property.

Proof of Lemma 3. We distinguish three cases.
Case 1. 1 ≤ i ≤ Max{m,λ(k)}. We define qki,j according to (52) so that P1(i) is

clearly verified for these values of i. If i ≤ m, P2(i) is irrelevant. If m+1 ≤ i ≤ λ(k),
it readily follows from (46), (49), (50), and (52) that

ω̄k
i = dfi − fλ(i)dfρ(i) + γ̄ki ,(54)

where γ̄ki ≡ 0 if i < λ(k) and γ̄ki = ds if i = λ(k). Therefore, P2(i) is also verified.
Case 2. Max{m,λ(k)} < i ≤ k. We define qki,1 according to (52), which is consis-

tent with P1(i). To define the other functions qki,j , we consider a construction which

is recursive in the index i. More precisely, let us assume that functions qk1,j , . . . , q
k
i−1,j

have been defined so that P1(1), . . . , P1(i-1) and P2(1), . . . , P2(i-1) are verified.
We show below how to obtain functions qki,j so that P1(i) and P2(i) are also verified.

We first note that

λ(i) < ρ(k) .(55)

Assume, on the contrary, that λ(i) ≥ ρ(k). Then, from the definition of a P. Hall
basis, λ(i) < ρ(i). This implies that

+(i) = +(λ(i)) + +(ρ(i)) ≥ 2+(ρ(k)) ≥ +(k) .

If +(i) > +(k), then i > k, and this contradicts the assumption. Otherwise, +(i) = +(k),
and we also get i > k because of (11) and the fact that λ(i) ≥ ρ(k) > λ(k).

We introduce the following definitions for the sake of simplifying some aspects of
the forthcoming analysis.

Definition 2. A differential one-form r = rsds + rcdc +
∑n(d)

j=1 rjdfj, with
rs, rc, rj homogeneous of degree +(i)− +(λ(k)), +(i)− +(ρ(k)), and +(i)− +(j), respec-
tively, is said to be of

• type 1 if rj ≡ 0 for each j, and both rs and rc are identically zero at f = 0;
• type 2 if rc ≡ rj ≡ 0 for each j, and rs = asκ with a ∈ R and 1 ≤ κ ∈ N;
• type 3 if rs ≡ rc ≡ 0 and, for each j, rj(s, c, f) is in the form rj(s, c, f) =
s2+κjr′j(f) with κj ∈ N.

An upper-left index i for a one-form will indicate its type, e.g., 2r indicates that 2r is
of type 2.

Next, we develop ω̄k
i and examine the terms involved in this development. From

(49) and (50), we have

ω̄k
i = dfi + dpki + d


ji,k∑

j=1

sjqki,j




−

fλ(i) + pkλ(i) +

jλ(i),k∑
j=1

sjqkλ(i),j




dfρ(i) + dpkρ(i) + d


jρ(i),k∑

j=1

sjqkρ(i),j






(56)
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and, by rearranging the terms in the right-hand side of this equality,

ω̄k
i = dfi − fλ(i)dfρ(i) + d


ji,k∑

j=2

sjqki,j


+ α1 + α2 + α3 +

1 r +2 r +3 r(57)

with 


α1
∆
= dpki − pkλ(i)dp

k
ρ(i),

α2
∆
= sdqki,1 − sqkλ(i),1dfρ(i) − sfλ(i)dq

k
ρ(i),1 − pkλ(i)dfρ(i),

α3
∆
= −dpkρ(i)

jλ(i),k∑
j=2

sjqkλ(i),j .

(58)

In (57), 1r, 2r, and 3r just correspond to terms which do not need to be specified
further and are of type 1, 2, and 3, following Definition 2. In order to obtain (57),
we have used the following two arguments: (i) each function qkj,1 (j ≤ i) vanishes
at the origin—this follows from (52) if λ(j) ≤ λ(k); otherwise, λ(j) > λ(k) so that
+(j) > +(λ(k)), and this follows from the fact that qkj,1 is ∆

k-homogeneous of positive

degree; (ii) from (55), λ(i) < ρ(k) so that (46) implies that pkλ(i)(s, c) is either s or

zero. Note also that the homogeneity properties of the components of 1r, 2r, and 3r
follow directly from the homogeneity of f̄ki (see Remark 5).

Let us now focus our attention on the terms αi which are specified in (58). We
first note that

α3 ≡ 0 .(59)

Indeed, assume on the contrary that α3 is not the null function. Then, in view of
(52), it is necessary that λ(i) > λ(k). (Otherwise, qkλ(i),j , and thus α3, would be

equal to zero.) Since λ(i) < ρ(i) (from the definition of a P. Hall basis), we also have
ρ(i) ≥ ρ(k). (Otherwise, pkρ(i), and thus α3, would be equal to zero.) This implies
that i > k, which is in contradiction with the assumption.

We now consider the term α2 in (58). We have

λ(i) < λ(k) =⇒ α2 ≡ 0 .(60)

This follows from (46) and (52) after noticing that either +(ρ(i)) = 1 so that qkρ(i),1 ≡ 0,
or +(ρ(i)) > 1 and λρ(i) ≤ λ(i) < λ(k) (from the definition of a P. Hall basis), so that
we still obtain qkρ(i),1 ≡ 0. Then

λ(i) = λ(k) with
+(ρ(i)) = 1

or
λρ(i) < λ(k)


 =⇒ α2 ≡ 0 .(61)

Indeed, if the left-hand side of the above implication holds, then (46), (47), and (52)
imply

α2 = s
(
mk

i dfρ(i) − fλ(i)dq
k
ρ(i),1 − dfρ(i)

)
= s

(
mk

i dfρ(i) − dfρ(i)
)

≡ 0 .
(62)
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From the definition of a P. Hall basis, λρ(i) ≤ λ(i) so that the case where λ(i) = λ(k)
with λρ(i) > λ(k) cannot happen. Therefore, if λ(i) = λ(k), the last possible case is
λρ(i) = λ(k). We have

λ(i) = λ(k) and λρ(i) = λ(k)

}
=⇒ α2 = smk

ρ(i)

(
dfρ(i) − fλρ(i)dfρ2(i)

)
.(63)

Indeed, from (52),

α2 = s
(
mk

i dfρ(i) − fλρ(i)dq
k
ρ(i),1 − dfρ(i)

)
= s

(
mk

i dfρ(i) − fλρ(i)m
k
ρ(i)dfρ2(i) − dfρ(i)

)
,

and (63) follows from (47). Concerning α2, there remains only to examine the case
where λ(i) > λ(k). In this case pkλ(i) ≡ 0—since, by (55), λ(i) < ρ(k)—so that

α2 = s
(
dqki,1 − qkλ(i),1dfρ(i) − fλ(i)dq

k
ρ(i),1

)
.(64)

Each term within the above parentheses is a sum of terms pi,j(f)dfj , where each pi,j
is homogeneous of degree +(i)− +(λ(k))− +(j). By applying property 4 in Lemma 1 to
the term qkλ(i),1dfρ(i)+ fλ(i)dq

k
ρ(i),1 and by replacing x with f in Lemma 1, we obtain

α2 = s


dqki,1 − dh1 +

∑
1<�(j)≤�(i)−�(λ(k))

h2,j(f)
(
dfj − fλ(j)dfρ(j)

)
for some functions h1 and h2,j ∆

k-homogeneous of degree +(i) − +(λ(k)) and +(i) −
+(λ(k))− +(j), respectively. Furthermore, by choosing

qki,1 = h1(65)

(this choice is clearly consistent with P1(i)), we get

α2 = s
∑

1<�(j)≤�(i)−�(λ(k))

h2,j(f)
(
dfj − fλ(j)dfρ(j)

)
.(66)

From what precedes, we finally obtain

α2 =




s

min{i,ρ(k)}−1∑
j=m+1

h2,j(f)
(
dfj − fλ(j)dfρ(j) + γ̄kj

)− s

min{i,ρ(k)}−1∑
j=m+1

h2,j(f)γ̄
k
j if i < k,

smk
ρ(k)

(
dfρ(k) − fλρ(k)dfρ2(k) + γ̄kρ(k)

)
− smk

ρ(k)γ̄
k
ρ(k) if i = k.

(67)

The second equation is a consequence of (63) when λρ(k) = λ(k), and of (47) and (61)
otherwise. As for the first equation, we argue as follows. If λ(i) < λ(k), the result
follows directly from (60) with h2,j ≡ 0. If λ(i) = λ(k) so that ρ(i) < ρ(k), the result
follows from (61) or (63). Finally, if λ(i) > λ(k), then, by (11) and the assumption
i < k, +(i) < +(k), so that +(i)− +(λ(k)) < +(ρ(k)), and the result follows from (66).

Let us now consider the term 3r in (57). From Definition 2, 3r is a sum of one-
forms s2+κjr′jdfj , where each r′j is a polynomial function of f , ∆

k-homogeneous of
degree

+(i)− +(j)− (2 + κj)+(λ(k)) < min{+(i)− +(j), +(ρ(k))− +(j)} .
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By applying property 4 in Lemma 1 to each one-form r′jdfj , we get

(68) 3r = s2


∑

j

sκjdh1,j +

min{i,ρ(k)}−1∑
j=m+1

h′2,j(s, f)
(
dfj − fλ(j)dfρ(j) + γ̄kj

)

−
min{i,ρ(k)}−1∑

j=m+1

h′2,j(s, f)γ̄
k
j


 ,

where the functions h1,j are ∆
k-homogeneous of positive degree and therefore vanish

at the origin.
We can now define the functions qki,j . Let us note that qki,1 has already been

defined by (52) if λ(i) ≤ λ(k) and by (65) otherwise. For the definition of qki,j with
j > 1, we distinguish two cases according to whether i is smaller than or equal to k.

If i < k, by using (59), (67), and (68), relation (57) can be rewritten in the form
(48), with

γ̄ki = d


ji,k∑

j=2

sjqki,j


+ α1 +

1 r +2 r − s

min{i,ρ(k)}−1∑
j=m+1

(
h2,j + sh′2,j

)
(s, f)γ̄kj +

∑
j

s2+κjdh1,j

(69)

and smooth functions ti,j which we do not need to specify further. The functions
h2,j and sh′2,j , involved in the above expression of γ̄

k
i , are polynomial in s and f .

From the induction hypothesis and (51), the γ̄kj ’s in the right-hand side of (69) are

such that γ̄kj = γ̄kj,1ds because j < ρ(k). Furthermore, γ̄kj,1 depends on s and f only

because it is homogeneous of degree +(j)− +(λ(k)) ≤ +(ρ(k)), and γ̄kj,1(s, c, 0) = 0. As
a consequence, we have

−s
min{i,ρ(k)}−1∑

j=m+1

(
h2,j + sh′2,j

)
(s, f)γ̄kj = sh′(s, f)ds = a0s

κ′
ds+ h′′ds(70)

with a0 ∈ R, 1 ≤ κ′ ∈ N, h′ and h′′ functions of s and f only, and h′′ identically zero
when f = 0. From Definition 2, (70) can be rewritten as

−s
min{i,ρ(k)}−1∑

j=m+1

(
h2,j + sh′2,j

)
(s, f)γ̄kj =

1 r′ +2 r′.(71)

From (46), (58), and the fact that i < k implies that either λ(i) < λ(k) or λ(k) ≤
λ(i) < ρ(i) < ρ(k), we deduce that α1 = dpki . Therefore, by using (71) in (69),

γ̄ki = d


ji,k∑

j=2

sjqki,j


+ dpki +

1 r′′ + d(as2+κ) +
∑
j

s2+κjdh1,j ,(72)

where we have used the fact that any function of type 2 is the differential of a poly-
nomial asq with q ≥ 2. From there, the functions qki,j (j > 1) are uniquely defined by
setting

ji,k∑
j=2

sjqki,j
∆
= −as2+κ −

∑
j

s2+κjh1,j .(73)
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It is simple to check that P1(i) is verified with this choice. This yields, in view of
(72),

γ̄ki = dpki +
1 r′′ −

∑
j

h1,jd
(
s2+κj

)
= dpki +

1 r′′′,

where the last equality comes from the fact that h1,j(0) = 0, as mentioned after (68).
By using the definition of one-forms of type 1, it follows that (51) is satisfied and
thus that P2(i) is verified—note that, if 1r′′′ = rsds + rcdc and i ≤ ρ(k), then rc is
homogeneous of nonpositive degree so that it is necessarily a constant, which in fact
is equal to zero since rc vanishes at f = 0.

For the last case, i = k, we proceed similarly. By using (59), (67), and (68),
relation (57) can again be rewritten in the form (48), this time with

γ̄kk = d


jk,k∑

j=2

sjqkk,j


+ α1 − smk

ρ(k)γ̄
k
ρ(k) +

1 r +2 r − s2
ρ(k)−1∑
j=m+1

h2,j(s, f)γ̄
k
j +

∑
j

s2+κjdh1,j

(74)

instead of (69). From (46), (47), (58), and the induction hypothesis P2(ρ(k)) if
ρ(k) > m,

α1 − smk
ρ(k)γ̄

k
ρ(k) = α1 − smk

ρ(k)dc− smk
ρ(k)γ̄

k
ρ(k),1ds

=
mk

k

2
(cds− sdc)− smk

ρ(k)γ̄
k
ρ(k),1ds .

(75)

If ρ(k) ≤ m so that λ(k) < ρ(k) ≤ m < k, these equalities are still valid since (47)
implies that mk

ρ(k) = 0. Using (75), (74) rewrites as

γ̄kk = d


jk,k∑

j=2

sjqkk,j


+ mk

k

2
(cds− sdc) +1 r +2 r − s2

ρ(k)−1∑
j=m+1

h2,j(s, f)γ̄
k
j

− smk
ρ(k)γ̄

k
ρ(k),1ds+

∑
j

s2+κjdh1,j .

(76)

From here, we proceed as for the previous case in order to rewrite the above equation
as (compare with (72))

γ̄kk = d


jk,k∑

j=2

sjqkk,j


+ mk

k

2
(cds− sdc) +1 r′′ + d(as2+κ) +

∑
j

s2+κjdh1,j .(77)

Using again (73) to define the functions qkk,j (j > 1) yields

γ̄kk =
mk

k

2
(cds− sdc) +1 r′′′,

and it is simple to check that the one-form γ̄kk satisfies (51) so that P2(i) is verified.
This ends the study of Case 2.

Case 3. k < i ≤ n(d). We define qki,j ≡ 0 according to (52) so that both P1(i)
and P2(i) are readily verified. This ends the proof of Lemma 3.
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Proof of Lemma 4. Since fk = f̄k ◦ ḡkη , we deduce from (43), (48), and (49) that,
for i ∈ {m+ 1, . . . , k},

ωk
i = ω̄k

i ◦ dḡkη
=

(
ωk−1
i + γki dθk

)
+

i−1∑
j=m+1

t′i,j
(
ωk−1
j + γkj dθk

)
,

(78)

where

γki (θ
k) = γ̄ki,1(ḡ

k
η(θ

k))η�(λ(k)) cos θk − γ̄ki,2(ḡ
k
η(θ

k))η�(ρ(k)) sin θk .(79)

By skew-symmetry of the wedge product, it follows from (78) that

ωk
m+1 ∧ · · · ∧ ωk

k =
(
ωk−1
m+1 + γkm+1dθk

) ∧ · · · ∧ (ωk−1
k + γkkdθk

)
.

Since each ωk−1
i is a one-form on T

k−m−1, we deduce from the above equation (using
multilinearity and skew-symmetry of the wedge product) that

ωk
m+1 ∧ · · · ∧ ωk

k =

k∑
i=m+1

γki
(
ωk−1
m+1 ∧ · · · ∧ ωk−1

i−1 ∧ dθk ∧ ωk−1
i+1 ∧ · · · ∧ ωk−1

k

)
.(80)

From (45) and (53),

γ̄ki,1(ḡ
k
η(θ

k)) = γ̄ki,1(∆
k
η(sin θk, cos θk,∆1/ηf

k−1(θk−1)))

= η�(i)−�(λ(k))γ̄ki,1(sin θk, cos θk,∆1/ηf
k−1(θk−1))

= η�(i)−�(λ(k))γ̄ki,1(sin θk, cos θk, 0) +
∑

j<�(i)−�(λ(k))

ηj β̄i,j(θ
k),

(81)

where the β̄i,j ’s denote smooth functions on T
k−m. The second equality in the above

equation comes from the fact that γ̄ki,1 is ∆
k-homogeneous of degree +(i) − +(λ(k)),

and the third one from the fact that γ̄ki,1(s, c, f) is polynomial in s, c, and f . A similar
calculation yields

γ̄ki,2(ḡ
k
η(θ

k)) = η�(i)−�(ρ(k))γ̄ki,2(sin θk, cos θk, 0) +
∑

j<�(i)−�(ρ(k))

ηj ¯̄βi,j(θ
k).(82)

From (51), (79), (81), and (82),

γki (θ
k) =




η�(k)m
k
k

2
+

∑
1<j<�(k)

ηjβk,j(θ
k) if i = k,

∑
1<j<�(k)

ηjβi,j(θ
k) otherwise

(83)

for some smooth functions βi,j on T
k−m. In view of (80) and (83),

(
ωk
m+1 ∧ · · · ∧ ωk

k

)
(θk) = η�(k)m

k
k

2

(
ωk−1
m+1 ∧ · · · ∧ ωk−1

k−1

)
(θk−1) +

∑
1≤j<�(k)

ηjβ′
k,j(θ

k)

for some other smooth functions β′
k,j on T

k−m. By the compacity of T
k−m and the

induction hypothesis, (42) follows when η is larger than some η0 > 0.
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3. Example. We illustrate the construction of transverse functions, as specified
in the proof of Proposition 4, in the case of the free system S(2, 3) on R

5. The
associated truncated P. Hall basis is B3 = {B1, . . . , B5}, where

B1
∆
= X1, B2

∆
= X2, B3

∆
= [B1, B2] = [X1, X2], B4

∆
= [B1, B3], B5

∆
= [B2, B3] .(84)

We have to compute f = fn(d) = f5, starting from fm+1 = f3. From (14) and (84),
λ(3) = 1 and ρ(3) = 2. Therefore, in view of (44),

f3(θ3) =

(
sin θ3, cos θ3,

sin 2θ3
4

, 0, 0

)T

.(85)

Let us now compute f4 from f3. From (14) and (84), λ(4) = 1 and ρ(4) = 3. Then
(46), (47), (50), and (52) give

f̄4(s, c, x) = x+



s
0
c
s c
0


+




0
0

sq43,1(x) + s2q43,2(x)
sq44,1(x) + s2q44,2(x) + s3q44,3(x)

0


 .(86)

From (52)

{
q43,1(x) = m4

3 xρ(3) = xρ(3) = x2,
q44,1(x) = m4

4 xρ(4) = 2xρ(4) = 2x3.
(87)

Let us now proceed with the determination of ω̄4
3 , as defined by (49). Since q

4
3,2 is by

definition homogeneous of degree +(3)− 2+(1) = 0, it is a constant function. A direct
calculation gives

ω̄4
3 = dx3 − x1dx2 + (x2 + 2sq

4
3,2)ds+ dc .

With the simple choice

q43,2 ≡ 0 ,(88)

consistent with P1(3), it follows that (48) is verified with γ̄4
3

∆
= x2ds+dc, a one-form

which satisfies the conditions in P2(3). There remains to determine q44,2 and q44,3.
Again, q44,3 is homogeneous of degree zero, and thus it is a constant function. A simple
calculation gives

ω̄4
4 =dx4 − x1dx3 + s(dx3 − x1dx2 + γ̄4

3) + s2(dq44,2 − dx2)− (x1 + s)dc

+ (c+ 2x3 + 2sq
4
4,2 + 3s

2q44,3 − x1x2 − 2sx2)ds .

The choice

q44,2(x) = x2 , q44,3 ≡ 0 ,(89)
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is clearly consistent with P1(4) and allows us to rewrite ω̄4
4 in the form (48), with

γ̄4
4

∆
= (c + 2x3 − x1x2)ds − (x1 + s)dc a one-form which satisfies the conditions in

P2(4). We finally obtain the following from (86), (87), (88), and (89):

f̄4(s, c, x) = x+




s
0

c+ sx2

s c+ 2sx3 + s2x2

0


 .(90)

The expression of f4 is then obtained by application of (53). As for the parameter
η4, it must be chosen large enough so that (42) is satisfied for k = 4. By inspection
the (conservative) condition η4 ≥ 5/2 can be derived.

The determination of f5 from f4 is performed in the same way. We obtain (details
are left to the reader)

f̄ 5(s, c, x) = x+ (0, s, c, 0, s c/2 + sx3)
T .(91)

Then, (53) gives the expression of f = f5. One verifies from (85), (90), and (91) that

f(θ5) =




sin θ3 + η4 sin θ4
cos θ3 + η5 sin θ5

1

4
sin 2θ3 + η2

4 cos θ4 + η4 sin θ4 cos θ3 + η2
5 cos θ5

η3
4

2
sin 2θ4 +

η4

2
sin θ4 sin 2θ3 + η2

4 sin
2 θ4 cos θ3

η3
5

4
sin 2θ5 + η5 sin θ5(f3(θ5)− η2

5 cos θ5)



.

For practical purposes, adequate values for the parameters η4 and η5 must be specified.
In this respect, let us mention only that numerical computations tend to indicate that
for η4 = 3 any value η5 ≥ 7 guarantees the satisfaction of (42).

Appendix.

Proof of Lemma 1 (property 4). We assume that i ∈ {1, . . . ,m}, since otherwise
a simple algebraic manipulation yields

dxi = (dxi − xλ(i)dxρ(i)) +

r̄∑
r=1

xλ(i)xλρ(i) . . . xλρr−1(i)(dxρr(i) − xλρr(i)dxρr+1)

+ xλ(i)xλρ(i) . . . xλρr̄(i)dxρr̄+1(i),

where r̄ is the smallest integer such that ρr̄+1(i) ∈ {1, . . . ,m}. It is sufficient to
specify some functions h1 and h2,j such that equality (20) holds when each side is
applied to any element of the basis {br, ∂/∂xs, r = 1, . . . ,m, s = m + 1, . . . , n(d)}
of the tangent space to R

n. From (17),

∀i = 1, . . . ,m
{
dxj(bi) = δji if j ∈ {1, . . . ,m},
ωj(bi) = 0 if j ∈ {m+ 1, . . . , n(d)},(92)



1248 PASCAL MORIN AND CLAUDE SAMSON

where ωj = dxj − xλ(j)dxρ(j). Therefore, (20) applied to any br holds by setting
h1 = qi defined by (19). Finally, the functions h2,j are defined recursively, for +(j)
decreasing from d′ to 2, by setting




h2,j = −∂h1

∂xj
, +(j) = d′,

h2,j = −∂h1

∂xj
+

∑
�(j)<�(j′)≤d′

h2,j′xλ(j′)dxρ(j′)(∂/∂xj), 1 < +(j) < d′.

Proof of Lemma 2. Since the set {g1, . . . , gm} is nilpotent of order d + 1, it
follows from the definition of the P. Hall basis that {g1, . . . , gn(d)} is a basis of
Lie{g1, . . . , gm}. Therefore, it is clearly a basis of Lie{g1, . . . , gn(d)}. Then, (33)
follows from the well-known fact that the solution of (32) is an exponential Lie series
(see, e.g., [16] for details).

Let us finally prove that the mapping defined by (34) is one-to-one. Consider the
system

ẋ =

n(d)∑
i=1

cigi(x).(93)

From property 2 of Lemma 1, each v.f. gi is smooth and ∆-homogeneous of strictly
negative degree. Therefore, its kth component gi,k can depend only on the components
xj of x such that j < k. From this and property 1 of Lemma 1, we deduce that the
kth component of (93) can be written as

ẋk = ckak + hk(x
−
k , c

−
k ),(94)

where the notation y−k for a vector y ∈ R
n denotes the subvector (y1, . . . , yk−1), and

hk is some smooth function. Using (94), one easily proves by induction on k that any
solution to (93) satisfies

∀k = 1, . . . , n ,∀t, xk(t) = xk(0) + tckak + fk(x
−
k (0), c

−
k , t)

for some smooth function fk. Therefore,

∀k = 1, . . . , n ,

exp


n(d)∑

i=1

cigi


x0



k

= x0,k + ckak + fk(x
−
0,k, c

−
k , 1),

and one easily infers from these equalities that

(c1, . . . , cn(d)) 	= (c′1, . . . , c′n(d)) =⇒ exp


n(d)∑

i=1

cigi


x0 	= exp


n(d)∑

i=1

c′igi


x0 .
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Abstract. We consider investment problems where an investor can invest in a savings account,
stocks, and bonds and tries to maximize her utility from terminal wealth. In contrast to the classical
Merton problem, we assume a stochastic interest rate. To solve the corresponding control problems
it is necessary to prove a verification theorem without the usual Lipschitz assumptions.
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1. Introduction. The continuous-time portfolio problem has its origin in the
pioneering work of Merton (1969, 1971, 1973). It is concerned with finding the optimal
investment strategy of an investor. More precisely, the investor looks for an optimal
decision on how many shares of which security she should hold at every time instant
between now and a time horizon T to maximize her expected utility from wealth at
the time horizon. In the classical Merton problem the investor can allocate her money
into a riskless savings account and d different risky stocks. By describing the actions
of the investor via the portfolio process (i.e., the percentages of wealth invested in
the different securities), Merton was able to reduce the portfolio problem to a control
problem which could be solved by using standard stochastic control methodology.

A drawback of this approach, however, is the assumption of a deterministic inter-
est rate.1 Our main objective in the current paper is to overcome this restriction. We
assume that the interest rate follows an Ito process and particularly consider the case
of the Ho–Lee (see Ho and Lee (1986)) model and the Vasicek (see Vasicek (1977))
model for the short rate. Such problems are treated rarely in the literature.2 Fur-
ther, our theory will enable us to consider mixed bond and stock portfolio problems.
We give explicit solutions for both the value functions and the optimal strategies in
section 2.

On the theoretical side, the introduction of stochastic interest rates into the port-
folio problem has the consequence that the SDE describing the wealth process does
not satisfy the usual Lipschitz assumptions needed to apply standard verification the-
orems. However, due to the special structure of this equation, the wealth equation,
we are able to prove a suitable verification result in the appendix. This is possible as
some assumptions of the standard verification results as, e.g., given in Fleming and
Soner (1993) can be weakened substantially via proving some special estimates.
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1The other main approach to optimal portfolios, the martingale method, plays no role in this

paper. We refer to Korn (1997) for an introduction to it.
2For related problems see Klüppelberg and Korn (1998), Canestrelli and Pontini (1998), and

Sørensen (1999). In particular, in Sørensen (1999) the martingale approach of portfolio optimization
is used in contrast to our stochastic control approach.
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Important future research topics are the solution of the problems treated in this
paper for other interest rate models such as the Cox–Ingersoll–Ross (see Cox, Inger-
soll, and Ross (1985)) or the corresponding Hull–White (see Hull and White (1990))
approach. This is particularly interesting as those models have some desirable fea-
tures (such as nonnegative interest rates) that the Ho–Lee or Vasicek model do not
have.

2. Two portfolio problems. We consider an economy with d+ 1 assets which
are continuously traded on a frictionless market. All traders are assumed to be price
takers. The uncertainty is modelled by a probability space (Ω,F , P ). On this space an
m-dimensional Brownian motion {(W (t),Ft)}t≥0 is defined, where {Ft}t≥0 denotes
the Brownian filtration. One of the assets is a savings account following the differential
equation

dB(t) = B(t)r(t)dt

with B(0) = 1. Here r denotes the short rate which can be interpreted as the annu-
alized interest for the infinitesimal period [t, t+ dt].

In contrast to Merton’s classical model,3 we assume a short rate modelled by the
SDE

dr(t) = a(t)dt+ b dW (t),

t ∈ [0, T ∗], b > 0, with initial data r(0) = r0. As explicit examples we will consider
the Ho–Lee model given by a(t) = ã(t) + bζ(t) and a Vasicek approach with a(t) =
θ(t) − αr(t) + bζ(t), α > 0, respectively. The risk premium (RP) ζ is assumed to
be deterministic and continuous which implies the progressive measurability of ζ.
This assumption particularly guarantees that ζ is bounded on each compact interval.
Furthermore, let the initial forward rate curve f∗(0, T ), 0 ≤ T ≤ T ∗, be continuously
differentiable, which leads to ã(t) = f∗T (0, t) + b2t and θ(t) = f∗T (0, t) + αf∗(0, t) +
b2

2α (1 − e−2αt).4 The price processes of the remaining d assets which can be stocks
and/or (discount) bonds are assumed to follow Ito processes of the form

dPi(t) = Pi(t)
[
µi(t)dt+ σi(t)dW (t)

]
with Pi(0) = pi > 0 and where µ(·) is R

d-valued and σi(·) denotes the ith row of the
d×m-matrix σ(·).

We consider an investor who starts with an initial wealth x0 > 0 at time t = 0. In
the beginning this initial wealth is invested in the different assets, and she is allowed
to adjust her holdings continuously up to a fixed planning horizon T . Her investment
behavior is modelled by a portfolio process π = (π1, . . . , πd) which is progressively
measurable (with respect to {Ft}t≥0). Here, πi(t), i = 0, . . . , d denotes the percentage
of total wealth invested in the ith asset at time t. Obviously, the percentage invested
in the savings account is given by 1− π′1, where 1 := (1, . . . , 1)′ ∈ R

d.
If we restrict our considerations to self-financing portfolio processes, her wealth

process follows the SDE

dX(t) = X(t)
[(
π(t)′(µ(t)− r(t) · 1) + r(t)

)
dt+ π(t)′σ(t)dW (t)

]
(2.1)

with X(0) = x0.
5

3See Merton (1969, 1971, 1990), Fleming and Rishel (1975), pp. 160f, Duffie (1992), pp.145ff,
Fleming and Soner (1993), pp. 174ff, and Korn (1997), pp. 48ff.

4See, for example, Musiela and Rutkowski (1997), pp. 323f.
5See, for example, Korn (1997), pp. 23f.
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The wealth equation can be interpreted as a controlled SDE with the control being
the portfolio process π(·). In this setting the investor chooses a portfolio process to
maximize her utility. We assume that her preferences can be represented by the utility
function U(x) = xγ , x ≥ 0, 0 < γ < 1. Furthermore, the investor is allowed only
to pick out a portfolio process which is admissible in the sense of Definition 3.1 and
leads to a positive wealth process Xπ. Now we are in the position to formulate her
optimization problem:6

max
π(·)∈A∗(0,x0)

E(Xπ(T ))γ(2.2)

with

dXπ(t) = Xπ(t)
[
(π(t)′(µ(t)− r(t) · 1) + r(t))dt+ π(t)σ(t)dW (t)

]
,

Xπ(0) = x0,

and

A∗(0, x0) :=
{
π(·) ∈ A(0, x0) : Xπ(s) ≥ 0 P − a.s. for s ∈ [0, T ]

}
.

We emphasize that applying optimal control methods to this problem does not auto-
matically yield a positive state process. However, Corollary 3.1 and the special form
of the coefficients in the wealth equation (2.1) will indeed guarantee the positivity of
Xπ(t). Therefore, we obtain A∗(0, x0) = A(0, x0).

2.1. A bond portfolio problem. We start by considering a portfolio problem
where the investor can split up his wealth in a savings account and a (zero) bond with
maturity T1 > T . We assume that the asset price processes can be represented by the
Ito processes

dB(t) = B(t)r(t)dt,

dP (t, T1) = P (t, T1)
[
(r(t) + ζ(t)σ(t)︸ ︷︷ ︸

=:µ(t)

)dt+ σ(t)dW (t)
]
,

whereW is a one-dimensional Brownian motion. In the Ho–Lee and the Vasicek mod-
els the volatility of the bond is given by σ(t) = −b(T1− t) and σ(t) = b

α (exp(−α(T1−
t))− 1), respectively.7 Let π(t) be the percentage invested in the bond. This leads to
a wealth equation of the form

dX(t) = X(t)
[
(π(t)µ(t) + (1− π(t))r(t))dt+ π(t)σ(t)dW (t)

]
(2.3)

= X(t)
[
(π(t)ζ(t)σ(t) + r(t))dt+ π(t)σ(t)dW (t)

]
with initial data X(0) = x0.

In contrast to the classical Merton problem, we assume a stochastic short rate;
the drift coefficient includes the additional stochastic term r(t). Thus, to solve the

6Here A(0, x0) denotes the set of all admissible controls corresponding to the initial condition
(0, x0). See Definition 3.1 in the appendix.

7See, for example, Musiela and Rutkowski (1997), pp. 323ff.
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portfolio problem (2.2) by stochastic control methods, we have to look at a two-
dimensional state process Y = (X, r). Note that the second component cannot be
controlled via π(·). Using the notation of (3.1) in the appendix, we get8

Y (t) = (X(t), r(t))′,
Λ(t, x, r, π) = (x(πζσ + r), a)′,
Σ(t, x, r, π) = (xπσ, b)′,

Σ∗(t, x, r, π) =


 x2π2σ2 bxπσ

bxπσ b2


 ,

AπG(t, x, r) = Gt + 0.5(x2π2σ2Gxx + 2xπbσGxr + b2Grr)

+x(πζσ + r)Gx + aGr.

Hence the following Hamilton–Jacobi–Bellman (HJB) equation has to be solved:

sup
|π|≤δ

AπG(t, x, r) = 0,

G(T, x, r) = xγ ,

where δ > 0 will be specified later.
Note that due to the presence of the product rx in the above setting usual verifi-

cation theorems which require Lipschitz conditions are not applicable to our situation
as both the wealth process and the short rate are unbounded processes. We therefore
give a suitable verification result (Corollary 3.2) in the appendix. This result then
allows us to solve the HJB equation with the usual three step procedure. By this, we
would like to emphasize our opinion that the third step, verification of all assump-
tions of both Corollary 3.2 and those made to perform the following calculations, is
an essential part of the solution.

We start with the calculation of the optimal bond position π(·).
1st step. Assuming Gxx < 0, we get the following candidate for the optimal bond

position:

π∗ = − ζ
σ

Gx

xGxx
− b
σ

Gxr

xGxx
.(2.4)

2nd step. Inserting π∗(t, x, r;G) into the HJB equation leads to the PDE

0 = GtGxx − 0.5ζ2G2
x − 0.5b2G2

xr + 0.5b2GrrGxx(2.5)

−bζGxGxr + xrGxGxx + aGrGxx

with the terminal condition G(T, x, r) = xγ . Note that ζ = (µ− r)/σ.
The form of this condition recommends the following separation ansatz:

G(t, x, r) = f(t, r) · xγ with f(T, r) = 1 for all r.

This leads to a second-order PDE for f of the form

0 = (γ − 1)fft − 0.5b2γf2
r − 0.5ζ2γf2 + 0.5b2(γ − 1)ffrr

−bζγffr + rγ(γ − 1)f2 + a(γ − 1)ffr

8For simplicity we often neglect the functional dependencies with respect to t, x, and r.
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with terminal condition f(T, r) = 1. Using the ansatz

f(t, r) = g(t) · exp(β(t) · r)
with terminal conditions β(T ) = 0 and g(T ) = 1 and simplification yields

0 = (γ − 1) · g′ + (γ − 1) (γ + β′) · rg(2.6)

− (0.5ζ2γ + 0.5b2β2 + bζγβ
) · g + a(γ − 1)β · g.

Our ansatz for f will only be meaningful if we get an ODE for g which does not
include the short rate r.

In the Ho–Lee model the drift a of the short rate is a function of t, whereas in
the Vasicek model it is a function of t and r. Therefore, we treat the two interest rate
models separately.

Ho–Lee model. In our Ho–Lee setting PDE (2.6) has the form

0 = (γ − 1) · g′ + (γ − 1) (γ + β′) · rg(2.7)

+
(−0.5ζ2γ − 0.5b2β2 − bζγβ + a(γ − 1)β

)
︸ ︷︷ ︸

=:h1(t)

·g.

Since a(t) = f∗T (0, t) + b2t + bζ(t) and ζ is assumed to be deterministic and
continuous, h1 is a continuous and deterministic function. Choosing β(t) = γ(T − t),
we infer from (2.7) the following first-order ODE for g:

0 = (γ − 1) · g′ + h1(t) · g
with g(T ) = 1. Separation of variables leads to

g(t) = exp
(

1
1−γ (H1(t)−H1(T ))

)
,

where H1 is a primitive of h1. Hence we obtain

G(t, x, r) = xγ · exp
(

1

1− γ (H1(t)−H1(T )) + γ(T − t)r
)

as a candidate for the value function. Inserting this into (2.4) gives the corresponding
control

π∗(t) =
1

1− γ ·
ζ(t) + bβ(t)

−σ(t)
=

1

1− γ ·
ζ(t) + b(T − t)γ
−b(T1 − t) .

Obviously, π∗(·) is continuous, deterministic, and therefore bounded.
Vasicek model. With the Vasicek specification of a the PDE (2.6) has the following

form:

0 = (γ − 1) · g′ + (γ − 1)(β′ − αβ + γ)︸ ︷︷ ︸
(∗)

·rg

+(θ(γ − 1)β − bζβ − 0.5b2β2 − 0.5ζ2γ︸ ︷︷ ︸
=:h2(t)

) · g.
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Our ansatz for f is only meaningful if β can be calculated so that the factor (∗)
becomes zero. As a result, we have to solve an inhomogeneous ODE for β which has
the following form:

β′(t) = αβ(t)− γ

with β(T ) = 0 leading to

β(t) =
γ

α
(1− exp(α(t− T ))).

Choosing β as calculated, we again get a first-order homogeneous ODE for g,

0 = (γ − 1) · g′ + h2(t) · g,

with g(T ) = 1. Hence

g(t) = exp

(
1

1− γ (H2(t)−H2(T ))

)
,

where H2 is a primitive of h2. Therefore,

G(t, x, r) = xγ · exp
(

1

1− γ (H2(t)−H2(T )) +
γ

α
(1− exp(α(t− T )))r

)
.

The corresponding control reads as follows:

π∗(t) =
1

1− γ ·
ζ(t) + bβ(t)

σ(t)

=
1

1− γ ·
ζ(t) + b · γα (1− exp(α(t− T )))

b
α (exp(−α(T1 − t))− 1)

.

Again, π∗(·) is continuous, deterministic, and therefore bounded.

In both cases one can choose δ in an appropriate way so that the optimal bond
position fulfills the condition π(·) ≤ δ. Moreover, the respective π∗(·) is of the form

π∗(t) =
1

1− γ ·
ζ(t)

σ(t)︸ ︷︷ ︸
Merton result

− γ

1− γ · κ(t)︸ ︷︷ ︸
correction term

with κ(t) = T−t
T1−t in the Ho–Lee model and κ(t) = 1−e−α(T−t)

1−e−α(T1−t) in the Vasicek model.

The first term coincides with the classical optimal one in Merton (1969, 1971, 1973)
when the coefficients are deterministic. The second term can be interpreted as a
correction term which is positive and monotonously decreasing to zero up to the
terminal date T . Thus we first have a bigger, negative deviation from the classical
result which vanishes at the time horizon. Moreover, the correction term increases
with the investor’s risk aversion because the less risky savings account will become
more attractive if her risk aversion increases. This correction results from the fact
that the investor tries to hedge his portfolio against the additional interest rate risk.
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3rd step. At first we justify our use of Corollary 3.2, although the state process
Y = (X, r)′ is two-dimensional: Note that the short rate process does not include
the control π(·). Therefore, one can prove conditions (i) and (iii) in Definition 3.1
independently of a specified control. Consider the SDE

dr(t) = a(t)dt+ b dW (t)(2.8)

of the short rate r with r(0) = r0. The coefficients meet the growth and Lipschitz
conditions of the existence and uniqueness theorem for the SDE.9 Hence (2.8) has a
unique solution. Using a theorem of Krylov (1980, p. 85), we get

E
(

max
0≤s≤T

|r(s)|ρ
)
< +∞(2.9)

with ρ ∈ N. Therefore, independently of the control under consideration, the condi-
tions (i) and (iii) are fulfilled by the second component of the state process Y . As a
result we can treat our problem as if the state process consists only of X. Note that
then the wealth equation is a linear controlled SDE.

We can apply Corollary 3.2 if we are able to prove the following assumptions:
(1) π∗(·) is progressively measurable;
(2) π∗(·) meets condition (ii) in definition 3.1;
(3) π∗(·) meets condition (iii) in definition 3.1;
(4) G is a C1,2-solution of the HJB;
(5) condition (3.12) is met.

Furthermore, the portfolio process has to lead to a positive wealth process, so
(6) Xπ∗ ≥ 0.
Proof of (1). The respective solution π∗(·) is continuous and deterministic, hence

progressively measurable.
Proof of (2). Property (ii) of an admissible control is met because the respective

π∗(·) is bounded.
Proof of (3). By Corollary 3.1 the wealth equation (2.3) for π∗(·) has the solution

X∗(t) = x0 exp

(∫ t

0

π∗(s)ζ(s)σ(s) + r(s)− 0.5(π∗(s)σ(s))2 ds(2.10)

+

∫ t

0

π∗(s)σ(s) dW (s)

)
.

Note that (2.9) implies

E

(∣∣∣∣∣
∫ T

0

r(s) ds

∣∣∣∣∣
)
≤ T · E

(
max

0≤s≤T
|r(s)|

)
< +∞

and hence ∫ T

0

r(s) ds < +∞, P − a.s.

The other assumptions of Corollary 3.1 are obviously met.

9See Fleming and Soner (1993, pp. 397f).
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With an appropriate constant K > 0 we obtain the following estimate. (Be aware
of the fact that π∗(·), σ(·), and ζ(·) are bounded and that |uv| ≤ u2 +v2 for u, v ∈ R.)

X∗(t)k = xk0 · exp
(
k

∫ t

0

π∗(s)ζ(s)σ(s) + r(s)− 0.5(π∗(s)σ(s))2 ds(2.11)

+k

∫ t

0

π∗(s)σ(s) dW (s)

)

≤ K · exp
(
k

∫ t

0

r(s) ds+ k

∫ t

0

π∗(s)σ(s) dW (s)

)

≤ K · exp
(

2k

∫ t

0

r(s) ds

)
+K · exp

(
2k

∫ t

0

π∗(s)σ(s) dW (s)

)
.

Now consider the integral
∫ t
0
r(s) ds. With the form of the short rate process, in the

Ho–Lee model we get10∫ t

0

r(s) ds =

∫ t

0

(
r0 +

∫ s

0

a(u) du+

∫ s

0

b dW (u)

)
ds(2.12)

= r0t+

∫ t

0

∫ s

0

a(u) duds+ b

∫ t

0

∫ s

0

dW (u)ds

= · · ·+ b
∫ t

0

(t− u) dW (u).

The dots represent a term which is deterministic and bounded on [0, T ]. Using the
variation of constants formula for the SDE11 in the Vasicek model, we obtain

r(t) = e−αt

(
r0 +

∫ t

0

eαu
(
θ(u) + bζ(u)

)
du+

∫ t

0

beαu dW (u)

)
.

Hence ∫ t

0

r(s) ds =

∫ t

0

e−αs

(
r0 +

∫ s

0

eαu
(
θ(u) + bζ(u)

)
du

)
ds(2.13)

+ b

∫ t

0

∫ s

0

eα(u−s) dW (u)ds

= · · ·+ b
∫ t

0

∫ t

u

eα(u−s) dsdW (u).

The dots represent a term which is deterministic and bounded on [0, T ].
In both cases the problem is reduced to find an estimate for terms of the form

exp(
∫ t
0
h(s) dW (s)) with a deterministic and bounded function h, namely,

exp

(∫ t

0

h(s) dW (s)

)

= exp

(∫ t

0

0.5h2(s) ds

)
︸ ︷︷ ︸

=const.

· exp
(
−
∫ t

0

0.5h2(s) ds+

∫ t

0

h(s) dW (s)

)
︸ ︷︷ ︸

=:Z(t)

10See Ikeda and Watanabe (1981, pp. 117ff) for the interchange of the Lebesgue and the Ito
integral.
11See Korn (1997, p. 313).
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with
dZ(t) = Z(t)h(t)dW (t),

Z(0) = 1.

Using Krylov (1980, p. 85), we find that

E
(

max
0≤t≤T

Z(t)
)
< +∞.

Because of (2.11) and (2.12) or (2.13), respectively, (X∗)k can be estimated by pro-
cesses of the same form as Z in both models. Therefore, property (3) is proved.

Proof of (4). Since the condition Gxx < 0 is met in both models, G is obviously
a C1,2-solution of the HJB equation.

Proof of (5). It is sufficent to prove that (3.12) is met by all bounded admissible
bond positions π(·). Then the respective π∗(·) dominates all admissible bond posi-
tions. Let (t′, x′, r′) ∈ [0, T ] × R

2
+ := {y ∈ R

2 : y > 0} and t′ ≤ t ≤ T . We consider
the models separately.

Ho–Lee model. The candidate for the value function is

G(t, x, r) = xγ · exp
(

1
1−γ (H1(t)−H1(T )) + γ(T − t)r

)
,

where H1 denotes a deterministic function which is continuously differentiable. Let
Ki, i = 1, 2, 3, be appropriate constants. As H1, π, ζ, σ, and a are bounded functions,
an application of Ito’s formula yields

G(t,X(t), r(t))

= X(t)γ · exp
(

1

1− γ (H1(t)−H1(T )) + γ(T − t)r(t)
)

= (x′)γ exp

(
γ

∫ t

t′
π(s)ζ(s)σ(s) + r(s)− 0.5(π(s)σ(s))2 ds

+γ

∫ t

t′
π(s)σ(s) dW (s)

)

· exp
(

1

1− γ (H1(t)−H1(T ))

)
· exp (r(t)γ(T − t))

≤ K1 · exp
(
γ

∫ t

t′
r(s) ds+ γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp(γTr(t)) · exp(−γtr(t))

= K1 · exp
(
γ

∫ t

t′
r(s) ds+ γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp

(
γT

∫ t

t′
dr(s)

)

· exp
(
−γ
∫ t

t′
s dr(s)− γ

∫ t

t′
r(s) ds

)

= K1 · exp
(
γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp

(
γ

∫ t

t′
(T − s)(a(s) ds+ b dW (s))

)

≤ K2 · exp
(
γ

∫ t

t′
π(s)σ(s) + b(T − s) dW (s)

)

≤ K3 · exp
(
γ

∫ t

t′
π(s)σ(s) + b(T − s)dW (s)

−0.5γ2

∫ t

t′

(
π(s)σ(s) + b(T − s)

)2

ds

)
=: K3 · Z(t),
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where Z is the unique solution of

dZ(t) = Z(t)
(
γ(π(t)σ(t) + b(T − t))

)
dW (t) mit Z(t′) = 1.

Using Krylov (1980, p. 85), we arrive at

E

(
sup

t∈[t′,T ]

|G(t,X(t), r(t))|2
)
≤ K3 · E

(
sup

t∈[t′,T ]

|Z(t)|2
)
<∞.

Hence we have just proved (3.12) in the Ho–Lee model.

Vasicek model. Our candidate for the value function is

G(t, x, r) = xγ · exp
(

1

1− γ (H2(t)−H2(T )) +
γ

α
(1− exp(α(t− T )))r

)
,

whereH2 is a continuously differentiable and deterministic function. With appropriate
constants Ki, i = 1, . . . , 6, we find that

G(t,X(t), r(t))

= X(t)γ · exp
(

1

1− γ (H2(t)−H2(T )) +
γ

α
(1− exp(α(t− T )))r(t)

)

≤ K1 ·X(t)γ · exp
(γ
α

(1− exp(α(t− T )))r(t)
)

≤ K2 · exp
(
γ

∫ t

t′
π(s)ζ(s)σ(s) + r(s)− 0.5(π(s)σ(s))2 ds

+γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp

(γ
α

(1− exp(α(t− T ))) · r(t)
)

≤ K3 · exp
(
γ

∫ t

t′
r(s) ds+ γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp

(γ
α
r(t)

)
· exp

(
−γ
α

exp(α(t− T )) · r(t)
)
.

With the definition fh(t, r) := exp(α(t− T )) · r an application of Ito’s formula yields

fh(t, r(t))

= fh(t′, r′) +

∫ t

t′
α exp(α(s− T ))r(s) ds+

∫ t

t′
exp(α(s− T )) dr(s)

= fh(t′, r′) +

∫ t

t′
exp(α(s− T )) · (θ(s) + bζ(s)) ds+

∫ t

t′
b exp(α(s− T )) dW (s).

Hence, by virtue of the stochastic integral equation of the short rate, we have

G(t,X(t), r(t))

≤ K4 · exp
(
γ

∫ t

t′
r(s) ds+ γ

∫ t

t′
π(s)σ(s) dW (s)

)
· exp

(γ
α
r(t)

)

· exp
(
−γ
α

∫ t

t′
b exp(α(s− T )) dW (s)

)
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= K4 · exp
(
γ

∫ t

t′
r(s) ds+ γ

∫ t

t′
π(s)σ(s) dW (s)

)

· exp
(
γ

α
r′ +

γ

α

∫ t

t′
(θ(s)− αr(s) + bζ(s)) ds+

γ

α

∫ t

t′
b dW (s)

)

· exp
(
−γ
α

∫ t

t′
b exp(α(s− T )) dW (s)

)

≤ K5 · exp
(∫ t

t′
γπ(s)σ(s) +

γ

α
b
(
1− exp(α(s− T ))

)
dW (s)

)

≤ K6 · exp
(∫ t

t′
γπ(s)σ(s) +

γ

α
b
(
1− exp(α(s− T ))

)
dW (s)

−
∫ t

t′
0.5
[
γπ(s)σ(s) +

γ

α
b
(
1− exp(α(s− T ))

)]2
ds

)
=: K6 · Z̃(t).

Since the process Z̃ has the same properties as Z in the Ho–Lee model, an analogous
argument leads to (3.12).

Proof of (6). By virtue of (2.10), we have X∗ ≥ 0.
The following theorem summarizes our results.
Theorem 2.1 (bond portfolio problem). The optimal portfolio processes in the

above bond portfolio problems are given by

π∗(t) =
1

1− γ ·
ζ(t)

σ(t)
− γ

1− γ · κ(t)

with
(a) Ho–Lee case: κ(t) = T−t

T1−t ,

(b) Vasicek case: κ(t) = 1−e−α(T−t)

1−e−α(T1−t) .

2.2. A mixed stock and bond portfolio problem. In this subsection we
assume that the investor can put his money on a savings account, in a stock, or in a
bond with maturity T1 > T . The dynamics of these assets are given by

dB(t) = B(t)r(t)dt,

dS(t) = S(t)
[
µS(t)dt+ σS(t)dWS(t) + σSB(t)dWB(t)

]
,

dP (t) = P (t)
[
(r(t) + ζB(t)σB(t)︸ ︷︷ ︸

=:µB(t)

)dt+ σB(t)dWB(t)
]
,

where (WS ,WB) is a two-dimensional Brownian motion and where, for ease of nota-
tion, we write P (t) instead of P (t, T1). In our model the stock price depends on two
risk factors: The first factorWS contains the specific risk of the stock, and the second
WB comes from the stochastic interest rate model.

In Merton’s portfolio problem we can split up the (deterministic) drift µS of the
stock into a liquidity premium (LP) and an excess return, which should be interpreted
as RP in this context:12

µS = r︸︷︷︸
LP

+µS − r︸ ︷︷ ︸
RP

.

12There is no uniform use of the words excess return, RP, and market price of risk. Apart from
the above interpretation of the drift, throughout the paper we denote λ = µ− r as excess return, λ

σ

as RP, and λ
σ2 as market price of risk.
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The drift of the stock S under consideration can also be

µS(t) = r(t) + µS(t)− r(t)︸ ︷︷ ︸
=:λS(t)

,

where λS denotes the RP of the stock

In the following, we assume that the excess return λS(·) of the stock is determin-
istic and continuous. This implies that λS(·) is progressively measurable and bounded
on [0, T ]. Furthermore, assume that the coefficients σS(·), σSB(·), and σB(·) are de-
terministic and continuous. In addition, let σS(·) and σB(·) be bounded away from
zero.

As before, we consider both a Ho–Lee and a Vasicek model:

dr(t) = a(t)dt+ bdWB(t)

with a(t) = ã(t) + bζ(t) in the Ho–Lee model and a(t) = θ(t) − αr(t) + bζ(t) in the
Vasicek model.

Moreover, we have σB(t) = −b(T1 − t) in the Ho–Lee model and σB(t) =
b
α (exp(−α(T1 − t))− 1) in the Vasicek model.

In this framework the wealth equation (2.1) has the following form:

dX(t) = X(t)
[
(πS(t)λS(t) + πB(t)λB(t) + r(t))dt

+πS(t)σS(t)dWS(t) + (πS(t)σSB(t) + πB(t)σB(t))dWB(t)
]
,

where λB(t) := µB(t)− r(t) and π := (πS , πB).

Using the notations of (3.1) in the appendix, we have

Y (t) = (X(t), r(t))′,

Λ(t, x, r, π) = (x(πSλS + πBλB + r), a)′,

Σ(t, x, r, π) =


 xπSσS x(πSσSB + πBσB)

0 b


 ,

Σ∗(t, x, r, π) =


 x2(π2

Sσ
2
S + (πSσSB + πBσB)2) bx(πSσSB + πBσB)

bx(πSσSB + πBσB) b2


 ,

AπG(t, x, r) = Gt + 0.5x2(π2
Sσ

2
S + (πSσSB + πBσB)2)Gxx + 0.5b2Grr

+bx(πSσSB + πBσB)Gxr + x(πSλS + πBλB + r)Gx + aGr.

Hence we have to solve the following HJB equation:

sup
|π|≤δ

AπG(t, x, r) = 0,

G(T, x, r) = xγ .

This will again be done by the three-step-algorithm.
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1st step. Assuming Gxx < 0, we calculate the candidates for the optimal portfolio
positions

π∗S = − (ηS − σSB
σB
ηBS)︸ ︷︷ ︸

=:η̂S

· Gx

xGxx
,(2.14)

π∗B = −
(
(1 +

σ2
SB

σ2
S

)ηB − σSB
σB
ηS

)
︸ ︷︷ ︸

=:η̂B

· Gx

xGxx
− b

σB
· Gxr

xGxx
(2.15)

with ηS := λS/σ
2
S , ηB := λB/σ

2
B and ηBS := λB/σ

2
S .

2nd step. Inserting π∗S(t, x, r;G) and π∗B(t, x, r;G) in the HJB equation yields the
PDE

0 = GtGxx + (0.5σ2
S η̂

2
S + 0.5(σSB η̂S + σB η̂B)2 − λS η̂S − λB η̂B︸ ︷︷ ︸

=:ζ̃(t)

)G2
x

−0.5b2G2
xr + 0.5b2GrrGxx − bλBσBGxGxr + xrGxGxx + aGrGxx

with G(T, x, r) = xγ . This PDE is of the same form as the corresponding PDE (2.5)
above.13 Note that ζ̃, in analogy to ζ in (2.5), is a continuous and deterministic
function. Therefore, in the Ho–Lee model we get

G(t, x, r) = xγ · exp
(

1

1− γ (H3(t)−H3(T )) + γ(T − t)r
)

and in the Vasicek model

G(t, x, r) = xγ · exp
(

1

1− γ (H4(t)−H4(T )) +
γ

α
(1− exp(α(t− T )))r

)
,

with appropriate continuously differentiable functions H3 and H4, respectively. In-
sertion into (2.14) and (2.15) yields in both models for the optimal stock and bond
position

π∗S(t) =
1

1− γ ·
(
ηS(t)− σSB(t)

σB(t)
ηBS(t)

)

=
1

1− γ · η̂S(t),

π∗B(t) =
1

1− γ ·
((

1 +
σ2
SB(t)

σ2
S(t)

)
ηB(t)− σSB(t)

σB(t)
ηS(t)− γ · κ(t)

)

=
1

1− γ · (η̂B(t)− γ · κ(t)) ,

where κ(t) = T−t
T1−t in the Ho–Lee model and κ(t) = 1−e−α(T−t)

1−e−α(T1−t) in the Vasicek model.
Both positions are continuous and deterministic processes and are hence bounded.
3rd step. With the same argument as in subsection 2.1 we can apply Corollary 3.2.

Therefore, in both models we must check the following assumptions:
(1) π∗(·) is progressively measurable;
(2) π∗(·) meets condition (ii) in Definition 3.1;

13One will obtain the PDE (2.5) if λS ≡ 0, σS ≡ 0, and σSB ≡ 0.
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(3) π∗(·) meets condition (iii) in Definition 3.1;

(4) G is a C1,2-solution of the HJB equation;

(5) condition (3.12) is met;

(6) Xπ∗ ≥ 0.

Note that π∗ := (π∗S , π
∗
B)′.

Conditions (1) and (2) are met because in both models π∗(·) is a continuous and
deterministic process. Obviously, (4) is fulfilled. Condition (6) is met since variation
of constants leads to

X(t) = x0 exp

(∫ t

0

πS(s)λS(s) + πB(s)λB(s) + r(s)

− 0.5
(
(πS(s)σS(s))2 + (πS(s)σSB(s) + πB(s)σB(s))2

)
ds

+

∫ t

0

πS(s)σS(s) dWS(s) +

∫ t

0

πS(s)σSB(s) + πB(s)σB(s) dWB(s)

)

for an admissable control π(·). Furthermore, since the wealth process has the same
properties as in subsection 2.1, we can prove (3) and (5) using the analogous argu-
ments.

The following theorem summarizes our results.

Theorem 2.2 (mixed portfolio problem). The optimal portfolio processes in the
above mixed portfolio problem are given by

π∗S(t) =
1

1− γ ·

ηS(t)− σSB(t)

σB(t)
ηBS(t)︸ ︷︷ ︸

=:η̂S


 , (stock)

π∗B(t) =
1

1− γ ·



(

1 +
σ2
SB(t)

σ2
S(t)

)
ηB(t)− σSB(t)

σB(t)
ηS(t)︸ ︷︷ ︸

=:η̂B

−γ · κ(t)

 (bond)

with

(a) Ho–Lee case: κ(t) = T−t
T1−t ,

(b) Vasicek case: κ(t) = 1−e−α(T−t)

1−e−α(T1−t) .

Considering the optimal positions the analogy to the pure bond problem becomes
clear: The variables η̂S and η̂B can be interpreted as modified market prices of risk,
where both are weighted differences of ηS and ηBS or ηB and ηS , respectively. In the
optimal stock position the market price of risk of the stock is corrected by ηBS , which
stands for the market price of risk of the bond with respect to the stock.

Similarly, the market price of risk of the bond contains a correction of the optimal
bond position by the market price of risk of the stock. Both these corrections are
plausible ones as an increase of the market price of risk of the bond makes stock
investment less attractive and vice versa. Apart from this remark, the interpretation
of the bond part as given in section 2.1 remains valid.

Furthermore, we will get the optimal bond position of subsection 2.1 if we choose
σS ≡ 0 and σSB ≡ 0 in πB(·).

However, as the detailed proof of Theorem 2.2 would have been much more compli-
cated than that of Theorem 2.1, we have decided to only present the one for Theorem
2.1 as it contains the main ideas.
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3. Appendix. In this appendix we will present the technical results and de-
tails which enabled us to solve the foregoing portfolio problems by stochastic control
methods. Let, therefore, (Ω,F , P ) be a complete probability space. Assume that
on this space an m-dimensional Brownian motion {(W (t),Ft)}t∈[0,∞) is defined with
{Ft}t∈[0,∞) being the Brownian filtration. All adapted or progressively measurable
processes are adapted or progressively measurable with respect to the Brownian filtra-
tion. Let, further, | · | denote the Euclidean norm or the operator norm, respectively.

As usual we will look at a state process given by a controlled SDE of the form

dY (t) = Λ(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dW (t)(3.1)

with initial value of Y (t0) = y0 and a d-dimensional control process u(·). Let [t0, t1]
with 0 ≤ t0 < t1 <∞ be the relevant time interval. A control strategy u(·) (for short,
control) is a progressively measurable process with u(t) ∈ U for all t ∈ [t0, t1], where
the set U ⊂ R

d, d ∈ N, is assumed to be closed. Further, let Q0 := [t0, t1) × R
n,

n ∈ N. The coefficient functions

Λ : Q̄0 × U → R
n,

Σ : Q̄0 × U → R
n,m,

m ∈ N, are all assumed to be continuous. Further, for all v ∈ U , let Λ(·, ·, v) and
Σ(·, ·, v) be in C1(Q̄0). We then define the following.

Definition 3.1 (admissible control). A control {(u(t),Ft)}t∈[t0,t1] will be called
admissible14 if

(i) for all y0 ∈ R
n the corresponding controlled SDE (3.1) with initial condition

Y (t0) = y0 admits a pathwise unique solution {Y u(t)}t∈[t0,t1];
(ii) for all k ∈ N the integrability condition

E

(∫ t1

t0

|u(s)|k ds
)
<∞

is satisfied;
(iii) the corresponding state process Y u satisfies

Et0,y0

(
sup

t∈[t0,t1]

|Y u(t)|k
)
<∞.

Let A(t0, y0) denote the set of all admissible controls corresponding to the initial con-
dition (t0, y0) ∈ Q.

In the following, the above definition will prove to be extremely useful when we
have to overcome some technical difficulties which have their origin in the fact that the
wealth equation does not satisfy the usual Lipschitz conditions needed in the standard
verification theorems of stochastic control.

To ensure existence and uniqueness of the solution of the controlled SDE (3.1),
one typically requires the following Lipschitz and growth conditions for the coefficient
functions which imply that controls with property (ii) are already admissible (i.e.,

14This definition is more restrictive than the usual one as, e.g., given in Fleming and Rishel (1975,
p. 156). However, due to the special form of our control problem, all (optimal) controls in this paper
will satisfy the more restrictive requirements of our definition.
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they also satisfy properties (i) and (iii)).15 With a constant C > 0 these conditions
are

|Λt|+ |Λy| ≤ C,(3.2)

|Σt|+ |Σy| ≤ C,
|Λ(s, y, v)| ≤ C(1 + |y|+ |v|),(3.3)

|Σ(s, y, v)| ≤ C(1 + |y|+ |v|)
for all s ∈ [t0, t1], y ∈ R, and v ∈ U .

Typically, in our applications the conditions (3.2) and (3.3) will not be satisfied.
On the other hand we have only to deal with linear controlled SDEs. This will imply
that requirement (ii) on an admissible control already ensures requirement (i) too.

Corollary 3.1 (variation of constants). Let (t0, y0) ∈ Q, and let A
(j)
1 , j =

1, . . . , d, A2, B
(i,j)
1 , i = 1, . . . ,m, j = 1, . . . , d, B

(i)
2 , i = 1, . . . ,m be progressively

measurable real-valued processes satisfying the integrability conditions∫ t1

t0

|A2(s)| ds < ∞ P -a.s., t ≥ 0,

∫ t1

t0


 d∑

j=1

A
(j)
1 (s)2 +

m∑
i=1

B
(i)
2 (s)2


 ds < ∞ P -a.s., t ≥ 0,

∫ t1

t0


 m∑

i=1

d∑
j=1

B
(i,j)
1 (s)4


 ds < ∞ P -a.s., t ≥ 0.

Further, let u(·) be a control with property (ii) of Definition 3.1. Then the linear
controlled SDE

dY u(t) = Y u(t)
[
(A1(t)

′u(t) +A2(t))dt+ (B1(t)u(t) +B2(t))
′dW (t)

]
(3.4)

admits the Lebesgue
⊗
P unique solution

Y u(t) = y0 · exp
(∫ t1

t0

(
A1(s)

′u(s) +A2(s)− 0, 5|B1(s)u(s) +B2(s)|2
)
ds

+

∫ t1

t0

(
B1(s)u(s) +B2(s)

)′
dW (s)

)
.

If we consider only bounded admissible controls, then the following conditions are
sufficient:∫ t1

t0


 d∑

j=1

|A(j)
1 (s)|+ |A2(s)|


 ds < ∞ P -a.s., t ≥ 0,

∫ t1

t0


 m∑

i=1

d∑
j=1

B
(i,j)
1 (s)2 +

m∑
i=1

B
(i)
2 (s)2


 ds < ∞ P -a.s., t ≥ 0.

Proof of Corollary 3.1. The integrability assumptions together with property (ii)
of an admissible control imply the requirements of the variation of constants formula
given in Korn (1997). Applying it implies all assertions of the corollary.

Consequently, for our applications it will be enough to verify properties (ii) and
(iii) to obtain admissibility of a control. From now on, controlled SDEs (3.4) with

15See Fleming and Soner (1993, p. 398).
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coefficients satisfying the conditions of Corollary (3.1) will be referred to as linear
controlled SDEs.

We will now formulate a standard verification theorem and afterwards derive a
version suitable for our applications by modifying the relevant parts of the proof of
the standard theorem. Therefore, we look at the following setting: Let O ⊂ R

n

be an open subset of R
n. In the case of O �= R

n we additionally assume that its
boundary ∂O is a compact (n − 1)-dimensional C3-manifold. In analogy to Q0 we
define Q := [t0, t1)×O. Further, let

τ := inf{t ∈ [t0, t1] : (t, Y (t)) /∈ Q}
denote the exit time of Y from O. Hence we have

(τ, Y (τ)) ∈ ∂∗Q := ([t0, t1)× ∂O) ∪ ({t1} × Ō).

We now consider continuous, real-valued functions L and Ψ that satisfy the poly-
nomial growth conditions

|L(t, y, v)| ≤ C(1 + |y|k + |v|k),(3.5)

|Ψ(t, y)| ≤ C(1 + |y|k)(3.6)

on Q̄ × U and Q̄ for suitable constants k ∈ N and C > 0. Here L and Ψ model the
running and the terminal utility resulting from the control and the position of the
controlled process, respectively. It will be our goal to determine an admissible control
u(·) such that for each initial value (t0, y0) the utility functional

J(t0, y0;u) := Et0,y0

(∫ τ

t0

L(s, Y u(s), u(s)) dt+ Ψ(τ, Y u(τ))

)

will be maximized; i.e., we want to solve maxu∈A(t0,y0) J(t0, y0;u).
Therefore, define the value function

V (t, y) := sup
u∈A(t,y)

J(t, y;u), (t, y) ∈ Q.

For each function G ∈ C1,2(Q) and (t, y) ∈ Q, v ∈ U , we consider the following
differential operator:

AvG(t, y) := Gt(t, y) + 0, 5

n∑
i,j=1

Σ∗
ij(t, y, v) ·Gyiyj (t, y) +

n∑
i=1

Λi(t, y, v) ·Gyi(t, y)

with Σ∗ := ΣΣ′. Then, we have the following theorem.16

Theorem 3.1 (verification theorem). Let the conditions (3.2) and (3.3) on the
coefficient functions of the controlled SDE (3.1) be satisfied. Further, assume condi-
tions (3.5) and (3.6). Let G be a function with the following properties:

(a) We have

G ∈ C1,2(Q) ∩ C(Q̄),(3.7)

|G(t, y)| ≤ K(1 + |y|k)(3.8)

for suitable K > 0 and k ∈ N.

16See Fleming and Soner (1993, p. 163).
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(b) G solves the HJB equation:

sup
v∈U

{
AvG(t, y) + L(t, y, v)

}
= 0, (t, y) ∈ Q,(3.9)

G(t, y) = Ψ(t, y), (t, y) ∈ ∂∗Q.(3.10)

Then we obtain the following result:
(i) G(t, y) ≥ J(t, y;u) for all (t, y) ∈ Q and u(·) ∈ A(t, y).
(ii) If for (t, y) ∈ Q there exists a control u∗(·) ∈ A(t, y) with

u∗(s) ∈ argmax
v∈U

(
AvG(s, Y ∗(s)) + L(s, Y ∗(s), v)

)
(3.11)

for all s ∈ [t, τ ], where Y ∗ is the solution of the controlled SDE corresponding
to u∗(·), then we have

G(t, y) = V (t, y) = J(t, y;u∗),

i.e., u∗(·) is an optimal control and G coincides with the value function.
Besides conditions (3.2) and (3.3), the growth condition (3.8) is not satisfied in

our applications either. Thus we need to modify the above verification result in a
suitable way.

Corollary 3.2 (to the verification theorem). Consider a linear controlled SDE
with coefficients satisfying the assumptions of Corollary 3.1. Assume, further, that
the functions L and ψ satisfy the conditions (3.5) and (3.6). Finally, let the function
G ∈ C1,2(Q)∩C(Q̄) be a solution to the HJB equation (3.9) with boundary condition
(3.10). Assume that for all (t, y) ∈ Q and all admissible controls u(·) ∈ A(t, y) there
exists a ρ > 1 such that we have

E

(
sup

s∈[t,t1]

|G(s, Y (s))|ρ
)
<∞.(3.12)

Then assertions (i) and (ii) of the verification theorem are valid.
Proof of Corollary 3.2. Looking at the proof of the verification theorem as given

in Fleming and Soner (1993, pp. 163f), we realize the following:
(i) Conditions (3.2) and (3.3) ensure the existence and uniqueness of a solution

of the controlled SDE for controls with property (ii) of Definition 3.1. We
can then apply the Ito formula to obtain

G(θ, Y (θ))−G(t, y)−
∫ θ

t

Au(s)G(s, Y (s)) ds(3.13)

=

∫ θ

t

Gy(s, Y (s)) · Σ(s, Y (s), u(s)) dW (s)

which corresponds to relation (3.9) in Fleming and Soner (1993).
(ii) The growth condition (3.3) is used to prove the relation

Et,y

(∫ θ

t

Gy(s, Y (s)) · Σ(s, Y (s), u(s)) dW (s)

)
= 0(3.14)

for bounded O. (This corresponds to EtxM(θ) = 0 for bounded O in the
notation of Fleming and Soner (1993).)
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(iii) The growth condition (3.8) is used to show the uniform integrability of
{G(θp, Y (θp))}p, where θp are stopping times with t ≤ θp ≤ t1. (In the
notation of Fleming and Soner (1993) this corresponds to the uniform inte-
grability of {W (θp, x(θp))}p. There, one also finds the exact definition of the
stopping times θp, which is irrelevant for our argumentation.)

We now demonstrate that we also have these three properties under the assumptions
of our corollary:

(i) For admissible controls the linear controlled SDE admits a unique solution
which is explicitly given in Corollary 3.1. Of course, we can apply the Ito formula to
such solutions. Thus relation (3.13) remains valid.

(ii) To show property (3.14) note that the diffusion coefficient of the linear con-
trolled SDE is Σ(t, y, v) = y(B1(t)v + B2(t)). As in Fleming and Soner (1993), we
look at a bounded set O and obtain the following estimate for an admissible control
u(·): ∫ t1

t0

|Σ(s, Y (s), u(s))|2 ds =

∫ t1

t0

|Y (s)(B1(s)u(s) +B2(s))|2 ds

≤ sup
s∈[t,t1]

|Y (s)|2
∫ t1

t0

(|B1(s)u(s)|+ |B2(s)|)2 ds

≤ 2 diam(O)

∫ t1

t0

|B1(s)u(s)|2 + |B2(s)|2 ds

≤ 2 diam(O)

∫ t1

t0

|B1(s)|4 + |u(s)|4 + |B2(s)|2 ds.

Here we have made multiple uses of 2|vw| ≤ v2 + w2 for v, w ∈ R. Due to property
(ii) of an admissible control and the integrability conditions of the coefficients of the
linear controlled SDE, we obtain

Et,y

(∫ θ

t

|Gy(s, Y (s)) · Σ(s, Y (s), u(s))|2 ds
)
<∞

and thus (3.14).
(iii) Condition (3.12) implies uniform integrability of {G(θp, Y (θp))}p.
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Abstract. Under the bounded slope condition on the boundary values of a minimization problem
for a functional of the gradient of u, we show that a continuous minimizer w is, in fact, Lipschitzian.
An application of this result to prove the validity of the Euler Lagrange equation for w is presented.
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1. Introduction. The bounded slope condition was introduced by Hartman and
Nirenberg [5] and, in a variational context, by Stampacchia [9], with the purpose of
obtaining pointwise bounds a.e. on the norm of the gradient ∇u(x) of a solution u to
a minimum problem of the form

(P ) minimize

∫
Ω

f(∇u(x)) dx on u− u0 ∈W 1,1
0 (Ω).

The purpose of this paper is to extend the applicability of this condition and to use
the result so obtained to prove the validity of the Euler Lagrange equation for the
minimizer, without assuming growth conditions from above for the integrand f . More
precisely, our Theorem 4.1 below extends Stampacchia’s theorem to a wider class of
integrands f , while requiring less regularity on the solutions. Stampacchia’s result is
based on the a priori assumption that the solution is Lipschitzian, and it yields an es-
timate on the value of the Lipschitz constant. Our result requires that the solution be
continuous, and it derives that it is, in fact, Lipschitzian. This step demands a differ-
ent proof: Stampacchia’s proof was based on the fact that the minimizer satisfies the
Euler Lagrange equation; however, without the a priori assumption of Lipschitzian-
ity, proving the validity of the Euler Lagrange equation under the conditions on f
required by Stampacchia’s theorem is still an open and challenging problem. As a
consequence of our Theorem 4.1, we provide in Theorem 4.7 a result on the validity
of the Euler Lagrange equation for the minimizer that does not require, as do those
commonly used in the literature, growth assumptions from above on the integrand f .

For the proof of Theorem 4.1 we use the method of translations. This method
has been used in contexts similar to the one here by, e.g., Brezis and Stampacchia
[2], Brezis and Sibony [1], and, more recently, Treu and Vornicescu [10]. In all of the
above papers the functional considered is∫

Ω

[f(∇u(x)) + g(u(x))] dx,

and the argument used depends on g being strictly monotone; i.e., the case g = 0
is excluded. In the proof presented here, we develop an argument that allows us to

∗Received by the editors April 9, 1999; accepted for publication (in revised form) June 8, 2001;
published electronically December 7, 2001.
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extend the method of translations to the case g = 0, the case of interest in this paper.
Theorem 4.2 below, instrumental to the proof of our main result, is a weak maximum
principle under rather general assumptions on f .

2. Notations and preliminary results. The closed ball of radius ρ about
the origin is Bρ. The subgradient of a convex function f is denoted by ∂f and its
domain by Dom(∂f). The closure of its domain, cl(Dom(∂f)), is a convex set [8]. A
(possibly extended valued) convex function f is called strictly convex if it is strictly
convex on its effective domain. A face of a convex set is a convex extremal subset.
The collection of the relative interiors of the faces of a convex set is a partition of the
convex set. We say that a set Ω has the segment property if, given x0 ∈ ∂Ω, there
exist a neighborhood U0 containing x0 and a nonzero vector k such that x + tk ∈ Ω
whenever x ∈ Ω ∩ U0 and t ∈ (0, 1]. Every convex set has the segment property. Let
Ω be bounded and open. We say that u ∈W 1,1(Ω) satisfies u ≤ 0 on ∂Ω in the sense
of W 1,1(Ω) if u+ ∈W 1,1

0 (Ω).

3. The bounded slope condition (BSC)K .
Definition 3.1. Let K be a positive real, Ω a bounded convex set. The boundary

datum u0 satisfies (BSC)K if for every x0 ∈ ∂Ω there exist vectors k+(x0) and k−(x0),
‖k+(x0)‖ ≤ K, ‖k−(x0)‖ ≤ K, such that for every x ∈ ∂Ω we have

u0(x)− u0(x0) ≤ 〈k+(x0), x− x0〉

and

u0(x)− u0(x0) ≥ 〈k−(x0), x− x0〉.

The validity of (BSC)K for some K depends on the smoothness of ∂Ω and of u0,
as can be seen from the classical results of Miranda [7] and of Hartman [6].

Following Stampacchia, let us call an integrand f regular if f ∈ C2(
N ) and the
N ×N matrix of partial derivatives is positive definite at every point. Stampacchia’s
theorem [9] is as follows.

Theorem 3.2. Let f be a regular integrand. Let u(x) be a minimizing function
for problem (P ) among all Lipschitz functions which have the same boundary values
u0(x) satisfying (BSC)K . If, moreover, u ∈ C1(Ω) ∩H2(Ω), then

max
x∈Ω
|uxi | ≤ K.

4. Main results. It is our purpose to prove the following theorem, our main
result.

Theorem 4.1. Let Ω be open, bounded, and convex; let f be a (possibly extended
valued) lower semicontinuous strictly convex function. Let u0 : Ω→ 
 be Lipschitzian
and let it satisfy (BSC)K . Let w in C(Ω) ∩W 1,1(Ω) be a solution to problem (P ):

minimize

∫
Ω

f(∇u(x)) dx : u− u0 ∈W 1,1
0 (Ω).

Then w is Lipschitzian and, for almost every x in Ω, ‖∇w(x)‖ ≤ K.
Under the conditions of Stampacchia’s theorem on f and Ω and assuming that the

boundary datum satisfies (BSC)K , the fact that the solution is Lipschiztian implies
that the Lipschitz constant of the solution is K. Our Theorem 4.1 says that under the
conditions of Theorem 4.1 on f and Ω and assuming that the boundary datum satisfies
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(BSC)K for some constant K, knowing that the solution is continuous implies that
the solution is Lipschitzian.

The following theorem is a generalized version of the weak maximum principle,
to be used in the proof of Theorem 4.1.

Theorem 4.2. Let Ω in 
N be open and bounded with the segment property; let
f be a (possibly extended valued) lower semicontinuous, convex function. Let u0(x)
in W 1,1(Ω) and �(x) = 〈a, x〉+ b be given such that in ∂Ω, u0(x) ≤ �(x) in the sense
of W 1,1(Ω). If the infimum in problem (P ) is finite and attained by some function w,
then the inequality

w(x) ≤ �(x) for almost every x ∈ Ω

follows from either (i) or (ii) below:
(i) a �∈ Int(Dom(∂f)).
(ii) a ∈ Int(Dom(∂f)) and the face of epi(f) whose relative interior contains

(a, f(a)) has dimension less than N .
(The latter condition is immediate when f is strictly convex.)

Remark. Let f be the indicator function of the unit disk D ⊂ 
2; i.e., f(ξ) = 0
when ‖ξ‖ ≤ 1, f(ξ) = +∞ otherwise. Let Ω be D and u0 be = 0. Finally, let
�(x) = 0. Then a = 0 ∈ Int(Dom(f)) and for ‖x‖ = 1, �(x) ≥ u0(x). However, the
function w : Ω → 
 defined by w(x) = 1 − ‖x‖, for which ‖∇w‖ = 1 a.e. in Ω, is a
solution to the minimization problem (P ) for the given f and u0, but it is not true
that �(x) ≥ w(x) a.e. in Ω. The face of epi(f) containing (0, 0) in its relative interior
is of dimension N = 2.

For the proof of Theorem 4.2 we shall need the following lemma.
Lemma 4.3. Let f , Ω, u0(x), and � be as in Theorem 4.2. Let w − u0 be in

W 1,1
0 (Ω). Let E+ = {x ∈ Ω : w(x) > �(x)}. Then, for every l ∈ 
N ,∫

E+

〈l,∇w(x)− a〉 dx = 0.

Proof. Since u0(x) ≤ �(x) on ∂Ω in the sense of W 1,1(Ω), we have

0 ≤ (w − �)+ = [(u0 − �) + (w − u0)]+ ≤ (u0 − �)+ + (w − u0)+,

so that (w − �)+ ∈ W 1,1
0 (Ω), i.e., (w − �) ≤ 0 on ∂Ω in the sense of W 1,1(Ω). Hence

[11, Lemma 1.59] there exists a sequence (ψn), ψn ∈ C∞(Ω) and ψn(x) ≥ 0 for x
in ∂Ω, converging to (� − w) in W 1,1(Ω). Let wn = � − ψn and assume we have
selected a subsequence of the sequence (wn) converging to w pointwise as well as
in W 1,1(Ω). Let E− = {x ∈ Ω : w(x) < �(x)}, E0 = {x ∈ Ω : w(x) = �(x)},
En = {x ∈ Ω : wn(x) − �(x) > 0}. Then χEn(x) → 1 for almost every x in E+, and
χEn(x)→ 0 for almost every x in E−.

We have∫
E+

〈l,∇w(x)− a〉 dx =

∫
Ω

〈l,∇w(x)− a〉χEn dx +

∫
Ω

〈l,∇w(x)− a〉(χE+ − χEn) dx.

The last integral is the sum of the same integral over E+, over E−, and over E0.
The first two integrals tend to zero from an application of the dominated convergence
theorem; the third is zero since, on E0, ∇w(x) = a a.e. Hence∫

Ω

〈l,∇w(x)− a〉(χE+ − χEn) dx→ 0.
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Moreover,∫
Ω

〈l,∇w(x)− a〉χEn dx =

∫
En

〈l,∇wn(x)− a〉 dx +

∫
En

〈l,∇w(x)−∇wn(x)〉 dx.

The second integral tends to zero since wn → w in W 1,1(Ω). To prove the lemma it
suffices to show that

∫
En
〈l,∇wn(x)− a〉 dx = 0.

Let l = l/‖l‖. Let P l be the plane through the origin orthogonal to l, Ol the
projection of Ω on P l, and Ll(x′), x′ ∈ Ol, the line {x′+lτ ; τ ∈ 
}. The intersection of
a line Ll(x′) with the open set En can be described as {x′+lτ : τ ∈ ∪i(αi(x′), βi(x′))},
where some or all of the points of x′ + lαi(x

′) and of x′ + lβi(x
′) can belong to ∂Ω.

Then

intEn〈l,∇wn(x)− a〉 dx =

∫
Ol

(∫
En∩Ll(x′)

〈l,∇wn(x′ + lτ)− a〉 dτ
)
dx′

=

∫
Ol

(
Σi

∫ βi(x
′)

αi(x′)
〈l,∇w(x′ + lτ)− a〉 dτ

)
dx′.

We have

∫ βi(x
′)

αi(x′)
〈l,∇wn(x′ + lτ)− a〉 dτ =

∫ βi(x
′)

αi(x′)
‖l‖ d

dτ
[wn(x′ + lτ)− �(x′ + lτ)]dτ

= ‖l‖{[wn(x′ + lβi(x
′))− �(x′ + lβi(x

′))]− [wn(x′ + lαi(x
′))− �(x′ + lαi(x

′))]}.

For each i, when x′ + lαi(x
′) is in Ω, wn and � coincide, and the same is true for

x′ + lβi(x
′). Since at ∂Ω, wn(x) ≤ �(x) for all x′ + lαi(x

′) while x′ + lαi(x
′) is the

limit of points where wn(x) > �(x), and the same is true for x′ + lβi(x
′), we have that

the last integral is zero. This ends the proof that
∫
E+〈l,∇w(x)− a〉 dx = 0.

Proof of Theorem 4.2. We wish to prove that E+ has measure zero. We assume
that it is not so and will show that this leads to a contradiction in either case (i) or
(ii).

We must have that ∇w(x) is a.e. in Dom(f), hence in cl(Dom(∂f)); otherwise
the integral would not be finite.

(a) Assume (i), i.e., a �∈ Int(Dom(∂f)). Then a can be separated by a hyperplane
from the convex and closed set cl(Dom(∂f)), i.e., there exists h �= 0 such that 〈h, a〉 ≥
supd∈Dom(∂f)〈h, d〉. Hence for almost every x ∈ Ω, in particular for almost every

x ∈ E+, we have the following inequality:

〈h,∇w(x)− a〉 ≤ 0.

The proof of case (i) continues in step (e) below.

(b) Assume (ii). Fix k in ∂f(a). Let η+ = (w − �)+; since

0 ≤ (w − �)+ = (w − u0 + u0�)+ ≤ (w − u0)+(u0 − �)+,
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and both maps at the right-hand side are in W 1,1
0 (Ω), so is (w − �)+. We thus have

(w − η+)(x) =

{
w(x) if w(x) ≤ �(x),
�(x) otherwise,

∇(w − η+)(x) =

{ ∇w(x) if w(x) ≤ �(x),
a otherwise.

Hence, by the convexity of f and applying Lemma 4.3, we obtain∫
Ω

(f(∇w(x))− f(∇(w − η+)(x))) dx =

∫
E+

(f(∇w(x))− f(a)) dx

≥
∫
E+

〈k,∇w(x)− a〉 dx = 0.

(c) Since w is a minimizer, we also have

0 ≥
∫

Ω

(f(∇w(x))− f(∇(w − η+)(x)) =

∫
E+

(f(∇w(x))− f(a)) dx ≥ 0;

hence, from the conclusion of (b),∫
E+

{f(∇w(x))− [f(a) + 〈k,∇w(x)− a〉]}dx = 0.

The integrand above is nonnegative, so we obtain that, a.e. in E+, f(∇w(x)) =
f(a) + 〈k,∇w(x)− a〉, i.e., the N + 1-dimensional vector (f(∇w(x)),∇w(x)) belongs,
for almost every x, to H, the intersection of the epigraph of f with the hyperplane
z = f(a) + 〈k, ξ − a〉. H is a face of epi(f): it is either of dimension less than N or
its dimension is N . Let HN = {ξ : f(ξ) = f(a) + 〈k, ξ − a〉} be its projection on 
N .

(d) By assumption, the face of epi(f), containing (a, f(a)) in its relative interior,
has dimension less than N , and so does FNa , its projection on 
N . FNa is a face of HN :
there is a (nonzero) N -vector τ that properly separates FNa from HN , 〈τ, ξ − a〉 = 0,
ξ ∈ FNa , 〈τ, ξ − a〉 ≤ 0, ξ ∈ HN , and there is some z ∈ (HN \ FNa ) such that
〈τ, z − a〉 < 0. Hence, for ξ ∈ HN ,

f(ξ) ≥ f(a) + 〈k, ξ − a〉 ≥ f(a) + 〈k + τ, ξ − a〉.
Since, for x ∈ E+, we have ∇w(x) ∈ HN , in particular we have, for x ∈ E+,

f(∇w(x)) ≥ f(a) + 〈k + τ,∇w(x)− a〉.
Again, since w is a minimizer, we have

0 ≥
∫

Ω

(f(∇w(x))− f((∇(w − η+)(x))) =

∫
E+

(f(∇w(x))− f(a)) dx

≥
∫
E+

〈k + τ,∇w(x)− a〉 dx = 0,

where the last equality follows from Lemma 4.3. Hence∫
E+

{f(∇w(x))− [f(a) + 〈k + τ,∇w(x)− a〉]}dx = 0,
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and, since f(∇w(x)) ≥ f(a)+〈k+τ,∇w(x)−a〉 a.e. in E+, it follows that f(∇w(x)) =
f(a) + 〈k + τ,∇w(x)− a〉. From the conclusion of (c) we obtain that, a.e. in E+,

〈τ,∇w(x)− a〉 = 0.

(e) By the conclusion of (a) in case (i) and by the above construction in case (ii),
there is a nonzero N -dimensional vector, k⊥, such that 〈k⊥,∇w(x) − a〉 ≤ 0 a.e. in
E+. Choose a line {x′ + k⊥t} intersecting E+ on a set of positive measure and such
that t→ w(x′ + ht) is absolutely continuous. Let T+ = {t : x′ + ht ∈ E+} and let t+

be in T+, i.e., such that for x+ = x′ + k⊥t+, η+(x+) is positive. Since the gradient
of η+ is

∇η+(x) =

{
0 on Ω \ E+,
∇w(x)− a otherwise,

we have

0 < (w − �)+(x′ + t+h) =

∫ t+

−∞

(
d

dt
(w − �)+(x′ + th)

)
dt

=

∫
(−∞,t+]∩T+

〈h,∇w(x′ + th)− a〉 dt

≤
∫

(−∞,t+]∩T+

(
sup

d∈Dom(∂f)

{〈h, d− a〉}
)

dt ≤ 0,

a contradiction. So E+ has measure zero.
For the proof of Theorem 4.1 we shall need the following preliminary results.
Lemma 4.4. Let Ωi, i = 1, 2, be open and let gi be in W 1,1

0 (Ωi) and such that for
almost every x in Ωi, gi(x) ≥ 0. Then min(g1(x), g2(x)) ∈W 1,1

0 (Ω1 ∩ Ω2).
Proof. Let gin : Ωi → 
, i = 1, 2, be two sequences of Lipschitzian maps with

compact support in Ωi, gin converging to gi in W 1,1
0 (Ωi) and pointwise a.e. Set

G(x) = min(g1(x), g2(x)), E1 = {x ∈ (Ω1 ∩ Ω2) : g1(x) < g2(x)}, E2 = {x ∈
(Ω1 ∩ Ω2) : g2(x) < g1(x)}, E0 = {x ∈ (Ω1 ∩ Ω2) : g1(x) = g2(x)}; set also
Gn(x) = min((g1

n(x), g2
n(x)): the maps Gn are Lipschitzian with compact support

contained in (Ω1 ∩ Ω2). One has∫
Ω1∩Ω2

|G−Gn| =
∫
E1

|G−Gn|+
∫
E2

|G−Gn|+
∫
E0

|G−Gn|.

To evaluate the first integral, set E1,1
n = E1 ∩ {x : g1

n < g2
n}, E1,2

n = E1 ∩ {x : g2
n <

g1
n}, E1,0

n = E1 ∩ {x : g1
n = g2

n}. Then∫
E1

|G−Gn| =
∫
E1,1
n

|g1 − g1
n|+

∫
E1,0
n

|g1 − g1
n|+

∫
E1,2
n

|g1 − g2
n|,

and the first two integrals converge to zero since g1
n → g1 in W 1,1(Ω1). Also, g2

n

converges pointwise to g2; hence χE1,2
n
→ 0 pointwise a.e. The sequence (|g1 − g2

n|) is

equiintegrable, since g2
n converges in L1(Ω2); by Egoroff’s theorem

∫
E1,2
n
|g1−g2

n| → 0.

Similarly for the other cases and for
∫
Ω1∩Ω2 ‖∇G−∇Gn‖.
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Lemma 4.5. Let f be strictly convex on its effective domain. For every pair (a, b)
in its effective domain, a �= b, for every λ, 0 < λ < 1, we have

f(a + λ(b− a))− f(a) + f(b− λ(b− a))− f(b) < 0.

Proof. Consider the restriction of f to the line oriented from a to b. Under the

conditions of the Lemma, the map c→ f(c+λ(b−a))−f(c)
λ(b−a) is strictly monotonic.

Proof of Theorem 4.1. It is convenient to set Ψ+(x) = infx0∈∂Ω〈k+(x0), x−x0〉+
u0(x0) and Ψ−(x) = supx0∈∂Ω〈k−(x0), x − x0〉 + u0(x0); the maps Ψ+ and Ψ− are
Lipschitzian with Lipschitz constant K. Applying Theorem 4.2 to each of the affine
maps 〈k+(x0), x−x0〉+u0(x0), we infer that the solution w satisfies w ≤ Ψ+. Applying
the same theorem to the problem P̃ whose data are f̃(ξ) = f(−ξ) and ũ0 = −u0, we
obtain Ψ− ≤ w.

To prove the theorem it is enough to show that there cannot exist a unit vector v, a
scalar M > K, and a set E ⊂ Ω with µ(E) > 0 such that, for x in E, 〈∇w(x),v〉 > M.
Let us assume that M,v, E exist and derive a contradiction.

(a) There exists a representative of w that is absolutely continuous on almost
every line parallel to v. Since it coincides with w a.e. in Ω, on almost every such
line {x = tv + a : t ∈ 
}, it coincides with w for almost every t; by continuity, they
coincide for all t on every such line. Hence w is absolutely continuous on almost every
line parallel to v. On a plane orthogonal to v there exists a set of points of positive
(N − 1) measure, such that lines parallel to v through these points meet E in a set
of positive one-dimensional measure. Let us fix one such line; let x∗ be a point on it
that is at once in E and such that the map t → w(x∗ + tv) is differentiable at t = 0
with derivative

d

dt
[w(x∗ + tv)]|t=0 = 〈∇w(x∗),v〉 = M + ζ, ζ > 0.

Then there exists h∗ > 0 such that for every 0 < h ≤ h∗

w(x∗ + hv)− w(x∗)−Mh > 0.

(b) We wish to prove the following claim. Let x∗∗ be a point in Ω such that
t → w(x∗∗ + tv) is differentiable at t = 0 with derivative D∗∗ > M , and let h∗∗ > 0
be such that for every 0 < h ≤ h∗∗, x∗∗ + hv is in Ω and

w(x∗∗ + hv)− w(x∗∗)−Mh > 0.

Then t→ w(x∗∗ + tv) is affine on [0, h∗∗] with derivative D∗∗.
Proof of the claim. Fix any h ∈ (0, h∗∗]. On the convex set Ωh = Ω ∩ (Ω − hv)

both x→ w(x) and x→ w(x + hv) are defined. By assumption, the set

E+
h = {x ∈ Ωh;w(x + hv) > w(x) + hM}

is an open subset of Ωh containing x∗∗. For x ∈ E+
h , we have that y = x+ hv is such

that y − hv is in Ω and w(y − hv) < w(y)− hM. The set

E−
h = {y ∈ Ω−h;w(y − hv) < w(y)− hM}

is a translate of E+
h : E−

h −hv = E+
h . Let η+

h (x) on Ωh be (w(x+hv)−w(x)−hM)+

and η−h (x) on Ω−h be (w(x− hv)−w(x) + hM)−. We wish to show that η+
h and η−h
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are admissible variations, i.e., that they are in W 1,1
0 (Ω). From the Lipschitzianity of

Ψ+ and of Ψ− we obtain

η+(x) ≤ Ψ+(x + hv)−Mh− w(x) ≤ Ψ+(x)− w(x),

η+(x) ≤ w(x + hv)−Mh−Ψ−(x + hv) + Kh ≤ w(x + hv)−Ψ−(x + hv);

i.e., η+
h ≤ min(Ψ+(x)− w(x), w(x + hv)−Ψ−(x + hv)).

Apply Lemma 4.4 with Ω1 = Ω,Ω2 = Ωh, g
1(x) = Ψ+(x) − w(x), g2(x) = w(x +

hv) − Ψ−(x + hv) to infer that η+
h is an admissible variation, and the same is true

for η−h . Since w is a minimum, we must have that for all λ∫
Ω

f(∇w(x) + λ∇η+
h (x)) dx ≥

∫
Ω

f(∇w(x)) dx,

∫
Ω

f(∇w(x) + λ∇η−h (x)) dx ≥
∫

Ω

f(∇w(x)) dx.

We have

∇η+
h =

{ ∇w(x + hv)−∇w(x) if x ∈ E+
h ,

0 otherwise,

and

∇η−h =

{ ∇w(x− hv)−∇w(x) if x ∈ E−
h ,

0 otherwise,

so that the above inequalities yield∫
E+
h

f(∇w(x) + λ[∇w(x + hv)−∇w(x)])− f(∇w(x)) dx ≥ 0,

∫
E−
h

f(∇w(x) + λ[∇w(x− hv)−∇w(x)])− f(∇w(x)) dx ≥ 0.

Making the change of variables y = x + hv and adding the two inequalities, one
obtains∫

E+
h

{f(∇w(x) + λ[∇w(x + hv)−∇w(x)])− f(∇w(x)) + f(∇w(x + hv)

−λ[∇w(x + hv)−∇w(x)])− f(∇w(x + hv))} dx ≥ 0.

From Lemma 4.5 we obtain that, for every x such that ∇w(x) �= ∇w(x + hv), the
integrand is negative. Since E+

h is a nonempty open set, this is a contradiction unless,
a.e. in E+

h , ∇w(x) = ∇w(x + hv).
The set E+

h contains a ball Bh about x∗∗; for x in this ball, ∇w(x)−∇w(x+hv) =
0 a.e. By the continuity of w, there exists a constant C such that, on Bh, w(x)−w(x+
hv) = C. Then, since the limit

lim
t→0

1

t
[w(x∗∗ + tv)− w(x∗∗)]



1278 ARRIGO CELLINA

exists and equals D∗∗, so does

lim
t→0

1

t
[w(x∗∗ + tv + hv)− w(x∗∗ + hv)].

In particular, the derivative at t = 0 of the map t→ w(x∗ +hv+ tv) exists and equals
D∗∗. This reasoning holds for every 0 < h ≤ h∗∗, thus proving the claim.

(c) The previous claim applies at x∗. Hence the map t → w(x∗ + tv) is affine
on [0, h∗] with derivative M + ζ. Let [0,Λ] be the maximal interval on which this
map is affine. We claim that x∗ + Λv is in ∂Ω. If it is in Ω for some ε > 0, then
so is x∗ + (Λ + τ)v for 0 ≤ τ < ε. Choose λ in (0,Λ). The map t → w(x∗ + tv) is
differentiable at λ with derivative 〈∇w(x),v〉. Moreover we have that w(x∗ + Λv)−
w(x∗ + λv) = (M + ζ)(Λ− λ), i.e.,

w((x∗ + λv) + (Λ− λ)v)− w(x∗ + λv)− (Λ− λ)M = ζM.

Hence, by the continuity of w, for all τ ≤ ε1 < ε,

w((x∗ + λv) + (Λ− λ + τ)v)− w(x∗ + λv)− (Λ− λ + τ)M > 0.

The point x∗ +λv can be used as x∗∗ with h∗∗ = (Λ−λ+ ε1). Applying the claim of
part (b), we have that the map t → w(x∗ + tv) is affine on [0,Λ + ε1], contradicting
the maximality of Λ. Hence x∗ + Λv is in ∂Ω.

(d) Let x∗∗∗ be x∗ + Λv; since u0 is continuous, the conditions u0 ≤ � and u0 ≥ �
on ∂Ω in W 1,1 in sense and pointwise coincide. Thus, by Theorem 4.2, for every x ∈ Ω
(in particular for x∗)

u0(x∗∗∗) + 〈k−(x∗∗∗), x− x∗∗∗〉 ≤ w(x) ≤ u0(x∗∗∗) + 〈k+(x∗∗∗), x− x∗∗∗〉.
Hence, from point (c),

w(x∗∗∗) = w(x∗) + ‖x∗ − x∗∗∗‖(M + ζ) > w(x∗)− 〈k−(x∗∗∗), x∗ − x∗∗∗〉 ≥ u0(x∗∗∗),

while, for every x ∈ Ω,

w(x) ≤ u0(x∗∗∗) + 〈k+(x∗∗∗), x− x∗∗∗〉.
The above inequalities are incompatible whenever ‖x−x∗∗∗‖ is sufficiently small. This
is a contradiction.

Corollary 4.6. Under the same assumptions on Ω, f , and u0 as in Theo-
rem 4.2, let solutions to problem (P ) be continuous. Then problem (P ) and problem
(P )K ,

minimize

∫
Ω

f(∇u(x)) dx on u− u0 ∈W 1,1
0 (Ω) and ‖∇u(x)‖ ≤ K,

are equivalent, in the sense that they have the same solutions.
Known results on the validity of the Euler Lagrange equation for a minimizer w

hold under growth assumptions from above on f , i.e., under slow growth assumptions.
(An exception to this statement is [4], whose results are for integrands f that tend
to +∞ at the boundary of Dom(f), under conditions different from those presented
here.)

Theorem 4.7. Let f : 
N → 
 be C1, strictly convex, and such that for some
α and β > 0, f(ξ) ≥ α + β‖ξ‖p, p > N . Let Ω be bounded and convex and let u0
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satisfy (BSC)K for some constant K. Let w be a solution to problem (P ). Then w
is Lipschitzian and it satisfies the Euler Lagrange equation in the sense that∫

Ω

〈∇f(∇w(x)),∇η(x)〉 dx = 0

for every Lipschitzian η, η|∂Ø = 0.
Proof. From the growth assumptions we know that w ∈W 1,p(Ω); hence we know

that it is continuous. Theorem 4.1 applies and ‖∇w(x)‖ ≤ K a.e. in Ω. Fix η and
let λ be so small that λ‖∇η‖ ≤ 1. Let M = maxξ∈BK+1

{‖∇f(ξ)‖}. Since w is a
minimum, one has

0 ≤
(

1

λ

)∫
(f(∇w + λ∇η)− f(∇w)) =

∫
〈∇f(∇(w(x) + σ(x)λ∇η(x)),∇η(x)〉 dx,

and the term under the integral sign, that converges pointwise to 〈∇f(∇w(x)),∇η(x)〉
as λ → 0, is bounded in norm by M . Hence, applying the dominated convergence
theorem, the result follows.
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Abstract. We consider feasible sets given by conic constraints, where the cone defining the con-
straints is convex with nonempty interior. We study the case where the feasible set is not assumed to
be regular in the classical sense of Robinson and obtain a constructive description of the tangent cone
under a certain new second-order regularity condition. This condition contains classical regularity as
a special case, while being weaker when constraints are twice differentiable. Assuming that the cone
defining the constraints is finitely generated, we also derive a special form of primal-dual optimality
conditions for the corresponding constrained optimization problem. Our results subsume optimality
conditions for both the classical regular and second-order regular cases, while still being meaningful
in the more general setting in the sense that the multiplier associated with the objective function is
nonzero.
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1. Introduction. Let X and Y be normed linear spaces. We consider the sets
given by

D = {x ∈ X | F (x) ∈ K},(1.1)

where the constraint mapping F : X → Y is smooth enough and K is a closed convex
cone in Y with nonempty interior. The problem of an accurate and constructive
description of the tangent cone to a set at a given point is fundamental for many
reasons, one of which is deriving optimality conditions. Recall that a vector h ∈ X is
called tangent to a set D ⊂ X at a point x̄ ∈ D if there exists a mapping r : �+ → X
such that

x̄ + th + r(t) ∈ D ∀ t ∈ �+, ‖r(t)‖ = o(t).(1.2)

The set of all such vectors h in X is the tangent cone to the set D at the point x̄,
which we shall denote by TD(x̄). As is well known,

TD(x̄) ⊂ {h ∈ X | F ′(x̄)h ∈ TK(F (x̄))},(1.3)

which is the first-order necessary condition for tangency. To obtain a precise descrip-
tion of TD(x̄), i.e., a sufficient condition for tangency, some regularity (also called
constraint qualification) condition is needed. One classical condition in this setting is
Robinson’s condition [27]:

0 ∈ int(F (x̄) + ImF ′(x̄)−K).(1.4)

∗Received by the editors June 7, 1999; accepted for publication (in revised form) June 8, 2001;
published electronically December 7, 2001.

http://www.siam.org/journals/sicon/40-4/35754.html
†Computing Center of the Russian Academy of Sciences, Vavilova Str. 40, Moscow, GSP-1,

Russia (izmaf@ccas.ru). The research of this author was supported by Russian Foundation for
Basic Research grants 99-01-00472 and 01-01-00810.
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Note that in (1.4) cone K is not required to have a nonempty interior. If (1.4)
is satisfied, then (1.3) holds as an equality, e.g., [12, Corollary 2.91]. Deriving an
accurate constructive description of the tangent cone without assuming (1.4) and,
more generally, when (1.3) does not necessarily hold as an equality, is one of the
principal goals of this paper. Our approach is based on a certain new notion of
second-order regularity, which in the setting of K with nonempty interior is weaker
than (1.4); see Definition 2.1 and Remark 2.1. An immediate application of this
description is the primal form of necessary optimality conditions for the problem

min {f(x) | x ∈ D},(1.5)

where the objective function f : X → � is smooth enough.
Our second goal is to obtain primal-dual optimality conditions for the irregular

case, with a nonzero multiplier associated to the objective function. If x̄ is a local
solution of (1.5), (1.1), then the classical F. John–type first-order necessary optimality
conditions (e.g., see [11]) state that there exists a generalized Lagrange multiplier
(y0, y

∗) ∈ (�× Y ∗) \ {0} such that

y0f
′(x̄)− (F ′(x̄))∗y∗ = 0,

F (x̄) ∈ K, y∗ ∈ K∗, 〈y∗, F (x̄)〉 = 0, y0 ≥ 0,
(1.6)

where Y ∗ is the dual space of Y , (F ′(x̄))∗ is the adjoint operator of F ′(x̄), and K∗

is the dual cone of K. If y0 = 0, the F. John conditions hold trivially independently
of the objective function and therefore their utility for describing optimality in that
case is very limited (at least without some further developments). Assumptions that
guarantee the existence of a multiplier (y0, y

∗) with y0 �= 0 are again constraint
qualification conditions, such as (1.4). For problems with a finitely generated cone K,
without assuming (1.4) or equality in (1.3), we obtain a special form of primal-dual
optimality conditions under our assumption of second-order regularity. Our optimality
conditions resemble the structure of (1.6), where y0 �= 0 and a certain term involving
the second derivative of F is added to the standard Lagrangian; see Theorem 3.2.
Our optimality conditions subsume those for the classical regular case of (1.4), as well
as those for the more general second-order regular case of [7, 8]; see section 4.

In section 4, we compare our results with other approaches relevant for irregular
inequality-constrained problems. We also provide an example showing that our results
can be used to verify optimality in cases where other known approaches appear not
to be applicable. We note that those cases do not seem pathological or exotic; see
Example 4.1.

Finally, we note that in the case of the nonlinear programming problem, i.e., when
Y = �m × �s and K = �m− × {0}, Robinson’s regularity condition (1.4) reduces to
the classical Mangasarian–Fromovitz constraint qualification [23], and with y0 �= 0
optimality conditions (1.6) become the classical Karush–Kuhn–Tucker conditions.

Our notation is fairly standard. If Σ is a topological linear space, then Σ∗ denotes
its (topologically) dual space and 〈·, ·〉 is the pairing of elements in Σ∗ and Σ, i.e.,
〈σ∗, σ〉 is the value of the linear functional σ∗ ∈ Σ∗ on σ ∈ Σ. For a cone C in
Σ, the positive dual cone (sometimes also referred to as the polar cone) of C is
C∗ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 ≥ 0 ∀σ ∈ C}. For an arbitrary set Ω in Σ, the set
orthogonal to Ω is Ω⊥ := {σ∗ ∈ Σ∗ | 〈σ∗, σ〉 = 0 ∀σ ∈ Ω}. If Υ and Σ are
topological linear spaces and Λ : Υ → Σ is a continuous linear operator, then Λ∗ :
Σ∗ → Υ∗ denotes the adjoint operator of Λ. The interior and the closure of a set Ω
(in appropriate topology) are denoted by int Ω and cl Ω, respectively, and linear and
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conic hulls of this set (in appropriate linear space) by lin Ω and cone Ω, respectively.
A cone C in a linear space Σ is referred to as finitely generated if either it is empty
or there exists a positive integer s and some elements σi ∈ Σ, i = 1, . . . , s, such that
clC = cone{σ1, . . . , σs} ∪ {0}. When we write that a mapping F is twice Fréchet-
differentiable at a point x̄, we mean that it is Fréchet-differentiable on a neighborhood
of x̄, and its derivative is Fréchet-differentiable at x̄ (and similarly for higher-order
Fréchet-differentiability).

Some auxiliary facts from convex analysis that are used throughout the paper are
collected in the appendix.

2. Tangent cone description. As is well known [24], [12, Lemma 2.99], in our
setting where intK �= ∅, Robinson’s regularity condition (1.4) is equivalent to

∃ ξ̄ ∈ X such that F (x̄) + F ′(x̄)ξ̄ ∈ intK.(2.1)

This condition implies that for h ∈ TD(x̄) the inclusion

F ′(x̄)h ∈ TK(F (x̄)) = cl(K + lin{F (x̄)})(2.2)

is both necessary and sufficient, e.g., [12, Corollary 2.91]. In the irregular case, TD(x̄)
can be smaller than the set of h ∈ X satisfying (2.2), and a more refined description
is needed. To this end, it is natural to take into account the second-order information
about F at x̄. We proceed with a second-order characterization of the tangent cone,
starting with the following definition.

Definition 2.1. We say that conic constraints in (1.1) are second-order regular
at a feasible point x̄ with respect to a direction h ∈ X if

∃ (ξ̄, h̄) ∈ X ×X such that F (x̄) + F ′(x̄)h̄ ∈ K,

F (x̄) + F ′(x̄)ξ̄ + F ′′(x̄)[h, h̄] ∈ intK.

Remark 2.1. If Robinson’s condition (2.1) is satisfied, then second-order regular-
ity holds with respect to every h ∈ X, including h = 0. (To verify this, just choose ξ̄
satisfying (2.1) and h̄ = 0.)

Observe further that Definition 2.1 is equivalent to saying that

∃ h̄ ∈ X such that F ′(x̄)h̄ ∈ T rK(F (x̄)) = K + lin{F (x̄)},(2.3)

F ′′(x̄)[h, h̄] ∈ intK + lin{F (x̄)}+ ImF ′(x̄),(2.4)

where T rK(y) stands for the so-called radial tangent cone to K at y ∈ K. This form
of second-order regularity will be used in the subsequent analysis. We are now ready
to state the main result of this section.

Theorem 2.2. Let X and Y be normed linear spaces and let K be a closed convex
cone in Y with a nonempty interior. Let set D be given by (1.1), where F : X → Y
is twice Fréchet-differentiable at a point x̄ ∈ D. Then the following statements hold.

1. Every h ∈ TD(x̄) satisfies (2.2) as well as the following condition:

F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)}+ ImF ′(x̄)).(2.5)

2. If h ∈ X satisfies

F ′(x̄)h ∈ K + lin{F (x̄)}(2.6)

and (2.5), and if constraints in (1.1) are second-order regular at x̄ with respect
to this h, then h ∈ TD(x̄).
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Proof. Take an arbitrary h ∈ TD(x̄). Relation (2.2) is standard, so we have to
prove only (2.5). By twice differentiability of F , for every t > 0 we have that

1

2
F ′′(x̄)[th]2 = F (x̄ + th + r(t))− F (x̄)− F ′(x̄)(th + r(t))

− 1

2
F ′′(x̄)[r(t)]2 − F ′′(x̄)[th, r(t)] + ω2(t),

where ω2 : �+ → Y , ‖ω2(t)‖ = o(t2). Observe that the first term in the right-hand
side is in K due to (1.2), the second is in lin{F (x̄)}, and the third is in ImF ′(x̄).
Dividing by t2 and passing onto the limit as t→ 0+, we obtain (2.5).

Assume now that some h ∈ X satisfies (2.6) and (2.5). Then there exist y1 ∈ K
and λ1 ∈ � such that F ′(x̄)h = y1 + λ1F (x̄). Consider first the case where

F ′′(x̄)[h]2 ∈ intK + lin{F (x̄)}+ ImF ′(x̄),(2.7)

so that there exist y2 ∈ intK, λ2 ∈ �, and x ∈ X such that F ′′(x̄)[h]2 = y2+λ2F (x̄)+
F ′(x̄)x. In that case, we obtain that

F

(
x̄ + th− t2

2
x

)
= F (x̄) + F ′(x̄)

(
th− t2

2
x

)

+
1

2
F ′′(x̄)

[
th− t2

2
x

]2
+ ω2(t)

= F (x̄) + t(y1 + λ1F (x̄))− t2

2
F ′(x̄)x

+
t2

2
(y2 + λ2F (x̄) + F ′(x̄)x) + ω2(t)

=

(
1 + tλ1 +

t2

2
λ2

)
F (x̄) + ty1 +

t2

2
y2 + ω2(t)

∈ intK,

where ω2 : �+ → Y , ‖ω2(t)‖ = o(t2), and the inclusion follows from Lemma A.5 for
every t > 0 sufficiently small. In particular, we conclude that if (2.7) holds, then
h ∈ TD(x̄).

If (2.7) does not hold, but there exists a sequence {hk} ⊂ X converging to h such
that (2.7) is satisfied for every element of this sequence, then again h ∈ TD(x̄) by the
closedness of TD(x̄). We proceed to explicitly construct the desired sequence {hk}
under the hypothesis of the theorem that there exists an element h̄ ∈ X for which
(2.3), (2.4) are satisfied. Let us take hk = (1 − 1/k)h + h̄/k, k = 1, 2, . . .. For each
index k we then obtain

F ′(x̄)hk =

(
1− 1

k

)
F ′(x̄)h +

1

k
F ′(x̄)h̄ ∈ K + lin{F (x̄)},

where the inclusion follows from (2.6), (2.3). We further obtain

F ′′(x̄)[hk]2 =

(
1− 1

k

)2

F ′′(x̄)[h]2

+
1

k

(
2

(
1− 1

k

)
F ′′(x̄)[h, h̄] +

1

k
F ′′(x̄)[h̄]2

)
∈ intK + lin{F (x̄)}+ ImF ′(x̄),
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where the inclusion holds for all k sufficiently large, due to (2.4), (2.5) and Lemmas A.2
and A.5. This construction completes the proof.

In section 4, we compare this theorem (as well as the other results of this paper)
with related facts and approaches to irregular inequality constraints and provide an
illustrative example. Here, we note that in the regular case (1.4) implies that

K + lin{F (x̄)}+ ImF ′(x̄) = Y,(2.8)

and thus (2.5) holds trivially for every h ∈ X. This observation together with Re-
mark 2.1 show that Theorem 2.2 subsumes (when K has nonempty interior) the
classical result on the tangent cone in the regular case. In the irregular case, the
right-hand side of (2.5) does not coincide with Y (again, in our setting of intK �= ∅),
and therefore condition (2.5) is nontrivial.

Remark 2.2. If K is a finitely generated cone, then (2.6) is equivalent to (2.2), as
the right-hand sides of these relations coincide (this follows from Lemma A.3). But in
the general case, one cannot substitute the weaker condition (2.2) into the sufficiency
part of the theorem, as illustrated by the following example.

Example 2.1. Let X = �, Y = �3, and

K = cone{y ∈ �3 | y1 = 1, y3 = |y2|3/2},
F : � → �3, F (x) = (1, x, x2).

For the point x̄ = 0 ∈ �, we have F (0) ∈ K, cl(K + lin{F (x̄)}) = cl(K + lin{F (x̄)}+
ImF ′(x̄)) = {y ∈ �3 | y3 ≥ 0}, and, as is easy to see, for element h = 1 conditions
(2.3), (2.4) hold with h̄ = h. At the same time, 0 is obviously an isolated point of the
set D given by (1.1), and hence TD(x̄) = {0}.

3. Optimality conditions. We now turn our attention to the optimization
problem (1.5), where the feasible set is given by (1.1). We assume that K is a
closed convex cone with nonempty interior (for primal-dual optimality conditions,
also finitely generated), the objective function f is Fréchet-differentiable at the point
x̄ ∈ D under consideration, and the mapping F is twice Fréchet-differentiable at x̄.

Following the developments of section 2, we first introduce some relevant cones.
Let H2(x̄) be the set of all elements satisfying the second-order necessary conditions
of tangency (2.2), (2.5) stated in Theorem 2.2, i.e.,

H2(x̄) :=

{
h ∈ X

∣∣∣∣ F ′(x̄)h ∈ TK(F (x̄)) = cl(K + lin{F (x̄)})
F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)}+ ImF ′(x̄))

}
,

and H̃2(x̄) be the set of elements satisfying the two relations (2.6) and (2.5), which
appear in the sufficiency part:

H̃2(x̄) :=

{
h ∈ X

∣∣∣∣ F ′(x̄)h ∈ T rK(F (x̄)) = K + lin{F (x̄)}
F ′′(x̄)[h]2 ∈ cl(K + lin{F (x̄)}+ ImF ′(x̄))

}
.

Finally, let H̄2(x̄) consist of all elements satisfying the sufficient conditions of tangency
stated in Theorem 2.2, i.e.,

H̄2(x̄) :=

{
h ∈ H̃2(x̄)

∣∣∣∣ ∃ h̄ ∈ X :
F ′(x̄)h̄ ∈ K + lin{F (x̄)}
F ′′(x̄)[h, h̄] ∈ intK + lin{F (x̄)}+ ImF ′(x̄)

}
.

By these definitions,

H̄2(x̄) ∪ {0} ⊂ H̃2(x̄) ⊂ H2(x̄).(3.1)
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Note that if the second-order regularity condition holds with respect to all h ∈ H̃2(x̄)\
{0}, then the first inclusion in (3.1) holds as an equality. If cone K is finitely generated,
then the second inclusion is also an equality (recall Remark 2.2). By Theorem 2.2,
we also have that

H̄2(x̄) ∪ {0} ⊂ TD(x̄) ⊂ H2(x̄).(3.2)

If K is finitely generated and the second-order regularity condition holds with respect
to all h ∈ H̃2(x̄) \ {0}, then we have equalities throughout (3.2).

The left-hand inclusion in (3.2) immediately implies the following primal necessary
optimality condition for our problem.

Theorem 3.1. Let X and Y be normed linear spaces, and let K be a closed
convex cone in Y with a nonempty interior. Assume that f : X → � is Fréchet-
differentiable, and F : X → Y is twice Fréchet-differentiable at a point x̄ ∈ D, where
D is given by (1.1). If x̄ is a local solution of (1.5), (1.1), then

〈f ′(x̄), h〉 ≥ 0 ∀h ∈ H̄2(x̄).(3.3)

If X is finite-dimensional, the right-hand inclusion in (3.2) implies that the fol-
lowing condition is sufficient for x̄ to be a strict local solution of our problem:

〈f ′(x̄), h〉 > 0 ∀h ∈ H2(x̄) \ {0}.(3.4)

Dualizing (3.3), we can write that

f ′(x̄) ∈ (H̄2(x̄))∗,

which is the primal-dual form of necessary optimality conditions. Explicit evaluation
of the dual cone in the right-hand side of the above relation in full generality is an
extremely difficult problem. However, we are able to give some meaningful results
under additional assumptions. Specifically, if cone K is finitely generated and for
some h ∈ H̄2(x̄) the inequality in (3.3) holds as an equality, we derive an explicit
primal-dual form of necessary optimality conditions. Note that further study of such
“critical direction” h is of particular importance in view of the violation of the suffi-
cient optimality condition (3.4). Assumptions of this type are quite common in the
literature [7, 8, 25].

In the proof below, we shall also need the following generalization of the tangent
cone description in the regular case. Let, in addition to our standard assumptions, C
be a closed finitely generated cone in a normed linear space Z, and let A : X → Z be
a continuous linear operator. Consider the set ∆ = D∩E, where E = {x ∈ X | Ax ∈
C}, and a point x̄ ∈ ∆. If there exists ξ̄ ∈ X satisfying Aξ̄ ∈ TC(Ax̄) and Robinson’s
condition (2.1), then

T∆(x̄) = {h ∈ X | Ah ∈ TC(Ax̄), F ′(x̄)h ∈ TK(F (x̄))}.(3.5)

This generalization is essentially based on the well-known fact that linearity of con-
straints can be regarded as a special regularity-type assumption.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Let
K be a finitely generated cone, and let the point x̄ be a local minimizer for problem
(1.5), (1.1). Assume that

∃ h ∈ H̄2(x̄) such that 〈f ′(x̄), h〉 = 0.(3.6)
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Then there exist two functionals

y∗1 = y∗1(h) ∈ K∗ ∩ {F (x̄)}⊥ ∩ {F ′(x̄)h}⊥(3.7)

and

y∗2 = y∗2(h) ∈ K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥(3.8)

such that

f ′(x̄) = (F ′(x̄))∗y∗1 + (F ′′(x̄)[h])∗y∗2 .(3.9)

Proof. It can be easily seen that there exists a neighborhood U of h in X such
that

H2(x̄) ∩ U ⊂ H̄2(x̄).

(Just recall that since cone K is finitely generated, the second inclusion in (3.1) holds
as an equality, and observe that for a neighborhood U small enough, one can choose
the same h̄ in the definition of H̄2(x̄) for all h ∈ U .) Hence, by Theorem 3.1, we have
that

〈f ′(x̄), ξ〉 ≥ 0 ∀ ξ ∈ H2(x̄) ∩ U.
The latter relation and (3.6) imply that h is a local solution of the optimization
problem

min { 〈f ′(x̄), ξ〉 | ξ ∈ H2(x̄)}.
By the classical necessary optimality conditions, it then follows that

〈f ′(x̄), ξ〉 ≥ 0 ∀ ξ ∈ TH2(x̄)(h),

or, equivalently,

f ′(x̄) ∈ (TH2(x̄)(h))∗.(3.10)

We now have to evaluate the cone TH2(x̄)(h) and its dual. The latter problem
is now solvable with the help of Lemma A.4, because our second-order regularity
condition with respect to h implies that the cone TH2(x̄)(h) is actually given by the
linearized model of constraints defining H2(x̄). Indeed, using the assumption that
cone K is closed and finitely generated, and applying Lemma A.3 and relation (3.5)
to appropriate data, we obtain

TH2(x̄)(h) =

{
ξ ∈ X

∣∣∣∣F ′(x̄)ξ ∈ K + lin{F (x̄)}+ lin{F ′(x̄)h}
F ′′(x̄)[h, ξ] ∈ cl(K + lin{F (x̄)}+ ImF ′(x̄) + lin{F ′′(x̄)[h]2})

}
.

(3.11)

Note that cone K + lin{F (x̄)} + lin{F ′(x̄)h} is closed and finitely generated. Also,
dimY < ∞. (This is implied by our assumption that a finitely generated cone K has
nonempty interior.) In particular, it follows that dim(ImF ′(x̄)) < ∞. Hence, cone
K + lin{F (x̄)}+ ImF ′(x̄) + lin{F ′′(x̄)[h]2} is also closed and finitely generated. Now
applying Lemma A.4 to (3.11), we obtain the equality

(TH2(x̄)(h))∗ = (F ′(x̄))∗(K∗ ∩ {F (x̄)}⊥ ∩ {F ′(x̄)h}⊥)

+ (F ′′(x̄)[h])∗(K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥),

from which the conclusion of the theorem follows immediately.
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Theorem 3.2 subsumes classical first-order necessary optimality conditions for the
regular case. Indeed, suppose that h in the requirements of Theorem 3.2 satisfies (2.7).
Note that this will always be so in the regular case because, by (2.8) and Lemma A.2,
the right-hand side of (2.7) coincides with the entire space Y . Then, using Lemma A.1,
we have that

K∗ ∩ {F (x̄)}⊥ ∩ (ImF ′(x̄))⊥ ∩ {F ′′(x̄)[h]2}⊥ = {0}.(3.12)

Therefore in that case y∗2 = 0, and representation (3.7)–(3.9) reduces to

f ′(x̄) = (F ′(x̄))∗y∗1 ,(3.13)

with y∗1 satisfying (3.7). Furthermore, by Remark 2.1, in the regular case Theorem 3.2
can be applied by choosing h = 0. With this choice, (3.7) takes the form

y∗1 ∈ K∗ ∩ {F (x̄)}⊥.(3.14)

Combined with feasibility condition F (x̄) ∈ K, relations (3.13), (3.14) coincide with
the classical optimality conditions (1.6), where the nonsingular multiplier y0 = 1 is
chosen. In terms of the nonlinear programming problem, the inclusion y∗1 ∈ K∗ is the
nonnegativity condition for the Lagrange multipliers, and the inclusion y∗1 ∈ {F (x̄)}⊥
is the condition of complementary slackness.

As will be shown in section 4, Theorem 3.2 also contains optimality conditions
under the second-order regularity of [7, 8] but can be applicable when the latter is
not.

4. Comparisons and an example. In this section, we provide a comparison of
the results obtained above with known approaches to irregular problems, and illustrate
our development by an example.

First, we mention Abadie’s and Kuhn–Tucker’s constraint qualifications (CQs)
for nonlinear programming (see [22]; there are also some other CQs of similar type).
These are weaker than the Mangasarian–Fromovitz constraint qualification (MFCQ)
but still guarantee that the tangent cone is given by the linearized model of the
constraints; e.g., see [23, 22]. From the point of view of the problem data, these CQs
are less constructive than MFCQ, which is closer to our development. (MFCQ is
subsumed by our framework.) Such CQs of nonalgebraic nature are usually rather
difficult to verify directly. Perhaps even more importantly, we deal here with a more
general case in which the tangent cone does not necessarily coincide with the linearized
cone.

The next issue that deserves to be discussed is reformulating inequality constraints
as equalities, with the aim of subsequently using results available for the latter. This
technique is known to be useful for regular inequality-constrained problems; e.g., see
[9]. Analogously, one might try to apply known optimality conditions for (irregular)
equality-constrained problems to reformulations of irregular inequality constraints.
For example, the theory of 2-regularity [29, 4, 6, 5, 16, 1, 13, 20, 17, 15] offers opti-
mality conditions for the case in which irregularity of the problem is induced only by
equality constraints, with inequality constraints being either absent or regular. We
next show that in our context, applicability of this approach is very limited.

For simplicity, let us take Y = �m, K = �m− , and F (x̄) = 0, and reformulate the
inequality-constrained set D by introducing slacks:

∆ = {(x, u) ∈ X ×�m | F (x) + u = 0, u ≥ 0}.
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The new set ∆ is given by equality and “simple” inequality constraints. Clearly, the
equality constraint in ∆ is regular at every point, but MFCQ is still violated at (x̄, 0).
Hence, the classical results for the regular case are not applicable. Results from the
theory of 2-regularity are obviously also not useful, as there are simply no irregular
equality constraints in ∆.

Another possibility is a purely equality-constrained reformulation:

∆ = {(x, u) ∈ X ×�m | F (x) + u2 = 0},

where the square is componentwise. Here, the equality constraint is irregular at (x̄, 0),
and 2-regularity theory is applicable, at least formally. However, this application leads
to something meaningful only when kerF ′(x̄) �= {0}, which is an unnatural require-
ment for inequality constraints. Our approach is certainly free of this restriction.
Moreover, even if kerF ′(x̄) �= {0}, for inequality constraints this subspace can have
little to do with the tangent cone, as in Example 4.1 below. Without going into de-
tail, we shall mention that there are also some other limitations in the “brute force”
approach of applying results known for irregular equality constraints to equation re-
formulations of irregular inequality constraints. It seems that developing a special
approach specifically designed for inequality constraints is really necessary. An initial
step in the direction pursued in the present paper was made in [14].

Another known approach to irregular problems consists of second-order neces-
sary and sufficient optimality conditions of Levitin–Milyutin–Osmolovskii type, e.g.,
[21, 18, 7, 8, 1, 2] (see also recent work in [10, 25]), which employ F. John first-order
necessary conditions (with undefined multiplier corresponding to the objective func-
tion). This approach is effective when applied to inequality-constrained problems, but
it leads to results of a completely different nature, which makes comparison with the
present paper difficult. We note that this approach is not principally associated with
precise description of the tangent cone, i.e., it does not deal with sufficient conditions
for tangency beyond the regular case.

Next, we discuss the well-known second-order CQ [7, 8], which was introduced
using second-order parabolic tangent sets, and which is especially relevant for irregular
inequality-constrained problems. In our setting, this CQ can be stated as follows:

∃ h ∈ X such that 〈f ′(x̄), h〉 = 0,(4.1)

F ′(x̄)h ∈ K + lin{F (x̄)},(4.2)

F ′′(x̄)[h]2 ∈ intK + lin{F (x̄)}+ ImF ′(x̄).(4.3)

This condition is also weaker than Robinson’s regularity (in the regular case, (4.1)–
(4.3) hold with h = 0), yet it guarantees that if x̄ is a local solution of (1.5), (1.1), then
F. John-necessary conditions are satisfied with a nonzero multiplier corresponding to
the objective function. Note that relations (4.2) and (4.3) already appear in Theo-
rem 2.2 (see (2.6) and (2.7)), where they are used to explicitly construct a parabolic
feasible arc tangent to h. But observe that in Theorem 2.2 we consider a larger set
of directions. Namely, for an element h satisfying second-order necessary conditions
of tangency, this theorem gives constructive sufficient conditions for h to be a limit
point of elements satisfying (4.2), (4.3). This is important, because it is certainly
possible that (4.1) does not hold for any h satisfying (4.2), (4.3), but that it does hold
for some limit point of such elements. Moreover, Example 4.1 below illustrates that
this situation (i.e., the second-order CQ (4.1)–(4.3) is violated, but our Theorem 3.2
is applicable) is in fact quite likely to occur.
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Finally, note that if h is an element satisfying (4.1)–(4.3), then (3.6) also holds,
and the assumptions of Theorem 3.2 are satisfied. Moreover, in this case, (3.12) holds.
Hence, relation (3.8) in Theorem 3.2 implies that y∗2 = 0. We conclude that optimality
conditions under the second-order CQ (4.1)–(4.3) are a particular case of Theorem 3.2
(under the additional assumption that K is finitely generated).

To complete this section, we present an example illustrating all the results de-
rived above, and showing that they can be applicable when the F. John-optimality
conditions and optimality conditions based on classical (first- and second-order) CQs
are not useful. Note that our example is not pathological or exotic.

Example 4.1. Let X = Y = �2, K = �2
−, and consider a family of functions

f : �2 → �, f(x) = ax1 + bx2 + ω1(x)

and the mapping

F : �2 → �2, F (x) =

(
−x1, −1

2
(x2

1 − x2
2)

)
+ ω2(x),

where ω1 : �2 → �, |ω1(x)| = o(‖x‖), and ω2 : �2 → �2, ‖ω2(x)‖ = o(‖x‖2).
Consider the point x̄ = 0 in �2. We have that F (0) = 0, so that 0 ∈ D, where D

is given by (1.1). It can be easily seen that MFCQ does not hold here, and so classical
theory does not apply. By direct computations, we obtain that

H2(0) = H̃2(0) = {h ∈ R2 | h1 ≥ 0, h2
1 − h2

2 ≥ 0},
H̄2(0) = {h ∈ H2(0) | ∃ h̄ ∈ R2 : h̄1 ≥ 0, h1h̄1 − h2h̄2 > 0} = H2(0).

Hence, by Theorem 2.2,

TD(0) = H2(0) = {h ∈ R2 | h1 ≥ |h2|},

which is actually geometrically obvious. Observe further that the linearized cone is
given by

{h ∈ R2 | F ′(x̄)h ∈ TK(F (x̄))} = {h ∈ R2 | h1 ≥ 0},

which is different from TD(0). Hence, the Kuhn–Tucker, Abadie, and any other
CQs guaranteeing that the tangent and linearized cones coincide are violated in this
example. Note that in this case, the tangent cone is actually polyhedral, just different
from the linearized one. This shows that our description can be useful even when the
tangent cone is “simple.”

It is easy to see that for all values of parameters a and b, the F. John conditions
(1.6) for problem (1.5), (1.1) hold at 0 with y0 = 0. Furthermore, y0 can be nonzero
only if b = 0 and a ≤ 0. For all other values of the parameters, F. John conditions
are not meaningful for describing optimality.

As is easy to see, the set of elements satisfying (4.2), (4.3) is {h ∈ R2 | h1 >
|h2|}. Clearly, if 0 is a local minimizer, conditions (4.1)–(4.3) can hold for some h
simultaneously only if a = b = 0. Hence, for all other values of the parameters, the
classical second-order CQ (4.1)–(4.3) does not hold, and the corresponding results are
not applicable.

We next illustrate our approach, considering several characteristic values of the
parameters.
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If a = 1, b = −1, then 0 is a (nonisolated) local minimizer for problem (1.5),
(1.1). As is easy to see,

〈f ′(0), h〉 ≥ 0 ∀h ∈ H2(0),(4.4)

which illustrates Theorem 3.1. Note that for h = (1, 1) ∈ H2(0), the latter inequality
holds as equality, and our primal-dual optimality conditions (3.7)–(3.9) are satisfied
with the multipliers

y∗1 = (0, α) ∈ �2, α ∈ �−, y∗2 = (0, −1) ∈ �2 .

This gives an illustration for Theorem 3.2. Note that for h ∈ H2(0) \ lin{(1, 1)}, a
similar representation does not hold. The reason is that for such h, strict inequality
holds in (4.4).

If a = 1, b = 0, then (4.4) holds as a strict inequality for every h ∈ H2(0) \ {0},
and 0 is an isolated local minimizer. This illustrates sufficient optimality condition
(3.4).

Finally, if a = 0, b = 1, then it is easy to see that (4.4) does not hold for those
elements h ∈ H2(0) for which h2 < 0. Theorem 3.1 implies that 0 is not a local
minimizer in this case. We could similarly use Theorem 3.2 to verify this conclusion.
Indeed, for the element h = (1, 0) ∈ H2(0), (4.4) holds as an equality, but there exist
no multipliers y∗1 , y

∗
2 ∈ �2 for which (3.9) holds.

5. Some further developments. In conclusion, we present some further de-
velopments of the optimality conditions obtained above. The first one has to do with
a certain form of second-order (in terms of the objective function) necessary opti-
mality conditions, and the second outlines an extension to mixed equality–inequality-
constrained problems.

5.1. Second-order optimality conditions. To derive second-order optimality
conditions, we need the following notion. Let X and Σ be normed linear spaces, and
let a mapping Φ : X → Σ be twice Fréchet-differentiable at a point x̄ ∈ X. Suppose
that Σ1 = Im Φ′(x̄) is closed and has a closed complementary subspace Σ2 in Σ. Let
P be a projector onto Σ2 parallel to Σ1 in Σ. (By assumptions above, this projector
is continuous.) In this setting, the mapping Φ is referred to as 2-regular at the point
x̄ with respect to an element h ∈ X (see [29, 4, 6, 5, 16, 1, 13, 20, 17]) if

Im(Φ′(x̄) + PΦ′′(x̄)[h]) = Σ.

We note that the 2-regularity property of Φ does not depend on a choice of the
complementary subspace Σ2.

The following generalization of the classical Lyusternik’s theorem can be found
in [29, 5, 16, 20, 17].

Proposition 5.1. Let X and Σ be Banach spaces. Assume that a mapping
Φ : X → Σ is three times Fréchet-differentiable at a point x̄ ∈ X such that Φ(x̄) = 0.
Assume further that Φ is 2-regular at x̄ with respect to an element h ∈ X such that

h ∈ Ker Φ′(x̄), Φ′′(x̄)[h]2 ∈ Im Φ′(x̄).

Then there exist a number δ > 0 and a mapping r : (−δ, δ)→ X such that

Φ(x̄ + th + r(t)) = 0 ∀ t ∈ (−δ, δ) , ‖r(t)‖ = O(t2).
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We next derive a special form of higher-order necessary optimality conditions
using the results obtained in section 3.

Theorem 5.2. Let X and Y be Banach spaces, let K be a closed finitely generated
cone in Y with a nonempty interior, and let f : X → � be twice and F : X → Y be
three times Fréchet-differentiable at the point x̄, which is a local minimizer for problem
(1.5), (1.1). Assume that (3.6) holds, and let Π̃ be a (continuous) projector onto some
closed complementary subspace Ỹ of lin{F (x̄), F ′(x̄)h} in Y. Assume finally that

Π̃F ′′(x̄)[h]2 ∈ Π̃ ImF ′(x̄)(5.1)

and that the mapping Φ : X → Ỹ , Φ(x) = Π̃F (x), is 2-regular at the point x̄ with
respect to h. Then for every y∗1 , y

∗
2 ∈ Y ∗ satisfying (3.7)–(3.9), it holds that

f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉 ≥ 0.(5.2)

Proof. By the definition of Π̃, we have

Φ′(x̄)h = Π̃F ′(x̄)h = 0.

Hence, taking into account (5.1), Proposition 5.1 is applicable (with Σ = Ỹ ). So for
some number δ > 0 and some mapping r : (−δ, δ)→ X, we have that ∀ t ∈ (−δ, δ)

Π̃F (x̄ + th + r(t)) = 0, ‖r(t)‖ = O(t2),

where the first equality means that

F (x̄ + th + r(t)) ∈ lin{F (x̄), F ′(x̄)h}.(5.3)

By (3.7), y∗1 ∈ (lin{F (x̄), F ′(x̄)h})⊥. Hence, ∀ t ∈ (−δ, δ) we have

0 = 〈y∗1 , F (x̄ + th + r(t))〉
= 〈y∗1 , F ′(x̄)r(t)〉+

1

2
〈y∗1 , F ′′(x̄)[th]2〉+ o(t2).(5.4)

Similarly, by (3.8), y∗2 ∈ (lin{F (x̄), F ′(x̄)h})⊥ and also y∗2 ∈ (ImF ′(x̄))⊥, which
implies that

0 = 〈y∗2 , F (x̄ + th + r(t))〉
= 〈y∗2 , F ′′(x̄)[th, r(t)]〉+

1

6
〈y∗2 , F ′′′(x̄)[th]3〉+ o(t3).(5.5)

By (5.3), there exist λ1, λ2 : (−δ, δ)→ � such that

F (x̄ + th + r(t)) = λ1(t)F (x̄) + λ2(t)F ′(x̄)h.

On the other hand, by differentiability of F ,

F (x̄ + th + r(t)) = F (x̄) + tF ′(x̄)h + o(t).

Therefore, we can take λ1(t) = 1 + o(t), λ2(t) = t + o(t). Since h ∈ H̃2(x̄), we have
that F ′(x̄)h = y + λF (x̄) for some y ∈ K, λ ∈ �. We further obtain

F (x̄ + th + r(t)) = (1 + o(t))F (x̄) + (t + o(t))(y + λF (x̄))

= (1 + λt + o(t))F (x̄) + (t + o(t))y.
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Taking into account that F (x̄) ∈ K and y ∈ K, it is clear now that if δ > 0 is small
enough, then x̄ + th + r(t) ∈ D ∀ t ∈ (0, δ), and since x̄ is a local minimizer, by
differentiability of f it follows that ∀ t ∈ (0, δ)

0 ≤ f(x̄ + th + r(t))− f(x̄) = 〈f ′(x̄), r(t)〉+
1

2
f ′′(x̄)[th]2 + o(t2),

where we have also used (3.6). Combining the latter relation with (5.4) and (5.5)
(divided by −1 and −t, respectively), we obtain

0 ≤ 〈f ′(x̄), r(t)〉 − 〈y∗1 , F ′(x̄)r(t)〉 − 〈y∗2 , F ′′(x̄)[h, r(t)]〉
+

1

2
f ′′(x̄)[th]2 − 1

2
〈y∗1 , F ′′(x̄)[th]2〉 − 1

6t
〈y∗2 , F ′′′(x̄)[th]3〉+ o(t2)

= 〈f ′(x̄)− (F ′(x̄))∗y∗1 − (F ′′(x̄)[h])∗y∗2 , r(t)〉
+

t2

2

(
f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉

)
+ o(t2)

=
t2

2

(
f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉

)
+ o(t2),

where the last equality follows from (3.9). Dividing by t2/2 and passing onto the limit
as t→ 0, we obtain (5.2).

Note that the mapping Φ defined in Theorem 5.2 could be regular (rather than
2-regular) only if the Robinson’s regularity condition were to be satisfied at x̄.

The next example illustrates that Theorem 5.2 provides additional information
that can be used to eliminate candidates for optimality.

Example 5.1. Consider the setting of Example 4.1, where a = 1, b = −1,
ω2(·) ≡ 0 on �2, and ω1 : �2 → � is a quadratic form negative on h = (1, 1). Then the
first-order necessary conditions given by Theorems 3.1 and 3.2 are satisfied at 0 (see
Example 4.1), but by direct inspection it can be seen that the second-order necessary
optimality conditions given by Theorem 5.2 are violated. Indeed, F ′(x̄)h = (−1, 0),
and so one can take Ỹ = lin{(0, 1)}. Then Φ can be considered as a scalar-valued
function

Φ : �2 → �, Φ(x) = −1

2
(x2

1 − x2
2).

This function is certainly 2-regular at 0 with respect to every nonzero element. (For
scalar-valued functions, the latter property is equivalent to saying that 0 is a nonde-
generate critical point [3].) In particular, Φ is 2-regular at 0 with respect to h, which
obviously satisfies (5.1.) We further have that

f ′′(x̄)[h]2 − 〈y∗1 , F ′′(x̄)[h]2〉 − 1

3
〈y∗2 , F ′′′(x̄)[h]3〉 = 2ω1(h) < 0,

which is in contradiction with (5.2). We conclude that 0 is not a local minimizer for
problem (1.5), (1.1).

5.2. Mixed equality and inequality constraints. In contrast to the regular
case, it appears very difficult (if not impossible) to extend the results for irregular
equality- or inequality-constrained problems to the case with mixed inequality and
equality constraints, except for some special cases. (For a complete modification
of this kind, one would have to avoid the condition that cone K has a nonempty
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interior.) One special case, specifically where the singularity/irregularity is due to
equality-type constraints only, is studied thoroughly in [5, 20] (those results were
already mentioned in section 4). Let us consider briefly the opposite case, i.e., where
irregularity is induced by inequality constraints, while equality constraints are regular.
Let set D now be given by

D = {x ∈ X | F (x) ∈ K, G(x) = 0}.(5.6)

Assume G : X → Z is three times continuously differentiable, where X and Z are
Banach spaces. Suppose G is regular at a point x̄ ∈ D, i.e.,

ImG′(x̄) = Z,

and there exists a continuous projector Π on KerG′(x̄) in Z. According to the classical
facts of nonlinear analysis (see, e.g., [3, 13]), under those assumptions there exist a
neighborhood U of 0 in X and a mapping ρ : U → X such that ρ(0) = x̄, ρ(U) is a
neighborhood of x̄ in X, ρ is a C3-diffeomorphism from U onto ρ(U), and

G(ρ(x)) = G′(x̄)x ∀x ∈ U,
ρ′(x) = (R(x))−1R(0) ∀x ∈ U,

(5.7)

where

R(x) : X → Y ×KerG′(x̄), R(x)ξ = (G′(ρ(x))ξ, Πξ), x ∈ U.
Now instead of a feasible point x̄ of problem (1.5), (5.6), we can consider for local

analysis the feasible point 0 of the inequality-constrained problem

min {ϕ(x) | x ∈ ∆}, ∆ = {x ∈ X̃ ∩ U | Φ(x) ∈ K},
where X̃ = KerG′(x̄),

ϕ(x) = f(ρ(x)), Φ(x) = F (ρ(x)), x ∈ U.
Note that taking advantage of (5.7), it is easy to obtain explicit formulas for the first
three derivatives of ϕ and Φ, and so the analysis developed in this paper is applicable
to the derivation of optimality conditions for problem (1.5), (5.6).

Appendix. Auxiliary results. All results in this section can be found in stan-
dard books on convex analysis [28, 3, 19, 26] or follow from results contained therein.

Lemma A.1. Let Σ be a topological linear space, L be a linear subspace in Σ, and
C be a convex cone in Σ such that intC �= ∅. Then

intC ∩ L = ∅ ⇔ C∗ ∩ L⊥ �= {0}.
Lemma A.2. Let Σ be a topological linear space and Ω1, Ω2 be convex sets in Σ,

with int Ω1 �= ∅. Then
int(Ω1 + Ω2) = int Ω1 + Ω2.

Lemma A.3. Let Σ be a normed linear space and C1, C2 be finitely generated
cones in Σ. Then

cl(C1 + C2) = clC1 + clC2.
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Lemma A.4. Let Υ and Σ be normed linear spaces, dim Σ <∞, Λ : Υ→ Σ be a
continuous linear operator, and C be a nonempty closed finitely generated cone in Σ.
Then for a cone Γ = {ξ ∈ Υ | Λξ ∈ C} it holds that

Γ∗ = Λ∗C∗.

Lemma A.5. Let Σ be a locally convex topological linear space, and C be a convex
cone in Σ. Then

σ1 ∈ clC , σ2 ∈ intC ⇒ σ1 + σ2 ∈ intC.

Acknowledgments. We are grateful to the two anonymous referees and the ed-
itor for constructive suggestions which led to considerable improvement of the paper.
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INDEFINITE STOCHASTIC LINEAR QUADRATIC CONTROL AND
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Abstract. A stochastic linear quadratic (LQ) control problem is indefinite when the cost weight-
ing matrices for the state and the control are allowed to be indefinite. Indefinite stochastic LQ theory
has been extensively developed and has found interesting applications in finance. However, there
remains an outstanding open problem, which is to identify an appropriate Riccati-type equation
whose solvability is equivalent to the solvability of the indefinite stochastic LQ problem. This paper
solves this open problem for LQ control in a finite time horizon. A new type of differential Riccati
equation, called the generalized (differential) Riccati equation, is introduced, which involves algebraic
equality/inequality constraints and a matrix pseudoinverse. It is then shown that the solvability of
the generalized Riccati equation is not only sufficient, but also necessary, for the well-posedness of
the indefinite LQ problem and the existence of optimal feedback/open-loop controls. Moreover, all
of the optimal controls can be identified via the solution to the Riccati equation. An example is
presented to illustrate the theory developed.

Key words. stochastic LQ control, indefinite costs, generalized Riccati equation, matrix pseudo-
inverse, matrix minimum principle, dynamic programming
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1. Introduction. Consider the following stochastic linear quadratic (LQ) opti-
mal control problem in a finite time horizon [0, T ]:

(1.1)

Minimize J = E

{∫ T

0

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt + x(T )′Hx(T )

}
,

subject to

{
dx(t) = [A(t)x(t) +B(t)u(t)]dt + [C(t)x(t) +D(t)u(t)]dW (t),
x(0) = x0 ∈ Rn.

Here W (t) is a standard one-dimensional Brownian motion, and the control u(·) takes
value in some Euclidean space.

In optimal LQ control theory, the Riccati equation approach has been used sys-
tematically to provide an optimal feedback control (see [14, 20, 4] for the deterministic
case, and [23, 6, 11] for the stochastic case). In the literature it is typically assumed
that the cost function has a positive definite weighting matrix, R, for the control term,
and a positive semidefinite weighting matrix, Q, for the state term. In this case, the
solvability of the Riccati equation is both necessary and sufficient for the solvability
of the underlying LQ problem.

However, it was found in [7] for the first time that a stochastic LQ problem with
indefinite Q and R may still be well-posed. This phenomenon has to do with the
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deep nature of the uncertainty involved; see [7] for a detailed discussion and many
examples. Follow-up research on indefinite stochastic LQ control in a finite time
horizon has been carried out in [8, 16, 9] to incorporate more complicated features
such as random coefficients and integral constraints. The infinite-time-horizon case,
in which the stability becomes a crucial issue, was treated in [2, 24] via techniques
in linear matrix inequality and semidefinite programming [21]. On the other hand,
applications of indefinite LQ control to portfolio selection problems and a contingent
claim problem can be found in [25, 17] and [15], respectively. We would also like to
mention a recent paper [12] in which the stochastic H∞ problem is dealt with via a
Riccati equation that has a structure similar to the one in [7].

In the first paper [7] on indefinite stochastic LQ control, it is shown that if the
following type of Riccati equation, called the stochastic Riccati equation (t is sup-
pressed),

(1.2)


Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)−1(B′P +D′PC) +Q = 0,
P (T ) = H,
R +D′PD > 0, a.e. t ∈ [0, T ],

has a solution P (·), then the original (indefinite) LQ problem is well-posed and an
optimal feedback control can be constructed explicitly via P (·). (Note that the third
positive definiteness constraint in (1.2) is part of that equation and must be satisfied
by any solution.) In other words, the solvability of the stochastic Riccati equation
(1.2) is sufficient, but not necessary in general, for the well-posedness as well as the
solvability of the LQ problem. A natural question then is what can we say about the
indefinite LQ problem if (1.2) does not have a solution at all? Note that the positive
definiteness constraint of R + D′PD in (1.2) is very restrictive, which likely leads to
the nonexistence of its solutions. As a consequence, it may happen that the original
indefinite LQ problem is well-posed and there exist optimal controls, while (1.2) still
has no solution, in which case (1.2) becomes useless. This is quite different from the
deterministic counterpart (as mentioned earlier), which in turn suggests that (1.2)
may not be the right Riccati equation for indefinite LQ control.

Let us look at an example to illustrate the above discussion.
Example 1.1. Consider LQ problem (1.1) with T = 1, A(t) = B(t) = D(t) = 1,

C(t) = −1, Q(t) = −1, R(t) = − 2e3(1−t)+1
3 , and H = 1. Note that Q and R are both

negative here. Equation (1.2) in this case specializes to


Ṗ (t) + 3P (t)− 1 = 0,
P (1) = 1,
R(t) + P (t) > 0, a.e. t ∈ [0, T ].

(1.3)

The only solution that satisfies the first two constraints of the above equation is

P (t) = 2e3(1−t)+1
3 . Hence R(t) + P (t) ≡ 0, violating the third constraint. This shows

that (1.3) has no solution and the result in [7] fails to apply to this case. However,

the original LQ problem is well-posed. To see this, let P (t) = 2e3(1−t)+1
3 , and apply

Itô’s formula to P (t)x(t)2. We then obtain

d[P (t)x(t)2] = [x(t)2 + P (t)u(t)2]dt + {· · ·}dW (t).

Integrating from 0 to 1, and taking expectation, we have J ≡ P (0)x2
0. This implies

that the cost function takes a constant value P (0)x2
0 regardless of the control being

applied. In particular, the LQ problem is well-posed and does have optimal controls.
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The above example suggests that the stochastic Riccati equation (1.3) introduced
in [7] may not be able to handle certain indefinite stochastic LQ problems. Finding
a more appropriate Riccati-type equation, in the sense that its solvability should be
equivalent to that of the underlying LQ problem, remains an outstanding open prob-
lem. The objective of this paper is to tackle this open problem, thereby enabling us to
deal with general indefinite stochastic LQ problems, including pathological situations
such as the one in Example 1.1. The key to achieving this goal is the introduction
of a new type of differential Riccati equation—called a generalized Riccati equation—
where the positive definiteness constraint of R + D′PD is relaxed. This equation
involves a matrix pseudoinverse and an additional algebraic constraint due to the
possible singularity of the term R+D′PD. This new Riccati equation turns out to be
the right one for studying indefinite LQ problems, as the solvability of this equation
is not only sufficient, but also necessary, for the well-posedness of the LQ problem as
well as the attainability of its optimal controls. Moreover, we are able to derive all
optimal controls via the solution of the generalized Riccati equation.

It is worth mentioning that even for deterministic singular LQ problems (see
[22, 13, 18, 10], among others), which are a special case of the problem treated in this
paper, our formulation and results are still new; for details see section 3.

The remainder of this paper is organized as follows. Section 2 formulates the
indefinite stochastic LQ problem and gives some preliminaries. The generalized Ric-
cati equation (GRE) is also introduced. Section 3 shows that the solvability of the
GRE is sufficient for the well-posedness of the LQ problem and the existence of an
optimal control. Moreover, all the optimal controls are identified via the solution of
the GRE. Sections 4 and 5 prove that the solvability of the GRE is also necessary
for the existence of optimal linear feedback controls and optimal open-loop controls,
respectively. An example is presented in section 6 to illustrate the results obtained.
Finally, section 7 gives some concluding remarks.

2. Problem formulation and preliminaries.

2.1. Notation. We make use of the following notation in this paper:

N : the set of positive integers.
R : the set of real numbers.
Rn : n-dimensional Euclidean space.
M ′ : the transpose of a matrix M.
M† : the Moore–Penrose pseudoinverse of a matrix M.

Tr(M) : the sum of diagonal elements of a square matrix M.

|x| : =
√∑

x2
i for a vector x = (x1, . . . , xn)′.

Rn×m : the space of all n×m matrices.
Sn : the space of all n× n symmetric matrices.
Sn+ : the subspace of all positive semidefinite matrices of Sn.
Ŝn+ : the subspace of all positive definite matrices of Sn.

Given a filtered probability space (Ω,F ,P;Ft), where t ∈ [0, T ], and a Hilbert
space X with the norm ‖ · ‖X , define the Hilbert space

L2
F (0, T ;X) =

{
φ(·)| φ(·) is an Ft-adapted, X-valued measurable process on [0, T ],

and E
∫ T
0
‖ φ(t, ω) ‖2X dt < +∞

}
,
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with the norm

‖ φ(·) ‖F,2=

(
E

∫ T

0

‖ φ(t, ω) ‖2X dt

) 1
2

.

2.2. Problem formulation. Let (Ω,F ,P;Ft) be a given filtered probability
space with a standard one-dimensional Brownian motion W (t) on [0, T ] (with W (0) =
0). Consider the following linear Itô stochastic differential equation:{

dx(t) = [A(t)x(t) +B(t)u(t)]dt + [C(t)x(t) +D(t)u(t)]dW (t),
x(s) = y,

(2.1)

where (s, y) ∈ [0, T )×Rn are the initial time and initial state, respectively, and u(·),
the admissible control, is an element in Uad ≡ L2

F (0, T ;Rnu). In order to simplify
exposition we assume that the Brownian motion is one-dimensional. There is no
essential difficulty with the multidimensional case.

For each (s, y) and u(·) ∈ Uad, the associated cost is

J(s, y;u(·)) = E

{∫ T

s

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt + x(T )′Hx(T )

}
.(2.2)

The solution x(·) of (2.1) is called the response of the control u(·) ∈ Uad, and
(x(·), u(·)) is called an admissible pair. The objective of the optimal control prob-
lem is to minimize the cost function J(s, y;u(·)), for a given (s, y) ∈ [0, T )×Rn, over
all u(·) ∈ Uad. The value function is defined as

V (s, y) = inf
u(·)∈Uad

J(s, y;u(·)).(2.3)

Definition 2.1. The optimization problem (2.1)–(2.3) is called well-posed if

V (s, y) > −∞ ∀(s, y) ∈ [0, T )×Rn.

An admissible pair (x∗(·), u∗(·)) is called optimal (with respect to the initial condition
(s, y)) if u∗(·) achieves the infimum of J(s, y;u(·)).

The following basic assumption will be in force throughout this paper.
Assumption (A). The data appearing in the LQ problem (2.1)–(2.3) satisfy

A,C ∈ L∞(0, T ;Rn×n),
B,D ∈ L∞(0, T ;Rn×nu),
Q ∈ L∞(0, T ;Sn),
R ∈ L∞(0, T ;Snu),
H ∈ Sn.

We emphasize again that we are dealing with an indefinite LQ problem, namely
that Q, R, and H are all possibly indefinite.

2.3. Generalized (differential) Riccati equation. We start by recalling prop-
erties of a pseudo matrix inverse [19].

Proposition 2.2. Let a matrix M ∈ Rm×n be given. Then there exists a unique
matrix M† ∈ Rn×m such that{

MM†M = M, M†MM† = M†,
(MM†)′ = MM†, (M†M)′ = M†M.

(2.4)
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The matrix M† above is called the Moore–Penrose pseudoinverse of M .
Now, we introduce a new type of Riccati equation associated with the LQ problem

(2.1)–(2.3).
Definition 2.3. The constrained differential equation (with the time argument

t suppressed)

(2.5)


Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC) +Q = 0,
P (T ) = H,
(R +D′PD)(R +D′PD)†(B′P +D′PC)− (B′P +D′PC) = 0,
R +D′PD ≥ 0, a.e. t ∈ [0, T ],

is called a generalized (differential) Riccati equation (GRE).
If the term (R + D′PD) is further required to be nonsingular, then the GRE

reduces to the stochastic Riccati equation (1.2) that was introduced in [7].
Another interesting special case is that in which (R + D′PD) ≡ 0; the GRE

reduces to the following linear differential matrix system:


Ṗ + PA+A′P + C ′PC +Q = 0,
P (T ) = H,
B′P +D′PC = 0,
R +D′PD = 0, a.e. t ∈ [0, T ].

(2.6)

2.4. Some useful lemmas.
Lemma 2.4. LetM(·) be a given continuously differentiable (in t) matrix function

taking values in Sn. Then for any admissible pair (x(·), u(·)) of the system (2.1), we
have

E[x(t)′Mx(T )]− y′M(s)y − E
∫ T

s

[x′(Ṁ +A′M +MA+ C ′MC)x](t)dt

−E
∫ T

s

[2u′(B′M +D′MC)x+ u′D′MDu](t)dt = 0.

(2.7)

Proof. Using Itô’s formula, we have (t is suppressed)

d(x′Mx)− [(Ax+Bu)′Mx+ x′Ṁx+ x′M(Ax+Bu)− (Cx+Du)′M(Cx+Du)]dt

− [x′M(Cx+Du) + (Cx+Du)′Mx]dW (t) = 0.

Taking expectations and integrations we obtain (2.7).
Lemma 2.5. Let a symmetric matrix S be given. Then

(i) S† = S†′.
(ii) S ≥ 0 if and only if S† ≥ 0.
(iii) SS† = S†S.
Proof. Since S is symmetric, it has a singular value decomposition of the following

form:

S = V

[
Σ 0
0 0

]
V ′,

where Σ is a nonsingular diagonal matrix and V a matrix such that V V ′ = V ′V = I.
Now, S† is given by

S† = V

[
Σ−1 0

0 0

]
V ′.

Using the above expression of S†, it is easy to show that items (i)–(iii) hold.
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Lemma 2.6 (Extended Schur’s lemma [3]). Let matricesM = M ′, N , and R = R′

be given with appropriate sizes. Then the following conditions are equivalent:
(i) M −NR†N ′ ≥ 0, R ≥ 0, and N(I −RR†) = 0.

(ii)

[
M N
N ′ R

]
≥ 0.

(iii)

[
R N ′

N M

]
≥ 0.

The following lemma plays a key technical role in this paper.
Lemma 2.7. Let matrices L, M , and N be given with appropriate sizes. Then

the matrix equation

LXM = N(2.8)

has a solution X if and only if

LL†NM†M = N.(2.9)

Moreover, any solution to (2.8) is represented by

X = L†NM† + S − L†LSMM†,(2.10)

where S is a matrix with an appropriate size.
Proof. If X satisfies the equation LXM = N , then we have

N = LXM = LL†LXMM†M = LL†NM†M.

Conversely, if (2.9) is satisfied, then L†NM† is a solution of LXM = N . This proves
the first part of the lemma. Now, let Y be any matrix with appropriate size and
define X̃ = Y −L†LYMM†. Then X̃ satisfies the homogeneous equation LX̃M = 0.
Hence L†NM† + X̃ must satisfy (2.8). On the other hand, let X be a solution to
(2.8). Then by (2.9), one has LSM = 0, where S = X − L†NM†. Hence

X = L†NM† + S − L†LSMM†.

This completes the proof.

3. Sufficiency of the GRE. In this section, we will show that the solvability of
the GRE (2.5) is sufficient for the well-posedness of the LQ problem and the existence
of an optimal linear state feedback control. Moreover, any optimal control can be
obtained via the solution to the GRE.

Theorem 3.1. If the GRE (2.5) admits a solution P (·), then the stochastic LQ
problem (2.1)–(2.3) is well-posed. Moreover, the set of all the optimal controls with
respect to the initial (s, y) ∈ [0, T )×Rn is determined by the following (parameterized
by (Y, z)):

u(Y,z)(t) = −
{

[R(t) +D(t)′P (t)D(t)]†[B(t)′P (t) +D(t)′P (t)C(t)] + Y (t)

− [R(t) +D(t)′P (t)D(t)]†[R(t) +D(t)′P (t)D(t)]Y (t)
}
x(t)(3.1)

+ z(t)− [R(t) +D(t)′P (t)D(t)]†[R(t) +D(t)′P (t)D(t)]z(t),

where Y (·) ∈ L2
F (s, T ;Rnu×n) and z(·) ∈ L2

F (s, T ;Rnu). Furthermore, the value
function is uniquely determined by P (·):

V (s, y) ≡ inf
u(·)∈Uad

J(s, y;u(·)) = y′P (s)y.(3.2)
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Proof. Let P (·) be a solution of GRE (2.5). Applying Lemma 2.4, we can express
the cost function as follows:

J(s, y;u(·)) = y′P (s)y + E

∫ T

s

[
x′(Ṗ + PA+A′P + C ′PC +Q)x

+ 2u′(B′P +D′PC)x+ u′(D′PD +R)u
]
(t)dt.(3.3)

Now, let Y (·) ∈ L2
F (s, T ;Rnu×n) and z(·) ∈ L2

F (s, T ;Rnu) be given. Set

L1(t) = Y (t)− [R(t) +D′(t)P (t)D(t)]†[R(t) +D′(t)P (t)D(t)]Y (t),

L2(t) = z(t)− [R(t) +D′(t)P (t)D(t)]†[R(t) +D′(t)P (t)D(t)]z(t).

Applying Proposition 2.2 and Lemma 2.5(iii), we have

(3.4)

[R(t) +D′(t)P (t)D(t)]Li(t) = [R(t) +D′(t)P (t)D(t)]†Li(t) = 0, i = 1, 2,

and

[P (t)B(t) + C ′(t)P (t)D(t)]Li(t) = 0, i = 1, 2.(3.5)

Then identity (3.3) can be expressed as

J(s, y;u(·))
= y′P (s)y + E

∫ T
s

{
x′[Ṗ + PA+A′P + C ′PC +Q

− (PB + C ′PD)(R +D′PD)†(B′P +D′PC)]x

+
[
u+

(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2

]′
× (R +D′PD)

[
u+

(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2

]}
(t)dt

= y′P (s)y + E
∫ T
s

{[
u+

(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2

]′
× (R +D′PD)

[
u+

(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2

]}
(t)dt.

(3.6)

Hence, J(s, y;u(·)) is minimized by the control given by (3.1) with the optimal value
being y′P (s)y.

What remains to show is that any optimal control can be represented by (3.1) for
some Y (·) and z(·). To this end, let u(·) be an optimal control. Then by (3.6) the
integrand in the right-hand side of (3.6) must be zero almost everywhere in t. This
implies (t is suppressed)

(R +D′PD)1/2
[
u+

(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2

]
= 0,

which leads to

(R +D′PD)[u+
(
(R +D′PD)†(B′P +D′PC) + L1

)
x+ L2] = 0,

or, equivalently (noting (3.4)),

(3.7)

[R(t) +D(t)′P (t)D(t)]u(t) + [B(t)′P (t) +D(t)′P (t)C(t)]x(t) = 0, a.e. t ∈ [s, T ].
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To solve the above equation in u(t), we apply Lemma 2.7 with

L = R(t) +D(t)′P (t)D(t), M = I, N = −[B(t)′P (t) +D(t)′P (t)C(t)]x(t).

Notice that condition (2.9) in the present case is implied by the third constraint in
GRE (2.5); hence the general solution (2.10) with z(t) = S and Y (t) = 0 yields that
u(t) can be represented by (3.1).

Corollary 3.2. The optimal controls are obtained in the following special cases:

(i) If R(t) + D(t)′P (t)D(t) ≡ 0, a.e. t ∈ [s, T ], then any admissible control is
optimal.

(ii) If R(t) + D(t)′P (t)D(t) > 0, a.e. t ∈ [s, T ], then there is a unique optimal
control that is given by the following linear feedback law:

u(t) = −[R(t) +D(t)′P (t)D(t)]−1[B(t)′P (t) +D(t)′P (t)C(t)]x(t).(3.8)

Proof. The proofs here are straightforward from Theorem 3.1.

As an immediate consequence of Theorem 3.1, we have the uniqueness of the
solution to GRE (2.5).

Corollary 3.3. If there is a solution to the GRE (2.5), then it must be the only
solution to (2.5).

Proof. Let P1(·) and P2(·) be two solutions of GRE (2.5). Then Theorem 3.1
implies that

y′P1(s)y = y′P2(s)y ∀y ∈ Rn ∀s ∈ [0, T ].

Hence P1(t) ≡ P2(t).

It is interesting to see the specialization of our results in the deterministic case
(i.e., C(t) = D(t) ≡ 0). The control weight R(t) is given as satisfying R(t) ≥ 0, so it
is a possibly singular case. The corresponding GRE is


Ṗ (t) + P (t)A(t) +A(t)′P (t)− P (t)B(t)R(t)†B(t)′P (t) +Q(t) = 0,
P (T ) = H,
R(t)R(t)†B(t)′P (t)−B(t)′P (t) = 0 ∀t ∈ [0, T ].

(3.9)

According to Theorem 3.1, if the above equation admits a solution P (·), then there
may be infinitely many optimal controls, and any optimal control has the following
form:

(3.10)

uY,z(t) = [−R(t)†B(t)′P (t) + Y (t)−R(t)†R(t)Y (t)]x(t) + z(t)−R(t)†R(t)z(t),

where Y (·) ∈ L2(s, T ;Rnu×n) and z(·) ∈ L2(s, T ;Rnu).

4. Necessity of the GRE. In the previous section, we proved that the solv-
ability of GRE (2.5) is sufficient for the well-posedness of the stochastic LQ problem
(2.1)–(2.3), and that optimal feedback control laws can be constructed based on the
solution to the Riccati equation. In particular, if (2.5) admits a solution, then there
must be an optimal linear feedback control, obtained by taking Y (t) ≡ 0 and z(t) ≡ 0
in (3.1). In this section we shall show that the solvability of the GRE is also necessary
for there to exist an optimal linear feedback control for the LQ problem.
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4.1. A linear feedback control formulation. If a linear feedback control is
optimal for the LQ problem (2.1)–(2.3), then it must be optimal also in the class of
linear feedback controls of the following form:

u(t) = K(t)x(t), K(t) ∈ Rnu×n.(4.1)

The corresponding closed-loop system with the initial (s, y) = (0, x0) is{
dx(t) = [A(t) +B(t)K(t)]x(t)dt + [C(t) +D(t)K(t)]x(t)dW (t),
x(0) = x0 ∈ Rn.

(4.2)

Now, if x(·) satisfies (4.2), then by Itô’s formula the matrix X(t) ≡ E[x(t)x(t)′]
satisfies the differential matrix equation


Ẋ(t) = [A(t) +B(t)K(t)]X(t) +X(t)[A(t) +B(t)K(t)]′

+ [C(t) +D(t)K(t)]X(t)[C(t) +D(t)K(t)]′,
X(0) = X0 ≡ E[x0x

′
0] ∈ S+

n ,
(4.3)

with the associated cost function J expressed equivalently as

J(K(·)) ≡
∫ T

0

Tr[(Q(t) +K ′(t)R(t)K(t))X(t)]dt + Tr(HX(T )).(4.4)

To summarize, if we consider only the class of linear feedback controls for the
original LQ problem with the initial x(0) = x0, then the problem reduces to the
following deterministic optimal control problem:


MinimizeK(·)

∫ T

0

Tr[(Q+K ′RK)X]dt + Tr(HX(T )),

subject to (4.3).

(4.5)

4.2. Matrix minimum principle. For the reader’s convenience, let us state the
matrix minimum principle (see [5]) here. We start by defining the gradient matrix.
Let f(·) be a function from Rp×q to R. Then the gradient matrix of f is a p × q

matrix, denoted by ∂f(X)
∂X , with the ijth component (∂f(X)

∂X )ij = ∂f(X)
∂xij

.

Consider an n× n matrix differential system{
Ẋ = F (X(t), U(t), t),
X(t0) = X0,

(4.6)

where the control U(·) is a measurable mapping from [t0, T ] to a prescribed set Ω ⊆
Rnu×n. With T fixed, consider the cost function

J(X0, U(·)) =

∫ T

t0

L(X(t), U(t), t)dt +G(X(T )),(4.7)

where G and L are scalar-valued functions, satisfying the usual smooth conditions.
Let P (t) ∈ Rn×n be the costate (adjoint) matrix. Then, the Hamiltonian function is
defined as

H(X(t), P (t), U(t), t) = L(X(t), U(t), t) + Tr(F (X(t), U(t), t)P (t)′).(4.8)

Now, we present the matrix minimum principle in the form stated in [5].
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Proposition 4.1. If (X∗(·), U∗(·)) is optimal for (4.6)–(4.7), then there exists a
costate matrix P ∗(t) satisfying the costate (adjoint) equation

(4.9)


Ṗ ∗(t) = − ∂

∂X∗(t)
L(X∗(t), U∗(t), t)− ∂

∂X∗(t)
Tr(F (X∗(t), U∗(t), t)P ∗(t)′),

P ∗(T ) =
∂

∂X∗(T )
G(X∗(T ))

such that

H(X∗(t), P ∗(t), U∗(t), t) ≤ H(X∗(t), P ∗(t), U, t) ∀U ∈ Ω, a.e. t ∈ [t0, T ].(4.10)

Note that if U(·) is unconstrained, then (4.10) is equivalent to ∂H
∂U∗(t) = 0.

4.3. Necessity of the GRE. We are going to use the matrix minimum principle
to show that if there exists an optimal linear feedback control for the original LQ
problem (2.1)–(2.3), then GRE (2.5) must have a solution. Furthermore, we will
show that any optimal linear feedback control law has the form (3.1) with z(t) ≡ 0.

First we give the following necessary condition.

Theorem 4.2. Assume that the LQ problem (2.1)–(2.3) is well-posed. For any
s ∈ [0, T ), if there exists P (·) such that

(4.11)


Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC) +Q = 0,
P (T ) = H,
(R +D′PD)(R +D′PD)†(B′P +D′PC)−B′P −D′PC = 0, a.e. t ∈ [s, T ],

then P must satisfy

R +D′PD ≥ 0, a.e. t ∈ [s, T ].

Proof. Let λ(t) be any fixed eigenvalue of the matrix R(t) + D(t)′P (t)D(t),
t ∈ [s, T ]. We will show that mes({t ∈ [s, T ]|λ(t) < 0}) = 0, where mes denotes
the Lebesgue measure. Let vλ(t) be a unit eigenvector (i.e., vλ(t)′vλ(t) = 1) as-
sociated with the eigenvalue λ(t). Define In(·) as the indicator function of the set
{t ∈ [s, T ]|λ(t) < − 1

n}, n = 1, 2, . . . . Fix a scalar δ ∈ R and consider the state
trajectory x(·) of system (2.1) under the feedback control

(4.12)

u(t) =




0 if λ(t) = 0,
δIn(t)

|λ(t)|1/2 vλ(t)

− [R(t) +D(t)′P (t)D(t)]†[B(t)′P (t) +D(t)′P (t)C(t)]x(t) if λ(t) �= 0.

Clearly, u(·) ∈ L2
F (s, T ;Rnu). Now,

J(s, y;u(·)) = y′P (s)y + E

∫ T

s

[
u+ (R +D′PD)†(B′P +D′PC)x]′(R +D′PD)

× [u+ (R +D′PD)†(B′P +D′PC)x
]
(t)dt.
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It follows from λ(t) �= 0 that |λ(t)|−1In(t)(R(t) +D(t)′P (t)D(t))vλ(t) = −In(t)vλ(t).
Hence

J(s, y;u(·)) = y′P (s)y − δ2
∫ T

s

In(t)dt

= y′P (s)y − δ2mes

({
t ∈ [s, T ]|λ(t) < − 1

n

})
.

(4.13)

If mes({t ∈ [s, T ]|λ(t) < − 1
n}) > 0, then by letting δ → ∞ in (4.13) we obtain

J(s, y;u(·)) → −∞, which contradicts the well-posedness of the LQ problem. Hence
mes({t ∈ [s, T ]|λ(t) < − 1

n}) = 0. Since

{t ∈ [s, T ]|λ(t) < 0} =
⋃
n∈N

{
t ∈ [s, T ]|λ(t) < − 1

n

}
,

we conclude that mes({t ∈ [s, T ]|λ(t) < 0}) = 0, completing the proof.

Theorem 4.3. If a given linear feedback control u(t) = K(t)x(t) is optimal for
the LQ problem (2.1)–(2.3) with respect to the initial (s, y) = (0, x0), then GRE (2.5)
must have a solution P (·). Moreover, the optimal feedback control u(t) = K(t)x(t) can
be represented via (3.1) with z(t) ≡ 0. In particular, the feedback law u(t) = K(t)x(t)
must be optimal with respect to any initial (s, y) ∈ [0, T )×Rn.

Proof. Since the given feedback control u(t) = K(t)x(t) is optimal over the
set of all admissible controls, it must in particular be optimal over the class of all
linear feedback controls. Therefore, as shown earlier, K(·) must solve the following
deterministic optimal control problem:

(4.14)


min
K(·)

∫ T

0

Tr[(Q+K ′RK)X](t)dt + Tr(HX(T )),

subject to

{
Ẋ(t) = (A+BK)X +X(A+BK)′ + (C +DK)X(C +DK)′,
X(0) = X0, X0 ∈ S+

n .

By the minimum principle, Proposition 4.1, we conclude that the Hamiltonian

Tr
(

(Q+K ′RK)X + [(A+BK)X +X(A+BK)′ + (C +DK)X(C +DK)′]P ′
)

is pointwise (in t) minimized at K(t) over the space of Rnu×n. This, together with
the costate equation (4.9), leads to the following:

(4.15)


Ṗ = −Q−K ′RK − (C +DK)′P (C +DK)− P (A+BK)− (A+BK)′P,
P (T ) = H,
0 = RKX ′ +RKX +B′PX ′ +B′P ′X +D′PDKX ′ +D′PDKX

+ D′PCX ′ +D′P ′CX.

Note that in the above calculation we have used the following formulae:

∂

∂X
Tr(AX) = A′,

∂

∂X
Tr(AX ′) = A,

∂

∂X
Tr(AXBX ′) = A′XB′ +AXB.
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Since X and P are symmetric, (4.15) is reduced to

(4.16)


Ṗ = −Q−K ′RK − (C +DK)′P (C +DK)− P (A+BK)− (A+BK)′P,
P (T ) = H,
0 = (R +D′PD)K +B′P +D′PC.

Now, we apply Lemma 2.7 to the equation (R + D′PD)K + B′P + D′PC = 0.
First of all, we know a priori that it does have a solution K. Thus condition (2.9)
must hold, which in the present case specializes to

(R +D′PD)(R +D′PD)†(B′P +D′PC) = B′P +D′PC.

Moreover, by (2.10), K has the following form:

K = −(R +D′PD)†(B′P +D′PC) + Y − (R +D′PD)†(R +D′PD)Y.(4.17)

Substituting K into the first equation of (4.16), we can see by a simple calculation
that P satisfies

Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC) +Q = 0.

Noting that Theorem 4.2 implies that R + D′PD ≥ 0, we conclude that P (·) solves
(2.5). The representation of K is given by (4.17). Finally, the last assertion of the
theorem follows from Theorem 3.1.

5. Open-loop optimal controls. In the previous analysis we have shown that
the solvability of the GRE is equivalent to the condition that the LQ problem is solv-
able by linear feedback controls. In this section we further prove that the solvability
of the GRE is also equivalent to the case in which the LQ problem is solvable by
continuous open-loop controls.

First we need the following lemma.

Lemma 5.1. Assume that the LQ problem (2.1)–(2.3) is well-posed. Then there
exists a symmetric matrix function P (·) such that

V (s, y) = y′P (s)y ∀(s, y) ∈ [0, T ]×Rn.(5.1)

Moreover, assume that Q(t) and R(t) are continuous in t, and for any initial (s, y) ∈
[0, T ]×Rn the LQ problem (2.1)–(2.3) has an optimal open-loop control that is con-
tinuous in t; then the matrix function P (·) satisfying (5.1) is differentiable on [0, T ].

Proof. First, (5.1) can be shown by a simple adaptation of the well-known result in
the deterministic case (see, e.g., [10, 4]). Moreover, since the value function V (s, y) is
continuous in s, so is P (·). Next, fix (s, y) and let (u∗(·), x∗(·)) be an optimal solution
of (2.1)–(2.3) with respect to the initial condition x(s) = y with u∗(·) continuous.
Then the dynamic programming optimality principle yields

(5.2)

V (s, y) = E

{∫ s+h

s

[x∗(t)′Q(t)x∗(t) + u∗(t)′R(t)u∗(t)]dt + V (s+ h, x∗(s+ h))

}
∀h ≥ 0.
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Making use of (5.1)–(5.2), we have

1
h [y′P (s+ h)y − y′P (s)y] = 1

hE[y′P (s+ h)y − x∗(s+ h)′P (s+ h)y]

+ 1
hE[x∗(s+ h)′P (s+ h)y − x∗(s+ h)′P (s+ h)x∗(s+ h)]

− 1
hE
∫ s+h
s

[x∗(t)′Q(t)x∗(t) + u∗(t)′R(t)u∗(t)]dt.

Noting that P (·) and x∗(·) are continuous and the integrand above is continuous in
t by the assumptions, we can show by a standard argument that the limit of each
of the three terms on the right-hand side of the above equation exists as h goes to
zero. Therefore limh→0

1
h [y′P (s + h)y − y′P (s)y] exists. Since y is arbitrary, P (s) is

differentiable at s ∈ [0, T ].
The assumption that the optimal control is continuous in t is a rather technical

one. From the above proof we can see that only the continuity of the control at the
initial time s is actually needed. On the other hand, if we assume that B(t), C(t), D(t),
and R(t) are continuous, then by (3.1) the existence of a continuous optimal open-loop
control is really necessary for the solvability of GRE (2.5).

Consider the following convex set of differentiable symmetric matrix functions on
[0, T ]:

P ∆
=

{
P (·)

∣∣∣ [
Ṗ +A′P + PA+ C ′PC +Q PB + C ′PD

B′P +D′PC R +D′PD

]
≥ 0,

a.e. t ∈ [0, T ], P (T ) ≤ H

}
.

(5.3)

The following result provides a sufficient condition for the well-posedness of the
LQ problem.

Theorem 5.2. The LQ problem (2.1)–(2.3) is well-posed if the set P is nonempty.
Proof. Let P (·) ∈ P. Applying Lemma 2.4, we have, for any admissible (open-

loop) control u(·) and any initial (s, y) ∈ [0, T )×Rn,

J(s, y;u(·)) = y′P (s)y + E[x(T )(H − P (T ))x(T )]

+ E

∫ T

s

(
x
u

)′ [
Ṗ +A′P + PA+ C ′PC +Q PB + C ′PD

B′P +D′PC R +D′PD

](
x
u

)
(t)dt.

(5.4)

Thus J(s, y;u(·)) ≥ y′P (s)y, implying V (s, y) > −∞ ∀(s, y) ∈ [0, T )×Rn.
The following is the main result of this section.
Theorem 5.3. Assume that B(t), C(t), D(t), Q(t), and R(t) are continuous in

t. Then the LQ problem (2.1)–(2.3) has an continuous optimal open-loop control for
any initial (s, y) ∈ [0, T ]×Rn if and only if GRE (2.5) has a solution P (·).

Proof. The “if” part follows from Theorem 3.1. Let us now show the “only if”
part. First, since the LQ problem is well-posed, Lemma 5.1 yields that there exists a
symmetric matrix function P (·) such that

V (s, y) = y′P (s)y ∀(s, y) ∈ [0, T )×Rn.

Moreover, by the assumption and Lemma 5.1, P (·) is differentiable. On the other
hand, the dynamic programming principle yields

V (s, y) ≤ E

{∫ s+h

s

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt + V (s+ h, x(s+ h))

}

∀h ≥ 0 ∀u(·) ∈ Uad.
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Applying Itô’s formula to V (t, x(t)) ≡ x(t)′P (t)x(t), using the above inequality, and
employing Lemma 2.4, we obtain

E

∫ s+h

s

(
x
u

)′ [
Ṗ +A′P + PA+ C ′PC +Q PB + C ′PD

B′P +D′PC R +D′PD

](
x
u

)
(t)dt ≥ 0.

Taking u(t) ≡ ū ∈ Rnu , and then dividing both sides by h and letting h → 0, we
obtain(

y
ū

)′ [
Ṗ +A′P + PA+ C ′PC +Q PB + C ′PD

B′P +D′PC R +D′PD

]
(s)

(
y
ū

)
≥ 0, a.e. s ∈ [0, T ].

Since y ∈ Rn and ū ∈ Rnu are arbitrary, we obtain[
Ṗ +A′P + PA+ C ′PC +Q PB + C ′PD

B′P +D′PC R +D′PD

]
≥ 0, a.e. t ∈ [0, T ].(5.5)

Applying Lemma 2.6 to (5.5), we have

(5.6)


Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC) +Q ≥ 0,
(R +D′PD)(R +D′PD)†(B′P +D′PC)−B′P −D′PC = 0,
R +D′PD ≥ 0, a.e. t ∈ [0, T ].

Now, let (x∗(·), u∗(·)) be an optimal open-loop control for (2.1)–(2.3) with respect to
the initial condition x(s) = y. Applying Lemma 2.4 to P (·), we have

V (s, y) = y′P (s)y + E

∫ T

s

[x′∗
(
Ṗ + PA+A′P + C ′PC +Q

− (PB + C ′PD)(R +D′PD)†(B′P +D′PC)
)
x∗](t)dt

+ E

∫ T

s

[u∗ + (R +D′PD)†(B′P +D′PC)x∗]′

× (R +D′PD)[u∗ + (R +D′PD)†(B′P +D′PC)x∗](t)dt.
(5.7)
By virtue of the relation V (s, y) = y′P (s)y and (5.6)–(5.7), we obtain

Ṗ + PA+A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC) +Q = 0.

This completes the proof.
Theorem 5.1 says that the nonemptiness of the set P is sufficient for the well-

posedness of the original LQ problem. The following result stipulates that the nonempti-
ness of the set P is also necessary for the attainability of the LQ problem.

Theorem 5.4. Under the same assumption of Theorem 5.3, the LQ problem
(2.1)–(2.3) has a continuous optimal open-loop control for any initial (s, y) ∈ [0, T ]×
Rn only if the set P is nonempty.

Proof. This is seen from (5.5).

6. An example. In this section we give an example in which the singularity of
R + D′PD does occur, but the LQ problem is well-posed and attainable. Moreover,
the example shows that a stochastic LQ problem can be well-posed even when both
Q and R are negative.
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Consider the following one-dimensional LQ problem:

Minimize J = E

{∫ 1

0

[qx(t)2 + r(t)u(t)2]dt + hx(1)2
}
,

subject to

{
dx(t) = [ax(t) + bu(t)]dt + [cx(t) + δu(t)]dW (t),
x(0) = x0,

(6.1)

where the coefficients are chosen such that δ �= 0, b+δc = 0, q < 0, and 2a+c2+q > 0.
Take r(t) = −δ2p(t), where

p(t) =
e(2a+c

2)(1−t)(2ha+ hc2 + q)− q
2a+ c2

(6.2)

is the solution to the following equation:

ṗ(t) + (2a+ c2)p(t) + q = 0, p(1) = h.(6.3)

Incidentally, Example 1.1 in section 1 is a special case of this example. It is easy
to verify directly that (6.3) is exactly the GRE in the present case. (Note that the
singularity arises because r(t)+δ2p(t) ≡ 0.) Therefore, by Theorem 3.1 and Corollary
3.1(i), the LQ problem is well-posed, and any admissible control is optimal with an
optimal cost p(s)y2.

It is interesting to look at the sign of the solution to the Riccati equation (6.3).
First assume that h < 0. In this case, since 2a + c2 > 0 and q < 0, we have from
(6.2) that p(t) ≤ h < 0 ∀t ∈ [0, 1]. Hence, the solution to the Riccati equation
could be negative, which is quite contrary to the deterministic LQ case. On the other
hand, if h > 0 is large enough so that 2ha + hc2 + q > 0, then p(t) ≥ h > 0 and
r(t) = −δ2p(t) < 0. In this case, both q and r(t) are negative but the LQ problem
is well-posed. Again, this is different from the deterministic situation. The essential
reason behind this phenomenon is that the positive terminal cost hx(1)2 outweighs
the negative running cost.

7. Conclusion. Standard LQ theory, which has proved so useful for control
applications in the last decades, has been extended here to signal models with mul-
tiplicative noises in both state and control and with quadratic weights that are fun-
damentally different from those in the literature. Such models better approximate
nonlinear stochastic systems and arise naturally in areas of current interest such as in
finance. A new Riccati equation is introduced in this paper as an appropriate vehicle
for identifying optimal controls and calculating the optimal cost value.

Other properties concerning the existence, uniqueness, and asymptotic behavior
of solutions to the GRE associated with an indefinite LQ problem are studied in a
companion paper [1], which complements results derived in this paper.

REFERENCES

[1] M. Ait Rami, X. Chen, J. B. Moore, and X. Y. Zhou, Solvability and asymptotic behavior
of generalized Riccati equations arising in indefinite stochastic LQ controls, IEEE Trans.
Automat. Control, 46 (2001), pp. 428–440.

[2] M. Ait Rami and X. Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite
stochastic linear quadratic control, IEEE Trans. Automat. Control, 45 (2000), pp. 1131–
1143.

[3] A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses,
SIAM J. Appl. Math., 17 (1969), pp. 434–440.



STOCHASTIC LQ CONTROL AND RICCATI EQUATION 1311

[4] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice–
Hall, Englewood Cliffs, NJ, 1989.

[5] M. Athans, The matrix minimum principle, Inform. and Control, 11 (1968), pp. 592–606.
[6] M. Athens, Special issues on linear–quadratic–Gaussian problem, IEEE Trans. Automat. Con-

trol, 16 (1971), pp. 527–869.
[7] S. Chen, X. Li, and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control

weight costs, SIAM J. Control Optim., 36 (1998), pp. 1685–1702.
[8] S. Chen and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight

costs. II, SIAM J. Control Optim., 39 (2000), pp. 1065–1081.
[9] S. Chen and J. Yong, Stochastic linear quadratic optimal control problems, Appl. Math.

Optim., 43 (2001), pp. 21–45.
[10] D. Clements, B. D. O. Anderson, and P. J. Moylan, Matrix inequality solution to linear-

quadratic singular control problems, IEEE Trans. Automat. Control, 22 (1977), pp. 55–57.
[11] M. H. A. Davis, Linear Estimation and Stochastic Control, Chapman and Hall, London, 1977.
[12] D. Hinrichsen and A. J Pritchard, Stochastic H∞, SIAM J. Control Optim., 36 (1998),

pp. 1504–1538.
[13] D. H. Jacobson, Totally singular quadratic minimization problems, IEEE Trans. Automat.

Control, 16 (1971), pp. 651–658.
[14] R. E. Kalman, Contribution to the theory of optimal control, Bol. Soc. Mat. Mexican, 5 (1960),

pp. 102–119.
[15] M. Kohlmann and X. Y. Zhou, Relationship between backward stochastic differential equations

and stochastic controls: A linear quadratic approach, SIAM J. Control Optim., 38 (2000),
pp. 1392–1407.

[16] A. E. B. Lim and X. Y. Zhou, Stochastic optimal LQR control with integral quadratic con-
straints and indefinite control weights, IEEE Trans. Automat. Control, 44 (1999), pp. 359–
369.

[17] A. E. B. Lim and X. Y. Zhou, Mean–Variance Portfolio Selection with Random Parameters,
preprint.

[18] B. P. Molinari, Nonnegativity of a quadratic functional, SIAM J. Control, 13 (1975), pp. 792–
806.

[19] R. Penrose, A generalized inverse of matrices, Proc. Cambridge Philos. Soc., 52 (1955), pp. 17–
19.

[20] V. M. Popov, Hyperstability and optimality of automatic systems with several control func-
tions, Rev. Roumaine Sci. Tech. Sér. Electrotech. Energ., 9 (1964), pp. 629–690.

[21] L. Vandenerghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[22] J. C. Willems, Least squares stationary control and the algebraic Riccati equation, IEEE

Trans. Automat. Control, 16 (1971), pp. 621–234.
[23] W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control, 6 (1968),

pp. 312–326.
[24] D. D. Yao, S. Zhang, and X. Y. Zhou, Stochastic linear quadratic control via semidefinite

programming, SIAM J. Control Optim., 40 (2001), pp. 801–823.
[25] X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ

framework, Appl. Math. Optim., 42 (2000), pp. 19–33.



ROBUST CONTROLLER SYNTHESIS FOR UNCERTAIN
TIME-VARYING SYSTEMS∗

CAROL PIRIE† AND GEIR E. DULLERUD†

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. 1312–1331

Abstract. In this paper we develop and present new convex synthesis conditions for robust
performance in linear time-varying systems, subject to time-varying perturbations. In particular,
these results are exact for sensitivity minimization in the presence of multiplicative perturbations.
The methods apply to a number of additional robust performance problems and are always both
necessary and sufficient when the system plant is periodic. Otherwise, the conditions provided are
always sufficient, and a controller can be directly constructed when this condition holds.
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1. Introduction. The focus of this paper is the development of synthesis tools
for robust performance of linear time-varying (LTV) systems. The primary engi-
neering motivation for this work is its application to nonlinear trajectory tracking,
where the LTV model arises from linearization of the nonlinear model around a nom-
inal trajectory. This is the generalization of linearizing a nonlinear model around an
equilibrium point to obtain a linear time-invariant (LTI) model. The work is also
applicable to systems which naturally have time-varying dynamics, such as periodic
multirate or sampled-data systems [2, 4].

The main result of the paper is a convex synthesis condition for the existence of
a controller, which provides robust performance to either additive or multiplicative
LTV perturbations; this condition is both necessary and sufficient. When the above
existence condition is satisfied we indicate how an explicit controller can be computed
for implementation via a convex program. As far as we are aware, these are the first
synthesis results for exact robust performance of LTV systems; namely, the condition
obtained is both necessary and sufficient and convex. The methods developed apply to
a more general class of robust synthesis problems and are always both necessary and
sufficient when the nominal LTV system is either periodic or satisfies a partitioning
condition.

The approach used in the paper combines the LTI results reported in [7, 8] with
the LTV framework developed in [9]; for independent, closely related LTV tools see
[1, 12, 13]. This work builds on work which considered synthesis of LTI discrete-time
systems subject to spatial constraints on the inputs and outputs. As shown in [7],
some robust control problems, such as sensitivity minimization with multiplicative
uncertainty, may be cast in terms of analysis of systems with spatial constraints.
We show that a similar theory holds for LTV systems. We remark that a related
robustness problem is solved in [22] for LTI systems, with LTI perturbations, and
the obtained results were convex but infinite dimensional in general. The general
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machinery used here has its roots in the related papers [11, 15]. The work presented
here is based on [18].

The results are given in terms of linear operator inequalities, which always have a
convex solution space, but in general are infinite dimensional. When the initial LTV
plant is periodic, or the synthesis problem is only considered over a finite horizon,
these conditions reduce to linear matrix inequalities (LMIs). Namely, in these two
important cases the results become finite dimensional and convex and thus readily
computable.

The paper is organized as follows: section 2 introduces the notation used and the
basic LTV machinery; in section 3 we provide a solution to the square �2 optimization
problem, which is a generalization of the H∞ control problem; in section 4 we show
how this synthesis result can be used for robust synthesis.

2. Background.

2.1. Notation and definitions. Given a normed linear space X , we denote the
closed unit ball by BX . If W is also a normed linear space, the space of bounded
linear operators mapping X to W will be denoted by L (X ,W). The induced norm
of an operator A in this space will be denoted ‖A‖X→W ; we suppress the subscripts
when the spaces are clear. We use A∗ to denote the adjoint operator.

We will use the abbreviation L (X ) for L (X ,X ), and we say that an operator in
this set is invertible if the algebraic inverse exists and is a bounded operator on X .
We state the following standard small-gain result for later reference.

Proposition 2.1. Suppose X is a Banach space and A ∈ L (X ). If ‖A‖X→X < 1,
then I −A is invertible, and further ‖(I −A)−1‖X→X ≤ 1

1−‖A‖X→X
.

If X is a Hilbert space and an operator A is self-adjoint, we use A > 0 to mean
that there exists an ε > 0 such that

〈x,Ax〉X ≥ ε‖x‖2X for every x ∈ X .

A useful result is the following.
Proposition 2.2 (Schur complement formula). Suppose X ∈ L (X ), Y ∈ L (Y),

W ∈ L (Y,X ), and X and Y are self-adjoint. Then[
X W
W ∗ Y

]
< 0

if and only if Y < 0 and X −WY −1W ∗ < 0.
Given a Hilbert space X , we will denote by �2(X ) the Hilbert space of square

summable sequences of elements of X with the usual inner product; that is, x, y ∈
�2(X ); then

〈x, y〉 =
∞∑
k=1

〈xk, yk〉X ,

where xk, yk ∈ X . For simplicity we will denote �2(C
n) by �2 regardless of the spatial

dimension n. Additionally, we will use ‖x‖ to denote
√〈x, x〉, the standard norm on

this space.
The upper and lower linear fractional transformations of operators in L (�2) are

Fu (M,N) = M22 + M21N (I −M11N)
−1
M12 and F� (M,N) = M11 + M12N(I−

M22N)−1M21, respectively, where M is partitioned compatibly with N .
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2.2. Memoryless operators. Our goal in this section is to define a particular
type of operator and an important associated operation which makes working with
LTV state space systems nearly identical to operations on LTI state space systems. See
[9] for a complete treatment of memoryless operators and their use in LTV systems.

We make the following definition.
Definition 2.3. A bounded operator Q on �2(X ) is memoryless if there exists a

sequence of operators Qk in L (X ) such that, for all w, z, if z = Qw, then zk = Qkwk.
Then Q has the representation


Q0 0

Q1

Q2

0
. . .


 .

Further, if Pk ∈ L (X ) is a uniformly bounded sequence of operators, we say
P = diag(P0, P1, . . . ) is the memoryless operator for Pk, and conversely, given that
P is a memoryless operator, the blocks are denoted by Pk for k ∈ N0.

Suppose F , G, R, and S are memoryless operators, and let A be a partitioned
operator, each of whose elements is a memoryless operator such as

A =

[
F G
R S

]
.

We now define the following notation:[[
F G
R S

]]
= diag

([
F0 G0

R0 S0

]
,

[
F1 G1

R1 S1

]
, . . . ,

)
,

which we call the memoryless realization of A. Clearly, for any given operator A
of this particular structure,

[[
A
]]

is simply A with the rows and columns permuted
appropriately so that [[

F G
R S

]]
k

=

[
Fk Gk
Rk Sk

]
.

The following is immediate.
Proposition 2.4. For any real number β and any partitioned operator A con-

sisting of elements which are memoryless, A < βI holds if and only if
[[
A
]]
< βI.

That is, positivity is preserved under permutation.
Two further useful facts for the above permutations are the following.
Proposition 2.5.
(i) Suppose that A and B are partitioned operators consisting of memoryless

elements and that their structures are the same. Then[[
A+B

]]
=
[[
A
]]
+
[[
B
]]
.

(ii) Suppose that A and C are partitioned operators, each of which consists of
elements which are memoryless. Further suppose that the block structures are
compatible so that the product ÂĈ is memoryless for any operators Â and Ĉ
with the same block structures as A and C. Then[[

AC
]]
=
[[
A
]][[
C
]]
.
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2.3. LTV systems. Although the analysis results presented in this paper will
apply to any LTV system, the synthesis result (Theorem 3.10) applies only to state
space systems. For this reason we briefly review LTV state space systems; see [9] for
an in-depth treatment of the theory. Suppose we are considering the time-varying
difference equation

xk+1 = Akxk +Bkuk, x0 = 0,

yk = Ckxk +Dkuk,

where Ak, Bk, Ck, and Dk are bounded real matrix sequences. Then clearly these
sequences define memoryless operators A, B, C, and D, and therefore the above
system may be written more compactly in operator form as

x = ZAx+ ZBu,

y = Cx+Du,

where Z is the shift, or delay, operator on �2. Thus we can write the map from u to
y formally as

u �→ y = C(I − ZA)−1ZB +D.

It is possible to show that the operator I − ZA is invertible exactly when the state
space LTV system is exponentially stable. Throughout the paper we will say an open-
or closed-loop LTV state space system is stable when its A-operator satisfies the above
invertibility condition.

A special case of LTV systems which will be of interest to us are the periodic
systems. An operator M ∈ L (�2) is said to be n-periodic if ZnM =MZn.

3. Time-varying square �2 synthesis. The square �2 control problem involves
the system depicted in Figure 3.1, where the input signal w and the output signal z
are partitioned spatially into nw and nz vector-valued channels, respectively. Let Pi
be the operator which projects onto the ith vector-valued channel of w, and similarly,
let Qj be the operator which projects onto the jth vector-valued channel of z. The
standard problem of minimizing the �2-induced norm of the system, considered in [9],
does not directly address such additional spatial system structure. Considering such
structure will allow us to formulate a number of robust synthesis problems and may
also be more representative of physical situations to place constraints on the norm of
each channel of w independently. With this objective in mind, we define the square
�2 problem.

Problem 3.1. Define the square �2 induced norm of a system M to be

‖M‖sq = sup
‖Piw‖≤1

nz∑
j=1

‖QjMw‖ ,

and let γopt = infK ‖F� (G,K)‖sq . Given γ > 0, the suboptimal square �2 problem is
to determine whether γ > γopt and then, where possible, to find a controller K such
that

‖F� (G,K)‖sq < γ.

The choice of the norm
∑nz
j=1 ‖Qjz‖ on the output z allows the robust control

problem of section 4 to be incorporated into the square �2 framework.
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Fig. 3.1. Square �2 synthesis arrangement.

The square �2 problem is treated for time-invariant systems in [7, 8]. Here we
extend its treatment to time-varying systems. The first task is to provide for analysis
of a given stable system M ; i.e., given γ, is ‖M‖sq < γ? A sufficient condition for
M to be contractive with respect to the square norm is given as a scaled small-gain
condition on the system, and this condition is further shown to be exact (necessary
as well as sufficient) for systems which are either periodic or satisfy nw · nz ≤ 3. For
a larger class of systems, a related small-gain condition is shown to be necessary for
the system to be contractive; however, this condition is not sufficient. A sufficient
synthesis which is convex but in general infinite dimensional is then considered for
Problem 3.1.

To work effectively with the square norm performance criterion, we introduce a
new set of norms on the space �2. We define the input space Wp to consist of the
elements of �2, equipped with the norm

‖w‖Wp = |(‖P1w‖, . . . , ‖Pnww‖)|p,
where | · |p denotes the standard p-norm on C

nw . We similarly define the output space
Zp via the projections Qj . For later reference we state the following elementary facts
about these new spaces.

Proposition 3.2. Suppose 1 ≤ p ≤ ∞. Then the following hold:
(a) The norm ‖·‖Wp is equivalent to the �2-norm; in particular, ‖w‖ ≤

√
nw‖w‖W∞ .

(b) The mapping A is in L (Wp) if and only if A ∈ L (�2).
(c) If 1 < q ≤ ∞ satisfies q−1 + p−1 = 1, then Wq represents the normed dual

space of Wp via the �2 inner product. That is, if f is a linear functional in
L (Wp,C) with norm α, then there exists v ∈ Wq with norm α such that

f(w) = 〈v, w〉 for each w ∈ Wp.

The analogous statements hold for Zp.
The above follows from standard analysis, and the proof is omitted.
Having defined these new spaces it is routine to verify that

‖M‖sq = ‖M‖W∞→Z1
.(3.1)

That is, the square performance norm is an induced norm.
To simplify the presentation, we define the properties required for the scaling

operators in the scaled small-gain conditions of this section.
Definition 3.3. For a given γ, the time-invariant memoryless operators S,

T ∈ L (�2) are γ-admissible scales if they are of the form

[[
S
]]
k
=



s1I

. . .

snwI


 , [[T ]]k =



t1I

. . .

tnzI
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and satisfy the condition

nw∑
i=1

si +

nz∑
j=1

tj < 2γ, where every si > 0 and tj > 0.

Note, therefore, that S =
∑nw
i=1 siP

∗
i Pi and T =

∑nz
j=1 tjQ

∗
jQj . The following

provides sufficiency in the form of a scaled small-gain condition for contractiveness in
the square norm.

Theorem 3.4. Suppose that M ∈ L (�2) and γ is given. Then if there exist
γ-admissible scales S and T such that∥∥∥T− 1

2MS− 1
2

∥∥∥
�2→�2

< 1,

then

‖M‖sq < γ.

Proof. The result will be proven for γ = 1 since in the general case the γ may be
absorbed into the plantM . Since the sum of the si and tj is less than 2 by hypothesis,
it is routine to see that there must exist an α > 0 such that

α

nw∑
i=1

si < 1 and α−1
nz∑
j=1

tj < 1.

To begin, recall that Z∞ represents the normed dual space of Z1 via the inner
product on �2. Thus we have that the square norm satisfies

‖M‖W∞→Z1 = sup
v∈BZ∞, w∈BW∞

Re 〈v,Mw〉 .

We now show that BW∞ ⊂ α−1S− 1
2B�2. To see this, choose w ∈ BW∞, and set

u = αS
1
2w. Then clearly w = α−1S− 1

2u and

‖u‖2 = αs1‖P1w‖2 + · · ·+ αsnw‖Pnww‖2 < 1,

since by definition each ‖Pjw‖ ≤ 1. An identical argument shows BZ∞ ⊂ αT− 1
2B�2.

Now, returning to the above supremum condition, we get

sup
v∈BZ∞, w∈BW∞

Re 〈v,Mw〉 ≤ sup
v∈B�2, w∈B�2

Re
〈
αT− 1

2 v, α−1MS− 1
2w
〉

= sup
v∈B�2, w∈B�2

Re
〈
v, T− 1

2MS− 1
2w
〉
.

We conclude by observing that the right-hand side is equal to
‖T− 1

2MS− 1
2 ‖�2→�2 .

Theorem 3.4 provides sufficiency of the scaled small-gain condition ‖T− 1
2MS− 1

2 ‖�2→�2

< 1 for any operator, and we now investigate necessity. For either periodic systems
or systems which satisfy nw · nz ≤ 3, we obtain exactness of the scaled small-gain
condition through the following result.
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Theorem 3.5. Suppose M ∈ L (�2) and satisfies ‖M‖sq < γ. If either
(a) M is periodic, or
(b) the product nw · nz ≤ 3,

then there exist γ-admissible scales S and T such that ‖T− 1
2MS− 1

2 ‖�2→�2 < 1.
The proof of this theorem is lengthy and is provided in Appendix A. A proof of

the time-invariant case is outlined in [7, Theorem 2].
Remark 3.6. Here we are working with the complex space �2(C

n). If instead se-
quences in the real space �2(R

n) are considered, a version of Theorem 3.5 still holds;
however, the inequality in condition (b) must be replaced by the more restrictive con-
dition nw · nz ≤ 2. See Remark A.5.

A more general necessary condition may be developed for time-varying systems
which fail to be periodic but which demonstrate a periodic behavior after an initial
transient period.

Definition 3.7. A system M is eventually periodic if there is a k ∈ N such that
the system Z∗kMZk is periodic.

With this observation the following generalization of Theorem 3.5 is almost im-
mediate.

Proposition 3.8. Suppose M is eventually periodic and ‖M‖sq < γ. Then there
exist γ-admissible scales S and T such that∥∥∥T− 1

2

{
Z∗kMZk

}
S− 1

2

∥∥∥
�2→�2

< 1.

Proof. We employ the submultiplicative inequality to get

‖Z∗kMZk‖W∞→Z1
≤ ‖Z∗k‖Z1→Z1

‖M‖W∞→Z1
‖Zk‖W∞→W∞ = ‖M‖W∞→Z1

< γ.

By hypothesis, Z∗kMZk is periodic; thus the necessity of the scaled small-gain con-
dition follows directly from Theorem 3.5.

Given a system which is eventually periodic but not periodic, this proposition
allows a lower bound on the square norm of M to be found. If the scaled small-gain
condition of Theorem 3.4 fails for a given value of γ, no conclusion may be made
as to whether ‖M‖sq < γ; however, if there are no γ-admissible scales such that

‖T− 1
2 {Z∗kMZk}S− 1

2 ‖�2→�2 < 1, then necessarily ‖M‖sq ≥ γ.
To address Problem 3.1, we apply the analysis result of Theorem 3.4 to the closed

loop. If, for a given controller K, there exist γ-admissible scales such that∥∥∥T− 1
2F� (G,K)S− 1

2

∥∥∥
�2→�2

< 1,(3.2)

then K provides a synthesis such that the closed loop is contractive in the square
norm. The key point in solving the synthesis problem is that for fixed scales S and
T , finding a K satisfying (3.2) is exactly the problem of finding a controller which
makes the closed loop contractive in the induced �2-norm for the system

Ĝ =


 Â B̂1 B̂2

Ĉ1 D̂11 D̂12

Ĉ2 D̂21 0


 ≡


 A B1S

− 1
2 B2

T− 1
2C1 T− 1

2D11S
− 1

2 T− 1
2D12

C2 D21S
− 1

2 0


 ,

where the notation [
A B
C D

]
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signifies the LTV system defined by the memoryless operators A, B, C, D. The proof
of the next result uses this idea and the solution from [9] to the induced �2 synthesis
problem and uses the LTI proof in [8] as a formal template.

Lemma 3.9. Suppose S and T are γ-admissible scales. There exists a controller
K such that the closed loop is internally stable and ‖T− 1

2F� (G,K)S− 1
2 ‖�2→�2 < 1 if

and only if there exist memoryless operators P , Q, X > 0, and Y > 0 satisfying

N∗
X

{[
A B1

C1 D11

] [
X 0
0 P

] [
A B1

C1 D11

]∗
−
[
Z∗XZ 0

0 T

]}
NX < 0,(3.3)

N∗
Y

{[
ZA ZB1

C1 D11

]∗ [
Y 0
0 Q

] [
ZA ZB1

C1 D11

]
−
[
Y 0
0 S

]}
NY < 0,(3.4) [

X I
I Y

]
≥ 0,

[
P I
I S

]
≥ 0,

[
Q I
I T

]
≥ 0,(3.5)

where

ImNX = ker
[
B∗

2 D∗
12

]
, N∗

XNX = I,

ImNY = ker
[
C2 D21

]
, N∗

YNY = I.

Proof. Suppose there is a solution, K, for the scaled synthesis problem. Applying
the time-varying induced �2 synthesis to the system Ĝ defined above, ‖F�(Ĝ,K)‖�2→�2

< 1 if and only if there are memoryless operators X > 0 and Y > 0 which solve the
three operator inequalities

N̂∗
X

{[
Â B̂1

Ĉ1 D̂11

] [
X 0
0 I

] [
Â B̂1

Ĉ1 D̂11

]∗
−
[
Z∗XZ 0

0 I

]}
N̂X < 0,(3.6)

N̂∗
Y

{[
ZÂ ZB̂1

Ĉ1 D̂11

]∗ [
Y 0
0 I

] [
ZÂ ZB̂1

Ĉ1 D̂11

]
−
[
Y 0
0 I

]}
N̂Y < 0,(3.7)

[
X I
I Y

]
≥ 0,(3.8)

where ImN̂X = ker
[
B∗

2 D∗
12T

− 1
2

]
and ImN̂Y = ker

[
C2 D21S

− 1
2

]
. Concen-

trating on the inequality (3.6) and factoring out the scales S and T , we may rewrite
it as

N̂∗
X

[
I 0

0 T− 1
2

]{[
A B1

C1 D11

] [
X 0
0 S−1

] [
A B1

C1 D11

]∗

−
[
Z∗XZ 0

0 T

]}[
I 0

0 T− 1
2

]
N̂X < 0.

Noting that

Im

(
N̂X

[
I 0

0 T− 1
2

])
= ker

[
B∗

2 D∗
12

]
= ImNX ,

this inequality has the equivalent form

N∗
X

{[
A B1

C1 D11

] [
X 0
0 S−1

] [
A B1

C1 D11

]∗
−
[
Z∗XZ 0

0 T

]}
NX < 0.
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A similar procedure allows (3.7) to be expressed as

N∗
Y

{[
ZA ZB1

C1 D11

]∗ [
Y 0
0 T−1

] [
ZA ZB1

C1 D11

]
−
[
Y 0
0 S

]}
NY < 0.

Taking P = S−1 and Q = T−1, immediately X, Y , P , and Q satisfy (3.3)–(3.5) for
the given values of S and T .

Conversely, suppose there is a solution to the inequalities (3.3)–(3.5). Applying
Schur complements to (3.5) results in P ≥ S−1 and Q ≥ T−1. Thus[

X 0
0 S−1

]
≤
[
X 0
0 P

]
,

so[
A B1

C1 D11

] [
X 0
0 S−1

] [
A B1

C1 D11

]∗
≤
[
A B1

C1 D11

] [
X 0
0 P

] [
A B1

C1 D11

]∗
,

and hence

N∗
X

{[
A B1

C1 D11

] [
X 0
0 S−1

] [
A B1

C1 D11

]∗
−
[
Z∗XZ 0

0 T

]}
NX

≤ N∗
X

{[
A B1

C1 D11

] [
X 0
0 P

] [
A B1

C1 D11

]∗
−
[
Z∗XZ 0

0 T

]}
NX < 0.

Similarly, since Q ≥ T−1,

N∗
Y

{[
ZA ZB1

C1 D11

]∗ [
Y 0
0 T−1

] [
ZA ZB1

C1 D11

]
−
[
Y 0
0 S

]}
NY < 0.

The �2 synthesis may be applied again to show that∥∥∥F� (Ĝ,K)∥∥∥
�2→�2

=
∥∥∥T− 1

2F� (G,K)S− 1
2

∥∥∥
�2→�2

< 1.

A synthesis which is sufficient for ‖F� (G,K)‖sq < γ is now immediate.
Theorem 3.10. If there exist γ-admissible scales S and T and memoryless op-

erators P , Q, X > 0, and Y > 0 satisfying inequalities (3.3)–(3.5), then there exists
a stabilizing controller K such that ‖F� (G,K)‖sq < γ.

Proof. By Lemma 3.9 and the existence of a solution to the inequalities (3.3)–
(3.5), ∥∥∥T− 1

2F� (G,K)S− 1
2

∥∥∥
�2→�2

< γ.

Applying Theorem 3.4, ‖F� (G,K)‖sq < 1.
Theorem 3.10 provides a sufficient test to determine the existence of a controller

synthesis such that ‖F� (G,K)‖sq < γ. To construct such a controller, in the case
that the operator inequalities (3.3)–(3.5) have a solution X, Y , P , Q, S, and T , a
controller realization may be obtained by forming the system Ĝ and proceeding to
solve the synthesis operator inequalities for the time-varying �2 problem; see [9]. It
follows that determining feasibility and constructing an admissible controller are both
convex, though infinite dimensional, problems. As Theorem 3.10 provides (in general)
only a sufficient test, infeasibility of the inequalities (3.3)–(3.5) does not allow any
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conclusion to be made as to the existence of an admissible controller. This test is,
however, exact for systems which are either periodic or nw · nz ≤ 3 since the analysis
condition was shown in Theorem 3.5 to be exact.

It should be noted that the operator inequalities of Theorem 3.10 reduce to finite
dimensional LMIs when the system is either periodic or the problem is considered
only over a finite horizon. For finite horizon problems the reduction in dimension
is immediate since the system realization may be taken to be zero at all time steps
after the horizon of the problem. The operator inequalities may be written as a
countable collection of coupled LMIs by considering the memoryless realization of the
inequalities, and, due to the system realization being zero after the horizon all but a
finite number of these LMIs are trivial. Denoting the horizon by ko the problem thus
reduces to the LMIs

1. N∗
X,k

{[
Ak B1,k

C1,k D11,k

] [
Xk 0
0 Pk

] [
Ak B1,k

C1,k D11,k

]∗
−
[
Xk+1 0

0 T

]}
NX,k

< 0 for 0 ≤ k ≤ ko,

2. N∗
Y,k

{[
Ak B1,k

C1,k D11,k

]∗ [
Yk+1 0
0 Qk

] [
Ak B1,k

C1,k D11,k

]
−
[
Yk 0
0 S

]}
NY,k

< 0 for 0 ≤ k ≤ ko,

3.

[
Xk I
I Yk

]
≥ 0 for 0 ≤ k ≤ ko + 1,

4.

[
Pk I
I S

]
≥ 0,

[
Qk I
I T

]
≥ 0 for 0 ≤ k ≤ ko,

where S and T are now constant matrices satisfying the γ-admissible scale properties,
and the following conditions on the matrix variables are satisfied:

Xk > 0, Yk > 0 for 0 ≤ k ≤ ko + 1,

Pk > 0, Qk > 0 for 0 ≤ k ≤ ko.
Note that due to the presence of the shift operator in the original inequalities, the
ko + 1 blocks of X and Y are constrained in these LMIs.

For periodic systems the reduction to finite dimensions is a result of an LMI
solution to the �2 problem for periodic systems given in [9]. Applying the same
methodology as in Lemma 3.9 and Theorem 3.10 and using the LMI solution in place
of the operator inequalities will immediately produce an LMI solution which is exact
for the periodic square �2 synthesis problem. Define the cyclic shift operator

Z̃ =




0 · · · 0 I

I
. . . 0
. . .

...
I 0


 ,

and for a periodic operator F define the first period truncation to be

F̃ =



F0

. . .

Fn−1


 .
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Fig. 4.1. Structured uncertainty system interconnection.

Corollary 3.11. There exist γ-admissible scales S̃ and T̃ and matrices P̃ ,
Q̃, X̃ > 0, and Ỹ > 0 satisfying the LMIs obtained from (3.3)–(3.5) by formally
replacing the shift operator with the cyclic shift and the other operators with their
first period truncations if and only if there exists a stabilizing controller K such that
‖F� (G,K)‖sq < 1. Furthermore, this controller may be chosen to be periodic.

4. Robust synthesis for structured uncertainty. The structured uncer-
tainty control problem of interest involves the system interconnection shown in Figure
4.1, where the input signal w, the output z, and the signals p and q are partitioned
into nw, nz, np, and nq vector-valued channels, respectively. The uncertainty ∆ is
assumed to be in ∆̄, where

∆̄ =

{[
∆1 ∆2

∆3 0

]
: ∆1 ∈∆nq,np ,∆

2 ∈∆nq,nz ,∆
3 ∈∆nw,np

}

and

∆n,m =
{
∆ ∈ L (�2) : ‖∆ij‖�2→�2

≤ 1, i = 1, . . . , n, j = 1, . . . ,m
}
.

This uncertainty class encompasses a number of common uncertainty arrangements,
and we illustrate this with two specific examples in what follows; see also [7]. Most
of the results presented in this section appear in [6, 7]; here we provide alternative
proofs in our current context that are concise and complete.

We begin with several definitions.
Definition 4.1. A linear operatorM ∈ L(�2) is robustly stable to an uncertainty

set ∆ if I −M∆ is invertible on �2 for every ∆ ∈ ∆. An operator M is uniformly
robustly stable to ∆ if, in addition to being robustly stable,

sup
∆∈∆

∥∥∥(I −M∆)
−1
∥∥∥
�2→�2

<∞.

Given operators G and K, we say that K uniformly robustly stabilizes G if
F� (G,K) is uniformly robustly stable. Note that the above definitions remain un-
changed if the �2-norm is replaced by the Zp-norm since all these norms are equivalent
for all p.

The suboptimal robust control problem follows.
Problem 4.2. Given the structured uncertainty set ∆̄, a linear system G on �2,

and a desired performance level γ, construct a controller K such that the nominal
system F� (G,K) is uniformly robustly stable and

sup
∆∈ ¯∆

‖Twz‖sq < γ,
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Fig. 4.2. Generalized sensitivity minimization.

where Twz = (I −F� (G,K)∆)
−1 F� (G,K) is the closed-loop map from w to z in

Figure 4.1.
In the case where nw = nz = 1, this problem reduces to

sup
∆∈ ¯∆

‖Twz‖�2→�2
< γ.

Structured uncertainty may be transformed to block diagonal uncertainty (to
which most existing theory applies) by appropriately redefining the plant G, although
at some expense in the size of the problem. However, in the case of Problem 4.2
a direct analysis of the structured uncertainty is more tractable due an underlying
connection with the square �2 problem, which we have shown to have a convex solution.
Demonstrating this connection is the topic of this section. It should be noted that
not all robust control problems may be formulated as in Figure 4.1 and Problem 4.2.
To provide some concreteness the following example demonstrates how to formulate
a problem under this framework.

Example. The generalized sensitivity minimization problem is depicted in Figure
4.2, where the aim is to minimize ‖z1‖+‖z2‖ subject to the uncertainty ‖∆‖�2→�2

≤ 1
and ‖w‖ ≤ 1. Note that this is exactly the standard sensitivity minimization problem
if the weight Wu = 0. This system may be reconfigured to fit the correct formulation
by finding the operator which maps from t+w and u to p, z, and y. From Figure 4.2,

p =WPu,

z1 =Wy(w + t)−WyPu,

z2 =Wuu,

y = (w + t)− Pu.
Thus this system is equivalent to the one in Figure 4.3, where

G =




0 WP[
Wy

0

] [ −WyP
Wu

]
I −P


 .

The problem may now be restated as follows: find a uniformly robustly stabilizing
controller K such that

sup
‖∆‖�2→�2

≤1

sup
‖w‖≤1

2∑
j=1

‖Qjz‖ < 1.(4.1)
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Fig. 4.3. Reformulation of sensitivity minimization problem.

M

∆

ζ ξ

Fig. 4.4. System for robust stability analysis.

Thus we see that nz = 2 and nw = 1. To explicitly see that this example is in the
framework of Figure 4.1, augment

[
∆ 0

]
to get

∆′ =
[

∆1 ∆2

∆ 0

]
,

where
∥∥∆k

∥∥
�2→�2

≤ 1, and augment G to obtain

G′ =




0 0 WP[
0
0

] [
Wy

0

] [ −WyP
Wu

]
0 I −P


 .

Remark 4.3. Note that, from Theorem 3.5, we can solve the above example
exactly using the methods of this paper since here nw · nz = 2.

As an initial step in reformulating Problem 4.2 as a square �2 problem, we consider
robust stability analysis of a related full structured uncertainty. Consider the system
depicted in Figure 4.4, where ξ is partitioned into nξ = nq + nw channels and ζ is
partitioned into nζ = nz + np channels.

Theorem 4.4. A system M is uniformly robustly stable with respect to the full-
block structured uncertainty set ∆ = ∆nξ,nζ if and only if ‖M‖sq < 1.

Proof. (If:) Start by choosing ∆ ∈ ∆. It is sufficient to show that the inverse
(I −M∆)−1 exists in L (Z1) and is bounded by a constant independent of ∆.

We begin by showing that ‖∆‖Z1→W∞ ≤ 1. Take any q ∈ Z1. Then

‖Pi∆q‖ =
∥∥∥∥∥∥
nζ∑
j=1

∆ijQjq

∥∥∥∥∥∥ ≤
nζ∑
j=1

‖∆ij‖�2→�2
‖Qjq‖ ≤

nζ∑
j=1

‖Qjq‖ = ‖q‖Z1 .

Thus we conclude that ‖∆q‖W∞ ≤ ‖q‖Z1
, and so ∆ is a contractive element of

L (Z1,W∞).
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Using this and applying the submultiplicative inequality, we have

‖M∆‖Z1→Z1
≤ ‖M‖W∞→Z1

‖∆‖Z1→W∞ ≤ ‖M‖W∞→Z1
< 1.

Invoking Proposition 2.1, we see that (I−M∆)−1 exists and that ‖(I−M∆)−1‖Z1→Z1

≤ 1
1−‖M‖sq .
(Only if:) This part of the proof is by contradiction. Suppose thatM is uniformly

robustly stable, and suppose, on the contrary, that ‖M‖sq ≥ 1. Then it suffices
to show that, given any ε > 0, there exist ξ ∈ W∞, with norm ‖ξ‖W∞ = 1, and
∆ ∈∆ = ∆nξ,nζ such that

‖(I −∆M)ξ‖W∞ ≤ ε.
Fix ε > 0, and choose ξ ∈ W∞, with norm ‖ξ‖W∞ = 1, such that ‖Mξ‖Z1 > 1− ε.

Let α = ‖Mξ‖Z1 , and define the full structured perturbation ∆ by

∆ij(x) =

{ 1−ε
α‖QjMξ‖ 〈QjMξ, x〉Piξ if QjMξ �= 0,

0 if QjMξ = 0.

For notational simplicity, assume that QjMξ �= 0 for each j. Then, since 1 − ε <∑nζ
j=1 ‖QjMξ‖ = α and using the Cauchy–Schwarz inequality,

‖∆ij‖�2→�2
≤ 1− ε
α ‖QjMξ‖ ‖QjMξ‖ ‖Piξ‖

=
1− ε
α
‖Piξ‖ < 1,

so ∆ ∈∆ = ∆nξ,nζ . Further,

Pi∆Mξ =

nζ∑
j=1

∆ij (QjMξ)

=

nζ∑
j=1

1− ε
α ‖QjMξ‖ 〈QjMξ,QjMξ〉Piξ

= (1− ε)Piξ

 1

α

nζ∑
j=1

‖QjMξ‖



= (1− ε)Piξ,
and hence ∆Mξ = (1− ε)ξ. Thus ‖ (I −∆M) ξ‖W∞ = ε.

Theorem 4.4 reformulates robust stability as a square �2 analysis problem, and
so the problem of finding a robustly stabilizing controller immediately reduces to
the square �2 synthesis problem: find a stabilizing K such that ‖F� (G,K)‖sq < 1.
Problem 4.2 requires further reformulation before the square �2 results apply, and a
technical result is first needed.

Corollary 4.5. Let A be a set of operators on �2. Then supA∈A ‖A‖sq < 1 if

and only if sup∆∈∆,A∈A
∥∥(I −A∆)−1

∥∥
�2→�2

<∞.
Proof. The proof of this result is nearly identical to the proof of Theorem 4.4,

and the details are omitted.
We now present an analogue to the so-called main loop theorem from µ theory;

see [16]. In this result we show that uniform robust performance is equivalent to
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Fig. 4.5. System for robust performance analysis.
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Fig. 4.6. Equivalent system for robust performance analysis.

uniform robust stability in an augmented uncertainty structure. This square version
of the main loop theorem will provide the basis for the reformulation of Problem 4.2
as a square �2 problem.

Proposition 4.6. Define the augmented uncertainty set

∆p =

{[
∆̄ 0
0 ∆4

]
: ∆̄ ∈ ∆̄,∆4 ∈∆nw,nz

}
.

With N partitioned compatibly with the inputs and outputs,

sup
∆̄∈ ¯∆

∥∥∥(I −N11∆̄
)−1
∥∥∥
�2→�2

<∞ and sup
∆̄∈ ¯∆

∥∥Fu (N, ∆̄)∥∥sq < 1

if and only if

sup
∆p∈∆p

∥∥∥(I −N∆p)
−1
∥∥∥
�2→�2

<∞.

The proof of this proposition is a routine modification of the usual main loop
theorem proof and is accordingly omitted.

The next theorem is the reformulation of Problem 4.2.
Theorem 4.7. Given a system M ∈ L (�2), M is uniformly robustly stable to ∆̄

and sup
∆̄∈ ¯∆ ‖Twz‖sq < 1, where Twz =

(
I −M∆̄

)−1
M is the closed-loop map from

w to z in Figure 4.5 if and only if ‖M‖sq < 1.
Proof. First notice that the systems in Figures 4.5 and 4.6 define the same map-

ping from w to z, where

N11 =M, N12 =

[
M12

M22

]
, N21 =

[
M21 M22

]
, N22 =M22.

Thus M is uniformly robustly stable to ∆̄ and sup
∆̄∈ ¯∆ ‖Twz‖sq < 1 if and only if the

inequalities sup
∆̄∈ ¯∆ ‖(I−N11∆̄)−1‖l2→l2 <∞ and sup

∆̄∈ ¯∆

∥∥Fu (N, ∆̄)∥∥sq < 1 hold.
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Applying Proposition 4.6, this holds if and only if sup∆p∈∆p
‖(I−N∆p)

−1‖l2→l2 <∞.

Defining the operators

S =


 I 0

0 I
0 I




and

T =MS∗∆p =

[
M11 M12

M21 M22

] [
I 0 0
0 I I

] ∆1 ∆2 0
∆3 0 0
0 0 ∆4


 ,

then we see that I − ST = I −N∆p is invertible if and only if I − TS = I −M∆ is
invertible, where

∆ =

[
∆1 ∆2

∆3 ∆4

]
∈∆ = {S∗∆pS : ∆p ∈∆p} ,

and further,

(I −M∆)
−1

= I + T (I − ST )−1
S

= I +MS∗∆p (I −N∆p)
−1
S.

Thus sup∆p∈∆p
‖(I−N∆p)

−1‖l2→l2 <∞ holds if and only if sup∆∈∆ ‖(I−M∆)−1‖l2→l2

<∞. Equivalently, applying Theorem 4.4, ‖M‖sq < 1.

To summarize, Problem 4.2 requires a controller K which provides a robust per-
formance level of γ, that is, such that sup

∆̄∈ ¯∆ ‖Twz‖sq < γ. Applying Theorem 4.7,

it is sufficient to find a synthesis for the square �2 problem ‖F� (G,K)‖sq < γ, and
through the development of section 3 we have given a sufficient controller synthesis
for this problem as a set of operator inequalities.

5. Numerical example. Returning to the generalized sensitivity minimization,
we now give an example to numerically demonstrate our results; it is without physi-
cal significance. Consider the standard sensitivity minimization, obtained by taking
Wu = 0. Set Wy =W = I, and let the plant P be SISO with the following realization
in which B, C, and D are not time-varying:

A1 =

[
2 0
0 2

]
, A2 =

[
0 2
−2 0

]
, A3 =

[ −2 0
0 −2

]
, A4 =

[
0 −2
2 0

]
,

B =

[
2
1

]
, C =

[
1 2

]
, D = 0.

Then the system G has the realization

G =




A 0 B
WC 0 0
−WyC Wy 0
−C I 0


 =


 A B1 B2

C1 D11 D12

C2 D21 0






1328 CAROL PIRIE AND GEIR E. DULLERUD

with

B1 =

[
0
0

]
, B2 = B, C1 =

[
WC
−WyC

]
, C2 = −C,

D11 =

[
0
Wy

]
, D12 =

[
0
0

]
, D21 = I.

Recall that the uncertainty block has the form [∆ 0] so in this problem, nw = 1
and nz = 2. Treating the system as a finite horizon problem with a horizon of 4
gives γopt = 1.0010, and treating it as a periodic system with a period of 4 gives
γopt = 17.4473.

6. Conclusions. In this paper we have extended work on LTI robust synthesis
to LTV systems. The tools required were generalizations of results for LTI systems
with spatial constraints [7, 8] to operators in L (�2), the framework for LTV state
space systems from [9], and the powerful results in [10, 21] on the S-procedure. We
have demonstrated how a typical control problem (robust sensitivity minimization)
may be handled using this machinery.

This theory has been experimentally applied to robust trajectory tracking on a
flexible beam as reported in [19]. Software which performs square �2 synthesis for
periodic and finite horizon systems is available at http://epic.me.uiuc.edu/∼dullerud.

Future work includes weakening the constraints of uniform robust stability to
robust stability and further developing a general necessary condition for the controller
synthesis. Computational issues arise when trying to solve the LMIs for a large
horizon problem due to the size of the problem and the number of decision variables
it involves. Advances in LMI solution methods and investigation into exploiting the
particular structure of these LMIs would be beneficial.

The framework and proof machinery presented here provide a streamlined way
to treat generalized �2-synthesis and thus may find wider application in generalizing
LTI results to both the LTV and distributed control settings.

Appendix. Proof of Theorem 3.5. Here we will prove Theorem 3.5 using
the technique of quadratic forms and constraints. We remark that the periodic case of
this result could be obtained readily from the proofs in [7, 8] by first applying a lifting
technique to the periodic system. To obtain the general LTV results proved here a
different approach is required. In fact, the proof given, when restricted to the LTI
case, gives a more direct and transparent demonstration than specialized LTI proofs
in [7, 8]. Thus it may be useful for extending the latter LTI work to more general
classes of systems (e.g., infinite dimensional, distributed control architectures).

As with the proof of Theorem 3.4, γ will be taken to be 1 as this causes no loss
in generality. For simplicity we will restrict our proof to the case where either M
is periodic or nwnz ≤ 2 holds. See Remark A.4 at the end of this appendix for the
routine extension to the nwnz ≤ 3 case.

Thus for the remainder of the section we have the standing assumptions that
‖M‖sq < 1 and either (a) M is periodic or (b) nwnz ≤ 2 holds.

Our constructions will be based on the following duality-based characterization
of the square norm:

‖M‖sq = sup
w,v �=0

Re〈v,Mw〉
‖v‖Z∞ ‖w‖W∞

.
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Having made this observation, we define the quadratic forms

ψi(w, v) =

〈[
v
w

]
,

[
0 1

2M
1
2M

∗ −P ∗
i Pi

] [
v
w

]〉
= Re〈v,Mw〉 − ‖Piw‖2 for i = 1, . . . , nw,

ψi(w, v) =

〈[
v
w

]
,

[−Q∗
iQi

1
2M

1
2M

∗ 0

] [
v
w

]〉
= Re〈v,Mw〉 − ‖Qiv‖2

for i = nw + 1, . . . , nw + nz

on the space �2×�2. For convenience set Ψ(w, v) = (ψ1(w, v), . . . , ψnw+nz (w, v)), and
define the set

∇ = {Ψ(w, v) : w, v ∈ �2 and ‖w‖2 + ‖v‖2 = 1} ⊂ R
nw+nz ,

and the nonnegative orthant Π = {(a1, . . . , anw+nz ) : each ai ≥ 0} ⊂ R
nw+nz .

Lemma A.1. The closure ∇̄ is strictly separated from Π.
Proof. Choose (w, v) ∈ �2× �2 satisfying ‖w‖2 + ‖v‖2 = 1. It is sufficient to show

that for some 1 ≤ k0 ≤ nw + nz the inequality ψk0(w, v) ≤ (‖M‖sq − 1)(nw + nz)
−1

holds.
Set α = ‖M‖sq, and thus we have

Re〈v,Mw〉 ≤ α ‖v‖Z∞ ‖w‖W∞ .

Now let γ = max{‖v‖2Z∞ , ‖w‖2W∞}, and then conclude

Re〈v,Mw〉 − γ ≤ (α− 1)γ.

By equivalence of norms we have that γ ≥ (nw + nz)
−1(‖w‖2 + ‖v‖2) = (nw + nz)

−1,
and so

Re〈v,Mw〉 − γ ≤ (α− 1)(nw + nz)
−1.

By definition of theW∞- and Z∞-norms, there exists 1 ≤ k0 ≤ nw+nz such that the
left-hand side above is equal to ψk0(w, v).

Lemma A.2. The closure of the convex hull co(∇̄) is strictly separated from Π.
Proof. We consider the cases (a) M is periodic and (b) nw · nz ≤ 2 separately.
The first case is where M is q-periodic, in which case we prove that the closure

∇̄ = co(∇̄), and thus by Lemma A.1 the conclusion follows. The fact that ∇̄ is
convex follows directly from the main result in [14] on shift invariant quadratic forms
by simply replacing the shift operator with Zq and will not be reproduced here; the
basic facts required in the proof are that ψ(v, w) = ψ(Zqkv, Zqkw) and that Zqk tends
weakly to zero as k tends to infinity. See [17] for a proof in the style of this appendix;
see also [18].

When M is not periodic but nw · nz ≤ 2 holds, we have at most three quadratic
forms ψk or, equivalently, ∇ ⊂ R

3. In this case we can appeal to [10], which states
exactly the claim of the lemma for any three quadratic forms on a complex inner
product space. Note that this result is essentially equivalent to the well-known µ-
theory result, which says that the structured singular value is equal to its upper
bound for three full-block uncertainties; see [16].

Lemma A.3. There exist 1-admissible scales T and S such that[−T M
M∗ −S

]
< 0.(A.1)
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Proof. By the separating hyperplane theorem and Lemma A.2, there exist vectors
σ ∈ R

nw , τ ∈ R
nz and scalars ε, β such that[

σ
τ

]∗
x < −ε < β <

[
σ
τ

]∗
a for all x ∈ co(∇̄) and a ∈ Π.

From the properties of Π it is routine to verify that σi, τi ≥ 0 and that ε > 0.
Now co(∇̄) is compact, and so without loss of generality we may assume the strict
inequalities σi, τi > 0 so that[

σ
τ

]∗
x < −ε still holds for each x ∈ co(∇̄).

Using the definition of ∇, we have, in particular, that[
σ
τ

]∗
Ψ(w, v) =

nw∑
i=1

σi(Re〈v,Mw〉 − ‖Piw‖2) +
nz∑
i=1

τi(Re〈v,Mw〉 − ‖Qiv‖2) < −ε

for all (w, v) ∈ �2 × �2 satisfying ‖w‖2 + ‖v‖2 = 1. Defining γ =
∑nw
i=1 σi +

∑nz
i=1 τi

and multiplying the inequality through by 2γ−1, we get

2Re〈v,Mw〉 − 2γ−1
nw∑
i=1

σi‖Piw‖2 − 2γ−1
nz∑
i=1

τi‖Qiv‖2 < −2γ−1ε.

By setting S = 2γ−1
∑nw
i=1 σiP

∗
i Pi and T = 2γ−1

∑nz
i=1 τiQ

∗
iQi we can rewrite this as〈[

v
w

]
,

[−T M
M∗ −S

] [
v
w

]〉
< −2γ−1ε.

This holds for any (w, v) ∈ �2 × �2 with the unit norm constraint ‖w‖2 + ‖v‖2 = 1;
therefore, inequality (A.1) holds.

To complete the proof notice that
∑nw
i=1 si +

∑nz
i=1 ti = 2, and we can therefore

perturb s1 > 0 slightly to get
∑nw
i=1 si+

∑nz
i=1 ti < 2 while still maintaining inequality

(A.1).
Proof of Theorem 3.5. Invoke Lemma A.3, and apply the Schur complement

formula to (A.1) to get

M∗T−1M − S < 0,

which implies S− 1
2M∗T−1MS− 1

2 −I < 0. Clearly, this means ‖T− 1
2MS− 1

2 ‖ < 1, and
from Lemma A.3 we have directly that T and S are 1-admissible.

Remark A.4. So far we have proved only the theorem for the case of nw ·nz ≤ 2.
For the remaining case of nw · nz ≤ 3, the above argument can again be employed,
using instead the quadratic forms

ψ(w) = ‖Mw‖2 − ‖Piw‖2 for i = 1, . . . , nw when nz = 1,

and ψ(v) = ‖M∗v‖2 − ‖Qiv‖2 for i = 1, . . . , nz when nw = 1.
Remark A.5. If we replace the space of �2(C

n) in the formulation of this paper
with the real space �2(R

n), condition (b) in the statement of Theorem 3.5 must be
weakened to to nw · nz ≤ 2. This is because the result of [10] used in the proof of
Lemma A.2 holds only for quadratic forms on complex spaces; however, the work in
[21] says that co(∇̄) is strictly separated from Π if there are at most two real forms.
This will be the case when nw · nz ≤ 2 and the forms from Remark A.4 are used.
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ON AUTOMATON RECOGNIZABILITY OF ABNORMAL
EXTREMALS∗
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Abstract. For a generic single-input planar control system ẋ = F (x) + uG(x), x ∈ R
2,

u ∈ [−1, 1], F (0) = 0, we analyze the properties of abnormal extremals for the minimum time
stabilization to the origin. We prove that abnormal extremals are finite concatenations of bang arcs
with switchings occurring on the set in which the vector fields F and G are collinear. Moreover, all
the generic singularities of one parametric family of extremal trajectories near to abnormal extremals
are studied. In particular, we prove that all possible sequences of these singularities, and hence all
generic abnormal extremals, can be classified by a set of words recognizable by an automaton.

Key words. optimal control, abnormal extremals, synthesis theory, generic planar systems

AMS subject classifications. 49K15, 49J15, 49N35

PII. S0363012900381650

1. Introduction. In this paper we deal with the minimum time stabilization
problem to the origin for the planar single-input system ẋ = F (x) + uG(x), x ∈ R

2,
u ∈ [−1, 1], F (0) = 0. The Pontryagin maximum principle (PMP) [12, 19] provides a
necessary condition for optimality, and trajectories satisfying it are called extremals.
Abnormal extremals are extremals corresponding to the zero level of the Hamiltonian
given by the PMP; see [1, 2].

The aim of this paper is to analyze completely the generic properties of abnormal
extremals. We prove that these are finite concatenations of bang arcs (that is, cor-
responding to constant ±1 control). Moreover, the switchings (discontinuity points
of the control) happen exactly when the abnormal extremal crosses the set of zeros
of the function ∆A = F ∧ G. In many cases, an abnormal extremal is formed by
fold points; that is, there are two sheets of the cotangent bundle covered by extremal
trajectories that project onto the same region of the plane, and the boundary of this
region is the projection of the abnormal extremal.

The set of possible singularities along abnormal extremals is formed of 28 (equiv-
alence classes of) singular points, but not all sequences of singularities can be realized.
We aim to provide a classification of all possible sequences of singularities. A good
classification is obtained if one can put the possible sequences in bijective correspon-
dence with some algebraic or combinatorial object Ω with simple structure. If all
possible sequences of singularities were admitted, then this classification could be
done choosing Ω to be the set of all words formed with letters from the alphabet
{1, . . . , 28}, with the meaning that each number corresponds to a singularity. This is
not the case; however, we can still have some regular structure. More precisely, Ω can
be chosen as a set of words recognizable by an automaton, and this is the most natural
classification for this problem; see rules R1, R2, and R3 of section 5. We recall that a
set of words Ω from a given finite alphabet is recognizable if there exists an automaton
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that generates exactly the words of Ω. An automaton is, roughly speaking, a graph
with labelled edges, and one constructs words considering all paths starting from a
given set of points and ending to another fixed set of points. The recognizable sets
of words share a regular structure used in theoretical computer science; see [10, 11].
Since the sequence of singularities completely describes the abnormal extremal, we
obtain that abnormal extremals are recognizable by an automaton.

In [15, 16, 22, 23], the authors studied the properties of extremal trajectories
and via a finite dimensional reduction, obtained using the PMP, proved the existence
of a regular optimal synthesis. Roughly speaking, an optimal synthesis is a function
associating to each point an optimal trajectory. It happens that the synthesis is indeed
generated by a feedback that is smooth on each strata of a Whitney stratification
of the plane. For synthesis theory we refer also to [3, 9, 18]. In a series of papers
[7, 8, 16, 17], the existence of a structurally stable optimal synthesis for generic smooth
systems was proved, and complete classifications of the corresponding (nonsmooth)
flows and relative singularities were given, in the same spirit of the work of Peixoto
for two dimensional dynamical systems. For results in three dimensions, see [20, 21].

An alternative approach is used here and in [4, 5, 13, 14]. This amounts to
constructing all extremals, that is, trajectory-covector pairs satisfying the PMP, and
projecting the obtained set onto the plane. This approach is more involved but sheds
more light on the links between synthesis singularities and the singularities of the
minimum time function; see [6]. Moreover, the supports of extremals form a Whitney
stratified set of dimension three in the cotangent bundle (see [5]). After normalization
of the covector, one obtains a two dimensional stratified set in R

2×S1. The projection
singularities can be classified in topological sense. Beside the classical folds and cusps
(see [24]), new singularities appear. Some, called vertical, are due to the fact that
the target (the origin) is of codimension two, while others are stable and independent
of the target properties. These new singularities are called bifold and ribbon. In
particular, the ribbon singularity can appear only along abnormal extremals.

All possible generic singularities of the synthesis on the plane occurring along
(projections of) abnormal extremals are classified in section 4. However, one has to
prove that all singularities indeed appear for some generic system, in particular, those
corresponding to the new projection singularities, namely, bifold and ribbon. As a
byproduct, we obtain the existence of systems presenting singular points correspond-
ing to projection singularities of bifold and ribbon type (see Theorem 35).

The paper is organized in the following way. Section 2 introduces basic defini-
tions and main results. The third section is dedicated to formulating and proving the
main propositions about the switching strategy of abnormal extremals. In section 4
we describe the synthesis singularities (on the plane) occurring along abnormal ex-
tremals. Finally, in section 5 we describe the classification of abnormal extremals via
a recognizable set of words and the corresponding automaton. Moreover, in section 5
we show that the ribbon singularity is realized, and we give an example of a synthesis
containing a singularity of this kind.

2. Basic definitions and statement of the main result. Let Ξ be the set
of all couples of C∞ vector fields (F,G) such that the origin is an equilibrium point
for F , that is, F (0) = 0. From now on we endow Ξ with the C3 topology induced by
the norm

‖(F,G)‖ = sup

{∣∣∣∣∂α1+α2Fi(x)

∂xα1
1 ∂xα2

2

∣∣∣∣ ,
∣∣∣∣∂α1+α2Gi(x)

∂xα1
1 ∂xα2

2

∣∣∣∣ :
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x ∈ R
2; i = 1, 2; α1, α2 ∈ N ∪ {0};α1 + α2 ≤ 3

}
.

We say that a subset of Ξ is generic if it contains an open and dense set. Analogously,
a property P is said to be generic if the set satisfying P is generic.

For every (F,G) ∈ Ξ we consider the minimum time stabilization problem to the
origin for the control system

ẋ = F (x) + uG(x), x ∈ R
2, u ∈ [−1, 1].(1)

Reversing time, we deal with the equivalent problem of reaching every point of the
plane in minimum time from the origin.

Given a measurable function u : [a, b]→ [−1, 1], a trajectory of (1) corresponding
to u is an absolutely continuous map γ : [a, b] → R

2 such that γ̇(t) = F (γ(t)) +
u(t)G(γ(t)) for almost every t ∈ [a, b]. Since the system is autonomous, we can
always assume that Dom(γ) = [0, a] for some a ∈ R, a > 0, where Dom denotes the
domain. Moreover, we denote by Supp(γ) the set γ([a, b]). A trajectory γ : [0, a]→ R

2

is (time) optimal if for every trajectory γ′ : [0, b] → R
2 with γ(a) = γ′(b) we have

a ≤ b. A trajectory γ corresponding to a constant control ±1 is called a bang arc.
A bang-bang trajectory is a finite concatenation of bang arcs, and a time where the
control changes sign is called switching time.

The well-known PMP in this special case states the following. Define for every
(x, p, u) ∈ R

2 × (R2)∗ × [−1, 1], where (R2)∗ is the set of row vectors,

H(x, p, u) = p · F (x) + u p ·G(x)(2)

and

H(x, p) = max{p · F (x) + u p ·G(x) : u ∈ [−1, 1]}.(3)

If γ : [0, a]→ R
2 is a (time) optimal trajectory corresponding to a control u : [0, a]→

[−1, 1], then there exist a nontrivial field of covectors along γ, that is, a function
λ : [0, a]→ (R2)∗ never vanishing, and a constant λ0 ≤ 0 such that

(i) λ̇(t) = −λ(t) · (∇F + u(t)∇G)(γ(t)),
(ii) H(γ(t), λ(t), u(t)) + λ0 = 0 for almost every t ∈ Dom(γ),
(iii) H(γ(t), λ(t), u(t)) = H(γ(t), λ(t)) for almost every t ∈ Dom(γ).

In this case we say that the pair (γ, λ) is extremal. If γ is optimal, we say that the
pair (γ, λ) is optimal.

Given an extremal pair (γ, λ), one easily checks that for every α ∈ R, α > 0, the
pair (γ, αλ) is also extremal.

Definition 1. Let (γ, λ) be an extremal pair. If the corresponding Hamiltonian
satisfies H(γ(t), λ(t), u(t)) = 0 for almost every t ∈ Dom(γ) (i.e., if λ0 in (i) above
vanishes), we say that (γ, λ) is an abnormal extremal.

The following theorem, proved in section 5, describes the set of generic abnormal
extremals.

Theorem 2. The set of abnormal extremals for control systems (1), in a generic
set of Ξ, can be classified through a set of words recognizable by an automaton.

In the following we introduce some notation also used in [7, 16, 17]. Set

Y = F +G, X = F −G.
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Let γ : [t1, t2] → R
2 be a trajectory of (1). If γ corresponds to constant control +1

(resp., −1) on [t1, t2], we say that γ|[t1,t2] is a Y -trajectory (resp., X-trajectory), and
we write γ|[t1,t2] ∈ Traj(Y ) (resp., γ|[t1,t2] ∈ Traj(X)). We say that γ|[t1,t2] is a
Z-trajectory, and we write γ|[t1,t2] ∈Traj(Z) if γ on [t1, t2] corresponds to the control
(called singular)

ϕ(x) = −∇∆B(x) · F (x)

∇∆B(x) ·G(x)
,(4)

where

∆B(x) = G(x) ∧ [F,G](x) = G1(x)[F,G]2(x)−G2(x)[F,G]1(x),

and [F,G] is the Lie bracket of F and G. For later use we also define the function

∆A(x) = F (x) ∧G(x) = F1(x)G2(x)− F2(x)G1(x).

Definition 3. If γ1 : [t1, t2] → R
2, γ2 : [t2, t3] → R

2 (t1 < t2 < t3) are two
trajectories of (1) with γ1(t2) = γ2(t2), we set (γ2 ∗ γ1)(t) := γ1(t) if t ∈ [t1, t2[
and (γ2 ∗ γ1)(t) := γ2(t) if t ∈ [t2, t3]. Given an extremal trajectory γ, we denote
by n(γ) the smallest integer such that there exist γi ∈ Traj(X)∪Traj(Y ) ∪Traj(Z),
i = 1, . . . , n(γ), satisfying γ = γn(γ) ∗ · · · ∗ γ1. The function n(γ) is called the number
of arcs of γ.

In the following, we assume the following generic conditions:
(P1) The vectors G(0) and [F,G](0) are linearly independent.
(P2) Zero is a regular value for ∆A and ∆B .
(P3) The set ∆−1

A (0) ∩∆−1
B (0) is locally finite.

Let TanA be the set of points x ∈ ∆−1
A (0) such that X(x) or Y (x) is tangent to

∆−1
A (0). Define TanB in the same way using ∆B rather than ∆A.
(P4) TanA and TanB are locally finite sets.
Let Bad := (∆−1

A (0) ∩∆−1
B (0)) ∪ TanA ∪ TanB .

(P5) Bad is locally finite.
Notice that (P5) is a consequence of (P3) and (P4).
(P6) If x ∈ Bad andG(x) = 0, then F (x)·∇(∆A)(x) �= 0 and F (x)·∇(∆B)(x) �= 0.
(P7) If x ∈ Bad, G(x) �= 0, x ∈ (∆−1

A (0) ∩ ∆−1
B (0)) ∩ TanA, and say, X(x) ·

∇∆A(x) = 0, then ∂y(X · ∇∆A)|y=x �= 0, X(y) �= 0, and Y (y) �= 0, where y takes
values on ∆−1

A (0) in a neighborhood of x.
(P8) If x ∈ Bad and x ∈ TanB , then ∆A(x) �= 0.
(P9) If x ∈ Bad, G(x) �= 0, X(x) = 0, or Y (x) = 0, then ∆B(x) �= 0.
The generic conditions (P6), (P7), and (P8) are clarified in Figure 2.1.

F(x)

P6

∆  =0
Β ∆  =0

Α ∆  =0
Β

X(x)

∆  (  )=0
Α x

P7

∆  =0
Β ∆  =0

Α
X

X
X

Y
G(x)=0

P8

Fig. 2.1.

In [16] the following proposition was proved.
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Proposition 4. If (P1)–(P9) hold, then each extremal trajectory γ can always
be written in the form γ = γn(γ) ∗ · · · ∗ γ1 with n(γ) < ∞, and each arc is bang or
singular (that is, a Z–trajectory).

Let τ > 0. We call the reachable set within time τ the set R(τ) := {x ∈ R
2 :

there exists t ∈ [0, τ ] and a trajectory γ : [0, τ ] → R
2 of (1) such that γ(0) = 0,

γ(t) = x}. In [16] the following lemma was shown.

Lemma 5. Under the generic conditions (P1)–(P9) γi ∈ Traj(Z) iff Supp(γi) ⊂
∆−1
B (0).

In the case in which γi ∈ Traj(Z) we say that Supp(γi) is a turnpike. We call
γ± : [0, t±f ] → R

2 the extremal trajectories originating at 0 and corresponding to

constant control ±1 with t±f the last times in which γ± are extremal (if they are less
than τ) or τ (otherwise). Under generic assumptions, every extremal trajectory exits
the origin with constant control +1 or −1.

Definition 6. Let (γ, λ) : [0, τ ] → R
2 be an extremal pair. The corresponding

switching function is defined as φ(t) := λ(t) ·G(γ(t)).

We immediately have the following lemma.

Lemma 7. Let (γ, λ) : [0, τ ] → R
2 be an extremal pair, and [t1, t2] ⊆ [0, τ ]

(t1 < t2). Then

• on [t1, t2], γ corresponds to constant control +1 (resp., −1) iff for each t ∈
[t1, t2] we have φ(t) ≥ 0 (resp., φ(t) ≤ 0) and meas({t ∈ [t1, t2] : φ(t) =
0}) = 0;
• on [t1, t2], γ corresponds to the singular control ϕ (defined in (4)) iff for each

t ∈ [t1, t2] we have φ(t) = 0.

In [22] the following lemma was proved.

Lemma 8. Let γ be an extremal trajectory and t̄ ∈ Dom(γ) a switching time.
Let x̄ = γ(t̄), and suppose that x̄ /∈ ∆−1

A (0) ∪ ∆−1
B (0). Then t̄ is a switching time

from X to Y iff −∆A(x̄)/∆B(x̄) > 0, and t̄ is a switching time from Y to X iff
−∆A(x̄)/∆B(x̄) < 0.

We now introduce some definitions to describe the projection singularities we
encounter along abnormal extremals. Fix x̄ ∈ R(τ) and an extremal trajectory γ̄ :
[0, ā]→ R(τ) such that γ̄(0) = 0, γ̄(ā) = x̄, and define the function

K x̄,γ̄
ε (x) := ${extremal trajectory γ : γ(0) = 0, γ(a) = x, |γ(t)− γ̄(t)| < ε

∀ t ∈ [0,min(a, ā)], |a− ā| < ε},(5)

where $ denotes the cardinality of a set. Referring to Figure 2.2, we introduce the
following key definition.

Definition 9. Fix x̄ ∈ R(τ) and an extremal trajectory γ̄ : [0, ā] → R(τ) such
that γ̄(0) = 0 and γ̄(ā) = x̄.
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• We say that x̄ is a normal point along γ̄ if for ε sufficiently small there exists
a neighborhood U of x̄ such that K x̄,γ̄

ε (U) = 1.
• We say that x̄ is a fold point along γ̄ if there exists a one dimensional
piecewise–C1 manifold l, with x̄ ∈ l, satisfying the following. For ε sufficiently
small there exists a neighborhood U of x̄ divided by l into two connected com-
ponents Ω1, Ω2 such that K x̄,γ̄

ε (Ω1) = 2, K x̄,γ̄
ε (Ω2) = 0, K x̄,γ̄

ε (l) = 1.
• If l, U(ε), Ω1, Ω2 are as above, then if K x̄,γ̄

ε (Ω1) = 1, K x̄,γ̄
ε (Ω2) = 3, and

K x̄,γ̄
ε (l) = 2, we say that x̄ is a cusp point along γ̄.

• If l, U(ε), Ω1, Ω2 are as above, then if K x̄,γ̄
ε (Ω1) = 2, K x̄,γ̄

ε (Ω2) = 4, and
K x̄,γ̄
ε (l) = 3, we say that x̄ is a ribbon point along γ̄.

• We say that x̄ is a bifold point along γ̄ if there exists a one dimensional
connected piecewise C1 embedded manifold l and two connected C1 embedded
manifolds l1 and l2 satisfying the following.
1. l ∩ ∂li = {x̄} (i = 1, 2); ∂l1 ∩ ∂l2 = {x̄}.
2. For ε sufficiently small there exists a neighborhood U of x satisfying

the following. The set U \ l has two connected components Ω1, Ω2,
and the set Ω2 \ {l1 ∪ l2} has three connected components Ω21, Ω22,
and Ω23 (the names are chosen as in Figure 2.2) such that K x̄,γ̄

ε (Ω1) =
0, K x̄,γ̄

ε (Ω21) = 2, K x̄,γ̄
ε (Ω22) = 4, K x̄,γ̄

ε (Ω23) = 2, K x̄,γ̄
ε (l) = 1, and

K x̄,γ̄
ε (li) = 3 (i = 1, 2).

Notice that this definition describes projection singularities. Indeed, the trajecto-
ries reaching the same point in the plane correspond to different lifts in the cotangent
bundle.

Our aim is to prove that these are the only projection singularities that may
happen along abnormal extremals and show that they are in fact realized for some
control systems.

The behavior of abnormal extremals is individuated by the singularities it meets.
To describe all possible singularities, we start describing those encountered in the
optimal case. In [7, 16, 17], dealing with the optimal synthesis, it was proved that
R(τ) is a stratified subset of R

2, and the one and zero dimensional strata that are
singularities of the optimal flow are called, respectively, frame curves and frame points
(FCs and FPs). Moreover, the authors use the letters X, Y, C, S, and K to indicate,
respectively, the FCs corresponding to subsets of Supp(γ+), subsets of Supp(γ−),
curves made of switching points (switching curves, see Figure 2.3 case 1), turnpikes
and overlaps, that is, curves made of points reached optimally by two distinct tra-
jectories. In [17], it was proved that these are generically all possible FCs. An FP x
that is the intersection of two FCs F1 and F2 is called an (F1, F2) FP. Considering
the extremal trajectories instead of the optimal ones, we do not have any K FC, but
we have the following new FCs:

• an FC called C̄ made of switching points on which X and Y point to opposite
sides (see Figure 2.3, case 2);
• an FC called W that is an arc of an extremal trajectory characterized by the

fact that all its points are fold points (see Figure 2.3, case 3).
• an FC called γ0 that is an arc of an extremal trajectory that “transports” some
special information, e.g., it switches every time it meets the locus ∆−1

A (0), or
it evolves into a W FC.

More details on the FCs W and γ0 are given below.

To understand in detail the structure of abnormal extremals, we describe the set
of all extremals, that is organized in one parameter families, called strips. Let Γ be
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the set of all the extremal trajectories for the control problem (1) up to time τ > 0.
Again, under generic assumptions, extremals are finite concatenations of bang and
singular arcs, so Γ can be obtained by a constructive algorithm that makes inductive
steps on the number of arcs of extremal trajectories. We outline such an algorithm,
described in detail in [5].

Outline of the algorithm. First, one constructs all the extremal trajectories in a
neighborhood of γ±. Then the set of extremal trajectories is subdivided into “strips.”
Each strip is a one dimensional continuous parametric family of extremal bang-bang
trajectories having the same switching strategy. The evolution of each strip must be
studied. In order to do that, the evolution of the boundary of strips must be analyzed
separately. The more delicate case is that of abnormal extremals that here we treat
in detail. The evolution of the interior of a strip may create new strips and cause
the subdivision of each strip into smaller strips. This case is treated in [5], where the
whole construction is completed.

Let us give the precise definition of strip.

Definition 10. Let a, b be two real numbers s.t. 0 ≤ a < b ≤ τ and x ∈ R(τ).
A set of trajectories Sa,b,x = {γα : α ∈ [a, b], γa(a) = x} is called a strip if

(i) ∀ α ∈ [a, b], γα : [0, τ(α)] → R
2, τ(α) > α is an extremal trajectory for the

control problem (1). Moreover, there exists ε > 0 s.t. γ[α,α+ε] corresponds to
a constant control ±1;

(ii) ∀ α ∈]a, b[, γα does not switch on ∆−1
A (0) ∪∆−1

B (0) after time α;
(iii) the set Ba,b,x = {y ∈ R(τ) : ∃ α ∈ ]a, b[ and t ∈]α, τ(α)[ s.t. y = γα(t), t is

a switching time for γα} is never tangent to X or Y .
(iv) the map η : α ∈ [a, b] �→ γα(α) ∈ R

2 is a bang or singular arc and γα|[0,α′] =
γα′ |[0,α′] if a ≤ α′ ≤ α ≤ b.

The function η : [a, b]→ R
2 is called the base of the strip,

◦
Sa,b,x:= {γα : α ∈]a, b[}

is called an open strip, and ∂Sa,b,x := {γa, γb} is called the strip border. See Figure
2.4 for a graphical description of a strip.
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Notice that in [7, 16] a similar algorithm was used to construct the optimal synthesis
that can be organized as a finite collection of optimal strips. Also in this case the
algorithm constructs Γ as a finite union of strips. The set of borders of strips is called
∂Γ. We clearly have the following lemma.

Lemma 11. Under generic assumptions, ∂Γ is a finite set.
Moreover, by construction, every border belongs to two different strips, and ad-

jacent strips correspond locally to the same control. More precisely, the following
lemma holds.

Lemma 12. Let γ ∈ ∂Γ, let S1 and S2 be the two strips such that {γ} = S1 ∩S2,
and let t̄ be a switching time for γ. Then the switching loci of S1 and S2, passing
through γ(t̄), correspond both to switchings from X to Y or both to switchings from
Y to X.

The algorithm produces the FCs in the following way:
• the FCs of kinds C and C̄ lie in the interior of the strips;
• the borders of strips contain FCs of kinds W,γ0, X, Y ;
• the bases of strips contain FCs of kinds X, Y , S.

In fact, the FCs of kinds γ0 and W are borders of strips, i.e., as follows.
Definition 13. Let γ ∈ ∂Γ, and suppose that it corresponds to a constant

control in the interval ]b, c[ (0 < b < c ≤ τ).
• We say that in ]b, c[ γ is a strip border of kind W if, for every t ∈ ]b, c[,

x := γ(t) is a fold point.
• Vice versa if, for every t ∈ ]b, c[ γ(t) is a normal point, we say that in ]b, c[

γ is a strip border of kind γ0.
By construction, we have the following lemma.
Lemma 14. If γ ∈ ∂Γ and γ is of kind W in ]a, b[ and of kind γ0 in ]b, c[

(0 ≤ a < b < c ≤ τ) or vice versa, then b is a switching time for γ.
In the next section we see that in the case of abnormal extremals we need a more

precise definition for FCs of kind W .
Given an extremal trajectory γ, let us define vγ(v0, t0; t) to be the solution to the

Cauchy problem{
v̇γ(v0, t0; t) = (∇F + u(t)∇G)(γ(t)) · vγ(v0, t0; t),
vγ(v0, t0; t0) = v0,

(6)

where u(t) is the control corresponding to γ. In [16], denoting v̄γ(t) := vγ(G(γ(t)), t; 0),
the following function was defined:

θγ : Dom(γ)→ [−π, π], θγ(t) := arg(v̄γ(0), v̄γ(t)),(7)

where arg is the angle measured counterclockwise. We have the following.
Lemma 15. For fixed t0, t, the map ft0,t : v0 �→ vγ(v0, t0; t) is linear and injective.

Moreover, let γ : [a, b] → R
2 be an extremal trajectory of (1) corresponding to a

constant control ū. Then for every t, t0 ∈ [a, b] it holds that vγ((F+ūG)(γ(t0)), t0; t) =
(F + ūG)(γ(t)).

In the following we use the notation θ±(t) := θγ
±
(t) and v± := vγ

±
. From Lemma

15 we have, for every t ∈ [0, t±f ], v
±((F ±G)(γ±(t)), t; 0) = (F ±G)(0) = ±G(0). We

consider the following generic conditions:
(GC1) For every t ∈ [0, t+f ], G(γ+(t)) �= 0.

(GC2) θ̇+(0) �= 0, θ̇+(t+f ) �= 0.

(GC3) If θ̇+(t) = 0, then θ+(t) �= 0,
..

θ
+
(t) �= 0.
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(GC4) If t �= s and θ̇+(s) = θ̇+(t) = 0, then θ+(s) �= θ+(t).
(GC5) If t+f = τ , then max{|θ+(t)− θ+(τ)|, t ∈ [0, τ ]} < π.
In [7, 16] the following lemma was shown.

Lemma 16. We have the following:

(A) t+f =

{
τ if |θ+(a)− θ+(b)| < π ∀ a, b ∈ [0, τ ],
min{t ∈ [0, τ ] : |θ+(a)− θ+(b)| = π for some a, b ∈ [0, t]} otherwise;

(B) let γ be an extremal trajectory; then for almost every t ∈ Dom(γ) we have
sgn(θ̇γ(t)) = sgn(∆B(γ(t));

(C) let γ be an extremal trajectory; then for each t ∈ Dom(γ) the conditions
φ(t) = λ(t) ·G(γ(t)) = 0, θ̇γ(t) �= 0 imply that t is a switching time for γ.

We single out the following times:

s+
1 := min{t ∈]0, t+f ] : θ+(t) = 0, θ̇+(0) < 0},

s′+1 := min{t ∈]0, t+f ] : θ+(t) = 0, θ̇+(0) > 0}.

The times s−1 , s′−1 were defined similarly. From now on we assume the generic condi-
tion

(GAτ) (i) τ /∈ {s±i , s′±i }.
(ii) Let (γ, λ) be an extremal pairs. Then φ(τ) = λ(τ) ·G(γ(τ)) = 0 implies

γ(τ) /∈ ∆−1
A (0).

Observation 1. We can have three situations (cfr. Figure 2.5).
(1) |θ±(a)−θ±(b)| < π for every a, b ∈ [0, τ ]. In this case t±f = τ and |θ±(t±f )| < π.

(2) |θ±(a)− θ±(b)| = π for some a, b ∈]0, τ ]. In this case, |θ±(t±f )| < π, θ± has a

maximum or a minimum in ]0, t±f [, and either s±1 �= 0 or s′±1 �= 0.

(3) |θ±(t±f )| = π. In this case, s±1 and s′±1 are not defined, and generically we get

t±f < τ .

3. Generic properties of abnormal extremals. In this section we state and
prove the main results about the switching strategies of abnormal extremals.

Definition 17. Let γ : [0, τ ] → R
2 be (the first component of) an abnormal

extremal for the control problem (1) such that it switches at least one time, and let
t1 be its first switching time. We refer to the couples (γ, t1) as nontrivial abnormal
extremal (NTAE). By definition an NTAE is maximal if defined on [0, τ ].
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Definition 18. Let γ : [0, τ ] → R
2 be an NTAE, and let t1 < t2 < · · · <

tn(γ)−1 < tn(γ) := τ be the sequence of switching times. We set AA(i) = Supp
(
γ|[ti,ti+1]

)
(i = 1, · · · , n(γ)− 1), and we call it an abnormal arc.

Proposition 19. Let γ : [0, τ ] → R
2 be an extremal trajectory for the control

problem (1) such that it switches at least one time, let λ : [0, τ ] → R2 be the corre-
sponding covector, and let t1 < t2 < · · · < tn(γ)−1 < tn(γ) := τ be the sequence of
switching times. Then the following hold:

(A) λ(.) is unique (up to the multiplication by a positive constant);
(B) under generic assumptions the following conditions are equivalent:
(a) (γ, t1) is an NTAE;
(b) γ(ti) ∈ ∆−1

A (0) for some i ∈ {1, . . . , n(γ)− 1};
(c) γ(ti) ∈ ∆−1

A (0) for each i ∈ {1, . . . , n(γ)− 1};
(d) γ(t̄) ∈ ∆−1

A (0) (t̄ ∈ Dom(γ)) iff t̄ = ti for some i ∈ {1, . . . n(γ)− 1};
(C) under generic assumptions, (a) (or, equivalently, (b) or (c) or (d)) implies

that for every interval [a, b] ⊂ [0, τ ] (a < b), γ does not correspond to the singular
control ϕ.

Proof. (A) The covector associated to an extremal trajectory is completely deter-
mined after the first switching. From n(γ) ≥ 2 it follows that λ(.) is unique up to a
positive constant.

Proof that (a) implies (c). Let (γ, λ) be an abnormal extremal such that n(γ) ≥ 2.
For each ti (i = 1, . . . , n(γ)−1) we have λ(ti)·G(γ(ti)) = 0, and there exists a sequence
t′m ↗ ti such that

H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m)) = 0.

Hence λ(t′m) · F (γ(t′m))→ 0, and λ(ti) · F (γ(ti)) = 0. We can conclude that F (γ(ti))
and G(γ(ti)) are parallel, λ(ti) being not equal to 0. (c) follows.

Proof of (C). From (P3), ∆−1
A (0) ∩ ∆−1

B (0) ∩ R(τ) is a finite set. Generically γ
does not switch on ∆−1

A (0) ∩∆−1
B (0) Using Lemma 5, we conclude.

Proof that (b) implies (a). Assume now that ∆A(γ(ti)) = 0 for some i ∈
{1, . . . , n(γ) − 1}. We have λ(ti) · G(γ(ti)) = 0, and from ∆A(γ(ti)) = 0 we get
λ(ti) · F (γ(ti)) = 0. There exists a sequence t′m ↗ ti such that

H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m))→ 0.

From the PMP we know that H is almost everywhere equal to a fixed constant in
Dom(γ); hence we can conclude H(γ(t), λ(t), u(t)) = 0 almost everywhere.

Proof that (a) implies (d). Fix t̄ such that γ(t̄) ∈ ∆−1
A (0). We have F (γ(t̄)) =

βG(γ(t̄)) (by genericity we may assume β �= 0,±1), and there exists a sequence t′m ↗ t̄
such that |u(t′m)| = 1 and

H(γ(t′m), λ(t′m), u(t′m)) = λ(t′m) · (F + u(t′m)G)(γ(t′m)) = 0.

Hence (1 + u(t′m)β)λ(t′m) ·G(t′m)→ 0 and, being that limm→∞ u(t′m) = ±1, we have
λ(t̄) · G(t̄) = 0. From (C), ∆B(γ(t̄)) �= 0; thus θ̇γ(t̄) �= 0, and t̄ is a switching time
(see Lemma 16). Vice versa, since (a) implies (c), we get that ∆A(γ(ti)) = 0 for each
i. Thus we are done.

The implications (c)⇒(b), (d)⇒(b) are obvious. This concludes the proof.
We have the following lemma.
Lemma 20. Let (γ, t1) be an NTAE; then γ ∈ ∂Γ.
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Proof. Let (γ, t1) be an NTAE. From Proposition 19, γ(t1) ∈ ∆−1
A (0). Hence

condition (ii) of Definition 10 is violated, so γ cannot be in the interior of a strip.
Then it is natural to define ∂ΓA = {γ ∈ ∂Γ, γ is an abnormal extremal}.
Definition 21. Let x ∈ ∆−1

A (0) be a switching point for an NTAE; then clearly
X(x) �= 0, Y (x) �= 0, and (F +G)(x) = α(F −G)(x) for some α �= 0. If α > 0 (resp.,
α < 0), we say that at x, ∆−1

A (0) is direct (resp., inverse).
From Lemma 20 it follows that any AA(i) is a strip border of kind γ0 or W , but

for abnormal extremals a more precise definition for the strip borders of kind W is
necessary.

Definition 22. We refer to Figure 3.1. Let γ ∈ ∂ΓA, and suppose that it
corresponds to a constant control (say, +1) in the interval ]b, c[ (0 < b < c ≤ τ). Let
S1 and S2 be the two strips such that {γ} = S1 ∩S2, and suppose that in the interval
]b, c[ γ is a strip border of kind W .

• We say that in ]b, c[ γ is a strip border of kind WC if S1 and S2 both lie on
the right (resp., on the left) of γ|]b,c[ and X points to the right (resp., to the
left) of γ|]b,c[ at every point of Supp(γ|]b,c[).
• We say that in ]b, c[ γ is a strip border of kind WD if S1 and S2 both lie on
the right (resp., on the left) of γ|]b,c[ and X points to the left (resp., to the
right) of γ|]b,c[ at every points of Supp(γ|]b,c[).

From Proposition 19 we have the following.
Lemma 23. Let A1, A2 ∈ {WC ,WD, γ0} and γ ∈ ∂ΓA. If γ is of kind A1 in

]a, b[ and of kind A2 in ]b, c[ (A1 �= A2, 0 < a < b < c ≤ τ), then b is a switching
time for γ.

Now the meaning of this more fine definition in the case of abnormal extremal
strip borders is clear. An abnormal extremal can be of kind WC (resp., WD) on
[t − ε, t], ε > 0 and of kind WD (resp., WC) on [t, t + ε], only if t is a switching
time. On the contrary, in the case of strip borders that are not abnormal extremals
the change from WC to WD or vice versa can occur without switching, and so the
difference between WC and WD is not useful.

Proposition 24. Let γ be an NTAE, let t1 < t2 < · · · < tn(γ)−1 < tn(γ) := τ
be the sequence of its switching times, and set t0 = 0. From (C) of Proposition 19,
generically G(γ(ti)) �= 0. If F (γ(ti)) = βiG(γ(ti)), then clearly βi �= ±1. (Otherwise,
X(γ(ti)) = 0 or Y (γ(ti)) = 0.) For all i = 0, . . . , n(γ)− 2 it holds that

vγ(G(γ(ti+1)), ti+1; 0) = (βi + 1)/(βi+1 + 1)vγ(G(γ(ti)), ti; 0)
if γ corresponds to control +1 on [ti, ti+1],

vγ(G(γ(ti+1)), ti+1; 0) = (βi − 1)/(βi+1 − 1)vγ(G(γ(ti)), ti; 0)
if γ corresponds to control −1 on [ti, ti+1].



1344 UGO BOSCAIN AND BENEDETTO PICCOLI

Proof. Fix i, and suppose that γ corresponds to constant control +1 in [ti, ti+1],
the opposite case being similar. From F (γ(ti+1)) = βi+1G(γ(ti+1)), recalling Lemma
15, we have

F (γ(ti)) +G(γ(ti)) = vγ(F (γ(ti+1)) +G(γ(ti+1)), ti+1; ti)

= (1 + βi+1)v
γ(G(γ(ti+1)), ti+1; ti).

Now from F (γ(ti)) = βiG(γ(ti)) (notice that in the case when i = 0 we have F (0) = 0,
and hence β0 = 0) and using again Lemma 15, we have

(1 + βi)v
γ(G(γ(ti)), ti; 0) = (1 + βi+1)v

γ(G(γ(ti+1)), ti+1; 0),

which concludes the proof.
Proposition 25. Let γ : [0, τ ] → R

2 be an extremal trajectory for the control
problem (1) that switches at least one time, let θγ be the corresponding function defined
in (7), and let t1 < t2 < · · · < tn(γ)−1 < tn(γ) := τ be the sequence of switching times.
Then under generic assumptions the following conditions are equivalent:

(a) (γ, t1) is an NTAE;
(b) θγ(ti) ∈ {0,±π} for some i ∈ {1, . . . , n(γ)− 1};
(c) θγ(ti) ∈ {0,±π} for each i ∈ {1, . . . , n(γ)− 1};
(d) θγ(t̄) ∈ {0,±π}, (t̄ ∈ Dom(γ)) iff t̄ = ti for some i ∈ {1, . . . n(γ)− 1}.
Proof. Proof that (a) implies (c). By definition θγ(0) = 0. Proposition 24 implies

that the vectors vγ(G(γ(ti+1), ti+1; 0) and vγ(G(γ(ti), ti; 0) are parallel. Since θγ(ti+1)
and θγ(ti) measure precisely the angle between those vectors and G(0), we have
θγ(ti+1) = θγ(ti)± π.

Proof that (c) implies (a). From (c) we have θγ(t1) ∈ {0,±π}; then for some
b ∈ R (which by genericity we may assume different from 0 and 1) it holds that
vγ(G(γ(t1)), t1; 0) = bG(γ(0)). Now if we suppose that γ corresponds to constant
control +1 in the interval [0, t1] (the opposite case being similar), we have bG(γ(0)) =
b(F + G)(γ(0)) = vγ(b(F + G)(γ(t1)), t1; 0). From the injectivity of the map v0 →
vγ(v0, t0; t1) we obtain γ(t1) ∈ ∆−1

A (0). Using Proposition 19 (a) follows.
Proof that (b) implies (c) and vice versa. Clearly (b) follows from (c); let us prove

the opposite. Let λ be the covector associated to γ. From (b) we have that λ(0) is
orthogonal to G(0), and hence γ switches iff θγ ∈ {0,±π}. Thus (c) follows.

Proof that (a) implies (d). It is a consequence of the generic condition θγ(t̄) =
0⇒ θ̇γ(t̄) �= 0.

The implication (d)⇒(c) is obvious. This concludes the proof.
Proposition 26. Let (γ, t1) be an NTAE, and let 0 =: t0 < t1 < t2 < · · · <

tn(γ)−1 < tn(γ) := τ be the sequence of switching times. Suppose that for some

i ∈ {0, 1, . . . , n(γ)−2}, ∆−1
A (0) is inverse at the points γ(ti), γ(ti+1). Then θγ(ti+1) =

θγ(ti).
Proof. Set (F +G)(γ(ti)) = αi(F −G)(γ(ti)) and F (γ(ti)) = βiG(γ(ti)). Under

generic assumptions, αi and βi are well defined for each i = 1, . . . , n(γ) − 1 and it
holds that

α0 = −1, β0 = 0, and αi, βi /∈ {0,±1}, βi =
1 + αi
1− αi

, i ∈ {1, ..., n(γ)− 1}.

Now if ∆−1
A (0) is inverse at both points γ(ti), γ(ti+1) (i ∈ {0, . . . , n(γ) − 2}, then

αi, αi+1 < 0 and we have βi, βi+1 ∈]− 1, 1[ (see Figure 3.2). Recalling the definition
of θγ , from Proposition 24 the conclusion follows.
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From Propositions 19 and 25, using the definitions of the times s+
1 , s′+1 , t+f , s

−
1 ,

s′−1 , t−f , we have the following corollary.
Corollary 27. Let γ be an extremal trajectory exiting the origin with control

+1; then its first switching can occur on ∆−1
A (0) only if s1 �= 0 (condition (A)) or

s′1 �= 0 (condition (B)) or |θ+(t+f )| = π (condition (C)). Moreover, at most one of the
conditions (A), (B), (C) holds, and the corresponding time is the first switching time
of γ and the first time at which γ+ intersect ∆−1

A (0). A similar result holds for γ−

and for the times s−1 , s′−1 , t−f .
Referring to conditions 1, 2, 3 of Observation 1, conditions A and B correspond

either to case 2 or case 1 (with s+
1 �= 0 or s′+1 �= 0), and condition C corresponds to

case 3. Moreover, it is clear that for an NTAE (γ, t1), t1 is the first time at which γ
reaches ∆−1

A (0). In particular, if the trajectory exits the origin with control +1, we
have t1 = s+

1 or t1 = s′+1 or t1 = t+f . In the case when s+
1 = 0 and s′+1 are not defined

or vice versa and |θ+(t+f )| < π (which implies t+f = τ), there are no NTAEs exiting
the origin with control +1. (An abnormal extremal exists but it never switches.) This
case corresponds to case 1 of Observation 1 with s+

1 = 0 and s′+ not defined or vice
versa. These observations are collected in the following.

Corollary 28. There are at most two maximal NTAE. Moreover,
(♠) one exits the origin with control +1, and its first switching is at
• s+

1 iff s+
1 �= 0;

• s′+1 iff s′+1 �= 0;
• t+f iff |θ+(t+f )| = π;

(♣) the other exits the origin with control −1, and its first switching is at
• s−1 iff s−1 �= 0;
• s′−1 iff s′−1 �= 0;
• t−f iff |θ−(t−f )| = π.

Finally, if |θ±(t±f )| = π, then ∆−1
A (0) is direct at γ(t±f ).

The following two propositions describe the position of the switching curves of
the strips whose borders are abnormal extremals.

Proposition 29. Let (γ, t1) be an NTAE, let ti and ti+1 be two consecutive
switching times, let S be a strip such that γ ∈ ∂S, and let U i, U i+1 be two sufficiently
small neighborhoods of γ(ti) and (γ(ti+1). Moreover, let U i

in and U i
out (resp., U i+1

in ,
U i+1
out ) be the two connected components of U i \∆−1

A (0) (resp., U i+1 \∆−1
A (0)) chosen

in such a way that γ enters U i
in (resp., U i+1

in ). Under generic conditions we have the
following cases:
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(1) θγ(ti) = θγ(ti+1) and ∆−1
A (0) direct at γ(ti). In this case if the switching

locus of S passing through γ(ti) lies in U i
in (resp., U i

out), then the switching
locus of S passing through γ(ti+1) lies in U i+1

out (resp., U i+1
in ).

(2) θγ(ti) = θγ(ti+1) and ∆−1
A (0) inverse at γ(ti). In this case if the switching

locus of S passing through γ(ti) lies in U i
in (resp., U i

out), then the switching
locus of S passing through γ(ti+1) lies in U i+1

in (resp., U i+1
out ).

(3) θγ(ti) = θγ(ti+1) ± π and ∆−1
A (0) direct at γ(ti). In this case we have the

same conclusion as in case (2).
(4) θγ(ti) = θγ(ti+1) ± π and ∆−1

A (0) inverse at γ(ti). In this case we have the
same conclusion as in case (1).

Proof. Let fi (resp., Ai) be the sign of −∆B/∆A (resp., ∆A) on U i
in, and let Bi be

the sign of ∆B on U i. By hypothesis, taking U i sufficiently small, these quantities are
well defined and we have fi = −AiBi. Moreover, set θi = +1 if θγ(ti) = θγ(ti+1)± π
and θi = −1 if θγ(ti) = θγ(ti+1).

Claim. Bi+1 = θiBi.

Proof of the Claim. From sgn(θ̇γ(t)) = sgn(∆B(γ(t))) we have that v̄γ(t) (see
formula (7)) is a vector rotating counterclockwise in U i (resp., U i+1) iff Bi > 0 (resp.,
Bi+1 > 0). Recalling that θγ(ti), θ

γ(ti+1) ∈ {0,±π} it is clear that Bi and Bi+1 have
the same sign iff θγ(ti+1) = θγ(ti)± π. The claim is proved.

Case 1. First suppose ∆A is direct at γ(ti). In this case from Proposition 19 we
clearly have Ai+1 = −Ai. Now if the switching loci of S lie one in U i

in and one in
U i+1
in (resp., U i

out and U i+1
out ), then, from Lemma 8 we have fi = −fi+1. This occurs

iff −AiBi = +Ai+1Bi+1 = −AiBiθi, from which it follows that θi = +1.

On the other hand, if the switching loci of S lie one in U i
in and one in U i+1

out (resp.,
U i
out and U i+1

in ), then fi = +fi+1, which occurs iff θi = −1.
Case 2. If ∆A is inverse at γ(ti), we have Ai+1 = +Ai. Now if the switching loci

of S lie one in U i
in and one in U i+1

in (resp., U i
out and U i+1

out ), we have fi = −fi+1. This
occurs iff θi = −1.

On the other hand, if the switching loci of S lie one in U i
in and U i+1

out (resp., U i
out

and U i+1
in ), then fi = +fi+1, which occurs iff θi = +1.

Proposition 30. Let (γ, t1) be an NTAE, and let S1 and S2 be two strips such
that {γ} = S1∩S2. Let t̄ be a switching time for γ, and let U be a small neighborhood
of γ(t̄) such that U \∆−1

A (0) has two connected components Uin and Uout, chosen in
such a way that γ enters U from Uin. Then, under generic conditions, the switching
loci of S1 and S2 passing through γ(t̄) satisfy the following:

(a) they both lie in Uin or both lie in Uout;
(b) they are tangent to supp(γ) in γ(t̄).

Proof of (a). By the analysis of the singularities at the first switching time (see
Figure 4.1) we know that (a) is true in the special case t̄ = t1. Using Proposition 29
and by induction the thesis follows.

Proof of (b). We prove (b) by induction on the switching time. We start con-
sidering the first switching time and treat only the case in which γ exits the origin
with constant control +1, the opposite case being similar. First suppose that t̄ is the
first switching time for γ, and assume s+

1 > 0 (i.e., t̄ = s+
1 ), the case s′+1 > 0 and

|θ+(t+f )| = π being similar. Set x = (x1, x2), and choose a local system of coordinates
in such a way that

Y ≡
(

1
0

)
X(x) =

( −1 + a1x1 + a2x2 +O(|x|2)
b1x1 + b2x2 +O(|x|2)

)
,
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X(x) =

(
c0 + c1(x1 − s+

1 ) + c2x2 +O(|x− (s+
1 , 0)|2)

d1(x1 − s+
1 ) + d2x2 +O(|x− (s+

1 , 0)|2)
)

.

Generically ∆B(γ
+(s+

1 )) �= 0, and thus a switching curve generates at γ+(s+
1 ).

Let (γ̄, λ̄) be an extremal trajectory of (1) corresponding to constant control −1
in the interval [0, τ1[ and to constant control +1 in the interval [τ1, τ2]. We consider
the trajectories γ̄ that are near to γ, that is, those corresponding to (τ1, τ2) in a
neighborhood of (0, s+

1 ). We have

γ̄(τ1) =

( −τ1 +O(τ2
1 )

− 1
2b1τ

2
1 +O(τ3

1 )

)
, γ̄(τ2) =

( −τ1 + τ2 +O(τ2
1 )

− 1
2b1τ

2
1 +O(τ3

1 )

)
.

Now if τ1, τ2 are switching times for γ̄, we must have

λ̄(τ1) ·G(γ̄(τ1)) = 0,(8)

λ̄(τ2) ·G(γ̄(τ2)) = 0.(9)

Moreover, from equation (i) of the PMP we have λ̄(τ1) = λ̄(τ2) =: λ̄. Finally, set

λ̄ = (λ̄1, λ̄2), and normalize λ̄ in such a way λ̄2 =
√
1− λ̄1. Equations (8) and (9)

become

f1(λ1, τ1, τ2) := λ̄1(1 + a1τ1) +
√
1− λ̄1

(
1

2
b1τ1

)
+O(τ2

1 ) = 0,

f2(λ1, τ1, τ2) := λ̄1

(
1

2
(1− c0)− c1(−τ1 + (τ2 − s+

1 ))

)

+
√
1− λ̄1

(
−1

2
d1(−τ1 + (τ2 − s+

1 ))

)
+O(τ2

1 ) +O((τ2 − s+
1 )

2) = 0.

These are two equations for the variable (λ̄1, τ1, τ2), and (0, 0, s+
1 ) is a solution. We

compute the 2 × 2 Jacobian matrix of partial derivatives of f1 and f2 with respect
to (λ1, λ2) and check that its determinant at the point (0, 0, s+

1 ) is equal to −d1/2.
Under the generic assumption d1 �= 0, we can solve the system in a neighborhood of
(0, 0, s+

1 ) expressing (λ̄1, τ2) as a function of τ1. This yields

∂τ2
∂τ1

∣∣∣∣
(0,0,s+1 )

= − (b1(1− c0)− 2d1)

2d1
=: m;(10)

hence τ2 = s+
1 +mτ1 +O(τ2

1 ), and under the generic condition m �= 1 the parametric
expression for the switching curve starting at (s+

1 , 0) is

x1(τ1) = s+
1 + (m− 1)τ1 +O(τ2

1 ),

x2(τ1) = −1

2
b1τ

2
1 +O(τ3

1 ).

If m �= 0, we can use τ2 as a parameter, so

x1(τ2) = s+
1 +

m− 1

m
(τ2 − s+

1 ) +O((τ2 − s+
1 )

2),

x2(τ2) = − b1
2m2

(τ2 − s+
1 )

2 +O((τ2 − s+
1 )

3).
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Assuming the generic condition c0 �= 1 and b1 �= 0, we may express x2 as a function
of x1:

x2 = − 2d2
1

b1(1− c0)2
(x1 − s+

1 )
2 +O((x1 − s+

1 )
3).(11)

Notice that this curve can be of kind C or C̄. This proves that the switching curve
starting at the first switching time is tangent to Supp(γ).

Now we have to prove the induction step; that is, if tn, tn+1 are two consequent
switching times for γ and the switching curve passing through tn is tangent to γ, then
the switching curve passing through tn+1 is tangent to γ as well. Let us consider only
the case in which γ corresponds to the constant control +1 on [tn, tn+1], the opposite
case being similar. Choose a local system of coordinates, and rescale the time in such
a way that

tn = 0, γ(tn) = 0,

Y ≡
(

1
0

)
X(x) =

(
e0 + e1x1 + e2x2 +O(|x|2)

f1x1 + f2x2 +O(|x|2)
)

,

X(x) =

(
g0 + g1(x1 − tn+1) + g2x2 +O(|x− (tn+1, 0)|2)

h1(x1 − tn+1) + h2x2 +O(|x− (tn+1, 0)|2)
)

.

We can parameterize the switching curve Cn through γ(tn) in the following way.
Given x ∈ Cn, there exists (γx, λx) extremal that switches at x at time τn(x). By
induction we may assume that τn is invertible for x near γ(tn) and parameterize Cn
by τn:

x1(τn) = αnτn +O(τ2
n),

x2(τn) = βnτ
2
n +O(τ3

n)

for some αn, βn that by genericity we may assume different from zero.

Let (γ̃, λ̃) := (γ̃, λ̃)τn be the extremal trajectory of (1) switching at τn on Cn, and
let τn+1 be the next switching time. We have

γ̃(τn) =

(
αnτn +O(τ2

n)
βnτ

2
n +O(τ3

n)

)
, γ̃(τn+1) =

(
αnτn + τn+1 +O(τ2

n)
βnτ

2
n +O(τ3

n)

)

and

λ̃(τn) ·G(γ̃(τn)) = 0,(12)

λ̃(τn+1) ·G(γ̃(τn+1)) = 0.(13)

With computations entirely similar to the previous ones, using similar generic condi-
tions we conclude that the switching curve passing through γ(tn+1) has the expression

x1(τn+1) = tn+1 + αn+1(τn+1 − tn+1) +O((τn+1 − tn+1)
2),

x2(τn+1) = βn+1(τn+1 − tn+1)
2 +O((τn+1 − tn+1)

3)

for some αn+1, βn+1 �= 0. This conclude the proof.
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4. Singularities. In this section we describe all possible FPs occurring along an
NTAE.

We start to describe the first singularity for the NTAE exiting the origin with
control +1, the opposite case being similar. We refer to Figure 4.1, where all extremal
trajectories are depicted in a neighborhood of the FPs. Following Corollary 28, an
NTAE generates at time s+

1 (iff s+
1 �= 0), or at time s′+1 (iff s′+1 �= 0), or at time t+f (iff

|θ+(t+f )| = π). Assume s+
1 �= 0; then a switching curve tangent to Supp(γ+) bifurcates

from γ+(s+
1 ). Recall formula (11) of the proof of (b) of Proposition 30. Using the
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definition of θ+ and s+
1 , as in Proposition 3.1 of [7], one gets that b1 > 0, d1 < 0 (we

would have b1 < 0, d1 > 0, if s+
1 �= 0), and c0 < 1. Hence the switching curve is

bifurcating to the right of Supp(γ+). Moreover, it follows that m, defined in formula
(10), is bigger than 1, and being that t1 > 0, we have (in formula (11)) x1 > s+

1 .
If the switching curve is of kind C, we call the singularity (Y,C)tg2 . If the switching
curve is of kind C̄ and ∆−1

A (0) is direct at γ+(s+
1 ), we call the singularity (Y, C̄)tg1 .

Finally, if the switching curve is of kind C̄ and ∆−1
A (0) is inverse at γ+(s+

1 ), we call
the singularity (Y, C̄)t−o1 . These names are chosen in accordance with [5, 17]. The
case in which s′+1 �= 0 is entirely similar.

The case in which the NTAE starts at γ(t+f ) (that happens iff |θ+(t+f )| = π) is

again described by formula (11) with s+
1 replaced by t+f . In this case, reasoning as in

[7], we get c0 > 1 and b1d1 < 0. It follows that the switching curve bifurcates to the
right, m < 1, and in formula (11) we have x1 < t+f . Moreover, at t+f , γ

+ stops to be
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extremal and ∆−1
A (0) is direct at γ(t+f ) (see Proposition 26). We call this singularity

(Y,C)tg3 .
To classify the other generic singularities involving an NTAE, we consider at the

FPs
• ∆−1

A (0) direct or inverse;
• switching in Uin or Uout according to Proposition 29;
• all the essentially different directions of the exiting abnormal trajectory.

We obtain 24 types of singularities. The singularities with entering abnormal ex-
tremals of kind γ0 are shown in Figure 4.2, while in Figure 4.3 all the possible sin-
gularities for an NTAE of the kinds WC and WD are listed. In these figures we also
indicate the labels fold, cusp, bifold, or ribbon in accordance with Definition 9.

5. Classification of abnormal extremals. In this section we prove Theo-
rem 2.

From now on we fix a positive time τ > 0. Using Corollary 28, we have that
for each system (F,G) ∈ Ξ there exists exactly two maximal abnormal extremals
γ±
A = γ±

A ((F,G), τ) in time τ exiting the origin, respectively, with control ±1.
Definition 31. We say that a set A provides a generic classification of abnormal

extremals (in time τ) if there exist a generic subset Π of Ξ and a map Φ : Π → A
such that Φ((F,G)) = Φ((F ′, G′)), (F,G), (F ′, G′) ∈ Π iff the corresponding maximal
abnormal extremals present the same finite sequence of generic singularities.

Remark. From section 4, we know the structure of the set of extremal trajectories
near each generic singularity. Hence, if two abnormal extremals present the same
sequence of singularities, then the synthesis near them is exactly the same.

We provide a generic classification through a set of words A recognizable by
an automaton. Therefore, proving Theorem 2 amounts precisely to constructing an
automaton describing all possible sequences of generic singularities along an NTAE.

First, we build an automaton, naturally associated to a system, with the simplest
possible set of edges. By this automaton we can prove that the ribbon and the bifold
singularities are realized, but more than one sequence of singularities may correspond
to a recognizable word. Then we build a more complicated automaton that has the
required property; i.e., to every recognizable word it corresponds one and only one
sequence of generic singularities.

Let us first recall some definitions from automata theory. For a more extensive
and detailed treatment of the subject we refer to [10, 11].

Definition 32. Let Σ be a finite set, and consider the set Σ∗ of ordered n-tuples
s = (σ1, . . . , σk), σi ∈ Σ (i = 1, . . . , k), k ≥ 0. We call Σ the alphabet, σ ∈ Σ a
letter, s = (σ1, . . . , σk) ∈ Σ∗ a word of length k, and Σ∗ the set of words generated
by Σ.

The set of words generated by an alphabet is a set with a simple structure, and
a classification based on such a set is quite satisfying. Such a kind of classification
was given, for example, for the sequence of generic singularities along γ± in [15]. For
abnormal extremals we have to use a set with a more complicated structure.

Definition 33. Let Σ be a finite alphabet; an automaton A over Σ consists of
the following:

• a finite set S whose elements are called states;
• a set of initial states I ⊆ S;
• a set of terminal states T ⊆ S;
• a set of edges, that is, a subset E ⊆ S × Σ × S. An edge is indicated as
(S1, σ, S2), and we say that it begins at S1, it ends at S2, and it carries the
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label σ.
Usually an automaton is represented by a set of circles (states) and a set of

arrows that connect the circles (the edges). The initial (resp., final) states are labelled
by arrows pointing toward (resp., away from) the circle. If there are several edges
beginning and ending at the same states, they are replaced by a single arrow carrying
several labels.

S S

S

1 2

3

σ
σ σ σ

1
2

3

4 σ5,

A path in A is a finite sequence of edges of the type (S1, σ1, S2)(S2, σ2, S3), . . . ,
(Sk, σk, Sk+1). If S1 ∈ I and Sk+1 ∈ T, we say that the path is successful.

Definition 34. A set of words Ω ⊂ Σ∗ is said to be recognizable by A if for
every word (σ1, σ2, . . . , σm) ∈ Ω of length m there exists S1, . . . , Sm+1 ∈ S such that

• (Si, σi, Si+1) ∈ E for every i = 1, . . . ,m;
• (S1, σ1, S2)(S2, σ2, S3), . . . , (Sm, σm, Sm+1) is a successful path.

The set of words recognizable by an automaton share some regularity properties;
in particular, they are studied in automata theory (see [10, 11]). Let us resume all
the information on the switching strategy of an abnormal extremal via three rules.
Let (γ, t1) be an NTAE, and let t1 < t2, . . . , < tn(γ)−1 < tn(γ) := τ be the sequence
of its switching times.

R1. Let S1 and S2 be the two strips such that γ ∈ S1 ∩S2, and let S̄ := S1 ∪S2.
We have the following cases:

(1) θγ(ti) = θγ(ti+1) and ∆−1
A (0) direct at γ(ti). In this case if the switching

locus of S̄ passing through γ(ti) lies in U i
in (resp., U i

out), then the switching
locus of S̄ passing through γ(ti+1) lies in U i+1

out (resp., U i+1
in ).

(2) θγ(ti) = θγ(ti+1) and ∆−1
A (0) inverse at γ(ti). In this case if the switching

locus of S̄ passing through γ(ti) lies in U i
in (resp., U i

out), then the switching
locus of S̄ passing through γ(ti+1) lies in U i+1

in (resp., U i+1
out ).

(3) θγ(ti) = θγ(ti+1) ± π and ∆−1
A (0) direct at γ(ti). In this case we have the

same conclusion as in case (2).
(4) θγ(ti) = θγ(ti+1) ± π and ∆−1

A (0) inverse at γ(ti). In this case we have the
same conclusion as in case (1).

The rule R1 is a direct consequence of Propositions 29 and 30(a).
R2. If ∆−1

A (0) is inverse at ti and ti+1, then θγ(ti+1) = θγ(ti). The rule R2
follows from Proposition 26.

R3. Only the following consecutive singularities are possible:

Singularity at ti Possible AA(i)
singularity at ti+1

(Y C)tg2 ,(Y C)tg3 ,2,4,6,8,12,16,20,24 1,2,3,4,5,6,7,8 γ0

(Y C̄)tg1 ,1,3,7,9,10,13,14,19,23 9,13,18,19,20,22,23,24 WC

(Y C̄)t−o
1 ,5,11,15,17,18,21,22 10,11,12,14,15,16,17,21 WD

Clearly, if an abnormal arc of kind γ0 (resp., WC ,WD) exits the singularity γ(ti)
(i = 1, . . . , n(γ) − 1), then an abnormal arc of kind γ0 (resp., WC ,WD) enters the
singularity γ(ti+1). Thus R3 can be directly checked using Figures 4.1, 4.2, and 4.3.

We now are ready to build an automaton A. For us the set of states is the set of
the 28 singularities

S := {(Y C)tg2 , (Y C̄)tg1 , (Y C̄)t−o1 , (Y C)tg3 ,
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Table A.

Letters→ 0 π
states

↓
(Y C)tg2 1,2,5,6 3,4,7,8

(Y C̄)tg1 9,18,19,20 13,22,23,24

(Y C̄)t−o
1 14,15,16,21 10,11,12

(Y C)tg3 1,2,5,6 3,4,7,8

1 13,22,23,24 9,18,19,20
2 3,4,7,8 1,2,5,6
3 9,18,19,20 13,22,23,24
4 1,2,5,6 3,4,7,8

5 10,11,12,17 14,15,16
6 1,2,5,6 3,4
7 13,22,23,24 9
8 3,4,7,8 1,2

9 13,22,23,24 9,18,19,20
10 13,22,23,24 9,18,19,20
11 14,15,16,21 10,11,12,17
12 3,4,7,8 1,2,5,6
13 9,18,19,20 13,22,23,24
14 9,18,19,20 13,22,23,24
15 10,11,12,17 14,15,16,21
16 1,2,5,6 3,4,7,8

17 10,11,12,17 14,15,16
18 10,11,12,17 14,15,16
19 9,18,19,20 13
20 1,2,5,6 3,4
21 14,15,16,21 10,11,12
22 14,15,16,21 10,11,12
23 13,22,23,24 9
24 3,4,7,8 1,2

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24},

and the alphabet is

Σ := {0, π},

that is (if we are considering two singularities at ti and ti+1), the set of values assumed
by the function ∆θγi := |θγ(ti+1)−θγ(ti)|. The set of initial states is constituted by the
singularities (Y C)tg2 , (Y C̄)tg1 , (Y C̄)t−o1 , (Y C)tg3 , and the set of terminal states coincides
with S. Using rules R1–R3, we obtain Table A, which shows how the edges connect the
states; that is, it describes the set of edges E. For example, from the state (singularity)
18, using the letter π, we may reach the states 14, 15, 16. This means that the edges
of E with label π that start at the state 18 are (18, π, 14), (18, π, 15), (18, π, 16). It
is clear that for this automaton every word of Σ∗ is recognizable, but A does not
provide a generic classification because a word corresponds to more than one sequence
of singularities. However, it describes in a simple way the set of abnormal extremals,
and, in particular, from Table A we have the following theorem.

Theorem 35. All states 1–24 can be reached with at most two edges. More
precisely, only the singularity 17 needs, in fact, two edges. Moreover, the singularity
number 22 (the ribbon) can be realized with the edge ((Y C̄)tg1 , π, 22) and the singularity
number 10 (which is a bifold) with the edge ((Y C̄)t−o1 , π, 10).



1354 UGO BOSCAIN AND BENEDETTO PICCOLI

0

π

0

π

π

0

18

123456789101112

2324 22 21 20 19 17 16 15 14 13

(YC)

(YC)

(YC)

(YC)

2

tg
1

1

t o

3

Fig. 5.1. The automaton. (Some edges are omitted.)

Table B (first part).

Letters→ (0, D, γ0) (0, D,WC) (0, D,WD) (0, I, γ0) (0, I,WC) (0, I,WD)
states

↓
(Y C)tg2 2 1 – 6 – 5

(Y C̄)tg1 – 9 – 20 19 18

(Y C̄)t−o1 16 14 15 – – 21

(Y C)tg3 2 1 – 6 – 5

1 – 13 – 24 23 22
2 4 3 – 8 7 –
3 – 9 – 20 19 18
4 2 1 – 6 – 5

5 12 10 11 – – 17
6 2 1 – 6 – 5
7 – 13 – 24 23 22
8 4 3 – 8 7 –

9 – 13 – 24 23 22
10 – 13 – 24 23 22
11 16 14 15 – – 21
12 4 3 – 8 7 –
13 – 9 – 20 19 18
14 – 9 – 20 19 18
15 12 10 11 – – 17
16 2 1 – 6 – 5

17 12 10 11 – – 17
18 12 10 11 – – 17
19 – 9 – 20 19 18
20 2 1 – 6 – 5
21 16 14 15 – – 21
22 16 14 15 – – 21
23 – 13 – 24 23 22
24 4 3 – 8 7 –

Figure 5.1 shows the automaton with all states but only the edges of the kind
((Y C)tg2 , ., .), ((Y C̄)tg1 , ., .), (15, ., .).

To build a new automaton A′ that provides a generic classification, we need
to include more information in the alphabet. First, we assign a label to the entry
arrows I1, I2, I3, I4, corresponding, respectively, to the singularities (Y C)tg2 , (Y C̄)tg1 ,
(Y C̄)t−o1 , (Y C)tg3 . Then we introduce more information in the letters; i.e., we need
a bigger alphabet. To do this, given a generic singularity on an NTAE, we want to
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Table B (second part).

Letters→ (π,D, γ0) (π,D,WC) (π,D,WD) (π, I, γ0) (π, I,WC) (π, I,WD)
states

↓
(Y C)tg2 4 3 – 8 – 7

(Y C̄)tg1 – 13 – 24 23 22

(Y C̄)t−o1 12 10 11 – – –

(Y C)tg3 4 3 – 8 7 –

1 – 9 – 20 19 18
2 2 1 – 6 – 5
3 – 13 – 24 23 22
4 4 3 – 8 7 –

5 16 14 15 – – –
6 4 3 – – – –
7 – 9 – – – –
8 2 1 – – – –

9 – 9 – 20 19 18
10 – 9 – 20 19 18
11 12 10 11 – – 17
12 2 1 – 6 – 5
13 – 13 – 24 23 22
14 – 13 – 24 23 22
15 16 14 15 – – 21
16 4 3 – 8 7 –

17 16 14 15 – – –
18 16 14 15 – – –
19 – – – – 13 –
20 4 3 – – – –
21 12 10 11 – – –
22 12 10 11 – – –
23 – 9 – – – –
24 2 1 – – – –

γ

γ

+

−

C
C

C

A
∆

A
∆ inverse

directx 1

2x

WD

Fig. 5.2. An example of a synthesis involving a ribbon singularity.

include the following data relative to the subsequent singularity:

• ∆−1
A (0) direct or inverse (indicated by D and I, resp.)



1356 UGO BOSCAIN AND BENEDETTO PICCOLI

• the kind of exiting abnormal arc (i.e., γ0,WC or WD).

In this way, the automatonA′ is formed by S
′ = S, Σ′ = {0, π}×{D, I}×{γ0,WC ,WD}

∪Σ′
1, where Σ′

1 = {I1, I2, I3, I4} and set of edges E
′. Every element of Σ′ (that is not

in Σ′
1) is indicated by a triplet ( . , . , . ). In Table B the set of edges E

′ (with
labels not in Σ′

1) is completely described. Notice that not all words of (Σ′)∗ are rec-
ognizable by A′. For example, the word I2(π, I,W

D)(0, D,WC) is recognizable, and
it corresponds to the sequence of singularities (Y C̄)tg1 → 22 → 14, while the word
I1(0, I,W

C) is not recognizable.

With these definitions, to every word recognizable by A′ corresponds one and only
one possible sequence of generic singularities along a NTAE. Theorem 2 is therefore
proved.

We refer to Figure 5.2 for a graphic example of synthesis involving a ribbon sin-
gularity.
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Abstract. We study the Hamilton–Jacobi–Bellman equation for undiscounted exit time optimal
control problems for fully nonlinear systems and fully nonlinear singular Lagrangians using the
dynamic programming approach. We prove a local uniqueness theorem characterizing the value
functions for these problems as the unique viscosity solutions of the corresponding Hamilton–Jacobi–
Bellman equations that satisfy appropriate boundary conditions. The novelty of this theorem is in
the relaxed hypotheses on the lower bound on the Lagrangian and the very general assumptions
on the target set. As a corollary, we show that the value function for the Fuller problem is the
unique viscosity solution of the corresponding Hamilton–Jacobi–Bellman equation that vanishes at
the origin and satisfies certain growth conditions. This implies as special cases first that the value
function of this problem is the unique proper viscosity solution of the corresponding Hamilton–
Jacobi–Bellman equation, in the class of all functions which are continuous in the plane and null
at the origin, and second that this value function is the unique viscosity solution of that equation
in a class which includes functions which are not bounded below. We also apply our results to the
degenerate eikonal equation of geometric optics and to the shape-from-shading equations in image
processing. Our theorem also applies to problems with noncompact targets and unbounded control
sets whose Lagrangians take negative values.

Key words. viscosity solutions, dynamical systems, optimal control
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1. Introduction. This paper studies Hamilton–Jacobi–Bellman equations
(HJBEs) for a large class of unbounded optimal control problems for fully nonlin-
ear systems having the form{

y′(t) = f(y(t), α(t)), t ≥ 0, α(t) ∈ A,

y(0) = x.
(1.1)

Our hypotheses will be such that (1.1) has a unique solution trajectory which is
defined on [0,∞) for each input α and x ∈ R

N . The optimal control problems are of
the form

Minimize J(x, α) over α ∈ Af (x),(1.2)

where yx(·, α) is the solution of (1.1) for each input α ∈ A := {measurable functions
[0,∞) → A}, tx(α) is the infimum of those times t at which yx(t, α) lies in a given
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closed set T ⊆ R
N , Af (x) is the set of inputs α for which tx(α) <∞, and

J(x, α) :=

∫ tx(α)

0

�(yx(s, α), α(s)) ds + g (yx(tx(α), α)) ∀ x ∈ R
N and α ∈ Af (x).

We refer to the function � as the Lagrangian (or instantaneous cost) of (1.2). We
refer to T as a target, and thus (1.2) is a problem of minimizing the cost of reaching
a target.

The value function of (1.2) will be denoted by v, and R denotes the set of all
points x that can be brought to T in finite time using the evolution (1.1) and some
input α in A. Thus,

v(x) : =

{
inf
{
J(x, α) : α ∈ Af (x)

}
if x ∈ R,

+∞, otherwise.

The class of problems we consider includes the Fuller problem (FP) and other well-
known physical applications (cf. [14], [23], [26], and section 4), as well as problems for
which the control set A and ∂T are both unbounded. The HJBE for (1.2) is

sup
a∈A

{−f(x, a) ·Du(x) − �(x, a) } = 0,(1.3)

which we wish to solve on Ω \ T , where Ω is a suitable open subset of R
N . We will

study (1.3) in the framework of viscosity solutions and relaxed controls (cf. [1] and
[2]).

We will prove a local uniqueness theorem which characterizes the value func-
tions for (1.2) as the unique viscosity solutions of the associated HJBEs on open sets
of the form Ω \ T that satisfy appropriate boundary and growth conditions. As a
consequence, we show that the FP value function is the unique viscosity solution of
the corresponding HJBE in the class of functions which are zero at the origin, are
continuous in the plane, and satisfy a certain growth regularity condition. This reg-
ularity condition is a generalization of properness, i.e., of the condition w(x) → +∞
as ||x|| → ∞, which can also be satisfied by functions which are not bounded below
(cf. Remark 2.8).

Uniqueness characterizations of this kind have been studied and applied by many
authors for a large number of stochastic and deterministic optimal control problems
and for differential games. Recent work in these areas may be found in [2], [9], and
in the hundreds of references therein. For a detailed account of uniqueness questions
for the HJBE for exit time problems with Lagrangians which are bounded below by
positive constants on R

N \ T , see [5] and [16]. Also, uniqueness characterizations for
HJBEs have been used to study the convergence of numerical schemes for approxi-
mating value functions and differential game values (cf. [4] and [19]) and also in the
study of H∞ control, singular perturbations, and much more.

However, Fuller’s exit time problem is not covered by these results, since its
Lagrangian � vanishes at some points outside T . For example, see [2], where the main
comparison results for exit time problems require � ≥ m > 0, and [16], where this
requirement is relaxed to requiring1 that for each ε > 0 there be a constant Cε such
that

�(x, a) ≥ Cε > 0 ∀a ∈ A and x ∈ R
n \B(T , ε).(1.4)

1We set dist(p, S) := inf{||p − s|| : s ∈ S} and B(S, ε) := {x ∈ R
N : dist(x, S) < ε} for any

S ⊆ R
N , p ∈ R

N , and ε > 0. For cases where S = {x}, we sometimes write Bε(x) instead of
B({x}, ε).
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Also, the earlier results do not cover important Bellman equations for shape-from-
shading problems and many eikonal equations from physics (cf. section 4). In fact,
one easily finds HJBEs for optimal control problems with exit times that have several
proper viscosity solutions when the lower bound requirement (1.4) is violated. For
example, use the system

ẋ(t) = u(t) ∈ [−1, 1],
choose

�(x, a) := (x+ 2)2 (x− 2)2 x2 (x+ 1)2 (x− 1)2,

and set g ≡ 0. Let v1 and v2 denote the value functions for the associated prob-
lem (1.2) with the targets T1 = {0} and T2 = {0, 2,−2}, respectively. One can easily
check that v1 and v2 are both proper and that both are viscosity solutions of the
associated HJBE (1.3) on R \ T with T := T1. Also, with the target T = {0}, the
problem satisfies all the hypotheses of the well-known theorems which characterize
value functions of exit time control problems as the unique proper viscosity solutions
of (1.3) in the class of all functions which are zero on T , save for the fact that the
positive lower bound requirement (1.4) on � is not satisfied.

One may notice that the ingredient missing from this example is an optimal
control analogue of the La Salle invariance condition, which we will specify below.
This condition will guarantee that there are no spurious solutions for the HJBE for
the FP. Roughly stated, the condition says that each trajectory of (1.1) “immediately
leaves” any subset of the state space outside the target in which the running cost is
null along some trajectory (cf. section 2). This condition would not be satisfied for the
problem in the previous paragraph, since the constant trajectories at ±2 accumulate
zero costs. Our approach is therefore based on the properties of the trajectories
t �→ yx(t, α) of (1.1) at times close to zero. For a very different treatment of (1.3)
based on the asymptotic behavior of trajectories as t → ∞ and which characterizes
value functions for exit time problems as the unique nonnegative viscosity solutions of
the corresponding HJBEs that satisfy appropriate boundary conditions, see [17] and
[18].

Our work is part of a larger research program which generalizes uniqueness results
for viscosity solutions to versions that cover well-known optimal control problems
whose dynamics do not necessarily admit unique trajectories for some choices of open
loop controls and initial positions, or whose Lagrangians violate the usual boundedness
requirements. For uniqueness characterizations for the Bellman equation for linear-
quadratic problems, see [3] (which covers finite horizon cases) and [7] (which covers the
infinite horizon case). A uniqueness characterization for (1.3) for exit time problems
whose dynamics are continuous but not Lipschitz continuous, including Sussmann’s
reflected brachystochrone problem (cf. [21] and [22]), appears in [12]. For results for
exit problems where f and � are bounded under other special conditions that are
generally not satisfied in the problems we consider below, see [25].

This paper is organized as follows. In section 2, we list assumptions on the data
which will be in force in most of what follows, and we give definitions needed to
specify a class of functions in which the value function v will be the unique viscosity
solution. We also review the definitions of viscosity solutions and relaxed controls.
In section 3, we state our main results, and section 4 shows how to apply them
to a variety of physical problems, including the FP, geometric optics, and image
processing. This is followed in section 5 with statements of certain converse dynamic
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programming principles used to prove our uniqueness characterizations, a lemma on
weak-� convergence of sequences of relaxed controls, and proofs of our main results.
In section 6, we show how to extend these results so that they cover cases where the
assumptions of section 2 are not satisfied, including cases where the control set A is
unbounded and the Lagrangian � takes negative values.

2. Assumptions and definitions. Let us make the following assumptions:

(A0) The control set A is a compact metric space.
(A1) The dynamics f : R

N × A → R
N is continuous, and there exists a

constant L > 0 such that ||f(x, a) − f(y, a)|| ≤ L ||x − y|| for all
x, y ∈ R

N and all a ∈ A.
(A2) The target T ⊆ R

N is closed, T �= ∅, g ∈ C(T ), and g is bounded
below.2

(A3) The Lagrangian � : R
N ×A→ R is continuous.

The compactness requirement (A0) is included to simplify the exposition. We will
consider the case where A is noncompact separately in section 6.3 below. Roughly
speaking, all of our results still hold when A is unbounded if we replace the inputs
α ∈ A with vector field valued inputs and add mild assumptions on the dynamics
f and the Lagrangian �. Alternatively, we can extend our results to cover problems
with noncompact control sets by adding assumptions on f and � from [3] that penalize
“large” control values (cf. (A4)–(A5) below). We emphasize that, unlike in the usual
treatments of exit time problems, ∂T is not required to be compact or smooth, f and
� need not be bounded, and � need not be bounded below.

By an elementary application of the Schauder fixed point theorem (cf. [2]), con-
ditions (A0)–(A1) will guarantee that for each input α ∈ A and each point x ∈ R

N

there is a unique solution yx(·, α) of the dynamics (1.1) which is defined on [0,∞).
Moreover, the following estimates easily follow from (A0)–(A1):

(E1) ||yx(t, α)− x|| ≤ Mx t for all t ∈ [0, 1/Mx],
(E2) ||yx(t, α)|| ≤ (||x||+√

2Kt)eKt for all t ≥ 0 and α ∈ A,

where Mx := sup {||f(z, a)|| : z ∈ B1(x), a ∈ A} when this supremum is nonzero,
Mx = 1 otherwise, and K := sup{||f(0, a)|| : a ∈ A}. (Recall from the footnote
in section 1 that B1(x) is the open unit ball centered at x.) The preceding estimates
are shown in [2].

Since A is a compact metric space, we can view our controls α ∈ A as members
of the larger class Ar of relaxed controls (cf. [2] and [24]). Thus,

Ar := { measurable functions [0,∞) → Ar },

where Ar is the set of Radon probability measures on A (i.e., the probability measures
on the smallest σ-algebra on A containing all the open sets of A). We topologize Ar as
a subset of the dual of C(A) with the topology of weak-� convergence. By identifying
A with the set of Dirac probability measures on A (i.e., probability measures that
put weight one on a single point in the control set at each time), we will view A as a
subset of Ar. The topology on Ar will be such that each sequence in Ar has a weak-�
convergent subsequence in Ar (cf. Lemma 5.3). By Ar � αn → ᾱ ∈ Ar weak-� we
mean

2 We let C(U) denote the set of continuous real-valued functions on any space U . For cases in
which U is an open subset of a Euclidean space, C1(U) denotes the set of continuous real-valued
functions on U with one continuous derivative.
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∫ τ

0

∫
A

(h(s))(a) d(αn(s))(a) ds →
∫ τ

0

∫
A

(h(s))(a) d(ᾱ(s))(a) ds as n → ∞
(2.1)

for each Lebesgue integrable function h : [0, τ ]→ C(A) and each τ > 0.
Define �r : R

N ×Ar → R and fr : R
N ×Ar → R

N by

�r(x,m) :=

∫
A

�(x, a) dm(a) and fr(x,m) :=

∫
A

f(x, a) dm(a).(2.2)

One checks that fr and �r satisfy (A1) and (A3), respectively, and that Ar is compact.
We leave the details to the reader (cf. [2]). We can therefore define yr

x(·, α) : [0,∞)→
R

N to be the unique trajectory of y′(s) = fr(y(s), α(s)) starting at x for each α ∈ Ar.
We will refer to yr

x(·, α) as a relaxed trajectory. Define the Hamiltonian H : R
N ×

R
N → R by

H(x, p) = sup
a∈A

{−f(x, a) · p − �(x, a) }(2.3)

and set

P :=

{
x ∈ R

N :

∫ t

0

�r(yr
x(s, α), α(s))ds > 0 ∀ t ∈ (0,∞], α ∈ Ar

}
,

where we allow the integral to diverge to +∞ in the definition of P . We sometimes
write HA instead of H to emphasize the control set. Notice that assumptions (A0)–
(A3) guarantee that H(x, p) is always a finite supremum. Notice also that we could
have P ⊇ R \ T even if �(x, a) = 0 for some x ∈ R \ T and a ∈ A, since the
dynamics (1.1) could be such that points in the state space that give zero values for
the Lagrangians are “immediately” brought out of the null sets of the vector fields
�(·, a), producing positive running costs. This will be the case for the FP (cf. section
4.1). For this problem, as well as for the other examples we give below, condition (1.4)
is violated, but P ⊇ R \ T (cf. section 4).

We will prove that for suitable open sets S, there is at most one viscosity solution
w ∈ C(S) of HJBE (1.3) on S\T that satisfies a certain growth property and a certain
compatibility property (cf. Definition 2.1 and Definition 2.6). In particular, we give
uniqueness characterizations for viscosity solutions w ∈ C(R) of (1.3) on R \ T . For
the case of the FP, these side conditions reduce to properness or some generalized
notion of properness (cf. Remark 2.7 and section 6). In particular, we show that the
value function for the FP is the unique viscosity solution of the corresponding HJBE
in a class which includes functions which are not bounded below. We also apply our
results to degenerate eikonal equations and to the equations of shape-from-shading
problems (cf. sections 4.2–4.3).

We use the following definition of viscosity solutions.
Definition 2.1. Let G ⊆ R

N be open, let S ⊇ G, let F : R
N × R

N → R be
continuous, and let w : S → R.

1. We call w a (semicontinuous) viscosity supersolution of F (x,Dw(x)) = 0 on
G if (i) w is lower semicontinuous on G and (ii) for all γ ∈ C1(G) and all
local minima xo ∈ G of w − γ we have F (xo, D γ (xo)) ≥ 0.

2. We call w a (semicontinuous) viscosity subsolution of F (x,Dw(x)) = 0 on G
if (i) w is upper semicontinuous on G and (ii) for all λ ∈ C1(G) and all local
maxima x1 ∈ G of w − λ, we have F (x1, D λ (x1)) ≤ 0.
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3. We call w a viscosity solution of F (x,Dw(x)) = 0 on G if it is simultaneously
a (semicontinuous) viscosity supersolution and a (semicontinuous) viscosity
subsolution of this equation on G.

This definition of viscosity solutions is elementarily equivalent to the definition of
viscosity solutions based on super- and subdifferentials used in [7] (cf. [2]). Also,
by a denseness argument, the above definition is equivalent to the one obtained by
replacing C1(G) with C∞(G) (i.e., infinitely differentiable functions on G). Most of
what follows is based on the viscosity solution definition given above, so we omit
the definition based on semidifferentials. We also use the following notions of quick
growth and boundary levelness.

Definition 2.2. Let S ⊂ R
N be open, let w : S → R be continuous, and let

ωo ∈ R ∪ {+∞}.
1. We say w is quickly growing with respect to S and write w ∈ QG(S), provided
the following:

QG(S) For each pair (x, y) with x ∈ S and y ∈ ∂S, there exists an ε > 0
such that if p ∈ S and if || p− y || < ε, then w(x) < w(p).

2. We say w is boundary level for S and ωo and write w ∈ BCωo(S), provided
the following:

BCωo(S) For each x ∈ S, we have w(x) < ωo. In addition, for each
xo ∈ ∂S, we have w(x)→ ωo as S � x→ xo.

We will show that if w ∈ QG(Ω) is a viscosity subsolution of (1.3) on Ω \ T , where Ω
is an open set containing T , and if Ω \ T ⊆ P , then w ≤ v on Ω \ T (but see section
6.4 for cases where Ω \ T �⊆ P ). This is done in Proposition 5.4. This inequality is an
easy consequence of the dynamic programming principle for cases where Ω = R but
nontrivial for other cases, because we must then consider trajectories which reach T
in finite time but exit Ω before reaching T .

Notice that condition QG(S) is weaker than the standard requirement BCωo(S)
in the known uniqueness characterizations for cases where S is bounded (cf. [2], [5],
and [16]). Notice also that the condition QG(S) does not require the function w to
be defined on ∂S, while for ωo �= +∞, BCωo(S) holds if S is the ωo-sublevel set of w
and w is continuous on S̄. In some of what follows, we will take S = R = R

N and
ωo = +∞, in which case QG(S) and BCωo(S) are satisfied vacuously. We will do this
when we consider Fuller’s example.

We will be especially interested in viscosity solutions on sets which can be decom-
posed into smaller sets with “controllable boundaries.” This controllability condition
will guarantee the nondegeneracy of the Hamiltonian H, which is needed for our
uniqueness characterizations. The controllability condition we need is as follows.

Definition 2.3. Let O ⊆ R
N and assume (A0)–(A3) are satisfied. We say

that O satisfies the strong small time control condition with respect to T and write
SSTC(O, T ) if there is a sequence of bounded open sets {Ωj} such that the following
conditions hold:

(SSTC1) The Ωj’s increase to O, i.e., Ωj ⊆ Ωj+1 for all j and O =

∞⋃
j=1

Ωj.

(SSTC2) If Tj : Ωj \ T → R ∪ {+∞} is defined by
Tj(x) := inf {t : yx(t, α) ∈ ∂(Ωj \ T ), α ∈ A} for j = 1, 2, . . . ,
and if Ωj \ T � x→ x0 ∈ ∂(Ωj \ T ), then Tj(x)→ 0.

When these conditions hold, {Ωj} is called the associated controllability sequence.

The following example illustrates the SSTC requirements.
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Example 2.4. Take N = 2, A = [−1,+1], f(x, y, a) = (y, a), and T = {20} ⊆ R
2.

As we will show below, we can then satisfy SSTC(R2 \ {0}, {0}) by taking Ωj to
be the open set bounded by the trajectory from (0, j) to (0,−j) using the constant
control a ≡ −1/2, followed by the trajectory back to (0, j) using the constant control
a ≡ +1/2 with the origin removed. If we now choose �(x, y, a) = x2, then we get the
usual FP. We discuss the FP more fully in section 4.1, where we prove a uniqueness
characterization for the FP Bellman equation.

Remark 2.5. Uniqueness of viscosity solutions requires nondegeneracy of the
Hamiltonian, i.e., extra assumptions on the dynamics, which is implied by SSTC.
Using proximal normals, we can characterize this nondegeneracy in terms of f(x, a)
and the boundary of the domain, as follows. Since the boundaries ∂(Ωj \ T ) in
Definition 2.3 may not be smooth, we use generalized exterior normals (cf. [2]). Recall
that for any closed nonempty set S ⊂ R

N , the (generalized) exterior normal to S at
z ∈ ∂S, which is denoted by N(z), is defined to be the set of all unit vectors ν for
which there exists x �∈ S satisfying

x = z + dist(x, S)ν and {z} = P(x),

where P(x) := {z ∈ ∂S : dist(x, S) = ||x− z||}. Condition (SSTC2) is then satisfied
if the following holds:

(SSTC3) For each j ∈ N and x̄ ∈ ∂(Ωj \ T ) there exist s > 0 and δ > 0 such
that

inf
a∈A

f(x̄, a) · ν ≤ −δ

for any ν ∈ N(x) with x ∈ ∂(Ωj \ T ) ∩Bs(x̄)
(cf. [2, Chapter IV]). This of course reduces to a standard “outer field” condition in
terms of outer normals when the sets Ωj \T have piecewise smooth boundaries. Also,
for the special case in which Ωj ≡ O, we have nondegeneracy in terms of f(x, a) and
the boundary ∂(O \ T ) of the domain.

One can also express the nondegeneracy in terms of the standard small-time
controllability condition from [15]. Recall that for any U ⊆ R

N , STCU is defined to
be the requirement that U ⊂ InteriorR(ε) for all ε > 0, where

R(ε) :=
{
x ∈ R

N : ∃ t ∈ [0, ε) and α ∈ A s.t. yx(t, α) ∈ U} .
The condition STCU is satisfied when suitable assumptions are made on the directions
of the vector field f and of its Lie brackets at ∂U (cf. [20]). Condition (SSTC2) is
then satisfied if the following holds:

(SSTC4) The condition STC(Ωc
j) ∧ STCT holds for j = 1, 2, . . . .

Condition (SSTC4) says that the dynamics (1.1) can be controlled to ∂T or ∂(Ωj) for
any j ∈ N. This condition is stronger than (SSTC2) for cases in which T ∩ ∂Ωj �= ∅
for some j, since (SSTC2) does not require controllability to the portions of ∂(Ωj) in
T .

Finally, we use the following generalized notion of properness.
Definition 2.6. Assume (A0)–(A3) and SSTC(O, T ). Let {Ωj} denote the

associated controllability sequence, and let w : O → R and ωo ∈ R ∪ {+∞} be given.
We say that w is (O, T , ωo)-compatible if the following conditions hold:

1. ∂(Ωj) \ T ⊆ O for all j;
2. limj→∞ min{w(p) : p ∈ ∂(Ωj) \ T } = ωo.
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Remark 2.7. The preceding compatibility conditions can be easily verified when
T = {0}. For example, any proper function is (RN \ {0}, {0},+∞)-compatible if
STC{0} and STC(Ωc

j) hold for an increasing sequence Ωj of bounded open sets that

satisfy min{||x|| : x ∈ ∂(Ωj), x �= 0} → ∞ and whose union is R
N \ {0}. However,

(O, T , ωo)-compatibility is a much more general properness condition, since it allows
functions which are not proper and cases where O is bounded.

Remark 2.8. Notice for future reference that (O, T , ωo)-compatibility does not
put any restrictions on the behavior of compatible functions at points which are
not on the boundaries of any of the sets Ωj in the controllability sequences. In
particular, we allow (O, T ,+∞)-compatible functions which are not bounded below.
We will generally be concerned with functions that are compatible in the sense of the
preceding definition. (But see section 6.2 for analogues of our main results, which
characterize the value function of (1.2) as a unique viscosity solution of (1.3) in a
class of functions satisfying an even more general notion of properness than the one
given by Definition 2.6.)

3. Statements of main results. We will prove the following theorem.
Theorem 3.1. Assume that (1.2) satisfies (A0)–(A3), that Ω ⊆ R

N is an open
set containing T , that ωo ∈ R ∪ {+∞}, and that w ∈ BCωo(Ω) is a viscosity solution
of 3 {

H(x,Dw(x)) = 0, x ∈ Ω \ T ,

w(x) = g(x), x ∈ T .
(3.1)

Assume Ω \ T ⊆ P and that w is (Ω ∩ P, T , ωo)-compatible. Then w ≡ v on Ω.
Remark 3.2. The hypothesis that w ∈ BCωo(Ω), which is unnecessarily strong,

is used to simplify the statement of the theorem. As we will show in section 5.2,
Theorem 3.1 remains true if we weaken the assumption that w ∈ BCωo(Ω) to the
assumptions that w < ωo on Ω and w ∈ QG(Ω) (cf. Definition 2.2).

Remark 3.3. Let us compare the assumptions of Theorem 3.1 to those of the
previously known uniqueness characterizations for exit time problems, and let us
show how the assumptions of the theorem can easily be verified. As we explained in
the introduction, the earlier results assume (1.4), i.e., positive lower bounds on the
Lagrangian � outside neighborhoods of the target. This is much more restrictive than
requiring Ω \ T ⊆ P . For example, it could be that � depends only on the state, and∫ t

0
�(yx(s, β)) ds > 0 even though �(yx(s, β)) = 0 for some values s ∈ [0, t]. This will

be the case for the FP (cf. Example 2.4 and section 4.1), since the Lagrangian vanishes
along the y-axis but all the trajectories starting outside 20 and running for positive
time give positive running costs. The condition Ω\T ⊆ P is a control analogue of the
La Salle invariance principle, and as we show in Remark 4.3, this condition cannot
be omitted from the theorem. The condition Ω \ T ⊆ P also allows cases where �
is always positive, or null only for state space points in the target, but still violates
(1.4) because lim inf ||x||→∞ �(x, a) = 0 for certain control values a while T is bounded.
This will be the case for the shape-from-shading and degenerate eikonal equations (cf.
sections 4.2–4.3). As discussed in Remark 2.7, condition BCωo(Ω) is standard (cf.
[2], [5], and [16]), and (RN \T , T ,+∞)-compatibility holds for any proper continuous
function as long as STCT and STC(Ωj) hold along a suitable increasing sequence Ωj

3 By a viscosity solution of (3.1) we will mean a viscosity solution of H(x,Dw(x)) = 0 on Ω \ T
which equals g on T . Notice that since we assume T ⊂ Ω, the target condition w(x) = g(x) in (3.1)
holds on all of T .
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of bounded open sets. This observation is the basis for our uniqueness result for the
FP.

In the context of Theorem 3.1, we of course have Ω ⊆ {x ∈ R
N : v(x) < ωo},

since w ≡ v on Ω. Also, while the condition Ω \ T ⊆ P of the theorem implies that∫ t

0

�(yp(s, α), α(s)) ds ≥ 0 ∀α ∈ A, t ≥ 0, and p ∈ Ω \ T ,(3.2)

this nonnegativity can fail for trajectories starting outside Ω, since (1.4) is not as-
sumed. This suggests that a slight strengthening of the condition Ω \ T ⊆ P to
require nonnegativity of costs for trajectories running outside Ω might guarantee that
Ω = {x ∈ R

N : v(x) < ωo}. This motivates the following corollary.
Corollary 3.4. Under the assumptions of Theorem 3.1, with � nonnegative,

Ω =
{
x ∈ R

N : v(x) < ωo

}
.

Remark 3.5. As we will show in the proof of Corollary 3.4, the assumption that
� is nonnegative can be relaxed to the following requirement:

(6) If p ∈ R
N , and if α ∈ A and t > 0 are such that yp(t, α) ∈ ∂Ω, then∫ t

0
�(yp(s, α), α(s)) ds ≥ 0.

This is a strengthening of (3.2), since (6) requires the nonnegativity of costs for tra-
jectories starting outside of Ω\T , while (3.2) requires only the nonnegativity of these
costs for initial values on Ω \ T . Of course, (6) may hold even if (1.4) fails (cf. the
examples in section 4 below). Corollary 3.4 extends the local uniqueness character-
izations based on (1.4) (cf. [2, Chapter 2] and [16]), which prove the uniqueness of
viscosity solutions of HJBE (1.3) on neighborhoods Ω of T and which then character-
ize the neighborhoods containing proper viscosity solutions as sublevel sets of v. We
will prove Corollary 3.4 in section 5.2.

The following corollary will be an immediate consequence of the fact that the
value function v of (1.2) is a viscosity solution of the HJBE (1.3) on R \ T .

Corollary 3.6. Assume (A0)–(A3), R open, and v ∈ QG(R). If R \ T ⊆ P
and v is (R∩ P, T ,+∞)-compatible, then v is the unique viscosity solution of{

H(x,Dw(x)) = 0, x ∈ R \ T ,

w(x) = g(x), x ∈ T ,
(3.3)

in the class of all (R∩ P, T ,+∞)-compatible functions w ∈ QG(R).
The hypotheses of this corollary are especially easy to check when R = R

N ,
T = {0}, and v is proper, since then QG(R) holds vacuously and it suffices to check
SSTC(P ) for a sequence Ωj satisfying min{||x|| : x ∈ ∂(Ωj), x �= 0} → ∞ and
∂Ωj \ T ⊆ P to get the uniqueness characterization.

Remark 3.7. The novelty of these results is that we do not need to assume
that the Lagrangian � satisfies condition (1.4) or that � is even bounded below, that
T can be very general, and that the uniqueness characterization is within a class
which contains functions which are not bounded below. For the special cases in which
ωo = +∞, Corollary 3.4 characterizes the reachability set R as the unique set Ω
for which there exists a function w satisfying the hypotheses of the theorem. By
replacing the inputs t �→ α(t) with vector field valued inputs t �→ (f(·, α(t)), �(·, α(t)))
and adding standard assumptions on the input choice map a �→ f(·, a)×�(·, a), we can
generalize Theorem 3.1 so that it also covers exit time problems with closed but not
necessarily compact control sets (cf. section 6.3). One can also relax the assumption
Ω \ T ⊆ P and allow problems where � takes negative values (cf. section 6.4).
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4. Physical applications. Before proving our main results, we show how they
apply to physical problems. Our uniqueness results apply to a variety of first-order
equations which can be expressed in the HJBE form (1.3) but which are not tractable
using the uniqueness results requiring (1.4). These include the Bellman equation of
the FP (cf. [26]), degenerate eikonal equations from geometric optics (cf. [17]), and
shape-from-shading problems in image processing (cf. [11]). This section discusses
these applications.

4.1. The Fuller problem. We explain how the results of section 3 give unique-
ness characterizations for the HJBE of the FP. Recall that the FP (with exponent q)
is

Infimize

∫ tp(α)

0

|y1,p(t, α)|q dt over all α ∈ Af (p)(4.1)

for each p ∈ R
2, where t �→ yp(t, u) := (y1,p(t, u), y2,p(t, u))

′ is defined to be the
trajectory of {

ẋ(t) = y(t), ẏ(t) = u(t) ∈ A := [−1,+1],

(x(0), y(0))′ = p,

and tp(u) is the first time this trajectory reaches the target T := {0} ⊆ R
2. (We use

0 to denote 0 ∈ R or 20 ∈ R
2.) We allow any q > 1, but we fix q in what follows. From

[26], we know that (4.1) has an optimal control for each initial state. In particular,
R = R

2. We will verify the hypotheses of Corollary 3.6.
We first verify condition SSTC(R2 \ {0}, {0}). Let η > 0 be given. The FP

trajectory φ1 from (0, η)′ using the constant control u ≡ −1/2 reaches the point
(0,−η)′ at time 4η. The FP trajectory φ2 from (0,−η)′ using u ≡ 1/2 reaches
(0, η)′ at time 4η. Let ζη denote the concatenation of the corresponding restrictions
φ1 : [0, 4η] → R

2 followed by φ2 : [0, 4η] → R
2, and let Gη denote the open set

bounded by this concatenation with the origin removed. By elementary calculations
of trajectories, one sees that STC(Gc

η) holds for each η > 0. The calculation is based
on the fact that φ1 solves x = η2− y2, and φ2 solves x = y2− η2. From [15], we know
that STC({0}) holds. Since the Gη’s engulf R

2 \{0}, it follows from Remark 2.5 that
condition SSTC(R2 \ {0}, {0}) holds.

For the case of the FP, we have
∫ t

0
|yr

1,p(s, α)|q ds > 0 for all α ∈ Ar, p �= 0,
and t > 0, since ẋ ≡ y is continuous along any FP trajectory (which implies that
|x(t)| > 0 for a positive measure of small times whenever y(0) �= 0). This establishes
the condition R \ T ⊆ P . Next we verify that the FP value function v is (R2 \
{0}, {0},+∞)-compatible, which will be a consequence of the fact that v is proper
(i.e., that it satisfies lim||x||→∞ v(x) = +∞). The fact that v is proper is an elementary
consequence of the dilation symmetries of the problem. Indeed, suppose

lim
m→∞ ||(xm, ym)′|| =∞ and v((xn, yn)

′) ≤M <∞ ∀ n.

For large n, pick a λn > 0 so that

Λn := (λ2
nxn, λnyn)

′ ∈ ∂ [B1(0)] ,(4.2)

and thus λn → 0. Assume t �→ (xn(t), yn(t))
′ is an optimal FP trajectory for the

initial point (xn, yn)
′. Since t �→ (λ2

nxn(t/λn), λnyn(t/λn))
′ is optimal for the initial
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point Λn for each n (cf. [26]), it follows that

M ≥
∫ ∞

0

|xn(t)|q dt =

∫ ∞

0

∣∣λ2
n xn(u/λn)

∣∣q 1

λ1+2q
n

du =
v(Λn)

λ1+2q
n

∀n.(4.3)

Since ∂ [B1(0)] is compact and v is continuous and positive definite, it follows that v
is bounded away from 0 on ∂ [B1(0)]. To show that v is continuous, notice that v is
strictly convex on R

2 (cf. [26] and p. 81 of [13]), which follows from the fact that the
FP admits optimal controls for each initial position and the convexity of x �→ |x|q.
Since (4.3) would mean that v(Λn)→ 0 as n→∞, we arrive at a contradiction with
(4.2). Therefore, the FP value function is proper. Since the minimum norm of any
point on ∂(Gη)\{0} increases without bound as η → +∞, it follows that the FP value
function is (R2 \ {0}, {0},+∞)-compatible (with the controllability sequence defined
by Ωj = Gj). Corollary 3.6 therefore gives the following.

Corollary 4.1. For each q > 1, the value function vq for the FP with exponent
q is the unique viscosity solution of the Bellman equation

−y(Dw((x, y)′))1 + |(Dw((x, y)′))2| − |x|q = 0(4.4)

on R
2\{0} in the class of proper functions w ∈ C(R2) that satisfy w(0) = 0. Moreover,

vq is the unique (R2 \ {0}, {0},+∞)-compatible viscosity solution w ∈ C(R2) of (4.4)
on R

2 \ {0} that vanishes at 0.
Remark 4.2. Since the FP Lagrangians � vanish outside T , this result does not

follow from the earlier uniqueness results for viscosity solutions of HJBEs. Notice
also that Corollary 3.6 actually gives a uniqueness characterization for (4.4) in a
class containing functions which are not bounded below, as explained in Remark 2.8.
Moreover, the FP value function is the unique viscosity solution of (4.4) on R

2 \ {0}
in the class of functions w ∈ C(R2) which are null at 0 and satisfy the even more
general regularity condition (REG) of section 6.2 with Ω = R

2.

4.2. Degenerate eikonal equations. Our results also apply to equations from
physics which do not arise as exit time problem HJBEs but which can be expressed
in that form. For example, in geometric optics, the propagation of light is described
by equations of the form

N∑
i,j=1

ai,j(x) uxi(x) uxj (x) +

N∑
i=1

2 bi(x) uxi(x) − h2(x) = 0,(4.5)

where ai,j =
∑N

k=1 σi,kσj,k and σ = [σi,j ] is a symmetric matrix. Such equations
are called degenerate eikonal equations, and the viscosity solutions of (4.5) have been
studied and applied extensively in physics (cf. [6]). The function h : R

N → (0, 1)
represents the refraction index of the medium. Under the standard assumption that
b(x) = 2σ(x)b̄(x) for some vector field b̄, (4.5) is equivalent to

∣∣∣∣σ(x)Du(x) + b̄(x)
∣∣∣∣ =

[
h2(x) +

∣∣∣∣b̄∣∣∣∣2 (x)]1/2

.

This includes as a special case

sup
||a||=1

{ −a ·Du(x) − |h(x)| } = 0,(4.6)
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which is an HJBE for an exit problem for any closed target T with the dynamics
f(x, a) = a ∈ ∂B1(0) and the Lagrangian �(x, a) = |h(x)|. (Recall from section 1
that Bε(p) := {x ∈ R

M : ||x − p|| < ε} for all ε > 0 and p ∈ R
M .) Equation (4.6) is

satisfied by the travel time in geometric optics if 1/|h(x)| is the speed of the medium.
Now take T to be bounded and choose any continuous refraction index h satisfying
(i) h(x) = h̃(||x||) for some decreasing function h̃ : R+ → (0, 1), (ii) h(x) → 0 as
||x|| → ∞, and (iii) ||x||h(x) → +∞ as ||x|| → ∞, e.g., take �(x, a) ≡ h(x) =
(1 + ||x||)−β for any β ∈ (0, 1), so that (1.4) is violated. (One can also allow cases
where h takes the value zero at some points in T .) This defines an exit time problem
with the control set ∂B1(0) ⊆ R

N and the final cost g ≡ 0, and one can check that
the structural assumptions of Theorem 3.1 apply to this problem. Using the fact that
tp(α) ≥ ||p||/2 for ||p|| large and any input α that drives p to T , the calculation∫ tp(α)

0

h̃(||yp(s, α)||)ds ≥
∫ ||p||/2

0

h̃(3||p||/2)ds =
1

3

[
3||p||
2

h̃(3||p||/2)
]
→ +∞

shows that the value functions for the exit time problems defined in this way are
proper, and they are also continuous. Therefore, we can take the sets Ωj in the
SSTC(RN , T ) definition to be the sublevel sets {x : v(x) < j} of such value functions.
This gives a characterization of the value function of the exit time problem, i.e.,
the travel time function, as the unique proper viscosity solution of (4.6) on R

N \
T that vanishes on T . In this case, � is bounded below by positive constants on
compact sets, so the result follows from the uniqueness results in [16], applied on the
increasing sequence of bounded open sublevel sets of any continuous proper function.
Theorem 3.1 also gives a uniqueness characterization for (4.6) on sublevel sets of the
corresponding value function v which contain T .

Remark 4.3. Since the set of relaxed trajectories for f(x, a) = a ∈ ∂B1(0) ⊆
R

N includes all constant trajectories, we cannot allow eikonal equations in which h
vanishes at points outside the target, although we can still allow degenerate cases in
which h has a very general zero set in T . Indeed, if h vanished at a point p̄ �∈ T , then
the constant relaxed trajectory at p̄ would generate zero running costs, which would
violate the requirement R

N \ T ⊆ P . In fact, as shown in [17], the eikonal equation

||Du(x)||2 = x2(1− x2)2(4.7)

has two proper viscosity solutions on R \ {0} that vanish at 0. This shows that if we
set

P̃ :=

{
x ∈ R

N :

∫ t

0

�(yx(s, α), α(s)) ds > 0 ∀t ∈ (0,∞), α ∈ A
}
,

then the statement of Theorem 3.1 becomes false if Ω\T ⊆ P is replaced with Ω\T ⊆
P̃ . However, our results show that there is only one (R\{−1, 0,+1}, {−1, 0,+1},+∞)-
compatible viscosity solution w ∈ C(R) of (4.7) on R \ {−1, 0,+1} which is null on
{−1, 0, 1}. This extends a result from section 2 of [17].

4.3. Shape-from-shading equations. Our results also apply to equations of
the form

I(x)Ψ(Du(x)) − b(x) ·Du(x) − h2(x) = 0

for I nonnegative and Ψ a convex function with Ψ(0) = 0. This equation is studied
in [17]. Taking the Legendre transform Ψ� of Ψ, which is nonnegative, we can rewrite



1370 MICHAEL MALISOFF

this equation as

max
a∈ domain(Ψ�)

{− (b(x)− I(x)a) ·Du(x) − [h2(x) + I(x)Ψ�(a)
]}

= 0.

A particular case of this equation is

I(x)
[
1 + ||Du(x)||2]1/2 − 1 = 0, x ∈ Ω ⊆ R

2,(4.8)

for open sets Ω, which can in fact (cf. [17]) be written as

max
||a||≤1

{
I(x) a ·Du(x) −

[
1 − I(x)

(
1− ||a||2)1/2

]}
= 0.(4.9)

Equation (4.9) arises in shape-from-shading models in image processing, where I(x) ∈
[0, 1) is the intensity of light reflected by an object (cf. [11]). The objective in image
processing is to reconstruct the unknown function u, representing the height of the sur-
face over some subset Ω of the plane, from the brightness of a single two-dimensional
image of the surface. As shown in [11], for the case of a Lambertian surface which is
not self-shadowing and which is illuminated by a single distant vertical light source,
the height u satisfies (4.9). Now take any positive Lipschitz continuous intensity
function I(x) for which lim||x||→∞ I(x) = 1, e.g.,

I(x) = 1 − α e−||x||2 , 0 < α < 1.(4.10)

Just as before, (4.9) is a Bellman equation for an exit time problem with the dynamics
f(x, a) = −I(x)a for any compact target T and the Lagrangian �(x, a) = 1−I(x)(1−
||a||2)1/2, which violates (1.4). However, with the choice of (4.10), we can use our
theorem to get a global uniqueness characterization for viscosity solutions of (4.9) on
R

N \T if the height u is (R2, T , ωo)-compatible for some ωo ∈ R∪{+∞}, continuous,
and null on T . This compatibility will hold if, for example, there is a positive constant
ωo so that (i) u(x) < ωo for all x and (ii) u(x) → ωo as ||x|| → ∞. More generally,
the compatibility requirement can be relaxed to the requirement (REG) in section
6.2 with Ω = R

2, w = u, and P = R
N . These results also do not follow from the

earlier uniqueness characterizations from [17], where the uniqueness results for (4.9)
require I(x) ≤ C < 1 for C constant. We also get local uniqueness characterizations
on sublevel sets of the height function (cf. Theorem 3.1).

Remark 4.4. As discussed above, uniqueness characterizations for HJBEs form
the basis for numerical schemes for approximating viscosity solutions. For example,
in [11], uniqueness characterizations for (4.8) are used to give stable, robust numerical
algorithms for finding the surface. Also, there is a large literature on approximating
the minimal time function for exit problems with � ≡ 1 (cf. [2], [4], and the many
references therein). One question which should be considered but which will not be
discussed here is how the new uniqueness results for HJBEs can be used to study the
convergence of schemes for approximating value functions for cases such as the FP,
where �(x, a) vanishes for certain x �∈ T and a ∈ A. This type of result could have
physical applications. This question will be addressed by the author in a separate
paper.

5. Main lemmas and proof of main results. In this section, we recall well-
known results from dynamic programming and relaxed controls. These are used to
prove Theorem 3.1 and Corollary 3.4.
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5.1. Main lemmas. Under (A0)–(A3) and STCT , one easily proves that the
value function v is a viscosity solution of the HJBE (1.3) on R\T . The proof follows,
since v satisfies the dynamic programming equality

v(x) = inf
α∈A

{∫ t

0

�(yx(s, α), α(s)) ds + v(yx(t, α))

}
∀x ∈ R, t ∈ [0, inf

α
tx(α)).

(5.1)

Our main results are based on the following representation lemmas, which say that
viscosity solutions of (1.3) on R \ T satisfy analogues of (5.1). The proofs of these
lemmas are based on uniqueness characterizations for finite horizon problems (cf. [2,
Chapter 3] or [10], and for generalizations, see [17] and [18]).

Lemma 5.1. Assume that conditions (A0)–(A3) are satisfied and that u ∈ C(Ē)
is a viscosity subsolution of H(x,Du(x)) = 0 on E, where E ⊂ R

N is bounded and
open. If we set

τq(β) = inf{ t ≥ 0 : yq(t, β) ∈ ∂E}

for each β ∈ A and q ∈ E, then, for all β ∈ A and q ∈ E, we have

u(q) ≤
∫ r

0

�(yq(s, β), β(s)) ds + u(yq(r, β))(5.2)

for 0 ≤ r < τq(β).
Lemma 5.2. Assume (A0)–(A3) hold and assume w ∈ C(B̄) is a viscosity super-

solution of (1.3) on B, where B is open and bounded. Set

Tδ(p) := inf{ t : dist(yp(t, α), ∂B) ≤ δ, α ∈ A}

for each p ∈ B and δ > 0. Then for any p ∈ B and any δ ∈ (0,dist(p, ∂B)/2], we
have

w(p) ≥ inf
α∈A

{∫ t

0

�(yp(s, α), α(s)) ds + w(yp(t, α))

}
(5.3)

for all t ∈ (0, Tδ(p)).
Notice that we can put r = τq(β) in (5.2) when τq(β) < ∞. We also need

the following elementary consequence of the Gronwall inequality and the sequential
compactness of Ar (cf. [24]).

Lemma 5.3. Let A be a compact metric space, let {αn} be a sequence in Ar, and
let c > 0. Assume that f : R

N × A → R
N satisfies the condition (A1). Then there

exists a subsequence of {αn} (which we do not relabel) and an α ∈ Ar such that the
following conditions hold:

1. αn → α weak-� on [0, c].
2. If xn → x in R

N , then yr
xn(·, αn)→ yr

x(·, α) uniformly on [0, c].
We sometimes apply Lemma 5.3 to sequences in A identified with Dirac measure

valued relaxed controls.

5.2. Proof of main results. Corollary 3.6 follows from Theorem 3.1 because
v is a viscosity solution of the associated HJBE, which is shown by first establishing
that v satisfies the dynamic programming equality (5.1) (cf. [2]). We leave the details
to the reader and prove only Theorem 3.1 and Corollary 3.4.



1372 MICHAEL MALISOFF

5.2.1. Proof of Theorem 3.1. The inequality “w ≤ v” follows from the fol-
lowing more general prolongation result.

Proposition 5.4. Assume that (1.2) satisfies (A0)–(A3), that Ω ⊆ R
N is an

open set containing T which satisfies Ω \ T ⊆ P , and that w ∈ QG(Ω) is a viscosity
subsolution of (3.1). Then w ≤ v on Ω.

Proof. Let x ∈ Ω \ T be given, and let B be any bounded open subset of Ω that
contains x and is such that B̄ ⊆ Ω \ T . Then w is also a viscosity subsolution of the
HJBE (1.3) on B. Since w ∈ C(B), it follows from Lemma 5.1 that

w(x) ≤
∫ t

0

�(yx(s, α), α(s)) ds + w(yx(t, α))(5.4)

for all α ∈ A and t ∈ [0, τx(α)), where the τx(α) := inf{t ≥ 0 : yx(t, α) �∈ B} ∈
[0,+∞]. Moreover, we can put t = τx(α) in (5.4) when τx(α) <∞.

Suppose that w(x) > v(x). By the definition of the infimum, there is an α̃ ∈ Af (x)
such that ∫ tx(α̃)

0

�(yx(s, α̃), α̃(s)) ds + g(yx(tx(α̃), α̃)) < w(x).(5.5)

If yx(s, α̃) ∈ Ω for all s ∈ [0, tx(α̃)], then tx(α̃) is a limit of exit times from sets
B = Bk, as above, as k → ∞. For example, take Bk to be an open tube around
the restriction of the trace of yx(·, α̃) to [0, tx(α̃) − 1/k] for k large enough. In that
case we arrive at a contradiction once we put α = α̃ and t = tkx(α̃) in (5.4), where
tkx(α) := inf{t ≥ 0 : yx(t, α) �∈ Bk}, and pass to the limit as k → ∞. Otherwise, let
τ̂ be the last time in (0, tx(α̃)) that yx(·, α̃) is in ∂Ω, and apply Lemma 5.1 with the
choices

q = zn := yx(τ̂ +1/n, α̃), β(·) = αn(·) := α̃(·+ τ̂ +1/n), r = tzn(α̃(·+ τ̂ +1/n)),

and with E chosen to be a tube in Ω which contains a portion of the trajectory yx(·, α̃)
that runs from zn to T . We then get w(zn) < w(x) for all n. Indeed, (5.5) would give

w(x) >

∫ τ̂+1/n

0

�(yx(s, α̃), α̃(s)) ds +

∫ tx(α̃)−τ̂−1/n

0

�(yzn(s, αn), αn(s)) ds

+ w(yx(tx(α̃), α̃))

≥
∫ τ̂+1/n

0

�(yx(s, α̃), α̃(s)) ds+ w(zn).(5.6)

Since x ∈ Ω\T ⊆ P , the last integral is nonnegative for all n, so we get w(x) > w(zn)
for large n. But Ω � zn → yx(τ̂ , α̃) ∈ ∂Ω, and this contradicts the assumption
w ∈ QG(Ω). Since w ≡ v on T , the result follows.

We turn next to the proof of the inequality “w ≥ v.” Fix x ∈ Ω \ T . Since
Ω \ T ⊆ P , we know that x ∈ Ωj \ T for large enough j, and for such a j we set
S = Ωj . We later put some restrictions on the value of j. We now use (5.3) of
Lemma 5.2 (with B = S \ T ) to prove the existence of a trajectory which starts at x
and reaches T in finite time. The lemma applies since S \ T ⊆ S \ T ∪ ∂S ∪ ∂T ⊆ Ω
(by the compatibility assumption) and w is continuous on Ω.

We will first assume that ω0 < ∞. The proof is similar in spirit to the proof
of Theorem IV.3.15 in [2] and arguments in [8], but we use a weak-� convergence



CONTROL PROBLEMS WITH VANISHING LAGRANGIANS 1373

and strong controllability argument to replace the assumptions that w is bounded
below and � is bounded away from zero. We will apply inequality (5.3) of Lemma 5.2
repeatedly to a sequence of points p = x1, x2, . . . in S \ T . We will assume that
all of the corresponding δ’s in the lemma can be chosen to be 1. The general case
then follows by replacing the corresponding 1/k’s with δk/k’s for a suitable sequence
δk ↘ 0 in the argument below. In what follows, we set

I(x, t, α) =

∫ t

0

�(yx(s, α), α(s))ds + w(yx(t, α)).

Given ε > 0, let us begin by constructing an α̂ ∈ A such that τx(α̂) < +∞ and such
that

w(x) ≥
∫ τx(α̂)

0

�(yx(s, α̂), α̂(s)) ds + λx(α̂) − ε,(5.7)

where

τx(α) := inf{t ≥ 0 : yx(t, α) �∈ S \ T }
and

λx(α) :=




w(x) + ω0

2
, tx(α) �= τx(α),

w (yx(τx(α), α)) , tx(α) = τx(α).

Setting

Tδ(p) = inf {t ≥ 0 : dist (yp(t, α), ∂(S \ T )) < δ, α ∈ A} ∀ p ∈ R
N , δ > 0,

we define x1 := x, τ1 := T1(x1) when T1(x1) < +∞, and τ1:=10 when T1(x1) = +∞.
Since w ∈ C(Ω) and S \ T ⊆ Ω, we can use (5.3) of Lemma 5.2 to get an α1 such that
w(x1) ≥ I(x1, τ1, α1)− ε/4. Note that yx1(τ1, α1) ∈ S \ T . By induction, we define

xk := yxk−1
(τk−1, αk−1) ∈ S \ T for k = 2, 3, . . . ,(5.8)

where

τk :=

{
T1/k(xk) if T1/k(xk) < +∞,

10k, otherwise.

Since xk ∈ S \ T , we can use (5.3) to get an αk ∈ A such that

w(xk) ≥ I(xk, τk, αk) − 2−(k+1)ε ∀ k.(5.9)

We also set σk := τ1 + · · ·+ τk, σ̄ = lim sup
k

σk, and, for an arbitrary ā ∈ A,

ᾱ(s) :=




α1(s) if 0 ≤ s < σ1,
α2(s− σ1) if σ1 ≤ s < σ2,
...
αk(s− σk−1) if σk−1 ≤ s < σk,
...
ā if σ̄ ≤ s,
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with the last line used if σ̄ < +∞. From the definitions of xk, P , and ᾱ, we know
that

yx(s, ᾱ) = yxk(s− σk−1, αk) ∈ S \ T ⊆ P when s < σ̄(5.10)

and ∫ τk

0

�(yxk(s, αk), αk(s)) ds =

∫ σk

σk−1

�(yx(s, ᾱ), ᾱ(s))ds ≥ 0 ∀ k.(5.11)

Applying (5.9) repeatedly, we therefore get

w(x) ≥
∫ τ1

0

�(yx(s, ᾱ), ᾱ(s)) ds+ w(x2)− ε

4

≥
∫ σ2

0

�(yx(s, ᾱ), ᾱ(s)) ds+ w(x3)− ε

(
1

4
+
1

8

)
≥ · · ·
≥ I(x, σk, ᾱ)− ε

2

(
1− 1

2k

)
∀k.(5.12)

By (5.8) and the boundedness of S ∈ {Ωj}, we know that {xk} is bounded and
therefore clusters. Let x̄ be a cluster point of the xk’s, and assume without loss of
generality (w.l.o.g.) that xk → x̄ (by passing to a subsequence without relabeling).
Then x̄ ∈ S \ T . We will need the following minimality property of x̄.

Proposition 5.5. In the above notation, τ̄ := inf{τx̄(α) : α ∈ A} ≤ lim supk τk.
Proof. First assume τ̄ < ∞. Let δ > 0 be given, and suppose that, for k as

large as desired, we have τk < τ̄ − δ. Passing to a subsequence, we assume that
τk → z ∈ [0, τ̄ − δ]. There would then exist a sequence τ̃k → z and a control u ∈ Ar

such that

dist(yr
x̄(z, u), ∂(S \ T )) ← dist(yxk(τ̃k, uk), ∂(S \ T )) ≤ 1

k
→ 0 as k → +∞.

(5.13)

The uk’s and the τ̃k’s are chosen using the definition of the infima τk, and u is a weak-�
limit of some subsequence of the uj ’s. The existence of such a control u follows from
Lemma 5.3 with c chosen to be some upper bound of the τ̃k’s. To check (5.13), note
that

||yr
x̄(z, u)− yxk(τ̃k, uk)|| ≤ ||yr

x̄(z, u)− yr
x̄(τ̃k, u)|| + ||yr

x̄(τ̃k, u)− yxk(τ̃k, uk)|| → 0

and that dist(·, ∂(S \ T )) is continuous. The standard trajectories yx̄(·, uk) converge
uniformly to yr

x̄(·, u) on [0, z + 1] (by Lemma 5.3), and (5.13) gives

yr
x̄(τ̃k, u) → yr

x̄(z, u) ∈ ∂(S \ T ) as k → ∞.(5.14)

Therefore, for large k, we know that yx̄(τ̃k, uk) lies in S \ T (since we are supposing
that τ̃k < τ̄ for all k) and can be brought to ∂(S \ T ) by some standard control ũ in
time less than δ/2 (by the SSTC condition and (5.14)). If we concatenate a control
uk for such a k and a corresponding control ũ, we get a (standard) trajectory which
brings x̄ to ∂(S \T ) in time ≤ τ̄ − δ/4, which stands in contradiction to the definition
of τ̄ . We conclude that τk ≥ τ̄ − δ for k large enough, which establishes the result
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if τ̄ < ∞. If τ̄ = +∞, then replace τ̄ − δ in the argument above with any positive
number to get the result.

Passing to a further subsequence without relabeling, fix l ≥ τ̄ so that τk ↑ l ∈
[0,+∞]. By the estimate (E1), we know that τ̄ = 0 iff x̄ ∈ ∂(S \ T ). (Indeed, if
x̄ /∈ ∂(S \T ), then x̄ ∈ S \T , so B({x̄}, µ) ⊆ S \T for some µ > 0. By (E1), there is a
γ > 0 so that all trajectories which start at x̄ and run for time ≤ γ stay in B({x̄}, µ),
and thus τ̄ ≥ γ > 0. The converse is trivial.) We use the following corollary, which is
a consequence of Proposition 5.5.

Corollary 5.6. With the above notation, we have x̄ ∈ ∂(S \ T ).
Proof. Let M ∈ (0, l), and let α̃ ∈ Ar be a weak-� limit of a subsequence of

the αk’s in Ar on [0,M ], which we assume to be the sequence itself for brevity (cf.
Lemma 5.3). We conclude from (5.11) that

0←
∫ σk∧{σk−1+M}

σk−1

�(yx(s, ᾱ), ᾱ(s)) ds(5.15)

=

∫ τk∧M

0

�(yxk(s, αk), αk(s)) ds →
∫ l∧M

0

�r(yr
x̄(s, α̃), α̃(s)) ds.

The left arrow is by the divergence test applied to the last integral in (5.12), since w
is bounded below on S̄ and xk ∈ S \T ⊆ P for all k. To justify the right arrow, apply
Lemma 5.3 to get an α̃ ∈ Ar such that

yr
xk
(s, αk) → yr

x̄(s, α̃) uniformly on [0,M ].(5.16)

Let αk,s(·) (resp., α̃s(·)) denote the Radon measures αk(s) (resp., α̃(s)) for each k.
Then, ∣∣∣∣∣

∫ M

0

[
�r(yr

x̄(s, α̃), α̃(s))− �r(yr
xk
(s, αk), αk(s))

]
ds

∣∣∣∣∣
≤
∣∣∣∣∣
∫ M

0

∫
A

�(yr
x̄(s, α̃), a) dα̃s(a) ds−

∫ M

0

∫
A

�(yr
x̄(s, α̃), a) dαk,s(a) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ M

0

∫
A

[
�(yr

x̄(s, α̃), a)− �(yr
xk
(s, αk), a)

]
dαk,s(a) ds

∣∣∣∣∣ .
The first term on the right-hand side (RHS) → 0 because αk → α̃ weak-� on the
interval [0,M ] and because we can set (h(s))(a) := �(yr

x̄(s, α̃), a) in (2.1).4 The second
RHS term → 0 by (5.16) and the assumption (A3). This justifies the right arrow in
(5.15), because τk ∧M = M for large k, since M < l and τk → l.

If we had
∫ τ̄

0
�r(yr

x̄(s, α̃), α̃(s)) ds > 0, then we have
∫ G

0
�r(yr

x̄(s, α̃), α̃(s)) ds > 0
for some G ∈ (0, τ̄). Since l ≥ τ̄ (cf. Proposition 5.5), we would reach a contradiction
by putting M = G in (5.15). Therefore, τ̄ = 0, or x̄ is not in P . If τ̄ = 0, then
x̄ ∈ ∂(S \ T ), as explained above. Assume x̄ /∈ P . Since x̄ ∈ S \ T by construction,
and S \T ⊂ P by assumption, we again conclude that x̄ ∈ ∂(S \T ), as needed.

We can therefore find n̄ such that for each k > n̄ there exists a βk ∈ A which
drives xk to a point x̃ ∈ ∂(S \ T ) (depending on k) and which is such that∫ τxk (βk)

0

�(yxk(s, βk), βk(s)) ds < ε/4.(5.17)

4We are using the fact that � is continuous in the control set value.
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To see why, let F be a bounded set containing {yxk(s, β) : β ∈ A, 0 ≤ s ≤ 1, k ∈
N}. Such a set exists by the estimate (E2) and the boundedness of the xk’s. Set
κ̄ = 1 + sup �([F ×A]. This is finite since A is compact and � is continuous. By the
SSTC assumption and the fact that {xk} converges to a point in ∂(S \ T ), we can
find n̄ ∈ N so that if k > n̄, then xk can be brought to ∂(S \ T ) in time < ε/(4κ̄)∧ 1.
This establishes (5.17) for k ≥ n̄.

For k > n̄, the construction (5.12) therefore gives

w(x) ≥ I(x, σk−1, ᾱ) +

∫ τxk (βk)

0

�(yxk(s, βk), βk(s)) ds − ε/2 (1− 2−(k−1) + 1/2).

(5.18)

Since ∂(S\T ) ⊆ T ∪ (∂S\T ), we now separately consider the case in which x̃ ∈ T
and the case in which x̃ ∈ (∂S\T ). For large k, it follows that if x̃ ∈ T , then

w(xk) + ε/4 > w(x̃).(5.19)

To see why, first recall that w ∈ C(Ω) and T ⊆ Ω. By choosing small enough running
times for the paths from xk to x̃ ∈ ∂(S \T ), we can use the estimate (E1) from section
2 to ensure that ||xk − x̃|| < δ, where δ > 0 is chosen so that |w(p)− w(a)| < ε/4 for
all a ∈ T ∩ S̄ and p ∈ B(T ∩ S̄, δ). By the SSTC assumption, these running times
can be made as small as desired by taking k to be large. Such a δ exists since w is
continuous on the compact set S̄ ∩ T . The estimate (5.19) now follows by choosing
a = x̃ and p = xk.

If, on the other hand, we have x̃ ∈ ∂S \ T , then we get w(xk) ≥ 1/2 (w(x) + ω0)
for large k, since w(x) < ωo and, by the compatibility condition, we can assume that
the j we choose is so large that w(p) > 1

4w(x) + 3
4w0 for p ∈ S \ T sufficiently close

to ∂S \ T . (The closeness of xk to x̃ is achieved by choosing k large, as explained in
the previous paragraph.) In the former case, we add and subtract ε/4 in (5.18). We
can therefore take α̂ to be the concatenation

α̂(s) :=

{
ᾱ(s) if 0 ≤ s ≤ σk−1,

βk(s− σk−1) if σk−1 ≤ s <∞

for k large enough.
Thus, when ω0 ∈ R, our construction always gives us a control α̂ which satisfies

the condition τx(α̂) < +∞ and which satisfies the requirement (5.7). Since ε > 0 was
arbitrary, we conclude that

w(x) ≥ inf
α

{∫ τx(α)

0

�(yx(s, α), α(s))ds + λx(α) : τx(α) < +∞
}

.(5.20)

If α ∈ A is such that τx(α) �= tx(α), then the corresponding infimand in (5.20) is

∫ τx(α)

0

�(yx(s, α), α(s)) ds +
1

2
(ω0 + w(x)) > w(x),

since w(x) < w0 for all x ∈ Ω and x ∈ S \T ⊆ P , and thus such a control is irrelevant
for the infimum. Since g = w = v on T , this establishes that w ≥ v on Ω for the case
in which ωo <∞.
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The proof for the w0 = +∞ case is similar to this. We view a fixed x ∈ Ω\T as a
member of Ωj \ T , where j is large enough so that values of w on ∂ (Ωj) \ T majorize
w(x), and then we construct a trajectory that reaches ∂(Ωj) or T in finite time. By
the above, the controls α for which τx(α) �= tx(α) are irrelevant for the calculation of
the infimum in (5.20), and thus w ≥ v as before. This gives w = v on Ω.

5.2.2. Proof of Corollary 3.4. It remains to prove the sublevel set character-
ization Ω = {x ∈ R

N : v(x) < ωo} under the added assumption (6). The inclusion
“⊆” holds, since w ≡ v on Ω and w < ωo on Ω. Suppose x /∈ Ω and v(x) < ωo, for the
sake of obtaining a contradiction. Using the definition of the infimum, we can then
find a β̄ ∈ A and a K < ωo so that tx(β̄) <∞ and so that∫ tx(β̄)

0

�(yx(s, β̄), β̄(s))ds + g(yx(tx(β̄), β̄)) = K.

Since T ⊂ Ω is closed and Ω is open, we have

t̄ := sup
{
t ∈ [0, tx(β̄)) : yx(t, β̄) ∈ ∂Ω

}
< tx(β̄).

Set zn := yx(t̄ + 1/n, β̄) for n ∈ N and let {Ωj} be the controllability sequence
from the compatibility hypothesis. We can assume t̄ + 1/n < tx(β̄) for all n. Since
z := yx(t̄, β̄) /∈ T and Ω ∩ P ⊇ Ω \ T � zn → z, it follows that for each sufficiently
large n there is an m(n) ∈ N such that zn ∈ Ωm(n) \ T . Recall that {Ωj} is an
increasing sequence. If {m(n)} can be taken to be bounded, then it follows that {zn}
accumulates in some Ωm̄, and thus z ∈ Ωm̄ \ T ⊆ Ω. Since z ∈ ∂Ω, this contradicts
the fact that Ω is open.

Therefore, for each n, we can find a k(n) ∈ (0, 1
n ) so that z′n := yx(t̄+ k(n), β̄) ∈

∂
(
Ωm(n)

) \ T , namely, k(n) := inf{t ∈ [0, 1/n] : yx(t̄ + t, β̄) ∈ ∂(Ωm(n))}. By the
definition of compatibility,

lim sup
n→∞

w(z′n) ≥ ωo.(5.21)

On the other hand, by setting ᾱn(·) = β̄(· + t̄ + k(n)) and applying Lemma 5.1 as
before, we get

w(z′n) ≤
∫ tz′n (ᾱn)

0

�(yz′
n
(s, ᾱn), ᾱn(s))ds+ g(yx(tx(β̄), β̄))

≤
∫ tz′n (ᾱn)

0

�(yz′
n
(s, ᾱn), ᾱn(s))ds+ g(yx(tx(β̄), β̄))

+

∫ t̄

0

�(yx(s, β̄), β̄(s)) ds ≤ K

for n sufficiently large. The second inequality follows from (6), and the last one follows
from the fact that Ω \ T ⊆ P and from the definition of z ∈ T c, which guarantees
that ∫ t̄+k(n)

t̄

�(yx(s, β̄), β̄(s)) ds ≥ 0,

as a limit of the nonnegative running costs from points yx(t̄ + 1/m, β̄) ∈ Ω \ T ⊆ P
as m→∞. Therefore,

lim sup
n→∞

w(z′n) ≤ K < ωo,
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which contradicts (5.21). This proves the sublevel set characterization. Corollary 3.4
now follows.

6. Extensions. We close with remarks on how to extend the results of section
3. We show how to relax the requirements that the control set A be bounded and that
Ω \ T ⊆ P . We also show how to improve the theorem to get a uniqueness character-
ization within a class of functions satisfying more general notions of properness.

6.1. A further property of controllability sequences. For the Fuller exam-
ple, there is a controllability sequence Ωj for which T ⊆ ∂(Ωj) for all j. However, The-
orem 3.1 allows controllability sequences for which this condition fails. On the other
hand, if Ω, w, and so forth are as in the hypotheses of the theorem, and if x ∈ Ω \ T
and k are chosen so that x ∈ Ωk and so that min{w(p) : p ∈ ∂(Ωk) \ T } > w(x), then
the argument of Theorem 3.1 gives a trajectory from x to T which lies completely
in Ω̄k. Indeed, given a point x ∈ Ω \ T , the hypotheses of Theorem 3.1 guarantee
the existence of a trajectory which remains in Ω̄k and which reaches ∂(Ωk) \ T or T
in finite time. The proof shows that if there is no trajectory whose exit time from
Ωk \ T is an exit time from T c, then all the infimands in (5.20) are > w(x), which is
a contradiction. In particular, Ω̄k ∩ T �= ∅.

6.2. Generalized properness notions. As mentioned in section 2, the unique-
ness conclusion “w = v” of Theorem 3.1 remains true if the compatibility assumption
of the theorem is replaced by the assumption that w satisfies an even more general
properness assumption (and all the other hypotheses are kept the same). For example,
we can replace the compatibility requirement with the following:

(REG) Condition STCT holds, and for each x ∈ Ω∩P there is a bounded open
set Ωx ⊆ Ω \ T which contains x and a ωo,x ∈ R ∪ {+∞} such that

(REG1) w(p) < ωo,x for all p ∈ Ωx,

(REG2) w(p)→ ωo,x as Ωx � p→ xo for all xo ∈ ∂(Ωx), and

(REG3) STC(Ωc
x) and Ω̄x \ T ⊆ Ω ∩ P .

The proof follows from the argument we gave above, once we replace S = Ωj with the
set Ωx, and the argument will show that Ω̄x ∩ T �= ∅ for all x. The novelty here is
that there may be uncountably many Ωx’s and that one does not need subcollections
of the Ωx’s to form increasing sets (cf. Definition 2.3).

6.3. Problems with unbounded control sets. One can relax the compact-
ness requirement (A0) in Theorem 3.1 in various ways. One way to do this is to replace
the inputs t �→ α(t) with vector field valued inputs [0,∞[ � t �→ f(·, α(t))× �(·, α(t))
and then add assumptions on f and � which guarantee that the control set for the
vector field valued inputs is compact. The details are as follows. We assume that A
is a closed subset of a Euclidean space, for simplicity, but the argument also holds
for more general control sets. We equip C(RN ,RN+1) with the metrizable topology
of compact convergence. We make the following assumptions on f and �:

(NC1) M" := sup{�(0, a) : a ∈ A} < ∞.

(NC2) {f(·, a)× �(·, a) : a ∈ A} is a closed subset of C(RN ,RN+1).

(NC3) f : R
N ×A→ R

N satisfies condition (A1) and is bounded on BR(0)×A
for all R > 0.

(NC4) � : R
N × A → R is continuous and bounded below, and there is a

modulus ω such that for all x, y ∈ R
N and all a ∈ A, |�(y, a)−�(x, a)| ≤

ω(||x− y ||).
We will also find it convenient to assume the additional condition:
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(NC5) f(·, a)× �(·, a) ≡ f(·, b)× �(·, b)⇒ a = b, i.e., the mapping a
µ�→ f(·, a)×

�(·, a) is one-to-one.
However, (NC5) is not necessary if we restate the condition Ω \ T ⊆ P in terms
of vector field valued inputs (see the discussion below). In (NC3), a modulus is a
continuous nondecreasing function ω : R+ → R+ which satisfies ω(0) = 0. The vector
field �(0, ·) in (NC1) can be replaced by �(p, ·) for any p ∈ R

N (by assumption (NC4)).
Notice that under assumption (NC1), the mappings fr and �r defined in (2.2) are
still well-defined functions. Also, (NC3) guarantees that yx(·, α) is defined on [0,∞)
for all α ∈ A and x ∈ R

N and satisfies (E1)–(E2) (cf. [2]). All the weak-� convergence
in what follows takes place in Kr (i.e., the relaxed controls on K), where K is a
suitable compact set of vector fields defined below, and we topologize Kr and Kr as
before. In particular, Kr is topologized as a subset of the dual space of C(K), and
Kr � αn → ᾱ ∈ Kr means that (2.1) holds, with A replaced by K, for all Lebesgue
integrable functions h : [0, τ ] → C(K) and all τ > 0. Condition (NC5) guarantees
that µ( BR(0) has a continuous inverse for each R > 0, where we write BR(0) to
mean BR(0) ∩ A, to simplify the notation. (Indeed, assume an, a ∈ BR(0) for all n
and µ(an)→ µ(a). If ε > 0 is such that ||an′−a|| ≥ ε along some sequence an′ , then we
can pass to a further subsequence without relabeling to get an′ → ā ∈ BR(0) . Since
µ is continuous, we get µ(an′)→ µ(ā). By (NC5), ā = a, which is a contradiction.)

In particular, if S ⊆ A is closed, then

µ(S) =
∞⋃

n=1

µ
(
S
⋂[

Bn(0) \ Bn−1(0)
])

=

∞⋃
n=1

{[
µ( Bn(0)

]−1
}−1 (

S
⋂[

Bn(0) \ Bn−1(0)
])

is a union of closed sets and therefore measurable. It follows that µ sends Borel
subsets of A to Borel subsets of K, and in particular, we conclude that m ◦ µ ∈ Ar

for all m ∈ Kr. We can therefore topologize Ar (differently from before) by declaring
that

O ⊂ Ar is open ⇐⇒ {m ∈ Kr : m ◦ µ ∈ O} is open.

The choice of the topology on Ar will guarantee that s �→ k(s) �→ k(s) ◦ µ ∈ Ar

is measurable when s �→ k(s) ∈ Kr is measurable. This will allow us to apply the
condition in the definition of the set P to relaxed controls in Kr (cf. (6.1) below). We
remark that condition (NC5) can be dropped if we replace the positivity set P with
the analogue for vector field valued inputs (i.e., if we replace � and Ar with Λ and
Kr, respectively, in the definition of P , where the notation is as defined below).

We now show how to prove an analogue of Theorem 3.1 for problems with non-
compact control sets. We assume that A ⊂ R

M is closed and that conditions (A2)
from section 2 and (NC1)–(NC5) are satisfied. Let w satisfy the assumptions of the
theorem. Let m" be a lower bound for �. Let K̂ be any collection of continuous
functions φ× λ : R

N → R
N × R each of whose members satisfies

1. sup{||φ(x)|| : x ∈ BR(0)} ≤ sup{||f(x, a)|| : a ∈ A, x ∈ BR(0)} for all R > 0,
2. ||φ(x)− φ(y)|| ≤ L ||x− y|| for all x, y ∈ R

N ,
3. |λ(x)− λ(y)| ≤ ω(||x− y||) for all x, y ∈ R

N ,
4. m" ≤ λ(0) ≤ M".

These conditions guarantee that K̂ is equicontinuous and pointwise bounded. Apply-
ing Ascoli’s theorem, it follows that K̂ is precompact in C(RN ,RN+1). It now follows
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from assumption (NC2) that K := {ha(·) := f(·, a) × �(·, a) : a ∈ A} is a compact
subset of the metric space C(RN ,RN+1). We use K as our new control set. Set

Φ(x, k) = (Π
R
N ◦ k)(x) and Λ(x, k) := (Π R ◦ k)(x) ∀ k ∈ K,

where Π
R
N (resp., Π R) is the projection from K to its first N components (resp., last

component). Then Φ and Λ satisfy (A1) and (A3), with f replaced by Φ, � replaced
by Λ, and A replaced by K. Set

Ã = {[0,∞) � t �→ hα(t) : α ∈ A}.
Since a �→ ha is continuous, this is a subset of the measurable mappings of [0,∞) into
K.

Note that for each p ∈ R
N , the trajectories of Φ with controls in Ã starting

at p are exactly the trajectories of f with controls in A starting at p. The proof of
Theorem 3.1 under the new hypotheses is then exactly as before but with � replaced by
Λ (using controls in Ã that bring points to T in finite time) up to (but not including)
the proof that x̄ ∈ ∂(S \ T ). We then follow the argument of Corollary 5.6, except
that the weak-� limits kr we obtain are Kr-valued. Then x̄ ∈ ∂(S \ T ) follows since∫ t

0

∫
K

Λ(φr
x(s, β), k) dβs(k) ds =

∫ t

0

∫
A

�(yr
x(s, β ◦ µ), a) d(βs ◦ µ)(a) ds > 0

(6.1)

for all β ∈ Kr, x ∈ P , and t > 0, where φr
x(·, β) is the relaxed trajectory for the

relaxed dynamics Φr and the control s �→ βs which starts at x. We leave the proof
that φr

x(·, β) ≡ yr
x(·, β ◦ µ) to the reader.

Another approach to extending Theorem 3.1 to problems with noncompact control
sets is as follows. We assume that 0 ∈ A ⊆ R

M , with A closed but not necessarily
compact. Following [3] and [7], we also add the following hypotheses on f and �,
which we assume in addition to (A1) and (A3):

(A4) There exists a σ ≥ 1 and, for each compact subset F ⊂ R
N , a constant

fF > 0 so that

||f(x, a)|| ≤ fF (1 + ||a||σ) ∀ (x, a) ∈ F ×A.

(A5) There exist �o > 0, Co ≥ 0, β ∈ (0, 1], δ2 ≥ 0, �̄ ≥ 0, and δ1 ≥ 0 such
that the following conditions hold for all x, y ∈ R

N and all a ∈ A:

(a) �(x, a) ≥ �o||a||δ1 − Co,

(b) |�(x, a)− �(y, a)| ≤ �||x− y||β (1 + ||a||δ1 + ||x||δ2 + ||y||δ2
)
.

We further assume that δ1 > σ. Assumptions (A4)–(A5) are satisfied for exit time
problems with linear-quadratic (LQ) data. These assumptions penalize the use of
control set values of large norm.

Let Ω ⊂ R
N be an open set containing T , let w ∈ QG(Ω) be a viscosity solution

of (3.1), and assume that conditions (A1)–(A5) are satisfied. Since A is not neces-
sarily compact, we cannot use the weak-� convergence argument from the proof of
Theorem 3.1. Instead of replacing A with a compact set of vector fields as we did
above, we will apply Lemma 5.3 to compact subsets of A. We use the positivity set

P % =




x ∈ R
N :

∫ t

0
�r(yr

x(s, α), α(s)) ds > 0 for all

t ∈ (0,∞], α ∈ Kr, and compact sets K ⊆ A
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in place of P , and we assume that w is (Ω ∩ P %, T , ωo)-compatible for some ωo ∈
R ∪ {+∞} and has locally bounded subdifferentials (cf. [2]). We recall that the
subdifferential of a function w on a set S ⊆ R

N is the set-valued map D−w : S →
P(RN ) defined by

D−w(x) =

{
p ∈ R

N : lim inf
S�y→x

w(y)− w(x)− p · (y − x)

||x− y|| ≥ 0

}
,

and we say w has locally bounded subdifferentials, provided that for each compact
set K1 ⊆ S there is a compact set K2 ⊆ R

N for which ∪{D−w(x) : x ∈ K1} ⊆ K2.
Let us remark that locally Lipschitz continuous functions have locally bounded sub-
differentials (cf. [2]). Let {Ωj} denote the corresponding controllability sequence. We
next need the following lemma, which is an immediate consequence of the proof of
Proposition 2.1 of [3].

Lemma 6.1. Let A ⊂ R
M be a closed set containing 20, and assume that conditions

(A1)–(A5) hold. Let w be an (Ω ∩ P %, T , ωo)-compatible viscosity solution of (3.1)
with locally bounded subdifferentials, and let {Ωj} denote the associated controllability
sequence. Then for each j ∈ N there exists a compact subset Kj ⊆ A such that w is
also a viscosity supersolution of


sup

a∈Kj

{−f(x, a) ·Dw(x)− �(x, a)} = 0, x ∈ Ωj \ T ,

w(x) = g(x), x ∈ T ,

for each j (i.e., a supersolution of HKj
(x,Dw(x)) = 0 on Ωj \ T equalling g on T , in

the notation of section 2) .
This lemma follows since there are compact setsKj ⊆ A such thatHA([Ωj ×Dj ] ≡

HKj([Ωj ×Dj ], where Dj is a compact set large enough to contain the subdifferentials
of w(Ωj (cf. section 2 for the notation). Now let x ∈ [Ω ∩ P %

]\T , and choose a j ∈ N

so that x ∈ Ωj and so that the values of w near ∂(Ωj) \ T majorize w(x), as in the
proof of Theorem 3.1. Assume further that (NC3)–(NC4) hold, and thus (E1)–(E2)
also hold. The argument now proceeds exactly as in the “w ≥ v” part of that proof,
up through the proof of τ̄ = 0 but with the control set A replaced by the compact set
Kj , so now all the weak-� limits are well-defined Kr

j -valued relaxed controls. Then
we follow the part of the proof of that theorem after the τ̄ = 0 proof as originally
stated, to get w(x) ≥ v(x). Noting that the compactness assumption on A can be
replaced by (NC3)–(NC4) in the proof of Proposition 5.4 (cf. [2]), we can therefore
summarize our results for problems with noncompact control sets as follows.

Corollary 6.2. Let (A2) hold, and let A ⊆ R
M be a closed set containing 20. Let

Ω ⊆ R
N be an open set containing T , let ωo ∈ R ∪ {+∞}, and let w ∈ BCωo(Ω) be a

viscosity solution of (3.1) with locally bounded subdifferentials. Assume the following:
1. Ω \ T ⊆ P %.
2. w is (Ω ∩ P %, T , ω0)-compatible, and (NC3)–(NC4) hold.
3. Either (NC1), (NC2), and (NC5) hold, or else (A1)–(A5) hold with δ1 > σ.

Then w ≡ v on Ω.
Remark 6.3. Just as before, we can relax the hypothesis that w ∈ BCωo(Ω) to the

requirements that w ∈ QG(Ω) and w < ωo on Ω. Note that even if w is (Ω∩P %, T , ωo)-
compatible with the controllability sequence {Ωj}, the condition (SSTC2) can fail if

we replace the control set A with some compact set K̃ ⊂ A. On the other hand, one
can show that if SSTC(P %∩Ω, T ) holds with A replaced by some compact set J ⊆ A,
and if the other assumptions of Corollary 6.2 are satisfied with (A1)–(A5) and δ1 > σ,
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then the restriction of v to any of the sets Ωj coincides with the value function vKj∪J
gotten by replacing the control set A with Kj ∪J , where the Kj are as in Lemma 6.1.
Indeed, the condition SSTC(P % ∩ Ω, T ) holds for controls in Kj ∪ J . Therefore, we
can carry out the “w ≥ v” part of the proof of Theorem 3.1 with A replaced by Kj∪J
to get w ≥ vKj∪J on Ωj . Also, we have w ≤ v on Ωj as before. Therefore, we get
v ≥ vKj∪J ≥ v on Ωj , and thus v ≡ vKj∪J on Ωj , as claimed.

6.4. Problems with negative Lagrangians. The equality “w = v” in The-
orem 3.1 remains true if we drop the assumption that Ω \ T ⊆ P, as long as the
Lagrangian � is “not very negative” and the remaining assumptions of the theorem
are satisfied. By “not very negative,” we mean that the following additional conditions
are satisfied:

(NVN1) If x ∈ R
N , if α ∈ Af (x), if {t ≥ 0 : t ≤ tx(α) and yx(t, α) /∈ Ω} �= ∅,

and if we set λ := sup{t ≥ 0 : t ≤ tx(α) and yx(t, α) /∈ Ω}, then∫ λ

0
�(yx(s, α), α(s)) ds is nonnegative.

(NVN2) For each x ∈ Ω \ [P ∪ T ], there is a bounded open set B ⊆ Ω containing
x so that B̄ ⊆ Ω \ T and a positive number

Ψ < inf
α∈A

{
t > 0 : dist(yx(t, α), ∂B) ≤ 1

2
dist(x, ∂B)

}

such that yx(Ψ, α) ∈ P ∩Ω and
∫ Ψ

0
�(yx(s, α), α(s)) ds ≥ 0 for all α ∈ A.

Condition (NVN1) takes the place of the condition Ω \ T ⊆ P in the proof of the
inequality “w ≤ v” (cf. Proposition 5.4). The details are as follows. In the left-
hand side of (5.6), we can replace w(x) with w(x)− δ for some δ > 0, and condition
(NVN1) guarantees that the last integral in (5.6) is ≥ −δ for large enough n. This
gives w(x) ≥ w(zn) for large n, and then the contradiction is as before.

Condition (NVN2) roughly means that for each x ∈ Ω \ [P ∪ T ], there is a time
Ψ such that all trajectories starting at x are in P ∩ Ω at time Ψ. The proof of the
reverse inequality “w ≥ v” for cases in which Ω \ T �⊆ P relies on (NVN2). Indeed,
the proof of Theorem 3.1 shows that w(x) ≥ v(x) for all x ∈ [Ω∩P ]\T . On the other
hand, if x ∈ Ω \ [P ∪ T ], we write

w(x) = [w(x) − w(yx(Ψ, α′))] + w(yx(Ψ, α′))

for some α′ ∈ A and Ψ > 0 such that yx(Ψ, α′) ∈ P ∩ Ω and such that

w(x) − w(yx(Ψ, α′)) ≥
∫ Ψ

0

�(yx(s, α
′), α′(s)) ds − ε

(using Lemma 5.2). The α̂ we choose to satisfy requirement (5.7) is then the concate-
nation of α′([0,Ψ], followed by the control constructed in the proof of Theorem 3.1
for the point yx(Ψ, α′) ∈ P . Note that the condition (NVN1) holds vacuously if
Ω = R = R

N . In this way, we can extend Theorem 3.1 to cases in which Ω \ T ⊆ P
is not satisfied but the Lagrangian is “not very negative.”
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Abstract. Following the approach described by A. V. Kryazhimskii and Yu. S. Osipov, we
present a recursive algorithm which can be applied to solve the deconvolution problem of linear finite
dimensional input output systems. The method gives an on line approximation of the unknown input,
based on approximate samples of the output. Key features of this approach are the introduction of
an associated singularly perturbed system and the use of a quasi canonical form due to Morse.

Key words. approximation, deconvolution, input identification, inverse problems, linear sys-
tems, singular perturbations

AMS subject classifications. 45L05, 93C05, 93E11

PII. S0363012900368259

1. Description of the problem. In this paper we study a recursive version of
the deconvolution problem for a linear finite dimensional system,

ẋ = Ax+Bu , y = Cx,(1)

where x ∈ R
q, u ∈ R

m, and y ∈ R
p. The matrices have consistent dimensions and

are constant. The point of view of this paper is as follows: we assume that the initial
condition x(0) is known. Instead, the input function u represents an unknown input,
often a disturbance, which must be (at least approximately) identified on the basis of
measurements taken on the output y during a time interval [0, T ]. Measurements of
y are available only at times τk = kT/n, 1 ≤ k ≤ n − 1, where n is a given number,
and they may be corrupted by noise. The information at time τk will be written as
ξk = y(τk) + θk, where θk is an (unavoidable) error. We assume that the tolerance h
of the error is known, i.e., that ||θk|| < h for every k.

The input output relation which is obtained from system (1), with the initial
condition x(0) = 0, is

y(t) =

∫ t

0

H(t, s)u(s) ds , H(t, s) = CeA(t−s)B,

so that our deconvolution problem fits into the framework described in [24] (see p. 3,
but we shall not assume smoothness of the input u). An analogous problem is also
described in [5, 18] in the context of medical applications. In fact, the deconvolution
problem is ubiquitous from medical to astrophysical or geological applications.

Our analysis, however, will quite depart from what is done in the above-mentioned
literature. On one hand, our assumptions are more stringent: the input output map
is causal (this rules out, for example, applications as image reconstruction; see [4]);
and we are assuming that the weight function is the impulse response of a time
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invariant finite dimensional system. Our class of systems is thus smaller than the one
considered, for instance, in [18, 24, 21], where more general convolution kernels are
considered. Actually, if C = I, full state observation, the method in this paper can
also be applied to some classes of distributed systems; see [14, 15]. Instead, in this
paper, we are particularly interested in the case C �= I, i.e., partial state observation.
In our setting we will be able to use the very rich geometrical structure of linear time
invariant systems, which will be exploited, in particular, in section 5. On the other
hand, while in the literature the deconvolution problem is in general solved off line as
a smoothing problem, we will here enforce time recursivity. Namely, we will impose
that the reconstruction of the input u at a certain instant t will use only samples of
y up to time t and, moreover, will not be updated in the future. We thus expect new
and more precise results which, however, will be mostly applicable in the context of
signal and control theory (see also [3, 16] and the recent paper [20]).

The recursive identification method that we are going to present is inspired by
ideas of the Russian school; see [8, 9, 10, 12, 13]. Two distinctive features of this
method are the introduction of a model system which is used in order to test can-
didate approximations of the input and the use of a penalization technique. Model
systems have been used since the very beginning of identification theory (see [1, 11]).
On the other hand, penalization techniques have been widely used in solving the de-
convolution problem; see [18, 19, 22, 23, 24]. Differently than in [10], we shall not
make any assumption on the unknown input u, a part square integrability.

Input identification is possible (at least with observations at each time) if and
only if the map u → y is injective and this condition is equivalent to the following
geometric property: the maximal controllability subspaceR∗ contained in kerC is {0}
(which implies unknown input state reconstructibility; see [3, p. 233]) and kerB = {0}
(which allows the reconstruction of the input from the state). From now on, we will
assume that these two conditions are satisfied. We notice that the subspace R∗ can
be computed using known algorithms.

In the remainder of this section we give a brief illustration of the identification
algorithm we will study. We start with a “model” of our system:

ẇ = Aw +Bv , z = Cw .(2)

As usual in identification problems, we shall compare the output z of the model to
the measures ξk’s taken on the output of the system in order to make an “optimal”
choice for a function v, which should approximate the input u. The definition of v is
recursive and “natural”: on [τk, τk+1) it is defined to minimize a suitable functional
of ||ξk −w(τk+1)|| and α||v||2 (the penalization term). This is described in section 3.
We stress the fact that we shall not make any a priori assumption on the magnitude
or regularity of the unknown input.

A key issue which we will study in this paper is consistency. Our identification
algorithm produces a signal v depending on n, h, and the penalization parameter α.
We will study whether when h converges to 0, n to ∞, and α to 0, then v converges
to the real input. More precisely, we will distinguish two different limiting processes:
The first one is the limit for n → +∞ and h → 0 and is treated in section 3. The
second one for α → 0 is instead considered in section 4, which also contains explicit
convergence estimates for the two limits. We prove, in particular, that both limits
always exist, and, in particular, the second one exists thanks to the presence of a key
singular perturbation in the underlying differential equations. (This explains the title
of the paper.) This limit will be the unknown input for the special class of systems
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of relative degree 1, i.e., such that kerCB = {0}. The general case will be treated in
section 5: it consists of an iteration of the basic deconvolution procedure described
in sections 3 and 4, and it uses a special “quasi canonical form” proposed by Morse
in [17].

2. The robustness issue. The consistency condition discussed in previous sec-
tion is a fundamental property of any identification algorithm. In our setting, it
ensures robustness with respect to the perturbation in the observation and to the
sampling. The fact that robustness is indeed a delicate issue here can easily be seen
by taking A = 0 in our system. The deconvolution problem then reduces to the
problem of numerical differentiation, which is well known to be an ill posed problem
(see [2]).

To emphasize the robustness issue, we examine in the next example the follow-
ing apparently natural algorithm. Assume that (1) is controllable, and consider the
following method: on the interval [τk, τk+1) we take the input v with minimal norm
among those inputs driving the output of the model from ξk to ξk+1.

Example 1. We apply the proposed algorithm to the system

ẋ = u, y = x, x(0) = 0.

There is a unique input u which produces the given output. Let the observation
interval be [0, 1], and let the input, unknown to us, be u(t) ≡ 0. We observe at times
τk = k/n, and we get the observations ξk = x(τk)+θk = θk, where θk is a disturbance
unknown to us but such that ||θk|| ≤ 1/n. In fact, the “real” output is y(t) ≡ 0. We
define vn on [τk, τk+1) as that control of minimal norm which transfers ξk to ξk+1.

It is easily computed that

vn|[τk,τk+1)
(t) = n[θk+1 − θk] .

Now we compute vn explicitly in the following cases: the case that θk = 1/n for
each k or θk = (−1)k/n. In the first case we have

vn(t) ≡ 0 .

This is exactly the sought-for input u, so it seems that the proposed identification
procedure is very efficient. However, in the second case we obtain

vn(t) =

{ −2 on [τ2k, τ2k+1),
+2 on [τ2k+1, τ2k+2),

and this sequence of functions does not converge either pointwise or in the L2-norm
to u(t) ≡ 0. In fact, it converges to u(t) ≡ 0 but only weakly in L2(0, 1).

3. The construction of a sequence of inputs. For clarity, we collect here
the standing assumptions (already described). The system we consider is

ẋ = Ax+Bu , y = Cx.(3)

The matrices A, B, C are constant and known, and the unknown input u is square
integrable. The initial condition x0 is known, so it is not restrictive to assume x0 = 0.
Observations are available only at times τk = kT/n and are denoted by

ξk = y(τk) + θk, ||θk|| < h.
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The map from u to y is injective; i.e., the explicitly computable geometric conditions
R∗ = {0} (only used in section 5) and kerB = {0} hold. We shall also impose the
(nonrestrictive) condition that C is surjective.

We now fix a positive number α < 1 which, will be the penalization parameter.
The quantities that we are going to construct do depend on n, h, and α. However,
for the sake of simplicity, in this section dependence on α, which is fixed, will not be
explicitly noted. It is also convenient to introduce δ = δn = T/n.

We use M in order to denote a generic constant which does not depend on n, h,
α. We shall introduce also two particular constants, which do not depend on n, h, α,
but which play a special role: they will be denoted by ω and η. (The constant η is
introduced in the next section.)

In this section we present an algorithm which produces a candidate approximation
v of the unknown input u. In order to use a simpler notation, vn instead of vn,h, we
relate h to n, h = hn. We assume limhn = 0.

Remark 2. Notice that we are not assuming any particular functional relation
between h and n since {hn} can be any infinitesimal sequence. Hence our analysis of
the behavior of v is done for n → +∞ and h → 0 independently. The convergence
estimates at the end of section 4 will depend on n and h separately.

As said already, we are going to compare the observed quantities ξk’s and the
output z of the model system

ẇ = Aw +Bv , z = Cw .(4)

Let us assume that we are at the instant τ0 = 0. We have the information that
x(0) = 0 so that we shall also impose w(0) = 0. No further information will be
available until time τ1, and, consequently, the choice of v|(0,τ1)

∈ L2(0, τ1) will be

v|(0,τ1)
= arg min

{
||z(τ1)− 0||2 + α

∫ τ1

0

||v(s)||2 ds
}
.

It is clear that v|(0,τ1)
=0. We now proceed recursively. Assume we already constructed

v on (0, τk); we extend it to the next interval (τk, τk+1) as follows: we feed v to (4)
on the interval [0, τk], and we compute w(τk). Then we define v in the next interval
by

v|(τk,τk+1)
= arg min

{
||z(τk+1)− ξk||2 + α

∫ τk+1

τk

||v(s)||2 ds
}
.(5)

It is clear that the number α is a penalization constant, as in [19, 22, 23].
In this way we construct a function v on [0, T ]. This function does depend on n

and h. As we said before, we denote it simply as vn.
At the same time as vn, we also construct the functions wn and zn = Cwn,

respectively, the state and output functions of the model system (4).
In order to better describe the sequences {vn} and {wn}, we introduce the oper-

ators Λ(k): L
2(τk, τk+1)→ R

p and the adjoints Λ∗
(k): R

p → L2(τk, τk+1):

Λ(k)v =

∫ τk+1

τk

CeA(τk+1−s)Bv(s) ds, (Λ∗
(k)z)(t) = B∗eA

∗(τk+1−t)C∗z.

In order to simplify some notation, we denote by v(k) the restriction of vn to
(τk, τk+1).
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It is clear that z(τk+1) = CeAδw(τk) +
(
Λ(k)v(k)

)
(τk+1) so that

v(k) = −[αI + Λ∗
(k)Λ(k)]

−1Λ∗
(k)[Ce

Aδw(τk)− ξk].(6)

The following lemma is proved by direct computation.
Lemma 3. The following formulas hold:
1. the operator Λ∗

(k)Λ(k) acts from L2(τk, τk+1) into itself and is given by

[Λ∗
(k)Λ(k)v](t) = B∗eA

∗(τk+1−t)C∗
∫ τk+1

τk

CeA(τk+1−s)Bv(s) ds;

2. the operator Λ(k)Λ
∗
(k) acts from R

q into itself and is given by

Λ(k)Λ
∗
(k) =

∫ δ

0

CeAsBB∗eA
∗sC∗ ds = R,

independent of k (but it does depend on n since it depends on δ = T/n,
R = Rn);

3. [αI + Λ∗
(k)Λ(k)]

−1Λ∗
(k) = Λ∗

(k)[αI + Λ(k)Λ
∗
(k)]

−1.

With the notation just introduced, the equation of the model on (τk, τk+1) is given
by

ẇn = Awn −B[αI + Λ∗
(k)Λ(k)]

−1Λ∗
(k)[Ce

Aδwn(τk)− ξk], zn(t) = Cwn(t).(7)

We analyze the behavior of the sequence {wn} at the sampling times τk.

wn(τk+1) = eAδwn(τk)

− ∫ τk+1

τk
eA(τk+1−s)B

(
[αI + Λ∗

(k)Λ(k)]
−1Λ∗

(k)[Ce
Aδwn(τk)− ξk]

)
(s) ds

= eAδwn(τk)

− ∫ τk+1

τk
eA(τk+1−s)B

(
Λ∗

(k)[αI + Λ(k)Λ
∗
(k)]

−1[CeAδwn(τk)− ξk]
)

(s) ds

= eAδwn(τk)

−
(∫ τk+1

τk
eA(τk+1−s)BB∗eA

∗(τk+1−s)C∗ ds
)
· ([αI +R]−1[CeAδwn(τk)− ξk]

)
= {I −KC∗[αI +R]−1C}eAδwn(τk)−KC∗(αI +R)−1ξk,

(8)

where K is the controllability operator,

K =

∫ δ

0

eAsBB∗eA
∗s ds.

We note that K, as well as R, depends on δ, i.e., on n and that ||K|| < M · δ = M/n.
We write the equality of the expression in (8) as follows:

wn(τk+1) = Hwn(τk) + fk, where

{
H = {I −KC∗[αI +R]−1C}eAδ,
fk = −KC∗(αI +R)−1ξk.

The crucial fact is that supk ||ξk|| < M , independent of n, h, α. This implies that
we can write

||fk|| ≤ M

nα
∀n , α.(9)
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In order to estimate H, we consider the following inequality which will be repeat-
edly used in what follows:

||eA∗s − I|| ≤ M
n

∀s ∈ (0, 1/n).(10)

We obtain {
||H|| ≤ 1 + ω

αn in general,

||H|| ≤ 1 + M
n if C = I.

(11)

The first inequality follows from (10), and the second follows from (10) and the fact
that when C = I the matrix {I − KC∗[αI + R]−1C} = {I − K[αI + K]−1} is a
contraction.

We are now ready to prove the following result.
Theorem 4. For every fixed α < 1, the sequence {wn(τk)} is uniformly bounded

in n and k, and, for every k < n, we have the following estimates, where M and ω
do not depend on n, h, α:{

||wn(τk)|| ≤Meω/α in general,

||wn(τk)|| ≤M/α if C = I.
(12)

Proof. We prove the inequality in the general case. We have

||wn(τk)|| ≤ ( sup
k
||fk||

) · k∑
j=0

||H||j .

Using inequalities (11) and (9), we obtain

||wn(τk)|| ≤ M

αn
·
k∑
j=0

(
1 +

ω

αn

)j
=
M

αn
· (αn) · (1 + ω

αn )k+1 − 1

ω

≤ M
ω
·
(

1 +
ω

αn

)k+1

≤ M
ω
·
(

1 +
ω

αn

)n
≤ M
ω
eω/α ,

as wanted.
The proof in the case C = I follows in a similar way by using the second inequality

in (11).
Remark 5.
(a) Estimate (12) in the case when C �= I is very weak. It will be used only

for theoretical reasons since we shall prove in section 5 that the general case
C �= I can be reduced to the study of a chain of simplest cases in which
C = I. Hence, for practical purposes only, the second inequality in (12) is
relevant.

(b) Inequality (12) was given only for k < n. If k = n, a further factor [1+ω/(αn)]
appears which, however, will not create any problem since the case of interest
is when α converges to zero slowly (see Remarks 12 and 26).

In order to study the asymptotics of the whole sequence {wn}, it is convenient to
introduce further operators and to establish a number of continuity results for them.

We define Λn: L2(0, T )→ R
nq as

(Λnf) = col[Λ(0)f|(0,τ1)
, . . . ,Λ(n−1)f|(τn−1,T )

],
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and we compute Λ∗
n: R

nq → L2(0, T ):

Λ∗
n(x0, . . . , xn−1) =

n−1∧
k=0

Λ∗
(k)xk,

where the wedge ∧ denotes concatenation. It follows the equality

(Λ∗
nΛnf)|(τk,τk+1)

= Λ∗
(k)Λ(k)f|(τk,τk+1)

.

Next we introduce the space Kn(0, T ) of the q-vector valued functions which
are piecewise constant, with n jumps at most, located at the points τk. This space
is a subspace of L2(0, T ) isomorphic to R

nq. We now introduce the operator Γn :
Kn(0, T ) → R

qn, defined as follows. We fix arbitrary points sk ∈ (τk, τk+1), and we
put

Γnf = col[f(s0), f(s1), . . . , f(sn−1)].(13)

We note that the space over which the operator Γn is defined is itself a function
of n and that we have

||Γnf ||Rnq =
√
n||f ||2.(14)

We now study the properties of these operators. We have the following lemma.
Lemma 6. Consider a sequence of functions {gn} with gn ∈ Kn(0, T ). We have

the following:
1. if the sequence {gn} is uniformly bounded on [0, T ], then the sequence {Λ∗

nΓngn}
is also uniformly bounded on [0, T ];

2. if there exists a bounded function g such that supt ||gn(t)− g(t)|| ≤M0, then

sup
t
||(Λ∗

nΓngn)(t)−B∗C∗g(t)|| ≤M ·
{

1

n
+M0

}
.

Proof. We prove item 1. We have, from (13),

sup
t
|| (Λ∗

nΓngn) (t)|| = sup
k

sup
t∈(τk,τk+1)

||Λ∗
(k)gn(sk)||

= sup
k

sup
t∈(τk,τk+1)

||B∗eA
∗(τk+1−t)C∗gn(sk)|| ≤M · ||B|| · ||C|| sup

s∈(0,δ)

||eA∗s||,

as wanted.
Now we prove item 2. We have

||(Λ∗
nΓngn)(t)−B∗C∗g(t)|| ≤ ||(Λ∗

nΓngn)(t)−B∗C∗gn(t)||
+||B∗C∗[gn(t)− g(t)]|| .(15)

The first addendum is equal to ||B∗(eA
∗(τk+1−t) − I)C∗gn(t)||. (We recall that gn

is constant on (τk, τk+1).) Using (15) and (10) and the fact that {gn} is uniformly
bounded, we obtain that, on each interval (τk, τk+1),

||(Λ∗
nΓngn)(t)−B∗C∗g(t)|| ≤M ·

{
1

n
+ sup
t∈[0,T ]

||gn(t)− g(t)||
}
,(16)

as wanted.
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Lemma 7. The operators Λn : L2(0, T )→ R
nq satisfy the following:

1. ||Λn|| → 0 .
2. There exists a constant M such that supn,t ||(Λ∗

nX)(t)|| ≤ M ||X|| for every
vector X ∈ R

nq. The constant M does not depend on n, h, α.
Proof. In order to prove item 1, we estimate ||Λ∗

n|| first. LetX = col(x0, x1, . . . , xn−1)
be a unitary vector. We have

||Λ∗
nX||22 =

n−1∑
k=0

||Λ∗
(k)xk||22 =

n−1∑
k=0

∫ τk+1

τk

||B∗eA
∗(τk+1−s)C∗xk||2 ds

≤ δ
n−1∑
k=0

sup
s∈[τk,τk+1]

(
||B∗eA

∗(τk+1−s)C∗||
)2

· ||xk||2 ≤M · δ · ||X||2 .(17)

This yields

||Λn|| = ||Λ∗
n|| ≤

M

n
→ 0 .(18)

The second statement has an analogous proof.
Finally, we prove a further pointwise estimate.
Lemma 8. Let {gn} be a sequence of functions, gn ∈ Kn(0, T ). We have the

following:
1. If the sequence {gn} is uniformly bounded, then [αI+Λ∗

nΛn]−1gn is a piecewise
continuous function and

sup
t
||([αI + Λ∗

nΛn]−1gn)(t)|| < M ·
(

1

α
+

1√
nα2

)
· ||gn||2 .

The constant M does not depend on n, h, α.
2. If {gn} uniformly converges to g ∈ C(0, T ), then the sequence {[αI+Λ∗

nΛn]−1gn}
converges to 1

αg uniformly on [0, T ].
Proof. Let ψn = [αI + Λ∗

nΛn]−1gn. We have

αψn + Λ∗
nΛnψn = gn(19)

so that ψn is a piecewise continuous function.
Taking the L2 inner product of (19) by ψn and using the positivity of Λ∗

nΛn, we
get

||ψn||2 ≤ ||gn||2
α

.

If t ∈ (τk, τk+1), we have

||(Λ∗
nΛnψn)(t)|| =

∣∣∣∣
∣∣∣∣B∗eA

∗(τk+1−t)C∗
∫ τk+1

τk

CeA(τk+1−s)Bψn(s) ds

∣∣∣∣
∣∣∣∣

≤M ·
√
δ · ||ψn||2 ≤ M ·

√
δ

α
||gn||2.(20)

It follows from (19) and (20) that

||ψn(t)|| ≤M
(

1

α
+

√
δ

α2

)
||gn||2.
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This proves item 1.
To prove item 2, we evaluate

αψn − g = [αψn − gn] + [gn − g] = −[Λ∗
nΛnψn] + [gn − g].(21)

It follows from (20), considering that ||gn||2 is bounded, that

sup
t
||(Λ∗

nΛnψn)(t)|| ≤ M

α
√
n
.(22)

From (21) and (22), we obtain the explicit estimate∣∣∣∣
∣∣∣∣ [ (αI + Λ∗

nΛn)−1gn](t)− 1

α
g(t)

∣∣∣∣
∣∣∣∣ ≤ M

α2
√
n

+
1

α
sup
t
||gn(t)− g(t)||.(23)

The right-hand side converges to zero for n→ +∞ for each fixed α.
Now we can study the sequence {wn}. We prove the following theorem.
Theorem 9. The sequence {wn} is relatively compact in C(0, T ).
Proof. We consider again equality (7). This can be written as

ẇn = Awn −B[αI + Λ∗
nΛn]−1Λ∗

nΓnfn,(24)

where fn ∈ Kn(0, T ) is given by

fn |(τk,τk+1)
= CeAδwn(τk)− ξk.(25)

We know from Theorem 4 that {wn(τk)} is bounded (for fixed α) so that {fn} is
bounded too. Using Lemma 6, item 1, and Lemma 8, item 1, we see that the affine
term in (24) is bounded. This implies that the sequence {wn} and, therefore, also
{ẇn}, is uniformly bounded. Compactness then follows from the Ascoli–Arzelà
theorem.

For future use we note the explicit inequality

||ẇn(t)|| ≤ K = K(α).(26)

Finally, we prove the following theorem.
Theorem 10. The sequence {wn} converges uniformly to the unique solution wα

of the problem

ẇ =

[
A− BB

∗C∗C
α

]
w +

BB∗C∗C
α

x, w(0) = 0.(27)

Proof. We show that every limit point in C(0, T ) of {wn} coincides with wα. We
consider a subsequence of {wn}, still denoted {wn}, which converges to a limit w.

Since wn(0) = 0, we can write

wn(t) =

∫ t

0

eA(t−s)
[
B

α

[
I +

1

α
Λ∗
nΛn

]−1

Λ∗
nΓnfn

]
ds.

(The sequence {fn} is defined in (25).)
Consider now the bounded sequence {fn}. We prove that

lim
n

sup
t∈[0,T ]

||fn(t)− Cw(t)− y(t)|| = 0 .(28)



RECURSIVE DECONVOLUTION 1393

In fact, the supremum in (28) is less than

sup
k

sup
t∈(τk,τk+1)

||C[eAδwn(τk)− w(t)]||+ sup
k

sup
t∈(τk,τk+1)

||ξk − y(t)|| .

On one hand, if t belongs to (τk, τk+1), we have

||eAδwn(τk)− w(t)|| ≤ ||eAδwn(τk)− wn(t)||+ ||wn(t)− w(t)||,

and both right-hand terms converge uniformly to zero because wn → w uniformly by
assumption, eAδ = eA/n → I, and the sequence of functions {wn} is bounded and
equicontinuous, thanks to (26).

On the other hand,

||ξk − y(t)|| ≤ ||ξk − y(τk)||+ ||y(τk)− y(t)|| .

The first addendum converges to zero since it is dominated by hn → 0. The sec-
ond term converges to zero because the integral C

∫ t
0
eA(t−s)Bu(s) ds is absolutely

continuous on [0, T ]. This proves (28).
We recall that we are considering a convergent subsequence (in the uniform norm),

still denoted {wn}, which converges to w. We apply Lemma 6, and we see that

Λ∗
nΓnfn → B∗C∗[Cw − y]

uniformly. Hence, from Lemma 7, we have that the integral converges to the solution
of (27), as wanted.

We can also give a pointwise estimate of the convergence illustrated in Theorem 10
as follows.

Lemma 11. For each α < 1 and for each t ∈ [0, T ] we have{
||wn(t)− wα(t)|| ≤ Meω/α√

nα
in general,

||wn(t)− wα(t)|| ≤ M√
nα2 if C = I.

(29)

Proof. We compute

wn(t)− wα(t) = lim
m

∫ t

0

eA(t−s)B
{

[αI + Λ∗
nΛn]−1 − [αI + Λ∗

mΛm]−1
}

Λ∗
nΓnfn ds

+

∫ t

0

eA(t−s)B[αI + Λ∗
mΛ∗

m]−1 {Λ∗
nΓnfn − Λ∗

mΓmfn} ds.

Let sk ∈ (τk, τk+1) as in (13). For m > n we have the following estimates (we
use (18) and (14), (25), and Theorem 4):∣∣∣∣

∣∣∣∣
∫ t

0

eA(t−s)B
{

[αI + Λ∗
nΛn]−1 − [αI + Λ∗

mΛm]−1
}

Λ∗
nΓnfn ds

∣∣∣∣
∣∣∣∣

≤M{||(αI + Λ∗
nΛn)−1||+ ||[αI + Λ∗

mΛm]−1||}||Λ∗
nΓnfn||2

≤ 2M

α

1

n
||Γnfn||2 ≤ 2M

α
√
n
eω/α,

where we used ||wn(τk)||+ ||ξk|| ≤Meω/α for α < 1.
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The second addendum is estimated as follows:∣∣∣∣
∣∣∣∣
∫ t

0

eA(t−s)B[αI + Λ∗
mΛm]−1{Λ∗

nΓnfn − Λ∗
mΓmfm} ds

∣∣∣∣
∣∣∣∣

≤ M

αn
{||Γnfn||+ ||Γmfm||} ≤ 2M√

nα
eω/α.

In both the estimates we replace eω/α with 1/α if C = I. The required estimates
follow.

Remark 12. The previous lemma implies, in particular, that if α converges to
zero slowly in such a way that α2

√
n > M > 0, then, in the case when C = I, the

sequence {wn} remains bounded. This strengthens the result in Theorem 4.

We now consider the sequence {vn}. Taking into account the definition (6) of v(k)
and the definitions of Γn, Λn, we can write

vn = −[αI + Λ∗
nΛn]−1Λ∗

nΓnfn.(30)

It follows from Lemma 6 that, for n→ +∞, Λ∗
nΓnfn → B∗C∗C[wα−x], and it follows

from Lemma 7 that ||Λ∗
nΛn|| → 0. This yields the following result.

Theorem 13. We have

lim
n
vn = vα, where vα = − 1

α
B∗C∗C[wα − x] .(31)

Convergence in the previous theorem is meant to be in L2(0, T ), but later we shall
also give pointwise estimates.

4. Input identification in a special case. In this section we consider the
convergence of the solutions of system (27) when α→ 0. We put

J̃ = BB∗C∗C.

With this notation, the “error” eα = wα − x satisfies the system with singular per-
turbations

ėα = ẇα − ẋ =

(
A− J̃

α

)
eα −Bu.(32)

We study the convergence properties of eα when α→ 0.

It is easy to see that the matrix J̃ = BB∗C∗C is diagonalizable and its eigenvalues
are nonnegative. With no loss of generality, we thus assume that J̃ is diagonal, and
we decompose

J̃ =

[
J 0
0 0

]
,

where the matrix J is diagonal and has positive determinant. We represent, accord-
ingly,

A =

[
A11 A12

A21 A22

]
, B =

[
B+

B−

]
.
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We recall the Wintner–Wažeski inequalities (see [6, p. 25]): if G is any square
matrix and σ−, σ+ are the minimum and maximum eigenvalues of (G+G∗)/2, then
we have, for each t ≥ 0,

eσ−t ≤ ||eGt|| ≤ eσ+t.

First we prove the following lemma.
Lemma 14. There exists a positive number M such that

||eα(t)|| ≤M ∀t ∈ [0, T ] , ∀α > 0.

Proof. We apply the Wintner–Wažeski inequalities to the matrix G = A − 1
α J̃ .

The largest eigenvalue of [(A− 1
α J̃)+(A− 1

α J̃)∗]/2 is smaller than the largest eigenvalue
of the matrix (A+A∗)/2, call it µ, for every α. Hence we have

||e[A− 1
α J̃]t|| ≤ eµt ∀t ∈ [0, T ] , ∀α > 0.(33)

The result follows since the input u is fixed.
We decouple (32) as{

ėα+ = (A11 − 1
αJ)eα+ +A12e

α
− − g+,

ėα− = A21e
α
+ +A22e

α
− − g−, where g =

[
g+
g−

]
= Bu.(34)

We now investigate the behavior of eα+ and of eα− for α→ 0. We shall repeatedly
use the next result.

Lemma 15. There exists a number η > 0 such that for each t > 0, α > 0 small
enough, we have

||e(A11−J/α)t|| ≤ e−(η/α)t.

Proof. We apply the Wintner–Wažeski inequalities to the matrix A11 − J/α.
Notice that 1

2{[A11−J/α]+[A11−J/α]∗} = 1
α [−J+α(A11 +A∗

11)] is negative definite
for small α, and its maximum eigenvalue −µ can be estimated as follows: −µ < −η/α,
where η > 0 is any number less than all the eigenvalues of J . This gives the required
estimate.

Now we prove the following lemma.
Lemma 16.

lim
α→0

eα+(t) = 0

uniformly in [0, T ].
Proof. It follows from Lemmas 14 and 15 and from an application of the Schwarz

inequality that

||eα+(t)|| =
∣∣∣∣
∣∣∣∣
∫ t

0

e[A11−J/α](t−s)[A12e
α
−(s)− g+(s)] ds

∣∣∣∣
∣∣∣∣ ≤M · √α.(35)

Now define e0− as the solution of

ė = A22e− g− , e(0) = 0.(36)

We have the following result.
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Lemma 17.

lim
α→0

eα− = e0−, lim
α→0

ėα− = ė0−

uniformly on [0, T ].
Proof. It follows from Lemma 16 that

eα−(t) =

∫ t

0

eA22(t−s){A21e
α
+(s)− g−(s)} → −

∫ t

0

eA22(t−s)g−(s) ds.(37)

This proves that eα− converges uniformly to e0− on [0, T ]. Convergence of the derivatives
follows (37), Lemma 16, and (34).

We now focus on the limit of 1
αe

α(t). The following is the main result of this
section.

Theorem 18. We have

lim
α→0

[
− 1

α
Jeα+

]
= g+ −A12e

0
−.

The convergence is
• in L2(0, T ) if u is square integrable,
• uniform on [ε, T ] for every ε > 0 if u is absolutely continuous,
• uniform on [0, T ] if u is absolutely continuous and u(0) = 0.

Proof. We proceed in a number of steps, first for absolutely continuous inputs
and then for square integrable inputs.

Absolutely continuous inputs. In this case u and, consequently, g are bounded
on [0, T ].

We start with a preliminary lemma.
Lemma 19. Let g be bounded. Then there exists a constant M such that∣∣∣∣

∣∣∣∣ 1

α
eα+(t)

∣∣∣∣
∣∣∣∣ ≤M ∀t ∈ [0, T ] , ∀α > 0 .

Consequently,

||ėα+(t)|| ≤M ∀t ∈ [0, T ] , ∀α > 0 .

Proof. In the following computation we use Lemma 15.∣∣∣∣
∣∣∣∣ 1

α
eα+(t)

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
∫ t

0

1

α
e(A11− 1

αJ)(t−s)[A12e
α
−(s)− g+(s)] ds

∣∣∣∣
∣∣∣∣

≤
∫ t

0

1

α
e−η(t−s)/α||A12e

α
−(s)− g+(s)|| ds

≤ 1

k
[1− e−ηt/α] sup

s∈[0,T ]

||A12e
α
−(s)− g+(s)||.

This is bounded since g+ is bounded by assumption and eα− is bounded on [0, T ] from
Lemma 14. Finally, boundedness of the derivative follows from (34).

Remark 20. Lemma 19 and (37) give, when u is bounded,

||eα−(t)− e0−(t)|| ≤M · α ∀t ∈ [0, T ] , ∀α > 0.(38)
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Now we are ready to prove Theorem 18 for absolutely continuous inputs. We
write the equation of eα+ as

ėα+ = − 1

α
Jeα+ + {−g+ +A11e

α
+ +A12e

α
−}.

We have

1

α
Jeα+(t) =

∫ t

0

[
d

ds
e−

1
αJ(t−s)

] [
A11e

α
+(s) +A12e

α
−(s)− g+(s)

]
ds

= A11e
α
+(t) +A12e

α
−(t)− g+(t) + e−

1
αJtg+(0)

−
∫ t

0

e−
1
αJ(t−s) [A11ė

α
+(s) +A12ė

α
−(s)− ġ+(s)

]
ds.(39)

As in the proof of Lemma 16, we see that the integral converges to zero uniformly
on [0, T ]. On the other hand, we know from Lemma 16 that eα+ converges to zero
uniformly on [0, T ] and, from Lemma 17, that eα− converges uniformly to e0−. Hence
we have convergence to −g+ + A12e

0
− uniformly on [ε, T ] for any ε > 0 and on [0, T ]

if u(0); hence g+(0), is zero.

The previous computation, combined with Lemma 19 and (38), gives the following
pointwise estimate when u ∈W 1,2:∣∣∣∣

∣∣∣∣ 1

α
Jeα+(t) + g+(t)−A12e

0
−(t)

∣∣∣∣
∣∣∣∣ ≤M · (√α+ e−ηt/α||g+(0)||

)
.(40)

Square integrable inputs. We now prove Theorem 18 for inputs which are
assumed only to be in L2(0, T ). We introduce the functions



zα(t) = −g+(t) +A11e

α
+(t) +A12e

α
−(t), t ∈ [0, T ] , zα(t) = 0 otherwise;

z0(t) = −g+(t) +A12e
0
−(t), t ∈ [0, T ] , z0(t) = 0 otherwise;

ζα(t) = 1
α

∫ t
0
Je−

J
α (t−s)zα(s)ds, t ∈ R.

(41)

By definition, zα converges to z0 in L2(R), and ζα is the convolution of zα with the
function which is zero for t < 0 and 1

αJe
−Jt/α for t > 0. The function ζα belongs to

L2(R) since the eigenvalues of J are positive and α > 0.

We must prove that ζα converges to z0 in L2(0, T ), and this is implied by the
L2(−∞,+∞) convergence of χζα to χz0, where χ(t) = e−rt, since both ζα(t) and
z0(t) are zero for t < 0. Here r is a fixed positive number.

In order to prove L2(−∞,+∞) time domain convergence, we prove equivalently
L2(−∞,+∞) convergence of the trace on the imaginary axis of the Laplace trans-
forms. The trace of the Laplace transform of χζα is the function

1

α
J

[
(iω + r)I +

J

α

]−1

ẑα(iω + r).

We must prove

lim
α→0

∫ +∞

−∞

∣∣∣∣L[e−r·ζα(·)− e−r·z0(·)] ∣∣∣∣2 dω = 0.(42)
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We have[∫ +∞

−∞

∣∣∣∣L[e−r·ζα(·)− e−r·z0(·)]∣∣∣∣2 dω]1/2

(43)

≤
[∫ +∞

−∞

∣∣∣∣
∣∣∣∣ 1

α
J

[
(iω + r)I +

J

α

]−1 [
ẑα(iω + r)− ẑ0(iω + r)

] ∣∣∣∣
∣∣∣∣
2

dω

]1/2

(44)

+

[ ∫ +∞

−∞

∣∣∣∣
∣∣∣∣
[

1

α
J

[
(iω + r)I +

J

α

]−1

− I
]
ẑ0(iω + r)

∣∣∣∣
∣∣∣∣
2

dω

]1/2

.(45)

We prove a lemma first.
Lemma 21. There exists a number M such that for every λ with �e λ > 0 and

every α > 0 we have ∣∣∣∣∣
∣∣∣∣∣ 1

α
J

[
λI +

J

α

]−1
∣∣∣∣∣
∣∣∣∣∣ ≤M.(46)

Proof. We use a reference system where J is diagonal. (We recall that the

eigenvalues of J are positive.) In this reference system we have || 1αJ
[
λI + J

α

]−1 || < 1,

as it is simply seen because the matrix 1
αJ

[
λI + J

α

]−1
is diagonal, its entries being

of the form j/(j + λα), where j is positive since it is an eigenvalue of J .
It follows from Lemma 21 and the fact that ẑα(· + r) converges to ẑ0(· + r) in

L2(−∞,+∞) (see (41) and Lemmas 16 and 17) that the first integral (44) converges
to zero for α→ 0.

In order to prove that the second integral (45) converges to zero, we need a further
lemma.

Lemma 22. We have

lim
α→0

1

α
J

[
λI +

J

α

]−1

= I ,

uniformly for λ in compact sets of �e λ > 0.
Proof. We note that

1

α
J

[
λI +

J

α

]−1

− I = [−λαJ−1]
1

α
J

[
λI +

J

α

]−1

.

The result now follows easily from Lemma 21.
Now we split (45) into the sum of the two integrals

∫
R−[h,h]

∣∣∣∣∣
∣∣∣∣∣
[

1

α
J

[
(iω + r)I +

J

α

]−1

− I
]∣∣∣∣∣
∣∣∣∣∣ · ||ẑ0(iω + r)||2 dω,(47)

∫ +h

−h

∣∣∣∣∣
∣∣∣∣∣
[

1

α
J

[
(iω + r)I +

J

α

]−1

− I
]∣∣∣∣∣
∣∣∣∣∣ · ||ẑ0(iω + r)||2 dω.(48)

Using standard techniques and Lemma 22, we obtain that both integrals converge to
0. This proves (42) and completes the proof of Theorem 18.

It is clear from Theorem 18 that, in general, Bvα does not converge to Bu since
A12e

0
− in general will not be zero. We have the following result.
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Theorem 23. The following conditions are equivalent:
(a) limα→0Bvα = Bu and limα→0 wα = x for every input u.
(b) B− = 0.
(c) kerCB = {0}.
Proof. (a)⇒(b). It immediately follows from the definition of vα and the structure

of the matrix Ĵ .
(b)⇒(a). If (b) holds, then from (36) we see that e0− = 0. The result then follows

from Theorem 18.
(b)⇒(c). Since kerB = {0} and B− = 0, we have that kerB+ = {0}. Multiplying

Ĵ on the left by B∗ and on the right by B, we get

[B∗B]B∗C∗[CB] = B∗
+JB+.

Now B∗
+JB+ is invertible since kerB+ = {0} and J = J∗ > 0. Hence CB is injective.

(c)⇒(b). We recall that Ĵ = BB∗C∗C = diag[J, 0] and that B = col[B+, B−].
We must prove B− = 0. This is true because

B[B∗C∗CB] = [BB∗C∗C]B =

[
JB+

0

]
.

As CB is injective, we have that B∗C∗CB is invertible so that

B =

[
JB+

0

]
· [B∗C∗CB]−1 =

[
?
0

]
,

which was our claim.
Remark 24. Property (c) in Theorem 23 is a condition of relative degree one on

the system. This condition has a relevant role in robustness analysis; see [7]. When
it is not satisfied, we need to carry on a more refined analysis, which is the content
of next section.

Theorem 23 gives a necessary and sufficient condition under which the proposed
recursive identification method really identifies both the input u and the evolution
x of system (3). Notice, however, that we described the identification process as a
double limiting process: first a limit with respect to n and h and next a limit with
respect to α. In fact, there exists a small value of α such that ||Bvα − Bu||2 is less
than ε/2 for a prescribed ε; with such an α, we have that ||Bvn,α −Bvα||2 < ε/2 for
large n and small h. In this way we get that Bvn,α approximate Bu within a tolerance
ε (we denote by vn,α the function defined in (30)). We present explicit convergence
estimates in the case when u is differentiable. These estimates, which we prove in
the special case kerCB = {0}, will be crucial for the extension to the general case
presented in the next section. Our standing assumption is kerB = {0} so that we can
equivalently give an estimate for g = Bu.

We put ourselves in the case described by Theorem 23, and we assume that the
input u, hence also g = Bu, is differentiable. In this case we can give estimates which
explicitly show the dependence on n, h, and α. As we said, we denote by vn,α the
input which was simply denoted by vn in section 3 and by wn,α the corresponding
solution to (27). The expression of vn,α is given by (30).

We use

||Bvn,α(t)−Bu(t)|| ≤ ||Bvn,α(t)−Bvα(t)||+ ||Bvα(t)−Bu(t)||,(49)

and we give asymptotic estimates for both terms on the right-hand side.
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We use the pointwise estimate (40) (which concerns ||Bvα(t) − Bu(t)|| since e0−
is now zero), and we get

||Bvα(t)−Bu(t)|| ≤M ·
(
e−

ηt
α ||u(0)||+√α

)
.(50)

The value of the constant depends on the values of u and u̇.
Now we observe (see (30) and (31)) that

vn,α(t)− vα(t)

= −
{

[αI + Λ∗
nΛn]−1Λ∗

nΓnCe
Aδwn,α(τk)− 1

α
B∗C∗Cwα(t)

}
(51)

+

{
[αI + Λ∗

nΛn]−1Λ∗
nΓnξk − 1

α
B∗C∗Cx(t)

}
.(52)

We want to give an estimate of this difference for α fixed and large n.
The sequence of piecewise constant functions Ξn, Ξn(t) = ξk for t ∈ [τk, τk+1),

converges uniformly to the Lipschitz function Cx (the output of the system) on [0, T ]
and

||Ξn(t)− Cx(t)|| < h+
M

n
.(53)

Hence, from the explicit estimates (16), we have

||(Λ∗
nΓnΞn)(t)−B∗C∗Cx(t)|| ≤M ·

[
h+

1

n

]
.

We use now the explicit estimate (23), and we get∣∣∣∣
∣∣∣∣([αI + Λ∗

nΛn]−1Λ∗
nΓnΞn

)
(t)− 1

α
B∗C∗Cx(t)

∣∣∣∣
∣∣∣∣ ≤M ·

(
1

α2
√
n

+
1

αn
+
h

α

)
.

We estimate (51) with the following sum:∣∣∣∣
∣∣∣∣[αI + Λ∗

nΛn]−1Λ∗
nΓnC[eAδ − I]wn,α(τk)

∣∣∣∣
∣∣∣∣

+

∣∣∣∣
∣∣∣∣[αI + Λ∗

nΛn]−1Λ∗
nΓnCwn,α(τk)− 1

α
B∗C∗Cwα(τk)

∣∣∣∣
∣∣∣∣

+
1

α

∣∣∣∣
∣∣∣∣B∗C∗C[wα(τk)− wα(t)]

∣∣∣∣
∣∣∣∣.

The inequalities in Lemma 8, Theorem 4, and (10) show that the first addendum is
less than

M

n3/2

(
1

α
+

1√
nα2

)
eω/α.

The second addendum is estimated from the inequalities (23), (29). It is less than

M

(
1

α2
√
n

+
1

αn
+

1

α2
√
n
eω/α

)
.
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In order to estimate the third term, we use (32), Lemma 14, and the boundedness
of u. We get that the third term is less than

M

nα
.

According to Theorem 4 and Lemma 11, the factor eω/α in the previous inequal-
ities must be replaced by 1/α if C = I.

We collect the estimates above and we get the following theorem.
Theorem 25. Let the unknown input u be of class W 1,2 and let the condition

kerCB = {0} hold. Then there exist numbers M , η, and ω, which do not depend on
α, n, h, such that, for every t ∈ [0, T ],

||Bvn,α(t)−Bu(t)|| ≤M
{(
e−

ηt
α ||u(0)||+√α

)
+
(

1
αn + 1

α2
√
n

+ h
α

)
+
(

1
α2

√
n

+ 1
αn3/2 + 1

α2n2

)
· eω/α

}
.

(54)

In the special case when C = I and u(0) = 0, the previous inequality is replaced by

||Bvn,α(t)−Bu(t)|| ≤M
(√

α+
1

αn
+

1

α2
√
n

+
h

α
+

1

α3
√
n

)
.(55)

Remark 26.
(a) We observe that the explicit estimate shows that, naturally, if we want a

good estimate, the penalization coefficient α should converge to zero not too
quickly. Moreover, the right-hand sides of (54) and (55) show explicitly the
dependence on n and h separately.

(b) The book [10] studies an even more general input identification problem for
nonlinear systems under a condition which, in the linear case, is exactly
kerCB = {0} (see, in particular, section 18.4). However, it is assumed there
that the unknown input takes values in a known compact set explicitly used
in the solution. Moreover, in contrast with (55), only L2 estimates are given.

5. Input identification in the general case. In this section we extend the
identification method described in previous sections to the general case when kerCB �=
{0} (maintaining, of course, the assumptions R∗ = {0} and kerB = {0}).

To clarify our approach, we first consider an example.
Example 27. Assume that the system matrices have the following special form:

A =




0 1 0 0 0 0
0 0 1 0 0 0
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

0 0 0 0 1 0
a5,1 a5,2 a5,3 a5,4 a5,5 a5,6

a6,1 a6,2 a6,3 a6,4 a6,5 a6,6



, B =




0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1



,

C =


 1 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 1


 .

(56)

A system which has the previous representation but with a3,i = 0, a5,i = 0,
a6,i = 0 for each i is just a tandem connection of integrators. It is said to be in
“prime” canonical form; see [17].
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We represent x = col[xi], u = col[ui], and y = col[yi] consistently with the
structure of the matrices.

We now repeatedly apply the identification method described in previous sections.
Consider first the subsystem{

ẋ1 = x2,
ẋ4 = x5,

y =

[
x1

x4

]
.

Our recursive identification method gives an estimate of “inputs” x2, x5 because
the equivalent conditions of Theorem 23 are satisfied. We observe that the “inputs”
x2, x5 are differentiable and zero for t = 0. Hence Theorem 25 gives a pointwise
estimate for the error, which holds uniformly on [0, T ].

We use the estimate given in Theorem 25 as a new “tolerance” h, and we consider
the subsystem

ẋ2 = x3, y1 = x2.

We proceed analogously, and we approximate x3, which will be considered as a
new “input” in the last step. The approximation to x3 is uniform on [0, T ].

In the last step we consider the subsystem

ẋ3 = a3,3x3 + a3,5x5 + a3,6x6 +ρ1,
ẋ5 = a5,3x3 + a5,5x5 + a5,6x6 +ρ2,
ẋ6 = a6,3x3 + a6,5x5 + a6,6x6 +ρ3,

y2 =


 x3

x5

x6




and

ρ =


 ρ1
ρ2
ρ3


 =


 a3,1x1 + a3,2x2 + a3,4x4

a5,1x1 + a5,2x2 + a5,4x4

a6,1x1 + a6,2x2 + a6,4x4


+


 u1

u2

u3


 .

At this point, the “output” y2 is known, within a certain tolerance, and the
assumptions of Theorem 23 are satisfied. Hence we can apply our procedure for the
identification of the “input” ρ, i.e., of the real input u, since we already estimated the
first addendum of ρ within a certain tolerance.

We observe that we do not need to perform the procedure just described sequen-
tially in three steps hence in a nonrecursive way. In fact, let n be fixed. Once the first
observation time τ1 is elapsed, we have an estimate for the new “outputs” x2(t), x5(t)
for t ∈ [0, τ1]. Hence we can start the identification procedure for x3, and, at time τ3,
we can start the identification procedure for u. We also observe that each step of the
previous procedure studies a system for which C = I. Hence the exponential term
eω/α does not affect the rate of convergence.

The previous example may look quite special. In fact, it is completely general.
In order to see this, we introduce a special “quasi canonical” form due to Morse;
see [17]. This form resembles Kalman decomposition, but it goes far deeper. It is
an extension of Brunovski canonical form and, in particular, it shows precisely the
coupling between inputs and outputs.

According to [17], in the special case R∗ = {0}, there exist a state feedback F ,
an input injection L, and suitable reference frames in the state, input, and output
spaces such that A+BF + LC, B, and C take the following forms:

A+BF+LC =


 A0 0 0

0 A1 0
0 0 A2


 , B =


 0

0
B2


 , C =

[
0 C1 0
0 0 C2

]
.

(57)
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Moreover, the triple A2, B2, C2 is in “prime” canonical form. This means

A2 = diag[Ni] , B2 = diag[bi] , c2 = diag[ci] ,

Ni =




0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
0 0 0 . . . 0


 , bi =




0
0
...
0
1


 , ci =

[
1 0 0 . . . 0

]
.

If R∗ �= {0}, then a further block would appear in the matrices A + BF + LC,
and a further column would appear in the matrix B. This column would correspond
to inputs that cannot be reconstructed.

Morse form can be used as follows in the deconvolution problem. We represent
system (3) as

ẋ = {(A+BF )x+ Ly}+Bu− (BFx+ Ly)

= (A+BF + LC)x+Bu−BFx− Ly , y = Cx,

and we put ourselves in that reference system in which the matrices have the form
described above.

The matrices F and L (which can be explicitly computed) have the block forms

F =
[
F0 F1 F2

]
, L =


 L′

0 L′′
0

L′
1 L′′

1

L′
2 L′′

2


 .

Hence the system takes the following form:


ẋ0 = A0x0 − {L′
0C1x1 + L′′

0C2x2}
= A0x0 − {L′

0y1 + L′′
0y2},

y1 = C1x1,
ẋ1 = A1x1 − {L′

1C1x1 + L′′
1C2x2}

= A1x1 − {L′
1y1 + L′′

1y2}

(58)

and

ẋ2 = A2x2 − {L′
2C1x1 + L′′

2C2x2} −B2Fx+B2u
= (A2x2 −B2F2)x2 − {L′

2y1 + L′′
2y2}

+ B2{u− F0x0 − F1x1} , y2 = C2x2.
(59)

The functions y1 and y2 are measured (at the sample times τk and with known error).
They enter as regular perturbations in the previous differential equations so that we
can compute x0 and x1 on [0, T ] (with a tolerance which tends to zero for h→ 0 and
δ → 0).

Now we look more closely to the subsystem (59). This system has a block form
similar to the one in Example 27. In fact, due to the prime-type structure of the
matrices A2 and B2, the matrix A2 +B2F2 has the same form as the matrix A in (56)
(in general with more blocks) and B2, C2 have forms similar to those in (56), with
more blocks. Hence we can apply the identification algorithm to systems of the form

ẋi = xi+1 − µi,
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where µi, due to the addendum −{L′
1y1 + L′′

2y2}, is approximately known. So the
next component xi+1 can be approximately identified.

We do this for the system of the first components of the vectors which correspond
to blocks of dimensions larger then 1. We consider the next component in a second
step, as in Example 27, until we remain with the vectors whose entries correspond to
the last rows of the blocks of A2 + B2F . We get a system of differential equations,
each one of the form

ẋkrk = akkk,rkx
k
rk

+ {µr + νr + ur}+
∑

(i,j) �=(k,rk)

akijx
k
ij ,

where µr is due to the output injection (hence it is directly measured); νr denotes the
contribution of x0, x1, which can be computed; the terms of the last sum are computed
in the preceding steps. Hence all these terms are (approximately) known. Hence a
last application of the identification algorithm gives an estimate of the unknown input
u = col[ur].

We observe that in order to iterate the first step on the second block of variables,
we do not need to wait until time T is elapsed: once that time t0 > τ is elapsed, we
can apply the process to the second block of variables on the interval [0, t0]. Hence
also the identification method in the general case is recursive.

In conclusion, a recursive identification process can be applied to the most general
case in which input identification is possible.

We do not insist on giving explicit convergence estimates for each step of the
iteration. These estimates can be obtained by a repeated application of Theorem 25.
We observe the importance of the pointwise estimate (55). In fact, even if we could
have perfect observation, at the second step the new “output” is the estimate of the
variables xi,2 obtained in the previous step with an error given by (55).

We note that at each step, with the exception of the last one, the pointwise
estimates are uniform on [0, T ] even if the unknown input u is not differentiable. In
fact, the fictitious inputs that must be estimated at each step, except the last one, are
differentiable and zero for t = 0; and, moreover, at each step we work with a system
for which C = I so that the exponential factor eω/α is replaced by 1/α in the estimate
for the convergence rate.

Acknowledgments. We thank the referees for the careful reading of the paper.
Their observations helped us in putting the paper in the proper perspective of the
deconvolution problem.
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Abstract. This paper deals with linear shift-invariant distributed systems. By this we mean
systems described by constant coefficient linear partial differential equations. We define dissipativity
with respect to a quadratic differential form, i.e., a quadratic functional in the system variables and
their partial derivatives. The main result states the equivalence of dissipativity and the existence
of a storage function or a dissipation rate. The proof of this result involves the construction of
the dissipation rate. We show that this problem can be reduced to Hilbert’s 17th problem on the
representation of a nonnegative rational function as a sum of squares of rational functions.

Key words. quadratic differential forms, linear multidimensional systems, behavioral theory,
polynomial matrices, lossless systems, positivity, dissipativeness, storage functions
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1. Introduction. One of the very useful concepts in systems theory is the notion
of a dissipative system. It lies at the root of most of the stability results and on the
synthesis of robust controllers. The theory of dissipative systems has been developed
until now as a system theoretic concept for dynamical systems, i.e., for systems in
which the independent variable is time. However, many if not most models of physical
systems are distributed, involving both time and space variables. The purpose of this
paper is to develop the theory of dissipative systems for systems described by partial
differential equations.

The central problem in the theory of dissipative systems is the construction of
an internal function called the storage function. Instances of functions that play the
role of storage functions are Lyapunov functions in stability analysis, the internal
energy, and entropy in thermodynamics, etc. The construction of storage functions
for dynamical systems is reasonably well understood [23, Part 1] for general nonlinear
systems and in much detail for linear systems with quadratic supply rates [23, Part
2] [25]. As we shall see, analogous results may be obtained, as far as existence is
concerned, for distributed systems described by linear constant coefficient partial
differential equations and with quadratic differential forms (QDFs) as supply rates.
However, there are important differences in the resulting theory, the most important
one being the fact that for distributed systems the storage functions need to be (in
general) a function of unobservable (“hidden”) latent variables.

Several recent papers [2, 12, 13] dealing with conservative and dissipative sys-
tems have been brought to our notice. In these papers, the authors consider an in-
put/state/output framework for the multidimensional systems involved. The results
in these papers are clearly related to the results presented in this paper. While the
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results in [2, 12, 13] are more general (in the sense that they consider more general
signal spaces—Hilbert spaces), they are far less structured (in the sense that they
tackle only problems that admit a type of state formulation—the Roesser model).
On the other hand, the results in this paper are more structured in the sense that
it deals with systems that arise as solutions of constant coefficient partial differential
equations (without assuming “states,” etc.), though the signal spaces used are not
as general. The mathematics involved in the two approaches are also substantially
different.

An interesting feature of the results presented in this paper is the mathemat-
ics that underlies the construction of the storage function (for linear systems with
quadratic supply rates). In the context of lumped dynamical systems the construction
of a storage function involves, as we shall see, the factorization of a real polynomial
matrix Φ in one indeterminate into the product Φ(ξ) = FT (−ξ)F (ξ) with F also a
real polynomial matrix. This factorization is readily seen to be possible if and only
if Φ(ξ) = ΦT (−ξ) and Φ(iω) ≥ 0 for all ω ∈ R. However, in the case of distributed
systems, Φ is a polynomial matrix in n indeterminates. In this case, the factorization
Φ(ξ) = FT (−ξ)F (ξ) is not always possible with F as a real polynomial matrix but
it is possible with F as a matrix of rational functions. This factorization, it turns
out, is known as Hilbert’s 17th problem, and it is most stimulating indeed to see this
problem emerge in a basic system theoretic question!

First, a few words about notation. We use the standard notation R
n, R

n1×n2 ,
etc., for finite-dimensional vectors and matrices. When the dimension is not specified
(but, of course, finite), we write R

•, R
n×•, R

•×•, etc. In order to enhance readability,
we typically use the notation R

w when functions taking their values in that vector
space are denoted by w. Real polynomials in the indeterminates ξ = (ξ1, ξ2, . . . , ξn)
are denoted by R[ξ] and real rational functions by R(ξ), with obvious modifications
for the matrix case. The space of infinitely differentiable functions with domain R

n

and codomain R
w is denoted by C∞(Rn,Rw) and its subspace containing elements with

compact support by D(Rn,Rw).

The proofs of the results are collected in the appendix.

2. Multidimensional systems. We view a system as a family of trajectories
mapping a set of “independent” variables into a set of “dependent” variables. See [20]
for an elaboration of this with examples. Thus a system Σ is defined as a triple Σ =
(T,W,B), where T is the indexing set, the set of independent variables, W is the signal
space, the set of dependent variables, and B ⊂ W

T is the behavior. In the present
paper we consider systems with T = R (we call these lumped dynamical systems or
one-dimensional (1D) systems) and systems with T = R

n (we call these distributed
systems—they are commonly called nD systems). Also, we assume throughout that
W is a finite-dimensional real vector space, W = R

w.

A system Σ = (Rn,Rw,B) is said to be linear if B is a linear subspace of (Rw)R
n

and shift-invariant if B = σx
′
B for all x′ = (x′1, . . . , x

′
n) ∈ R

n, where σx
′
: (Rw)R

n →
(Rw)R

n

denotes the x′-shift defined for x′ = (x′1, . . . , x
′
n) by σ

x′f(x1, . . . , xn) = f(x1+
x′1, . . . , xn+x

′
n). We call Σ a linear shift-invariant differential system if B is the solu-

tion set of a system of linear constant coefficient partial differential equations. More
precisely, if there exists a real polynomial matrix R ∈ R

•×w[ξ] in n indeterminates,
ξ = (ξ1, . . . , ξn), such that B consists of the C∞(Rn,Rw)-solutions of

R

(
d

dx

)
w = 0,(1)
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where d
dx = ( ∂

∂x1
, ∂∂x2

, . . . , ∂
∂xn

). The assumption that we consider only C∞-solutions
is made for the ease of exposition, and the results remain valid for other solution
concepts—for example, for distributions. We denote the family of linear shift-invariant
differential systems Σ = (Rn,Rw,B) as Lw

n. We also denote (Rn,Rw,B) ∈ Lw
n as

B ∈ Lw
n since the indexing set and the signal space are then obvious from the context.

A system B ∈ Lw
n is uniquely specified by its annihilators, defined by

NB =

{
p ∈ R

1×w[ξ] | p
(
d

dx

)
B = 0

}
.

It is easy to see that NB is a submodule of R
1×w[ξ] viewed as a module over R[ξ]. In

fact, there is a one-to-one relation between Lw
n and the submodules of R

1×w[ξ]. Thus,
whereas R ∈ R

•×w[ξ] uniquely specifies a behavior B ∈ Lw
n through (1) with NB the

module generated by the rows of R, any other polynomial matrix whose rows generate
the same submodule define the same behavior.

The family of systems Lw
n enjoys many convenient properties, and this has been

studied in detail in [19]. An important feature is the elimination theorem, which
is the consequence of the following. Let F ∈ R

w1×w2 [ξ]. Then B2 ∈ Lw2
n implies

F ( ddx )B2 ∈ Lw1
n and B1 ∈ Lw1

n implies (F ( ddx ))
−1B1 ∈ Lw2

n . This, in particular,
implies that if B1,B2 ∈ Lw

n, then B1 ∩B2 ∈ Lw
n and B1 + B2 ∈ Lw

n. It also implies
the elimination theorem that states that, for any B ∈ Lw1+w2

n , the set

{w1 ∈ C∞(Rn,Rw1) | ∃w2 ∈ C∞(Rn,Rw2) : (w1, w2) ∈ B}

is itself an element of Lw1
n . The elimination theorem and its variations follow from

the important fundamental principle that states that the system of partial differential
equations

A

(
d

dx

)
f = g,

with A ∈ R
w1×w2 [ξ] and g ∈ C∞(Rn,Rw1) given, is solvable for f ∈ C∞(Rn,Rw2) if and

only if whenever p ∈ R
1×w1 [ξ] satisfies pA = 0, then there must hold that p( ddx )g = 0.

Whereas we have defined the behavior of a system in Lw
n as the set of solutions

of a system of partial differential equations in the system variables, often, in practi-
cal applications, the specification of the behavior involves other, auxiliary variables,
which we call latent variables. Specifically, consider the system of partial differential
equations

R

(
d

dx

)
w =M

(
d

dx

)
�(2)

with w ∈ C∞(Rn,Rw) and � ∈ C∞(Rn,R�) and with R ∈ R
•×w[ξ] and M ∈ R

•×�[ξ]
polynomial matrices with the same number of rows. The set

Bf = {(w, �) ∈ C∞(Rn,Rw+�) | (2) holds}(3)

obviously belongs to Lw+�
n . It immediately follows from the elimination theorem that

the set

{w ∈ C∞(Rn,Rw) | ∃� ∈ C∞(Rn,R�) : (w, �) ∈ Bf}(4)
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belongs to Lw
n. We call (2) a latent variable representation, with manifest variables

w and latent variables �, of the system with full behavior (3) and manifest behavior
(4). Correspondingly, we call (1) a kernel representation of the system with the
behavior ker(R( ddx )). We shall soon meet another sort of representation, the image
representations, in the context of controllability.

3. Controllability and observability. Two very influential classical properties
of dynamical systems are those of controllability and observability. In [24] these
properties have been lifted to lumped dynamical systems in a behavioral setting,
while in [19] generalizations to distributed systems have been introduced. We discuss
these concepts here exclusively in the context of systems described by linear constant
coefficient partial differential equations.

Definition 1. A system B ∈ Lw
n is said to be controllable if for all w1, w2 ∈ B

and for all sets U1, U2 ⊂ R
n with disjoint closure, there exists a w ∈ B such that

w |U1= w1 |U1 and w |U2= w2 |U2 .
Thus controllable partial differential equations are those in which the solutions

can be “patched up” from solutions on subsets: in a sense there is no “action of a
distance.” There are a number of characterizations of controllability. In terms of its
submodule of annihilators, NB, B ∈ Lw

n, is controllable if and only if the module
R

1×w[ξ]/NB is torsion-free [19].
More useful for our purposes is the equivalence of controllability with the ex-

istence of an image representation. Consider the following special latent variable
representation:

w =M

(
d

dx

)
�(5)

with M ∈ R
w×�[ξ]. Obviously, by the elimination theorem, its manifest behavior

B ∈ Lw
n. Such special latent variable representations often appear in physics, where

the latent variables involved in such a representation are called potentials. Obviously,
B = im(M( ddx )) with M( ddx ) viewed as a map from C∞(Rn,R�) to C∞(Rn,Rw). For
this reason, we call (5) an image representation of its manifest behavior. Whereas
every B ∈ Lw

n allows (by definition) a kernel representation and hence trivially a
latent variable representation, not every B ∈ Lw

n allows an image representation. In
fact, see the following theorem.

Theorem 2. B ∈ Lw
n admits an image representation if and only if it is control-

lable.
We denote the set of controllable systems in Lw

n by Lw
n,cont.

Observability is the property of systems that have two kinds of variables; the first
set of variables are the “observed” set of variables, and the second set of variables are
the ones that are “to-be-deduced” from the observed variables. Every variable that
can be deduced uniquely from the manifest variables of a given behavior will be called
an observable. So observability is not an intrinsic property of a given behavior. One
has to be given a partition of the variables in the behavior into two classes before one
can say whether one class of variables in the behavior can actually be deduced from
the other class of variables (which were observed).

Definition 3. Let w = (w1, w2) be a partition of the variables in Σ = (Rn,-
R
w1+w2 ,B). Then w2 is said to be observable from w1 inB if given any two trajectories

(w′
1, w

′
2), (w

′′
1 , w

′′
2 ) ∈ B such that w′

1 = w′′
1 ; then w

′
2 = w′′

2 .
A natural situation to use observability is when one looks at the latent variable

representation of a behavior. Then one may ask whether the latent variables are



1410 HARISH K. PILLAI AND JAN C. WILLEMS

observable from the manifest variables. If this is the case, then we call the latent
variable representation observable.

As we have already mentioned, every controllable behavior has an image repre-
sentation. In the case of 1D systems, it can be shown that every controllable behavior
has an observable image representation. This is not true for nD systems.

4. QDFs. In [25, 26] a theory was developed for linear (1D) differential systems
and quadratic functionals associated with these systems. It was shown that for sys-
tems described by one-variable polynomial matrices, the appropriate tool to express
quadratic functionals are two-variable polynomial matrices. In the same vein, in this
paper we will use polynomial matrices in 2n variables to express quadratic functionals
for functions of n variables.

For convenience, let ζ denote (ζ1, . . . , ζn), and let η denote (η1, . . . , ηn). Let
R
w1×w2 [ζ, η] denote the set of real polynomial matrices in the 2n indeterminates ζ and
η. We will consider quadratic forms of the type Φ ∈ R

w1×w2 [ζ, η]. Explicitly,

Φ(ζ, η) =
∑
k,l

Φk,lζ
kηl.

The sum above ranges over all nonnegative multi-indices k = (k1, k2, . . . , kn), l =
(l1, l2, . . . , ln) ∈ N

n, and the sum is assumed to be finite. Moreover, Φk,l ∈ R
w1×w2 .

The polynomial matrix Φ induces a bilinear differential form (BLDF), that is, the
map

LΦ : C∞(Rn,Rw1)× C∞(Rn,Rw2)→ C∞(Rn,R)

defined by

LΦ(v, w)(x) :=
∑
k,l

(
dkv

dxk
(x)

)T
Φk,l

(
dlw

dxl
(x)

)
,

where dk

dxk = ∂k1

∂x
k1
1

∂k2

∂x
k2
2

. . . ∂
kn

∂xknn
and analogously for dl

dxl . Note that ζ corresponds to

differentiation of terms to the left, and η refers to differentiation of the terms to the
right.

If w1 = w2 = w, then Φ induces the QDF

QΦ : C∞(Rn,Rw)→ C∞(Rn,R)

defined by

QΦ(w) := LΦ(w,w).

Define the ∗ operator

∗ : R
w×w[ζ, η]→ R

w×w[ζ, η]

by

Φ∗(ζ, η) := ΦT (η, ζ).

If Φ = Φ∗, then Φ is called symmetric. For the purposes of QDFs induced by poly-
nomial matrices, it suffices to consider the symmetric QDFs since QΦ = QΦ∗ =
Q 1

2 (Φ+Φ∗).
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We also consider vectors Ψ ∈ (Rw×w[ζ, η])
n
, i.e., Ψ = (Ψ1, . . . ,Ψn). Analogous to

the QDF induced by Φ, Ψ induces a vector of quadratic differential forms (VQDF)

QΨ(w) : C∞(Rn,Rw)→ (C∞(Rn,R))
n

defined by QΨ = (QΨ1 , . . . , QΨn).
Finally, we define the “div” (divergence) operator that associates with the VQDF

induced by Ψ, the scalar QDF:

(div QΨ)(w) :=
∂

∂x1
QΨ1(w) + · · ·+

∂

∂xn
QΨn(w).

The theory of QDFs has been developed in much detail in [25, 26] for 1D systems.
In the next section, we put forward those aspects which are useful in the construction
of storage function for distributive systems.

5. Path independence. Consider the integral∫
Ω

QΦ(w)dx,(6)

where Ω is a closed bounded subset of R
n with a nonempty interior. This integral

is said to be independent of the “path” w (or a path integral) if the integral depends
only on the value of w and its derivatives on the boundary of Ω, denoted by ∂Ω. More

precisely, if for any w1, w2 ∈ C∞(Rn,Rw) such that d
kw1

dxk (x) = dkw2

dxk (x) for all x ∈ ∂Ω
and all k ∈ N

n, there holds∫
Ω

QΦ(w1)dx =

∫
Ω

QΦ(w2)dx.

Instead of some Ω ⊂ R
n, if we consider the integral (6) over all of R

n, then the
integral need not be well defined for all w ∈ C∞(Rn,Rw). We can overcome this by
considering it only for w’s of compact support. This yields the functional∫

QΦ : D(Rn,Rw)→ R

defined by ∫
QΦ(w) :=

∫
Rn

QΦ(w)dx,

which evaluates the integral over all of R
n.

The following theorem gives several conditions that are equivalent to path inde-
pendence.

Theorem 4. Let Φ ∈ R
w×w[ζ, η]. Then the following statements are equivalent:

1.
∫
Ω
QΦ is independent of path for all closed bounded subsets Ω of R

n.
2.
∫
QΦ = 0.

3. Φ(−ξ, ξ) = 0.
4. There exist Ψ1, . . . ,Ψn ∈ R

w×w[ζ, η] such that

Φ(ζ, η) = (ζ1 + η1)Ψ1(ζ, η) + · · ·+ (ζn + ηn)Ψn(ζ, η).
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5. There exists a Ψ ∈ (Rw×w[ζ, η])n such that

div QΨ = QΦ

for all w ∈ C∞(Rn,Rw).
At this point we would like to point out an important difference for the cases

n = 1 and n > 1. Although the above theorem holds for all values of n, more can
be said in the case when n = 1. In the case when n = 1, the last condition of the
above theorem can be strengthened to state that there exists a unique Ψ such that
d
dtQΨ = QΦ (assuming t is the independent variable). This uniqueness of Ψ does not
hold when n > 1. This will become clear from the subsequent proposition, which will
help us in classifying this nonuniqueness. If Ψ1 and Ψ2 induce two VQDFs such that

QΦ = divQΨ1 = divQΨ2 ,(7)

then Ψ = Ψ1 −Ψ2 defines a VQDF such that divQΨ(w) = 0 for all w ∈ C∞(Rn,Rw).
Such a VQDF is said to have null divergence. Thus it is obvious that given a Φ ∈
R
w×w[ζ, η] which defines a path integral and a VQDF induced by Ψ ∈ (Rw×w[ζ, η])n

such that divQΨ(w) = QΦ(w), it is possible to obtain other VQDFs that satisfy this
property by adding VQDFs that have null divergence to the already obtained VQDF
Ψ. We now characterize those VQDFs that have null divergence.

Proposition 5. A VQDF induced by Ψ = (Ψ1, . . . ,Ψn) ∈ (Rw×w[ζ, η])n has null
divergence if and only if there exists a family of n2 QDFs induced by ∆ij ∈ R

w×w[ζ, η],
i = 1, . . . , n, j = 1, . . . , n, with ∆ij = −∆ji such that

Ψi = (ζ1 + η1)∆i1 + (ζ2 + η2)∆i2 + · · ·+ (ζn + ηn)∆in.

From the above proposition, it is clear that ∆ii = 0. Thus for 1D systems, the
QDF induced by ∆11 is the zero QDF, and so there exists no nonzero 1D (V)QDFs
that have null divergence. Hence the Ψ obtained in Theorem 4 for 1D systems is

unique [26, Theorem 3.1]. In fact, Ψ(ζ, η) = Φ(ζ,η)
ζ+η in 1D systems. In nD systems

with n > 1, the Ψ obtained in Theorem 4 is no longer unique since there exist nonzero
VQDFs that give rise to null divergences. The above proposition completely classifies
the nonuniqueness of these VQDFs. Hence, for every path independent QDF induced
by Φ ∈ R

w×w[ζ, η], one obtains an equivalence class of VQDFs such that (7) holds.
The members of an equivalence class are exactly those that differ by a VQDF that
has null divergence.

6. Lossless systems. In this section, we study the notion of path independence
generalized to controllable systems B ∈ Lw

n,cont. We cast this in the context of con-
servative systems.

Let Φ = Φ∗ ∈ R
w×w[ζ, η] and B ∈ Lw

n,cont. Now consider the QDF QΦ(w) for
trajectories w ∈ B. We consider QΦ(w)(x) (with x ∈ R

n) as the rate of supply of
some physical quantity (for example, energy) delivered to the system at the point x
(whence positive when the system absorbs supply).

Definition 6. The system B ∈ Lw
n,cont is said to be lossless with respect to

the supply rate QΦ induced by Φ = Φ∗ ∈ R
w×w[ζ, η] if

∫
Rn
QΦ(w)dx = 0 for all

w ∈ B ∩D(Rn,Rw).
The interpretation of this condition is that

∫
Rn
QΦ(w)dx denotes the net amount

of supply that the system absorbs integrated over “time” and “space.” Whence the
system is lossless if this integral is zero: any supply absorbed at some time or place
is temporarily stored but eventually recovered perhaps at some other time or place.
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A related notion is that of path independence along a behavior. Let Ω be a closed
and bounded subset of R

n. The integral
∫
Ω
QΦ(w)dx is said to be independent of path

for trajectories w ∈ B if whenever w1, w2 ∈ B and dkw1

dxk (x) = dkw2

dxk (x) for x ∈ ∂Ω
and all k ∈ N

n, then ∫
Ω

QΦ(w1)dx =

∫
Ω

QΦ(w2)dx.

Define the � operator mapping from R
w1×w2 [ξ] to R

w2×w1 [ξ] by X�(ξ) := XT (−ξ).
In other words, if we look at X( ddx ) as a partial differential operator, then X�( ddx ) is
the (formal) adjoint operator.

The following theorem gives a number of equivalent conditions for a system to be
lossless.

Theorem 7. Let B ∈ Lw
n,cont. Let R ∈ R

•×w[ξ] and M ∈ R
w×•[ξ] induce, respec-

tively, a kernel and image representation of B; i.e., B = ker (R( ddx )) = im (M( ddx )).
Let Φ = Φ∗ ∈ R

w×w[ζ, η] induce a QDF on B. Then the following conditions are
equivalent:

1. B is lossless with respect to the QDF QΦ;
2. The QDF induced by Φ is independent of path on B, i.e.,

∫
Ω
QΦ(w)dx is in-

dependent of path for all bounded and closed subsets Ω in R
n with a nonempty

interior;
3. the QDF corresponding to Φ′ is a path integral, where Φ′ is given by Φ′(ζ, η) :=
MT (ζ)Φ(ζ, η)M(η);

4. Φ′(−ξ, ξ) = 0;
5. there exists a VQDF QΨ, with Ψ ∈ (Rm×m[ζ, η])n, where m is the number of
columns of M such that

divQΨ(�) = QΦ′(�) = QΦ(w)(8)

for all � ∈ C∞(Rn,Rm) and w =M( ddx )�.
We focus our attention for a moment on the equivalence of conditions 1 and 5 of

the above theorem. It states that B is lossless with respect to QΦ, i.e., that∫
Rn

QΦ(w)dx = 0(9)

for all w ∈ B of compact support if and only if B admits an image representation
w =M( ddx )� and there exists some VQDF Ψ such that

div QΨ(�) = QΦ(w)(10)

for all w ∈ B and � such that w =M( ddx )�.
The equivalence of the global version of losslessness (9) with the local version

(10) is a recurrent theme in the theory of dissipative systems. The local version states
that there is a function QΨ(�)(x) that plays the role of the amount of supply stored
at x ∈ R

n. Thus (10) says that for lossless systems, it is possible to define a storage
function QΨ such that the conservation equation

div QΨ(�) = QΦ(w)(11)

is satisfied for all w, � such that w = M( ddx )�. Note here that since Φ′ = div Ψ, by
the Stokes theorem∫

∂Ω

n∑
i=1

(−1)i−1QΨi(�)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn =

∫
Ω

QΦ′(�)dx1 ∧ · · · ∧ dxn
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(for any Ω ⊆ R
n with a reasonable boundary). We can then think of the above as an

integral form of the conservation equation (11).
Two important features, both specific to the case when n > 1, are worth em-

phasizing. First is the fact that the storage QΨ(�) depends on the latent variable
� from the image representation w = M( ddx )�. Since B ∈ Lw

n,cont may not have an
observable image representation, there may not exist a storage function of the form
QΨ(w) that depends on the manifest variables w ∈ B. Hence the storage in (11)
involves “hidden” (i.e., nonobservable) variables. Second, the nonuniqueness of the
VQDF QΨ that solves divQΨ(�) = QΦ(M( ddx )�) = QΦ′(�). Hence, even when the �’s
have acquired a “physical significance,” there will be many possible storage functions.
We shall see in the next section that this nonuniqueness is important already in basic
physics.

We would like to mention at this point that in many practical examples the in-
dependent variables are time and space variables. So, for example, the indexing set
would be R×R

3. In this case, we will use the notation t, x, y, z to stand for the inde-
pendent variables (time coordinate and the three space coordinates, respectively), and
the partial derivatives with respect to these variables are denoted by ∂

∂t ,
∂
∂x ,

∂
∂y ,

∂
∂z ,

respectively. It is important to interpret the storage function QΨ in this context. In
the case mentioned above, we denote Ψ = (Ψt,Ψx,Ψy,Ψz) and QΨ = (u,S). Here u
is the QDF QΨt , which is the “internal storage” and the VQDF S := (QΨx , QΨy , QΨz )
is the “flux.” This interpretation will be useful in the next section. With the above
notation, (8) now becomes

∂

∂t
u(�) +∇ · S(�) = QΦ(w),

where ∇ is the spatial divergence operator.

7. Maxwell’s equations. The prototypical example of a linear shift-invariant
differential system is provided by Maxwell’s equations in free space:

∇ ·E− ρ

ε0
= 0,

∇×E+
∂B

∂t
= 0,

c2∇×B− ∂E
∂t
− j

ε0
= 0,

∇ ·B = 0.(12)

This describes the relation between the electrical field E : R × R
3 → R

3, the
magnetic field B : R×R

3 → R
3, the current density j : R×R

3 → R
3, and the charge

density ρ : R×R
3 → R. In the above equations, the constants c and ε0 stand for the

speed of light in vacuum and the electric constant, respectively. Hence (12) defines
a system BME ∈ L10

4 . It is well known that BME can be described in terms of the
vector potential A : R× R

3 → R
3 and the scalar potential φ : R× R

3 → R by

E = −∂A
∂t
−∇φ,

ρ = −ε0∇ · ∂A
∂t
− ε0∇2φ,

B = ∇×A,

j = ε0
∂2A

∂t2
− ε0c2∇2A+ ε0c

2∇(∇ ·A) + ε0∇∂φ
∂t
.(13)
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It is important to note that (13) is an image representation of BME . Hence, by
Theorem 2, Maxwell’s equations define a controllable system. It is also important to
note that (13) is an unobservable image representation of BME . In fact, there do not
exist observable image representations of BME .

Strictly speaking, the vector potential A and the scalar potential φ are “free”
latent variables (i.e., they are allowed to take on any values in the relevant space of
trajectories). Note that we can change A and φ to A′ = A +∇ψ and φ′ = φ − ∂ψ

∂t
(where ψ is some other arbitrary scalar function) without changing the resulting E,
B, ρ, and j. These are called gauge transformations. Additional conditions may be
imposed on A and φ without changing the fact that the image in (13) remains BME .
For example, the Lorentz condition

∇ ·A = − 1

c2
∂φ

∂t
(14)

can be imposed on the potentials to obtain symmetry in the representation (13). In
this case, the last two terms of the last equation in (13) disappear, thus displaying
a symmetry in the equations. Moreover, these new equations then remain invariant
under Lorentz transformations of the independent variables. There are other possibil-
ities. The important point is that the gauge transformations and imposition of such
conditions like the Lorentz condition do not change the set of (E,B, j, ρ) obtained as
solutions to the Maxwell equations. In other words, (13) and (14) together provide
a latent variable representation of BME . We will not consider such transformations
further in this paper.

We are interested in studying the exchange of electrical energy between the en-
vironment and the electromagnetic field in free space. This exchange of energy only
involves the electrical variables (E, j). The laws that are described by these vari-
ables define, by the elimination theorem, a system BE ∈ L6

4. Consider, therefore, in
Maxwell’s equations the magnetic field B and the charge density ρ as latent variables.
Then, by eliminating these latent variables, we obtain

∂

∂t
∇ ·E+

1

ε0
∇ · j = 0,(15)

∂2E

∂t2
+ c2∇× (∇×E) +

1

ε0

∂j

∂t
= 0.

The above equations give a kernel representation for the behavior BE consisting of all
trajectories (E, j) ∈ C∞(R4,R6) which are compatible with the solutions of Maxwell’s
equations. Since BME is controllable, so is BE, and so one can obtain an image
representation of it.

E = −∇φ− ∂A
∂t
,(16)

j = ε0
∂

∂t
∇φ+ ε0 ∂

2A

∂t2
+ ε0c

2∇× (∇×A).

Here A and φ are again the vector and scalar potentials, respectively [10].
Consider the QDF QΦ(E, j) = E · j for all w ∈ BME. This quantity defines the

rate of work done by the field on each unit volume [10].
It is well known that Maxwell’s equations define a lossless system. This also

follows from Theorem 7. Indeed, by identifying the matrix Φ corresponding to the
QDF QΦ(E, j) = E · j and the M matrix corresponding to the image representation
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(13), we can compute Φ′(ζ, η) :=MT (ζ)Φ(ζ, η)M(η). It is easily seen that Φ′(−ξ, ξ) =
0. Losslessness follows from Theorem 7. The QDF induced by Φ′ is a path integral
on the potentials, which in turn implies that Φ is a path integral on the solutions of
Maxwell’s equations. By Theorem 7, there exists a VQDF, Ψ ∈ (R4×4[ζ, η])4, such
that divQΨ(φ,A) = QΦ(E, j) = E · j. By the terminology defined at the end of last
section, we can write the VQDF QΨ as (−u,−S) (the negative signs are purely a
matter of convention). Then we have

E · j = divQΨ(φ,A) = −∂u(φ,A)

∂t
−∇ · S(φ,A).

On substituting B = ∇×A and E = −∇φ− ∂A
∂t , we obtain

u =
ε0
2
E ·E+

ε0c
2

2
B ·B,(17)

S = ε0c
2E×B.

This u defines the energy density in the field, and S represents the energy flux of the
field. The vector S is known as the “Poynting vector.” Thus (8) gives a “conservation
law” for Maxwell’s equations. It states that the rate at which the field does work on
an infinitesimal volume (QΦ(E, j) = E · j) is equal to the rate of decrease in the energy
density (−∂u∂t ) and the energy flux (−∇ · S) that flows into the infinitesimal volume
under consideration. Thus (8) states that the total energy is conserved.

We now interpret these results about Maxwell’s equations in terms of the theory
developed earlier. There are two points that we would like to emphasize.

1. The problem under consideration may be viewed as finding out if the system
given by (15) (the behavior BE) is lossless with respect to QΦ(E, j) = E · j,
and if so, finding a storage function for it. Verification of losslessness involves
a straightforward calculation. Also, a storage function (u,S) was derived in
terms of E and B (17). Note that this storage function depends on E and
B. The latter is a latent variable with respect to the electrical quantities
(E, j) involved in (15). In fact, B is not observable from (E, j) in Maxwell’s
equations. Hence already in this elementary example the storage functions
involve hidden variables.
From Theorem 7 and the example of Maxwell’s equations, it is seen that the
VQDF acts on some latent variables. These latent variables are related to the
latent variables that appear in an image representation of a given controllable
behavior. For example, in Maxwell’s equations, B is related to A. One would
like the VQDF to act only on the manifest variables. A sufficient condition
for the existence of such a VQDF is that the controllable behavior has an
observable image representation. In 1D systems, every controllable system
has an observable image representation. As a result, in the 1D case, given a
QDF induced by Φ which is independent of path on B, we can actually find
a QDF Ψ such that

d

dt
QΨ(w) = QΦ(w)

for all w ∈ B. In the nD case, a controllable behavior need not necessarily
have an observable image representation. So for the nD case, when the QDF
induced by Φ is independent of path on B, it is sufficient for B to have
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observable potentials for us to find a VQDF Ψ such that

div QΨ(w) = QΦ(w)

for all w ∈ B.
2. We would also like to make a comment on the nonuniqueness of the VQDF

that appears in the conservation equation (8). With reference to Maxwell’s
equations, we quote from [10], “All we did was to find a possible “u” and a
possible “S.” How do we know that juggling the terms around some more we
couldn’t find another formula for “u” and “S”? . . . It’s possible. . . . There
are, in fact, an infinite number of possibilities for u and S, and so far no one
has thought of an experiment to tell which one is right!”
We found that this nonuniqueness of the storage function is an intrinsic fea-
ture of storage functions for conservative nD systems with n > 1. The result
in Proposition 5 characterizes the nonuniqueness of the VQDF that goes with
a given QDF induced by Φ which is independent of path on all trajectories
in C∞(Rn,R�).

8. Supply, storage, and dissipation. In the previous section, we considered
QDFs such that

∫
QΦ is zero when restricted to some behavior B: the lossless systems.

As we have seen, such QDFs define conservation laws. In this section, we consider
QDFs where the integral

∫
QΦ is nonnegative. In the spirit of [23, 26], we refer to

these as dissipative systems. We justify the use of this terminology later.
Our plan is as follows. We first introduce the concepts for general controllable

behaviors B ∈ Lw
n,cont. Subsequently, we analyze the situation B = C∞(Rn,Rw).

We will see that this leads to the problem of factorization of polynomial matrices in
several variables. We subsequently return to general controllable behaviors.

Definition 8. Let B ∈ Lw
n,cont and Φ = Φ∗ ∈ R

w×w[ζ, η]. Consider the QDF QΦ

induced by Φ. We call B dissipative with respect to QΦ (briefly Φ-dissipative) if∫
Rn

QΦ(w)dx ≥ 0

for all w ∈ B with compact support.
The intuitive interpretation is that QΦ(w) is the rate of supply (QΦ is called the

supply rate) absorbed by the system. Dissipativity hence means that the net supply
that is absorbed by the system is nonnegative for any trajectory w ∈ B that is of
compact support.

Two related notions are those of storage functions and dissipation rate. As we
have already seen in the context of lossless systems, the storage function is in general a
function of unobservable latent variables, more specifically of the latent variables that
appear in an image representation (thus depending on “potentials”). We incorporate
this in the definitions.

Definition 9. Let B ∈ Lw
n,cont, Φ = Φ∗ ∈ R

w×w[ζ, η], and w = M( ddx )� be

an image representation of B with M ∈ R
w×�[ξ]. Let Ψ = (Ψ1,Ψ2, . . . ,Ψn) with

Ψk = Ψ∗
k ∈ R

�×�[ζ, η] for k = 1, 2, . . . , n. The VQDF QΨ is said to be a storage
function for B with respect to QΦ if

div QΨ(�) ≤ QΦ(w)(18)

for all � ∈ D(Rn,R�) and w =M( ddx )�.
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∆ = ∆∗ ∈ R
�×�[ζ, η] is said to be a dissipation rate for B with respect to QΦ if

Q∆ ≥ 0 and

∫
Rn

Q∆(�)dx =

∫
Rn

QΦ(w)dx

for all � ∈ D(Rn,R�) and w =M( ddx )�.
We define Q∆ ≥ 0 if Q∆(w(x)) ≥ 0 for all w ∈ D(Rn,Rw) evaluated at every

x ∈ R
n. This defines a pointwise positivity condition. Thus

∫
Ω
Q∆(w)dx ≥ 0 for

every Ω ⊂ R
n if Q∆ ≥ 0.

It is easy to see that there is a relation between a storage function for B with
respect to QΦ and a dissipation rate for B with respect to QΦ, given by

Q∆(�) = QΦ

(
M

(
d

dx

)
�

)
− div QΨ(�).(19)

The definitions of the storage function and the dissipation rate, combined with
(19), yield intuitive interpretations. The dissipation rate can be thought of as the
rate of supply that is dissipated in the system and the storage function as the rate of
supply stored in the system. Intuitively, we could think of the QDF QΦ as measuring
the power going into the system. In many practical examples, the power is indeed a
QDF of some system variables. (For example, −E · j is the rate of work done on the
system in the case of Maxwell’s equations, or, as mentioned earlier, E · j is the rate of
work done by the field.) Φ-dissipativity would imply that the net power flowing into
a system is nonnegative, which in turn implies that the system dissipates energy. Of
course, locally the flow of energy could be positive or negative, leading to variations
in energy density and fluxes. The energy density and fluxes could be thought of as
a storage function for the energy. (Again see the section on Maxwell’s equations.) If
the system is dissipative, then the rate of change of energy density and fluxes cannot
exceed the power delivered into the system. This is captured by the inequality (18)
in Definition 9. The excess is precisely what is lost (or dissipated). This interaction
between supply, storage, and dissipation is formalized by (19).

When the independent variables are time and space, we can write (19) as

∂u(�)

∂t
= QΦ

(
M

(
d

dx

)
�

)
−∇ · S(�)−Q∆(�),(20)

where, as before, we use QΨ = (u,S), with u the stored energy and S the flux.
Moreover, w = M( ddx )�. Thus (20) states that the change in the stored energy

(∂u(�)∂t ) in an infinitesimal volume is exactly equal to the difference between the energy
supplied (QΦ(w)) into the infinitesimal volume and the energy lost by the infinitesimal
volume by means of energy flux flowing out of the volume (∇ · S(�)) and the energy
dissipated (Q∆(�)) within the volume.

The problem we address is the equivalence of (i) dissipativeness of B with respect
to QΦ, (ii) the existence of a storage function, and (iii) the existence of a dissipation
rate. Note that this problem also involves the construction of an appropriate image
representation. We first consider the case where B = C∞(Rn,Rw). In this case, the
definition of the dissipation rate requires that for all � ∈ D(Rn,R�)∫

Rn

QΦ(w)dx =

∫
Rn

Q∆(�)dx(21)

with w =M( ddx )�; M( ddx ) a surjective partial differential operator and Q∆(�) ≥ 0 for
all � ∈ D(Rn,R�). This latter condition is seen to be equivalent to the existence of
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a polynomial matrix D ∈ R
•×�[ξ] such that ∆(ζ, η) = DT (ζ)D(η). One direction of

the previous claim is trivial. For the other direction, we think of the operator ∆(ζ, η)
as acting on the space of � and its derivatives (the jet space). The operator ∆(ζ, η)
then becomes a symmetric matrix with real entries that acts on this jet space. The
condition Q∆ ≥ 0 is a pointwise condition, and so one obtains the matrix D(ξ) in the
obvious way. Using Theorem 7, it follows that (21) is equivalent to the factorization
equation

MT (−ξ)Φ(−ξ, ξ)M(ξ) = DT (−ξ)D(ξ).

This equation with Φ = Φ∗ ∈ R
w×w[ζ, η] given and M ∈ R

w×•[ξ] and D ∈ R
•×•[ξ]

unknown is discussed in the next section.

9. Factorization of polynomial matrices. In this section, we discuss the
following problem. Let Γ ∈ R

w×w[ξ] be a polynomial matrix in n commuting variables,
ξ = (ξ1, ξ2, . . . , ξn). Can it be factored as

Γ(ξ) = FT (−ξ)F (ξ).(22)

We are interested in both the case when F ∈ R
•×w[ξ] is itself a polynomial matrix

and the case when F ∈ R
•×w(ξ) is a matrix of rational functions.

Note that Γ� = Γ and Γ(iω) ≥ 0 for all ω ∈ R
n are obviously necessary conditions

for the existence of a factor F ∈ R
•×w[ξ]. The problem is whether these conditions

are also sufficient. At this point, it is convenient to discuss the cases when n = 1 and
n > 1 separately.

9.1. The case n = 1. In the case when n = 1, it is well known that (22) admits
a solution F ∈ R

•×w[ξ] if and only if Γ� = Γ and Γ(iω) ≥ 0 for all ω ∈ R. In fact,
there even exist square factors F ∈ R

w×w[ξ] that are, moreover, Hurwitz (i.e., with
the roots of det(F ) in the closed left half of the complex plane) and square factors
that are anti-Hurwitz (i.e., with the roots of det(F ) in the closed right half of the
complex plane). These factors are called spectral factors. Several algorithms exist for
obtaining such factorizations [6, 8, 15, 21].

9.2. The case n > 1. We start with the scalar case, i.e., when Γ ∈ R[ξ]. So we
need to find F ∈ R

•×1[ξ] or F ∈ R
•×1(ξ) such that Γ(ξ) = FT (−ξ)F (ξ). Substituting

iω for ξ, the above problem reduces to finding F such that

Γ(iω) = F �(iω)F (iω).(23)

If F (iω) is decomposed into real and imaginary parts as F (iω) = A(ω) + iB(ω),
then (23) becomes Γ(iω) = A2(ω) + B2(ω). Thus the problem reduces to the case
of finding a sum of “two” squares which add up to a given positive (or nonnegative)
polynomial. This problem has a very venerable history. It is Hilbert’s 17th problem
that he posed at the International Congress of Mathematicians in 1900. It deals
with the representation of positive definite functions as sums of squares [18]. This
investigation of positive definite functions began in the year 1888 with the following
“negative” result of Hilbert: If f(ξ) ∈ R[ξ] is a positive definite polynomial in n
variables, then f need not be a sum of squares of polynomials in R[ξ], except in
the case when n = 1. Several examples of such positive definite polynomials which
cannot be expressed as sum of squares of polynomials are available in the literature;
for example, the polynomial

ξ21ξ
2
2(ξ

2
1 + ξ22 − 1) + 1
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is not factorizable as a sum of squares of polynomials [4].
Thus the factorization we were looking for in nD systems (in the form stated

above) is not solvable for polynomial factors, not even in the scalar case. However,
several results on Hilbert’s 17th problem allow us to solve the factorization problem
(22) with F as a rational function. Indeed,

• if Γ(ξ) ∈ R(ξ) and Γ ≥ 0 (i.e., Γ(ξ) ≥ 0 for all ξ ∈ R
n), then there exists

some natural number r such that Γ(ξ) is the sum of r squares of rational
functions in R(ξ) (shown by Artin [1]);

• there is a sharp upper bound on the number r; it is r = 2n, shown by Pfister
[17, 18].

This leads to the following result, which plays a central role in the rest of this
paper.

Theorem 10. Assume that Γ ∈ R
w×w[ξ] satisfies Γ� = Γ and Γ(iω) ≥ 0 for all

ω ∈ R
n. Then there exists an F ∈ R

•×w(ξ) such that Γ(ξ) = FT (−ξ)F (ξ).
Note that even when Γ is a polynomial matrix, the entries of the matrix F are

rational functions in n-indeterminates with real coefficients, whereas for the 1D case
one can obtain an F with polynomial entries. Several results related to this factoriza-
tion problem for the two-dimensional (2D) case (with some additional conditions like
holomorphicity on certain complex half planes or unit polydiscs) exist in the literature
[3, 11, 14, 16]. A different factorization problem involving symmetric nD matrices is
shown in [5].

10. Main results. We now return to the problem of existence of a storage
function and a dissipation rate for a Φ-dissipative system B ∈ Lw

n,cont. For the sake
of clarity, we first consider the case of B = C∞(Rn,Rw) and subsequently the case of
a general B ∈ Lw

n,cont. We start with a proposition that gives a condition on Φ for∫
QΦ to be nonnegative.
Proposition 11. Let Φ = Φ∗ ∈ R

w×w[ζ, η]. Then (
∫
QΦ ≥ 0) if and only if

(Φ(−iω, iω) ≥ 0 for all ω ∈ R
n).

Proposition 11 and the factorizability implied by Theorem 10 readily lead to the
following theorem.

Theorem 12. Let Φ = Φ∗ ∈ R
w×w[ζ, η]. Then the following conditions are

equivalent:
1.
∫

Rn
QΦ(w)dx ≥ 0 for all w ∈ D(Rn,Rw).

2. There exists a polynomial matrix M ∈ R
w×w[ξ] such that M( ddx ) is surjective

and Ψ = (Ψ1,Ψ2, . . . ,Ψn) with Ψk = Ψ∗
k ∈ R

w×w[ζ, η] for k = 1, 2, . . . , n such
that the VQDF QΨ is a storage function, i.e.,

div QΨ(�) ≤ QΦ(w)

for all � ∈ D(Rn,Rw) and w =M( ddx )�.

3. There exists a polynomial matrix M ∈ R
w×w[ξ] such that M( ddx ) is surjective

and a ∆ = ∆∗ ∈ R
w×w[ζ, η] such that Q∆ is a dissipation rate, i.e.,

Q∆ ≥ 0 and

∫
Rn

Q∆(�)dx =

∫
Rn

QΦ(w)dx

for all � ∈ D(Rn,Rw) and w =M( ddx )�.

4. There exists a polynomial matrix M ∈ R
w×w[ξ] such that M( ddx ) is surjective,

a Ψ = (Ψ1,Ψ2, . . . ,Ψn) with Ψk = Ψ∗
k ∈ R

w×w[ζ, η] for k = 1, 2, . . . , n, and a
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∆ = ∆∗ ∈ R
w×w[ζ, η] such that

Q∆ ≥ 0

and

div QΨ(�) = QΦ(w)−Q∆(�)(24)

for all � ∈ C∞(Rn,Rw) and w =M( ddx )�. Note that this states that the VQDF
QΨ is a storage function and that Q∆ is a dissipation rate.

It follows from the proof of Theorem 12 that several ∆’s may satisfy the same
dissipation condition; i.e., several ∆’s may be present, all of them satisfying Q∆ ≥ 0
and

∫
Rn
Q∆(�)dx =

∫
Rn
QΦ(w)dx for all � ∈ D(Rn,Rw) and satisfying the equation

w =M

(
d

dx

)
�

for some M ∈ R
w×w[ξ]. The first part of this nonuniqueness comes from the fac-

torization of the matrix Φ(−ξ, ξ). Choosing a particular factorization of the matrix
Φ(−ξ, ξ) still leaves us with a choice for ∆ depending on the M we choose. Also
note that unlike the 1D case, there is no one-to-one correspondence between storage
and dissipation functions. Given a supply QDF and an associated dissipation QDF,
one can find several VQDFs that satisfy (24). One should also note the unavoidable
emergence of latent variables in the dissipation equation (24) for the nD case. In the
1D case, the dissipation equation can be written in terms of manifest variables alone,
whereas in the nD case, this is only possible if the latent variables that appear in the
dissipation equation are observable.

The case of an arbitrary B ∈ Lw
n,cont is easily reduced to the free case by consid-

ering an image representation for B. This leads to the following theorem, which is
the main result of the paper.

Theorem 13. Let B ∈ Lw
n,cont and Φ = Φ∗ ∈ R

w×w[ζ, η]. The following condi-
tions are equivalent:

1. B is Φ-dissipative; i.e.,
∫

Rn
QΦ(w)dx ≥ 0 for all w ∈ B ∩D(Rn,Rw).

2. There exists an integer l ∈ N, a polynomial matrix M ∈ R
w×l[ξ] such that

M( ddx ) is an image representation of B, a Ψ = (Ψ1,Ψ2, . . . ,Ψn) with Ψk =
Ψ∗
k ∈ R

l×l[ζ, η] for k = 1, 2, . . . , n, and a ∆ = ∆∗ ∈ R
l×l[ζ, η] such that

Q∆ ≥ 0

and

div QΨ(�) = QΦ(w)−Q∆(�)

with w =M( ddx )�.

11. Conclusions. In this paper, we dealt with distributed systems described by
constant coefficient linear partial differential equations. We started by defining con-
trollability for such systems in terms of patching up of feasible trajectories. We then
explained that it is exactly the controllable systems which allow an image represen-
tation, i.e., a representation in terms of what in physics is called a potential function.
Subsequently, we turned to lossless and dissipative systems.

For lossless systems, we proved the equivalence with the existence of a conserva-
tion law involving the storage function. Important features of the storage function
are (i) the fact that it depends on latent variables that are in general hidden (i.e.,
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nonobservable) and (ii) its nonuniqueness. We have illustrated these features by
demonstrating that they are already present in Maxwell’s equations.

For dissipative systems, we proved the equivalence with the existence of a storage
function and a dissipation rate. The problem of constructing a dissipation rate led
to the question of factorizability of certain polynomial matrices in n variables. We
reduced this problem to Hilbert’s 17th problem, the representation of a nonnegative
rational function in n variables as a sum of squares of rational functions.

12. Appendix. We collect the proofs in this appendix.
Proof of Theorem 2. Please refer to [19, Theorem 3].
Proof of Theorem 4. First we show the equivalence of the first three statements.

Then we will show the equivalence of the last two statements. Finally, we link up
these two sets of conditions.

(1) ⇔ (3) If two trajectories w1 and w2 agree along with all their derivatives on
the boundary ∂Ω of some arbitrary closed bounded subset Ω ⊂ R

n (with nonempty
interior), then w = w1−w2 can be thought of as a trajectory with its support strictly
in the interior of Ω. Thus w ∈ D(Rn,Rw). Since

QΦ(w1) = QΦ(w2) +QΦ(w) + 2LΦ(w2, w),

we conclude that
∫
Ω
QΦ is independent of path for all Ω if and only if

∫
Ω

QΦ(w)dx+ 2

∫
Ω

LΦ(w, v)dx = 0(25)

for any w ∈ D(Rn,Rw) with support in Ω, any v ∈ C∞(Rn,Rw), and any closed
bounded subset Ω in R

n with nonempty interior.
In particular, if we choose v in (25) to be zero, we obtain

∫
Ω
QΦ(w)dx = 0, which

in turn implies
∫
QΦ = 0. Thus (25) yields

∫
Ω
LΦ(w, v)dx = 0. But

LΦ(w, v)(x) =
∑
k,l

(
dkw

dxk
(x)

)T
Φk,l

(
dlv

dxl
(x)

)
.

Now on integrating each of these terms by parts, we obtain

∫
Ω

LΦ(w, v)dx =

∫
Ω

w ·

∑

k,l

Φk,l

(
(−1)k (d)

k

dxk

(
dlv

dxl

)) = 0

for every w ∈ D(Rn,Rw) with support in the interior of Ω ⊂ R
n and for every such Ω.

This can hold if and only if
∑

k,l Φk,l((−1)k (d)k

dxk (
dlv
dxl )) = 0 or, equivalently, Φ(−ξ, ξ) =

0. A simple reversal of arguments shows that (3)⇒ (1).
(2)⇔ (3) If Φ(−ξ, ξ) = 0, then using integration by parts it is clear that

∫
QΦ = 0.

Conversely, if
∫
QΦ = 0, then, using integration by parts, we obtain the condition∑

k,l Φk,l((−1)k (d)k

dxk (
dlw
dxl )) = 0 for every w ∈ D(Rn,Rw). This is only possible if

Φ(−ξ, ξ) = 0.
(4)⇔ (5) As mentioned earlier,

(div QΨ)(w) =
∂

∂x1
QΨ1(w) + · · ·+

∂

∂xn
QΨn(w).
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It is easy to see that ∂
∂x1
QΨ1

(w) = LΨ1
( ∂w∂x1

, w) + LΨ1
(w, ∂w∂x1

) = QΨ′
1
(w), where

Ψ′
1 = (ζ1 + η1)Ψ1. Now the equivalence of (4) and (5) is obvious.

(4)⇒ (3) This is obvious from substitution.
(3) ⇒ (4) Given a Φ ∈ R

w×w[ζ, η], which contains polynomials in 2n variables,
we can rewrite this matrix as a polynomial matrix in the 2n new variables given by
γi = ζi + ηi and γi+n = ζi − ηi for i = 1, . . . , n. Now setting −ζ = η = ξ translates
to setting γi = 0 for i = 1, . . . , n. Thus if Φ(−ξ, ξ) = 0, then each term in the matrix
can be written as polynomials in γi, i = 1, . . . , n, without the free term. By the very
definition of these γi’s and the symmetry of the matrices, we have the result.

Proof of Proposition 5. (⇐): Let

Ψi = (ζ1 + η1)∆i1 + · · ·+ (ζn + ηn)∆in

with ∆ij = −∆ji as given in the statement of the proposition. Let Φ be such that
QΦ = divQΨ. Then

Φ = (ζ1 + η1)Ψ1 + · · ·+ (ζn + ηn)Ψn

=

n∑
i=1

(ζi + ηi)Ψi

=

n∑
i=1

(ζi + ηi)

n∑
j=1

(ζj + ηj)∆ij

=

n∑
i=1

n∑
j=1

(ζiζj + ζiηj + ηiζj + ηiηj)∆ij

= 0 since ∆ij = −∆ji.
(⇒): Let Ψ ∈ (Rw×w[ζ, η])n define a VQDF with null divergence, that is, div

QΨ = 0. Clearly, it is enough to just consider any (k, l)th entry of the corresponding
QDFs since the same arguments would apply to all other entries. For simplicity, let
us denote by pi the (k, l)th entry of the QDF Ψi.

As in the proof of Theorem 4, we will again employ a change of variables. Let
γi = ζi + ηi and γi+n = ζi − ηi for i = 1, . . . , n. Since Ψ defines a null divergence,

n∑
i=1

γipi = 0.(26)

Setting all γi’s except γj to zero in (26), we conclude that pj can be written as

pj =

n∑
i=1,i �=j

fjiγi

for some arbitrary polynomials fji in the 2n variables γi. Now reverting back to ζi’s
and ηi’s, this precisely means that Ψj = (ζ1 + η1)∆j1 + · · · + (ζn + ηn)∆jn with the
entries of ∆ji’s being the corresponding fji’s. Note that fii’s are all zero; that is,
∆ii = 0 for i = 1, . . . , n.

We can rearrange the terms of ∆ij ’s to obtain ∆ij = −∆ji. This is in some
sense similar to the stepping stone algorithm in operations research. We give an
outline of the proof here. For a proof of this, we return to the variables γi’s. Again,
it is enough to consider any (k, l)th entry. As before, let pi be the (k, l)th entry
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of Ψi. Let pi =
∑

k fi,kγ
k, where γ is a monomial in terms of γi’s, i = 1, . . . , n.

Thus γk = γk11 · · · γknn , where the multi-index k = (k1, · · · , kn). Note that fi,k are
polynomials in γi+n’s, i = 1, . . . , n. Let kj = (k1, . . . , kj−1, kj − 1, kj+1, . . . , kn),
and similarly kij is a multi-index defined in the obvious way. Fix a multi-index k
and hence a monomial γk. We shall demonstrate how to rearrange the terms for
this particular monomial, and similar operations should be carried out for each such
monomial. From the condition

∑n
i=1 γipi = 0, we can conclude that

∑n
i=1 fi,ki

= 0
(since they are the coordinates of the monomial γk). Note that some of these fi,ki

’s
may be zero. Set the coordinate of γk12 in the corresponding term ((k, l)th term) in
∆12 to be f1,k1 . We force the coordinate of γk12 in the (k, l)th term of ∆21 to be
−f1,k1 and the coordinate of γk23 in the (k, l)th term of ∆23 to be f2,k2 +f1,k1 and so
on. We perform the above operation for every multi-index k that might be involved.
(These are finite in number.) Then pj =

∑n
i=1 γigji, where gji are the polynomials

obtained by the above procedure and are the (k, l)th terms of the corresponding ∆ji’s.
We can easily check the entries of ∆ij = −∆ji. Thus we have demonstrated how to
construct the required ∆ij ’s that satisfy the conditions of the proposition.

Proof of Theorem 7. (2)⇒ (1) Following the lines of the proof of Theorem 4, we
can conclude that

∫
Ω
QΦ(w)dx is independent of path on B if and only if

∫
Ω

QΦ(w)dx+ 2

∫
Ω

LΦ(w, v)dx = 0(27)

for any w ∈ D(Rn,Rw) ∩ B with support in Ω, any v ∈ C∞(Rn,Rw) ∩ B, and any
closed bounded set Ω ⊂ R

n. Again, since v = 0 is a trajectory in B, we can conclude
that

∫
Ω
QΦ(w)dx = 0 for any w ∈ D(Rn,Rw) ∩ B with support in Ω. Thus B is

lossless with respect to the QDF QΦ.

(1) ⇒ (4) Since
∫
Ω
QΦ(w)dx = 0 for any w ∈ B ∩D(Rn,Rw) with support in Ω,

from (27) we can conclude that
∫
Ω
LΦ(w, v)dx = 0 for all w ∈ D(Rn,Rw) ∩B with

support in Ω and all v ∈ C∞(Rn,Rw)∩B. Using integration by parts, it is easy to see
that the integral

∫
Ω
(wT f)dx equals zero for all w ∈ D(Rn,Rw)∩B with support in Ω

if f is in the image of the operator RT (− d
dx ). In LΦ(w, v), every v we consider is of

the form v =M( ddx )�, and so we conclude that Φ(−ξ, ξ)M(ξ) = RT (−ξ)Y (ξ) for some
Y . Now premultiplying by MT (−ξ), we obtain Φ′(−ξ, ξ) =MT (−ξ)Φ(−ξ, ξ)M(ξ) =
MT (−ξ)RT (−ξ)Y (ξ) = 0 since R(ξ)M(ξ) = 0.

(4)⇒ (2) From [22], we know that, given a controllable behavior B, there exists
some operator M1(ξ) such that B = {w : w =M1(

d
dx )�} with the additional property

that every w ∈ B ∩D(Rn,Rw) can be obtained as the image of some � which is itself
compactly supported. It can be shown that if Φ′(−ξ, ξ) =MT (−ξ)Φ(−ξ, ξ)M(ξ) = 0
for some image representation of M(ξ), then M ′T (−ξ)Φ(−ξ, ξ)M ′(ξ) = 0 for ev-
ery image representation M ′( ddx ) of the controllable behavior B. In particular,
Φ1(ζ, η) = MT

1 (ζ)Φ(ζ, η)M1(η) has the property that Φ1(−ξ, ξ) = 0. Using inte-
gration by parts, we can now show that

∫
Ω
LΦ(w, v)dx =

∫
Ω
LΦ1(�1, �2)dx = 0 for

any w ∈ D(Rn,Rw) ∩B with support in Ω, w = M1(
d
dx )�1 with �1 having compact

support, and v = M1(
d
dx )�2. A similar argument also proves that

∫
Ω
QΦ(w)dx = 0

for all w ∈ D(Rn,Rw) ∩B with support in Ω. From (27), we then conclude that the
QDF induced by Φ is independent of path on B.

(3)⇔ (4) This is already shown in Theorem 4.

(4) ⇔ (5) From Theorem 4, it is clear that there exists Ψ ∈ (Rm×m[ζ, η])n such
that divQΨ(�) = QΦ′(�) for all � ∈ C∞(Rn,Rm). Moreover, since M( ddx ) gives an
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image representation of the behavior B, QΦ(w) = QΦ′(�) for all w and � related by
w =M( ddx )�.

Proof of Theorem 10. We will start by considering the scalar case. Let Γ ∈ R[ξ]
with Γ� = Γ and Γ(iω) ≥ 0 for all ω ∈ R

n. From the above data, we can conclude
that the polynomial p defined as p(ω) := Γ(iω) is a positive definite (or nonnegative)
function. Using the result from Hilbert’s 17th problem [1], we can write

p(ω) =

r∑
i=1

(fi(ω))
2
,

where each fi ∈ R(ω); i.e., fi’s are rational functions in ω. Now consider each of these
fi’s. We can write them as

fi(ω) = fi+(ω) + fi−(ω),

where

fi+(ω) =
fi(ω) + fi(−ω)

2
,

fi−(ω) =
fi(ω)− fi(−ω)

2
.

Thus we separate the even and odd parts of the functions fi. Now

p(ω) =

r∑
i=1

(fi+(ω) + fi−(ω))
2

=

r∑
i=1

[
(fi+(ω))

2
+ (fi−(ω))

2
+ 2fi+(ω)fi−(ω)

]
,

and

p(−ω) =
r∑
i=1

(fi+(−ω) + fi−(−ω))2

=

r∑
i=1

[
(fi+(ω))

2
+ (fi−(ω))

2 − 2fi+(ω)fi−(ω)
]
.

Since p(ω) = p(−ω) (from the initial assumption on Γ), we can conclude
∑r
i=1 fi+(ω)fi−(ω)

= 0, and so

p(ω) =

r∑
i=1

[
(fi+(ω))

2
+ (fi−(ω))

2
]

=

r∑
i=1

[fi+(ω) + ifi−(ω)] [fi+(ω)− ifi−(ω)]

=

r∑
i=1

[fi+(ω) + ifi−(ω)] [fi+(−ω) + ifi−(−ω)] .

Thus note that p has now been written down as the sum of r terms, each of which
is a product of a function evaluated at ω and −ω. Construct an r × 1 matrix E
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whose (i, 1)th entry is (fi+ + ifi−). Then Γ(iω) = p(ω) = ET (−ω)E(ω), which in
turn implies that Γ(ξ) = FT (−ξ)F (ξ), where F is obtained from E by the obvious
substitution; i.e., the (i, 1)th entry of F is (fi+ + fi−).

We now tackle the case where Γ ∈ R
w×w[ξ] with the properties ΓT (−ξ) = Γ(ξ)

and Γ(iω) ≥ 0 for all ω ∈ R
n. Let Γ(ξ) = [aij(ξ)]; i.e., let the polynomial in the

(i, j)th coordinate of Γ be denoted by aij . Clearly, all diagonal elements aii are
even polynomials in ξ since ΓT (−ξ) = Γ(ξ). Let I = {i : aii(ξ) = 0}. Consider
the submatrix obtained from Γ by choosing elements aij , where both i, j ∈ I. Let
us call this matrix H(ξ) = [aij(ξ)]i,j∈I . Observe that Γ(iω) (and hence H(iω)) are
Hermetian matrices for any ω ∈ R

n. Since the trace of H(iω) is zero, we can conclude
that H(iω) has a negative real eigenvalue (provided H(iω) has nonzero entries). In
this case, H(iω) �≥ 0, and hence Γ(iω) �≥ 0. However, this contradicts the assumption
that Γ(iω) ≥ 0. Hence we conclude that H(ξ) = 0.

We now construct a 2×2 submatrix of Γ(ξ), denoted by H1(ξ), by considering the
four elements aij(ξ) ∈ Γ(ξ), where i ∈ I and j �∈ I are fixed. Clearly, the determinant
of H1(ξ) is given by −aij(ξ)aji(ξ) = −aij(ξ)aij(−ξ), and this is an even polynomial in
ξ. Substituting iω for ξ, we obtain H1(iω)—a 2×2 Hermetian matrix with a negative
determinant. This implies a negative real eigenvalue, and hence H1(iω) �≥ 0. But
since Γ(iω) ≥ 0, we conclude that aij(ξ) = aji(ξ) = 0. From the above discussion, we
conclude that the rows and columns corresponding to i ∈ I have only zero entries.

We now define and prove an algorithmic step. In this step, we take as an input a
w× w matrix Γ that has the following properties: (i) Γ� = Γ and (ii) Γ(iω) ≥ 0 for all
ω ∈ R

n. The outputs of this algorithmic step are two matrices, which we call E and
Q. E has the same number of columns as Γ. The matrix Q has the same properties
as Γ but is a (w− 1)× (w− 1) matrix. Let

Γ =

[
a11 γ
γ� Γw−1

]
.

If a11 �= 0, then construct F1(ξ) such that a11(ξ) = F
T
1 (−ξ)F1(ξ). Define the matrix

E =
[
F1 F1a

−1
11 γ

]
. Clearly,

[
F �1

γ�(a−1
11 )

�F �1

] [
F1 F1a

−1
11 γ

]
=

[
a11 γ
γ� γ�(a−1

11 )
�γ

]
.

Note that (a−1
11 )

� = a−1
11 . On the other hand, if a11 = 0, from the discussion above

we know γ = 0. In this case, define the matrix E = [ 01×1 01×{w−1} ]. Define the
(w− 1)× (w− 1) matrix

Q =

{
Γw−1 − γ�a−1

11 γ when a11, �= 0
Γw−1 when a11 = 0.

(When a11 �= 0, then the above matrix Q is known in the literature as the Schur
complement of a11 in Γ; see [7, 9].) Clearly, the matrix Q is such that QT (−ξ) = Q(ξ).
Moreover, we claim that Q(iω) ≥ 0 for all ω ∈ R

n. This is clear for the case when
a11 = 0. For the case when a11 �= 0, we have Q = Γw−1− γ�a−1

11 γ. Suppose Q(iω) �≥ 0
for some ω ∈ R

n. This implies that there exists a vector a such that aTQ(iω)a < 0.
Consider the vector

v =

[ −(a−1
11 (iω)γ(iω)a

a

]
.
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Then vTΓ(iω)v = aTQ(iω)a < 0, and this contradicts Γ(iω) ≥ 0 for all ω ∈ R
n.

Hence we have a (w− 1)× (w− 1) matrix Q such that QT (−ξ) = Q(ξ) and Q(iω) ≥ 0
for all ω ∈ R

n.
We now give the algorithm to construct F such that Γ = FT (−ξ)F (ξ).
1. Set Q0 = Γ. Set i = 0.
2. Invoke the algorithmic step defined above with input Qi to obtain outputs E

and Q. Set Ei+1 = E and Qi+1 = Q.
3. If Qi+1 �= 0, increment i and go back to step 2.
4. Construct

F =




E1

0•×1 E2

0•×2 E3

...
...

0•×i Ei


 .

It is now easy to check that Γ = FT (−ξ)F (ξ).
Proof of Proposition 11. (⇐) Since w ∈ D(Rn,Rw), we can take the multidimen-

sional Fourier transform. Let ŵ denote the multidimensional Fourier transform of w.
Then, using Parseval’s theorem, we have∫

Rn

QΦ(w)dx =
1

(2π)n

∫
Rn

ŵ(−iω)Φ(−iω, iω)ŵ(iω)dω,(28)

where ω ∈ R
n. Then (⇐) is clear.

(⇒) Consider a compactly supported function u(x), where the variables can be
separated, i.e., u(x) = v1(x1)v2(x2) · · · vn(xn). Let

∫
Rn
QΦ(u)dx = E. Suppose

Φ(−iω, iω) �≥ 0 for all ω ∈ R
n. Let a ∈ C

q and ω0 = (ω1, . . . , ωn) ∈ R
n be such

that aTΦ(−iω0, iω0)a < 0. Without loss of generality, we will assume that ω1 �= 0.
Then we can choose functions uN (x) given by uN (x) = v1,N (x1)v2,N (x2) · · · vn,N (xn),
where

v1,N (x1) =



ei<ω1,x1>a, | x1 |≤ 2πN

ω1
,

v1(x1 +
2πN
ω1

), x1 < − 2πN
ω1
,

v1(x1 − 2πN
ω1

), x1 >
2πN
ω1
,

(29)

and for i = 2, . . . , n and ωi �= 0,

vi,N (xi) =



ei<ωi,xi>[1, 1, . . . , 1]T , | xi |≤ 2πN

ωi
,

vi(xi +
2πN
ωi

), xi < − 2πN
ωi
,

vi(xi − 2πN
ωi

), xi >
2πN
ωi
,

(30)

and for i = 2, . . . , n with ωi = 0, we have

vi,N (xi) = vi(xi).(31)

Then, on evaluating
∫

Rn
QΦ(uN )dx, one gets a negative term that depends on N

and another term that is independent ofN . Then, by choosingN large enough, this in-
tegral can be made negative and hence we obtain a contradiction to∫
QΦ ≥ 0.
Proof of Theorem 12. Note that (4) is a statement that combines (2) and (3).

So we first we show the equivalence of the first three statements. Then we show how
statement (4) is equivalent.
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(1) ⇒ (3) Let Φ = Φ∗ ∈ R
w×w[ζ, η]. By Proposition 11, we know that

∫
QΦ ≥ 0

implies that Φ(−iω, iω) ≥ 0 for all ω ∈ R
n. Thus Φ(−ξ, ξ) satisfies all the conditions

on Γ in Theorem 10, and hence Φ(−ξ, ξ) = FT (−ξ)F (ξ) for some F ∈ R
•×w(ξ).

Let us now consider the matrix F ∈ R
r×w(ξ). (Here we assume that the number

of rows of F is some arbitrary (finite) number r.) It is easy to show that F = DM−1,
where D ∈ R

r×w[ξ] and M ∈ R
w×w[ξ]. Note that both D and M are now matrices

with polynomial entries. Moreover, we can chooseM such that it is a diagonal matrix
(and hence the operator M( ddx ) is surjective). We can now define latent variables �

related to the manifest variables w by the equation w = M( ddx )�. Now consider
∆ ∈ R

w×w[ζ, η] given by the matrix ∆(ζ, η) = DT (ζ)D(η). Obviously, Q∆ ≥ 0. Now
for all � ∈ D(Rn,Rw) we have M( ddx )� = w ∈ D(Rn,Rw). Hence it follows that

∫
Rn

QΦ(w)dx =

∫
Rn

(w)
T

(
Φ

(
− d
dx
,
d

dx

)
w

)
dx

=

∫
Rn

(
M

(
d

dx

)
�

)T (
Φ

(
− d
dx
,
d

dx

)
M

(
d

dx

)
�

)
dx

=

∫
Rn

Q∆(�)dx.

Thus the matrix ∆(ζ, η) = DT (ζ)D(η) induces a QDF, which defines a dissipation
function for the given Φ.

(3) ⇒ (2) Let ∆ ∈ R
w×w[ζ, η] induce a QDF on the latent variables � such that

Q∆ is a dissipation function associated to the given Φ. Moreover, let M ∈ R
w×w[ξ]

induce a surjective operator, such that w =M( ddx )�. Consider the system defined by

w −M( ddx )� = 0 in the variables (w, �) with a QDF induced by[
Φ 0
0 −∆

]
∈ R

(2w)×(2w)[ζ, η].

Note that the system given by w−M( ddx )� = 0 is a controllable system. In fact, this
system has an observable image representation given by[

w
�

]
=

[
M( ddx )
I

]
�

(for details see [19]). The QDF defined above gives∫
Rn

[QΦ(w)−Q∆(�)] dx = 0

on every compactly supported trajectory in the full behavior involving both w and �,
and so, applying Theorem 7, we obtain a QDF Φ′(ζ, η) =MT (ζ)Φ(ζ, η)M(η)−∆(ζ, η)
which acts on the variables �. Since Φ′(−ξ, ξ) = 0, we can find a corresponding VQDF
QΨ acting on the latent variables � such that QΦ(w) − Q∆(�) = divQΨ(�). This
VQDF can now, in turn, be interpreted as a storage function for the original Φ since
div QΨ(�) ≤ QΦ(w) for all � ∈ D(Rn,Rw).

(2) ⇒ (1) Let Φ admit a storage function. So divQΨ(�) ≤ QΦ(w) for all � ∈
D(Rn,Rw) and w = M( ddx )�. On integrating this inequality over all of R

n, we get

0 ≤ ∫
Rn
QΦ(w)dx. Now consider any w ∈ D(Rn,Rw). Since M( ddx ) is surjective,

there exist some �0 ∈ C∞(Rn,Rw) such that w =M( ddx )�0. Choose a sequence of �i ∈
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D(Rn,Rw) such that limi→∞ �i = �0. Let wi = M( ddx )�i. Clearly, wi ∈ D(Rn,Rw).
Hence, by continuity, we conclude that

∫
Rn
QΦ(w)dx ≥ 0. Thus

∫
QΦ ≥ 0.

(1)⇒ (4) Given a Φ, the steps in (1)⇒ (3) above explain how ∆ can be obtained.
The proof of (3) ⇒ (2) explains how Ψ can be obtained. Observe that the latent
variables involved in the construction of Ψ are the latent variables �. These are the
latent variables associated with the image representation of the controllable behavior
given by w −M( ddx )� = 0. Thus we obtain the equation

divQΨ(�) = QΦ(w)−Q∆(�).

Note that the same set of latent variables is associated to storage and dissipation.
(4)⇒ (1) This is obvious from (2)⇒ (1).
Proof of Theorem 13. (1) ⇒ (2) First, we convert the problem into a problem

on a free behavior by using the image representation of the behavior. Let M ′ ∈
R
w×l[ξ] define an operator M ′( ddx ) that defines an image representation of the given

behavior B ∈ Lw
n,cont. Define Φ′ := M ′T (ζ)Φ(ζ, η)M ′(η), and look at the action of

the QDF induced by Φ′ on the full space of latent variables �′ that appear in the
image representation of B (i.e., B = {w | w = M ′( ddx )�

′}). Clearly,
∫

Rn
QΦ′(�′) ≥ 0

for all �′ ∈ D(Rn,R�). By Theorem 12, we can find Ψ = (Ψ1,Ψ2, . . . ,Ψn) with
Ψk = Ψ∗

k ∈ R
l×l[ζ, η] for k = 1, 2, . . . , n and ∆ = ∆∗ ∈ R

l×l[ζ, η] such that

divQΨ(�) = QΦ′(�′)−Q∆(�)

with �′ and � related by �′ = M( ddx )� and M ∈ R
l×l[ξ]. Observe that by definition

QΦ(w) = QΦ′(�′), where w = M ′( ddx )�
′. Hence we obtain the required result with

w and � related by w = M ′( ddx )M( ddx )�, which is also an image representation of B,

since M( ddx ) is surjective (Theorem 12).

(2) ⇒ (1) Consider any w ∈ B ∩ D(Rn,Rw). Then w = M( ddx )� for some � ∈
C∞(Rn,R�). Clearly, if � ∈ D(Rn,R�), then

0 =

∫
Rn

divQΨ(�)dx =

∫
Rn

QΦ(w)dx−
∫

Rn

Q∆(�)dx.

Thus
∫

Rn
QΦ(w)dx =

∫
Rn
Q∆(�)dx ≥ 0. If � �∈ D(Rn,R�), then one can find a

sequence of �i ∈ D(Rn,R�) that converges to �. Then, by continuity, we obtain∫
Rn
QΦ(w)dx ≥ 0 for all w ∈ B ∩D(Rn,Rw).
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Abstract. This paper deals with necessary and sufficient optimality conditions for control
problems governed by semilinear elliptic partial differential equations with finitely many equality
and inequality state constraints. Some recent results on this topic for optimal control problems
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1. Introduction. The first goal of this paper is to provide some new second
order optimality conditions for control problems of semilinear elliptic partial differ-
ential equations with finitely many state constraints. These conditions involve the
Lagrangian and the Hamiltonian functions. Therefore, they are not a consequence of
some abstract theorems in optimization theory but are proved by using arguments
valid only in the framework of control theory. The second goal is to compare these con-
ditions with those obtained recently for the same type of problems by using theorems
for abstract optimization in infinite-dimensional spaces.

While there exists a very extensive literature about first order optimality con-
ditions for control problems of partial differential equations, only a few papers are
devoted to second order conditions. However, some progress has been made in the
last few years. Most of the papers have been devoted to the study of sufficient second
order optimality conditions; see Goldberg and Tröltzsch [13], Casas, Tröltzsch, and
Unger [9], [10], Raymond and Tröltzsch [20]. Such sufficient optimality conditions are
useful for carrying out the numerical analysis of a control problem, for obtaining error
estimates in the numerical discretization, and for analyzing the sequential quadratic
programming algorithms applied to control problems. However, we also have to study
the second order necessary conditions and compare them with the sufficient ones in
order to check if there is a reasonable gap between them. This was studied by Casas
and Tröltzsch [7], [8] and Casas, Mateos, and Fernández [5] for some control problems.
In the last papers, the authors proved the results by using some methods of abstract
optimization theory and by stating some new results in this abstract framework. The
gap between the established necessary and the sufficient conditions was very small.
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Bonnans and Zidani [2] extended the results for finite-dimensional optimization prob-
lems to control problems by assuming that the second derivative with respect to the
control of the Lagrangian function is a Legendre form. This is the natural way of
doing such an extension, but the inconvenience is that the hypothesis about the La-
grangian function works in only a few cases. In this paper, instead of assuming that
the second derivative of the Lagrangian function is a Legendre form, we assume a
strict positivity condition on the second derivative of the Hamiltonian function with
respect to the control, which is quite close to the necessary relaxed positivity.

The plan of the paper is as follows. In the next section, the control problem is
formulated and some derivability results of the functionals are stated. In section 3,
we reformulate the control problem as an infinite-dimensional optimization problem
with constraints and we apply the second order conditions as deduced in [7] to our
particular situation. Finally, in section 4 we deduce necessary and sufficient second
order conditions involving the Lagrangian and the Hamiltonian functions and compare
them with those established in section 3.

2. The control problem. Let Ω be an open bounded set in R
N with a boundary

Γ of class C1, and A an elliptic operator of the form

Ay = −
N∑

i,j=1

∂xj [aij∂xiy] + a0y,

where the coefficients aij belong to C(Ω̄) and satisfy

m‖ξ‖2 ≤
N∑

i,j=1

aij(x)ξiξj ≤M‖ξ‖2 ∀ξ ∈ R
N and ∀x ∈ Ω

for some m, M > 0 and a0 ∈ Lr(Ω) is not identically zero, with r ≥ Np/(N + p)
for some p > N fixed, a0(x) ≥ 0 in Ω. Let f and L be Carathéodory functions
f : Ω × R

2 → R and L : Ω × R
2 −→ R, ne and ni be nonnegative integers, and for

every 1 ≤ j ≤ ne + ni let us consider a function Fj : W 1,p(Ω) −→ R.
The control problem is formulated as follows:

(P)




Minimize J(u) =
∫
Ω

L(x, yu(x), u(x))dx,
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ Ω,
Fj(yu) = 0, 1 ≤ j ≤ ne,
Fj(yu) ≤ 0, ne + 1 ≤ j ≤ ne + ni,

where yu is the solution of{
Ayu = f(x, yu, u) in Ω,

∂nAyu = g on Γ,
(2.1)

g ∈ Lp(1−1/N)(Γ) and ua, ub ∈ L∞(Ω), ua(x) ≤ ub(x) for almost every (a.e.) x ∈ Ω.
Let us state the following assumptions on the functional Fj , L, and f .

(A1) f is of class C2 with respect to the second and third variables,

f(·, 0, 0) ∈ LNp/(N+p)(Ω),
∂f

∂y
(x, y, u) ≤ 0,

and for all M > 0 there exists a constant Cf,M > 0 such that∣∣∣∣∂f

∂y
(x, y, u)

∣∣∣∣+
∣∣∣∣∂f

∂u
(x, y, u)

∣∣∣∣+
∣∣∣∣∂2f

∂y2
(x, y, u)

∣∣∣∣+
∣∣∣∣ ∂2f

∂y∂u
(x, y, u)

∣∣∣∣+
∣∣∣∣∂2f

∂u2
(x, y, u)

∣∣∣∣ ≤ Cf,M
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for a.e. x ∈ Ω and |y|, |u| ≤M . Moreover, given ρ > 0 arbitrary, for every ε > 0 there
exists δ > 0 such that for almost every point x ∈ Ω and |yi|, |ui| ≤ ρ, i = 1, 2, we have

|D2
(y,u)f(x, y2, u2)−D2

(y,u)f(x, y1, u1)| < ε if |y2 − y1| < δ, |u2 − u1| < δ,

where D2
(y,u)f denotes the second derivative of f with respect to (y, u).

(A2) L : Ω × R × R −→ R is of class C2 with respect to the second and third
variables, |L(·, 0, 0)| ∈ L1(Ω), and for all M > 0 there exists a constant CM > 0 and
functions ψM ∈ LNp/(N+p)(Ω) and ψ∗

M ∈ L2(Ω) such that∣∣∣∣∂L

∂y
(x, y, u)

∣∣∣∣ ≤ ψM (x),

∣∣∣∣∂L

∂u
(x, y, u)

∣∣∣∣ ≤ ψ∗
M (x),

and ∣∣∣∣∂2L

∂y2
(x, y, u)

∣∣∣∣+
∣∣∣∣ ∂2L

∂y∂u
(x, y, u)

∣∣∣∣+
∣∣∣∣∂2L

∂u2
(x, y, u)

∣∣∣∣ ≤ CM

for a.e. x ∈ Ω and |y|, |u| ≤ M . Finally, given ρ > 0 arbitrary, for every ε > 0 there
exists δ > 0 such that for almost every point x ∈ Ω and |yi|, |ui| ≤ ρ, i = 1, 2, we have

|D2
(y,u)L(x, y2, u2)−D2

(y,u)L(x, y1, u1)| < ε if |y2 − y1| < δ, |u2 − u1| < δ,

where D2
(y,u)L denotes the second derivative of L with respect to (y, u).

(A3) For every 1 ≤ j ≤ ne + ni, Fj is of class C1 in W 1,s(Ω) and of class C2 in
W 1,q(Ω), where s ∈ [1, N

N−1 ), q ∈ [max{s, 2N
N+2}, 2N

N−2 ), and q ≤ p.

Remark 2.1. The continuity assumption on the coefficients aij and the C1 regular-
ity of the boundary of the domain will allow us to consider integral state constraints
involving the derivatives of the state. Nevertheless, if the coefficients aij are only
bounded and the boundary Γ is Lipschitz, some results similar to those obtained here
can be derived if the constraints do not involve the gradient of the state.

Let us show some examples of state constraints included in the previous formu-
lation.

Example 2.2. Integral constraints on the state. Given gj : Ω × R −→ R, we
define Fj(y) =

∫
Ω

gj(x, y(x))dx. Assumption (A3) is satisfied if we make the following
hypotheses: gj is of class C2 with respect to the second variable and measurable
with respect to the first one, gj(·, 0) ∈ L1(Ω), and for every M > 0 there exist
ψM ∈ LNs/([N+1]s−N)(Ω), for some s < N/(N − 1), and ψ∗

M ∈ Lα(Ω), with α = 1 if
N < 4 and α > N/4 otherwise, such that for every y, y1, y2 ∈ [−M,+M ] and almost
every x ∈ Ω ∣∣∣∣∂gj

∂y
(x, y)

∣∣∣∣ ≤ ψM (x),

∣∣∣∣∂2gj
∂y2

(x, y)

∣∣∣∣ ≤ ψ∗
M (x),

∀ε > 0 ∃δ > 0 such that

∣∣∣∣∂2gj
∂y2

(x, y2)− ∂2gj
∂y2

(x, y1)

∣∣∣∣ ≤ ε if |y2 − y1| < δ.

(A3) holds for q = min{p, 2N/(N − 2)− β} > N for some β > 0 small enough.
Example 2.3. Integral constraints on the derivatives of the state. Given gj :

Ω× R
N −→ R, we now define Fj(y) =

∫
Ω

gj(x,∇y(x))dx. Then assumption (A3) is
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fulfilled if gj is of class C2 with respect to the second variable and measurable with

respect to the first one, gj(·, 0) ∈ L1(Ω), there exist C > 0, r < 2p/N , ψ ∈ Ls′(Ω) for
some s < N/(N − 1), and ψ∗ ∈ Lα(Ω) with α > N/2, such that∣∣∣∣∂gj

∂η
(x, η)

∣∣∣∣ ≤ ψ(x) + C|η|p(s−1)/s,

∣∣∣∣∂2gj
∂η2

(x, η)

∣∣∣∣ ≤ ψ∗(x) + C|η|r, for a.e. x ∈ Ω,

and finally, for every M > 0 and ε > 0 there exists δ = δ(ε, M) > 0 such that∣∣∣∣∂2gj
∂η2

(x, η2)− ∂2gj
∂η2

(x, η1)

∣∣∣∣ ≤ ε if |η2 − η1| < δ and |η1|, |η2| ≤M, for a.e. x ∈ Ω.

Once again, (A3) is fulfilled for q = min{p, 2N/(N − 2)− β} for β > 0 small enough.
The reader is referred to [5] for the study of this type of constraints.

The solution of (2.1) must be understood in a variational sense. Let us clarify
this point. We define the variational form associated to the operator A in the usual
way:

a(y, z) =
N∑

i,j=1

∫
Ω

aij(x)∂xiy(x)∂xjz(x) dx +

∫
Ω

a0(x)y(x)z(x) dx.

Then given 1 < r < +∞, f̂ ∈ (W 1,r′(Ω))′, and ĝ ∈ W− 1
r ,r(Γ), we say that y ∈

W 1,r(Ω) is a solution of {
Ay = f̂ in Ω,

∂nAy = ĝ on Γ,
(2.2)

if

a(y, z) = 〈f̂ , z〉(W 1,r′ (Ω))′×W 1,r′ (Ω) + 〈ĝ, γz〉
W− 1

r
,r(Γ)×W

1
r
,r′ (Γ)

∀z ∈W 1,r′(Ω),

where γ : W 1,r′(Ω) → W
1
r ,r

′
(Γ) is the trace operator. The following known result

deals with the solvability of (2.2); see Mateos [17] for the details, as well as Morrey
[19] and Troianiello [21].

Lemma 2.4. Let 1 < r < +∞, f̂ ∈ (W 1,r′(Ω))′, and ĝ ∈ W− 1
r ,r(Γ). Then

there exists a unique variational solution y ∈ W 1,r(Ω) of Neumann’s problem (2.2).
Moreover, the following estimate is satisfied:

‖y‖W 1,r(Ω) ≤ C
(
‖f̂‖(W 1,r′ (Ω))′ + ‖ĝ‖W− 1

r
,r(Γ)

)
,(2.3)

where C > 0 is a constant only depending on r, the dimension N , the operator A,
and the domain Ω.

The semilinear case is a consequence of the previous lemma. In particular, yu ∈
W 1,p(Ω) is said to be a solution of (2.1) if it satisfies the above variational equation

with f̂ = f(·, yu, u) ∈ (W 1,p′
(Ω))′ and ĝ = g ∈ Lp(1−1/N)(Γ) ⊂W−1/p,p(Γ). The next

theorem states the existence and uniqueness of the solution of (2.1) as well as the
differentiability of the relation between the control u and the associated state yu.

Theorem 2.5. Suppose that (A1) holds. Then for every u ∈ L∞(Ω) there exists
a unique solution yu ∈W 1,p(Ω) of the state equation (2.1) and

∀M > 0 ∃CM > 0 such that ‖yu‖W 1,p(Ω) ≤ CM if ‖u‖L∞(Ω) ≤M.
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The mapping G : L∞(Ω) −→ W 1,p(Ω), defined by G(u) = yu is of class C2 and
for all h, u ∈ L∞(Ω), zh = G′(u)h is defined as the solution of

 Azh =
∂f

∂y
(x, yu, u)zh +

∂f

∂u
(x, yu, u)h in Ω,

∂nAzh = 0 on Γ.
(2.4)

Finally, for every h1, h2 ∈ L∞(Ω), zh1h2
= G′′(u)h1h2 is the solution of


Azh1h2

=
∂f

∂y
(x, yu, u)zh1h2

+
∂2f

∂y2
(x, yu, u)zh1

zh2

+
∂2f

∂u∂y
(x, yu, u)(zh1h2 + zh2h1) +

∂2f

∂u2
(x, yu, u)h1h2 in Ω,

∂nAzh1h2
= 0 on Γ.

(2.5)

Proof. The proof of the existence, uniqueness, and estimate of the solution of
(2.1) is standard. Let us prove the differentiability. For that let us start with a
homogeneous boundary condition, g = 0. We consider the space

V (A) =
{

y ∈W 1,p(Ω) : Ay ∈ LNp/(N+p)(Ω), ∂nAy = 0
}

endowed with the norm

‖y‖V (A) = ‖y‖W 1,p(Ω) + ‖Ay‖LNp/(N+p)(Ω).

Let us now define the function

F : V (A)× L∞(Ω)→ LNp/(N+p)(Ω), F (y, u) = Ay − f(·, y, u).

Thanks to assumption (A1), F is of class C2. Moreover, from Lemma 2.4 it follows
that

∂F

∂y
(y, u) = A− ∂f

∂y
(·, y, u)

is an isomorphism from V (A) to LNp/(N+p)(Ω). Taking into account that F (x, y, u) =
0 if and only if y = G(u), we can apply the implicit function theorem (see, for instance,
[3]) to deduce that G is of class C2 and satisfies F (G(u), u) = 0. From this identity,
(2.4) and (2.5) follow easily.

If g �= 0, then we can write G(u) = y0
u+yg = G0(u)+yg, with y0

u and yg solutions
of the problems {

Ayg = 0 in Ω,
∂nAyg = g on Γ,

{
Ay0

u = f0(x, y0
u, u) in Ω,

∂nAy0
u = 0 on Γ,

where f0(x, y, u) = f(x, y + yg(x), u). From the previous argument we have that G0

is of class C2 and consequently G is C2 too, with G′ = G′
0 and G′′ = G′′

0 , which
concludes the proof.
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As a consequence of this theorem we will get the differentiability of the functionals
J and Gj = Fj ◦G in the next two theorems.

Theorem 2.6. Let us suppose that (A1) and (A2) hold. Then the functional
J : L∞(Ω)→ R is of class C2. Moreover, for every u, h, h1, h2 ∈ L∞(Ω),

J ′(u)h =

∫
Ω

(
∂L

∂u
(x, yu, u) + ϕ0u

∂f

∂u
(x, yu, u)

)
h dx(2.6)

and

J ′′(u)h1h2 =

∫
Ω

[
∂2L

∂y2
(x, yu, u)z1z2 +

∂2L

∂y∂u
(x, yu, u)(z1h2 + z2h1)

+
∂2L

∂u2
(x, yu, u)h1h2 + ϕ0u

(
∂2f

∂y2
(x, yu, u)z1z2

+
∂2f

∂y∂u
(x, yu, u)(z1h2 + z2h1) +

∂2f

∂u2
(x, yu, u)h1h2

)]
dx,

(2.7)

where yu = G(u), ϕ0u ∈W 1,p(Ω) is the unique solution of the problem
 A∗ϕ =

∂f

∂y
(x, yu, u)ϕ +

∂L

∂y
(x, yu, u) in Ω,

∂nA∗ ϕ = 0 on Γ,
(2.8)

where A∗ is the adjoint operator of A and zi = G′(u)hi, i = 1, 2.
Proof. Let us consider the function F0 : C(Ω̄)× L∞(Ω)→ R defined by

F0(y, u) =

∫
Ω

L(x, y(x), u(x)) dx.

Due to the assumptions on L it is straightforward to prove that F0 is of class C2.
Now, applying the chain rule to J(u) = F0(G(u), u) and using Theorem 2.5 and the
fact that W 1,p(Ω) ⊂ C(Ω̄) for every p > N, we get that J is of class C2 and

J ′(u)h =

∫
Ω

(
∂L

∂y
(x, yu, u)zh +

∂L

∂u
(x, yu, u)h

)
dx.

Taking ϕ0u as the solution of (2.8), we deduce (2.6) from previous identity and (2.4).
Let us remark that the assumptions on f and L imply the regularity of ϕ0u. The
second derivative can be deduced in a similar way, making use of Theorem 2.5 once
more.

Theorem 2.7. Let us suppose that (A1) and (A3) hold. Then for each j,
the functional Gj = Fj ◦ G : L∞(Ω) → R is of class C2. Moreover, for every
u, h, h1, h2 ∈ L∞(Ω),

G′
j(u)h =

∫
Ω

ϕju
∂f

∂u
(x, yu, u)h dx(2.9)

and

G′′
j (u)h1h2 = F ′′

j (yu)z1z2(2.10)

+

∫
Ω

ϕju

(
∂2f

∂y2
(x, yu, u)z1z2 +

∂2f

∂y∂u
(x, yu, u)(z1h2 + z2h1) +

∂2f

∂u2
(x, yu, u)h1h2

)
dx,
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where yu = G(u), ϕju ∈W 1,s′(Ω) is the unique solution of the problem
 A∗ϕju =

∂f

∂y
(x, yu, u)ϕju + F ′

j(yu) in Ω,

∂nA∗ ϕju = 0 on Γ,
(2.11)

and zi = G′(u)hi, i = 1, 2.
The proof of this theorem is very similar to that of Theorem 2.6. Nevertheless we

have to make a comment about (2.11). From assumption (A3) we have that F ′(ȳ) ∈
(W 1,s(Ω))′; then the boundary problem (2.11) has a unique solution in W 1,s′(Ω) in
the variational sense, analogous to that of (2.2); see Lemma 2.4. Finally recall that
s < N/(N − 1); then s′ > N and therefore ϕju ∈W 1,s′(Ω) ⊂ C(Ω̄).

3. First and second order optimality conditions in the Lagrangian form.
Let us start this section by reformulating problem (P) as follows:

(P)




Minimize J(u),
ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Ω,
Gj(u) = 0, 1 ≤ j ≤ ne,
Gj(u) ≤ 0, ne + 1 ≤ j ≤ ne + ni,

where we are using the functions introduced in the previous section Gj = Fj ◦G. We
now apply the results obtained in [7]. In order to deduce the first and second order
optimality conditions of an optimization problem, it is necessary to make a regularity
assumption. This is our first goal. Given ε > 0, we denote the set of ε-inactive
constraints by

Ωε = {x ∈ Ω : ua(x) + ε ≤ ū(x) ≤ ub(x)− ε}.

We say that a feasible control ū is regular if the following assumption is fulfilled:{ ∃εū > 0 and {h̄j}j∈I0 ⊂ L∞(Ω), with supp h̄j ⊂ Ωεū , such that
G′

i(ū)h̄j = δij , i, j ∈ I0,
(3.1)

where

I0 = {j ≤ m |Gj(ū) = 0}.

I0 is the set of indices corresponding to active constraints. Associated to (P) we
define the Lagrangian function

L(u, λ) = J(u) +

ne+ni∑
j=1

λjGj(u).

Obviously (3.1) is equivalent to the independence of the derivatives {G′
j(ū)}j∈I0

in L1(Ωεū). Under this assumption we can derive the first order necessary conditions
for optimality in a qualified form. For the proof the reader is referred to Bonnans and
Casas [1] or Clarke [11]; see also Mateos [17].

Theorem 3.1. Let us assume that ū is a local solution of (P) and (3.1) holds.
Then there exist real numbers {λ̄j}ne+ni

j=1 such that

λ̄j ≥ 0, ne + 1 ≤ j ≤ ne + ni, λ̄j = 0 if Gj(ū) < 0;(3.2)
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∂L
∂u

(ū, λ̄)(u− ū) ≥ 0 for all ua ≤ u ≤ ub.(3.3)

Denoting by ϕ̄0 and ϕ̄j the solutions of (2.8) and (2.11) corresponding to ū and
setting

ϕ̄ = ϕ̄0 +

ne+ni∑
j=1

λ̄jϕ̄j ,(3.4)

we deduce from Theorems 2.6 and 2.7 and the definition of L that

∂L
∂u

(ū, λ̄)h =

∫
Ω

(
∂L

∂u
(x, ȳ, ū) + ϕ̄0

∂f

∂u
(x, ȳ, ū)

)
h dx +

ne+ni∑
j=1

λ̄j

∫
Ω

ϕ̄j
∂f

∂u
(x, ȳ, ū)h dx

=

∫
Ω

(
∂L

∂u
(x, ȳ, ū) + ϕ̄

∂f

∂u
(x, ȳ, ū)

)
h dx

=

∫
Ω

d(x)h(x) dx ∀h ∈ L∞(Ω),(3.5)

where ȳ = G(ū) = yū and

d(x) =
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x)

∂f

∂u
(x, ȳ(x), ū(x)) =

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)),(3.6)

H : Ω× R
3 −→ R being the Hamiltonian associated to the control problem (P),

H(x, y, u, ϕ) = L(x, y, u) + ϕf(x, y, u).

From (3.3) we deduce that

d(x) =




0 for a.e. x ∈ Ω, where ua(x) < ū(x) < ub(x),
≥ 0 for a.e. x ∈ Ω, where ū(x) = ua(x),
≤ 0 for a.e. x ∈ Ω, where ū(x) = ub(x).

(3.7)

Remark 3.2. From (3.3), (3.7), and assumption (3.1) we get∫
Ω

(
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄0(x)

∂f

∂u
(x, ȳ(x), ū(x))

)
h̄j(x) dx + λ̄j =

∂L
∂u

(ū, λ̄)h̄j = 0,

which implies the uniqueness of the Lagrange multipliers provided in Theorem 3.1.
Associated with d we set

Ω0 = {x ∈ Ω : |d(x)| > 0}.(3.8)

Given {λ̄j}ne+ni
j=1 by Theorem 3.1 we define the cone of critical directions

C0
ū = {h ∈ L∞(Ω) satisfying (3.10) and h(x) = 0 for a.e. x ∈ Ω0},(3.9)

with 


G′
j(ū)h = 0 if (j ≤ ne) or (j > ne, Gj(ū) = 0, and λ̄j > 0);

G′
j(ū)h ≤ 0 if j > ne, Gj(ū) = 0, and λ̄j = 0;

h(x) =

{ ≥ 0 if ū(x) = ua(x);
≤ 0 if ū(x) = ub(x).

(3.10)
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Now we are ready to state the second order necessary optimality conditions.

Theorem 3.3. Let us assume that ū is a local solution of (P), (3.1) holds, and
{λ̄j}ne+ni

j=1 are the Lagrange multipliers satisfying (3.2) and (3.3). Then the following
inequality is satisfied:

∂2L
∂u2

(ū, λ̄)h2 ≥ 0 ∀h ∈ C0
ū.(3.11)

This theorem follows from Theorem 2.2 of [7]. Indeed it is enough to check the
assumptions (A1) and (A2) of such a paper. (A1) says that J ′(ū) and G′

j(ū) must

be continuous functionals on L2(Ω), which is an immediate consequence of Theorems
2.6 and 2.7. Assumption (A2) of [7] says that

∂2L
∂u2

(ū, λ̄)h2
k −→

∂2L
∂u2

(ū, λ̄)h2

whenever {hk}∞k=1 is bounded in L∞(Ω) and hk(x) → h(x) a.e. in Ω. Taking into
account that

∂2L
∂u2

(ū, λ̄)h2 =

ne+ni∑
j=1

λ̄jF
′′
j (ȳ)z

2
h(3.12)

+

∫
Ω

(
∂2L

∂y2
(x, ȳ, ū) + ϕ̄

∂2f

∂y2
(x, ȳ, ū)

)
z2
h dx

+

∫
Ω

(
∂2L

∂y∂u
(x, ȳ, ū) + ϕ̄

∂2f

∂y∂u
(x, ȳ, ū)

)
zhh dx

+

∫
Ω

(
∂2L

∂u2
(x, ȳ, ū) + ϕ̄

∂2f

∂u2
(x, ȳ, ū)

)
h2 dx,

where zh is the solution of (2.4) corresponding to the pair (ȳ, ū), the desired conver-
gence property follows from the boundedness of the second derivatives of L and f
along with the convergence zhk → zh in W 1,q(Ω) ⊂ L2(Ω) and our assumption (A3).

In order to obtain the sufficient second order optimality conditions for problem
(P), we need to check some additional properties of the first and second derivatives
of J and Gj . Let us take a ball in L∞(Ω), Bρ(ū). From Theorem 2.5, we deduce
the existence of a constant Cρ > 0 such that {yu}u∈Bρ(ū) is uniformly bounded by
Cρ in the W 1,p(Ω) norm and therefore in the L∞(Ω) norm too. This implies the
uniform boundedness of the derivatives of f at every point (yu, u), for u ∈ Bρ(ū),
as well as the boundedness of the second derivatives of L and the domination of the
first derivatives by some functions ψρ ∈ LNp/(N+p)(Ω) and ψ∗

ρ ∈ L2(Ω). Then from
Lemma 2.4 we deduce that {ϕju}u∈Bρ(ū) are bounded in W 1,p(Ω) ⊂ L∞(Ω) for j = 0

and W 1,s′(Ω) ⊂ L∞(Ω) for 1 ≤ j ≤ ne + ni, respectively. Finally, using Lemma 2.4
once more, we get that

‖zh‖W 1,q(Ω) ≤ C‖h‖L2(Ω),

which follows from the imbedding L2(Ω) ⊂ (W 1,q′(Ω))′ due to the fact q < 2N/(N−2).
Collecting all these things, we get the existence of constants Mj,1, Mj,2 > 0, with
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0 ≤ j ≤ ne + ni, such that for every u ∈ Bρ(ū) and all h, h1, h2 ∈ L∞(Ω) we have


|J ′(u)h| ≤M0,1‖h‖L2(Ω), |G′
j(u)h| ≤Mj,1‖h‖L2(Ω),

|J ′′(u)h1h2| ≤M0,2‖h1‖L2(Ω)‖h2‖L2(Ω),

|G′′
j (u)h1h2| ≤Mj,2‖h1‖L2(Ω)‖h2‖L2(Ω).

(3.13)

We have to check a last condition, which is established in the following lemma.
Lemma 3.4. For every δ > 0 there exists ε ∈ (0, ρ) such that for every h ∈ L∞(Ω)

and ‖u− ū‖∞ < ε the following inequality is fulfilled:∣∣∣∣
[

∂2L
∂u2

(u, λ̄)− ∂2L
∂u2

(ū, λ̄)

]
h2

∣∣∣∣ ≤ δ ‖h‖2L2(Ω).(3.14)

Proof. Let us take h ∈ L∞(Ω) and δ > 0. We are going to check that∣∣∣∣
[

∂2L
∂u2

(v, λ̄)− ∂2L
∂u2

(ū, λ̄)

]
h2

∣∣∣∣(3.15)

≤
∫

Ω

∣∣∣∣∂2L

∂u2
(x, yv, v) + ϕv

∂2f

∂u2
(x, yv, v)− ∂2L

∂u2
(x, ȳ, ū)− ϕ̄

∂2f

∂u2
(x, ȳ, ū)

∣∣∣∣h2 dx

+

∫
Ω

∣∣∣∣
(

∂2L

∂y∂u
(x, yv, v) + ϕv

∂2f

∂y∂u
(x, yv, v)

)
zh

−
(

∂2L

∂y∂u
(x, ȳ, ū) + ϕ̄

∂2f

∂y∂u
(x, ȳ, ū)

)
z̄h

∣∣∣∣ |h| dx

+

∫
Ω

∣∣∣∣
(

∂2L

∂y2
(x, yv, v) + ϕv

∂2f

∂y2
(x, yv, v)

)
z2
h

−
(

∂2L

∂y2
(x, ȳ, ū) + ϕ̄

∂2f

∂y2
(x, ȳ, ū)

)
z̄2
h

∣∣∣∣ dx

+

ni+ni∑
j=1

|λ̄j |
∣∣F ′′

j (yv)z
2
h − F ′′

j (ȳ)z̄
2
h

∣∣ ≤ δ‖h‖2L2(Ω),

supposing ‖v − ū‖L∞(Ω) < ε with ε small enough, where
 Azh =

∂f

∂y
(x, yv, v)zh +

∂f

∂u
(x, yv, v)h in Ω,

∂nAzh = 0 on Γ,

and 
 Az̄h =

∂f

∂y
(x, ȳ, ū)z̄h +

∂f

∂u
(x, ȳ, ū)h in Ω,

∂nA z̄h = 0 on Γ.

We discuss every term in a separate way. The inequality∥∥∥∥∂2L

∂u2
(x, yv, v) + ϕv

∂2f

∂u2
(x, yv, v)− ∂2L

∂u2
(x, ȳ, ū)− ϕ̄

∂2f

∂u2
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

<
δ

4
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is a direct consequence of the continuity v ∈ L∞(Ω) −→ ϕv ∈W 1,min{s′,p}(Ω) ⊂ C(Ω̄)
(see Lemma 2.4 and Theorems 2.6 and 2.7) and the continuity properties of the second
derivatives of f and L assumed in (A1) and (A2), as well as assumption (A3).

Let us study the second term of (3.15). Hölder’s inequality leads us to∫
Ω

∣∣∣∣
(

∂2L

∂y∂u
(x, yv, v) + ϕv

∂2f

∂y∂u
(x, yv, v)

)
zh

−
(

∂2L

∂y∂u
(x, ȳ, ū) + ϕ̄

∂2f

∂y∂u
(x, ȳ, ū)

)
z̄h

∣∣∣∣ |h| dx

≤ ‖h‖L2(Ω)

(∥∥∥∥ ∂2L

∂y∂u
(x, yv, v)− ∂2L

∂y∂u
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh‖L2(Ω)

+

∥∥∥∥ ∂2L

∂y∂u
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh − z̄h‖L2(Ω)

+

∥∥∥∥ϕv
∂2f

∂y∂u
(x, yv, v)− ϕ̄

∂2f

∂y∂u
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh‖L2(Ω)

+

∥∥∥∥ϕ̄ ∂2f

∂y∂u
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh − z̄h‖L2(Ω)

)
<

δ

4
‖h‖2L2(Ω),

the last inequality being a consequence of (A1) and (A2) along with the estimates

‖zh‖L2(Ω) + ‖z̄h‖L2(Ω) ≤ C1

(‖zh‖W 1,q(Ω) + ‖z̄h‖W 1,q(Ω)

) ≤ C2‖h‖L2(Ω)(3.16)

and

‖zh − z̄h‖L2(Ω) ≤ C1‖zh − z̄h‖W 1,q(Ω) ≤ O(ε)‖h‖L2(Ω),(3.17)

with O(ε) → 0 when ε → 0. Let us notice that (3.16) follows from the inequalities
2N/(N + 2) ≤ q < 2N/(N − 2), Sobolev imbeddings, and Lemma 2.4.

Analogously we have∫
Ω

∣∣∣∣
(

∂2L

∂y2
(x, yv, v) + ϕv

∂2f

∂y2
(x, yv, v)

)
z2
h −
(

∂2L

∂y2
(x, ȳ, ū) + ϕ̄

∂2f

∂y2
(x, ȳ, ū)

)
z̄2
h

∣∣∣∣ dx

≤
∥∥∥∥∂2L

∂y2
(x, yv, v)− ∂2L

∂y2
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh‖2L2(Ω)

+

∥∥∥∥∂2L

∂y2
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh − z̄h‖L2(Ω)‖zh + z̄h‖L2(Ω)

+

∥∥∥∥ϕv
∂2f

∂y2
(x, yv, v)− ϕ̄

∂2f

∂y2
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh‖2L2(Ω)

+

∥∥∥∥ϕ̄∂2f

∂y2
(x, ȳ, ū)

∥∥∥∥
L∞(Ω)

‖zh − z̄h‖L2(Ω)‖zh + z̄h‖L2(Ω) <
δ

4
‖h‖2L2(Ω),

thanks again to (A1), (A2), (3.16), and (3.17).
For the fourth term of (3.15) it is enough to take into account assumption (A3),

and once more (3.16) and (3.17), and to use the inequality

|F ′′
j (yv)z

2
h − F ′′

j (ȳ)z̄
2
h| = |F ′′

j (yv)(z
2
h − z̄2

h) + (F ′′
j (yv)− F ′′

j (ȳ))z̄
2
h|

≤ |F ′′
j (yv)(zh + z̄h)(zh − z̄h)|+ |(F ′′

j (yv)− F ′′
j (ȳ))z̄

2
h|.
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Before writing the sufficient optimality conditions, we have to fix some notation.
Analogously to (3.8) and (3.9), we define for every τ > 0

Ωτ = {x ∈ Ω : |d(x)| > τ}(3.18)

and

Cτ
ū = {h ∈ L∞(Ω) satisfying (3.10) and h(x) = 0 for a.e. x ∈ Ωτ}.(3.19)

The next theorem provides the second order sufficient optimality conditions of
problem (P).

Theorem 3.5. Let ū be a feasible point for problem (P) satisfying (3.2) and (3.3)
and let us suppose that assumption (3.1) holds. Let us also assume that

∂2L
∂u2

(ū, λ̄)h2 ≥ δ‖h‖2L2(Ω) ∀h ∈ Cτ
ū(3.20)

for some δ > 0 and τ > 0 given. Then there exist ε > 0 and α > 0 such that
J(ū)+α‖u− ū‖2L2(Ω) ≤ J(u) for every feasible point u for (P), with ‖u− ū‖L∞(Ω) < ε.

Relations (3.13) and (3.14) prove that the hypotheses of Corollary 3.3 of [7] are
fulfilled, which leads straightforwardly to the above theorem. In that paper it is also
proved that we can not relax the sufficient condition by taking τ = 0; see also Dunn
[12].

The last two theorems concerning the necessary and sufficient second order opti-
mality conditions involve two norms: those of L2(Ω) and L∞(Ω). This is motivated
by the so-called two norms discrepancy; see, for instance; A. Ioffe [15] and H. Maurer
[18]. In particular, the cones Cτ

ū , for τ ≥ 0, as defined in (3.8) and (3.19), are subsets
of L∞(Ω), but only the L2(Ω)-norm of the elements of Cτ

ū is involved in the optimality
conditions (3.11) and (3.20). Now there is a natural question. Let us define for each
τ ≥ 0

Cτ
ū,L2(Ω) = {h ∈ L2(Ω) satisfying (3.10) and h(x) = 0 for a.e. x ∈ Ωτ}.(3.21)

Can we replace Cτ
ū by Cτ

ū,L2(Ω) in Theorems 3.3 and 3.5? The next proposition
provides a positive answer.

Proposition 3.6. Let us assume that (3.1) holds. Then Cτ
ū,L2(Ω) = C̄τ

ū , where

C̄τ
ū denotes the closure of Cτ

ū in L2(Ω).
Proof. Since Cτ

ū,L2(Ω) is closed in L2(Ω), we obviously have C̄τ
ū ⊂ Cτ

ū,L2(Ω). Let
us prove the reverse inclusion. Let h ∈ Cτ

ū,L2(Ω). We are going to obtain a sequence

{hk}∞k=1 ⊂ Cτ
ū such that hk → h in L2(Ω). Let us take

ĥk =




+k if h(x) > +k,
h(x) if |h(x)| ≤ k,
−k if h(x) < −k.

For every j ∈ I0 let us set

αkj = G′
j(ū)ĥk −G′

j(ū)h.

It is clear that ĥk → h in L2(Ω) and αkj → 0 for every j ∈ I0. Finally we define

hk = ĥk −
∑
j∈I0

αkj h̄j ,
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where h̄j is given in (3.1). It is obvious that hk → h in L2(Ω) and {hk}∞k=1 ⊂ L∞(Ω).
Let us prove that hk ∈ Cτ

ū for every k. First of all, hk(x) = 0 for almost every x ∈ Ωτ .

Indeed, since h ∈ Cτ
ū,L2(Ω), then h(x) = 0 for almost every x ∈ Ωτ ; consequently ĥk

keeps the same property. On the other hand, the support of h̄j is in Ωεū , and d(x) = 0
for almost every x ∈ Ωεū ; therefore h̄j(x) = 0 for almost all x ∈ Ωτ . Hence hk(x) also

vanishes almost everywhere in Ωτ . Moreover, since h and ĥk have the same sign, it
follows that hk(x) = ĥk(x) ≥ 0 if ū(x) = ua(x). Analogously, if ū(x) = ub(x), then

hk(x) = ĥk(x) ≤ 0. Finally, let us fix j ∈ I0

G′
j(ū)hk = G′

j(ū)ĥk −
∑
i∈I0

αkiG
′
j(ū)h̄i = G′

j(ū)ĥk − αkj = G′
j(ū)h.

Using the fact that h is in the cone of critical directions of L2(Ω), we deduce that
hk satisfies in the same way as h the conditions on the derivatives of Gj , for every j,
which proves that hk ∈ Cτ

ū .
Remark 3.7. As a consequence of the previous proposition and the fact that

∂2L
∂u2 (ū, λ̄) is a bilinear and continuous form in L2(Ω), we get the following equivalences:

∂2L
∂u2

(ū, λ̄)h2 ≥ 0 ∀h ∈ C0
ū ⇐⇒

∂2L
∂u2

(ū, λ̄)h2 ≥ 0 ∀h ∈ C0
ū,L2(Ω)

and

∂2L
∂u2

(ū, λ̄)h2 ≥ δ‖h‖2L2(Ω) ∀h ∈ Cτ
ū ⇐⇒

∂2L
∂u2

(ū, λ̄)h2 ≥ δ‖h‖2L2(Ω) ∀h ∈ Cτ
ū,L2(Ω).

4. First and second order optimality conditions involving the Hamilto-
nian. As in the previous section, we denote with H : Ω×R

3 −→ R the Hamiltonian
associated to the control problem (P):

H(x, y, u, ϕ) = L(x, y, u) + ϕf(x, y, u).

Pontryagin’s principle for (P) is formulated in terms of H in the next proposition.
Proposition 4.1. Let ū be a solution of (P). Suppose that the assumptions

(A1)–(A3) and (3.1) hold. Then there exist real numbers λ̄j, j = 1, . . . , ni+ne, and

functions ȳ ∈W 1,p(Ω), ϕ̄ ∈W 1,min{s′,p}(Ω) such that

λ̄j ≥ 0, ne + 1 ≤ j ≤ ne + ni, λ̄jFj(ȳ) = 0,(4.1) {
Aȳ = f(x, ȳ(x), ū(x)) in Ω,

∂nA ȳ = 0 on Γ,
(4.2)




A∗ϕ̄ =
∂f

∂y
(x, ȳ, ū)ϕ̄ +

∂L

∂y
(x, ȳ, ū) +

ne+ni∑
j=1

λ̄jF
′
j(ȳ) in Ω,

∂nA∗ ϕ̄ = 0 on Γ,

(4.3)

and for a.e. x ∈ Ω

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
k∈[ua(x),ub(x)]

H(x, ȳ(x), k, ϕ̄(x)).(4.4)
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Proof. Let us define Hν : Ω× R
3 −→ R by

Hν(x, y, u, ϕ) = νL(x, y, u) + ϕf(x, y, u).

It is known (see Casas [4], Casas, Raymond, and Zidani [6], Li and Yong [16], or
Mateos [17]) that there exist ν̄ ≥ 0, λ̄ = (λ̄j)1≤j≤ni+ne , and functions ȳ ∈ W 1,p(Ω),

ϕ̄ ∈W 1,min{s′,p}(Ω) such that (ν̄, λ̄) �= 0, (4.1) and (4.2) hold, and


A∗ϕ̄ =
∂f

∂y
(x, ȳ, ū)ϕ̄ + ν̄

∂L

∂y
(x, ȳ, ū) +

ne+ni∑
j=1

λ̄jF
′
j(ȳ) in Ω,

∂nA∗ ϕ̄ = 0 on Γ,

(4.5)

and

Hν̄(x, ȳ(x), ū(x), ϕ̄(x)) = min
k∈[ua(x),ub(x)]

Hν̄(x, ȳ(x), k, ϕ̄(x)) for a.e. x ∈ Ω.(4.6)

In the case ν̄ > 0, we can rename λ̄/ν̄ by λ̄ and obtain (4.1)–(4.5). So it is enough
to prove that ν̄ �= 0. Let us argue by contradiction and let us suppose that ν̄ = 0.
Since Hν̄ is C1 with respect to (y, u) ∈ R×R, we deduce from (4.6) and Theorem 2.7
that for every ua ≤ u ≤ ub

ni+ne∑
j=1

λ̄jG
′
j(ū)(u− ū) =

∫
Ω

∂Hν̄

∂u
(x, ȳ(x), ū(x), ϕ̄(x))(u(x)− ū(x)) dx ≥ 0.

Let us take h̄j as defined in assumption (3.1) and |ρ| < ε small enough such that
ua ≤ u = ū + ρh̄j ≤ ub; then

ρλ̄j =

ni+ne∑
i=1

λ̄iG
′
i(ū)(u− ū) ≥ 0.

By taking ρ positive and negative, respectively, we get that λ̄j = 0 for every j ∈ I0.
So we have the contradiction with the fact that (ν̄, λ̄) �= 0.

Let us notice that


d(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)),

∂L
∂u

(ū, λ̄)h =

∫
Ω

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))h(x) dx.

(4.7)

As an immediate consequence of Pontryagin’s principle, Theorem 3.1, and Remark
3.7, we obtain the necessary first and second order optimality conditions as follows.

Corollary 4.2. Suppose that ū is a local solution for problem (P). Suppose
also that assumptions (A1)–(A3) and the regularity assumption (3.1) hold. Then
there exist real numbers λ̄j, j = 1, . . . , ni + ne, and functions ȳ ∈ W 1,p(Ω), ϕ̄ ∈
W 1,min{s′,p}(Ω) such that (4.1)–(4.3) hold as well as the following relations:

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))(k−ū(x)) ≥ 0 for all ua(x) ≤ k ≤ ub(x), for a.e. x ∈ Ω,(4.8)

∂2L
∂u2

(ū, λ̄)h2 ≥ 0 for all h ∈ C0
ū,L2(Ω),(4.9)
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and

∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ 0 for a.e. x ∈ Ω \ Ω0.(4.10)

Let us notice that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = d(x) = 0, x ∈ Ω \ Ω0.

Then it is enough to use elementary calculus to deduce (4.10) from (4.4) and the
above equality.

In finite dimension, the first order optimality conditions and the strict positivity
of the second derivative of the Lagrangian with respect to u on C0

ū are sufficient
conditions for a local minimum. The argument of the proof uses in an essential way the
compactness of the balls in finite dimension. To extend this argumentation to infinite-
dimensional optimization problems, Bonnans and Zidani [2] made the assumption that
the second derivative of the Lagrangian with respect to u was a Legendre form. Let us
recall that a quadratic form Q on a Hilbert space X is said to be a Legendre form if it is
weakly lower semicontinuous, and for every sequence {xk} ⊂ X that converges weakly
xk ⇀ x and such that Q(xk) → Q(x), we have that xk → x strongly. Unfortunately
this assumption is not fulfilled, in general, in the context of control theory. We follow
a different approach to achieve the same result. Along with the strict positivity of
the second derivative of the Lagrangian, we assume that the second derivative of the
Hamiltonian with respect to u is strictly positive on Ω\Ωτ , for τ > 0, which is not far
from the necessary condition provided in (4.10). More precisely, we have the following
result.

Theorem 4.3. Let ū be an admissible control for problem (P) satisfying (A1)–
(A3), the regularity assumption (3.1), and (4.1)–(4.4) for some λ̄j, j = 1, . . . , ni+ne.
Let us suppose also that there exist ω > 0 and τ > 0 such that



∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ ω for a.e. x ∈ Ω \ Ωτ ,

∂2L
∂u2

(ū, λ̄)h2 > 0 for all h ∈ C0
ū,L2(Ω) \ {0}.

(4.11)

Then there exist ε > 0 and α > 0 such that J(ū) + α‖u − ū‖2L2(Ω) ≤ J(u) for all

admissible control u with ‖u− ū‖L∞(Ω) ≤ ε.
Proof. We will argue by contradiction. The proof is divided into five steps.
(i) Definition of a sequence {hk} of the unit sphere of L2(Ω) converging weakly

to h. Let us suppose that the theorem is false. Then there exists a sequence {uk} of
admissible controls with uk → ū in L∞(Ω) such that

J(ū) +
1

k
‖uk − ū‖2L2(Ω) > J(uk).(4.12)

Let us set δk = ‖uk − ū‖L2(Ω) and

hk =
uk − ū

δk
.

Since ‖hk‖L2(Ω) = 1 for every k, there exists a subsequence of {hk}, which will be
denoted in the same way, and h ∈ L2(Ω) such that hk ⇀ h weakly in L2(Ω).
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(ii) ∂L
∂u (ū, λ̄)h = 0. Let us denote yk = yuk . Since uk is admissible, we have that

Fj(yk) = 0 if 1 ≤ j ≤ ne

and

Fj(yk) ≤ 0 if ne + 1 ≤ j ≤ ne + ni.

Since λ̄j ≥ 0 if ne + 1 ≤ j ≤ ne + ni, we have that

λ̄jFj(yk) ≤ 0 for 1 ≤ j ≤ ne + ni.

On the other hand λ̄jFj(ȳ) = 0. Hence (4.12) implies

L(ū, λ̄) +
1

k
‖uk − ū‖2L2(Ω) > L(uk, λ̄).(4.13)

Moreover, h satisfies the sign condition in (3.10), because every hk satisfies it,
and the set of functions that satisfy the sign condition in (3.10) is convex and closed
in L2(Ω), and therefore weakly closed. Furthermore

L(uk, λ̄) = L(ū, λ̄) + δk
∂L
∂u

(vk, λ̄)hk,

where vk is an intermediate point between ū and uk. Using (4.13) and that δk > 0,
we have that

∂L
∂u

(vk, λ̄)hk <
1

kδk
‖uk − ū‖2L2(Ω) =

1

k
‖uk − ū‖L2(Ω).

This expression can be written as follows:∫
Ω

(
∂L

∂u
(x, yvk , vk) + ϕvk

∂f

∂u
(x, yvk , vk)

)
hkdx <

1

k
‖uk − ū‖L2(Ω),(4.14)

where yvk and ϕvk are, respectively, the state and adjoint state associated to vk. The
conditions imposed on Fj and the uniform convergence vk → ū imply the conver-
gences yvk → ȳ uniformly and ϕvk → ϕ̄ in L2(Ω). Using (A1), (A2), and the weak
convergence hk ⇀ h in L2(Ω), we can pass to the limit in (4.14) and obtain

∂L
∂u

(ū, λ̄)h ≤ 0.(4.15)

On the other hand, from (4.7), (4.8), and hk = (uk − ū)/δk, with δk > 0 and ua ≤
uk ≤ ub, we get

∂L
∂u

(ū, λ̄)hk ≥ 0.

Taking the limit we obtain

∂L
∂u

(ū, λ̄)h ≥ 0.(4.16)

So (4.15) and (4.16) lead to

∂L
∂u

(ū, λ̄)h = 0.(4.17)
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(iii) h ∈ C0
ū,L2(Ω). First we check that

F ′
j(ȳ)zh = 0 if




j ≤ ne

or
j > ne, Fj(ȳ) = 0, λ̄j > 0,

and

F ′
j(ȳ)zh ≤ 0 if j > ne, Fj(ȳ) = 0, λ̄j = 0.

If j ≤ ne, then Fj(yk) = Fj(yū+δkhk) = 0 and Fj(ȳ) = 0. Therefore

0 =
Fj(yū+δkhk)− Fj(ȳ)

δk
,

and taking the limit we obtain with the help of assumption (A3)

F ′
j(ȳ)zh = 0.

If j > ne and Fj(ȳ) = 0, we have that Fj(yk) = Fj(yū+δkhk) ≤ 0. So

0 ≥ Fj(yū+δkhk)− Fj(ȳ)

δk
,

and once again taking the limit as before we deduce

F ′
j(ȳ)zh ≤ 0.

Let us see what happens when λ̄j > 0. Taking into account (4.12) and that δk =
‖uk − ū‖L2(Ω), we get

δk
k
≥ J(uk)− J(ū)

δk
=

J(ū + δkhk)− J(ū)

δk
.

Since δk → 0, by passing to the limit in this expression, it follows that

0 ≥ J ′(ū)h.

Using (4.17) and the expression for the derivative of the Lagrangian, we now have
that

0 = J ′(ū)h +

ne+ni∑
j=1

λ̄jF
′
j(ȳ)zh.

Taking into account that if j ≤ ne, then we have already proved the equalities
F ′
j(ȳ)zh = 0, and that if Fj(ȳ) < 0, then λ̄j = 0, we have that

0 = J ′(ū)h +
∑
j∈I1

λ̄jF
′
j(ȳ)zh,

where

I1 = {j : ne < j ≤ ne + ni; Fj(ȳ) = 0; λ̄j > 0}.
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So

0 ≤ −J ′(ū)h =
∑
j∈I1

λ̄jF
′
j(ȳ)zh ≤ 0.

Thus, if j ∈ I1, then necessarily F ′
j(ȳ)zh = 0. To conclude the proof of the inclusion

h ∈ C0
ū,L2(Ω) it remains to check that h(x) = 0 for a.e. x ∈ Ω0. As signaled above,

h satisfies the sign condition; then we have that d(x)h(x) ≥ 0 for a.e. x ∈ Ω; recall
(3.7). Therefore ∫

Ω

|d(x)h(x)| dx =

∫
Ω

d(x)h(x) dx =
∂L
∂u

(ū, λ̄)h = 0,

which implies h(x) = 0 in a.e. Ω0 and h ∈ C0
ū,L2(Ω).

(iv) h = 0. Due to the assumption of the theorem, we have that

∂2L
∂u2

(ū, λ̄)h2 > 0 if h �= 0.(4.18)

Let us prove that the reverse inequality is satisfied, which will lead to the identity
h = 0. By applying the mean value theorem we get

L(uk, λ̄) = L(ū, λ̄) + δk
∂L
∂u

(ū, λ̄)hk +
δ2
k

2

∂2L
∂u2

(wk, λ̄)h2
k,(4.19)

where wk is an intermediate point between uk and ū. In order to simplify the expres-
sion of the derivatives of L, let us introduce some notation:

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)),

H̄uu(x) =
∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)).

Analogously we define H̄uy or H̄yy. Inserting this notation into the expressions of the
derivatives of L given in (3.5) and (3.12), we get

δk
∂L
∂u

(ū, λ̄)hk +
δ2
k

2

∂2L
∂u2

(ū, λ̄)h2
k = δk

∫
Ω

H̄u(x)hk(x) dx +
δ2
k

2

∫
Ω

H̄uu(x)h
2
k(x) dx

+
δ2
k

2


∫

Ω

H̄yy(x)z
2
hk
(x) dx + 2

∫
Ω

H̄yu(x)hk(x)zhk(x) dx +

ne+ni∑
j=1

λ̄jF
′′
j (ȳ)z

2
hk


.

Taking into account that H̄u(x) = d(x) = 0 in Ω \ Ω0,

Ak = δk

∫
Ω

H̄u(x)hk(x) dx +
δ2
k

2

∫
Ω

H̄uu(x)h
2
k(x) dx = δk

∫
Ω0\Ωτ

H̄u(x)hk(x) dx

+ δk

∫
Ωτ

H̄u(x)hk(x) dx +
δ2
k

2

∫
Ωτ

H̄uu(x)h
2
k(x) dx +

δ2
k

2

∫
Ω\Ωτ

H̄uu(x)h
2
k(x) dx.
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Using now that H̄u(x)hk(x) ≥ 0 for a.e. x ∈ Ω and H̄u(x) ≥ τ for a.e. x ∈ Ωτ , we
have that

Ak ≥ δkτ

∫
Ωτ
|hk(x)| dx +

δ2
k

2

∫
Ωτ

H̄uu(x)h
2
k(x) dx +

δ2
k

2

∫
Ω\Ωτ

H̄uu(x)h
2
k(x) dx.

Since ‖δkhk‖L∞(Ω) = ‖uk− ū‖L∞(Ω) < ε, then for a.e. x ∈ Ω, δk|hk(x)| ≤ ε. Therefore

δ2
kh2

k(x)

ε
≤ δk|hk(x)|.

Hence

Ak ≥ δ2
k

2

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx +

δ2
k

2

∫
Ω\Ωτ

H̄uu(x)h
2
k(x) dx.

Now, from (4.13), (4.19) and taking into account the previous considerations, we have

δ2
k

k
> δk

∂L
∂u

(ū, λ̄)hk +
δ2
k

2

∂2L
∂u2

(wk, λ̄)h2
k(4.20)

= δk
∂L
∂u

(ū, λ̄)hk +
δ2
k

2

∂2L
∂u2

(ū, λ̄)h2
k +

δ2
k

2

[
∂2L
∂u2

(wk, λ̄)h2
k −

∂2L
∂u2

(ū, λ̄)h2
k

]

≥ δ2
k

2

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx +

δ2
k

2

∫
Ω\Ωτ

H̄uu(x)h
2
k(x)dx

+
δ2
k

2


∫

Ω

H̄yy(x)z
2
hk
(x) dx + 2

∫
Ω

H̄yu(x)hk(x)zhk(x) dx +

ne+ni∑
j=1

λ̄jF
′′(ȳ)z2

hk




+
δ2
k

2

[
∂2L
∂u2

(wk, λ̄)h2
k −

∂2L
∂u2

(ū, λ̄)h2
k

]
.

Taking into account the assumptions made on the second derivatives of the functions,
there exists a constant CH > 0 such that H̄uu(x) ≥ −CH for a.e. x ∈ Ω. So, taking ε
small enough, we have that

2τ

ε
+ H̄uu(x) ≥ 2τ

ε
− CH > 0 for a.e. x ∈ Ω.

Thus

lim inf
k→∞

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x)dx ≥

∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2(x)dx.

Moreover, in Ω \ Ωτ , H̄uu(x) > ω > 0, and then

lim inf
k→∞

∫
Ω\Ωτ

H̄uu(x)h
2
k(x) dx ≥

∫
Ω\Ωτ

H̄uu(x)h
2(x) dx.

Now dividing (4.20) by δ2
k/2 and using (3.14) and assumption (A3), we can take the

lower limit of the resulting expression and obtain

0 ≥
∫

Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2(x) dx +

∫
Ω\Ωτ

H̄uu(x)h
2(x) dx

+

∫
Ω

H̄yy(x)z
2
h(x) dx + 2

∫
Ω

H̄yu(x)h(x)zh(x) dx +

ne+ni∑
j=1

λ̄jF
′′
j (ȳ)z

2
h

=
2τ

ε

∫
Ω

h2(x) dx +
∂2L
∂u2

(ū, λ̄)h2.
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Combining this inequality with (4.18) we deduce that h = 0.
(v) hk → 0 strongly in L2(Ω). We have that hk ⇀ h = 0 weakly in L2(Ω), and

consequently zhk → 0 strongly in W 1,q(Ω). Therefore again dividing (4.20) by δ2
k/2

and using (3.14) we get

min

{
ω,

2τ

ε
− CH

}
lim sup
k→∞

∫
Ω

h2
k(x)dx

≤ lim sup
k→∞

{∫
Ωτ

(
2τ

ε
+ H̄uu(x)

)
h2
k(x) dx +

∫
Ω\Ωτ

H̄uu(x)h
2
k(x)dx

}

≤ lim sup
k→∞

{
1

k
−

∫

Ω

H̄yy(x)z
2
hk
(x) dx + 2

∫
Ω

H̄yu(x)hk(x)zhk(x) dx +

ne+ni∑
j=1

λ̄jF
′′(ȳ)z2

hk




−
[

∂2L
∂u2

(wk, λ̄)h2
k −

∂2L
∂u2

(ū, λ̄)h2
k

]}
= 0.

Hence

lim
k→∞

‖hk‖L2(Ω) = 0.

But ‖hk‖L2(Ω) = 1 for every k. So we have achieved the contradiction.
The next theorem shows the equivalence of (3.20) and (4.11).
Theorem 4.4. Let ū be an admissible control for problem (P) that satisfies

(A1)–(A3), the regularity assumption (3.1), and (4.1)–(4.4). Then the following two
statements are equivalent:

(1) There exist δ > 0 and τ ′ > 0 such that

∂2L
∂u2

(ū, λ̄)h2 ≥ δ‖h‖2L2(Ω) for all h ∈ Cτ ′
ū,L2(Ω).(4.21)

(2) There exist ω > 0 and τ > 0 such that


∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ ω for a.e. x ∈ Ω \ Ωτ ,

∂2L
∂u2

(ū, λ̄)h2 > 0 for all h ∈ C0
ū,L2(Ω) \ {0}.

(4.22)

Proof. (1) =⇒ (2). Since C0
ū,L2(Ω) ⊂ Cτ ′

ū,L2(Ω), the second inequality of (4.22) is

an obvious consequence of (4.21). Let us prove the existence of ω and τ satisfying
the first inequality of (4.22). Let us take α > 0 and ε > 0, as in Theorem 3.5, and
consider the problem

(Pα)




Minimize Jα(u) = J(u)− α
2 ‖u− ū‖2L2(Ω),

ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Ω,
Gj(u) = 0, 1 ≤ j ≤ ne,
Gj(u) ≤ 0, ne + 1 ≤ j ≤ ne + ni.

Then for any feasible point u of this problem, with ‖u− ū‖∞ < ε and u �= ū, we have

Jα(ū) = J(ū) ≤ J(u)− α‖u− ū‖2L2(Ω) < J(u)− α

2
‖u− ū‖2L2(Ω) = Jα(u).
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Then ū is the unique solution of (Pα) in the L∞(Ω)-ball Bε(ū). The Hamiltonian for
problem (Pα) is

Hα(x, y, u, ϕ) = H(x, y, u, ϕ)− α

2
(u− ū(x))2.

Therefore we can apply Corollary 4.2 to (Pα) and deduce, with the notation of the
proof of Theorem 4.3, that

H̄uu(x)− α = H̄α
uu(x) ≥ 0 for a.e. x ∈ Ω \ Ω0,

which implies

H̄uu(x) ≥ α > 0 for a.e. x ∈ Ω \ Ω0.(4.23)

In the case in which the bound constraints on the control are not active, i.e.,
ua(x) < ū(x) < ub(x) a.e., then the Lebesgue measure of Ω0 is zero; hence (4.23)
implies the first inequality of (4.22). Let us analyze the case where Ω0 has a strictly
positive Lebesgue measure. We will proceed by contradiction and we assume that
there exist no ω > 0 and τ > 0 such that (4.22) is satisfied. Then we define for every
k ≥ 1

ĥk(x) =




+1 if |d(x)| ≤ 1/k, H̄uu(x) < 1/k, and ū(x) = ua(x),
−1 if |d(x)| ≤ 1/k, H̄uu(x) < 1/k, and ū(x) = ub(x),
0 otherwise.

Since (4.22) is not satisfied for ω = 1/k and τ = 1/k, with arbitrarily large k, and the

measure of Ω0 is not zero, we have that ĥk �= 0. Then we define h̃k = ĥk/‖ĥk‖L2(Ω).

Let us prove that h̃k ⇀ 0 weakly in L2(Ω). From (4.23) we deduce that the set

B = {x ∈ Ω : |d(x)| = 0 and H̄uu(x) ≤ 0}

has zero Lebesgue measure. Therefore

∞⋂
k=1

supp{h̃k} ⊂ B ⇒ measure

( ∞⋂
k=1

supp{h̃k}
)
≤ measure(B) = 0.

Taking into account that supp{h̃k} ⊂ supp{h̃k′} for every k > k′, we deduce that
h̃k(x) → 0 pointwise a.e. in Ω. On the other hand, {h̃k}∞k=1 is bounded in L2(Ω);

consequently h̃k ⇀ 0 weakly in L2(Ω); see Hewitt and Stromberg [14, p. 207]. Fur-
thermore for τ ′ > 1/k we have that h̃k(x) = 0 for every x ∈ Ωτ ′

and h̃k satisfies the
sign condition of (3.10). Let us define a new function hk ∈ Cτ ′

ū,L2(Ω) close to h̃k. Using

the functions {h̄j}j∈I0 introduced in (3.1), we set

hk = h̃k −
∑
j∈I0

αkj h̄j , with αkj = G′
j(ū)h̃k.

As in the proof of Proposition 3.6, we deduce that hk ∈ Cτ ′
ū,L2(Ω) for every k > 1/τ ′.

Moreover, since h̃k ⇀ 0 weakly in L2(Ω), we deduce that αkj → 0, and therefore

hk ⇀ 0 weakly in L2(Ω). On the other hand, since supp{h̃k} is included in the set
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of points of Ω where the bound constraints on the control are active, which has an
empty intersection with the support of each h̄j (j ∈ I0),

‖hk‖L2(Ω) =

{∫
supp{h̃k}

h2
k dx +

∫
Ω\supp{h̃k}

h2
k dx

} 1
2

=



∫

supp{h̃k}
h̃2
k dx +

∫
Ω\supp{h̃k}


∑

j∈I0
αkj h̄j




2

dx




1
2

=


‖h̃k‖2L2(Ω) + ‖

∑
j∈I0

αkj h̄j‖2L2(Ω)




1
2

≥

1− 2

∑
j∈I0

α2
kj‖h̄j‖2L2(Ω)




1
2

k→∞−→ 1.

From this relation and (4.21) with h = hk, we get

δ ≤ δ lim inf
k→∞

‖hk‖2L2(Ω) ≤ lim inf
k→∞

∂2L
∂u2

(ū, λ̄)h2
k.(4.24)

On the other hand, the weak convergence hk ⇀ 0 in L2(Ω) implies the strong con-
vergence in (W 1,q′(Ω))′, and thanks to Lemma 2.4 we deduce zhk → 0 in W 1,q(Ω) ⊂
L2(Ω) strongly. Writing the second derivative of the Lagrangian in terms of the
derivatives of the Hamiltonian, as was done in the proof of Theorem 4.3, and taking
into account that H̄uu(x) < 1/k in the support of h̃k and αkj → 0, we get

lim inf
k→∞

∂2L
∂u2

(ū, λ̄)h2
k ≤ lim sup

k→∞

∫
Ω

H̄uu(x)h
2
k(x) dx + lim sup

k→∞

∫
Ω

H̄yy(x)z
2
hk
(x) dx

+ 2 lim sup
k→∞

∫
Ω

H̄yu(x)hk(x)zhk(x) dx + lim sup
k→∞


ne+ni∑

j=1

λ̄jF
′′
j (ȳ)z

2
hk




≤ lim sup
k→∞

∫
supp{h̃k}

H̄uu(x)h
2
k(x) dx + lim sup

k→∞

∫
Ω\supp{h̃k}

H̄uu(x)h
2
k(x) dx

≤ lim sup
k→∞

1

k

∫
supp{h̃k}

h̃2
k(x) dx + lim sup

k→∞

∫
Ω\supp{h̃k}

H̄uu(x)


∑
j∈I0

αkj h̄j(x)




2

dx

= lim sup
k→∞

1

k

∫
Ω

h̃2
k(x) dx = lim

k→∞
1

k
= 0,

which contradicts (4.24).

(2) =⇒ (1). Let us suppose that (4.21) is not satisfied. Then for every τ ′ > 0
there exists hτ ′ ∈ Cτ ′

ū,L2(Ω) such that ‖hτ ′‖L2(Ω) = 1 and

∂2L
∂u2

(ū, λ̄)h2
τ ′ < τ ′.

Since {hτ ′} is bounded in L2(Ω), there exists a subsequence, denoted in the same way,
such that hτ ′ ⇀ h weakly in L2(Ω). We have that h ∈ C0

ū,L2(Ω). Indeed relations

(3.10) are obtained for h by passing to the limit in the corresponding ones satisfied
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by hτ ′ . Let us see that h(x) = 0 in Ω0:∫
Ω

|h(x)||d(x)| dx =

∫
Ω

h(x)d(x) dx = lim
τ ′→0

∫
Ω

hτ ′(x)d(x) dx

= lim
τ ′→0

∫
Ω\Ωτ′

|hτ ′(x)||d(x)| dx

≤ lim
τ ′→0

τ ′
∫

Ω

|hτ ′(x)| dx ≤ lim
τ ′→0

τ ′√m(Ω)‖hτ ′‖L2(Ω) = 0;

hence h(x)d(x) = 0, and therefore h(x) = 0 for a.e. x ∈ Ω0.
Since H̄uu(x) ≥ ω > 0 in Ω \ Ωτ , (Ω \ Ωτ ′

) ⊂ (Ω \ Ωτ ) for τ ′ < τ, and hτ ′ = 0 in
Ωτ ′ , we have that

lim inf
k→∞

∫
Ω

H̄uu(x)h
2
τ ′(x)dx = lim inf

k→∞

∫
Ω\Ωτ′

H̄uu(x)h
2
τ ′(x)dx

≥
∫

Ω\Ωτ′
H̄uu(x)h

2(x)dx =

∫
Ω

H̄uu(x)h
2(x)dx.

Therefore, using the definition of hτ ′ along with the strong convergence zhτ′ → zh in
W 1,q(Ω), we get

0 ≥ lim sup
τ ′→0

∂2L
∂u2

(ū, λ̄)h2
τ ′ ≥ lim inf

τ ′→0

∂2L
∂u2

(ū, λ̄)h2
τ ′

= lim inf
τ ′→0



∫

Ω

H̄uu(x)h
2
τ ′(x) dx +

∫
Ω

H̄yy(x)z
2
hτ′ (x) dx

+ 2

∫
Ω

H̄yu(x)hτ ′(x)zhτ′ (x) dx +

ne+ni∑
j=1

λ̄jF
′′
j (ȳ)z

2
hτ′


 ≥ ∂2L

∂u2
(ū, λ̄)h2,

which, together with (4.22), implies that h = 0. Finally, using the weak convergence
hτ ′ ⇀ 0 in L2(Ω) and the strong convergence zhτ′ → 0 in W 1,q(Ω), we conclude that

ω = ω lim sup
τ ′→0

‖hτ ′‖2L2(Ω) ≤ lim sup
τ ′→0

∫
Ω

H̄uu(x)h
2
τ ′(x)dx

≤ lim sup
τ ′→0


∂2L

∂u2
(ū, λ̄)h2

τ ′dx−
∫

Ω

H̄yy(x)z
2
hτ′ (x) dx

− 2

∫
Ω

H̄yu(x)hτ ′(x)zhτ′ (x) dx−
ne+ni∑
j=1

λ̄jF
′′
j (ȳ)z

2
hτ′


 ≤ 0,

and we have a contradiction.
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Abstract. Optimal control problems for the stationary as well as the time-dependent solid fuel
ignition model are investigated. Existence of optimal controls is proved, and optimality systems
are derived. The analysis is based on a closedness lemma for the exponential function in L1 and a
generalization of Aubin’s lemma.
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1. Introduction. This paper is concerned with optimal control problems for
systems governed by

yt = ∆y + δe
y + u(1.1)

on the time-space domain (0, T ]×Ω, together with appropriate initial and boundary
conditions. Here δ is a fixed positive constant, and u denotes the control. System (1.1)
arises, for example, in the theory of combustion, where it is referred to as the solid fuel
ignition model [BE]. More precisely, combustion models describe rapid exothermic
chemical reactions in combustible materials. The modeling process is based upon
conservation of mass, species, momentum, and energy. Due to the Arrhenius law
relating the production rate of reactants to their concentration and to temperature,
exponential terms enter these models. Even for single one-step irreversible reactions
involving fuel and an oxidant, the resulting model is a complicated system of partial
differential equations for the variables temperature, density, pressure, and oxidant
mass fraction; see [BE, p. 6]. The model can be significantly simplified if, instead of
considering a compressible gas, one focuses on the thermal reaction formulated for
a nondeformable material of constant density. Expressed in dimensionless form, this
results in the following system of equations describing the combustion of a solid fuel
[BE]: {

Tt = ∆T + εδv
m exp (T−1

εT ),

vt = β∆v − εδΓvm exp (T−1
εT ),

(1.2)

with initial and boundary conditions given, e.g., by{
T (0, ·) = T0, v(0, ·) = v0 in Ω,
T (t, x) = 1, ∂v∂n (t, x) = 0 on (0,∞)× ∂Ω,(1.3)
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where T and v denote the temperature and oxidant mass fraction, respectively. Fur-
ther, β,Γ, and δ are nonnegative constants, m is the mass of a single molecule, ∂v∂n
stands for the outer normal to ∂Ω, and ε = RT0

E , with R the gas constant, E the
total energy of the system, and T0 the temperature corresponding to an equilibrium
state. Under appropriate conditions (see [BE, BK]), a first-order approximation with
respect to changes in T and v is justified. We set T = 1+ ε y and v = 1− ε c, where y
and c are two auxiliary quantities expressing temperature and oxidant mass fraction
changes. If, further, ε� 1, the equations in y and c decouple and the equation for y
is obtained: {

yt = ∆y + δ exp y,
y(0, ·) = y0 in Ω, y(t, x) = 0 on (0,∞)× ∂Ω.(1.4)

This is the uncontrolled solid fuel ignition model. In (1.1) we added a source term to
describe the control mechanism. The stationary version of (1.4) is called the steady
state solid fuel ignition model [BE] and is given by{

∆y + δ exp y = 0 in Ω,
y = 0 on ∂Ω.

(1.5)

Let us mention that (1.4)–(1.5) also play an important role in the study of stellar
structures; we refer to [FK] and the references given there.

An additional motivation for the study of optimal control problems involving
(1.1) is the recent development of diverse numerical methods for solving open loop
optimal control problems for nonlinear partial differential equations. Due to the strong
nonlinearity in (1.1) it serves as an excellent test example. The choice of a numerical
method is guided by, among other considerations, a proper function space framework
for the nonlinear optimal control problem. For (1.1) this choice is not evident. For
numerical results concerning optimal control of (1.1) and its stationary version we
refer to [BK, GH, KK].

Problems of existence and uniqueness for (1.4) as well as the qualitative behavior
of the solutions to (1.1) are rather well understood; see [BE, F] and the references
given there. Depending on δ and the dimension of Ω, the solutions to (1.4) typically
exist only locally and exhibit finite time blow-up at a distinct point within the spatial
domain Ω. The stationary uncontrolled equation (1.5) is also well investigated. To
give the reader a taste of the multitude of properties linked with (1.5), we recall a
specific result for the case in which Ω is the unit ball in R

2: There exists a real
number δ∗ > 0 (see [BE, F]) such that (i) if δ > δ∗, then (1.5) admits no solution; (ii)
if δ ∈ (0, δ∗), then there exist exactly two solutions; (iii) if δ = δ∗, then there exists
exactly one solution to (1.5). Related results also hold in general domains.

Optimal control of equations with the property that they admit multiple states
in the stationary case and finite blow-up in the evolutionary case are called singular
control problems in [L]. Thus studying optimal control for the control system (1.1)
means analyzing a singular control problem with the most severe nonlinearity. The
techniques developed in [L] are not applicable to the optimal control problems of this
paper. In fact most of the work in [L] is concerned with nonlinearities of the power-
law type (± y3). In this case, existence of optimal controls and optimality systems
can be derived if the cost functionals are coercive (radially unbounded) in appropriate
Lp-norms, with p > 2. This would suggest using cost functionals that are coercive
with respect to the L∞-norm. Such a choice would, however, be neither practical
from the point of view of discretization and numerical realization nor mathematically
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appealing. We shall demonstrate that it is possible to obtain the existence of optimal
controls as well as to derive optimality conditions for the stationary and for the
evolutionary case for cost functionals which are coercive in a Hilbert-space setting
involving H1-norms. Let us also point out that optimal control for (1.1) was posed
as an open problem in [L, problem 25, p. 501]. The difficulty of studying just the
existence problem for optimal control of (1.1) arises from the fact that a priori bounds
on the control u do not imply appropriate bounds on the state y. Even if bounds on
both u and y are implied by the choice of the cost functional, it is difficult to pass
to the limit on minimizing subsequences in (1.1), which appears as a constraint in
the optimal control problem. It is worth observing that the introduction of controls
into (1.4)–(1.5) gives additional freedom since it allows the existence of control-state
pairs satisfying (1.4) (resp., (1.5)) for δ values for which the uncontrolled equation
does not admit a solution. Concerning optimal control of (1.1), the dynamical system
behavior of (1.4) suggests that we distinguish two classes of problems. The first class
of problems excludes the situation in which blow-up actually occurs. Control can
be used to avoid blow-up entirely or to steer close to blow-up, but actual blow-up is
avoided. Typical optimal control formulations result in tracking-type problems. The
second conceivable class of control problems is the one which allows blow-up and uses
control to influence blow-up time or location. No research effort so far has focused on
the second class of problems.

Thus, optimal control for (1.1) is a rich subject for a well-motivated class of prob-
lems. Nevertheless only little attention has been paid to it so far. We are only aware
of the two contributions [CKP] and [KK]. To cope with the exponential nonlinearity
in (1.1), the cost functionals in [KK] are chosen such that they contain an exponential
term. In the present paper we do not utilize such a technique. The formulation in
[CKP] uses an implicit constraint on the state variable which allows the determina-
tion of an a priori bound on exp(y) for admissible (y, u) pairs if n ≥ 3. The analysis
in [CKP] is restricted to the stationary case with distributed controls. Let us also
mention [GH], in which optimal control techniques based on a linearization of (1.1)
are studied numerically. Newton methods for optimal control of (1.1) are treated in
[IK].

The present paper develops a different framework for optimal control of (1.1),
which we believe to be more practical than those in [CKP] and [KK], and which
avoids linearization as used in [GH]. It is based on cost functionals that are coercive
with respect to the L2((0, T )×Ω)-norm for the control and the L2(0, T ;H1

0 (Ω))-norm
for the state. The impossibility of obtaining a priori estimates on y in terms of u in
(1.1) requires us to employ several nonstandard methods to guarantee existence for
the optimal control problems that we formulate. In the stationary case the essential
technical tool consists of a closedness lemma of the exponential function in L1-spaces;
for the evolutionary case a generalization of Aubin’s lemma is developed. To derive
optimality systems we use a perturbation argument as well as the Zowe–Kurcyusz
Lagrangian theory. Both distributed as well as boundary control problems are con-
sidered. Section 2 is devoted to optimal control problems for the time-independent
version of (1.1). Section 3 focuses on optimal control for (1.1). The analysis of
multigrid methods applied to the optimality systems obtained in this paper and a
comparison to the approach taken in [KK] is given in [BK].

2. Stationary optimal control problems. This section is devoted to the sta-
tionary control problem

min J(y, u)(2.1)
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subject to (y, u) ∈ H1
0 (Ω)× L2(Ω) and{ −∆y − δey = u in Ω,

y = 0 on ∂Ω,
(2.2)

with Ω a bounded domain in R
n with smooth boundary ∂Ω and δ > 0.

It is assumed that

(A1)



J : H1(Ω)× L2(Ω)→ R is bounded from below, weakly
lower semicontinuous, and coercive, in the sense that
J(y, u)→∞ if |y|H1

0 (Ω) →∞ or |u|L2(Ω) →∞.

A typical example for a cost functional satisfying (A1) is given by tracking functionals
of the form

J(y, u) =
1

2

∫
Ω

|∇(y − z)|2dx+ α
2

∫
Ω

|u|2dx,

with α > 0 and z ∈ H1(Ω).
The notion of a solution to (2.2) is defined next. Let D(Ω) denote the space of

functions in C∞(Ω) with compact support in Ω, endowed with the usual topology,
and let D′(Ω) be its topological dual. The duality pairing between D(Ω) and D′(Ω)
is denoted by (·, ·)D′,D.

Definition 2.1. For u ∈ L2(Ω) a function y ∈ H1
0 (Ω) is called a solution to

equation (2.2) if ey ∈ D′(Ω) and

(∇y,∇v)L2
n
− δ(ey, v)D′,D = (u, v) for all v ∈ D(Ω).(2.3)

Note that if y is a solution to (2.2), then necessarily

ey ∈ H−1(Ω) ∩ L1(Ω).

In fact ey ∈ H−1(Ω) follows from (2.3) and the density of D(Ω) in H1
0 (Ω). Moreover,

ey is measurable and nonnegative so that ey ∈ L1(Ω), provided that
∫
Ω
eydx < ∞.

Set Ω1 = {x ∈ Ω: y(x) ≤ 1} and observe that from (2.3) with v = |y| we have∫
Ω
|yey|dx <∞. It follows that∫

Ω

eydx ≤
∫

Ω1

eydx+

∫
Ω\Ω1

1

y
yeydx ≤ meas Ω +

∫
Ω

|yey|dx <∞,

and hence ey ∈ L1(Ω).
For the proof of existence of a solution to (2.1)–(2.2) we require the following

lemma on maximal monotone operators in L1(Ω) (see [Br, p. 126]).
Lemma 2.2. Let γ be a maximal monotone graph in R × R, and let fn and vn

be measurable functions from Ω to R. Assume that vn → v a.e. on Ω, and fn → f
weakly in L1(Ω). If fn(x) ∈ γ(vn(x)) a.e. on Ω, then f(x) ∈ γ(v(x)) a.e. on Ω.

Theorem 2.3. If (A1) holds, then (2.1)–(2.2) admits a solution (y∗, u∗) ∈
H1

0 (Ω)× L2(Ω) with ey
∗ ∈ H−1(Ω) ∩ L1(Ω).

Proof. There exists a pair (y, u) ∈ H1
0 (Ω)×L2(Ω) satisfying (2.2), and hence the

feasible set for (2.1)–(2.2) is nonempty. Since by (A1) the functional J is bounded from
below, there exists a minimizing sequence (yn, un) ∈ H1

0 (Ω) × L2(Ω) to (2.1)–(2.2).
Due to the coercivity of J , it follows that {(yn, un)}∞n=1 is bounded in H

1
0 (Ω)×L2(Ω).
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Since yn is a solution to (2.2), with u replaced by un for every n, it follows that
{eyn}∞n=1 is bounded in H

−1(Ω). Hence there exist a subsequence of {(yn, un, eyn)},
denoted by the same symbol, and (y∗, u∗, w∗) ∈ H1

0 (Ω)× L2(Ω)×H−1(Ω) such that
yn ⇀ y

∗ in H1
0 (Ω), u

∗
n ⇀ u

∗ in L2(Ω), yn → y∗ a.e. in Ω, and eyn ⇀ w in H−1. Due
to the weak lower semicontinuity of J we have

J(y∗, u∗) ≤ lim inf
n→∞ J(yn, un),

and hence the proof will be complete if we show that y∗ is a solution to (2.2) with
u = u∗.

For this purpose we show that eyn ⇀ w∗ weakly in L1(Ω) by utilizing the
Dunford–Pettis theorem. This requires us to show that the integrals

∫
Ω
|eyn |dx

are uniformly absolutely convergent. Due to the boundedness of {(yn, un)}∞n=1 in
H1

0 (Ω)×L2(Ω) and (2.2) there exists C such that
∫
Ω
eynyndx ≤ C for all n. Let ε > 0

be arbitrary, set R = 2C
ε , and choose δ <

ε
2 e

−2C/ε. Then for every measurable set E
with |E| < δ we find∫

E

eyndx =

∫
E∩{yn≤R}

eyndx+

∫
E∩{yn>R}

eyndx

≤ |E|eR +
∫
E∩{y>R}

eyn

yn
yndx ≤ |E|eR + C

R
<
ε

2
+
ε

2
= ε,

where {yn < R} is short for {x: yn(x) < R a.e.}. Hence the integrals ∫
Ω
|eyn |dx

are uniformly absolutely continuous, and there exists a subsequence of {yn}, again
denoted by {yn}, such that eyn ⇀ w̃ weakly in L1(Ω). Since eyn ⇀ w∗ in H−1(Ω),
we have eyn ⇀ w∗ weakly in L1(Ω). Lemma 2.2 implies that w∗ = ey

∗
, and thus

eyn ⇀ ey
∗
weakly in L1(Ω). Now we can take the limit in

(∇yn,∇v)L2
n
− δ(eyn , v)D′,D = (un, v) for all v ∈ D(Ω)

and obtain

(∇y∗,∇v)L2
n
− δ(ey∗ , v)D′,D = (u∗, v) for all v ∈ D(Ω).

Hence y∗ is a solution to (2.2) with u = u∗, and the proof is complete.
We turn to optimality conditions satisfied by a solution (y∗, u∗) of (2.1)–(2.2). It

is simple to formally derive the first-order conditions


−∆y∗ − δey∗ = u∗ in Ω,
y∗ = 0 on ∂Ω,

−∆λ∗ − δey∗λ∗ = Jy(y∗, u∗) in Ω,
λ∗ = 0 on ∂Ω,
λ∗ = Ju(y∗, u∗) in Ω,

(2.4)

where Jy and Ju denote the Riesz representative of the partial derivatives of J . We
next verify (2.4) in the case in which Ω ⊂ R

2.
For this purpose let (y∗, u∗) denote a solution to (2.1)–(2.2). We recall from [GT,

p. 155] that

{|ey|L4 : y ∈ B} is bounded for every bounded set B ⊂ H1
0 (Ω),

with Ω ⊂ R
2.

(2.5)
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For this result the restriction to n = 2 is essential. It follows in particular
that ey

∗∈ L4(Ω) and, utilizing (2.2) and [T, Theorem 2.2.7], we conclude that y∗

∈ L∞(Ω) ∩H1
0 (Ω). Let G:H

1
0 (Ω)→ H−1 denote the operator

Gy = −∆y − δey∗y.
Note that G is an operator with compact resolvent so that its spectrum consists of
eigenvalues only. We shall require the following assumptions.

(A2) 0 is not an eigenvalue of G.

To interpret (A2) recall that, because (1.5) is a singular system (see [L]), the existence
of a solution to the nonlinear control system, given by the first two equations in
(2.4) here, does not imply well-posedness of the linearized system Gy = g, with y ∈
H1

0 (Ω), g ∈ H−1. The simple structure of the linearization admits a straightforward
characterization of the well-posedness condition by means of (A2). In the evolution
case such a condition will not be necessary.

(A3)

{
J :H1

0 (Ω)× L2(Ω)→ R is continuously Fréchet-differentiable
in a neighborhood U(y∗, u∗) ⊂ H1

0 (Ω)× L2(Ω) of (y∗, u∗).

The tracking functional specified below (A1) satisfies (A3).
Theorem 2.4. If (A1)–(A3) hold, n = 2, and (y∗, u∗) is a solution to (2.1)–(2.2),

then there exists λ∗ ∈ H1
0 (Ω) such that (2.4) holds.

Proof. (i) We first argue by means of the implicit function theorem that there
exists a convex neighborhood U(u∗) ⊂ L2(Ω) of u∗ and a constant k such that (2.2)
has a solution y(u) for every u ∈ U(u∗) and

|y(u)− y∗|H1
0
≤ k|u− u∗|L2 for all u ∈ U(u∗),(2.6)

where y∗ = y(u∗). The implicit function theorem is applied to the mapping g:H1
0 ×

L2(Ω)→ H−1(Ω) defined by

g(y, u) = −∆y − δey − u.
Since (y∗, u∗) is a solution to (2.1)–(2.2), we have g(y∗, u∗) = 0. Moreover, by (2.5)
the mapping g is continuous and Fréchet-differentiable with respect to y, with Fréchet
derivative

gy(y, u)δy = −∆δy − δeyδy.
Note that gy(y

∗, u∗) = G. By (A2) the operator G is continuously invertible from
H−1(Ω) to H1

0 (Ω), and hence the implicit function theorem allows us to ascertain the
existence of U(u∗) and k such that (2.6) holds.

(ii) Let u ∈ U(u∗) be arbitrary, and set v = u − u∗ and y(t) = y(u∗ + tv) for
t ∈ [0, 1]. Observe that

0 = g(y(t), u∗ + tv)− g(y∗, u∗)
= −∆(y(t)− y∗)− tv − δey(t) + δey∗ .(2.7)

Since by assumption Jy(y
∗, u∗) ∈ H−1 and due to (A2), there exists λ∗ ∈ H1

0 (Ω) such
that the third and fourth equations in (2.4) hold. Observe that

0 ≤ J(y(t), u∗ + tv)− J(y∗, u∗) = Jy(y∗, u∗)(y(t)− y∗) + tJu(y∗, u∗)v
+
∫ 1

0
[J ′(y∗ + s(y(t)− y∗), u∗ + stv)− J ′(y∗, u∗)](y(t)− y∗, tv)ds,
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and hence by (2.6) and the definition of y(t)

0 ≤ lim inf
t→0+

1
t {Jy(y∗, u∗)(y(t)− y∗) + t Ju(y∗, u∗)v}.

By (2.7) we obtain

0 ≤ lim inf
t→0+

1
t

{
Jy(y

∗, u∗)(y(t)− y∗) + t Ju(y∗, u∗)v
−〈y(t)− y∗,∆λ∗〉H1

0 ,H
−1 − t(v, λ∗)L2

− δ
(∫ 1

0
(ey

∗+s(y(t)−y∗) − ey∗)(y(t)− y∗)ds, λ∗
)
L2

− δ(ey∗(y(t)− y∗), λ∗)L2

}
.

Using (2.4), (2.6), and (2.7), we can pass to the limit in this last inequality to obtain
0 ≤ Ju(y∗, u∗)v − (v, λ∗)L2 .

Since u ∈ U(u∗) was arbitrary, it follows that
λ∗ = Ju(y∗, u∗).

Here we do not distinguish in notation between the Fréchet-derivative and its Riesz
representative in L2(Ω).

Let us turn to the boundary control problem

min J(y, u)(2.8)

subject to (y, u) ∈ H1(Ω)× L2(∂Ω) and{ −∆y − δey = f in Ω,
∂y
∂n = u on ∂Ω,

(2.9)

where f ∈ L2(Ω) is fixed, Ω ⊂ R
2, and (2.9) is understood in the variational sense,

i.e.,

(∇y,∇v)L2
n
− δ(ey, v)L2 = (f, v)L2 + (u, v)∂Ω for all v ∈ H1(Ω).(2.10)

We shall require the following modifications of (A1)–(A3).

(A1′) This is (A1) with L2(Ω) replaced by L2(∂Ω).

(A2′)



This is (A2) with G replaced by G̃:H1(Ω)→ H1(Ω)∗,
where G̃(δy) is the element of H1(Ω)∗ characterized by
v → (∇δy,∇v)L2

n
− δ(ey∗δy, v) for all v ∈ H1(Ω).

(A3′) This is (A3) with H1
0 (Ω)× L2(Ω) replaced by H1(Ω)× L2(∂Ω).

If (A1′) holds, then assuming that the feasible set is nonempty, it is simple to argue
the existence of a solution (y∗, u∗) ∈ H1(Ω) × L2(∂Ω) with ey

∗ ∈ H1(Ω)∗ ∩ L1(Ω).
The formal first-order necessary optimality condition for (2.8)–(2.9) is given by



−∆y∗ − δey∗ = f in Ω,
∂y∗

∂n = u∗ on ∂Ω,

−∆λ∗ − δey∗λ∗ = Jy(y∗, u∗) in Ω,
∂λ∗
∂n = 0 on ∂Ω,
λ∗ = Ju(y∗, u∗) on ∂Ω.

(2.11)
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Theorem 2.5. If (A1′)–(A3′) hold, n = 2, and (y∗, u∗) is a solution to (2.8)–
(2.9), then there exists λ∗ ∈ H1(Ω) such that (2.11) holds.

Proof. The proof is similar to that of Theorem 2.4, so we only give the necessary
changes. For g̃:H1(Ω)× L2(∂Ω)→ (H1(Ω))∗ defined by

g̃(y, u) = (∇y,∇v)L2
n
− δ(ey, v)L2 − (u, v)L2(∂Ω) for all v ∈ H1(Ω),

one argues that due to (A2′) and (2.5) the implicit function theorem is applicable,
and thus there exists a neighborhood U(u∗) of u∗ in L2(∂Ω) and a constant k > 0
such that for all u ∈ U(u∗) there exists a solution y(u) ∈ H1(Ω) to (2.9) and

|y(u)− y∗|H1 ≤ |u− u∗|L2(∂Ω) for all u ∈ U(u∗).

Due to (A2′) there exists a solution λ∗ to the variational form of the third and fourth
equations in (2.11), i.e., (∇λ∗,∇v)L2

n
− δ(ey∗λ∗, v)L2 = 〈Jy(y∗, u∗), v〉(H1)∗,H1 for all

v ∈ H1(Ω).
For arbitrary u ∈ U(u∗) we find, as in (ii) of the proof of Theorem 2.4,

0 ≤ lim inf
t→0+

1
t Jy(y

∗, u∗)(y(t)− y∗) + t Ju(y∗, u∗)(u− u∗)
+ (∇(y(t)− y∗),∇λ∗)L2

n
− t (u− u∗, λ∗)L2(∂Ω)

− δ
(∫ 1

0
(ey

∗+s(y(t)−y∗) − ey∗)(y(t)− y∗)ds, λ∗
)
L2
− δ(ey∗(y(t)− y∗), λ∗)L2

= Ju(y
∗, u∗)(u− u∗)− (u− u∗, λ∗)L2(∂Ω),

and thus (2.11) follows.

3. Evolutionary optimal control problems. This section is devoted to opti-
mal control problems of the type

min J(y, y(T, ·), u)(3.1)

subject to (y, y(T, ·), u) ∈W × L2(Ω)× L2(Q) and

yt = ∆y + δe

y + u in Q = (0, T ]× Ω,
y(0, ·) = ϕ in Ω,
y = 0 on Σ = (0, T ]× ∂Ω,

(3.2)

where Ω is a bounded domain in R
n with smooth boundary ∂Ω, ϕ ∈ L2(Ω), and

W = {y ∈ L2(0, T ;H1
0 (Ω)): yt ∈ L1(0, T ;X∗

1 )}

endowed with |y|W = |y|L2(H1
0 (Ω)) + |yt|L1(x∗

1) as norm. Here |y|L2(H1
0 (Ω)) stands for

|y|L2(0,T ;H1
0 (Ω)). X

∗
1 denotes the topological dual of a reflexive Banach space X1 with

the property that

D(Ω) ↪→ X1 ↪→ (L∞(Ω) ∩H1
0 (Ω))

with continuous and dense injections. It follows that (L1(Ω) ∪ H−1(Ω)) ↪→ X∗
1 ⊂

D′(Ω) with continuous and dense injections as well. The choice X1 = W
1,p
0 (Ω), p >

n, satisfies the specified properties. Henceforth u is assumed to be an element of
L2(Q). Contents permitting, Lp(X) stands for Lp(0, T ;X) with X a Banach space
and p ∈ [1,∞].
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Definition 3.1. A function y ∈ W is called a solution to (3.2) if ey ∈ L1(Q)
and 


(yt, v)L1(X∗

1 ),L∞(X1) + (∇y,∇v)L2(L2
n) = δ(e

y, v)L1(Q),L∞(Q)

+(u, v)L2(Q) for all v ∈ L∞(0, T ;X1),
y(0, ·) = ϕ.

(3.3)

Recall that every element of W , and hence every solution to (3.2), can be iden-
tified a.e. with respect to t ∈ [0, T ] with a function in C([0, T ];X∗

1 ); see [Ba]. Since
L∞(0, T ;X1) is the dual space to L

1(0, T ;X∗
1 ), a function y ∈W is a solution to (3.2)

if and only if ey ∈ L1(Q), y(0, ·) = ϕ, and
yt = ∆y + δe

y + u in L1(0, T ;X∗
1 ).(3.4)

We shall require the following a priori bound on eyy when y is a solution to (3.2).
Proposition 3.2. Let u ∈ L2(Q) and let y = y(u) be a solution to (3.2) with

y(T, ·) ∈ L2(Ω). Then eyy ∈ L1(Q) and

δ
∫
Q
eyydx+ 1

2 |ϕ|2L2(Ω)

≤ 1
2 |y(T, ·)|2L2(Ω) + |y|2L2(0,T ;H1

0 )
+ 1

2 |u|2L2(Q) +
1
2 |y|2L2(Q).

(3.5)

Formally, (3.5) is obtained by taking the inner product in L2(Q) of (3.4) with y.
A detailed proof is given in the appendix.

To establish the existence of a solution to (3.1)–(3.2) the following assumption is
required:

(A4)



J :X = L2(0, T ;H1

0 (Ω))× L2(Ω)× L2(Q)→ R is bounded from
below, weakly lower semicontinuous, and coercive in the sense that
J(y, y(T, ·), u)→∞ if |y|L2(0,T ;H1

0 ) →∞ or |y(T )|L2(Ω) →∞
or |u|L2(Q) →∞.

Theorem 3.3. If (A4) holds, then (3.1)–(3.2) admits a solution (y∗, y∗(T, ·), u∗)
∈W × L2(Ω)× L2(Q).

Proof. The set of feasible points for (3.1)–(3.2) is nonempty. By assumption
(A4) the functional J is bounded from below and there exists a minimizing sequence
{(yn, yn(T, ·), un}∞n=1 ∈W × L2(Ω)× L2(Q) for (3.1)–(3.2). Due to (A4) there exists
a subsequence, denoted by the same symbol, and (y∗, z∗, u∗) ∈ X such that

(yn, yn(T, ·), un)⇀ (y∗, z∗, u∗) in X.(3.6)

From (3.5), moreover,

{eynyn}∞n=1 is bounded in L
1(Q).(3.7)

Due to the weak lower semicontinuity of J we have

J(y∗, y∗(T, ·), u∗) ≤ J(y, y(T, ·), u)
for all pairs (y, y(T, ·), u) ∈ W × L2(Ω) × L2(Q) which satisfy (3.2). It thus remains
to show that (y∗, u∗) ∈ W × L2(Q) satisfies (3.2). Since {yn}∞n=1 is bounded in
L2(0, T ;H1

0 (Ω)) and since (3.7) with yn = y(un) a solution to (3.2) holds, a general-
ization of Aubin’s lemma given in Lemma 3.4 below implies the existence of a subse-
quence of {yn}∞n=1 denoted by the same symbol and of an element ỹ ∈ L1(0, T ;L2(Ω))
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such that yn → ỹ in L1(0, T ;L2(Ω)). Since yn ⇀ y
∗ in L2(0, T ;H1

0 (Ω)), it follows
that

yn ⇀ y
∗ in L1(0, T ;L2(Ω)).(3.8)

As a consequence there exists a further subsequence, again denoted by yn, converging
a.e. in Q to y∗. Due to (3.7) the Dunford–Pettis theorem can be used as in the proof
of Theorem 2.3 to argue that

eyn ⇀ ey
∗
in L1(Q).(3.9)

Finally, we consider the convergence of { ddtyn}∞n=1. Due to (3.6), (3.9), and (3.4),
with u replaced by un, there exists z ∈ L1(0, T ;X∗

1 ) such that

d

dt
yn ⇀ z in L

1(0, T ;X∗
1 ).(3.10)

To argue that z = d
dty

∗, we introduce the differentiation operator

D: dom (D) ⊂ L1(0, T ;X∗
1 )→ L1(0, T ;X∗

1 ),

with dom (D) = {y ∈ L1(0, T ;X∗
1 ),

d
dty ∈ L1(0, T ;X∗

1 ), y(0) = 0}. Since the inverse
of D is a bounded linear operator, D is closed. Due to (3.8) and (3.10),

yn − ϕ→ y∗ − ϕ and
d

dt
yn ⇀ z in L

1(0, T ;X∗
1 ),

and hence y∗ = z and

d

dt
yn ⇀ z in L

1(0, T ;X∗
1 ).(3.11)

Taking the limit in

( ddtyn, v)L1(X∗

1 ),L∞(X1) + (∇yn,∇v)L2(L2
n) = δ(e

yn , v)L1(Q),L∞(Q) + (u, v)L2(Q)

for all v ∈ L∞(0, T ;X1),
yn(0, ·) = ϕ,

and utilizing (3.6), (3.9), and (3.11), we find

( ddty

∗, v)L1(X∗
1 ),L∞(X1) + (∇y∗,∇v)L2(L2

n) = δ(e
y∗ , v)L1(Q),L∞(Q) + (u, v)L2(Q)

for all v ∈ L∞(0, T ;X1),
y∗(0, ·) = ϕ.
Thus y∗ is a solution to (3.2) with u = u∗ as desired.
Lemma 3.4. Let yn denote solutions to (3.2) with u replaced by un ∈ L2(Q),

n ∈ N, and assume that {un}∞n=1 is bounded in L
2(Q), that {yn}∞n=1 is bounded in

L2(0, T ;H1
0 (Ω)), and that {eynyn}∞n=1 is bounded in L1(Q). Then there exists a

subsequence {ynk}∞k=1 of {yn}∞n=1 and y∗ ∈ L2(0, T ;H1
0 ) such that ynk → y∗ in

L1(0, T ;L2(Ω)) as k →∞.
Proof. For the proof we follow essentially an Aubin-lemma argument [CF].
(i) Since H1

0 (Ω) ⊂ L2(Ω) ⊂ X∗
1 with H

1
0 (Ω), compact in L

2(Ω), there exists for
every ε > 0 a constant cε > 0 such that

|y|L2(Ω) ≤ ε|y|H1
0 (Ω) + cε|y|X∗

1
for all y ∈ H1

0 (Ω).(3.12)
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(ii) Due to the assumptions on the boundedness of {yn}∞n=1, there exists y
∗ ∈

L2(0, T ;H1
0 ) and a subsequence of {yn}, denoted by the same symbol, such that

yn ⇀ y
∗ in L2(0, T ;H1

0 ). We need to show that yn → y∗ in L1(0, T ;L2(Ω)). By
assumption there exists a constant C > 0 such that

|yn|L2(H1
0 (Ω)) ≤ C, |un|L2(Q) ≤ C, and |eynyn|L1(Q) ≤ C(3.13)

for all n ∈ N. Due to (3.12) and (3.13) we have for every ε > 0∫ T
0
|yn − y∗|L2(Ω)dt ≤ ε

∫ T
0
|yn − y∗|H1

0 (Ω)dt+ cε
∫ T
0
|yn − y∗|X∗

1
dt

≤ ε√T (C + |y∗|L2(H1
0 (Ω))

)
+ cε

∫ T
0
|yn − y∗|X∗

1
dt for all n.

(3.14)

(iii) We next show that yn(t) → y∗(t) in X∗
1 for almost every t ∈ (0, T ). First

observe that for every interval I ⊂ [0, T ]∫
I

yn(t, ·)dt→
∫
I

y∗(t, ·)dt in L2(Ω).(3.15)

In fact, let χI denote the characteristic function of I and let / ∈ H−1(Ω) be
arbitrary. Then(∫

I

(yn(t, ·)− y∗(t, ·))dt, /
)
H1

0 ,H
−1

=

∫ T

0

(yn(t, ·)− y∗(t, ·), /)H1
0 ,H

−1χI dt→ 0,

since yn ⇀ y
∗ in L2(0, T ;H1

0 ). Hence
∫
I
yn(t, ·)dt ⇀

∫
I
y∗(t, ·)dt in H1

0 (Ω), and (3.15)
follows by the compactness of H1

0 (Ω) in L
2(Ω). To verify that yn(t) → y∗(t) in X∗

1

for almost every t ∈ (0, T ), let δ > o be arbitrary. We have the following equation in
X∗

1 :

yn(t) =
1

δ

∫ t

t−δ
yn(s)ds+

1

δ

∫ t

t−δ
(s− t+ δ) d

ds
yn(s)ds.(3.16)

We turn to the second term on the right-hand side of (3.16). Utilizing (3.15)
with u replaced by un, and denoting by k the embedding constant of L

1(Ω) as well
as H−1(Ω) into X∗

1 , we find

1
δ |
∫ t
t−δ(s− t+ δ) ddsyn(s)ds|X∗

1
≤ k

δ

∫ t
t−δ |(s− t+ δ)∆yn(s)|H−1 ds

+ k
δ

∫ t
t−δ |(s− t+ δ)eyn(s)|L1ds+ k

δ

∫ t
t−δ |(s− t+ δ)un(s)|L2 ds

≤ k
δ

[
(
∫ t
t−δ(s− t+ δ)2ds)1/2((

∫ t
t−δ |∆yn(s)|2H−1ds)1/2 + (

∫ t
t−δ |un(s)|2L2ds)1/2)

+
∫ t
t−δ |(s− t+ δ)eyn(s)|L1ds

]
≤ k

δ

[
( δ

3

3 )
1/2C(1 + |Ω|1/2) + ∫ δ

0

∣∣∣ s
yn(t+s−δ) e

yn(t+s−δ) yn(t+ s− δ)
∣∣∣
L1
ds
]
,

where we used (3.13). For R > 0 we decompose Q into QR = {(t, x) ∈ Q: yn(t, x) ≤
R}, where the dependence of QR on n is supressed, and its complement. Utilizing the
last inequality in (3.13), we obtain

1
δ |
∫ t
t−δ(s− t+ δ) dds yn(s)ds|X∗

1
≤ kC√

3

√
δ(1 + |Ω|1/2)

+ k
δ

[ ∫ δ
0
s
∫
Ω
eRdx ds+ 1

R

∫ δ
0

∫
Ω
yn(t+ s− δ)eyn(t+s−δ)ds

]
≤ kC√

3

√
δ(1 + |Ω|1/2) + 1

2δe
R|Ω|+ C

R .

(3.17)
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Henceforth let t be a Lebesgue point for y∗, so that

lim
δ→0+

1

δ

∫ t

t−δ
y∗(s)ds = y∗(t).(3.18)

Let ε > 0 be arbitrary. Due to (3.17) and (3.18), one can choose R and subsequently

δ such that 1
δ |
∫ t
t−δ(s− t+ δ) dds yn(s)ds|X∗

1
≤ ε0 and | 1δ

∫ t
t−δ y

∗(s)ds−y∗(t)| ≤ ε for all
n. Combined with (3.16) we find |yn(t)−y∗(t)|X∗

1
≤ | 1δ

∫ t
t−δ(yn(s)−y∗(s))ds|X∗

1
+2ε0,

and, since δ is fixed in this last inequality, (3.15) implies that yn(t) → y∗(t) in X∗
1 .

The set of Lebesgue points of y∗ is dense in (0, T ), and thus yn(t)→ y∗(t) in X∗
1 for

almost every t ∈ (0, T ).
(iv) Due to (3.16) and (3.17) Lebesgue’s bounded convergence theorem is appli-

cable to passing to the limit on the right-hand side of (3.14). This implies the desired
result.

Lemma 3.4 differs from the classical Aubin lemma [CF] in that { ddt yn}∞n=1 is not
bounded in Lp(0, T ;X∗

1 ) for some p > 1. Rather, the boundedness of {eynyn}∞n=1 in
L1(Q) is used as well as the assumption that the functions yn are solutions of (3.2).

We turn to a modification of (3.1)–(3.2) and consider a cost functional without
atom at T as in (3.1). For this purpose we define

WG =
{
y ∈ L2(0, T ;H1

0 (Ω)): yt ∈ L1
G(0, T ;X

∗
1 )
}
,

where

L1
G(0, T ;X

∗
1 ) =

{
y: (0, T )→ X∗

1 measurable :

∫ T

0

|y(t)|X∗
1
(T − t)dt <∞

}
.

For u ∈ L2(Q) a function y = y(u) ∈ WG is called the solution in WG of (3.2) if
ey ∈ L1

G and {
yt = ∆y + δey + u in L1

G,
y(0) = ϕ.

(3.19)

Let us consider{
minJ(y, u)
subject to (y, u) ∈WG × L2(Q) with y a solution to (3.2),

(3.20)

where Ω satisfies the properties specified at the beginning of this section and ϕ ∈
L2(Ω). We require

(A5)



J :L2(0, T ;H1

0 (Ω))× L2(Q)→ R is bounded from below,
weakly lower semicontinuous, and coercive in the sense that
J(y, u)→∞ if |y|L2(0,T ;H1

0 ) →∞ or |u|L2(Q) →∞.

Theorem 3.5. If (A5) holds, then (3.20) admits a solution (y∗, u∗) ∈ WG ×
L2(Q).

Proof. The set of feasible points is nonempty. By (A5) there exists a minimizing
sequence {(yn, un)} ∈ L2(0, T ;H1

0 (Ω)) × L2(Q) for (3.20). Moreover, there exists a
subsequence, denoted by the same symbol, as well as (y∗, u∗) ∈ L2(0, T ;H1

0 (Ω)) ×
L2(Q) such that

(yn, un)⇀ (y∗, u∗) in L2(0, T ;H1
0 (Ω))× L2(Q).(3.21)
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Due to the weak lower semicontinuity of J ,

J(y∗, u∗) ≤ J(y, u)
for all (y, u) satisfying (3.2). It thus remains to show that y∗ ∈WG and that (y

∗, u∗)
is a solution to (3.2).

Let y = y(u) with u ∈ L2(Q) be a solution to (3.2). Taking the inner product of
(3.2) in L2(Q) with (T − t)y, one computes that

δ
∫
Q
eyy(T − T )dQ+ T

2 |ϕ|2L2(Ω)

≤ |y|2
L2(0,T ;H1

0 )
+ |y|2L2(Q) +

T 2

2 |u|2L2(Q).
(3.22)

The detailed proof is similar to that of Proposition 3.2. Let k0 be such that T ≥ 1
k0
.

From (3.22) it follows that {eynyn|(0,T− 1
k )}∞n=1 is bounded in L

2(0, T − 1
k ;H

1
0 (Ω)) for

every k ≥ k0. By construction, {yn|(0,T− 1
k )}∞n=1 is bounded in L

2(0, T − 1
k ;H

1
0 (Ω))

for every k ≥ k0 as well. Arguing as in the proof of Theorem 3.3, there exists a nested
sequence of subsequences satisfying {nk+1} ≺ {nk} ≺ {n}, k ≥ k0, and

ynk ⇀ y
∗ in L1

(
0, T − 1

k
;L2(Ω)

)
,

eynk ⇀ ey
∗
in L1

((
0, T − 1

k

)
× Ω

)
,

d

dt
ynk ⇀

d

dt
y∗ in L1

(
0, T − 1

k
;X∗

1

)
as nk →∞,

and y∗ is a solution to (3.2) on (0, T − 1
′k ) for k ≥ k0. In particular, this implies that

d
dty

∗ = ∆y∗ + δey
∗
+ u∗ for almost every t ∈ [0, T ], and y∗(0) = ϕ. It remains to

argue that y∗ ∈WG. Since y
∗|(0,T− 1

k ) is a solution to (3.2) on (0, T − 1
k ), for k ≥ k0,

one argues as for (3.22) to obtain for every k ≥ k0

δ

∫ T− 1
k

0

∫
Ω

∣∣∣ey∗y∗ (T − 1
k − t

)∣∣∣ dxdt+ T− 1
k

2 |ϕ|2L2(Ω)

≤ |y∗|2L2(0,T ;H1
0 ) + |y∗|2L2(Q) +

T 2

2 |u∗|2L2(Q).

Taking the limit with respect to k, we find

δ

∫
Q

ey
∗
y∗(T − t)dQ+ T

2 |ϕ|2L2(Ω) ≤ |y∗|2L2(0,T ;H1
0 ) + |y∗|2L2(Q) +

T 2

2 |u∗|2L2(Q),

and consequently
∫
Q
ey

∗
(T − t)dQ < ∞. Since y∗ ∈ L2(0, T ;H1

0 (Ω), it follows that

y∗ ∈WG and
d
dty

∗ = ∆y∗ + δey
∗
+ u∗ in L1

G(0, T ;x
∗
1), as desired.

3.1. Optimality conditions. We turn to the optimality condition satisfied by a
solution (y∗, y∗(T, ·), u∗) to (3.1)–(3.2). Again it is simple to formally derive first-order
optimality conditions:



y∗t = ∆y
∗ + δey

∗
+ u∗ in Q,

y∗(0, ·) = ϕ in Ω, y∗ = 0 on Σ,
−λ∗t = ∆λ∗ + δey

∗
λ∗ − Jy(y∗, y∗(T, ·), u∗) in Q,

λ∗(T, ·) = Jy(T,·)(y∗, y∗(T, ·), u∗) in Ω, λ∗ = 0 on Σ,
λ∗ = Ju(y∗, y∗(T, ·), u∗) in Q.

(3.23)
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We shall use (3.23)(i) to denote the first equation in (3.23), and similarly for the other
equations in (3.23). Next (3.23) is justified in special cases. We recall the definition
of X in (A4) and introduce a further assumption:

(A6)

{
J :X→ R is continuously Fréchet-differentiable in a neighborhood
U(y∗, y∗(T, ·), u∗) ⊂ X of (y∗, y∗(T, ·), u∗).

We set W = {y ∈ L2(0, T ;H1
0 (Ω)): yt ∈ L2(0, T ;H−1(Ω))}, and recall from the

theory of parabolic equations that there exists a solution λ∗ ∈ W to (3.23)(iii) and
(iv), provided that ey

∗
is sufficiently smooth.

Theorem 3.6. If (A4) and (A6) hold, n ≤ 2, ϕ ∈ H1
0 (Ω), and (y

∗, y∗(T, ·), u∗) is
a solution to (3.1)–(3.2) with ey

∗ ∈ L2(Q), then there exists λ∗ ∈ W such that (3.23)
holds.

Proof. For the proof we require the space

W 2,1 = {y ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)): yt ∈ L2(0, T ;L2(Ω))},

endowed with the natural Hilbert-space norm. Recall that W 2,1 is continuously em-
bedded in C(0, T ;H1

0 (Ω)), and hence for y ∈ W 2,1 we find ey ∈ C(0, T ;L4(Ω)). The
assumptions ey

∗∈ L2(Q) and ϕ ∈ H1
0 (Ω) imply that y

∗ ∈W 2,1.
(i) We now follow the proof of Theorem 2.4 and argue that there exists a convex

neighborhood U(u∗) ⊂ L2(Q) of u∗ and a constant k such that (3.2) has a solution
y(u) for every u ∈ U(u∗) and

|y(u)− y∗|W 2,1 ≤ k|u− u∗|L2(Q) for every u ∈ U(u∗).(3.24)

The implicit function theorem is applied to the mapping g:W 2,1×L2(Q)→ L2(Q)×
L2(Ω) defined by

g(y, u) = (yt −∆y − δey − u, y(0, ·)− ϕ).

Note that g(y∗, u∗) = 0. Utilizing (2.5), one can show (see, e.g., [KK]) that y → ey is
continuously Fréchet-differentiable from W 2,1 to L∞(0, T ;L4(Ω)). It follows that g is
continuously Fréchet-differentiable with its partial derivative with respect to y given
by

gy(y, u)δy = ((δy)t −∆δy − δeyδy, δy(0, ·)).

The theory of parabolic equations implies that gy(y
∗, u∗):W → L2(Q) × L2(Ω) is

continuously invertible, and hence (3.24) follows.
(ii) Proceeding as in the proof of Theorem 2.4, we choose u ∈ U(u∗) arbitrarily

and set v = u− u∗ and y(t) = y(u∗ + tv) for t ∈ [0, 1]. Observe that

0 = g(y(t), u∗+tv)−g(y∗, u∗) = d
dt
(y(t)−y∗)−∆(y(t)−y∗)−tv−δey(t)+δey∗(t).

(3.25)
By assumption, Jy(y

∗, y∗(T, ·), u∗) ∈ L2(0, T ;H−1(Ω)), and hence there exists
λ∗ ∈ W such that (3.23)(iii) and (iv) hold. It remains to verify the last equation of
(3.23). Due to (A6) and (3.25) we find
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0 ≤ lim inf
t→0+

1
t

{
Jy(y

∗, y∗(T, ·), u∗)(y(t)− y∗)
+ Jy(T,·)(y∗, y∗(T, ·), u∗)(y(t)(T, ·)− y∗(T, ·)) + tJu(y∗, y∗(T, ·), u∗)v
+ (y(t)(T, ·)− y∗(T, ·), λ∗(T, ·))L2(Ω)

− 〈y(t)− y∗, λ∗t 〉L2(0,T ;H1
0 ),L2(0,T ;H−1)

− 〈y(t)− y∗,∆λ∗〉L2(0,T ;H1
0 ),L2(0,T ;H−1) − t(v, λ∗)L2(Q)

− δ
(∫ 1

0
(ey

∗+s(y(t)−y∗) − ey∗)(y(t)− y∗)ds, λ∗
)
L2(Q)

− δ(ey∗(y(t)− y∗), λ∗)L2(Q)

}
= Ju(y

∗, y∗(T, ·), u∗)v − (v, λ∗)L2(Q),

where we used (3.23)(iii) and (iv) and the fact that {|e(y∗+s(y(t)−y∗))(σ,·)|L4(Ω):
s ∈ [0, 1], σ, t ∈ [0, T ]} is bounded. Since u ∈ U(u∗) is chosen arbitrarily, the last
equation in (3.23) holds as well.

We next consider a variation of problem (3.1)–(3.2) aimed at eliminating the
regularity condition ey

∗ ∈ L2(Q) in Theorem 3.6. This can be achieved at the expense
of introducing the bound∫

Ω

|∇y(t, ·)|2dx ≤M a.e. t ∈ [0, T ],

for some M > 0, to (3.1)–(3.2). This implies that the optimal state is necessarily an
element of W 2,1. This motivates us to consider

minJ(y, u)(3.26)

subject to (y, u) ∈W 2,1 × L2(Q), and{
(y, u) satisfies (3.2) with∫
Ω
|∇y(t, ·)|2dx ≤M for almost every t ∈ [0, T ].(3.27)

Here n = 2,M > 0 is fixed, and ϕ ∈ H1
0 (Ω) with |∇ϕ|L2

n
≤ M . Let (y∗, u∗) de-

note a solution to (3.26)–(3.27), which is readily shown to exist if J :W 2,1 × L2(Q)
is bounded below, weakly lower semicontinuous, and radially unbounded in the sense
that J(y, u)→∞ if |y|W 2,1 →∞ or |u|L2 →∞. We require

(A7)

{
J :W 2,1 → R is continuously Fréchet-differentiable in a
neighborhood U(y∗, u∗) ⊂W 2,1 × L2(Q) of (y∗, u∗).

Theorem 3.7. If (y∗, u∗) is a solution to (3.26)–(3.27) and (A7) is satisfied,
then there exists λ∗ ∈ L2(Q) such that (3.23)(i), (ii), and (v) hold, while (iii) and (iv)
are replaced by

Jy(y
∗, u∗)(y − y∗) + (λ∗, (y − y∗)t −∆(y − y∗)− δey∗(y − y∗))L2(Q) ≥ 0(3.28)

for all y ∈W 2,1 with
∫
Ω
|∇y(t, ·)|2 ≤M for almost every t ∈ [0, T ], and y = y(0, ·) =

ϕ.
Proof. The result follows from an abstract theorem on the existence of Lagrange

multipliers for optimization problems [ZK]. Here a Lagrange multiplier is only intro-
duced for the constraint g:W 2,1 × L2(Q)→ L2(Q), given by

g(y, u) = yt −∆y − δey − u,
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while y(0, ·) = ϕ and |∇y(t, ·)|2L2
n
≤ M , for almost every t ∈ [0, T ], are treated

as explicit constraints. Since W 2,1 is continuously embedded in C(0, T ;H1
0 (Ω)), it

follows that {y ∈W 2,1: y(0, ·) = ϕ, |∇y(t, ·)|2L2
n
≤M a.e. t ∈ [0, T ]} is a closed convex

subset of W 2,1. Moreover gu:L
2(Q) → L2(Q) is surjective, and hence (3.28) follows

from Theorem 3.3 in [ZK].
As a direct consequence of Theorem 3.6, we observe that if (y∗, u∗) is a solution

to (3.26)–(3.27) such that |∇y∗(t, ·)|2 < M for all t and (A7) holds, then (y∗, u∗)
satisfies the optimality system (3.23).

Let us close the section with a remark on boundary control problems.
Remark 3.8. The technique of Theorem 3.3 is also applicable to the treatment of

certain boundary control problems. Let us consider

minJ(y, y(T, ·), u)(3.29)

subject to (y, y(T, ·), u) ∈ W̃ × L2(Ω)× L2(Σ) and

yt = ∆y + δe

y in Q,
∂y
∂n = u on Σ,
y(0, ·) = ϕ in Ω,

(3.30)

where

W̃ = {y ∈ L2(0, T ;H1(Ω)): yt ∈ L1(0, T ;X∗
1 )}.

For u ∈ L2(Σ) a function y is called a solution to (3.30) if ey ∈ L1(Q) and

(yt, v)L1(X∗

1 ),L∞(X1) + (∇y,∇v)L2(L2
n) = δ(e

y, v)L1(Q),L∞(Q)

+(u, v)L2(Σ) for all v ∈ L∞(0, T ;X1),
y(0, ·) = ϕ.

(3.31)

We introduce the condition

(A8)



J :L2(0, T ;H1(Ω))× L2(Ω)× L2(Σ)→ R is bounded from below,
weakly lower semicontinuous, and coercive in the sense that
J(y, y(T, ·), u)→∞ if |y|L2(0,T ;H1) →∞ or |y(T, ·)|L2(Ω) →∞ or
|u|L2(Σ) →∞.

If (A8) holds and there exists u ∈ L2(Σ) such that (3.30) admits a solution y(u), then

there exists a solution (y∗, y∗(T, ·), u∗) ∈ W̃ ×L2(Ω)×L1(Σ). In fact, one first argues,
in a manner similar to that used for Proposition 3.2, that every solution y to (3.30)
satisfies

δ
∫
Q
eyydQ+ 1

2 |ϕ|2L2(Ω)

≤ 1
2 |y(T, ·)|2L2(Ω) + |∇y|2L2(L2

n) +
1
2 |u|2L2(Σ) +

K
2 |y|2L2(H1),

(3.32)

where K is the embedding constant of L2(∂Ω) into H1(Ω). The existence proof is
then quite similar to that of Theorem 3.3, with H1

0 (Ω) and W replaced by H1(Ω) and

W̃ . Formally it simple to derive a first-order optimality condition for (3.29)–(3.30).
The detailed analysis of optimality conditions for boundary control problems is not
within the scope of this paper, however.
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Appendix. Proof of Proposition 3.2. Let {Sε: ε > 0} denote the semigroup
generated by the Laplacian with homogenous Dirichlet boundary conditions in L1(Ω).
Recall that Sε(L

1(Ω)) ⊂ L∞(Ω) for every ε > 0. The restriction of Sε to L2(Ω) will be
denoted by Sε as well. Sε is used as a spatial smoothing operation. For the temporal
smoothing we use

Tε:L
1(0, T ;X∗

1 )→W 1,1(0, T ;X∗
1 )

given by

Tεv(t) =
1

ε

∫ t+ε

t

v(s) ds,

where v is extended by 0 for s > T . Applying TεSε to (3.4), we obtain for every ε > 0

(TεSεy)t = ∆(TεSεy) + δTεSεe
y + TεSεu,(A.1)

where TεSεy ∈ W 1,2(0, T ;H1
0 ∩ L∞). In fact, y ∈ L2(0, T ;H1

0 ), Sεy ∈ L2(0, T ;
H1

0 ∩L∞), and hence TεSεy ∈W 1,2(0, T ;H1
0 ∩L∞). In addition we have ∆(TεSεy) ∈

L2(0, T ;L2), TεSεu ∈ L2(0, T ;L2), and TεSεe
y ∈ L∞(Q). Set zε = TεSεy ∈ L∞(Q)

and note that zε can be identified a.e. with an element of H
1(Q). Since the positive

part z+ε of zε is an element of H
1(Q) and L2(0, T ;H1

0 ) as well, we can integrate (A.1)
against z+ on Q. Let us first consider

∫
Q

zεz
+
ε,t =

∫
Ω

∫ T

0

zεz
+
ε,t =

1

2

∫
Ω

|z+ε (T, ·)|2 −
1

2

∫
Ω

|z+ε (0, ·)|2.

We thus obtain from (A.1)

δ
∫
Q
TεSεe

y(TεSεy)
+dx dt+ 1

2

∫
Ω
|z+ε (0, ·)|2dx

≤ 1
2

∫
Ω
|z+ε (T, ·)|2dx+

∫ T
0
(∇zε,∇z+ε )L2

n(Ω)dt

− ∫ T
0
(TεSεu, z

+
ε )L2(Ω)dt.

Applying Fatou’s lemma, we obtain

δ
∫
Q
eyy+dx dt+ 1

2

∫
Ω
|ϕ+|2dx

≤ lim inf
ε→0+

[
1
2

∫
Ω
|z+ε (T, ·)|2dx+

∫ T
0
(∇zε,∇z+ε )L2

n(Ω)dt

− ∫ T
0
(TεSεu, z

+
ε )L2(Ω)dt

]
.

(A.2)

Next Lebesque’s bounded convergence theorem is applied to the right-hand side of
(A.2). It is applicable, since Sε is a contraction semigroup and Tε is a contraction as
well. To pass to the limit in the expression (∇zε(t, ·),∇z+ε (t, ·))L2

n(Ω) for fixed t > 0,
we recall that the mapping u→ u+ is continuous from H1(Ω) to itself (see [T, p. 79]).
Hence we have

δ
∫
Q
eyy dx dt+ 1

2

∫
Ω
|ϕ+|2dx

≤ 1
2

∫
Ω
|y+(T, ·)|2L2(Ω)dx+

∫ T
0
|∇y+|2L2

n(Ω)dt−
∫ T
0
(u, y+)L2(Ω)dt.

(A.3)

The analogous estimate holds for y−, and hence (3.5) follows.
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VARIATIONAL PROBLEMS WITH NONCONVEX, NONCOERCIVE,
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Abstract. We consider the functional F (v) =
∫ b
a f(t, v′(t))dt in Hp = {v ∈ W 1,p : v(a) =

0, v(b) = d}, p ∈ [1,+∞]. Under only the assumption that the integrand is L ⊗ Bn-measurable, we
prove characterizations of strong and weak minimizers both in terms of the minimizers of the relaxed
functional and by means of the Euler–Lagrange inclusion.

As an application, we provide necessary and sufficient conditions for the existence of the mini-
mum, expressed in terms of a limitation on the width of the slope d.

Key words. strong and weak minimizers, Euler–Lagrange condition, convexification, subdiffer-
ential

AMS subject classifications. 49K05, 49J05

PII. S036301299936141X

1. Introduction. The study of nonsmooth and nonconvex variational problems
has been widely developed in recent years, with regard to both necessary conditions
for optimality and sufficient conditions for existence of minimizers. The develop-
ment of nonsmooth analysis has allowed researchers to deal with nonregular prob-
lems. In particular, the introduction of various types of subdifferentials that are
sharper and sharper, starting with Clarke’s and continuing with the more refined
Mordukhovich’s subdifferential, permitted the achievement of nonsmooth versions of
the classical Euler–Lagrange condition (see [7], [8], [12], [13], [21], [22], [23], [24] [25],
[31]). In particular, in the paper by Ioffe and Rockafellar [13], which deals with nons-
mooth integrands f = f(t, v(t), v′(t)) everywhere finite, the Euler–Lagrange condition
is proved for weak local minimizers (w.l.m.) by means of this last type of subdifferen-
tial.

In the same paper the authors also prove the Weierstrass condition for minimizers
in the W 1,1-norm (see [13, Theorem 1]), which are usually called intermediate min-
imizers. Of course, this condition can not hold in general for w.l.m., since it has a
global character.

In this paper we consider the optimization problem

minimize F (v) =

∫ b

a

f(t, v′(t))dt

in the class

Hp =
{
v ∈W 1,p([a, b];Rn) :

∫ b

a

f(t, v′(t))dt is well-defined in R̃, v(a) = 0, v(b) = d

}

for p ∈ [1,+∞], where R̃ = R∪{±∞} and the integrand f : [a, b]×R
n → R∪{+∞} is

assumed to be only L⊗Bn-measurable, hence, in general, neither convex nor coercive
nor continuous.
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Ancona, Italy (marcelli@dipmat.unian.it).

1473



1474 CRISTINA MARCELLI

The first aim of this paper is to provide, under these minimal assumptions, a
localized version of the Weierstrass condition for w.l.m., which allows us to obtain a
Euler–Lagrange inclusion expressed in terms of a localized version of the subdiffer-
ential in the sense of convex analysis. This type of subgradient, which in general is
strictly contained in the other types of subdifferential, is the best one in this context
in which the integrand is of the type f = f(t, v′(t)). Indeed, the present version of
the Euler–Lagrange condition also provides a sufficient condition for optimality.

In order to provide more detail, our first main result (see Theorem 3.2) is a
characterization of W 1,p-strong local minimizers, that is, functions u0 ∈ W 1,1 for
which there exists δ > 0 such that F (u0) ≤ F (v) for every v ∈ u0 + W 1,p

0 with
|v(t) − u0(t)| < δ for every t ∈ [a, b]. In particular, we prove that u0 ∈ H1 is a

W 1,p-strong local minimizer if and only if F (u0) = minv∈Hp

∫ b
a
f∗∗(t, v′(t))dt, and

this condition is equivalent to the Euler–Lagrange inclusion c ∈ ∂f(t, u′0(t)) a.e. in
[a, b], where ∂f(t, ·) denotes the usual subgradient in the sense of convex analysis.

As a consequence, note that if u0 is aW
1,p-strong local minimizer, then it is also a

global minimizer. Moreover, when the minimum exists, the integrand f coincides with
its convex envelope along the minimizer, even if it is nonconvex and highly discontin-
uous. Furthermore, the Euler–Lagrange inclusion involves the usual subgradient in
the sense of convex analysis, even if the integrand is not convex in general. Finally,
this characterization extends a result in [1] where the Euler–Lagrange inclusion is
obtained for nonconvex integrands, but under a suitable growth assumption.

We also obtain a similar characterization for w.l.m., that is, functions u0 such
that F (u0) ≤ F (v) for every v ∈ u0 + W 1,p

0 with |v′(t) − u′0(t)| < ε, for almost
every t ∈ [a, b], for some ε > 0, by means of a localization of the subgradient (see
Corollary 3.4).

We wish to underline that, with regard to the regularity of the integrand, we only
assume the measurability with respect to the last variable, contrary to most of the
papers on this subject, in which lower semicontinuity and limitations by summable
functions are needed, such as in [13], [17]. In particular, in [17] a version of the Euler–
Lagrange condition in terms of the subdifferential of convex analysis is obtained for
complete integrands f = f(t, v(t), v′(t)), everywhere finite. In the present paper, we
limit ourselves to dealing with integrands of the type f = f(t, v′(t)), taking values on
R ∪ {+∞}, for which we require weaker regularity assumptions.

As a consequence of these results, we are able to prove a general existence theorem
for nonconvex problems, which will allow us to get many applications concerning the
existence of minimizers in the second part of the paper.

In more detail, denoting by Ct = {z ∈ R
n : f(t, z) = f∗∗(t, z)} the set where

f(t, ·) coincides with its convex envelope, we prove (see Theorem 3.5) that the func-
tional F admits a minimum in Hp if and only if there exists u0 ∈ Hp such that∫ b
a
f∗∗(t, u′0(t))dt = minv∈Hp

∫ b
a
f∗∗(t, v′(t))dt and u′0(t) ∈ co(Ct) a.e. in [a, b]. By ap-

plying this result, we are able to give very operative necessary and sufficient conditions
for the existence of the minimum in the scalar case (n = 1).

We recall that in [18] Marcellini proved the existence of the minimum for the
functional F under the assumption that f(t, ·) is coercive but not necessarily convex.
As is well known, when the integrand is not coercive the functional F could admit no
minimum. A classical example is provided by the weighed length functional, whose
integrand has the form f(t, z) = φ(t)

√
1 + z2. For such a functional, Kaiser proved

in [14] that the existence of the minimum depends on the width of the slope d. More
precisely, he obtained a necessary and sufficient condition for the existence of the
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minimum, expressed in terms of a limitation on the slope d.

This result was extended by Brandi in [4] to the case of more general convex
integrands. Subsequently in [15] a necessary and sufficient condition for the existence
of the minimum of the functional F with integrand convex but not coercive was
established. This condition consists of a limitation on the slope d in such a way that
the range of the values of d for which the minimum exists is exactly determined.

Such results take a boundary condition (the width of d) into consideration as a
specific parameter of the variational problem. This approach to the existence of the
minimum is quite different from the classical direct method, which indeed presents
well-known limitations in the treatment of noncoercive or nonconvex problems.

The importance of the role played by boundary conditions and other specific
parameters of the problem is discussed by Mordukhovich in [26], where individual
existence theorems are presented in the setting of optimal control problems, together
with examples, a survey, and a wide bibliography on this subject.

In this paper we are able to discuss the existence of the minimum related to the
parameter d in the case of nonconvex and noncoercive integrands. Indeed, we exactly
determine the set D = {d ∈ R : F (v) admits minimum} (see Theorem 4.2).

The result we obtain becomes particularly expressive when the integrand has the
structure f(t, z) = φ(t)h(z). Indeed, set C = {z : h(z) = h∗∗(z)}, and in general we
have D ⊂ co(C), but strict inclusion may occur, as we show in Example 4.1.

More precisely, for the case in which h is not convex at ∞, i.e., the set C is
bounded, we show that if h∗∗ is strictly convex in C, then D is strictly contained in
co(C). Whereas, when h∗∗ is affine in co(C), it can happen that D = co(C). We prove
that this situation occurs if and only if a precise relation, which links the minimum
and the maximum of the function φ(t) and the left and right derivatives of h∗∗ in
minC, maxC, is satisfied (see Corollary 4.5).

Finally, in the case when f∗∗(t, ·) is strictly convex at ∞ (but not necessarily
coercive), we show that the range D is exactly the same as that obtained for the
convex case in [15].

With regard to the methodology used in order to prove our main result about
the characterization of minimizers, we wish to remark that a key tool is a localized
version of classical relaxation theorems. Specifically, set Sp(u0, ε) = {v ∈ u0 +W

1,p
0 :

|u0(t)− v(t)| < ε for every t ∈ [a, b]}; we prove (see Theorem 2.1)

inf
v∈Sp(u0,ε)

F (v) = inf
v∈Sq(u0,ε)

∫ b

a

f∗∗(t, v′(t))dt for every ε > 0, p, q ∈ [1,+∞],

from which one deduces, as a particular case, infv∈Hp
F (v) = infv∈Hp

∫ b
a
f∗∗(t, v′(t))dt.

2. Notations and relaxation theorem. Let f : [a, b] × R
n → R ∪ {+∞} be

a given L⊗Bn-measurable function, where L, Bn denote, respectively, the Lebesgue
and Borel σ-fields in [a, b] and R

n. As usual, we denote by domf = {(t, z) : f(t, z) <
+∞} and by domf(t, ·) = {z ∈ R

n : f(t, z) < +∞}.
Let f∗∗(t, ·) and Cf(t, ·) be the bipolar function and the convex envelope of the

function f(t, ·), respectively. As is well known (see, e.g., [29, Corollary 17.1.5]), we
have

Cf(t, z) = inf



n+1∑
j=1

λjf(t, ξj) : λj ∈ [0, 1],

n+1∑
j=1

λj = 1,

n+1∑
j=1

λjξj = z


 .(2.1)
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Moreover, f∗∗ is convex and lower semicontinuous; hence we have

f∗∗(t, ·) ≤ Cf(t, ·) ≤ f(t, ·),(2.2)

and if dom f(t, ·) = R
n, then we have f∗∗ ≡ Cf (see, e.g., [10, Theorem 2.2.5]). But

note that in general we have

Cf(t, z) = f∗∗(t, z) for every z ∈ int(co(domf(t, ·))).

Of course, dom f∗∗(t, ·) = co(domf(t, ·)), where co(·) denotes the closure of the convex
hull.

We denote by ∂f(t, z) the subgradient of f(t, ·) at the point z in the sense of
convex analysis, i.e.,

∂f(t, z) = {ζ ∈ R
n : f(t, w) ≥ f(t, z) + 〈ζ, w − z〉 for every w ∈ R

n}.

In what follows we consider for p ∈ [1,+∞] the classes

Hp =
{
v ∈W 1,p :

∫ b

a

f(t, v′(t))dt is well-defined in R̃, v(a) = 0, v(b) = d

}
.

Let F : H1 → R̃ be the functional defined by F (v) =
∫ b
a
f(t, v′(t))dt.

Let u0 ∈ H1 be given. For every ε > 0, we denote by

Sp(u0, ε) = {v ∈ u0 +W
1,p
0 : |u0(t)− v(t)| < ε for every t ∈ [a, b]},

Wp(u0, ε) = {v ∈ u0 +W
1,p
0 : ‖u0 − v‖W 1,p

0
< ε}

the strong and weak ε-neighborhoods of u0.
Recall that a function u0 ∈ W 1,p(a, b) is said to be a (global) minimizer for the

functional F in Hp if F (u0) ≤ F (v) for every v ∈ Hp, whereas it is said to be a
W 1,q-strong (respectively, W 1,q-weak) local minimizer, with q ≥ p, if a constant ε > 0
exists such that F (u0) ≤ F (v) for every v ∈ Sq(u0, ε) (respectively, v ∈Wq(u0, ε)).

Functions u0, which are W 1,∞-weak local minimizers, are usually simply called
w.l.m. In contrast, W 1,p-weak local minimizers for p < +∞ are called intermediate
local minimizers. In [25], [30] the relation between strong, intermediate, and weak
local minimizers is discussed, showing that they are different concepts in general.

In the present paper we characterize strong and weak local minimizers.
The following theorem is a relaxation-type result for infima taken over strong

neighborhoods.
Theorem 2.1. Let f : [a, b]×R

n → R∪{+∞} be a L⊗Bn-measurable function
such that domf(t, ·) is a convex set for almost every t ∈ [a, b].

Assume that some u0 ∈W 1,1(a, b) satisfies both F (u0) < +∞ and

u′0(t) ∈ int (domf(t, ·)) a.e. in [a, b].(2.3)

Then, for every p, q ∈ [1,+∞] and every ε > 0,

inf
v∈Sp(u0,ε)

F (v) = inf
v∈Sq(u0,ε)

∫ b

a

f∗∗(t, v′(t))dt.
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In particular,

inf
v∈Hp

F (v) = inf
v∈Hp

∫ b

a

f∗∗(t, v′(t))dt.

Let us now recall a classical Lyapunov-type result, whose proof can be found in
[6, Theorem 16.1.v], which will play a fundamental role in the proof of Theorem 2.1.

Lyapunov theorem. Let gj : A→ R
m, j = 1, . . . , h, be L-integrable functions

on a set A ⊂ R with finite measure, and let λj : A→ [0, 1], j = 1, . . . , h, be measurable

weight functions with
∑h

j=1λj(t) = 1.
Then, there exists a decomposition E1, . . . , Eh of A into disjoint measurable sub-

sets such that

h∑
j=1

∫
Ej

gj(t)dt =

∫
A

h∑
j=1

λj(t)gj(t)dt.

Proof of Theorem 2.1. Taking equation (2.2) into account, it suffices to show that

infv∈Sp(u0,ε)F (v) ≤ infv∈Sq(u0,ε)

∫ b
a
f∗∗(t, v′(t))dt for every ε > 0 and every p, q ∈

[1,+∞].
Let us assume, for contradiction, that for some ε > 0 and some p, q ∈ [1,+∞]

there exists w ∈ Sq(u0, ε) such that

∫ b

a

f∗∗(t, w′(t))dt < inf
v∈Sp(u0,ε)

F (v).

Let α, β be two real numbers such that∫ b

a

f∗∗(t, w′(t))dt < α < β < inf
v∈Sp(u0,ε)

F (v).

Let δ ∈ ]0, 1/2[ be such that B(w(t), δ) ⊂ B(u0(t), ε) for every t ∈ [0, 1] and

(1− δ)
∫ b

a

f∗∗(t, w′(t))dt+ δ
∫ b

a

f∗∗(t, u′0(t))dt < α,

with obvious meaning in the case
∫ b
a
f∗∗(t, w′(t))dt = −∞ or

∫ b
a
f∗∗(t, u′0(t))dt = −∞.

(Notice that both of the previous integrals are less than +∞.)
For w̃(t) := (1− δ)w(t) + δu0(t), we have that B(w̃(t), δ) ⊂ B(u0(t), ε) for every

t ∈ [a, b], and by the convexity of the function f∗∗ we deduce that∫ b

a

f∗∗(t, w̃′(t))dt ≤ (1− δ)
∫ b

a

f∗∗(t, w′(t))dt+ δ
∫ b

a

f∗∗(t, u′0(t))dt < α.

Moreover, since w′(t) ∈ domf∗∗(t, ·) for almost all t, by virtue of the convexity of
domf(t, ·) and by (2.3) we have that w̃′(t) ∈ int(domf(t, ·)) a.e. in [a, b]. Hence,

f∗∗(t, w̃′(t)) = Cf(t, w̃′(t)) for a.a. (almost all) t ∈ [a, b].(2.4)

Let g : [a, b]→ R be a summable function such that g(t) > f∗∗(t, w̃′(t)) and∫ b

a

g(t)dt < α.
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Combining (2.1) with (2.4) shows that the multifunction Q : t ∈ [a, b] �→ Q(t) ⊂
[0, 1]n+1 × R

n(n+1) defined by

Q(t) =


(λ, ξ) :

n+1∑
j=1

λj = 1,

n+1∑
j=1

λjξj = w̃′(t),
n+1∑
j=1

λjf(t, ξj) ≤ g(t), f(t, ξj) < +∞



has nonempty values and is measurable. By virtue of the Aumann selection theorem
[8, Theorem 7.2.1], there exist measurable functions λj : [a, b]→ [0, 1], ξj : [a, b]→ R

n,

j = 1, . . . , n+ 1, such that
∑n+1

j=1 λj(t)ξj(t) = w̃′(t) and

n+1∑
j=1

λj(t)f(t, ξj(t)) ≤ g(t) a.e. in [a, b].(2.5)

Let ρ > 0 be a real number such that for every set E ⊂ [a, b] with |E| < 2ρ we have∫
E

(|u′0(t)|+ |w̃′(t)|)dt < δ

3
,(2.6)

∫
E

|f(t, u′0(t))|dt <
1

2
(β − α),(2.7)

∫
[a,b]\E

g(t)dt < α.(2.8)

Let r ∈ ]0, 1[ be such that for G = {t : B(w̃′(t), nr) ⊂ domf(t, ·)} we have |G| >
b− a− ρ/2.

Let C ⊂ G be a compact set with (b − a) − ρ < |C| < b − a, and let L > 0 be a
constant such that for almost every t ∈ C and every λ ∈ R

n with λi ∈ {w̃′
i(t), w̃

′
i(t) +

r, w̃′
i(t)− r}, i = 1, . . . , n, we have

|u′0(t)|+ |w̃′(t)|+
n+1∑
j=1

|ξj(t)|+
n+1∑
j=1

|f(t, ξj(t))|+ |f(t, λ)| ≤ L.(2.9)

Put σ := min{β−α2L , ρ, |C|, δ/3n}, let A ⊂ [a, b] \ C be a set, and let N > 0 be a
constant such that we have

n+1∑
j=1

(|f(t, ξj(t))|+ |ξj(t)|) + |w̃′(t)|+ |u′0(t)| ≤ N for a.a. t ∈ [a, b] \ (A ∪ C),(2.10)

∫
A

|w̃′(t)− u′0(t)|dt ≤ rσ.(2.11)

Let C∗ ⊂ C be a set with |C∗| = σ. Set B = [a, b] \ (A ∪ C∗) and let B1, . . . , Bs
be a finite partition of B into disjoint measurable subsets such that

|Bk| < ρ, supBk ≤ inf Bk+1, k = 1, . . . , s,
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and ∫
Bk


|w̃′(t)|+

n+1∑
j=1

|ξj(t)|

 dt ≤ δ

3
, k = 1, . . . , s.(2.12)

For every k ∈ {1, . . . , s} we can apply the Lyapunov theorem to the functions
hj : Bk → R

n+1, j = 1, . . . , n + 1, defined by hj(t) = (ξj(t), f(t, ξj(t))) to deduce
that for every k = 1, . . . , s there exist disjoint sets Ek

1 , . . . , E
k
n+1 ⊂ Bk such that

for φ(t) =
∑s

k=1

∑n+1
j=1 χEkj (t)ξj(t), where χD(·) denotes the characteristic function

of the set D, we have∫
Bk

φ(t)dt =

∫
Bk

n+1∑
j=1

λj(t)ξj(t)dt =

∫
Bk

w̃′(t)dt, k = 1, . . . , s.(2.13)

Notice that, taking (2.5), (2.8) into account,∫
B

f(t, φ(t))dt =

∫
B

n+1∑
j=1

λj(t)f(t, ξj(t))dt ≤
∫
B

g(t)dt < α.(2.14)

For every i ∈ {1, . . . , n} set γi :=
∫
A
[w̃′

i(t)− u′0i(t)]dt. By (2.11) we can choose a set
C∗
i ⊂ C∗ such that |C∗

i | = |γi|/r.
Finally, for every i ∈ {1, . . . , n}, set

ψi(t) :=



u′0i(t), t ∈ A,
φi(t), t ∈ B,
w̃′
i(t) + r sgn(γi), t ∈ C∗

i ,
w̃′
i(t), t ∈ C∗ \ C∗

i ,

and let ṽ(t) :=
∫ t
a
ψ(τ)dτ. Note that by (2.9) we have |f(t, ψ(t))| ≤ L for almost every

t ∈ C∗. Moreover, from (2.13) it follows that∫ b

a

ṽ′i(t)dt =
∫
A

u′0i(t)dt+
∫
B

φi(t)dt+

∫
C∗
w̃′
i(t)dt+ |γi|sgn(γi) =

∫ b

a

w̃′
i(t)dt.

Hence, by (2.9) and (2.10) we have u0 − ṽ ∈W 1,∞
0 (a, b).

Moreover, by (2.6), (2.12), (2.13), for every t ∈ [a, b] we have

|ṽ(t)− w̃(t)| ≤
∫
A

|u′0(τ)− w̃′(τ)|dτ +
∫
Bk

|φ(τ)− w̃′(τ)|dτ + nσ ≤ δ

3
+
δ

3
+
δ

3
,

where k ∈ {1, . . . , s} is such that supBk−1 < t ≤ supBk, and B0 = {a}.
Hence, ṽ ∈ Sp(u0, ε). Finally, from (2.7), (2.14) we deduce

F (ṽ) =

∫ b

a

f(t, ṽ′(t))dt =
∫
A

f(t, u′0(t))dt+
∫
B

f(t, φ(t))dt+

∫
C∗
f(t, ψ(t))dt

<
1

2
(β − α) + α+ Lσ ≤ β < inf

v∈Sp(u0,ε)
F (v),

a contradiction.
Remark 2.2. Assumption (2.3) in Theorem 2.1 can be weakened as follows:

(2.3′) meas{t : u′0(t) ∈ int (dom f(t, ·))} > 0,

provided we replace f∗∗ with Cf in the assertion. In fact, in view of the proof, in this
case it suffices if we ensure that C∗ ⊂ G, and this is possible, provided |G| > 0.
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3. Characterization of minimizers. As a consequence of the relaxation the-
orem, we now prove a characterization for strong minimizers both in terms of mini-
mizers of the relaxed functional and in terms of the Euler–Lagrange inclusion. This
will generalize the following result by Ambrosio, Ascenzi, and Buttazzo [1], which
concerns convex integrands.

Theorem 3.1 (see [1, Theorem 3.1]). Let f : [0, 1] × R
n → [0,+∞] be an

L⊗Bn-measurable function lower semicontinuous and convex with respect to the last
variable.

Let u0 ∈W 1,1(0, 1) be a w.l.m. for the functional F such that

u′0(t) ∈ int (dom f(t, ·)) a.e. in [0, 1].

Then, there exists c ∈ R
n with

c ∈ ∂f(t, u′0(t)) a.e. in [0, 1].

In the next theorem, we consider nonconvex integrands which are only assumed
to be L⊗Bn-measurable. By using Theorem 2.1, we show that the Euler–Lagrange
inclusion is a necessary and sufficient condition for the existence of the minimum.

Theorem 3.2. Let f : [a, b] × R
n → R ∪ {+∞} be a given L⊗Bn-measurable

function such that dom f(t, ·) is a convex set for almost every t ∈ [a, b].
Let u0 ∈ H1 be such that F (u0) ∈ R and

u′0(t) ∈ int (domf(t, ·)) a.e. in [a, b].(3.1)

Then, the following conditions are equivalent:
(i) u0 is a W 1,p-strong local minimizer for F ;

(ii) F (u0) =
∫ b
a
f∗∗(t, u′0(t))dt = minv∈Hp

∫ b
a
f∗∗(t, v′(t))dt;

(iii) a constant c ∈ R
n exists such that c ∈ ∂f(t, u′0(t)) a.e. in [a, b].

Proof. The implication (i) ⇒ (ii) is an immediate consequence of Theorem 2.1,
taking the convexity of f∗∗ into account.

Let us now prove the implication (ii) ⇒ (iii). Set

f̃(t, z) := max{f∗∗(t, z), f∗∗(t, u′0(t))− 1} − [f∗∗(t, u′0(t))− 1]

and F̃ (v) =
∫ b
a
f̃(t, v′(t))dt.

Of course f̃ is a nonnegative function, convex and lower semicontinuous in the
second argument. Moreover, since f̃(t, z) ≥ f∗∗(t, z) − f∗∗(t, u′0(t)) + 1, it is easy to
see that F̃ (u0) = minv∈Hp F̃ (v). Hence, we can apply Theorem 3.1 to deduce that a

constant c ∈ R
n exists such that c ∈ ∂f̃(t, u′0(t)) a.e. in [a, b], i.e.,

max{f∗∗(t, z), f∗∗(t, u′0(t))− 1} ≥ f∗∗(t, u′0(t))+ 〈c, z−u′0(t)〉, z ∈ R
n, a.e. t ∈ [a, b].

Therefore, for almost every t ∈ [a, b] there exists a real number ρ > 0 such that

f∗∗(t, z) ≥ f∗∗(t, u′0(t)) + 〈c, z − u′0(t)〉 for every z ∈ B(u′0(t), ρ);

hence, taking the convexity of f∗∗ into account, we deduce that c ∈ ∂f∗∗(t, u′0(t)) a.e.
in [a, b]. Now, the assertion follows immediately, since

f(t, z) ≥ f∗∗(t, z) ≥ f∗∗(t, u′0(t)) + 〈c, z − u′0(t)〉 = f(t, u′0(t)) + 〈c, z − u′0(t)〉.
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(iii) ⇒ (i). For every v ∈ Hp, the subgradient inequality gives

∫ b

a

f(t, v′(t))dt ≥
∫ b

a

f(t, u′0(t))dt+
∫ b

a

〈c, v′(t)− u′0(t)〉dt =
∫ b

a

f(t, u′0(t))dt.

Remark 3.3. The previous theorem also improves an analogous result established
in [1] (see Proposition 3.6) for nonconvex integrands f which are L⊗Bn-measurable,
but under the following additional hypothesis:

(∗) |z|p ≤ f(t, z) ≤ K(1 + |z|p) for some p > 1.

Now we will apply Theorem 3.2 to obtain an analogous equivalence result for
w.l.m. as well.

For a given subset S ⊂ R
n, let δS(·) be the indicator function; that is, δS(z) = 0

if z ∈ S, δS(z) = +∞ otherwise. If u0 is a w.l.m. for functional F with respect to the
weak ε-neighborhood W∞(u0, ε), set

f̃ε(t, z) := f(t, z) + δB(u′
0(t),ε)

(z) and F̃ε(u) :=

∫ b

a

f̃ε(t, u
′(t))dt;

then u0 is a global minimizer for functional F̃ε. Hence, we have the following result.
Corollary 3.4. Under the same assumptions of Theorem 3.2, the function

u0 ∈ H1 is a w.l.m. for the functional F in the weak ε-neighborhood W∞(u0, ε) if and
only if a constant c ∈ R

n exists such that for almost every t ∈ [a, b]

c ∈ ∂f̃ε(t, u′0(t)) = {ζ : f(t, w) ≥ f(t, u′0(t))+〈ζ, w−u′0(t)〉 for every w ∈ B(u′0(t), ε)}.

Now we wish to note that, as an application of Theorem 3.2, the following result
holds, which can be seen to be an extension to the case of integrands f(t, z) of a
classical result known for integrands of the type f = f(z) (see [10, Theorem 5.2.6]).

Theorem 3.5. Let f : [a, b]×R
n → [0,+∞[ be an L⊗Bn-measurable integrand.

Denote by

Ct = {z ∈ R
n : f(t, z) = f∗∗(t, z)}

the set where f(t, ·) coincides with its convex envelope, and assume that there exists
a function m ∈ Lp(a, b) such that

Bd(Ct) ⊂ B(0,m(t)) for almost every t ∈ [a, b],(3.2)

where Bd(Ct) denotes the boundary of the set Ct.
Then, the functional F admits a minimum in Hp if and only if there exists u0 ∈

Hp such that
∫ b
a
f∗∗(t, u′0(t))dt = minv∈Hp

∫ b
a
f∗∗(t, v′(t))dt and

u′0(t) ∈ co(Ct) a.e. in [a, b].(3.3)

Proof. The necessary part is contained in Theorem 3.2.
As regards the sufficient part, by (3.3) there exist measurable functions λj :

[a, b] → [0, 1], ξj : [a, b] → R
n, with ξj(t) ∈ Ct, j = 1, . . . , n + 1, such that∑n+1

j=1λj(t)ξj(t) = u′0(t) and f
∗∗(t, ·) is affine in co({ξj(t), j = 1, . . . , n + 1}), a.e. in

[a, b]. By applying the Lyapunov theorem to the functions gj(t) = (ξj(t), f
∗∗(t, ξj(t))),
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j = 1, . . . , n + 1, we deduce that there exist measurable disjoint sets E1, . . . , En+1

such that for φ(t) =
∑n+1

j=1χEj (t)ξj(t) we have
∫ b
a
φ(t)dt =

∫ b
a
u′0(t)dt and

∫ b

a

f(t, φ(t))dt =

n+1∑
j=1

∫
Ej

f∗∗(t, ξj(t))dt =
∫ b

a

n+1∑
j=1

λj(t)f
∗∗(t, ξj(t))dt

=

∫ b

a

f∗∗(t, u′0(t))dt.

Then the assertion follows, since by (3.2) we have φ(t) ∈ Lp.
We conclude this section by noting that, in view of Theorem 3.2, the Lipschitz

regularity result established in [1, Theorem 3.2] can be extended to nonconvex inte-
grands by using the same proof. (For the existence of the minimum, see Marcellini
[18], Olech [28].)

Theorem 3.6. Let f : [a, b]×R
n → [0,+∞[ be an L⊗Bn-measurable integrand.

Assume that a function θ : R→ R exists with limx→+∞θ(x)/x = +∞ such that

f(t, z) ≥ θ(|z|) for every z ∈ R
n and almost every t ∈ [a, b].

Moreover, assume that there exists z0 ∈ L∞(a, b) such that f(t, z0(t)) ∈ L∞(a, b).
Then, every (global) minimizer of the functional F is Lipschitz continuous on

[a, b].

4. Applications: Existence of the minimum for f∗∗(t, ·) affine at ∞.
Let f : [0, 1] × R → R be a normal integrand, that is, such that f(t, ·) is lower
semicontinuous for almost every t and there exists a Borel function f̃ : [0, 1]×R→ R

such that f̃(t, ·) = f(t, ·) for a.a. t ∈ [0, 1]. Recall that a Carathéodory function is a
normal integrand (see [11, Proposition 8.1.1]).

In what follows, for every t ∈ [0, 1] we denote by Ct the set where f
∗∗(t, ·) coincides

with f(t, ·), i.e.,

Ct = {z ∈ R : f∗∗(t, z) = f(t, z)}, t ∈ [0, 1].

If the set Ct does not depend on t, we denote it by C.
As an immediate consequence of Theorem 3.2, it follows that if F admits a

minimizer u0, then the convex envelope f∗∗(t, ·) takes real values and the set Ct
is nonempty for almost every t ∈ [0, 1]. For this reason, from now on we assume
Ct �= ∅ for almost every t ∈ [0, 1].

In this section we deal with the case of integrands whose convex envelope is affine
at ∞. More precisely, we now assume that Ct is bounded for almost every t ∈ [0, 1].
In this case, the convex envelope f∗∗(t, ·) is affine outside the set Ct.

As is well known, if the integrand does not depend on t, i.e., f(t, z) ≡ h(z), the
minimum exists if and only if

minC ≤ d ≤ maxC

(see [10, Theorem 5.2.6]). When the integrand also depends on t, from Theorem 3.1
it follows that a necessary condition for the existence of the minimum is

∫ 1

0

[minCt] dt ≤ d ≤
∫ 1

0

[maxCt] dt,(4.1)
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provided that the integrals above are well-defined. But unfortunately, this condition
is not sufficient in general, as the following example shows.

Example 4.1. Let f(t, z) = φ(t)h(z), where h : R→ R is the function defined by

h(z) =

{
z2 − 1 for |z| ≤ 1,
log |z|/|z|+ |2z| − 2 for |z| > 1,

and φ(t) = t+ 1, t ∈ [0, 1].
We have that

h∗∗(z) =
{
z2 − 1 for |z| ≤ 1,
|2z| − 2 for |z| > 1

is a C1-function, and the set of coincidence points of h and h∗∗ is given by C = [−1, 1].
Note that if F admits a minimum u0, then u′0(t) ∈ [−1, 1] and a constant c

exists such that c/(t + 1) = h′(u′0(t)) = 2u′0(t) for almost every t ∈ [0, 1]. Therefore,
c/(t+ 1) ∈ [−2, 2] a.e. in [0, 1]; hence |c| ≤ 2. Moreover,

|d| =
∣∣∣∣
∫ 1

0

u′0(t)dt
∣∣∣∣ = |c|2

∫ 1

0

1

(t+ 1)
dt =

|c| log 2
2

≤ log 2 < 1.

Then, if |d| > log 2, the minimum does not exist.
Our aim in this section is to establish the limitation on the slope d, stronger than

(4.1), which is necessary and sufficient for the existence of the minimum. In other
words, denote by

D = {d ∈ R : F (v) admits minimum}

the range of the value of d for which the minimum exists; we now exactly determine
the set D.

In order to do this, let us introduce some notation.
Let (f∗∗z )+(t, ·), (f∗∗z )−(t, ·) be the right and left derivatives of f∗∗(t, ·). Set

α(t) = (f∗∗z )−(t,minCt), β(t) = (f∗∗z )+(t,maxCt),

let g+, g− : [0, 1]× R→ R be the functions defined by

g+(t, ζ) =

{
max ∂f∗(t, ζ) for ζ < β(t),
maxCt for ζ ≥ β(t),

g−(t, ζ) =
{

min ∂f∗(t, ζ) for ζ > α(t),
minCt for ζ ≤ α(t),

where ∂f∗(t, ·) denotes the subgradient of f∗(t, ·).
Note that when α(t) < ζ < β(t), the functions g+, g−, respectively, are the right

and left derivative of the polar function f∗(t, ·). We cut off these functions in such a
way that they assume values in [minCt,maxCt].

In spite of this modification, the functions g+, g− satisfy the same properties of
the derivatives of f∗(t, ·). More precisely (see [29]), g+(t, ·), g−(t, ·) are monotone
nondecreasing, and g+(t, ·) is right-continuous, whereas g−(t, ·) is left-continuous.
Moreover, if ζ1 < ζ2, then g

−(t, ζ1) ≤ g+(t, ζ1) ≤ g−(t, ζ2) ≤ g+(t, ζ2).
Finally, note that minCt ∈ ∂f∗(t, α(t)) and maxCt ∈ ∂f∗(t, β(t)).
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Set

l = esssup
t∈[0,1]

(f∗∗z )−(t,minCt), L = ess inf
t∈[0,1]

(f∗∗z )+(t,maxCt).

The necessary and sufficient condition for the existence of the minimum is expressed
by the following result.

Theorem 4.2. Assume that Ct is bounded for almost every t ∈ R and maxCt,
minCt ∈ Lp(0, 1). Then, the functional F admits a minimum if and only if l ≤ L
and ∫ 1

0

g−(t, l)dt ≤ d ≤
∫ 1

0

g+(t, L)dt.(4.2)

This condition becomes more expressive when the integrand f has the particu-
lar structure f(t, z) = φ(t)h(z), with φ(t) measurable and nonnegative and h lower
semicontinuous. Note that in this case the set C does not depend on t.

Set

m = ess inf
t∈[0,1]

φ(t), M = ess sup
t∈[0,1]

φ(t), h1 = lim
z→−∞(h∗∗)′(z), h2 = lim

z→+∞(h∗∗)′(z).

Moreover, let g̃+, g̃− : [h1, h2]→ R be the functions defined by

g̃+(ζ) =

{
max ∂h∗(ζ) for ζ < h2,
maxC for ζ = h2,

g̃−(ζ) =
{

min ∂h∗(ζ) for ζ > h1,
minC for ζ = h1.

In the following result we will assume m > 0. The case m = 0 will be tackled in
Corollary 4.11.

Corollary 4.3. Assume that C is bounded and m = essinft∈[0,1]φ(t) > 0.
Then, the functional F admits a minimum if and only if the following condition (4.3)
(expressed according to the sign of h1, h2) is satisfied:

∫ 1

0

g̃−
(
mh1

φ(t)

)
dt ≤ d ≤

∫ 1

0

g̃+
(
mh2

φ(t)

)
dt if h1 ≤ 0 ≤ h2,(4.31)

M < +∞ and

∫ 1

0

g̃−
(
Mh1

φ(t)

)
dt ≤ d ≤

∫ 1

0

g̃+
(
mh2

φ(t)

)
dt if 0 < h1 ≤ h2,(4.32)

M < +∞ and

∫ 1

0

g̃−
(
mh1

φ(t)

)
dt ≤ d ≤

∫ 1

0

g̃+
(
Mh2

φ(t)

)
dt if h1 ≤ h2 < 0.(4.33)

Moreover the minimum, if it exists, is Lipschitz continuous.
Remark 4.4. Taking into account the definition of the functions g̃+, g̃−, the inte-

grands which appear in inequalities (4.3i), i = 1, 2, 3, assume values in [minC,maxC].
Note that if h1 = 0, then the integral on the left-hand side of (4.31) coincides with
minC, whereas, if h2 = 0, then the integral on the right-hand side coincides with
maxC.

Moreover, when φ is not constant, if h∗∗ is strictly convex in a left neighborhood
of maxC, with h2 �= 0, then the integrals in the right-hand side of (4.3i) are strictly
less than maxC. Similarly, if h∗∗ is strictly convex in a right neighborhood of minC,
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with h1 �= 0, then the integrals in the left-hand side of (4.3i) are strictly greater than
minC. Hence, when these cases occur, conditions (4.3i), i = 1, 2, 3, actually are more
restrictive than (4.1), and then D is strictly contained in co(C).

Whereas, when h∗∗ is affine in co(C) it can happen that conditions (4.3i) coincide
with (4.1), that is, the rangeD coincides with co(C). The following result shows under
what conditions this situation occurs.

Corollary 4.5. Let C be bounded and m = essinft∈[0,1]φ(t) > 0. Moreover, let
h∗∗ be affine in co(C) with slope h0.

Assume that the following condition (4.4) holds (expressed according to the sign
of h1, h2):

mh1 ≤Mh0 ≤ mh2 if h1 ≤ 0 ≤ h2,(4.41)

Mh1 ≤ mh0 ≤Mh0 ≤ mh2 if 0 < h1 ≤ h2,(4.42)

mh1 ≤Mh0 ≤ mh0 ≤Mh2 if h1 ≤ h2 < 0.(4.43)

Then, the minimum exists if and only if minC ≤ d ≤ maxC, i.e., D = co(C).

Vice versa, if (4.4) is not satisfied and C is not a singleton, then condition (4.3)
is actually more restrictive than (4.1), i.e., D is strictly contained in co(C).

Remark 4.6. In the case h1h2 > 0, according to (4.32), (4.33), M < +∞ is a
necessary condition for the existence of the minimum. Therefore, in (4.42), (4.43), M
is assumed to be real.

When h1 ≤ 0 ≤ h2,M could be +∞. Hence, in this case if h0 �= 0, then condition
(4.41) is not satisfied, but if h0 = 0, then it is, with the convention +∞ · 0 = 0. In
contrast, if h∗∗ is constant in co(C), that is, h1 ≤ h0 = 0 ≤ h2, condition (4.41) is
satisfied whatever the function φ may be, and then D = co(C).

We now provide some examples of applications of Corollaries 4.3, 4.5.

Example 4.7. Let f(t, z) be the integrand defined in Example 4.1. We have
C = [−1, 1], h1 = −2, h2 = 2, m = 1. Moreover, since h∗∗ is C1, we have g−(ζ) =
g+(ζ) = ζ/2 for |ζ| < 2. Hence, condition (4.31) becomes

|d| ≤
∫ 1

0

1

(t+ 1)
dt = log 2,

i.e., the minimum exists if and only if |d| ≤ log 2. Here, since h∗∗ is strictly convex in
C, the range D is a proper subset of C.

Example 4.8. If we modify the definition of function h by putting h(z) = 1−z2 in
[−1, 1], then h∗∗(z) = 0 for every z ∈ [−1, 1]. In this case, by virtue of Corollary 4.5
(see also Remark 4.6), the minimum exists if and only if |d| ≤ 1.

Example 4.9. Let h : R→ R be the function defined by

h(z) =



z2 − 1 for |z| ≤ 1,
log z/z + 2z − 2 for z > 1,
log |z|/|z| for z < −1,

and let φ(t) = t+ 1, t ∈ [0, 1]. We have that

h∗∗(z) =



z2 − 1 for 0 ≤ z ≤ 1,
2z − 2 for z > 1,
−1 for z < 0
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is a C1-function and C = [0, 1]. In this case h1 = 0, h2 = 2,m = 1; hence by applying
condition (4.31), we obtain

0 ≤ d ≤
∫ 1

0

1

(t+ 1)
dt = log 2.

Example 4.10. Let h̃(z) = h(z) + z, where h is as in Example 4.8. In this case,
we still have co(C) = [−1, 1] and h̃∗∗ affine in co(C) with slope h0 = 1. Hence, by
virtue of Corollary 4.5, if φ(t) is such that M ≤ 3m, then the minimum exists if and
only if |d| ≤ 1, that is, the range D coincides with co(C). In fact, we have h1 = −1,
h2 = 3, and then condition (4.41) is satisfied. Whereas, if M > 3m, then D is strictly
contained in [−1, 1].

Let us now consider the case in which C = {z0} is a singleton. Of course, if the
minimum u0 exists, then necessarily we have d = z0 and u0(t) = td.

Note that in the case h1 ≤ 0 ≤ h2 the linear function is actually the minimizer
since 0 ∈ ∂h∗∗(d). Whereas, in the case 0 < h1 ≤ h2 (h1 ≤ h2 < 0) it is the minimizer
if and only if Mh1 ≤ mh2 (mh1 ≤ Mh2). In fact, since ∂h∗∗(d) = [h1, h2], we have
h1φ(t) ≤ c ≤ h2φ(t) for some constant c.

In the following result we will consider the case in which m = essinft∈[0,1]φ(t) =
0. In this case, the necessary and sufficient condition on the slope d is much more
restrictive than the one obtained in the case m > 0.

Corollary 4.11. Assume that C is bounded and

0 = m < φ(t) a.e. in [0, 1].(4.5)

Then, the functional F admits a minimum if and only if

minC ≤ d ≤ maxC and h∗∗(d) = min
z∈R

h∗∗(z),

that is, D = co(C) ∩ ∂h∗(0).
As an application of this result, note that if we replace function φ(t) = t+1 with

function φ̃(t) = t in Examples 4.7, 4.8, 4.9, the necessary and sufficient condition for
the existence of the minimum becomes d = 0 for Examples 4.7 and 4.9, |d| ≤ 1 for
Example 4.8.

Remark 4.12. In the previous result we do not take into consideration the case
in which the set Z = {t : φ(t) = 0} has positive measure (but is less than 1), since in
this case the existence of the minimum does not depend on the value of the slope d.

In fact, it is easy to check that the functional F admits a minimum if and only
if the function h admits a minimum, and a minimizer u0 for F is the function such

that u′0(t) = z0 for t �∈ Z, u′0(t) = d−z0(1−µ)
µ for t ∈ Z, where µ = meas(Z) and z0 is

any point such that h(z0) = minz∈Rh(z).
We conclude this section by providing proofs of the results stated above.
Proof of Theorem 4.2. (Necessary condition) By virtue of Theorem 3.2, if F admits

a minimum, then a function u0 and a constant c exist such that
∫ 1

0
u′0(t)dt = d and

c ∈ ∂f∗∗(t, u′0(t)) a.e. in [0, 1].(4.6)

Moreover, we have u′0(t) ∈ Ct a.e. in [0, 1]. Therefore,

α(t) ≤ (f∗∗z )−(t, u′0(t)) ≤ c ≤ (f∗∗z )+(t, u′0(t)) ≤ β(t) a.e. in [0, 1],
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so l ≤ c ≤ L.
Finally, from (4.6) we have

g−(t, l) ≤ g−(t, c) ≤ u′0(t) ≤ g+(t, c) ≤ g+(t, L),
from which (4.2) follows.

(Sufficient condition) Since g+ and g−, respectively, are right-continuous and

left-continuous, we deduce that the functions G+(s) :=
∫ 1

0
g+(t, s)dt and G−(s) :=∫ 1

0
g−(t, s)dt, respectively, are right-continuous and left-continuous in [l, L]. There-

fore, for

c = sup{s : G−(s) ≤ d}
we have ∫ 1

0

g−(t, c)dt ≤ d ≤
∫ 1

0

g+(t, c)dt.

Then, it is easy to prove that a constant r ∈ [0, 1] exists such that the function

ψ(t) =

{
g−(t, c) for t ∈ [0, r],
g+(t, c) for t ∈ [r, 1]

satisfies
∫ 1

0
ψ(t)dt = d.

Set u0(t) :=
∫ t
0
ψ(τ)dτ . Then, from the definition of ψ it follows that u′0(t) ∈

∂f∗(t, c), that is, c ∈ ∂f∗∗(t, u′0(t)) for a.a. t ∈ [0, 1]. Hence, by Theorem 3.5, we
deduce that u0 is a minimizer for functional F , and this concludes the proof.

Proof of Corollary 4.3. When h1 ≤ 0 ≤ h2 we have l = mh1 and L = mh2.
Moreover, it is easy to verify that ∂f∗(t, ζ) = ∂h∗( ζ

φ(t) ); then g
+(t, ζ) = g̃+( ζ

φ(t) )

and g−(t, ζ) = g̃−( ζ
φ(t) ) for ζ ∈ [l, L] and a.a. t ∈ [0, 1]. Therefore, condition (4.2) is

equivalent to (4.31).
Assume now h1 > 0. In this case we have l = Mh1 and L = mh2. Therefore,

if l ≤ L, then M < +∞. Moreover, by virtue of the observations above, we have
g+(t, L) = g̃+(mh2

φ(t) ) and g
−(t, l) = g̃−(Mh1

φ(t) ). As a consequence, (4.2) is equivalent to

(4.32).
The case h2 < 0 can be treated in a similar way.
Finally, since C is bounded, if a minimizer exists, it is Lipschitz continuous.
Proof of Corollary 4.5. Assume h1 ≤ 0 ≤ h2; the other cases can be proved in a

similar way.
If (4.41) holds, then mh2

φ(t) ≥ h0 for a.a. t ∈ [0, 1]; hence g̃+(mh2

φ(t) ) ≥ g̃+(h0) ≥
maxC, that is,

∫ 1

0
g̃+(mh2

φ(t) )dt = maxC.

Similarly, we have mh1

φ(t) ≤ h0 for a.a. t ∈ [0, 1]. Hence, g̃−(mh1

φ(t) ) ≤ g̃−(h0) ≤
minC, and the assertion is proved.

Finally, note that if (4.41) does not hold, for example ifmh2 < Mh0, then we have
g̃+(mh2

φ(t) ) ≤ g̃−(h0) ≤ minC < maxC in a set of positive measure. Hence we have∫ 1

0
g̃+(mh2

φ(t) )dt < maxC, and condition (4.31) is more restrictive than (4.1).

Proof of Corollary 4.11. (Necessary condition) First note that if F admits a min-
imum, then h1 ≤ 0 ≤ h2. In fact, if h1 > 0, then l = Mh1 > 0 = L, which is a
contradiction by Theorem 4.2. Similarly we exclude that h2 < 0.
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Hence, since l = mh1 = 0 = mh2 = L, condition (4.2) becomes g̃−(0) ≤ d ≤
g̃+(0); that is, 0 ∈ ∂h∗∗(d) and then h∗∗(d) = minz∈Rh

∗∗(z).
Finally, from (4.1) we deduce that minC ≤ d ≤ maxC.
(Sufficient condition) From the assumptions it can be immediately verified that

the linear function u0(t) = td is a minimizer for the relaxed functional F ∗∗, and since
d ∈ co(C), the assertion follows from Theorem 3.5.

5. Applications: Existence of the minimum for f∗∗(t, ·) strictly convex
at ∞. In this section we deal with integrands f : [0, 1] × R → R whose convex
envelope is strictly convex at ∞. More precisely, we now assume that the set R \ Ct
is bounded for a.a. t ∈ R and that f(t, ·) is strictly convex outside the set co(R \Ct).

We now give some notations.
Let f+

z (t, ·), f−z (t, ·) be the right and left derivatives of f(t, ·), and let f∗+ζ (t, ·),
f∗−ζ (t, ·) be the right and left derivatives of the polar function f∗(t, ·).

Set f−z (t,−∞) = f+
z (t,−∞) = limξ→−∞f−z (t, ξ) = limξ→−∞f+

z (t, ξ) and
f−z (t,+∞) = f+

z (t,+∞) = limξ→+∞f−z (t, ξ) = limξ→+∞f+
z (t, ξ).

Finally, let

l = esssup
t∈[0,1]

f−z (t,−∞) and L = ess inf
t∈[0,1]

f+
z (t,+∞),

T+
p = {s ∈ [l, L] ∩ R : f∗+ζ (t, s) ∈ Lp(0, 1)},
T−
p = {s ∈ [l, L] ∩ R : f∗−ζ (t, s) ∈ Lp(0, 1)}.

The following result extends Theorem 3′ in [15] to the case of nonconvex inte-
grands.

Theorem 5.1. Assume that R \ Ct is bounded for a.a. t ∈ [0, 1] with

min(R \ Ct),max(R \ Ct) ∈ Lp(0, 1)(5.1)

and f(t, ·) strictly convex outside the set co(R \ Ct).
Then, the functional F admits a minimum if and only if one of the following

conditions is satisfied:

(a) T+
p ∩ T−

p �= ∅ and inf
s∈T−

p

∫ 1

0

f∗−ζ (t, s)dt < d < sup
s∈T+

p

∫ 1

0

f∗+ζ (t, s)dt,

(b) T−
p �= ∅ and d = min

s∈T−
p

∫ 1

0

f∗−ζ (t, s)dt,

(c) T+
p �= ∅ and d = max

s∈T+
p

∫ 1

0

f∗+ζ (t, s)dt.

We wish to remark that conditions (a), (b), (c) are exactly the same as those we
obtained in the convex case in Theorem 3′ in [15].

Proof. First we observe that in [15] the function f(t, ·) is assumed to be C1, as
well as convex. But, as we showed in [16], it is easy to prove that the assumption C1

can be weakened by taking f(t, ·) only continuous.
(Sufficient condition) By Theorem 3′ in [15] we deduce that the relaxed functional

F ∗∗(v) admits a minimum v0. Then, if we show that there exists a function u0 ∈
v0 +W

1,p
0 (0, 1) such that F (u0) = F ∗∗(v0), the assertion will be proved.

Since the set R \ Ct is bounded, we have (see [11, Lemma 8.3.3])

f∗∗(t, z) = min{λ1f(t, ξ1)+λ2f(t, ξ2) : λ1, λ2 ∈ [0, 1], λ1+λ2 = 1, λ1ξ1+λ2ξ2 = z}.
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Therefore, by virtue of Proposition 8.3.1 in [11], there exist measurable functions
λ1, λ2 : [0, 1]→ [0, 1], ξ1, ξ2 : [0, 1]→ R such that

f∗∗(t, v′0(t)) = λ1(t)f(t, ξ1(t)) + λ2(t)f(t, ξ2(t)), λ1(t)ξ1(t) + λ2(t)ξ2(t) = v′0(t).

Moreover, by (5.1) we deduce that ξ1, ξ2 ∈ Lp(0, 1).
Now, by applying the Lyapunov theorem to the functions gj(t) = (ξj(t), f(t, ξj(t))),

j = 1, 2, we deduce that there exist two measurable disjoint sets E1, E2 such that for

ψ(t) = χE1(t)ξ1(t) + χE2(t)ξ2(t) we have
∫ 1

0
ψ(t)dt =

∫ 1

0
v′0(t)dt and∫ 1

0

f(t, ψ(t))dt =

∫
E1

f(t, ξ1(t))dt+

∫
E2

f(t, ξ2(t))dt

=

∫ 1

0

[λ1(t)f(t, ξ1(t)) + λ2(t)f(t, ξ2(t))]dt =

∫ 1

0

f∗∗(t, v′0(t))dt = F ∗∗(v0).

Hence, for u0(t) =
∫ t
0
ψ(τ)dτ we have u0 ∈ v0 +W 1,p

0 (0, 1) and F (u0) = F ∗∗(v0).
(Necessary condition) The necessary condition is an immediate consequence of

Theorem 3.1 and of Theorem 3′ in [15], taking into account the relation f∗ =
(f∗∗)∗.

From this result it is possible to derive very operative necessary and sufficient
conditions in the case in which the integrand has the particular structure f(t, z) =
φ(t)h(z), as in [15]. In view of the present results, we can see that Theorems 5–9 in
[15] hold even for nonconvex integrands, provided that the set R \ C is bounded and
that h is strictly convex outside the set C.

These conditions emphasize a strict link between the exponent p, the behavior at
∞ of function h, and the infinitesimal order of [φ(t)−m].

We now quote only two significant results in a slightly less general setting, referring
to [15] for proofs and details. For the sake of simplicity, in the following results the
function φ is assumed to be continuous, and h to be C1.

Corollary 5.2 (quasi-coercive case). Assume that minφ = φ(t0) = 0 and
φ(t) > 0 for t �= t0. Moreover, let h be coercive.

Furthermore, assume that φ ∈ O(α) when t → t0 and 1/h′ ∈ O(β) when |z| →
+∞, where O(·) denotes the infinitesimal order.

Then, if pα < β, the functional F admits a minimum for every d ∈ R. Whereas,
if pα ≥ β, the minimum exists if and only if h∗∗(d) = minz∈Rh

∗∗(z).
Corollary 5.3 (noncoercive case). Set limz→−∞h′(z) = h1, limz→+∞h′(z) =

h2, and assume that −∞ < h1 < 0 < h2 < +∞. Moreover, assume that m =
minφ(t) > 0.

Finally, suppose that [φ(t)−m] ∈ O(α) and [h′(z)− h2], [h
′(z)− h1] ∈ O(β).

Then, if α ≥ β, the functional F admits a minimum for every d ∈ R. Whereas,
if α < β, then the range D of the values of the slope d for which the minimum exists
is a bounded interval.

Remark 5.4. For the sake of brevity, we do not explicitly treat mixed cases,
for example when h∗∗ is strictly convex at −∞ but is linear at +∞, that is, when
inf C = −∞ but supC < +∞. In fact, we think it is now clear how to combine the
conditions of Corollaries 4.3–4.5 and Theorem 5.1 in order to deal with these cases.
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Abstract. A new approach to two-player zero-sum differential games with convex-concave
cost function is presented. It employs the tools of convex and variational analysis. A necessary
and sufficient condition on controls to be an open-loop saddle point of the game is given. Explicit
formulas for saddle controls are derived in terms of the subdifferential of the function conjugate to
the cost. Existence of saddle controls is concluded under very general assumptions, not requiring
the compactness of control sets. A Hamiltonian inclusion, new to the field of differential games, is
shown to describe equilibrium trajectories of the game.
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1. Introduction. Consider the following two-player zero-sum differential game.
The trajectory of the game, x(·), is described by a linear differential equation

ẋ(t) = A(t)x(t) + B(t)u(t) + C(t)v(t),(1)

and the initial condition is

x(τ) = ξ(2)

for some τ ∈ (−∞, T ] and ξ ∈ R
n. Controls u(·) and v(·) are functions on [τ, T ]

chosen, respectively, by Player One and Player Two from some control sets U(τ, ξ)
and V(τ, ξ), subject to the constraints

u(t) ∈ P (t) and v(t) ∈ Q(t) for almost all t ∈ [τ, T ],(3)

for given convex sets P (t) ∈ R
k, Q(t) ∈ R

l. The cost functional Φ(τ, ξ, ·, ·) is given by

Φ(τ, ξ, u(·), v(·)) =

∫ T

τ

f(t, u(t), v(t))dt + d · x(T ).(4)

Player One tries to minimize the cost Φ(τ, ξ, u(·), v(·)), while Player Two attempts
to maximize it. The saddle value of the functional Φ(τ, ξ, ·, ·) is called the value of
the game. Controls ū(·) and v̄(·), corresponding to a saddle point (ū(·), v̄(·)) of this
functional are referred to as saddle controls, or open-loop solutions of the game. The
trajectory generated by them is an equilibrium trajectory.

Two-player zero-sum games and their generalization, N-player games, have seen
extensive treatment in literature; a good reference is Basar and Olsder [1]. Assump-
tions of convexity of the cost for each player allowed Varaiya [14], Scalzo [11], and
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Tolwinski [13] to obtain results on the existence of open-loop solutions for N-player
games. Reference [13] contains a discussion of other related results. For two-player
zero-sum games, an assumption of convexity of costs yields a convex-concave cost
functional, which one player minimizes and the other maximizes. A special case of
such a game was treated by Berkovitz [3].

All of the mentioned works rely on the compactness of sets of feasible control
functions, achieved either by assumption of boundedness of control constraint sets,
or by a priori integral bounds on control functions. This allows for the use of fixed
point and saddle point theorems in infinite-dimensional function spaces to guaran-
tee the existence of equilibrium trajectories. Here we approach the existence issue
directly by analyzing explicit descriptions of saddle controls. We demonstrate that
the strong assumptions of the compactness of control functions are not necessary in
the convex-concave setting—sufficient “compactness-like” properties are guaranteed
through the so-called Isaacs condition. In the language of convex analysis, finiteness
of the saddle function conjugate to the cost reflects the desired growth properties of
the cost function itself. Details are discussed in section 2.

In section 3 we show that for the controls (ū(·), v̄(·)) to furnish a saddle point
of the game, it is necessary and sufficient for (ū(t), v̄(t)) to be a saddle point on
P (t)×Q(t) of an auxiliary function

S(t, u, v) = f(t, u, v) + d · A(T, t)[B(t)u + C(t)v].(5)

The matrix A(T, t) is the fundamental matrix for ẇ(t) = A(t)w(t), with A(T, T )
being the identity matrix. In a different setting, a characterization of saddle controls as
solutions of an instantaneous saddle problem involving a pre-Hamiltonian function was
given by Subbotin [12]. A pre-Hamiltonian function has also been used by Berkovitz
[2] to give a necessary condition for saddle controls and by Leitmann [5] to state a
sufficient condition. The special properties of (5) when the cost is convex-concave
seem not to have been analyzed, however.

We explore the convex-concave structure of (5) in section 4 and obtain explicit
formulas for saddle points of this auxiliary function. This leads to expressions for
saddle controls—see (14) and (15). Formula (15) is of special value, as it describes
saddle controls as subgradients of a particular saddle function. Such a description
seems more practical in our setting than any min/max expression. It leads, through
the analysis of possible growth of subgradients of saddle functions, to results on the
existence of saddle controls in Theorem 4.1 and, once the existence is guaranteed,
allows for a detailed study of their structure. (See the comments at the end of section
4.) Let us also note that the saddle controls, when they exist, turn out not to depend
on the initial condition.

A characterization of an equilibrium trajectory, new to the field of differential
games, is given in Theorem 5.1 with the help of the associated Hamiltonian function
H(t, x, y). Much in the spirit of optimal control theory, solutions to a nonsmooth
Hamiltonian dynamical system, posed in terms of the subgradients of H(t, x, y), turn
out to describe the equilibria of the game.

We conclude the introduction with remarks on differential games in the more
standard setting of closed-loop controls. There, players choose strategies as func-
tions of both time and state, U : (−∞, T ] × R

n → R
k and V : (−∞, T ] × R

n →
R
l. Given an initial condition (2), these strategies and the dynamics (1) determine

the instantaneous controls by u(t) = U(t, x(t)) and v(t) = V (t, x(t)) and the cost
Φ(τ, ξ, U(·, ·), V (·, ·)). The closed-loop solutions of the game are the strategies U(·, ·)
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and V (·, ·) that provide a saddle point of the cost functional for every (τ, ξ). It is
known that if ū(·) and v̄(·) are open-loop solutions of the game with a specified initial
condition, then, by taking

U(t, x) = ū(t), V (t, x) = v̄(t),

one obtains closed-loop saddle strategies for this game; see Berkovitz [3]. Our re-
sults yield open-loop controls independent of the initial condition, and so the above
equations can be used to define closed-loop strategies on (−∞, T ]× R

n.

2. Assumptions. We now present the assumptions that are in effect in the
remaining sections. The game described by (1)–(4) and the assumptions below will
be referred to as G(τ, ξ).

Assumption 2.1 (general assumptions). The matrices A(t) ∈ R
n×n, B(t) ∈

R
n×k, and C(t) ∈ R

n×l in (1) depend continuously on t ∈ (−∞, T ]. Control sets
U(τ, ξ) and V(τ, ξ) are subsets of the space of measurable and locally integrable func-
tions on [τ, T ]. The constraint sets in (3), P (t) ⊂ R

k and Q(t) ⊂ R
l, are nonempty,

closed (but not necessarily bounded), convex, and measurably dependent on t.

Measurable dependence of sets on time is defined and discussed in chapter 14
of Rockafellar and Wets [9]. Sets depending continuously on time, constant sets in
particular, have this property.

A natural generalization of the assumptions on the constraint sets P and Q might
be to allow their dependence on the state variable, that is, to let u(t) ∈ P (t, x(t))
and v(t) ∈ Q(t, x(t)). However, this can lead to the set of feasible pairs of controls
(u(·), v(·)) not being a product set in U(τ, ξ)× V(τ, ξ), as opposed to the case where
the constraints have the form (3). For example, look at the game where x(0) = 0,
ẋ(t) = u(t), and the controls are constrained by u(t) ∈ [0, 1] and v(t) = x(t). In
such cases, it is unclear what the notions of an equilibrium and the value of the game
should be. We do not address this issue, preferring to work with the constraints given
by (3).

The following assumption guarantees that the cost functional Φ(τ, ξ, u(·), v(·)) is
convex in the control u(·) for fixed (τ, ξ, v(·)) and concave in the control v(·) for fixed
(τ, ξ, u(·)).

Assumption 2.2 (convexity-concavity). The function f : (−∞, T ] × P (t) ×
Q(t) → R has the following properties: f(t, u, v) is measurable in t for every fixed
(u, v), continuous in (u, v) ∈ P (t)×Q(t) for every t, convex in u for every (t, v), and
concave in v for every (t, u).

For purposes of convex analysis, it is convenient to extend the function f to
(−∞, T ]× R

k × R
l by appropriately chosen infinite values. We define

f̃(t, u, v) =



f(t, u, v), u ∈ P (t) and v ∈ Q(t),

+∞, u �∈ P (t),
−∞, u ∈ P (t) and v �∈ Q(t).

(6)

In what follows, we will often consider the function f on (−∞, T ]× R
k × R

l.

As a matter of fact, a game with linear dynamics and a cost function f̂(t, x, u, v)
that is convex in (x, u) for fixed (t, v) and concave in (x, v) for fixed (t, u) can be
reduced to a game with cost (4). Indeed, these properties imply that

f̂(t, x, u, v) = α(t) · x(t) + f(t, u, v)
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for some function α and a function f(t, u, v) convex in u and concave in v. Skipping the
technicalities, we point out that, through an inclusion of an additional one-dimensional
variable in the dynamics, we can reformulate the game under discussion in the format
of this paper.

Assumption 2.3 (finiteness of cost). For any u(·) ∈ U(τ, ξ) and v(·) ∈ V(τ, ξ)

satisfying (3),
∫ T
τ
f(t, u(t), v(t))dt is finite.

This restrictive-looking assumption is satisfied, in particular, when f(t, u, v) is
continuous and the controls are essentially bounded or when f(t, u, v) is a quadratic
expression in u and v with bounded coefficients and the controls are L2 functions.

Under these assumptions, the cost Φ(τ, ξ, u(·), v(·)) is well defined. A pair of
controls (ū(·), v̄(·)) is a saddle point (a Nash equilibrium) of Φ(τ, ξ, u(·), v(·)) over
U(τ, ξ) × V(τ, ξ) if (ū(·), v̄(·)) ∈ U(τ, ξ) × V(τ, ξ), and for any (u(·), v(·)) ∈ U(τ, ξ) ×
V(τ, ξ) the following is satisfied:

Φ(τ, ξ, ū(·), v(·)) ≤ Φ(τ, ξ, ū(·), v̄(·)) ≤ Φ(τ, ξ, u(·), v̄(·)).(7)

Assumption 2.4 (Isaacs condition). For every t ∈ (−∞, T ] and every (p, q) ∈
R
k × R

l

sup
u∈P (t)

inf
v∈Q(t)

{p · u + q · v − f(t, u, v)} = inf
v∈Q(t)

sup
u∈P (t)

{p · u + q · v − f(t, u, v)},(8)

and the common value is finite.
The assumption is certainly satisfied whenever the sets P (t), Q(t) are compact

(37.6.1 in [6]) but also holds in several other interesting cases.
Example 2.5. Let P (t) = R

k, Q(t) = R
l, and consider f(t, u, v) = u · v. A direct

calculation shows that both sides of (8) are equal p · q. In particular, Assumption 2.4
holds. Note that not only the control constraint sets are unbounded, but the function
f(t, ·, ·) does not seem—at the first glance—to display favorable growth properties.

Example 2.6 (quadratic cost and polyhedral control constraints). Consider a
game with polyhedral control constraint sets P (t), Q(t) and the cost function given
by

f(t, u, v) =
1

2
u · E(t)u− 1

2
v · F (t)v + v ·G(t)u,(9)

where E(t), F (t), and G(t) are matrices of appropriate dimensions, with E(t) and
F (t) symmetric and positive semidefinite. Note that a second order approximation
of any smooth saddle cost would yield such a function. (We skip the linear terms for
simplicity of presentation.) Consider the following condition:

for every t ≤ T, (P (t))∞ ∩ kerE(t) = {0}, (Q(t))∞ ∩ kerF (t) = {0}.(10)

Above, C∞ denotes the recession cone of a convex set C, defined as {y ∈ R
m |C + y ⊂ C}.

If (10) holds, then Assumption 2.4 is satisfied for the game under discussion. Indeed,
pick any v̄(t) ∈ Q(t). We have

inf
v∈Q(t)

sup
u∈P (t)

{p · u + q · v − f(t, u, v)}

≤ sup
u∈P (t)

{
p · u + q · v − 1

2
u · E(t)u +

1

2
v̄ · F (t)v̄ − v̄ ·G(t)u

}

=
1

2
v̄ · F (t)v̄ + sup

u∈P (t)

{
(p−G∗(t)v̄) · u− 1

2
u · E(t)u

}
.
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If Θ is a symmetric and positive semidefinite matrix and ker(Θ) ∩ C∞ = {0}, then
for any z ∈ R

m, supy∈C{z · y − 1
2y · Θy} is finite; see 11.18 in Rockafellar and Wets

[9]. Thus

inf
v∈Q(t)

sup
u∈P (t)

{p · u + q · v − f(t, u, v)} < +∞.

A symmetric argument shows that −∞ < supu∈P (t) infv∈Q(t){p ·u+ q · v− f(t, u, v)},
and since

sup
u∈P (t)

inf
v∈Q(t)

{p · u + q · v − f(t, u, v)} ≤ inf
v∈Q(t)

sup
u∈P (t)

{p · u + q · v − f(t, u, v)},

both expressions are finite. This guarantees that they are actually equal to each other
(34.2.1 in Rockafellar [6]).

Note that when matrices E(t), F (t), and G(t) depend continuously on t and the
sets U(τ, ξ), V(τ, ξ) are subsets of L2[τ, T ], Assumption 2.3 is satisfied (as well as
Assumptions 2.1 and 2.2). Let us finish the discussion of this special case with two
remarks.

• Conditions (10) are clearly satisfied when sets P (t), Q(t) are bounded (then
their recession cones reduce to {0}) or when matrices E(t), F (t) are positive
definite (and thus invertible).
• Conditions (10) take a particularly simple form when sets P (t) and Q(t) are

cones: P (t) ∩ kerE(t) = {0}, Q(t) ∩ kerF (t) = {0}. Cones include the
“nonnegative orthants” R

k
+, R

l
+, and, more generally, finite intersections of

half-spaces given by linear (not just affine) subspaces.
A general result, describing all convex-concave functions for which Assumption 2.4
holds, will be given at the end of this section.

We now present the basic notions of convex analysis that will be heavily used in
what follows. Extending the function f to (−∞, T ]×R

k×R
l, as described in (6), allows

for defining the class of functions conjugate in the convex-concave sense to f(t, ·, ·).
Under the condition (8), this class consists of one function f∗ : (−∞, T ]×R

k×R
l → R

given by

f∗(t, p, q) = sup
u∈Rk

inf
v∈Rl

{p · u + q · v − f̃(t, u, v)}

= inf
v∈Rl

sup
u∈Rk

{p · u + q · v − f̃(t, u, v)}.

Equivalently, f∗(t, p, q) is the common value in (8). The function f∗(t, p, q) is convex
in p, concave in q, and locally Lipschitz continuous in (p, q).

The subdifferential ∂φ(p̄, q̄) of a convex-concave function φ(·, ·), in the sense of
Rockafellar [6], is defined as

∂φ(p̄, q̄) = ∂1φ(p̄, q̄)× ∂2φ(p̄, q̄),

where

∂1φ(p̄, q̄) = {r | φ(p, q̄) ≥ φ(p̄, q̄) + r · (p− p̄)}

is the subdifferential in the sense of convex analysis of the convex function φ(·, q̄), and

∂2φ(p̄, q̄) = {s | φ(p̄, q) ≤ φ(p̄, q̄) + s · (q − q̄)}
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is the subdifferential of the concave function φ(p̄, ·). The subdifferential ∂f∗(t, p, q)
is then by definition the subdifferential of the convex-concave function (p, q) �→
f∗(t, p, q). The function f∗(t, p, q) is differentiable in (p, q), in particular when the
cost function f(t, u, v) is strictly convex in p and strictly concave in q. Then the
subgradient ∂f∗(t, p, q) equals ∇f∗(t, p, q), where the gradient is taken with respect
to (p, q). If, in addition, the cost function is continuous in (t, u, v) and the sets P (t)
and Q(t) evolve continuously in time, as is the case when they are constant, then
both f∗(t, p, q) and ∇f∗(t, p, q) are continuous in (t, p, q). An example where strict
convexity and strict concavity are present is provided by quadratic cost function (9)
with positive definite matrices E(t) and F (t). For a complete presentation of saddle
function theory, see Rockafellar [6].

The section concludes with an equivalent, possibly more practical, condition for
Assumption 2.4 to hold. A convex function α(·) is called proper if it does not take on
the value −∞ and has a finite value at some point. It is called coercive if it is bounded
from below and α(u)/|u| → ∞ as |u| → ∞. An equivalent condition for coercivity of a
convex function α(·) is that its conjugate function, given by α∗(q) = supu{q ·u−α(u)},
is finite. We will say that a concave function β(·) is proper or coercive if −β(·) is
proper or coercive in the sense just described. Recall that f̃ is the extension of f to
(−∞, T ]× R

k × R
l, defined in (6).

Proposition 2.7 (finiteness of the conjugate function). Assumption 2.4 holds if
and only if, for every t ∈ (−∞, T ], the convex function α(u) = supv f̃(t, u, v) and the
concave function β(v) = infu f̃(t, u, v) are both proper and coercive.

Proof. For simplicity of notation, fix t ∈ (−∞, T ]. Suppose that Assumption 2.4
holds. Then, for functions a(·, ·) and b(·, ·) from R

k × R
l to R defined by a(u, q) =

supp{u · p − f∗(t, p, q)}, b(p, v) = infq{v · q − f∗(t, p, q)}, the following conditions
hold: for every q, the convex function a(·, q) is proper and coercive, and for every p,
the concave function b(p, ·) is proper and coercive. But it is also true that a(u, q) =
supv{f̃(t, u, v)− v · q}, b(p, v) = infu{f̃(t, u, v)−u · p}. Justification of these formulas
can be found in Rockafellar [8]. In particular, the convex function a(·, 0) = α(·) and
the concave function b(0, ·) = β(·) are both proper and coercive.

Now assume that α(·) and β(·) are proper and coercive. Then, for the lower
conjugate of f̃(t, ·, ·), we have

f̃
∗
(t, p, 0) = sup

u∈Rk

inf
v∈Rl

{p · u− f̃(t, u, v)} = sup
u∈Rk

{p · u− sup
v∈Rl

f̃(t, u, v)}

= sup
u∈Rk

{p · u− α(u)},

and the last quantity is finite, for every p. Similarly, for the upper conjugate function,
we have

f̃
∗
(t, 0, q) = inf

v∈Rl

sup
u∈Rk

{q · v − f̃(t, u, v)} = inf
v∈Rl

{q · v − β(v)},

and the last quantity is finite, for every q. Then also f̃
∗
(t, 0, q) < +∞ for every q,

which, combined with the finiteness of f̃
∗
(t, p, 0) for every p, implies that the saddle

function f̃
∗
(t, ·, ·) is proper. We can now apply 34.3 in [6] to deduce that f̃

∗
(t, ·, ·) is

actually finite. Then 34.2.1 in [6] implies that Assumption 2.4 holds.

3. Necessary and sufficient saddle condition. To proceed with reducing the
saddle point problem for an integral functional to the saddle point problem for the
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integrand function, we need the notion of decomposable sets of functions, which is a
slight modification of the notion of decomposable spaces. This and other notions used
in this section, like normal integrands and measurability of set valued mappings, are
discussed in Rockafellar and Wets [9, Chapter 14].

Let Z be a set of measurable functions z : [τ, T ] → R
m, and let R(t) ⊂ R

m be a
nonempty set depending measurably on t. Define ZR to be the set of all z ∈ Z such
that z(t) ∈ R(t) almost everywhere on [τ, T ]. The set Z is called decomposable with
respect to R(·) if, for every function z0 ∈ ZR, every measurable set W ⊂ [τ, T ], and
any bounded, measurable function z1 : W → R

m such that z1(t) ∈ R(t) for almost
every t ∈W , Z contains the function given by

z(t) =

{
z0(t) for t ∈ [τ, T ] \W,
z1(t) for t ∈W.

If R(t) = R
m for almost all t ∈ [τ, T ], we call the set Z decomposable. Note that,

in such a case, Z is also decomposable with respect to any other constraint set R′(·).
Decomposable spaces, as defined in [9], are decomposable sets. An example of de-
composable spaces is provided by Lp spaces. On the other extreme, discrete sets
of functions consisting of more than one function cannot be decomposable if R(t) is
convex and is not a singleton for almost every t.

Recall that the auxiliary saddle function S(t, u, v), given by (5), is finite only for
(u, v) ∈ P (t)×Q(t). Therefore, the saddle points of S(t, u, v) over P (t)×Q(t) are the
same as over R

k ×R
l; see 36.3 in Rockafellar [6]. The statement (11) in the following

theorem can be understood in either sense.
Theorem 3.1 (saddle point condition). Any pair of controls (ū(·), v̄(·)) ∈ U(τ, ξ)×

V(τ, ξ) satisfying

(ū(t), v̄(t)) is a saddle point of S(t, u, v) for almost all t ∈ [τ, T ](11)

is a saddle point of Φ(τ, ξ, u(·), v(·)). Conversely, if U(τ, ξ) and V(τ, ξ) are decompos-
able with respect to P (·) and Q(·) and if a saddle point (ū(·), v̄(·)) of Φ(τ, ξ, u(·), v(·))
exists, then (11) holds.

Corollary 3.2. If U(τ, ξ) and V(τ, ξ) are decomposable with respect to P (·) and
Q(·), as is the case when U(τ, ξ) and V(τ, ξ) are Lp spaces, the following statements
are equivalent:

(a) Controls ū(·) ∈ U(τ, ξ), v̄(·) ∈ V(τ, ξ) are open-loop solutions of the game
G(τ, ξ).

(b) (ū(t), v̄(t)) is a saddle point of S(t, u, v) for almost all t ∈ [τ, T ].
The proof of Theorem 3.1 is an application of the following facts, which easily

follow from 14.60 in Rockafellar and Wets [9].
Lemma 3.3. Let γ : [a, b] × R

n × R
m → R be a function such that t →

γ(t, u(t), v(t)) is measurable for any u(·) ∈ U , v(·) ∈ V, where U and V are some

sets of measurable functions. Define Γ(u(·), v(·)) =
∫ b
a
γ(t, u(t), v(t))dt.

(a) If ū(·) ∈ U and v̄(·) ∈ V are such that (ū(t), v̄(t)) is a saddle point of γ(t, ·, ·)
over R

n × R
m for almost all t ∈ [a, b], then (ū(·), v̄(·)) is a saddle point for

Γ(·, ·) over U × V.
Assume additionally that (t, u) �→ γ(t, u, v(t)) and (t, v) �→ −γ(t, u(t), v) are normal
integrands for any u(·) ∈ U , v(·) ∈ V, and that the following condition holds: for some
sets U(t) and V (t), depending measurably on t, with the property that, for almost
all t ∈ [a, b], u(t) ∈ U(t) and v(t) ∈ V (t) whenever u(·) ∈ U and v(·) ∈ V, U is
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decomposable with respect to U(·), and V is decomposable with respect to V (·). (This
condition is automatically satisfied when U and V are decomposable.)

(b) If (ū(·), v̄(·)) is a saddle point for Γ(·, ·) over U × V, and the saddle value is
finite, then (ū(t), v̄(t)) is a saddle point for γ(t, ·, ·) over R

n ×R
m for almost

all t ∈ [a, b].
The additional assumption of normality of integrands preceding part (b) im-

plies, in particular, that t �→ γ(t, u(t), v(t)) and t �→ −γ(t, u(t), v(t)) are measur-
able functions of t. An example of normal integrands is provided by Caratheodory
integrands—functions (t, z) �→ η(t, z) measurable in t and continuous in z. The
other condition preceding (b) will later be invoked for the control sets U = {u(·) ∈
U(τ, ξ) | u(t) ∈ P (t) almost everywhere for t ∈ [τ, T ]} and V = {v(·) ∈ V(τ, ξ) | v(t) ∈
Q(t) almost everywhere for t ∈ [τ, T ]}, with P (·) and Q(·) playing the role of U(·)
and V (·).

Proposition 3.4 (normal integrands). The function (t, u) �→ f(t, u, v(t)) is a
normal integrand for any measurable v(·) such that v(t) ∈ Q(t) almost everywhere in
[τ, T ]. Symmetrically, (t, u) �→ −f(t, u(t), v) is a normal integrand for any measurable
u(·) such that u(t) ∈ P (t) almost everywhere in [τ, T ].

Proof. First, assume that v(t) ∈ Q(t) almost everywhere in [τ, T ]. Then we have
f(·, ·, v(·)) = f̃(·, ·, v(·)), where f̃(t, u, v) = f(t, u, v) when v ∈ Q(t) and f̃(t, u, v) =

+∞ elsewhere. We can view f̃ as a sum of a Caratheodory integrand f̂ and an
indicator of P (t) × Q(t); so, according to 14.32 in [9], f̃ is a normal integrand. The

mentioned f̂ can be, for example,

f̂(t, u, v) = f
(
t,ΠP (t)×Q(t)(u, v)

)
,

where ΠS is the projection onto the set S. The expression ΠP (t)×Q(t) ((u, v)), by

14.17 in [9], is measurable in t, so f̂ is also measurable in t for fixed (u, v). For a

fixed time t, the projection is continuous in (u, v), so the same property holds for f̂ .

Thus f̂ is a Caratheodory integrand. The proof of the second part of the proposition
is parallel.

Proof of Theorem 3.1. Given the controls u(·) and v(·) and the initial condition
(2), we obtain the trajectory

x(t) = A(t, τ)ξ +

∫ t

τ

A(t, s) (B(s)u(s) + C(s)v(s)) ds.(12)

The cost (4) can be rewritten as

∫ T

τ

f(t, u(t), v(t))dt + d ·
(∫ T

τ

A(T, s)(B(s)u(s) + C(s)v(s))ds +A(T, τ)ξ

)

=

∫ T

τ

[f(t, u(t), v(t)) + d · A(T, t)(B(t)u(t) + C(t)v(t))] dt + d · A(T, τ)ξ.(13)

The last term in the last expression is independent of the controls. To find the saddle
point of (13), we can then concentrate on the integral part of this expression. Part
(a) of Lemma 3.3 implies that condition (11) is sufficient. We now prove it is also
necessary. The expression d · A(T, t)(B(t)u+C(t)v) is continuous in (t, u, v). Thus it
is a normal integrand in (t, u) for a fixed v(·), and its negative is a normal integrand
in (t, v) for a fixed u(·). Similar properties hold for f(t, u, v) by Lemma 3.4 and
then also for the integrand in (13). The last statement follows from the fact that a
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sum of normal integrands is a normal integrand. Let (ū(·), v̄(·)) be a saddle point of
Φ(τ, ξ, u(·), v(·)). Then ū(·) and v̄(·) satisfy (3), and, by Assumption 2.3, the value
of (13) for these controls is finite. The assumption of decomposability of U(τ, ξ) with
respect to P (t) implies, in particular, that the set U , as defined in the comments
following Lemma 3.3, is decomposable with respect to P (t). Symmetric statements
can be made for V(τ, ξ). Applying Lemma 3.3 to the control sets U , V and the
constraint sets P (t), Q(t) finishes the proof.

4. Existence of saddle controls. The condition that (ū(t), v̄(t)) is a saddle
point of S(t, u, v) is equivalent, by 37.4 in Rockafellar [6], to either of the following
expressions:

(−B∗(t)A∗(T, t)d,−C∗(t)A∗(T, t)d) ∈ ∂f (t, ū(t), v̄(t)) ,(14)

(ū(t), v̄(t)) ∈ ∂f∗(t,−B∗(t)A∗(T, t)d,−C∗(t)A∗(T, t)d).(15)

In the above formulas and in what follows, A∗(T, t), B∗(t), and C∗(t) denote the
transposes of the matrices A(T, t), B(t), and C(t).

Theorem 4.1 (existence of saddle controls). Measurable controls u(·) and v(·)
satisfying (15) for t ∈ (−∞, T ] exist.

(a) If, in addition, for every fixed (p, q), f∗(t, p, q) is locally L1 in t, the controls
are locally L1 functions.

(b) If, in addition, f∗(t, p, q) is continuous in (t, p, q), then the controls are locally
L∞ functions.

In the proof of the theorem, we will use following lemma, taken from Rockafellar
and Wolenski [10]. We need a definition first: for a function γ : R

n → R and a point
x with γ(x) finite, the general subdifferential ∂gγ(x) is the set of all y, such that
there exist sequences xν → x, with γ(xν)→ γ(x), and yν → y, with each pair xν , yν

satisfying the condition γ(x′) ≥ γ(xν) + yν · (x′ − xν) + o(|x′ − xν |).
Lemma 4.2. Let h(·, ·) be a finite, convex-concave function. Then

∂h(p, q) = con ∂gh(p, q).(16)

Proof. By 12.27 in [9], the mapping T (·, ·) defined by (u,−v) ∈ T (p, q) whenever
(u, v) ∈ ∂h(p, q) is maximal monotone. By 35.8 in [6], T (p, q) is single valued if and
only if h(·, ·) is differentiable at (p, q), and this is the case for almost all (p, q), since
h(·, ·) is locally Lipschitz continuous. Then the structure of monotone mappings, as
described in 12.67 in [9] implies that

T (p, q) = con{(u,−v) | ∃(pν , qν)→ (p, q)with ∇h(pν , qν)→ (u, v)}.(17)

We can now apply 9.61 in [9] to conclude that ∂h(p, q) = con ∂gh(p, q).
Proof of Theorem 4.1. Since f∗(t, p, q) is finite, the right side of the inclusion

(15) is a nonempty compact convex set. We now argue that it depends measurably
on t. For fixed p and q, f∗(t, p, q) is measurable in t. It follows from the fact that
conjugacy in the convex sense preserves measurability in time; applying this twice to
f(·, u, v) gives us measurability of f∗(t, p, q). Measurability in t and continuity in (p, q)
mean that f∗(t, p, q) is a Caratheodory integrand and so also a normal integrand. By
Lemma 4.2

∂f∗(t, B∗(t)y(t), C∗(t)y(t)) = con ∂gf∗(t, B∗(t)y(t), C∗(t)y(t)).
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The subdifferential on the right side depends measurably on time, by 14.56 in [9].
Taking the convex hull preserves measurability, by 14.12 in [9]. Therefore, the right
side of the inclusion (15) is measurable in time with nonempty compact convex val-
ues. By 14.6 in [9], there exists a measurable selection, that is, a pair of measurable
functions u(·) and v(·) satisfying (15). Applying Lemma 3 from Rockafellar [7] to
the function f∗(t, p, q) implies part (a). If f∗(t, p, q) is continuous, then it is
epi/hypocontinuous in t, which implies the graphical continuity of ∂f∗(t, ·, ·)—see
Rockafellar [8]. In particular, the graph of ∂f∗(t, p, q) is locally bounded. For
t ∈ [τ, T ],

(t,−B∗(t)A∗(T, t)d,−C∗(t)A∗(T, t)d) ∈ K

for some compact set K, so the right side of the inclusion (15) is bounded. This
implies part (b).

If any pair of controls (ū(·), v̄(·)) satisfying (15) is such that ū(·), v̄(·) are in the
desired control spaces U(τ, ξ), V(τ, ξ), the game G(τ, ξ) has open-loop solutions; this
is guaranteed by Theorem 3.1. General conditions guaranteeing that this is the case
are as follows.

Corollary 4.3 (existence of open-loop solutions). Under either of the following
two conditions, the game G(τ, ξ) has open-loop solutions.

(a) The condition in part (a) of Theorem 4.1 holds, and the control sets U(τ, ξ)
and V(τ, ξ) contain all locally integrable functions.

(b) The condition of part (b) of Theorem 4.1 holds, and the control sets U(τ, ξ)
and V(τ, ξ) contain all essentially bounded functions,

The solutions are independent of τ and ξ in the following sense: there exist functions
ū∞ : (−∞, T ] �→ R

k, v̄∞ : (−∞, T ] �→ R
l such that, for any (τ, ξ), the truncations of

ū∞, v̄∞ to [τ, T ] are open-loop solutions to G(τ, ξ).
In the case where f(t, u, v) = g(t, u)−h(t, v) for some functions g(t, u) and h(t, v)

convex in u and v, the conjugate function is f∗(t, p, q) = g∗(t, p) − h∗(t, q). Here
g∗(t, ·) and h∗(t, ·) denote convex functions conjugate to g(t, ·) and h(t, ·). Condition
(15) can be written as

ū(t) ∈ ∂g∗(t,−B∗(t)A∗(T, t)d) and − v̄(t) ∈ ∂h∗(t,−C∗(t)A∗(T, t)d).

In this case, not only do the saddle controls ū(·) and v̄(·) not depend on τ and ξ, but
they can be chosen independently of each other. Indeed, to choose ū(·), Player One
needs only to know the function g(·, ·) and matrices A and B. That player’s choice
does not depend on h(·, ·) or C.

We now comment on the special structure of the inclusion (15) for the game
discussed in Example 2.6 (P (t), Q(t) polyhedral, f(t, ·, ·) quadratic, given by (9)).
Let NC(y) denote the normal cone to the set C at y. (If C is polyhedral, then so is
NC(y).) We have, for any (u, v) ∈ P (t)×Q(t),

∂f(t, u, v) =
{
E(t)u + G∗(t)v + NP (t)(u)

}× {−F (t)v + G(t)u−NQ(t)(v)
}
.

For points (u, v) �∈ P (t)×Q(t), the subdifferential of f(t, ·, ·) is empty. The graph of
the mapping ∂f(t, ·, ·) is thus piecewise polyhedral—it consists of a union of finitely

many polyhedral sets. The same holds for ∂f∗(t, ·, ·), as ∂f∗(t, ·, ·) = (∂f(t, ·, ·))−1
,

and so the graphs of the two mappings are invertible linear images of one another. In
particular, the right-hand side of the inclusion (15) is always a polyhedral set (possibly
a singleton).
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If the matrices defining f depend continuously on t, we can conclude that the
right-hand side of (15) is locally bounded. Indeed, such an assumption guarantees
the so-called epi/hypocontinuity of f in t, which in turn is equivalent to the graphical
continuity of ∂f , as well as ∂f∗, in t. As the latter subdifferential is always nonempty,
it must be locally bounded (in all variables). This allows us to conclude that the game
in Example 2.6 has open-loop solutions when the control sets U(τ, ξ) and V(τ, ξ)
contain all essentially bounded functions (as is the case when the control sets are L2

spaces—a natural choice for games with quadratic costs).
Exploring the structure of the subdifferential of a saddle function, as described

in (17), we can say the following: when the matrices E, F , G do not depend on
t, the right-hand side of (15) can be written as con{r1(t), r2(t), . . . , rj(t)} for some
piecewise continuous functions ri(·) (with the possibility that all ri agree for some t).
In particular, the right-hand side of (15) depends “piecewise continuously” on t.

5. Hamiltonian system. We define the Hamiltonian, namely, the function H :
(−∞, T ]×R

n×R
n → R, as the saddle value of the concave-convex function (u, v)→

y · (A(t)x + B(t)u + C(t)v)− f(t, u, v); that is,

H(t, x, y) = sup
u

inf
v
{y · (A(t)x + B(t)u + C(t)v)− f(t, u, v)} .

By the definition of f∗, we obtain

H(t, x, y) = y ·A(t)x + f∗(t, B∗(t)y, C∗(t)y).(18)

We now give another characterization of saddle controls, in terms of Clarke subdiffer-
ential ∂cH of the Hamiltonian. For any locally Lipschitz function ψ(·),

∂cψ(z̄) = con{lim∇ψ(zν) | xν → x},(19)

where the limits are taken over all sequences {xν} of points where ψ is differentiable
(see Clarke [4] for details). Below, ∂cH(t, x, y) denotes the Clarke subdifferential of
H(t, ·, ·). Whenever f∗(t, p, q) is differentiable in (p, q), the Hamiltonian is differen-
tiable in (x, y), and ∂cH(t, x, y) reduces to ∇xH(t, x, y) × ∇yH(t, x, y). Note that,
since f(t, ·, ·) is a finite convex-concave function, the proof of Lemma 4.2 shows that
∂f∗(t, p, q) = ∂cf∗(t, p, q).

Theorem 5.1 (generalized Hamiltonian system). If the Hamiltonian inclusion

(−ẏ(t), ẋ(t)) ∈ ∂cH(t, x(t), y(t))(20)

holds for almost all t ∈ [τ, T ] and

−y(T ) = d,(21)

then x(·) satisfies the dynamics (1) for some controls u(·) and v(·) satisfying the saddle
condition (15). If, for every t ∈ [τ, T ], either f∗(t, p, ·) is differentiable for every p or
f∗(t, ·, q) is differentiable for every q, then the reverse implication holds.

Proof. Directly from the definition (19) we get that

∂cH(t, x, y) ⊂ (A∗(t)y,A(t)x + [B(t), C(t)] ∂cf∗(t, B∗(t)y, C∗(t)y)),(22)

where ∂cf∗(t, p, q) denotes the Clarke subdifferential of f∗(t, p, q) in (p, q). The Hamil-
tonian condition (20) now reduces to

−ẏ(t) = A∗(t)y(t),
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ẋ(t) ∈ A(t)x(t) + [B(t), C(t)] ∂cf∗(t, B∗(t)y(t), C∗(t)y(t)).

The first equation, combined with the transversality condition (21) implies that y(t) =
−A∗(T, t)d. We now concentrate on the second inclusion. The Clarke subdifferential
∂cf∗(t, ·, ·) is equal to ∂f∗(t, ·, ·). The inclusion becomes

ẋ(t) ∈ A(t)x(t) + [B(t), C(t)] ∂f∗(t, B∗(t)y(t), C∗(t)y(t)).

By remarks made in the proof of Theorem 4.1, ∂f∗(t, B∗(t)y(t), C∗(t)y(t)) is measur-
able in t. Let E(t) = [B(t), C(t)]. The mapping (t, w) → E(t)w is a Caratheodory
mapping. For almost all t ∈ [τ, T ], there exists a w ∈ ∂f∗(t, B∗(t)y(t), C∗(t)y(t))
such that E(t)w ∈ ẋ(t) − A(t)x(t), and the mapping on the right side of the inclu-
sion is single (so closed) valued and measurable. We can extend this mapping to the
whole interval [τ, T ] by assigning it an empty value whenever ẋ(t) does not exist; this
does not change the closed valuedness or measurability. Theorem 14.16 in [9] implies
that there exists a measurable w(·) defined on a full measure subset S ⊂ [τ, T ], with
w(t) ∈ ∂f∗(t, B∗(t)y(t), C∗(t)y(t)), for all t ∈ S such that

ẋ(t) = A(t)x(t) + E(t)w(t).

We can now write w(t) as (u(t), v(t)), where (u(·), v(·)) satisfies (15), since y(t) =
−A∗(T, t)d. The first part of the theorem is proved.

Now assume that for a fixed t, f∗(t, p, ·) is differentiable for every p. Then f∗(t, ·, ·)
is subdifferentially regular at (B∗(t)y, C∗(t)y) in the sense of 7.25 in [9], and by 10.6
in [9], [B(t), C(t)] ∂cf∗(t, B∗(t)y, C∗(t)y) is the Clarke subdifferential of f∗(t, ·, ·) at
(B∗(t)y, C∗(t)y) with respect to y. The inclusion (22) becomes an equation, and all
of the above arguments can be reversed. If f∗(t, ·, q) is differentiable, we can make an
argument, similar to the one above, for the function −f∗(t, ·, q).

Corollary 5.2. Assume that x(·) with x(τ) = ξ and y(·) with −y(T ) = d satisfy
the Hamiltonian inclusion (20) for almost all t ∈ [τ, T ]. Then x(·) is an equilibrium
trajectory of the game G(τ, ξ).

6. The value function. The value W (τ, ξ) of the game is defined to be the
saddle value of the game G(τ, ξ). Let U and V be some sets of controls on the interval
(−∞, T ], such that any measurable and locally integrable solution (ū(·), v̄(·)) of (15)
satisfies ū(·) ∈ U and v̄(·) ∈ V. Assume that, for every (τ, ξ) ∈ (−∞, T ] × R

n, the
control sets U(τ, ξ) and V (τ, ξ) are the restrictions of U and V to the interval [τ, T ].
Then the value function W (·, ·) is well defined. In particular, there exist measurable
and locally integrable functions ū∞(·) and v̄∞(·) on (−∞, T ] such that, for every
(τ, ξ), the value function is given by W (τ, ξ) = Φ(τ, ξ, ū(·), v̄(·)), where ū(·) and v̄(·)
are the restrictions of ū∞(·) and v̄∞(·) to [τ, T ]. Looking at the cost expression in
(13), we get that, for almost all (τ, ξ),

∇ξW (τ, ξ) = A∗(T, τ)d,

Wτ (τ, ξ) = −f(τ, ū(τ), v̄(τ))− d · A(T, τ)(Aξ + Bū(τ) + Cv̄(τ)).

Whenever both partial derivatives exist, the Hamilton–Jacobi equation holds:

−Wτ (τ, ξ) + H(τ, ξ,−∇ξW (τ, ξ)) = 0.(23)

More can be said in the case where the functions ū∞(·) and v̄∞(·) are continuous.
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Theorem 6.1. Assume that f∗(·, ·, ·) is continuous in all three variables and,
for all t ∈ (−∞, T ], f∗(t, ·, ·) is differentiable. Then the value function W (·, ·) is
continuously differentiable and satisfies the Hamilton–Jacobi equation (23).

The Hamilton–Jacobi equation allows us to rewrite the auxiliary saddle function
(5) as

S(t, u, v) = f(t, u, v) +∇ξW (τ, ξ)(B(t)u + C(t)v).(24)

Theorem 11 states that any controls ū(·), v̄(·) such that (ū(t), v̄(t)) is a saddle point of
(24) almost everywhere are saddle controls of the game. A similar result was obtained
by Subbotin [12] under different assumptions and in the setting of closed-loop controls.
A solution of (23) was used there to generate closed-loop saddle controls of the game,
as saddle points of (24).

If, in addition to the assumptions of the above theorem, the Hamiltonian function
is Lipschitz continuous in the y variable, the value function is the unique solution of
(23) with the boundary condition

W (T, ξ) = d · ξ(25)

not only in the classical sense but in the minimax sense. For definitions and the proof,
see Subbotin [12]. Note that the Hamiltonian is Lipschitz continuous in y, in particular
when f∗(t, ·, ·) has this property. We finish the paper with the characterization of this
case, showing that f∗(t, ·, ·) is globally Lipschitz continuous if and only if the control
sets P (t) and Q(t) are bounded.

Proposition 6.2 (Lipschitz continuity of the conjugate function). Let h(·, ·) be
a closed convex-concave function, and let K be the nonempty set where h(·, ·) is finite
valued. The following statements are equivalent:

(a) The class of functions conjugate to h(·, ·) contains a globally Lipschitz con-
tinuous function h∗(·, ·). (Note that this actually implies that h∗(·, ·) is the
unique function in the mentioned class.)

(b) The set K is bounded.

Proof. Recall that the subdifferential ∂h∗(·, ·) of the saddle function h∗(·, ·) equals
con ∂gh∗(·, ·), where ∂gh(·, ·) is the generalized subdifferential in the sense of [9]. Also
recall that if h∗(·, ·) is finite, then ∂h∗(·, ·), so also ∂gh∗(·, ·), is locally bounded. This
fact will allow us to use Theorem 9.13 of Rockafellar and Wets [9]. Note also that the
boundedness of K implies that the class of functions conjugate to h(·, ·) consists of
a unique finite function h∗(·, ·) and that the global Lipschitz continuity of the latter
function entails its finiteness.

The boundedness of K is equivalent to the boundedness of rge ∂h∗(·, ·), the range
of the subdifferential mapping ∂h∗(·, ·), by Theorems 37.4 and 37.5 in Rockafellar
[6]. This is equivalent to ∂gh∗(·, ·) being globally bounded and, by Theorem 9.13 in
[9], to the local Lipschitz modulus of h∗(·, ·) being globally bounded. This, in turn, is
equivalent to h∗(·, ·) being globally Lipschitz continuous; see Theorem 9.2 in [9].
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Abstract. Dissipative and passive mechanical systems are studied from a geometric point of
view. Since the natural geometric background is a Riemannian manifold, we begin by generalizing
La Salle theorems about the stability of equilibrium points of dynamical systems to a complete
Riemannian manifold. The stability of dissipative mechanical systems is studied using the particular
geometric properties of the tangent bundle, and passivity based controls are designed to stabilize
equilibrium points. The case of partially dissipative systems is formulated and used with a dynamical
extension to design controls for bringing the system to a desired point of the phase space.

Key words. dissipative control, mechanical systems, passive systems, stability of equilibrium
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1. Introduction. Although the specific properties of stability of the equilibrium
points of dissipative systems have been well known for years, the systematic study of
such systems is fairly recent. Indeed, the study of passivity control, based on these
properties, has received wide attention, as is evident from the extensive scientific and
technical literature on the subject.

The results and the usual methods, however, are only local; they use coordinate
expressions and conceal the geometric properties of the state spaces and the vector
fields defining the systems.

Furthermore, since the 1970s the use of geometric intrinsic methods has proven
to be powerful for describing the interesting properties of control systems, shedding
light on the relation between them, and improving the methods used to design the
control. A look at the papers by Brockett, Millman, and Sussmann [5], Isidori [7],
Nijmeijer and van der Schaft [9], or Lewis and Murray [8], and the references quoted
there is enough to ensure that these methods are worthy of being studied and used.

In this paper we give a geometric intrinsic formulation of some aspects of me-
chanical dissipative systems and the use of these properties to design controls by
passivity.

The natural geometric background for describing these systems is a Riemannian
manifold, where dissipative vector fields are naturally formulated, including as a par-
ticular case those coming from a Rayleigh function. This Riemannian manifold is the
configuration space of the system.

A mechanical system in a Riemannian manifold, (M, g), is given by a vector field,
which is the external force field. The most simple case is that in which this vector field
is the gradient of a function, the potential function, but the force often has additional
components. We will suppose that one of these components is dissipative and the other
contains the control forces. With these data we can write the equation of motion for
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a mechanical system with controls, the commonly called Newton equation, which is
equivalent to Euler–Lagrange equations. If, however, we wish to write this equation
of motion as a dynamical system—that is, as the equation for the integral curves of
a vector field in a manifold, since it is a second order differential equation—we must
go to the tangent bundle of the initial configuration manifold. This tangent bundle is
the phase space of coordinate-velocities of the mechanical system.

Taking this as the natural starting point, the aim of this paper is twofold: first,
to describe geometrically the stability properties of equilibrium points of a dissipative
vector field in a Riemannian manifold, and second, to use these properties to design
passivity controls on mechanical systems in order to stabilize an equilibrium point or
to bring the system to a desired working point. We have used [10], [12], [14], and the
corresponding chapters of [11] and [13] as a natural guide to the problem in a classical
context. They contain enough applications of the results of our study to assure the
interest of our approximation to the problem.

The paper is organized as follows. Sections 2 and 3 are devoted to stating the
systems we are going to use and the suitable notations for mechanical systems, dissipa-
tive and passive systems. In section 4, La Salle’s theorem is generalized to a complete
vector field in a complete Riemannian manifold, and in section 5 it is applied to pas-
sive systems. In section 6, we study the stability of equilibrium points in dissipative
mechanical systems, including those which are partially dissipative. Finally, section
7 is devoted to stabilizing equilibrium points of mechanical systems using passivity
controls, and to bringing the system to a desired point by means of a dynamical
dissipative extension.

Throughout this paper we suppose that the manifolds and maps are differentiable,
and differentiability means infinite differentiability. The manifolds are Hausdorff. As
a reference for differential geometry, notation employed, and concepts, see [1] and [3].

2. Dynamical and control systems.

2.1. Dissipative mechanical systems. Let M be a differentiable manifold. A
dynamical system on M is a vector field Y in M . M is called the phase space of the
system. The differential equation associated to Y , that is, the equation of the integral
curves of Y , is given by Y ◦ γ(t) = γ̇(t), where γ is a curve in M . It is called the
evolution equation of the system.

The vector field Y ∈ X(M) defines a dissipative system if there exists a nonneg-
ative function S ∈ C∞(M) which is decreasing along the integral curves of Y ; that
is, LY S ≤ 0, where LY is the Lie derivative with respect to the vector field Y . S
is called the dissipation function for Y . If LY S < 0, that is, S is strictly decreasing
along the integral curves of Y , then we call the system strictly dissipative.

2.2. Control systems and passive systems. A control system on a mani-
fold M is given by a vector field X, called the drift, and the control vector fields
X1, . . . , Xm. The vector field associated to the system is Y = X +

∑m
i=1Xiui, where

ui : M −→ R are the controls or inputs of the system.

Usually, for a control system, in addition to the evolution equation, we have the
outputs of the system, functions y1 = h1, . . . , ym = hm, hi ∈ C∞(M), related to the
observable variables of the system.

Following [4], we introduce the idea of passivity as the counterpart for control sys-
tems of a dissipative system. Consider a control system given by Y = X+

∑m
i=1Xiui

on the manifold M with outputs y1, . . . , ym. It is passive if there exists a nonnegative
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function S ∈ C∞(M) such that

S(γ(T ))− S(γ(0)) ≤
∫ T

0

m∑
i=1

yi(γ(s))ui(γ(s)) ds

for every solution γ(t) with the given inputs u1, . . . , um. The function S is called
the storage function. This last expression can be understood as an inequality in the
evolution of the energy of the system and will be clarified when we apply these ideas
to mechanical systems.

3. Mechanical systems. Let (Q, g) be a Riemannian manifold, dimQ = n,
and let ∇ be the Levi–Civita connection associated to the Riemannian metric g. A
differentiable curve in Q, γ: I −→ Q, is a trajectory, or a solution, of the mechanical
system associated to the vector field F ∈ X(Q) if γ satisfies the differential equation

∇γ̇ γ̇ = F ◦ γ,(1)

where γ̇(t) is the tangent vector of the curve γ at the point γ(t) and ∇γ̇ γ̇ is the
covariant derivative of γ̇(t) with respect to the tangent vector γ̇(t). F is called the
external force vector field. In local coordinates (qi) on Q, the components (γ1, . . . , γn)
of γ satisfy the differential equations

γ̈k +

n∑
i,j=1

Γkij γ̇
iγ̇j = F k(γ1, . . . , γn), k = 1, . . . , n,(2)

where {Γkij} are the Christoffel symbols of the connection ∇ in the given coordinates.
Equations (1) and (2) are the classical Newton equations of movement.

If there exists a differentiable function U :Q → R such that the force field F =
−gradU , we call U the potential function. A simple mechanical system is given by a
Riemannian manifold, (Q, g), the configuration space, and a force field F = −gradU .
We write such systems as (Q, g, U).

Let TQ be the tangent bundle of Q, with τQ: TQ 
→ Q the natural projection;
the kinetic energy is the function T : TQ −→ R given by T (vq) = 1

2gq(vq, vq). In local
coordinates, its expression is T (qi, vi) = 1

2gij(q)v
ivj , where (qi, vi) are the natural

local coordinates on TQ associated to the coordinates (qi) on Q.
For simple mechanical systems, the Lagrangian function is defined by L = T −

τ∗QU . For simplicity we will write it as L = T − U .
Frequently, the force vector field, F , splits into two vector fields, and only one of

these fields comes from a potential function. Then if F = −gradU+R, the dynamical
equations are written as

∇γ̇ γ̇ = −gradU ◦ γ +R ◦ γ,(3)

and, using the Lagrangian function, L = T−U , the equivalent (see [1]) Euler–Lagrange
equations are

d

dt

∂L

∂vi

∣∣∣∣
γ̇

− ∂L

∂qi

∣∣∣∣
γ̇

=

n∑
j=1

gijR
j ◦ γ, i = 1, . . . , n.(4)

In this situation, the mechanical system is given by Σ = (Q, g, U,R).
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It is well known that the dynamical equations of mechanics are second order
differential equations in the configuration manifold Q, so there is a corresponding
first order equation in the tangent bundle TQ, and we have a vector field Y ∈ X(TQ)
associated to Newton equation (3) or to the equivalent Lagrange equations (4). In
local coordinates (qi, vi) of TQ, this vector field Y has the expression

Y =

n∑
i=1


vi ∂

∂qi
+


F i − n∑

j,k=1

Γijkv
jvk


 ∂

∂vi




=
n∑
i=1


vi ∂

∂qi
−

n∑
j,k=1

Γijkv
jvk

∂

∂vi


+

n∑
i=1

F i
∂

∂vi
= Xg + F v,

where Xg is the geodesic field of the Riemannian metric g, F v is the vertical lift
from Q to TQ of the force vector field F, F = −gradU + R, and we have that∑n
j=1 gijF

j = − ∂U
∂qi +

∑n
j=1 gijR

j . Notice that the vector field Y ∈ X(TQ) satisfies
the second order condition. It is a holonomic vector field in TQ; hence its integral
curves in TQ are canonical liftings of curves in the manifold Q. This tangent bundle,
TQ, is called the phase space of the mechanical system. See [1] for details on TQ and
properties of the second order vector fields.

When working with mechanical systems, it is usual to consider forces which de-
pend on the velocities. These are vector fields on the manifold Q along the projection
τQ: TQ −→ Q; that is, mappings R: TQ −→ TQ such that τQ ◦ R = τQ. We denote
by X(Q, τQ) the set of such fields.

The dynamical equations of a mechanical system with the force vector field given
by F = −grad U+R with R ∈ X(Q, τQ) are ∇γ̇ γ̇ = −(grad U)◦γ+R◦γ̇. Observe that
in this equation we have R ◦ γ̇ instead of R ◦ γ, because R depends on the velocities.

3.1. Dissipative mechanical systems. Given R ∈ X(Q, τQ), we call it dissi-
pative if it satisfies gp(R(vq), vq) ≤ 0 for every vq ∈ TQ. A dissipative mechanical
system is a mechanical system, Σ = (Q, g, U,R) with R dissipative. If R ∈ X(Q, τQ)
verifies gq(R(vq), vq) ≤ −αgq(vq, vq) for every vq ∈ TQ, with α a real number, α > 0,
then R is called strictly dissipative and Σ is a strictly dissipative system.

Recall that the energy associated to a mechanical system given by Σ = (Q, g, U,R)
is the function E = T + τ∗QU ∈ C∞(TQ). The vector field R is called dissipative
because of the following proposition.

Proposition 3.1. Let Σ = (Q, g, U,R) be a mechanical system. If the vector
field R is dissipative, then the energy decreases along the solutions. Moreover, if R
is strictly dissipative and γ satisfies the condition that γ̇(t) �= 0 for all t, then E is
strictly decreasing.

Proof. Let γ: I −→ Q be a trajectory of the mechanical system. Then we have
that

d(E◦γ̇)
dt = ∇γ̇(E ◦ γ̇) = ∇γ̇(T ◦ γ̇ + (τ�QU) ◦ γ̇)

= ∇γ̇( 1
2g(γ̇, γ̇)) +∇γ̇(U ◦ γ) = g(∇γ̇ γ̇, γ̇) +∇γ̇(U ◦ γ)

= g(−(gradU) ◦ γ, γ̇) + g(R(γ̇), γ̇) +∇γ̇(U ◦ γ)

= g(R ◦ γ̇, γ̇) ≤ 0.

So if Σ = (Q, g, U,R) is a mechanical system and R is a dissipative force, then
the associated vector field Y = Xg − (gradU)v + Rv defines a dissipative system
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in the phase space TQ, provided that U(q) ≥ 0 for every q ∈ Q. In this case, the
dissipation function is the total energy E. Observe that condition U ≥ 0 is equivalent
to supposing that the potential function is bounded below.

3.2. Mechanical systems with controls and passive mechanical systems.
In mechanical systems with controls, the vector fields of control are forces, and the
inputs are coefficients to modulate the strength of these forces. Then the equation of
motion is

∇γ̇ γ̇ = −(gradU) ◦ γ + (F1u1 + · · ·+ Fmum) ◦ γ̇,
where F1, . . . , Fm are the control forces, which often depend on the position and the
velocity, and ui: TQ −→ R are the inputs.

The natural outputs (see [9]) of a mechanical system with controls are the functions
hi(vq) = g(Fi(vq), vq); that is, hi = i(Fi)g for i = 1, . . . ,m, where i(Fi)g is the natural
tensor contraction.

From now on, a simple mechanical control system with natural outputs will be
denoted by Σ = (Q, g, U, F1, . . . , Fm).

Consider now a mechanical system with a dissipative component R of the force
and with controls denoted by Σ = (Q, g, U,R, F1, . . . , Fm). According to the above
definitions and comments, it can be regarded as a control system with the following
characteristics:

–Phase space: M = TQ.
–Vector field of the system: Y = Xg + F v +

∑m
i=1 uiXi, with F = −gradU + R

and Xi = F vi .
–Natural outputs: yi = hi = i(Fi)g ∈ C∞(TQ), j = 1, . . . ,m.
As pointed out above, the vector field Y ∈ X(TQ) satisfies the second order

condition on TQ.
Proposition 3.2. Suppose that U(q) ≥ 0 for every q ∈ Q, or equivalently, that

U is bounded from below; then the system Σ is a passive system with the mechanical
energy E = T + U as a storage function.

Proof. From Proposition 3.1 we have

d(E ◦ γ̇)

dt
= g(R ◦ γ̇, γ̇) +

m∑
i=1

(ui ◦ γ̇)g(Fi, γ̇).

By integration of this expression from 0 to t, it follows that

E(γ̇(t))−E(γ̇(0)) =

∫ t

0

g(R◦γ̇, γ̇)+

∫ t

0

m∑
i=1

yi(γ̇(s))ui(γ̇(s)) ≤
∫ t

0

m∑
i=1

yi(γ̇(s))ui(γ̇(s)),

which is the passivity condition for E.
Observe that the last inequality is the balance of energy referred to in the above

section. The right-hand side is the work of the external forces, and the left-hand side
is the stored energy.

4. Stability of equilibrium points in complete Riemannian manifolds.

4.1. Statement of the problem. Let (M, g) be a Riemannian manifold. It is
known that from the metric g we can define in M a distance d in such a way that the
induced metric topology from d coincides with the original one in M . Then (M, g) is
a complete manifold if the induced distance is complete. Throughout this section we
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suppose that (M, g) is a complete Riemannian manifold. For equivalent conditions
on the completeness of a Riemannian manifold, see [6].

Let X ∈ X(M) and let x0 ∈ M be an equilibrium point of X. Consider the
associated dynamical system X ◦ γ = γ̇ , where γ: (a, b) −→ M is a differentiable
curve. We denote by γ(t;x) the solution with initial condition γ(0;x) = x ∈ M . We
say that a solution γ(t;x) is bounded if its image is bounded as a subset of the metric
space M .

The goal of this section is to find conditions for the stability of the equilibrium
point x0, in the case where the Riemann manifold (M, g) is complete and the vector
field X is also complete. In order to achieve this, we shall generalize the results of La
Salle in R

n to this situation. See [16] for more details concerning the results in R
n.

Recall that an equilibrium point x0 is stable if for every ε > 0 there exists a δ > 0
such that if d(x, x0) ≤ δ, then d(γ(t;x);x0) ≤ ε, and asymptotically stable if it is
stable and there exists a neighborhood O of x0 such that limt→∞ d(γ(t;x), x0) = 0
for all x ∈ O. If O = M , we say that x0 is globally asymptotically stable.

4.2. Liapunov functions. If x0 ∈M is an equilibrium point of X ∈ X(M), we
say that V ∈ C∞(M) is a Liapunov function of X at x0 if V (x0) = 0, V (x) > 0 for
all x �= x0, and LXV (x) ≤ 0 for all x ∈M.

Proposition 4.1. If there exists a Liapunov function V ∈ C∞(M) of X at x0,
then x0 is stable.

Proof. Let ∂B(x0, r) = {x ∈ M |d(x, x0) = r}. Obviously, it is a closed and
bounded set. Since (M, g) is complete, the Hopf–Rinow theorem ensures that it is
compact. Then let β be the minimum value of the Liapunov function V on this
compact set.

Consider K = {x ∈ B(x0, r) | V (x) ≤ α}, where α ∈ (0, β). Let us show that K
is invariant under the flow of X. Take x ∈ K and consider γ(t;x). Since V (γ(t;x)) is
a decreasing function, it satisfies V (γ(t;x)) ≤ V (γ(0;x)) ≤ α, and as a consequence
γ(t;x) ∈ B(x0, r) for t ≥ 0 because α < β. Then K is invariant, and therefore x0 is
stable.

Note. From this proposition, we have that if X is a dissipative field and the
dissipative function S has a strict absolute minimum at the equilibrium point x0,
then x0 is stable, since V = S − S(x0) is a suitable Liapunov function.

4.3. La Salle’s theorem. Let X ∈ X(M) be a complete vector field on the
complete Riemannian manifold (M, g). For x ∈M , consider the set

W (x) =

{
y ∈M | ∃ (tk) ⊂ R, tk > 0, tk →∞, lim

k→∞
γ(tk;x) = y

}
.

This is the set of limit points of the integral curve γ(t;x).
Lemma 4.2. If the solution γ(t;x) is bounded, then W (x) is an invariant and

compact subset of M and limt→∞ D(γ(t;x),W (x)) = 0 (where D is the point-set
distance).

Proof. Let x̂ ∈ W (x); then there exists (tk) such that limk→∞ γ(tk;x) = x̂. In
order to show that W (x) is invariant under X, we must prove that γ(t; x̂) ∈ W (x)
for all t ∈ R. For every t ∈ R, take the sequence (t + tk) from the existence and
uniqueness of solutions of ODE γ(t + tk;x) = γ(t; γ(tk;x)). The flow box theorem
implies that limk→∞ γ(t; γ(tk;x)) = γ(t; x̂); therefore W (x) is invariant.

Since γ(t;x) is bounded, W (x) is also bounded. Thus, we need only to prove
that it is closed because of the Hopf–Rinow theorem. Let (xn) ⊂ W (x) and assume
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that limn→∞ xn = x̂. Since xn ∈ W (x) for all n ∈ N, there exist (tnk ) such that
limk→∞ γ(tnk ;x) = xn for all n > 0. Then we can find a sequence (t̂m) of (tnk ) such
that limm→∞ d(γ(t̂m;x), x̂) = 0. Hence, limm→∞ γ(t̂m;x) = x̂, and the result follows.

Suppose that limt→∞ D(γ(t;x),W (x)) �= 0; then there exists ε > 0 and a sequence
(tm), with tm −→ ∞, such that d(γ(tm;x), y) ≥ ε for all y ∈ W (x). However, the
curve γ(t;x) is contained in a compact set, since this solution is bounded and (M, g)
is a complete manifold. Thus we can find a convergent partial sequence (γ(t̂k;x)) such
that limk→∞ γ(t̂k;x) = ŷ for some ŷ ∈ W (x). However, this is not possible because
ŷ ∈W (x) and d(ŷ, y) ≥ ε for all y ∈W (x).

It is essential for the solution to be bounded. It is well known that there are
dynamical systems in R

3, a complete Riemannian manifold, which have unbounded
solutions with chaotic behavior.

Proposition 4.3 (La Salle’s theorem). Let X ∈ X(M) be a complete vector field
on a complete Riemannian manifold (M, g). Let x0 be an equilibrium point of X and
V ∈ C∞(M) a Liapunov function of X at x0. Suppose that x ∈M is such that γ(t;x)
is bounded. Then W (x) ⊆ {y ∈M |LXV (y) = 0}.

Proof. The function v(t) = V (γ(t;x)) is positive and decreasing; then limt→∞ v(t)
= v̂ ≥ 0. Take y ∈ W (x); there exists (tm) such that limm→∞ γ(tm;x) = y. Since V
is continuous, it follows that V (y) = limm→∞ V (γ(tm;x)) = v̂. As W (x) is invariant,
we have V (γ(t; y)) = V (y). Therefore LXV (y) = 0.

Proposition 4.4. Under the same conditions of Proposition 4.3, if K ⊆ M is
the maximal invariant set under the flow of X such that K ⊆ {y ∈M |LXV (y) = 0},
we have that limt→∞ D(γ(t;x),K) = 0.

Proof. Suppose that limt→∞ D(γ(t;x),K) �= 0; then there exists ε > 0 and a
sequence (tm) such that d(γ(tm;x), y) ≥ ε for all y ∈ K. Since γ(t;x) is contained
in a compact set, a convergent partial subsequence γ(t̂k;x) can be found such that
limk→∞ γ(t̂k;x) = ŷ ∈ W (x) ⊆ K. But this is a contradiction, since d(ŷ, y) ≥ ε for
all y ∈ K.

Corollary 4.5. Under the same conditions as in Proposition 4.3, if the integral
curves of X are bounded and the Liapunov function V of X at x0 satisfies LXV (x) < 0
for x �= x0, then x0 is globally asymptotically stable.

Proof. Since V is a Liapunov function, x0 is a stable equilibrium point. On the
other hand, the conditions that we have assumed imply that K = {x0}, and from the
previous proposition, limt→∞ D(γ(t;x), x0) = 0 for all x ∈M .

Note. If X is strictly dissipative, the integral curves are bounded, and the dissipa-
tion function has a strict absolute minimum in x0, then x0 is globally asymptotically
stable (see the note following Proposition 4.1).

In order to assure that the integral curves are bounded, if M is not compact, it
is enough for the Liapunov function to satisfy that limd(q,x0)→∞ V (q) =∞.

5. Applications to control systems. Consider now the dynamical control
system on the complete Riemannian manifold (M, g) given by Y = X +

∑m
i=1Xiui

with outputs yi = hi ∈ C∞(M), i = 1, . . . ,m. Let x0 be an equilibrium point of the
drift field X.

Proposition 5.1. Suppose that the system is passive with storage function S
with a strict absolute minimum at x0. If there exists a function φ = (φ1, . . . , φm) ∈
C∞(Rm,Rm) such that

∑m
i=1 yiφi(y1, . . . , ym) ≥ 0 and φi(y1(x0), . . . , ym(x0)) = 0, i =

1, . . . ,m, then we can stabilize the equilibrium point x0 by the feedback ui(vq) =
−φi(y1(vq), . . . , ym(vq)).
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Proof. It is enough to prove that the storage function S is a Liapunov function
of Z = X −∑m

i=1Xiφi(y1, . . . , ym). Without lost of generality, we can suppose that
S(x0) = 0. Since the control system is passive and satisfies

∑m
i=1 yiφi(y1, . . . , ym) ≥ 0,

the next inequalities hold:

S(γ(T ))− S(γ(0)) ≤ −
∫ T

0

m∑
i=1

yi(γ(s))φi(y1(γ(s)), . . . , ym(γ(s))) ds ≤ 0,

where γ is an integral curve of the field Z. Hence S is decreasing along the integral
curves of Z. Moreover, S(x) > 0 for x �= x0 and S(x0) = 0.

Remember that a dynamical control system is called zero-stable detectable at x0

if for every x ∈M such that h(γ(t;x)) = 0 we have limt→∞ γ(t;x) = x0.
Proposition 5.2. Suppose now that the system is zero-stable detectable, is pas-

sive where the storage function S has a strict absolute minimum at x0, and the
sets S−1([0, a]) are bounded. If there exists a function φ = (φ1, . . . , φm) such that∑m
i=1 yiφi(y1, . . . , ym) > 0, (y1, . . . , ym) �= 0, and φi(y1(x0), . . . , ym(x0)) = 0, i =

1, . . . ,m, then the feedback ui = −φi(y1(vq), . . . , ym(vq)) makes x0 globally asymptot-
ically stable.

Note. The zero-stable detectable property assures that the outputs faithfully
transmit the behavior of the system. See [10] and [11] for details on this notion and
examples.

Proof. From the above proposition, we have that x0 is a stable equilibrium point.
Notice that γ(t) is defined for all t ≥ 0 because the energy is decreasing along the
integral curves of Z = X −∑m

i=1Xiφi(y1, . . . , ym) and γ(t) ⊆ S−1([0, α]), where
S−1([0, α]) are bounded and closed sets.

Consider an integral curve γ(t;x) of Z. It follows that limt→∞ S(γ(t;x)) = a0 ≥ 0.
Then S(x̂) = a0 for all x̂ ∈ W (x) because of the continuity of the function S. Let
x̂ ∈ W (x); since W (x) is an invariant set and the control system is passive, the next
inequalities hold:

0 = S(γ(T ; x̂))− S(γ(0; x̂)) ≤ −
∫ T

0

m∑
i=1

yiφi(y1, . . . , ym) dt < 0.

Hence
∑m
i=1 yi(γ(t, x̂))φi(y1(γ(t, x̂)), . . . , γ(t, x̂)) = 0, and in consequence yi(γ(t, x̂)) =

0, t ≥ 0. However, as the system is zero-stable detectable, limt→∞ γ(t; x̂) = x0 and
S(limt→∞ γ(t, x̂)) = a0 = S(x0) = 0. Then limt→∞ S(γ(t;x)) = 0 and limt→∞ γ(t;x)
= x0.

Example. Consider the dynamical control system ẋ1 = x2, ẋ2 = −x1, ẋ3 = u,
y = x3. It is passive with storage function S = 1

2x
2
3, and the equilibrium point (0, 0, 0)

is stable, but not asymptotically stable, since it is not zero-stable detectable.

6. Stability of equilibrium points of mechanical dissipative systems.
This section is devoted to the study of the stability of mechanical systems. Since
vector fields on TQ correspond to mechanical systems, according to the foregoing
sections, the tangent bundle of a complete Riemannian manifold Q must be provided
with a complete Riemannian metric in order to establish the results in an overall
context and to determine the conditions for one equilibrium point to be globally
asymptotically stable. This is always possible if we take as a metric on TQ the Sasaki
metric gT . It is known that the topology induced by gT coincides with the natural one
in TQ. Moreover, gT is Riemannian, and if g is complete, then gT is also complete.
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Therefore, (TQ, gT ) is a complete Riemannian manifold, and we can apply the results
of the previous section. See [2] and [15] for more details. Obviously, TQ can be
provided with other different metrics. The only problem is to select one which makes
TQ a complete Riemannian manifold.

6.1. Dissipative systems. Consider a mechanical system Σ = (Q, g, U,R),
where (Q, g) is a complete Riemannian manifold and R ∈ X(Q, τQ) is dissipative.
The equilibrium points of the system are of the form 0qo ∈ TqoQ, since the vector
field associated to the system, Y = Xg − (gradU)v + Rv, satisfies the second order
condition. We denote by 0qo the zero vector in TqoQ. Moreover, if R ∈ X(Q, τQ)
verifies that R(0q) = 0 for every q ∈ Q, for example if R comes from a Rayleigh
function, then qo is a zero of the gradient of U .

It is known that if U ∈ C∞(Q) is bounded from below and R ∈ X(Q, τQ) is
dissipative, then Y ∈ X(TQ) is positive complete; see [1] for more details. Therefore,
we can study the asymptotic behavior of any solution.

Proposition 6.1. Let (Q, g) be a complete Riemannian manifold, and consider
a mechanical system Σ = (Q, g, U,R) with R ∈ X(Q, τQ) dissipative. Suppose that qo

is a strict absolute minimum of U and R(0q) = 0 for every q ∈ Q. Then we have that
0qo is stable.

Moreover, if 0qo is the only equilibrium point, R ∈ X(Q, τQ) is strictly dissipative,
and the solutions are bounded, then 0qo is globally asymptotically stable.

Proof. In order to prove the stability, it is enough to show that Ẽ = T + τ∗QU −
U(qo) is a Liapunov function; see Proposition 4.1. That is, Ẽ(vq) > 0 for all vq �= 0qo

and LY Ẽ(vq) ≤ 0. To prove the last assertion, let γ̇(t; vq) be a solution of the system.

Then, since R is dissipative, we have LY Ẽ(vq) = g(R ◦ γ̇(t; vq), γ̇(t; vq))|t=0 ≤ 0, as in
Proposition 3.1.

Asymptotic stability follows from Proposition 4.3. Consider a solution of the sys-
tem γ̇(t; vq); then LY Ẽ(vq) = g(R◦γ̇(t; vq), γ̇(t; vq))|t=0 ≤ −αg(γ̇(t; vq), γ̇(t; vq))|t=0 =
−αgq(vq, vq) for some α > 0. So the maximal invariant set K, defined in Proposi-

tion 4.4, verifies K ⊆ {y ∈ TQ|LXẼ(y) = 0} ⊆ {0q|q ∈ Q}, and since there is only
one equilibrium point, then K = {0qo}. Therefore, 0qo is globally asymptotically
stable.

6.2. Partially dissipative systems. Let (Q1, g1), (Q2, g2) be Riemannian man-
ifolds with Levi–Civita connections ∇1 and ∇2. We can provide the manifold Q =
Q1 ×Q2 with a natural Riemannian metric g = g1 ⊕ g2, which is complete if g1 and
g2 are also complete. For (Q, g) the Levi–Civita connection is ∇ = ∇1 ⊕∇2; that is,
∇γ̇ γ̇ = ∇1

γ̇1
γ̇1 +∇2

γ̇2
γ̇2, where γ = (γ1, γ2) is a curve in Q.

From the above, the dynamical equations of the system Σ = (Q, g, U,R) can be
written as

∇1
γ̇1 γ̇1 = −(grad1U) ◦ (γ1, γ2) +R1 ◦ (γ̇1, γ̇2),

∇2
γ̇2 γ̇2 = −(grad2U) ◦ (γ1, γ2) +R2 ◦ (γ̇1, γ̇2),(5)

where i(gradi U)gi = −diU and di is the exterior differential operator in Qi, i = 1, 2.
Recall that if X ∈ X(Q), then X = X1 +X2, where Xi ∈ (Q, πi) and πi:Q → Qi is
the natural projection.

Proposition 6.2. Given a mechanical system Σ = (Q = Q1 × Q2, g = g1 ⊕
g2, U,R) with R = (0, R2), R2 ∈ X(Q2, τQ2) a dissipative force, if U ∈ C∞(Q) has a
strict absolute minimum at qo ∈ Q, then the equilibrium point 0qo is stable.
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Proof. The function Ẽ = T + τ∗QU −U(qo) is a Liapunov function at 0qo because

Ẽ > 0 for vq �= 0qo and LY Ẽ(vq) = g(R ◦ γ̇, γ̇) = g2(R2 ◦ γ̇2, γ̇2) ≤ 0. Therefore, 0qo

is stable.

The vector field R ∈ X(Q, τQ) is called strictly partially dissipative if it verifies
g(R ◦ vq, vq) ≤ −αg2(vq2 , vq2), with α a real number, α > 0, for all vq ∈ TqQ. This
condition means that R is only strictly dissipative on (Q2, g2).

Proposition 6.3. Let Σ = (Q = Q1 × Q2, g = g1 ⊕ g2, U,R) be a mechanical
system with R ∈ X(Q, τQ) strictly partially dissipative and such that if vq2 = 0, then
R(vq) = 0.

Suppose that U ∈ C∞(Q) has a strict absolute minimum at qo and every solution
γ(t) = (γ1, γ2) such that γ̇2 = 0 and (grad2 U) ◦ γ = 0 satisfies limt→∞ γ̇(t) = 0qo .
Then 0qo is globally asymptotically stable.

Proof. Notice that the solutions are defined for all t ≥ 0, because the vector field
associated to the system is dissipative, and then it is positive complete.

Consider a solution of the system Σ, γ̇(t; vq), and take the function Ẽ = T +U −
U(qo). Since Ẽ ≥ 0 and it verifies

d(Ẽ ◦ γ̇)

dt
= g(R ◦ γ̇, γ̇) ≤ −αg(γ̇2, γ̇2) ≤ 0,(6)

then limt→∞ Ẽ(γ̇(t; vq)) = a0 ≥ 0. By the continuity of Ẽ, Ẽ(x̂) = a0 for all x̂ ∈
W (vq), with the same notation as in section 4.3.

Consider now the solution γ̇(t; x̂), where x̂ ∈W (vq). From inequality (6) and the
invariance ofW (vq), it is clear that g2(γ̇2(t; x̂), γ̇2(t; x̂)) = 0. Hence γ̇2(t; x̂) = 0, t ≥ 0.

Substitution of γ̇2(t; x̂) = 0 into (5) gives that (grad2 U)(γ(t; x̂)) = 0 and then
limt→∞(γ̇(t; x̂)) = 0qo . Hence a0 = E(γ̇(t; x̂)) = 0 and therefore limt→∞ γ̇(t; vq) =
0qo .

7. Dissipative control of mechanical systems.

7.1. Stabilization on equilibrium points. Let (Q, g) be a complete Riemann-
ian manifold and 0qo an equilibrium point of the simple mechanical system (Q, g, U).
Consider the mechanical control system Σ = (Q, g, U, F1, . . . , Fm) with the natural
outputs. Then we have the following proposition.

Proposition 7.1. If the potential function U has a strict absolute minimum
at qo, then 0qo is a stable equilibrium point of the system Σ̃ = (Q, g, U,R), where
R(vq) = −β∑m

i=1 Fi(vq)gq(Fi(vq), vq), β > 0.

Note. The system Σ̃ is obtained from Σ by the feedback ui(vq) = −βhi(vq) =
−βgq(Fi(vq), vq), with β a real number, β > 0.

Proof. The function Ẽ = T+U−U(qo) is a Liapunov function for Σ̃ = (Q, g, U,R),
because Ẽ(vq) > 0 for every vq �= 0qo and LZẼ(vq) = −β∑(g(Fi(vq), vq))

2,

where Z ∈ X(TQ) is the dynamical vector field associated to the system Σ̃ =
(Q, g, U,R).

Corollary 7.2. Under the same condition of the above proposition, suppose
there exist functions φ1, . . . , φm ∈ C∞(Rm,R) such that φi(0) = 0, i = 1, . . . ,m, and∑m
i=1 yiφi(y1, . . . , ym) ≥ 0. Then 0qo is a stable equilibrium point of Σ̃ = (Q, g, U,R =

−∑m
i=1 Fiφi(y1, . . . , ym)).
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7.2. Stabilization at an arbitrary point.

7.2.1. Dynamic extensions of a control system. Let Σp be a control system
on the manifold Mp; that is, Σp = (Mp, Yp = X0

p +
∑m
i=1 F

p
i u

p
i ), with controls upi ∈

C∞(Mp). Denote by Σc the couple made by a manifold Mc and a vector field Yc ∈
X(Mc, πc), where πc:Mp×Mc −→Mc. Then Σc = (Mc, Yc) is a system on Mc which
depends on the states of Mp.

With Σp and Σc, we can define a new control system Σ = (M,Y ), which is called
a dynamic extension of Σp, in the following way. As phase space consider the manifold
M = Mp ×Mc and the vector field on M given by Y = (X0

p , Yc) +
∑m
i=1(F pi , 0)ui,

where the new controls ui ∈ C∞(M). Note that the controls ui depend on the state
variables of Mc and Mp. Moreover, if Σc has good properties, for instance if it is a
dissipative system, then these properties can be used to stabilize Σp.

The notation comes from that usually employed in control theory, Mp for the
“plant system,” the system under study, and Mc for the “controller” (see [10]), and
we say that Σ = (M,Y ) is a dynamic extension of Σp.

7.2.2. Mechanical systems. Consider the mechanical system with controls
Σp = (Qp, gp, Up, F

p
1 , . . . , F

p
mp). We are interested in dynamic extensions of Σp.

Suppose that we have a Riemannian manifold (Qc, gc), a function Uc:Qp×Qc −→
R, and a vector field Rc ∈ X(Qc, τc), where τc: TQc −→ Qc is the natural projec-
tion. Denote by Σc the set (Qc, gc, Uc, Rc). With Σp and Σc we can define Σ, a
dynamic extension of Σp, given by Q = Qp × Qc, g = gp ⊕ gc, and Y = (Xp

g , X
c
g) −

(gradp Up, gradc Uc)
v + Rv +

∑mp
i=1 F

v
i ui, where R = (0, Rc) and Fi = (F pi , 0), with

controls ui ∈ C∞(Q).
Once again the new controls depend on the states of Qp and Qc, not only on Qp.

Notice that Σ is not a mechanical system with controls, because we have neither a
potential function U ∈ C∞(Q) nor gradU as a force field.

7.2.3. Stabilization by dynamic extensions. Let the mechanical control sys-
tem be Σp = (Qp, gp, Up, F

p
1 , . . . , F

p
mp). We will try to design controls to stabilize the

system at a desired point qop. The idea is to construct a suitable dynamic extension
Σ such that the whole system given by the dynamic extension makes qop stable by an
appropriate feedback.

With this aim, consider that Σ is a dynamic extension of Σp given by Σc =
(Qc, gc, Uc, Rc), and suppose that gradp Uc ∈ 〈F p1 , . . . , F pmp〉. We have the following
results.

Proposition 7.3. Suppose that q0 = (q0p, q
0
c ) is a strict absolute minimum of

U = Up+Uc and that Rc ∈ X(Qc, τc) is a dissipative vector field such that Rc(0qc) = 0
for every qc ∈ Qc. Then the feedback ui ∈ C∞(Q), such that

∑mp
i=1 Fiui = gradp Uc,

makes 0qo stable.
Note. Observe that the system which results from Σ by the feedback previously

described is the mechanical system Σ = (Q, g, U,R).
Proof. Note that if Rc ∈ X(Qc, τQc) is dissipative, that is, if it verifies that

gc(Rc(vc), vc) ≤ 0, then R = (0, Rc) is also dissipative with respect to the metric g,
since g(R(vp, vc), (vp, vc)) = gp(0, vp) + gc(Rc(vc), vc) = gc(Rc(vc), vc) ≤ 0.

Then the function Ẽ = T + τ∗QU − U(qo) is a Liapunov function of Σ because

Ẽ(vp, vc) > 0 for every (vp, vc) �= 0qo , and LZẼ((vp, vc)) = g(R((vp, vc)), (vp, vc)) ≤ 0
with Z the dynamical vector field of the whole system.

Proposition 7.4. Under the same conditions as in the above proposition, let
us suppose that Rc ∈ X(Qc, τc) is strictly dissipative and every solution γ = (γp, γc)
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of the system Σ = (Q, g, U,R) such that γ̇c(t) = 0 and gradc Uc(γp, γc) = 0 satisfies
limt→∞ γ̇(t) = 0po . Then 0po is a globally asymptotically stable point of the system
Σ.

Comment. The last condition is related to the property of being zero-stable
detectable. See section 5 or [10].

Proof. Since R ∈ X(Q, τQ) is partially dissipative, we have the conditions of
Proposition 6.3.

Note. Given the mechanical control system Σp, suppose that q0p ∈ Qp is the
point where we want to stabilize the system. According to the above propositions,
it is enough to find a system Σc with the condition that the new potential function
U = Up + Uc has a strict absolute minimum at (q0p, q

0
c ), where q0c can be any point of

the manifold Qc.
Observe that the process has two different parts:
1. to find the potential function Uc, with the purpose of obtaining a new one
U = Up + Uc that has a strict absolute minimum at (q0p, q

0
c );

2. to design controls ui with the aim of obtaining a dynamical extension which
can stabilize the system in q0p using the dissipative force associated to Σc.

See [10] for a local point of view, examples, and applications of all these results.
Compare the above proposition with Theorem 3.1 in [10].
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Abstract. This paper is concerned with a maximum principle of optimal control problems
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1. Introduction. In this paper we shall study optimal control problems gov-
erned by some semilinear parabolic differential equations which, in particular, could
be singular, i.e., have local solution only. We shall call such systems non–well-posed
systems and call the optimal control problems governed by such systems non–well-
posed optimal control problems.

Throughout this paper, we denote by Ω ⊂ Rn, n ≥ 3, a bounded open subset
with smooth boundary ∂Ω (say, for instance, the class of C2). Let Q = Ω×(0, T ) with
T > 0 and

∑
= ∂Ω × (0, T ). Let aij(x) ∈ C2(Ω̄) with aij(x) = aji(x) for all x ∈ Ω̄,

satisfying
∑n
i,j=1 aij(x)ξiξj ≥ Λ

∑n
i=1 ξ2

i for all ξi ∈ R, i = 1, . . . , n, and x ∈ Ω̄, where

Λ > 0. Set Ay(x, t) = −∑n
i,j=1

∂
∂xi

(aij(x)
∂y(x,t)
∂xj

). We set

Y =

{
y ∈ L2(0, T ;H1

0 (Ω)) | ∂y
∂t

+ Ay ∈ L2(Q)

}

and

‖y‖Y =

(
‖y‖2L2(0,T ;H1

0 (Ω)) +

∥∥∥∥∂y∂t + Ay

∥∥∥∥
2

L2(Q)

) 1
2

.

Then, as we know (cf. [15]), Y endowed with the norm ‖ · ‖Y is a Hilbert space,
and Y = H2,1(Q) ∩ L2(0, T ;H1

0 (Ω)), where

H2,1(Q) =

{
y | y, ∂y

∂t
,
∂y

∂xi
,

∂2y

∂xi∂xj
∈ L2(Q), i, j = 1, . . . , n

}
.

We set

H2,1
2n
n+2

(Q) =

{
y ∈ L

2n
n+2 (Q) | ∂y

∂t
,
∂y

∂xi
,

∂2y

∂xi∂xj
∈ L

2n
n+2 (Q), i, j = 1, . . . , n

}

and

W
1, 2n
n+2

0 (Ω) =

{
w ∈ L

2n
n+2 (Ω) | ∂w

∂xi
∈ L

2n
n+2 (Ω), i = 1, . . . , n, w = 0, on ∂Ω

}
.
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The first problem (P1) we study in this paper is as follows.

Inf L(y, u) ≡ Inf
∫ T
0

[g(t, y) + h(u)]dt over all (y, u) ∈ Y × L2(Q) such that




∂y(x,t)
∂t + Ay(x, t) + f(x, t, y(x, t)) = u(x, t), in Q,

y(x, t) = 0, on
∑

,
y(x, 0) = y0(x), in Ω

(1.1)

and

F (y) ∈W.(1.2)

Here y0(x) ∈ L2(Ω), and we assume the following:
(H1) g : [0, T ] × L2(Ω) → R+ is measurable in t, and for every δ > 0 there

exists Lδ > 0 independent of t such that g(t, 0) ∈ L∞(0, T ) and

|g(t, y1)− g(t, y2)| ≤ Lδ‖y1 − y2‖L2(Ω) for all t ∈ [0, T ], ‖y1‖L2(Ω) + ‖y2‖L2(Ω) ≤ δ.

h : L2(Ω)→ R̄ = (−∞,+∞] is lower semicontinuous and convex with the
following growth property:

h(u) ≥ c1‖u‖2L2(Ω) + c2,

where c1 > 0 and c2 ∈ R.
(H2) f : Ω̄×[0, T ]×R→ R is continuous, and f ′

y(x, t, ·) is continuous. Moreover,

|f(x, t, y)| ≤ a1(x, t) + b1|y|r1

and

|f ′
y(x, t, y)| ≤ ã1(x, t) + b̃1|y|r1−1,

where a1(x, t) ∈ L2(Q), ã1(x, t) ∈ Ln(Q) with a1(x, t) ≥ 0 a.e. in Q, ã1(x, t) ≥ 0 a.e.
in Q; b1, b̃1 ≥ 0 are two constants; and r1 ∈ R with 1 ≤ r1 ≤ n

n−2 .

(H3) X is a Banach space with X∗ strictly convex, and F : L2(Q) → X is in
the class of C1. W ⊂ X is a convex and closed subset.

Let (y∗1 , u
∗
1) be an optimal pair for problem (P1), i.e., (y∗1 , u

∗
1) ∈ Y × L2(Q) and

satisfies (1.1) and (1.2); moreover, L(y∗1 , u
∗
1) ≤ L(y, u) for all (y, u) ∈ Y × L2(Q) sat-

isfying (1.1) and (1.2). In addition to (H1), (H2), and (H3), we assume the following:
(H4) F ′(y∗1)Dr −W has finite codimensionality in X for some r > 0, where

Dr = { z ∈ Y : ‖z‖Y ≤ r and z(x, 0) = 0 }.
For the definition of finite codimensionality of a set and related results, we refer

the reader to [13]. Note that z(x, 0) makes sense and belongs to L2(Q) because z ∈ Y
(cf. [15]). It is clear that for each r > 0, Dr �= ∅ because 0 ∈ Dr.

The second problem (P2) we shall study in this paper is as follows.

Inf L(y, u) ≡ Inf
∫ T
0

[g(t, y) + h(u)]dt over all (y, u) ∈ Y × L2(Q) such that

{
∂y(x,t)
∂t + Ay(x, t) + f(x, t, y(x, t)) = u(x, t), in Q,

y(x, t) = 0, on
∑(1.3)

and

(y(x, 0), y(x, T )) ∈ S,(1.4)
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where the functionals g and h satisfy (H1) and the function f satisfies (H2). Moreover
we assume the following:

(H5) S ⊂ L2(Ω)× L2(Ω) is a closed convex subset.
Let (y∗2 , u

∗
2) be an optimal pair for problem (P2), i.e., (y∗2 , u

∗
2) ∈ Y × L2(Q) and

satisfies (1.3) and (1.4); moreover, L(y∗2 , u
∗
2) ≤ L(y, u) for all (y, u) ∈ Y × L2(Q)

satisfying (1.3) and (1.4). We define, for r1, r2, r3 > 0,

Br1,r2,r3 = {(z0, z1) ∈ L2(Ω)× L2(Ω) | for all y ∈ Y with ‖y − y∗2‖Y ≤ r1,
∃ (z, v) ∈ Y × L2(Q) with ‖z‖Y ≤ r2, ‖v‖L2(Q) ≤ r3

such that z(x, 0) = z0, z(x, T ) = z1 and
∂z
∂t + Az + f ′

y(x, t, y)z = v in Q }.
(1.5)

Observe that for all r1, r2, r3 > 0, Br1,r2,r3 �= ∅, because (0, 0) ∈ Br1,r2,r3 . In
addition to (H1), (H2), and (H5), we assume this:

(H6) There exist r1, r2, r3 > 0 such that the set (Br1,r2,r3 − S) has finite codi-
mensionality in L2(Ω)× L2(Ω).

By (H1), (H2), (H3), and (H4), we may get the necessary conditions for (y∗1 , u
∗
1) to

be optimal for problem (P1), which is given by Theorem 1.1 below, and by (H1), (H2),
(H5), and (H6) we may obtain the necessary conditions for (y∗2 , u

∗
2) to be optimal for

problem (P2), which is presented by Theorem 1.2.
In order to get the existence of optimal pairs for problems (P1) and (P2), we need

the additional assumptions that follow.
(H7) There exist c̃1 > 0 and c̃2 ≥ 0 such that

g(t, y) ≥ c̃1|y|2r̃ + c̃2 for all (t, y) ∈ [0, T ]×R,

where r̃ = n
n−2 .

(H8) Dad �= ∅, where

Dad = {(y, u) ∈ Y × L2(Q) : (y, u) satisfies (1.1) and (1.2)}.
(H9) D̃ad �= ∅, where

D̃ad = {(y, u) ∈ Y × L2(Q) : (y, u) satisfies (1.3) and (1.4)}.
(H10) The set {x0 ∈ L2(Ω) : (x0, x1) ∈ S for some x1 ∈ L2(Ω)} is bounded in

L2(Ω).
The following notation will be in effect throughout this paper. [F ′(y)]∗ denotes

the adjoint operator of operator F ′(y), where y ∈ L2(Q); ∂g(t, y) and ∂h(u) denote
the subdifferential of g to the second variable at y in the sense of Clarke (cf. [9]) and
the subdifferential of convex functional h at u (cf. [2]), respectively, where y ∈ L2(Q)
and u ∈ L2(Q); dS(·, ·) denotes the distance of (·, ·) to S in L2(Q)× L2(Q); and 〈·, ·〉
and 〈·, ·〉X∗,X denote the inner product in L2(Ω) and the pairing between X∗ and X,
respectively.

From now on, we shall omit x, t in all functions of x, t if there is no ambiguity.
The main results we obtain in this paper are presented as follows.

Theorem 1.1. Suppose that (H1), (H2), (H3) hold. Let (y∗1 , u
∗
1) be optimal

for problem (P1). We suppose further that (H4) holds. Then there exist a triplet
(λ0, ξ0, p) ∈ R×X∗ ×H2,1

2n
n+2

(Q) with (λ0, ξ0) �= 0 and a function α ∈ ∂g(t, y∗1) a.e. in

Q such that

−∂p∂t + Ap + f ′

y(x, t, y
∗
1)p + λ0α + [F ′(y∗1)]

∗ξ0 = 0, in Q,
p(x, t) = 0, on

∑
,

p(x, T ) = 0, in Ω,
(1.6)
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p ∈ λ0∂h(u
∗
1) a.e. in Q,(1.7)

〈ξ0, ψ − F (y∗1)〉X∗,X ≤ 0 for all ψ ∈W.(1.8)

Moreover, if [F ′(y∗1)]
∗ is injective, then λ0 �= 0.

Theorem 1.2. Suppose that (H1), (H2), and (H5) hold. Let (y∗2 , u
∗
2) be optimal

for problem (P2). We further suppose that (H6) holds. Then there exist a function

p ∈ L2(Q) ∩ L
2n
n+2 (0, T ;W

1, 2n
n+2

0 (Ω)), a function α ∈ ∂g(t, y∗2) a.e. in Q, and λ0 ∈ R
with λ0 �= 0 such that

−∂p

∂t
+ Ap ∈ L

2n
n+2 (Q),(1.9)

{ −∂p∂t + Ap + f ′
y(x, t, y

∗
2)p + λ0α = 0, in Q,

p(x, t) = 0, on
∑

,
(1.10)

(1.11)

〈p(x, 0), x0 − y∗2(x, 0)〉 − 〈p(x, T ), x1 − y∗2(x, T )〉 ≤ 0 for all (x0, x1) ∈ S,

and

p ∈ λ0∂h(u
∗
2) a.e. in Q.(1.12)

Theorem 1.3. Let (H1), (H2), (H3), (H7), and (H8) hold. Then problem (P1)
has at least one solution.

Theorem 1.4. Let (H1), (H2), (H5), (H7), (H9), and (H10) hold. Then problem
(P2) has at least one solution.

Now we shall point out some special cases of state constraints covered by (1.2)
and (1.4) and a special state system covered by (1.1), which is non–well-posed. We
stress that the state constraint (1.2) is of the type of an integral. We do not deal with
the pointwise state constraint in this paper, for which we refer the reader to [7] and
[8].

Example 1.5. Let X = Rm and hi ∈ L2(Q) with 1 ≤ i ≤ m, which are linearly
independent in L2(Q).

Define F (y) = (
∫
Q
y(x, t)h1(x, t)dxdt, . . . ,

∫
Q
y(x, t)hm(x, t)dxdt). It is clear that

F is a linear and bounded operator from L2(Q) to Rm.
Let W = ([a1, b1], . . . , [am, bm]) ⊂ Rm, ai < bi, i = 1, . . . ,m; then W is convex

and closed with finite codimensionality. Thus by Proposition 3.4 of Chapter 4 of [13],
the set (F ′

y(y)Dr −W ) has finite codimensionality in X for any y ∈ L2(Q) and r > 0.
Consider the state constraint of the form:

ai ≤
∫
Q

y(x, t)hi(x, t)dxdt ≤ bi, i = 1, . . . ,m.(1.13)

It is clear that (1.13) is equivalent to (1.2).
On the other hand, [F ′(y)]∗ξ : Rm → L2(Q) can be defined by

[F ′(y)]∗ξ =

m∑
i=1

ξihi for all ξ = (ξ1, . . . , ξm) ∈ Rm.
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Since h1, . . . , hm are linearly independent, [F ′(y)]∗ is injective for each y ∈ L2(Q).
Example 1.6. Let S = {x0} × S1, where x0 ∈ H1

0 (Ω) and S1 ⊂ L2(Ω) has finite
codimensionality in L2(Ω). We assume that there exists a constant r > 0 such that for
each z0 ∈ H1

0 (Ω) with ‖z0‖H1
0 (Ω) ≤ r, and y ∈ Y with ‖y − y∗2‖Y ≤ r, the variational

system 


∂z
∂t + Az + f ′

y(x, t, y)z = v, in Q,
z(x, t) = 0, on

∑
,

z(x, 0) = z0, in Ω
(1.14)

is null controllable, i.e., there exists (z, v) ∈ Y × L2(Q) which satisfies (1.14) and
z(x, T ) = 0.

By Proposition 3.4 in Chapter 4 of [13], one can easily check that (H6) holds in
this case. In other words, state constraint (1.4) covers this case.

From this example, we may see that hypothesis (H6) mixes some geometric as-
sumptions on set S and some observability assumptions on the variational system
corresponding to the state system around (y∗2 , u

∗
2).

Example 1.7. Consider the following system:


∂y(x,t)
∂t + Ay(x, t) = y3(x, t) + u(x, t), in Q,

y(x, t) = 0, on
∑

,
y(x, 0) = 0, in Ω,

(1.15)

where Q = Ω × (0, T ), Ω ⊂ R3, is a bounded domain with smooth boundary. We
consider the control set to be L2(Q).

Let f(x, t, y) ≡ −y3. One can easily check that f satisfies the conditions in (H2).
As we know (cf. [14]), for each u ∈ L2(Q), system (1.15) has in general no global
solution. This is an unstable or non–well-posed system.

More generally, we may consider the following system:


∂y(x,t)
∂t + Ay(x, t) = y(x, t)|y(x, t)|q−1 + u(x, t), in Q,

y(x, t) = 0, on
∑

,
y(x, 0) = 0, in Ω,

where 1 ≤ q ≤ n
n−2 , n ≥ 3.

Let f(x, t, y) = −y|y|q−1; one can check that f satisfies all conditions in (H2).
Due to their practical applications, there has been a great deal of work on optimal

control problems governed by parabolic differential equations; see, for example, [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]. In all of this work, the state
equations handled are well-posed. In [14], Lions studied a non–well-posed optimal
control problem where the cost functional is given by

J(y, u) =
1

6
‖y − yd‖6L6(Q) +

N

2
‖u‖2L2(Q)(1.16)

and the state system reads


∂y
∂t −∆y − y3 = u, in Q,
y(x, t) = 0, on

∑
,

y(x, 0) = 0, in Ω.
(1.17)
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Stimulated by [14], we study optimal control problems (P1) and (P2), where the
state equations are more general than (1.17) and the cost functionals are more general
than (1.16)—in particular, may be nonsmooth. The major novelty of this paper is the
presence of state constraints under “finite codimensionality hypotheses” in the non–
well-posed optimal control problems. To the best of our knowledge, the maximum
principles for such problems have not been studied. The main purpose of this paper
is to derive the maximum principles for problems (P1) and (P2). So the existence of
optimal pairs for problems (P1) and (P2) are assumed when we study the maximum
principles.

Since the state equations handled in this paper may be non–well-posed, we can
not expect the same results for the sensitivity of the states to the controls as those in
[1, 2, 8, and 11]. Thus we cannot apply the techniques in [1, 2, 8, and 11] to derive
the maximum principles for problems (P1) and (P2). Because of the involvement of
the state constraints in the non–well-posed optimal control problems and because the
cost functionals may be nonsmooth, we cannot apply the approximate method, which
was employed in [14], to obtain the maximum principles for problems (P1) and (P2).
Our main idea for overcoming these difficulties is to transform the original control
problems to the optimization problems of two variables y and u by considering the
state system as another constraint composed of the state variable y and the control
variable u. (There already exist a state constraint (1.2) for problem (P1) and a state
constraint (1.4) for problem (P2).) More precisely, we introduce two kinds of penalty
functionals, via which we may transform the original problems (P1) and (P2) into
optimization problems (P ε

1 ) and (P ε
2 ) which have smooth cost functionals and have

no constraints. We find optimal solutions for problems (P ε
1 ) and (P ε

2 ), which turn
out to be close to the original optimal pairs of problems (P1) and (P2), respectively.
Then we derive the necessary conditions for the optimal solutions of the approximate
problems. Finally, by passing to the limits for ε → 0, we may obtain the maximum
principles for problems (P1) and (P2).

This paper is organized as follows. In the next section, we prove the maximum
principle for problem (P1), i.e., Theorem 1.1. In section 3, we show Theorem 1.2. In
section 4, we prove the existence of optimal pairs for problems (P1) and (P2), i.e.,
Theorem 1.3 and Theorem 1.4.

2. Maximum principle for problem (P1). Throughout this section, we shall
assume that (H1)–(H4) hold. We start this section with an introduction to the ap-
proximations gε of g and hε of h. For the details, we refer the reader to [2]. Let

gε(t, y) =

∫
RN

g(t, PNy − εΛNs)ρ(s)ds, ε > 0,

where ρ is a mollifier in RN , N = [ε−1], PN : L2(Ω) → XN is the projection of
L2(Ω) on XN , which is the finite dimensional space generated by {ei}Ni=1, where
{ei}∞i=1 is an orthonormal basis in L2(Ω). ΛN : RN → XN is the operator defined by

ΛN (s) =
∑N
i=1 siei, s = (s1, . . . , sN ).

Let hε : L2(Ω)→ R be defined by

hε(u) = inf

{‖u− v‖2L2(Ω)

2ε
+ h(v) : v ∈ L2(Ω)

}
, ε > 0.
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We define penalty functional Lε on Y × L2(Q) by

Lε(y, u) =

∫ T

0

[gε(t, y) + hε(u)]dt +
1

2

∫
Q

|u− u∗
1|2dxdt +

1

2r̃

∫
Q

|y − y∗1 |2r̃dxdt

+ 1
2ε

∫
Ω

|y(x, 0)− y0(x)|2dx +
1

2ε
[ε + dW (F (y))]2

+ 1
2ε

∫
Q

∣∣∣∣∂y∂t + Ay + f(x, t, y)− u

∣∣∣∣
2

dxdt,

(2.1)

where r̃ = n
n−2 . Note that as y ∈ Y , y(x, 0) makes sense and belongs to L2(Ω) (cf.

[15]). In addition, by Sobolev’s imbedding theorem, y ∈ L
2n
n−2 (Q). Thus, for each

ε > 0, Lε is well defined. Then we may introduce an approximate problem (P ε
1 ), for

each ε > 0, as follows.
(P ε

1 ) Inf Lε(y, u) over all (y, u) ∈ Y × L2(Q).
The following two lemmas provide the existence of an optimal solution for ap-

proximate problem (P ε
1 ) and the convergence of such optimal solutions.

Lemma 2.1. For each ε > 0, problem (P ε
1 ) has at least one solution.

Proof. Let d = Inf(y,u)∈Y×L2(Q)Lε(y, u). By (H1), it is obvious that d > −∞.
Let (ym, um) ∈ Y × L2(Q) be such that

d ≤ Lε(ym, um) ≤ d +
1

m
.(2.2)

By virtue of (2.1) and (2.2), {(ym, um)} is bounded in L2r̃(Q)×L2(Q), {ym(x, 0)}
is bounded in L2(Ω), and {∂ym∂t + Aym + f(x, t, ym)− um} is bounded in L2(Q).

On the other hand, by (H2) and by Sobolev’s imbedding theorem, we get that

{f(x, t, ym)} is bounded in L2(Q).(2.3)

Thus {∂ym∂t +Aym} is bounded in L2(Q). Then by the same argument as in [15],
{ym} is bounded in Y , and so we may extract subsequences of {ym} and {um}, still
denoted by themselves, such that


um → ũ weakly in L2(Q) as m→∞,
ym → ỹ weakly in Y, strongly in L2(Q) as m→∞,
ym(x, t)→ ỹ(x, t) a.e. in Q as m→∞,
ym(x, 0)→ ỹ(x, 0) weakly in L2(Ω) as m→∞.

(2.4)

Since f is continuous, we infer that

f(x, t, ym(x, t))→ f(x, t, ỹ(x, t)) a.e. in Q.(2.5)

By (2.3) and (2.5), there exists a subsequence of {ym}, still denoted by itself, such
that

f(x, t, ym)→ f(x, t, ỹ) weakly in L2(Q) as m→∞,(2.6)

which together with (2.4) shows that

∂ym
∂t

+ Aym + f(x, t, ym)− um → ∂ỹ

∂t
+ Aỹ + f(x, t, ỹ)− ũ weakly in L2(Q).(2.7)
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Then it follows from (2.4) and (2.7) that

(2.8)

lim
m→∞

∥∥∥∥∂ym∂t + Aym + f(x, t, ym)− um

∥∥∥∥
L2(Q)

≥
∥∥∥∥∂ỹ∂t + Aỹ + f(x, t, ỹ)− ũ

∥∥∥∥
L2(Q)

and

lim
m→∞

‖ym(x, 0)− y0(x)‖L2(Ω) ≥ ‖ỹ(x, 0)− y0(x)‖L2(Ω).(2.9)

Since ym → ỹ strongly in L2(Q), and because of (H3), we conclude that

1

2ε
[ε + dW (F (ym))]2 → 1

2ε
[ε + dW (F (ỹ))]2 as m→∞.(2.10)

On the other hand, by the same argument as in Chapter 5 of [2], we get that

(2.11)

lim
m→∞

{∫ T

0

[gε(t, ym) + hε(um)]dt +
1

2

∫
Q

|um − u∗
1|2dxdt +

1

2r̃

∫
Q

|ym − y∗1 |2r̃dxdt
}

≥
∫ T

0

[gε(t, ỹ) + hε(ũ)]dt +
1

2

∫
Q

|ũ− u∗
1|2dxdt +

1

2r̃

∫
Q

|ỹ − y∗1 |2r̃dxdt.

It follows immediately from (2.2) and (2.8)–(2.11) that Lε(ỹ, ũ) = d. This com-
pletes the proof.

Lemma 2.2. Let (yε, uε) be optimal for problem (P ε
1 ). Then there exists a gen-

eralized subsequence of ε, still denoted by itself, such that

yε → y∗1 strongly in Y as ε→ 0

and

uε → u∗
1 strongly in L2(Q) as ε→ 0.

Proof. It is clear that

Lε(yε, uε) ≤ Lε(y
∗
1 , u

∗
1) =

∫ T

0

[gε(t, y∗1) + hε(u
∗
1)]dt +

ε

2
.

By a standard argument as in [2], this implies that

lim
ε→0

Lε(yε, uε) ≤
∫ T

0

[g(t, y∗1) + h(u∗
1)]dt = L(y∗1 , u

∗
1).(2.12)

By virtue of (2.1) and by (H1), {yε} is bounded in L2r̃(Q), {uε} is bounded in
L2(Q), and ∫

Ω

|yε(x, 0)− y0(x)|2dx ≤ Cε,(2.13)

∫
Q

∣∣∣∣∂yε∂t
+ Ayε + f(x, t, yε)− uε

∣∣∣∣
2

dxdt ≤ Cε(2.14)
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for some constant C independent of ε.
By the same argument as in the proof of Lemma 2.1, there exists a generalized

subsequence of ε, still denoted by itself, such that

yε → ỹ weakly in Y and strongly in L2(Q) as ε→ 0,(2.15)

yε(x, 0)→ ỹ(x, 0) weakly in L2(Ω) as ε→ 0,(2.16)

uε → ũ weakly in L2(Q) as ε→ 0,(2.17)

and

∂yε
∂t

+ Ayε + f(x, t, yε)− uε → ∂ỹ

∂t
+ Aỹ + f(x, t, ỹ)− ũ weakly in L2(Q).(2.18)

It follows from (2.13), (2.14), (2.16), and (2.18) that


∂ỹ
∂t + Aỹ + f(x, t, ỹ)− ũ = 0, in Q,
ỹ(x, t) = 0, on

∑
,

ỹ(x, 0) = y0(x), in Ω.
(2.19)

On the other hand, by (2.1) and (2.12), we know that 1
2ε [ε + dW (F (yε))]

2 ≤ C,
which shows that dW (F (yε))→ 0 as ε→ 0. This together with (2.15) and (H3) yields
that

F (ỹ) ∈W.(2.20)

Since (y∗1 , u
∗
1) is an optimal pair of problem (P1), it follows from (2.19) and (2.20)

that

L(y∗1 , u
∗
1) ≤ L(ỹ, ũ).(2.21)

By the same argument as in [2], we get that

lim
ε→0

∫ T

0

[gε(t, yε) + hε(uε)]dt ≥
∫ T

0

[g(t, ỹ) + h(ũ)]dt.(2.22)

By (2.1),(2.21), and (2.22), we deduce that

lim
ε→0

Lε(yε, uε) ≥ L(y∗1 , u
∗
1).(2.23)

Then by (2.1), (2.12), and (2.23), there exists a generalized subsequence of ε, still
denoted by itself, such that

yε → y∗1 strongly in L2r̃(Q), weakly in Y as ε→ 0,(2.24)

yε(x, 0)→ y∗1(x, 0) strongly in L2(Ω) as ε→ 0,(2.25)

uε → u∗
1 strongly in L2(Q) as ε→ 0.(2.26)
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Now we claim that

f(x, t, yε)→ f(x, t, y∗1) strongly in L2(Q) as ε→ 0.(2.27)

Here is the argument. We observe first that

|f(x, t, yε)− f(x, t, y∗1)| = |yε − y∗1 | · |aε(x, t)|,

where aε(x, t) =
∫ 1

0
f ′
y(x, t, y

∗
1 + θ(yε − y∗1))dθ.

By (H2), we yield that a2
ε(x, t) ≤ {ã1(x, t)+ b̃1[|y∗1 |+|yε|]r1−1 }2, which, combined

with Sobolev’s imbedding theorem, indicates that {a2
ε(x, t)} is bounded in L

n
2 (Q).

Then by Holder’s inequality, we infer that

∫
Q

|f(x, t, yε)− f(x, t, y∗1)|2dxdt ≤
[∫

Q

|yε − y∗1 |2r̃dxdt
]n−2

n

·
[∫

Q

|aε|ndxdt
] 2
n

,

which immediately implies (2.27).
Now by (2.14), (2.26), and (2.27), we infer that

∂(yε − y∗1)
∂t

+ A(yε − y∗1)→ 0 strongly in L2(Q) as ε→ 0.

This together with (2.25) shows that (cf. [15]) yε → y∗1 strongly in Y as ε → 0,
which completes the proof.

Now we turn to proving Theorem 1.1.
Proof of Theorem 1.1. Let Z = {z ∈ Y | z(x, 0) = 0 }. As we know (cf. [15]), the

space Z is a Hilbert space endowed with the norm of Y . Let (z, v) ∈ Z × L2(Q) be
arbitrary but fixed, and set yρε = yε + ρz, uρε = uε + ρv, where ρ > 0. It is clear that
(yρε , u

ρ
ε) ∈ Y × L2(Q), and so

Lε(y
ρ
ε , u

ρ
ε)− Lε(yε, uε)

ρ
≥ 0 for all ρ > 0.(2.28)

After some simple calculations, we obtain that

lim
ρ→0

∫ T

0

gε(t, yρε )− gε(t, yε)

ρ
dt =

∫
Q

∇gε(t, yε)zdxdt,

lim
ρ→0

∫ T

0

hε(u
ρ
ε)− hε(uε)

ρ
dt =

∫
Q

∇hε(uε)vdxdt,

(2.29)

lim
ρ→0

1
2ρ

∫
Q

[|uρε − u∗
1|2 − |uε − u∗

1|2
]
dxdt =

∫
Q

(uε − u∗
1)vdxdt,

lim
ρ→0

1
2r̃ρ

∫
Q

[|yρε − y∗1 |2r̃ − |yε − y∗1 |2r̃
]
dxdt =

∫
Q

(yε − y∗1)
2r̃−1zdxdt.

(2.30)

Since yρε (x, 0) = yε(x, 0), we have

1

2ερ

∫
Ω

{[yρε (x, 0)− y0(x)]
2 − [yε(x, 0)− y0(x)]

2}dx = 0 for all ρ > 0.(2.31)
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Now we claim that there is a generalized subsequence of ρ, denoted by itself again,
such that

(2.32)

lim
ρ→0

1
2ερ

∫
Q

[∣∣∣∣∂yρε∂t
+ Ayρε + f(x, t, yρε )− uρε

∣∣∣∣
2

−
∣∣∣∣∂yε∂t

+ Ayε + f(x, t, yε)− uε

∣∣∣∣
2
]
dxdt

= 1
ε

∫
Q

[
∂yε
∂t

+ Ayε + f(x, t, yε)− uε

]
·
[
∂z

∂t
+ Az + f ′

y(x, t, yε)z − v

]
dxdt.

Here is the argument. We observe first that

f(x, t, yρε )− f(x, t, yε)

ρ
= aρε(x, t)z(x, t),

where aρε(x, t) =
∫ 1

0
f ′
y(x, t, yε(x, t) + θρz(x, t))dθ. Since f ′

y(x, t, ·) is continuous and
(yρε , u

ρ
ε) → (yε, uε) strongly in Y × L2(Q) as ρ → 0, there exists a generalized subse-

quence of ρ, still denoted by itself, such that

[aρε(x, t)z(x, t)− f ′
y(x, t, yε(x, t))z(x, t)]

2 → 0 a.e. in Q as ρ→ 0.

It follows from (H2) that

[aρε(x, t)z − f ′
y(x, t, yε(x, t))z]

2 ≤ 4{ã1(x, t) + b̃1[|yε|+ |z|]r1−1}2z2 ∈ L1(Q);

here we have used Sobolev’s imbedding theorem and Holder’s inequality. Then by the
Lebesgue dominated convergence theorem, we obtain that

aρε(x, t)z → f ′
y(x, t, yε)z strongly in L2(Q) as ρ→ 0,(2.33)

which implies that

f(x, t, yρε )→ f(x, t, yε) strongly in L2(Q) as ρ→ 0.(2.34)

Thus (2.32) follows immediately from (2.33) and (2.34).
By the same argument as in [18], we get that

lim
ρ→0

1
2ερ{[ε + dW (F (yρε ))]

2 − [ε + dW (F (yε))]
2}

= ε+dW (F (yε))
ε 〈ξε, F ′(yε)z〉X∗,X ,

(2.35)

where

ξε ∈ ∂dW (F (yε)) =

{ ∇dW (F (yε)), if F (yε) /∈W,
0, if F (yε) ∈W

and

‖ξε‖X∗ =

{
1, if F (yε) /∈W,
0, if F (yε) ∈W.

(2.36)

Let

λε =
ε

ε + dW (F (yε))
and µε =

1

ε + dW (F (yε))
.(2.37)



1528 GENGSHENG WANG AND LIJUAN WANG

It is obvious that

1 ≤ λ2
ε + ‖ξε‖2X∗ ≤ 2.(2.38)

Now it follows from (2.28)–(2.37) that

λε

{∫
Q

∇gε(t, yε)zdxdt +

∫
Q

∇hε(uε)vdxdt +

∫
Q

(uε − u∗
1)vdxdt

+

∫
Q

(yε − y∗1)
2r̃−1zdxdt

}
+

∫
Q

[F ′(yε)]∗ξεzdxdt

+ µε

∫
Q

(
∂yε
∂t

+ Ayε + f(x, t, yε)− uε

)(
∂z

∂t
+ Az + f ′

y(x, t, yε)z − v

)
dxdt ≥ 0

(2.39)

for all (z, v) ∈ Z × L2(Q).
Let

pε = µε

(
∂yε
∂t

+ Ayε + f(x, t, yε)− uε

)
.(2.40)

It is clear that pε ∈ L2(Q). By taking z = 0 in (2.39), we obtain that

λε

{∫
Q

∇hε(uε)vdxdt +

∫
Q

(uε − u∗
1)vdxdt

}
−
∫
Q

pεvdxdt ≥ 0(2.41)

for all v ∈ L2(Q). This implies that

pε = λε[ ∇hε(uε) + uε − u∗
1 ] a.e. in Q.(2.42)

By Lemma 2.2, uε → u∗
1 strongly in L2(Q) as ε→ 0. Then by the same argument

as in [2], {∇hε(uε)} is bounded in L2(Q). Thus it follows from (2.42) that {pε} is
bounded in L2(Q).

By taking v = 0 in (2.39), we obtain that∫
Q

{
λε[ ∇gε(t, yε) + (yε − y∗1)

2r̃−1 ] + [F ′(yε)]∗ξε
}
zdxdt

+

∫
Q

pε

(
∂z

∂t
+ Az + f ′

y(x, t, yε)

)
zdxdt = 0 for all z ∈ Z.

(2.43)

This shows that (cf. [14])

(2.44)


∂pε
∂t −Apε − f ′

y(x, t, yε)pε = λε[∇gε(t, yε) + (yε − y∗1)
2r̃−1] + [F ′(yε)]∗ξε, in Q,

pε(x, t) = 0, on
∑

,
pε(x, T ) = 0, in Ω.

Note that (2.42) and (2.44) can be regarded as necessary conditions for (yε, uε)
to be optimal for problem (P ε

1 ).
Now we are going to pass to the limit for ε → 0 in (2.42) and (2.44) (or (2.43))

and derive the necessary conditions for (y∗1 , u
∗
1) to be optimal for problem (P1).

First we deal with (2.42). By (2.38), there exists a generalized subsequence of
{λε}, still denoted by itself, such that

λε → λ0 as ε→ 0.(2.45)
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By Lemma 2.2 and by the same argument as in [2], there exist α ∈ ∂g(t, y∗1),
β ∈ ∂h(u∗

1) a.e. in Q such that on a generalized subsequence of ε, still denoted by
itself,

∇gε(t, yε)→ α weakly in L2(Q) as ε→ 0(2.46)

and

∇hε(uε)→ β weakly in L2(Q) as ε→ 0.(2.47)

Since {pε} is bounded in L2(Q), there exists a generalized subsequence of ε, still
denoted by itself, such that

pε → p weakly in L2(Q) as ε→ 0.(2.48)

By (2.45), (2.47), and (2.48), we may pass to the limit for ε → 0 in (2.42) and
obtain (1.7).

Next we deal with (2.44). We claim the following inequality:

‖pεf ′
y(x, t, yε)‖

L
2n
n+2 (Q)

≤ C for some positive constant C independent of ε.(2.49)

Here is the argument. By Lemma 2.2 and by Sobolev’s imbedding theorem,
{|yε|r1−1} is bounded in Ln(Q). Thus it follows from (H2) that {f ′

y(x, t, yε)} is
bounded in Ln(Q). Then by Holder’s inequality, we obtain that

∫
Q

|pεf ′
y(x, t, yε)|

2n
n+2 dxdt ≤

[∫
Q

|pε|2dxdt
] n
n+2

[∫
Q

|f ′
y(x, t, yε)|ndxdt

] 2
n+2

,

which implies (2.49), because {pε} is bounded in L2(Q).
On the other hand, by (2.38), Lemma 2.2, and by Sobolev’s imbedding theorem,

we get that there exists a generalized subsequence of ε, still denoted by itself, such
that

λε(yε − y∗1)
2r̃−1 → 0 strongly in L

2n
n+2 (Q) as ε→ 0(2.50)

and

ξε → ξ0 weakly star in X∗ as ε→ 0,

which, combined with (H3) and Lemma 2.2, indicate that

[F ′(yε)]∗ξε → [F ′(y∗1)]
∗ξ0 weakly in L2(Q) as ε→ 0.(2.51)

Now it follows from (2.44)1 (the first equality of (2.44)), (2.49), (2.50), and (2.51)

that {−∂pε∂t + Apε} is bounded in L
2n
n+2 (Q). Then by (2.44)2 and (2.44)3, {pε} is

bounded in H2,1
2n
n+2

(Q) (cf. [14]). So there exist p ∈ H2,1
2n
n+2

(Q) and a generalized subse-

quence of {pε}, still denoted by itself, such that

pε → p weakly in H2,1
2n
n+2

(Q) as ε→ 0(2.52)

and

pε(x, t)→ p(x, t) a.e. in Q as ε→ 0.(2.53)
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Since f ′
y(x, t, ·) is continuous, by Lemma 2.2 and by (2.53), there exists a gener-

alized subsequence of ε, still denoted by itself, such that

pε(x, t)f
′
y(x, t, yε(x, t))→ p(x, t)f ′

y(x, t, y
∗
1(x, t)) a.e. in Q as ε→ 0.(2.54)

By (2.49) and (2.54), we obtain that

pεf
′
y(x, t, yε)→ pf ′

y(x, t, y
∗
1) weakly in L

2n
n+2 (Q) as ε→ 0.(2.55)

From (2.45), (2.46), (2.50), (2.51), (2.52), and (2.55), we may pass to the limit
for ε→ 0 in (2.44) to yield (1.6) (cf. [14]).

Now we turn to proving (1.8). By the definition of the subdifferential of the
distance function dW (·), we have

〈ξε, ψ − F (yε)〉X∗,X ≤ 0 for all ψ ∈W.

It follows from (H3) that F (yε)→ F (y∗1) strongly in X as ε→ 0. Thus we deduce
that

〈ξε, ψ − F (y∗1)〉X∗,X ≤ 〈ξε, F (yε)− F (y∗1)〉X∗,X for all ψ ∈W.(2.56)

By taking the limit for ε→ 0 in (2.56), we get (1.8).
It remains to show that (λ0, ξ0) �= 0. If λ0 = 0, then it follows from (2.38) that

there exist constants δ > 0 and ε1 > 0 such that

‖ξε‖X∗ ≥ δ > 0 for all ε < ε1.(2.57)

By (2.39) and (2.56), we obtain that

(2.58)

〈ξε, F ′(y∗1)z − ψ + F (y∗1)〉X∗,X +

∫
Q

pε

[
∂z

∂t
+ Az + f ′

y(x, t, yε)z − v

]
dxdt ≥ −ηε(z, v)

for all (z, v) ∈ Z × L2(Q), where

ηε(z, v) = λε

{ ∫
Q

∇gε(t, yε)zdxdt +

∫
Q

∇hε(uε)vdxdt +

∫
Q

(uε − u∗
1)vdxdt

+

∫
Q

(yε − y∗1)
2r̃−1zdxdt

}
+ 〈ξε, [F ′(yε)− F ′(y∗1)]z + F (yε)− F (y∗1)〉X∗,X .

For any z ∈ Dr, which was defined in section 1, and ε > 0, by taking v = vε(z) ≡
∂z
∂t + Az + f ′

y(x, t, yε)z in (2.58), we obtain that

〈ξε, F ′(y∗1)z − ψ + F (y∗1)〉X∗,X ≥ −ηε(z, vε(z)) for all z ∈ Dr and ε > 0.(2.59)

On the other hand, by (H2) and Lemma 2.2, there exists a positive constant,
denoted by ε1 again, such that ‖f ′

y(x, t, yε)‖Ln(Q) ≤ C for all ε < ε1, where C is a
constant independent of ε. Then by Holder’s inequality, we infer that∫

Q

|f ′
y(x, t, yε)z|2dxdt

≤
[∫

Q

|z| 2n
n−2 dxdt

]n−2
n

·
[∫

Q

|f ′
y(x, t, yε)|ndxdt

] 2
n

≤ Cr2
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for all z ∈ Dr and ε < ε1, where C is a constant independent of ε and z. This shows
that

‖vε(z)‖L2(Q) ≤ C for all z ∈ Dr and ε < ε1.(2.60)

By (H3) and by (2.38), we infer that

〈ξε, [F ′(yε)− F ′(y∗1)]z〉X∗,X → 0 as ε→ 0, uniformly in z ∈ Dr.(2.61)

It follows from (2.60) and (2.61) that

ηε(z, vε(z))→ 0 as ε→ 0, uniformly in z ∈ Dr.(2.62)

By (H4), F ′(y∗1)Dr − W + {F (y∗1)} has finite codimensionality in X. Thanks
to Lemma 3.6 of Chapter 4 of [13], we conclude from (2.57), (2.59), and (2.62) that
ξ0 �= 0. Hence

(λ0, ξ0) �= 0.(2.63)

Finally, in the case in which [F ′(y∗1)] is injective, if λ0 = 0, then by (1.7) we
obtain that p = 0. Hence, by (1.6), [F ′(y∗1)]

∗ξ0 = 0, which shows that ξ0 = 0. This
contradicts (2.63). So λ0 �= 0 in this case. This completes the proof.

3. Maximum principle for problem (P2). In this section, we shall prove
Theorem 1.2. The main steps here are similar to those in section 2. However, the
penalty functional is different from that in section 2 because we consider a two-point
boundary constraint (time variable) here. For this reason we shall prove all results in
detail.

First, for each ε > 0, we define a penalty functional Lε on Y × L2(Q) by

(3.1)

Lε(y, u) =

∫ T

0

[gε(t, y) + hε(u)]dt +
1

2

∫
Q

|u− u∗
2|2dxdt +

1

2r̃

∫
Q

|y − y∗2 |2r̃dxdt

+ 1
2

∫
Ω

[ |y(x, 0)− y∗2(x, 0)|2 + |y(x, T )− y∗2(x, T )|2 ]dx

+ 1
2ε [dS(y(x, 0), y(x, T )) + ε]2 + 1

2ε

∫
Q

∣∣∣∣∂y∂t + Ay + f(x, t, y)− u

∣∣∣∣
2

dxdt,

where r̃ = n
n−2 .

Because y ∈ Y , we have that y ∈ L2r̃(Q) and y(x, 0), y(x, T ) ∈ L2(Ω) (cf. [15]).
Thus Lε is well defined. So we may consider an approximate problem (P ε

2 ) as follows.
(P ε

2 ) Inf Lε(y, u) over all (y, u) ∈ Y × L2(Q).
The following two lemmas provide the existence of optimal solutions of approxi-

mate problem (P ε
2 ) and the convergence of such optimal solutions.

Lemma 3.1. For each ε > 0, problem (P ε
2 ) has at least one solution.

Proof. Let (ym, um) ∈ Y × L2(Q) be such that

d ≤ Lε(y, u) ≤ d +
1

m
,(3.2)

where d = Inf(y,u)∈Y×L2(Q) Lε(y, u). It is clear that d > −∞.
By virtue of (3.1), using the same argument as in the proof of Lemma 2.1, one can

show that there exist subsequences of {ym} and {um}, still denoted by themselves,
such that

um → ũ weakly in L2(Q) as m→∞,(3.3)
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ym → ỹ weakly in Y, strongly in L2(Q) as m→∞,(3.4)

ym(x, t)→ ỹ(x, t) a.e. in Q as m→∞,(3.5)

(ym(x, 0), ym(x, T ))→ (ỹ(x, 0), ỹ(x, T )) weakly in L2(Ω)× L2(Ω) as m→∞.(3.6)

By (3.6), we obtain that

lim
m→∞

[ ‖ym(x, 0)− y∗2(x, 0)‖2L2(Ω) + ‖ym(x, T )− y∗2(x, T )‖2L2(Ω) ]

≥ ‖ỹ(x, 0)− y∗2(x, 0)‖2L2(Ω) + ‖ỹ(x, T )− y∗2(x, T )‖2L2(Ω).
(3.7)

Since S is convex and closed in L2(Ω) × L2(Ω), dS(·, ·) is weakly lower semicon-
tinuous. Thus it follows from (3.6) that

lim
m→∞

dS(ym(x, 0), ym(x, T )) ≥ dS(ỹ(x, 0), ỹ(x, T )).(3.8)

By (3.7) and (3.8), using the same argument as in the proof of Lemma 2.1, we
find that

lim
m→∞

Lε(ym, um) ≥ Lε(ỹ, ũ),

which together with (3.2) shows that Lε(ỹ, ũ) = d. This completes the proof.
Lemma 3.2. Let (yε, uε) be optimal for problem (P ε

2 ). Then there exists a gen-
eralized subsequence of ε, still denoted by itself, such that

yε → y∗2 strongly in Y, uε → u∗
2 strongly in L2(Q) as ε→ 0.

Proof. It is clear that

Lε(yε, uε) ≤ Lε(y
∗
2 , u

∗
2) =

∫ T

0

[gε(t, y∗2) + hε(u
∗
2)]dt +

ε

2
,

which implies that

lim
ε→0

Lε(yε, uε) ≤ L(y∗2 , u
∗
2).(3.9)

On the other hand, by virtue of (3.1) and by the same argument as in the proof
of Lemma 2.2, we obtain that there exist ỹ ∈ Y and a generalized subsequence of ε,
still denoted by itself, such that

yε → ỹ weakly in Y, strongly in L2(Q) as ε→ 0,(3.10)

(yε(x, 0), yε(x, T ))→ (ỹ(x, 0), ỹ(x, T )) weakly in L2(Ω)× L2(Ω) as ε→ 0,(3.11)

uε → ũ weakly in L2(Q) as ε→ 0,(3.12)

and

∂yε
∂t

+ Ayε + f(x, t, yε)− uε → ∂ỹ

∂t
+ Aỹ + f(x, t, ỹ)− ũ weakly in L2(Q).(3.13)
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Moreover, ỹ satisfies the following equation:{
∂ỹ
∂t + Aỹ + f(x, t, ỹ) = ũ, in Q,
ỹ(x, t) = 0, on

∑
.

(3.14)

It follows from (3.1) and (3.9) that

dS(yε(x, 0), yε(x, T )) ≤ C
√
ε,(3.15)

where C is a positive constant independent of ε. Since S is convex and closed, it
follows from (3.11) and (3.15) that

dS(ỹ(x, 0), ỹ(x, T )) ≤ lim
ε→0

dS(yε(x, 0), yε(x, T )) = 0,

which implies that

(ỹ(x, 0), ỹ(x, T )) ∈ S.(3.16)

By (3.14) and (3.16), we deduce that

L(ỹ, ũ) ≥ L(y∗2 , u
∗
2).(3.17)

Then by (3.10), (3.11), (3.12), (3.13), and (3.17), using the same argument as in
the proof of Lemma 2.2, we obtain that

lim
ε→0

Lε(yε, uε) ≥ L(y∗2 , u
∗
2).(3.18)

Now by (3.1), (3.9), and (3.18), there exists a generalized subsequence of ε, still
denoted by itself, such that

yε → y∗2 strongly in L2r̃(Q) as ε→ 0,(3.19)

(yε(x, 0), yε(x, T ))→ (y∗2(x, 0), y
∗
2(x, T )) strongly in L2(Ω) as ε→ 0,(3.20)

uε → u∗
2 strongly in L2(Q) as ε→ 0.(3.21)

From (3.19), (3.20), and (3.21), using the same argument as in the proof of
Lemma 2.2, we infer that yε → y∗2 strongly inY as ε → 0. This completes the
proof.

Now we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. Let (z, v) ∈ Y × L2(Q) be arbitrary but fixed. For each

ρ > 0, set yρε = yε + ρz, uρε = uε + ρv. It is clear that (yρε , u
ρ
ε) ∈ Y × L2(Q) and

yρε → yε strongly in Y , uρε → uε strongly in L2(Q) as ρ→ 0. Moreover, we have that

Lε(y
ρ
ε , u

ρ
ε)− Lε(yε, uε)

ρ
≥ 0 for all ρ > 0.(3.22)

By (H5) and by the same argument as in [16], we obtain that

lim
ρ→0

1
2ερ{[ε + dS(y

ρ
ε (x, 0), y

ρ
ε (x, T ))]2 − [ε + dS(yε(x, 0), yε(x, T ))]2}

=
ε + dS(yε(x, 0), yε(x, T ))

ε

[∫
Ω

aεz(x, 0)dx +

∫
Ω

bεz(x, T )dx

]
,

(3.23)



1534 GENGSHENG WANG AND LIJUAN WANG

where (aε, bε) ∈ dS(yε(x, 0), yε(x, T )) satisfying

‖aε‖2L2(Ω) + ‖bε‖2L2(Ω) =

{
1 if (yε(x, 0), yε(x, T )) /∈ S,
0 if (yε(x, 0), yε(x, T )) ∈ S.

(3.24)

By (3.22) and (3.23), using the same argument as in the proof of Theorem 1.1,
we yield that for all (z, v) ∈ Y × L2(Q) and ε > 0,

0 ≤ λε

{∫
Q

∇gε(t, yε)zdxdt +

∫
Q

∇hε(uε)vdxdt +

∫
Q

(uε − u∗
2)vdxdt

+

∫
Q

(yε − y∗2)
2r̃−1zdxdt +

∫
Ω

[yε(x, 0)− y∗2(x, 0)]z(x, 0)dx

+

∫
Ω

[yε(x, T )− y∗2(x, T )]z(x, T )dx

}
+

∫
Ω

aεz(x, 0)dx +

∫
Ω

bεz(x, T )dx

+

∫
Q

pε

(
∂z

∂t
+ Az + f ′

y(x, t, yε)z − v

)
dxdt,

(3.25)

where

λε =
ε

ε + dS(yε(x, 0), yε(x, T ))
, µε =

1

ε + dS(yε(x, 0), yε(x, T ))
,

and

pε = µε

(
∂yε
∂t

+ Ayε + f(x, t, yε)− uε

)
.

It is clear that pε ∈ L2(Q) and

1 ≤ λ2
ε + ‖aε‖2L2(Ω) + ‖bε‖2L2(Ω) ≤ 2.(3.26)

By taking z = 0 in (3.25), we yield that

λε

{∫
Q

∇hε(uε)vdxdt +

∫
Q

(uε − u∗
2)vdxdt

}
−
∫
Q

pεvdxdt ≤ 0 for all v ∈ L2(Q),

which implies that

pε = λε∇hε(uε) + λε(uε − u∗
2) a.e. in Q.(3.27)

By (3.27) and by the same argument as in the proof of Theorem 1.1, we infer that
{pε} is bounded in L2(Q).

By taking v = 0 in (3.25), we obtain that

0 ≤
∫
Q

λε∇gε(t, yε)zdxdt +

∫
Ω

aεz(x, 0)dx +

∫
Ω

bεz(x, T )dx

+

∫
Q

pε

[
∂z

∂t
+ Az + f ′

y(x, t, yε)z

]
dxdt + λε

{ ∫
Ω

[yε(x, 0)− y∗2(x, 0)]z(x, 0)dx

+

∫
Ω

[yε(x, T )− y∗2(x, T )]z(x, T )dx +

∫
Q

(yε − y∗2)
2r̃−1zdxdt

}
(3.28)
for all z ∈ Y .

By (3.28) and by the same argument as in [14], we obtain the following:
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(3.29)

−∂pε∂t + Apε + f ′

y(x, t, yε)pε + λε∇gε(t, yε) + λε(yε − y∗2)
2r̃−1 = 0, in Q,

pε(x, t) = 0, on
∑

,
pε(x, T ) = −bε − λε[yε(x, T )− y∗2(x, T )], in Ω,
pε(x, 0) = aε + λε[yε(x, 0)− y∗2(x, 0)], in Ω.

Next we are going to pass to the limit for ε → 0 in (3.27) and (3.28). To this
end, we observe first that, by (3.26), there exists a generalized subsequence of ε, still
denoted by itself, such that

(aε, bε)→ (a0, b0) weakly in L2(Ω)× L2(Ω) and λε → λ0 as ε→ 0.(3.30)

Thus, by (3.30), (3.29)3, and (3.29)4 and by Lemma 3.2, we find that

pε(x, T )→ −b0, pε(x, 0)→ a0 weakly in L2(Ω) as ε→ 0.(3.31)

On the other hand, by the same argument as in the proof of Theorem 1.1, we
infer that

‖f ′
y(x, t, yε)pε‖

L
2n
n+2 (Q)

≤ C,(3.32)

λε(yε − y∗2)
2r̃−1 → 0 strongly in L

2n
n+2 (Q) as ε→ 0,(3.33)

and

λε∇gε(t, yε)→ λ0α weakly in L2(0, T ;L2(Ω)) as ε→ 0,(3.34)

where α ∈ ∂g(t, y∗2) a.e. in Q.
By (3.29)1, (3.32), (3.33), (3.34) and by Lemma 3.2, we infer that{

−∂pε
∂t

+ Apε

}
is bounded in L

2n
n+2 (Q).(3.35)

By (3.29)2, (3.31), and (3.35), using argument similar to those in [15], we obtain

that {pε} is bounded in L
2n
n+2 (0, T ;W

1, 2n
n+2

0 (Ω)).
Then by the same argument as in [2], we find that there exists a generalized

subsequence of ε, still denoted by itself, such that

pε → p weakly in L
2n
n+2 (0, T ;W

1, 2n
n+2

0 (Ω)) ∩ L2(Q),

strongly in L
2n
n+2 (Q) as ε→ 0,

(3.36)

pε(x, t)→ p(x, t) a.e. in Q as ε→ 0.(3.37)

Here we have used the fact that {pε} is bounded in L2(Q). Since f ′
y is continuous, by

Lemma 3.2 and (3.37), we obtain that

f ′
y(x, t, yε(x, t))pε(x, t)→ f ′

y(x, t, y
∗
2(x, t))p(x, t) a.e. in Q as ε→ 0.(3.38)

This together with (3.32) implies that

pεf
′
y(x, t, yε)→ pf ′

y(x, t, y
∗
2) weakly in L

2n
n+2 (Q) as ε→ 0,
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and so we have that∫
Q

pεf
′
y(x, t, yε)zdxdt→

∫
Q

pf ′
y(x, t, y

∗
2)zdxdt as ε→ 0,(3.39)

because z ∈ Y ⊂ L
2n
n−2 (Q). Thus by (3.31), (3.33), (3.34), (3.36), and (3.39), we may

take the limit for ε→ 0 in (3.28) to obtain that

0 =

∫
Q

λ0αzdxdt +

∫
Ω

a0z(x, 0)dx +

∫
Ω

b0z(x, T )dx

+

∫
Q

p

(
∂z

∂t
+ Az + f ′

y(x, t, y
∗
2)z

)
dxdt for all z ∈ Y.

(3.40)

By (3.40) and by the same argument as in [14], we infer that p ∈ L
2n
n+2 (0, T ;

W
1, 2n
n+2

0 (Ω))∩L2(Q) and satisfies (1.9) and (1.10). By (3.30), (3.36), and Lemma 3.2,
we may pass to the limit for ε→ 0 in (3.27) to obtain (1.12).

On the other hand, since (aε, bε) ∈ ∂dS(yε(x, 0), yε(x, T )), we have that

〈aε, x0 − yε(x, 0)〉+ 〈bε, x1 − yε(x, T )〉 ≤ 0 for all (x0, x1) ∈ S.(3.41)

By (3.30) and by Lemma 3.2 again, we may take the limit for ε → 0 in (3.41) to
obtain (1.11).

It remains to show that λ0 �= 0. As a contradiction, we assume that λ0 = 0. Then
by (1.12), we get that p = 0. Because λε → λ0 = 0, it follows from (3.26) that there
exist δ > 0 and ε1 > 0 such that

2 ≥ ‖aε‖2L2(Ω) + ‖bε‖2L2(Ω) ≥ δ > 0 for all ε < ε1.(3.42)

By (3.25) and (3.41), we deduce that

(3.43)∫
Q

pε

(
∂z

∂t
+ Az + f ′

y(x, t, yε)z − v

)
dxdt

+

∫
Ω

aε[z(x, 0)− x0 + y∗2(x, 0)]dx +

∫
Ω

bε[z(x, T )− x1 + y∗2(x, T )]dx ≥ −ζε(z, v)

for all (z, v) ∈ Y × L2(Q), where

ζε(z, v) = λε

{∫
Q

∇gε(t, yε)zdxdt +

∫
Q

∇hε(uε)vdxdt

+

∫
Q

(uε − u∗
2)vdxdt +

∫
Q

(yε − y∗2)
2r̃−1zdxdt

+

∫
Ω

[yε(x, 0)− y∗2(x, 0)]z(x, 0)dx +

∫
Ω

[yε(x, T )− y∗2(x, T )]z(x, T )dx

}
+

∫
Ω

aε[yε(x, 0)− y∗2(x, 0)]dx +

∫
Ω

bε[yε(x, T )− y∗2(x, T )]dx.

Observe that ζε(z, v) → 0 as ε → 0 uniformly in (z, v) ∈ {(z, v) ∈ Y × L2(Q) :
‖z‖Y ≤ r2, ‖v‖L2(Q) ≤ r3 }. By Lemma 3.2, there exists a positive constant, denoted
by ε1 again, such that ‖yε − y∗2‖Y ≤ r1 for all ε < ε1. Then by (H6), for any
(z0, zT ) ∈ Br1,r2,r3 and ε < ε1, there exists (zε, vε) ∈ Y × L2(Q) with ‖zε‖Y ≤ r2,
‖vε‖L2(Q) ≤ r3 such that zε(x, 0) = z0(0), zε(x, 0) = z1(x), and

∂zε
∂t

+ Azε + f ′
y(x, t, yε)zε = vε in Q.
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By taking z = zε and v = vε for ε < ε1 in (3.43), we obtain that

〈aε, z0 − x0 + y∗2(x, 0)〉+ 〈bε, z1 − x1 + y∗2(x, T )〉 ≥ −ζε(zε, vε)(3.44)

and

ζε(zε, vε)→ 0 as ε→ 0, uniformly in (z0, zT ) ∈ Br1,r2,r3 .(3.45)

Thanks to Lemma 3.6 of Chapter 4 of [13], we conclude by (3.42), (3.44), and
(3.45) that (a0, b0) �= 0, which yields that p �= 0. This contradiction shows that λ0 �= 0
and completes the proof.

4. Existence of optimal pairs for (P1) and (P2). In this section we shall
prove Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3. Since Dad �= ∅, we may set d = Inf(y,u)∈DadL(y, u). It is
clear that d > −∞. We assume that (ym, um) ∈ Dad satisfies

d ≤ L(ym, um) < d +
1

m
.(4.1)

This, together with (H1) and (H7), implies that {um} is bounded in L2(Q) and
that {ym} is bounded in L2r̃(Q). By (H2), one can easily check that {f(x, t, ym)} is
bounded in L2(Q). Hence{

∂ym
∂t

+ Aym

}
is bounded in L2(Q).(4.2)

Since ym(x, t) = 0 on
∑

and ym(x, 0) = y0(x) in Ω, it follows from (4.2) that
{ym} is bounded in Y (cf. [15]). Thus we may extract a subsequence of {ym}, denoted
by itself again, such that

ym → y∗ weakly in Y, strongly in L2(Q) as m→∞,
um → u∗ weakly in L2(Q) as m→∞.

(4.3)

By the same argument as in the proof of Lemma 2.1, we have that

f(x, t, ym)→ f(x, t, y∗) weakly in L2(Q) as m→∞.(4.4)

It follows from (4.3) and (4.4) that (y∗, u∗) satisfies (1.1). By (4.3) and by (H3),
we obtain that

F (ym)→ F (y∗) strongly in X as m→∞,

which implies that F (y∗) ∈W , because W is closed. Thus we have

(y∗, u∗) ∈ Dad.(4.5)

On the other hand, by (4.3) and by the same argument as in [2], we get that

lim
m→∞

∫ T

0

[g(t, ym) + h(um)]dt ≥
∫ T

0

[g(t, y∗) + h(u∗)]dt,

which, combined with (4.1), indicates that

L(y∗, u∗) = d.(4.6)
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By (4.5) and (4.6), we obtain that (y∗, u∗) is optimal for problem (P1). This
completes the proof.

Proof of Theorem 1.4. We may set d = Inf(y,u)∈D̃adL(y, u) because D̃ad �= ∅. It is

clear that d > −∞. Let (ym, um) ∈ D̃ad be such that

d ≤ L(ym, um) < d +
1

m
.(4.7)

By (H1), (H7), and (H10), we have that

{um} is bounded in L2(Q),
{ym} is bounded in L2r̃(Q),
{ym(x, 0)} is bounded in L2(Ω).

(4.8)

By (4.8) and by the same argument as in the proof of Theorem 1.3, we in-
fer that {∂ym∂t + Aym} is bounded in L2(Q), which together with (4.8) implies that
{ym} is bounded in Y (cf. [15]).

Thus there exist a pair (y∗, u∗) ∈ Y ×L2(Q) and subsequences of {ym} and {um},
still denoted by themselves, such that

ym → y∗ weakly in Y, strongly in L2(Q) as m→∞,(4.9)

um → u∗ weakly in L2(Q) as m→∞,(4.10)
(4.11)

(ym(x, 0), ym(x, T ))→ (y∗(x, 0), y∗(x, T )) weakly in L2(Ω)× L2(Ω) as m→∞.

By (4.9), (4.10), and (4.11), one can easily check that (y∗, u∗) satisfies (1.3).
On the other hand, since S is convex and closed, dS is lower semicontinuous in

the weak topology of L2(Ω)× L2(Ω). Thus it follows from (4.11) that

0 = lim
m→∞

dS(ym(x, 0), ym(x, T )) ≥ dS(y
∗(x, 0), y∗(x, T )),

which yields that (y∗(x, 0), y∗(x, T )) ∈ S. Thus we get that

(y∗, u∗) ∈ D̃ad.(4.12)

Now by (4.12) and by the same argument as in the proof of Theorem 1.3, we infer
that (y∗, u∗) is optimal for problem (P2). This completes the proof.
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DYNAMIC MEAN-VARIANCE PORTFOLIO SELECTION WITH
NO-SHORTING CONSTRAINTS∗
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Abstract. This paper is concerned with mean-variance portfolio selection problems in continuous-
time under the constraint that short-selling of stocks is prohibited. The problem is formulated as
a stochastic optimal linear-quadratic (LQ) control problem. However, this LQ problem is not a
conventional one in that the control (portfolio) is constrained to take nonnegative values due to the
no-shorting restriction, and thereby the usual Riccati equation approach (involving a “completion of
squares”) does not apply directly. In addition, the corresponding Hamilton–Jacobi–Bellman (HJB)
equation inherently has no smooth solution. To tackle these difficulties, a continuous function is con-
structed via two Riccati equations, and then it is shown that this function is a viscosity solution to the
HJB equation. Solving these Riccati equations enables one to explicitly obtain the efficient frontier
and efficient investment strategies for the original mean-variance problem. An example illustrating
these results is also presented.

Key words. continuous-time, mean-variance portfolio selection, short-selling prohibition, effi-
cient frontier, stochastic LQ control, HJB equation, viscosity solution

AMS subject classifications. 91B28, 93E20
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1. Introduction. Research on portfolio selection dates back to the 1950s with
Markowitz’s pioneering work [24] on mean-variance efficient portfolios for a single-
period investment. The most important contribution of Markowitz’s work is the in-
troduction of quantitative and scientific approaches to risk management and analysis.
When short-selling of stocks is not allowed, efficient portfolios are obtained computa-
tionally via solving a quadratic programming problem. Later, Merton [26] derived an
analytical solution to the single-period mean-variance problem under the assumption
that the covariance matrix is positive definite and short-selling is allowed.

While it is natural to extend Markowitz’s work to multiperiod and continuous-
time portfolio selections, these extensions have, by and large, taken a somewhat dif-
ferent tack to Markowitz’s original formulation; see, e.g., [1, 10, 14, 27, 28] for the
multiperiod case and [4, 7, 8, 13, 17, 25] for the continuous-time case. Specifically,
rather than treating the Var X(T ) and EX(T ) of a portfolio as separate quantities
and finding the relationship between them, a single quantity, the expected utility of
terminal wealth EU(X(T )), is considered instead. The utility function U commonly
has a power, log, exponential, or quadratic form. One disadvantage of this approach
is that the relationship between risk and return is contained only implicitly in the
utility function. Hence, it is less clear in general what relationship exists between
the risk and the return of the derived policy. It should be noted that mean-variance
analysis and expected utility formulation are two different tools for dealing with port-
folio selections. As a consequence, optimal portfolios determined by utility functions
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are usually not mean-variance efficient. One exception is the case of the quadratic
utility function; see Duffie and Richardson [7], where this relationship is shown in
the setting of the related mean-variance hedging problem. For comparisons of the
performance of the mean-variance versus utility approaches, the reader is referred to
[11, 12, 14, 31, 36].

One difficulty in extending Markowitz’s idea to the multiperiod or continuous-
time settings is that the variance Var X(T ) involves a term [EX(T )]2 that is hard to
analyze due to its nonseparability in the sense of dynamic programming; see [37, p.
20] for a more detailed discussion on this point. Only recently have Li and Ng [20]
faithfully extended Markowitz’s mean-variance model to the multiperiod setting by
using the idea of embedding the problem in a tractable auxiliary problem.

In the paper by Zhou and Li [37], the continuous-time mean-variance problem
in which short-selling of stocks is allowed is studied by incorporating the embedding
technique used in Li and Ng [20]. However, the main contribution of [37] is not
the explicit mean-variance efficient frontier it obtained per se; rather it is the unify-
ing framework, namely, that of the stochastic linear-quadratic (LQ) optimal control,
that it introduced in order to solve certain finance problems including mean-variance
portfolio selection. The so-called indefinite stochastic LQ control theory has been de-
veloped extensively in recent years (see, e.g., [2, 3, 21, 34]), and this in turn provides
a powerful tool for solving some finance problems that are linear-quadratic in nature
[19, 22, 37].

The objective of this paper is to investigate continuous-time mean-variance port-
folio selection in the case where short-selling of stocks is not allowed. (However,
shorting the riskless asset—the bond—is still allowed.) This belongs to the realm
of so-called constrained portfolio selection, which essentially renders the market in-
complete. In the past decade, the constrained portfolio selection problem has been
extensively studied (see, e.g., [6, 16, 30, 32, 33]). However, again the expected utility
model has been mainly adopted. In particular, Xu and Shreve in their two-part pa-
per [32, 33] investigated a utility maximization problem with a no-shorting constraint
using a duality analysis. In [6, 18], the duality results of [32, 33] are extended to a
general class of portfolio selection problems in incomplete markets, including those
with constraints. The main results in [6, 18] establish the existence of a solution to
the dual problem and show how it can be used to construct a solution of the original
portfolio optimization problem. One important difference between the approach we
adopt and the duality methods in [6, 18] is that existence and optimality of the candi-
date portfolio in this paper are established using the theory of viscosity solutions and
the viscosity verification theorem in [38]. This enables us to sidestep the considerable
technicalities encountered in [6, 18] when studying existence through convex duality.

In this paper we continue to use stochastic LQ control as the framework for
studying the constrained mean-variance portfolio problem. Compared with [22, 37],
the distinctive feature of this paper is that shorting is prohibited. As a consequence, a
major difficulty in the present case is that the control (portfolio) is constrained, while
the LQ theory typically requires the control to be unconstrained (the reason is that the
optimal control constructed through the Riccati equation may not satisfy the control
constraint). This means that the elegant Riccati approach does not apply directly.
We sidestep this problem by studying the Hamilton–Jacobi–Bellman (HJB) equation.
(Recall that the Riccati equation is essentially the HJB equation after separating
the time and spatial variables.) However, the HJB equation has no classical (i.e.,
smooth) solutions in our case due to the presence of the control constraint. To cope
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with this difficulty, we first conjecture a continuous solution to the HJB equation
via two Riccati equations, and then show that it is indeed the viscosity solution to
the equation. Further, using the viscosity verification theorem established in [38], we
explicitly obtain the optimal strategy along with the efficient frontier.

The outline of this paper is as follows. In section 2, we formulate the mean-
variance portfolio problem under a short-selling prohibition. In section 3, we study
a stochastic LQ control problem of which portfolio selection is a special case, and
we obtain the viscosity solution to the corresponding HJB equation along with the
optimal feedback control. Section 4 is devoted to the derivation of the efficient invest-
ment strategies and efficient frontier for the portfolio selection problem. In section 5,
we present a numerical example to illustrate the results obtained. Finally, section 6
concludes the paper.

2. Problem formulation and preliminaries.

2.1. Notation. We make use of the following notation:

M ′ : the transpose of any matrix or vector M ;

‖M‖ :
√∑

i,jm
2
ij for any matrix or vector M = (mij);

R
n : n-dimensional real Euclidean space;

R
n
+ : the subset of R

n consisting of elements with nonnegative components.
The underlying uncertainty is generated by a fixed filtered complete probability

space (Ω,F ,P, {Ft}t≥0) on which is defined a standard {Ft}t≥0-adaptedm-dimensional
Brownian motion W (t) ≡ (W 1(t), . . . ,Wm(t))′. Given a probability space (Ω,F ,P)
with a filtration {Ft|a ≤ t ≤ b}(−∞ ≤ a < b ≤ +∞), and a Hilbert space H with the
norm ‖ · ‖H, define the Banach space

L2
F (0, T ;H) =

{
ϕ(·)

∣∣∣∣ ϕ(·) is an Ft-adapted, H-valued measurable process on [a, b]

and E
∫ b
a
‖ϕ(t, ω)‖2Hdt < +∞

}

with the norm

‖ϕ(·)‖F,2 =

(
E

∫ b

a

‖ϕ(t, ω)‖2Hdt
) 1

2

< +∞.

2.2. Problem formulation. We consider a financial market where m+1 assets
are traded continuously on a finite horizon [0, T ]. One asset is a bond, whose price
P0(t), t ≥ 0, evolves according to the differential equation{

dP0(t) = r(t)P0(t)dt, t ∈ [0, T ],
P0(0) = p0 > 0,

(2.1)

where r(t) (> 0) is the interest rate of the bond. The remaining m assets are stocks,
and their prices are modeled by the stochastic differential equations{

dPi(t) = Pi(t){bi(t)dt+
∑m
j=1 σij(t)W

j(t)}, t ∈ [0, T ],

Pi(0) = pi > 0,
(2.2)

where bi(t)(> r(t)) is the appreciation rate and σij(t) is the volatility coefficient.
Denote b(t) := (b1(t), . . . , bm(t))′ and σ(t) := (σij(t)). We assume throughout that
r(t), b(t), and σ(t) are deterministic, Borel-measurable, and bounded on [0, T ]. In
addition, we assume that the nondegeneracy condition

σ(t)σ(t)′ ≥ δI ∀t ∈ [0, T ],(2.3)
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where δ > 0 is a given constant, is satisfied. Also, we define the relative risk coefficient

θ(t)
∆
= σ−1(t)(b(t)− r(t)1),(2.4)

where 1 is the m-dimensional column vector with each component equal to 1.

Suppose an agent has an initial wealthX0 > 0, and the total wealth of his position
at time t ≥ 0 is X(t). Then it is well-known that X(t), t ≥ 0, follows (see, e.g., [37])

(2.5){
dX(t) = {r(t)X(t) +

∑m
i=1(bi(t)− r(t))ui(t)}dt+

∑m
j=1

∑m
i=1 σij(t)ui(t)dW

j(t),

X(0) = X0,

where ui(t), i = 0, 1, . . . ,m, denotes the total market value of the agent’s wealth in
the ith bond/stock. We call u(t) := (u1(t), . . . , um(t)) the portfolio (which changes
over time t). An important restriction considered in this paper is the prohibition of
short-selling the stocks, i.e., it must be satisfied that ui(t) ≥ 0, i = 1, . . . ,m. On
the other hand, borrowing from the money market (at the interest rate r(t)) is still
allowed; that is, u0(t) is not explicitly constrained.

Mean-variance portfolio selection refers to the problem of finding an allowable
investment policy (i.e., a dynamic portfolio satisfying all the constraints) such that
the expected terminal wealth satisfies EX(T ) = d while the risk measured by the
variance of the terminal wealth

Var X(T ) = E[X(T )− EX(T )]2 = E[X(T )− d]2

is minimized.

We impose throughout this paper the following assumption.

Assumption 2.1. The value of the expected terminal wealth d satisfies d ≥
X0e

∫ T
0
r(s)ds.

Remark 2.1. Assumption 2.1 states that the investor’s expected terminal wealth

d cannot be less thanX0e
∫ T
0
r(s)ds, which coincides with the amount that he/she would

earn if all of the initial wealth were invested in the bond for the entire investment
period. Clearly, this is a reasonable assumption, for the solution of the problem under

d < X0e
∫ T
0
r(s)ds is foolish for rational investors.

Definition 2.1. A portfolio u(·) is said to be admissible if u(·) ∈ L2
F (0, T ; Rm+ ).

Definition 2.2. The mean-variance portfolio selection problem is formulated as

the following optimization problem parameterized by d ≥ X0e
∫ T
0
r(s)ds:

min Var X(T ) ≡ E[X(T )− d]2,

subject to



EX(T ) = d,

u(·) ∈ L2
F (0, T ; Rm+ ),

(X(·), u(·)) satisfy (2.5).

(2.6)

Moreover, the optimal control of (2.6) is called an efficient strategy, and (Var X(T ), d),
where Var X(T ) is the optimal value of (2.6) corresponding to d, is called an efficient

point. The set of all efficient points, when the parameter d runs over [X0e
∫ T
0
r(s)ds,+∞),

is called the efficient frontier.

Since (2.6) is a convex optimization problem, the equality constraint EX(T ) = d
can be dealt with by introducing a Lagrange multiplier µ ∈ R. In this way the portfolio
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problem (2.6) can be solved via the following optimal stochastic control problem (for
every fixed µ):

min E
{

[X(T )− d]2 + 2µ[EX(T )− d]
}
,

subject to

{
u(·) ∈ L2

F (0, T ; Rm+ ),

(X(·), u(·)) satisfy (2.5),

(2.7)

where the factor 2 in front of the multiplier µ is introduced in the objective function
just for convenience. Clearly, this problem is equivalent to

(A(µ)) : min E
{

1
2 [X(T )− (d− µ)]2

}
,

subject to

{
u(·) ∈ L2

F (0, T ; Rm+ ),

(X(·), u(·)) satisfy (2.5),

in the sense that the two problems have exactly the same optimal control.

3. A general constrained stochastic LQ problem. The problem A(µ) for-
mulated in the previous section is a stochastic optimal LQ control problem. This
problem has two features which distinguish it from conventional LQ problems. One
is that the running cost of this problem is identically zero; that is, it is an indefinite
stochastic LQ control problem, the theory of which has been developed extensively in
recent years (see, for example, [2, 3, 21, 34, 35]). The other feature, which also gives
rise to the main difficulty of the problem, is that the control is constrained. Therefore,
the conventional “completion of squares” approach to the unconstrained LQ problem,
which involves the Riccati equation, will no longer apply. In this section, we solve a
class of constrained, indefinite stochastic LQ problems of which A(µ) is a special case.

Consider the controlled linear stochastic differential equation

(3.1){
dx(t) = [A(t)x(t) +B(t)u(t) + f(t)]ds+

∑m
j=1Dj(t)u(t)dW

j(t), t ∈ [s, T ],

x(s) = y ∈ R,

where A(t) and f(t) ∈ R are scalars, B(t)′ ∈ R
m
+ and Dj(t)

′ ∈ R
m (j = 1, . . . ,m)

are column vectors. In addition, we assume that the matrix
∑m
j=1Dj(t)

′Dj(t) is
nonsingular.

The class of admissible controls associated with (3.1) is the set U [s, T ] = L2
F (s, T ; Rm+ ).

Given u(·) ∈ U [s, T ], the pair (x(·), u(·)) is referred to as an admissible pair if
x(·) ∈ L2

F (s, T ; R) is a solution of the stochastic differential equation (3.1) associ-
ated with u(·) ∈ U [s, T ]. Our objective is to find an optimal u(·) that minimizes the
quadratic (terminal) cost function

J(s, y;u(·)) = E
{

1
2x(T )2

}
.(3.2)

The value function associated with the LQ problem (3.1)–(3.2) is defined by

V (s, y) = inf
u(·)∈U [s,T ]

J(s, y;u(·)).(3.3)

3.1. HJB equation. Since the Riccati equation approach is not applicable in
this case, we study the corresponding HJB equation instead, which is the following
partial differential equation:

(3.4){
vt(t, x) + inf

u≥0

{
vx(t, x)[A(t)x+B(t)u+ f(t)] + 1

2vxx(t, x)u
′D(t)′D(t)u

}
= 0,

v(T, x) = 1
2x

2,
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where D(t)′ = (D1(t)
′, . . . , Dm(t)′). Unfortunately, owing essentially to the nonneg-

ativity constraint of the control, the HJB equation does not have a smooth solution,
as opposed to the unconstrained case in which the solution to the HJB equation is
a quadratic function which can be constructed via the Riccati equation. The idea
here is to construct a function, show that it is a viscosity solution (see the appendix
for the definition) to the HJB equation, and then employ the verification theorem to
construct the optimal control.

Before we start, we recall some results from convex analysis.
Lemma 3.1. Let s be a continuous, strictly convex quadratic function

s(z)
∆
= 1

2‖(D′)−1z + (D′)−1B′‖2(3.5)

over z ∈ [0,∞)m, where B′ ∈ R
m
+ , D ∈ R

m×m, and D′D > 0. Then s has a unique
minimizer z̄ ∈ [0,∞)m, i.e.,

‖(D′)−1z̄ + (D′)−1B′‖2 ≤ ‖(D′)−1z + (D′)−1B′‖2 ∀z ∈ [0,∞)m.(3.6)

The Kuhn–Tucker conditions for the minimization of s in (3.5) over [0,∞)m lead
to the Lagrange multiplier vector ν̄ ∈ [0,∞)m such that ν̄ = ∇s(z̄) = (D′D)−1z̄ +
(D′D)−1B′ and ν̄′z̄ = 0.

Lemma 3.2. Let h be a continuous, strictly convex quadratic function

h(z)
∆
= 1

2z
′D′Dz − αBz(3.7)

over z ∈ [0,∞)m, where B′ ∈ R
m
+ , D ∈ R

m×m, and D′D > 0.
(i) For every α ≥ 0, h has the unique minimizer αD−1ξ̄ ∈ [0,∞)m, where ξ̄ =

(D′)−1z̄ + (D′)−1B′. Here z̄ is the minimizer of s(z) specified in Lemma 3.1.
Furthermore, z̄′D−1ξ̄ = 0 and

h(αν̄) = h(αD−1ξ̄) = − 1
2α

2‖ξ̄‖2.(3.8)

(ii) For every α < 0, h has the unique minimizer 0.
Lemma 3.1 and Lemma 3.2(i) are proved in section 5.2 and Lemma 3.2 of [33],

while Lemma 3.2(ii) is obvious.
Remark 3.1. It should be noted that the vector ξ̄ is independent of the parameter

α.
Now let us come back to the LQ problem (3.1)–(3.2). Let

z̄(t) := arg min
z(t)∈[0,∞)m

1
2‖(D(t)′)−1z(t) + (D(t)′)−1B(t)′‖2(3.9)

and

ξ̄(t) := (D(t)′)−1z̄(t) + (D(t)′)−1B(t)′.(3.10)

Note that ξ̄(t) is a column vector independent of x. Let P (t), g(t), and c(t), respec-
tively, denote the solutions of the following differential equations (the first being a
special Riccati equation)


Ṗ (t) = [−2A(t) + ‖ξ̄(t)‖2]P (t),
P (T ) = 1,
P (t) > 0 ∀t ∈ [0, T ],

(3.11)

{
ġ(t) = [−A(t) + ‖ξ̄(t)‖2]g(t)− f(t)P (t),
g(T ) = 0,

(3.12) {
ċ(t) = −f(t)g(t) + 1

2‖ξ̄(t)‖2P (t)−1g(t)2,
c(T ) = 0,

(3.13)
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and P̃ (t), g̃(t), and c̃(t), respectively, denote the solutions of the following differential
equations (the first being another special Riccati equation)


˙̃
P (t) = −2A(t)P̃ (t),

P̃ (T ) = 1,

P̃ (t) > 0 ∀t ∈ [0, T ],

(3.14)

{
˙̃g(t) = −A(t)g̃(t)− f(t)P̃ (t),
g̃(T ) = 0,

(3.15)

{
˙̃c(t) = −f(t)g̃(t),
c̃(T ) = 0.

(3.16)

In the next subsection, we shall show that

(3.17)

V (t, x) =




1
2P (t)x2 + g(t)x+ c(t) if x+ e−

∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz ≤ 0,

1
2 P̃ (t)x2 + g̃(t)x+ c̃(t) if x+ e−

∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz > 0

is a viscosity solution of the HJB equation (3.4), and

u∗(t, x) =




−D(t)−1ξ̄(t)

(
x+ e−

∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz

)

if x+ e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz ≤ 0,

0 if x+ e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz > 0

(3.18)
is the associated optimal feedback control.

Remark 3.2. Equations (3.11)–(3.13) appear naturally in stochastic LQ problems
with nonhomogeneous terms in the dynamics. They can be derived by conjecturing
the value function to be a quadratic function (as in (3.17)), plugging in the HJB
equation (3.4), and then comparing the terms of x2, x, and the constant, respectively.
See [35, pp. 317–318] for a detailed derivation.

3.2. Value function and optimal control. This subsection is devoted to ver-
ifying the aforementioned results. First we show that V constructed in (3.17) is a
viscosity solution to the HJB equation (3.4).

We start with (3.11). Clearly

P (t) = e
∫ T
t

(2A(s)−‖ξ̄(s)‖2)ds(3.19)

is the solution of (3.11). Note, in particular, that the constraint P (t) > 0 is automat-

ically satisfied. Defining η(t) := g(t)

P (t)
, it follows from (3.11) and (3.12) that

η̇(t) =
P (t)ġ(t)− Ṗ (t)g(t)

P (t)2
=
A(t)P (t)g(t)− f(t)P (t)2

P (t)2
= A(t)η(t)− f(t).

Solving this equation with η(T ) = 0 yields

η(t) = e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz.(3.20)
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Hence,

g(t) = P (t)η(t) = e
∫ T
t

(A(s)−‖ξ̄(s)‖2)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz.

Substituting these expressions into (3.13), we obtain

ċ(t) = −f(t)g(t) + 1
2‖ξ̄(t)‖2P (t)−1g(t)2

=

[
−f(t) + 1

2‖ξ̄(t)‖2e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz

]

·e
∫ T
t

(A(s)−‖ξ̄(s)‖2)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz.

Therefore,

c(t) =

∫ T

t

[
f(v)− 1

2‖ξ̄(v)‖2e−
∫ T
v
A(s)ds

∫ T

v

f(z)e
∫ T
z
A(s)dsdz

]

·e
∫ T
v

(A(s)−‖ξ̄(s)‖2)ds

∫ T

v

f(z)e
∫ T
z
A(s)dsdzdv.

Now we define the region Γ1 in the (t, x)-plane as

Γ1 :=

{
(t, x) ∈ [0, T ]× R

∣∣ x+ e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz < 0

}
.

In Γ1, V as given by (3.17) is sufficiently smooth for the terms in (3.4) to be well-
defined, with

Vt(t, x) = 1
2 Ṗ (t)x2 + ġ(t)x+ ċ(t), Vx(t, x) = P (t)x+ g(t), Vxx(t, x) = P (t).

Substituting these into the left-hand side (LHS) of (3.4), we obtain

LHS = Vt(t, x) + Vx(t, x)[A(t)x+ f(t)] + inf
u≥0

[
1
2Vxx(t, x)u

′D(t)′D(t)u+ Vx(t, x)B(t)u
]

=
[

1
2 Ṗ (t)x2 + ġ(t)x+ ċ(t)

]
+ [P (t)x+ g(t)][A(t)x+ f(t)]

+ inf
u≥0

{
1
2P (t)u′D(t)′D(t)u+ [P (t)x+ g(t)]B(t)u

}
=

[
1
2 Ṗ (t) +A(t)P (t)

]
x2 +

[
ġ(t) +A(t)g(t) + f(t)P (t)

]
x+

[
ċ(t) + f(t)g(t)

]
+ P (t) inf

u≥0

{
1
2u

′D(t)′D(t)u+ [x+ η(t)]B(t)u
}
.

(3.21)
By using Lemma 3.2 with α = −[x+ η(t)] > 0, it follows that the minimizer of (3.21)
is achieved by

u∗(t, x) = −D(t)−1ξ̄(t)[x+ η(t)]

= −D(t)−1ξ̄(t)

[
x+ e−

∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz

]
.

(3.22)
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Substituting u∗(t, x) back into (3.21) and noting (3.11), (3.12), and (3.13), it immedi-
ately follows that the LHS = 0. This implies that V satisfies the HJB equation (3.4)
in Γ1.

Remark 3.3. Although the minimizer (3.22) of (3.21) involves the parameter ξ̄(t),
as defined by (3.9) and (3.10), it is important to recognize that ξ̄(t) does not depend
on x. In particular, this means that P (t), g(t), and c(t), which also depend on ξ̄(t),
do not depend on x. Hence, the expressions for Vt(t, x), Vx(t, x), and Vxx(t, x) do not
involve terms of the form P x(t), gx(t), and cx(t), etc. It is precisely for this reason
that closed form expressions for the value function can still be obtained.

Remark 3.4. Although the expression of ξ̄(·) is not explicitly analytical as it
involves z̄(·), it can easily be obtained numerically via solving the quadratic program
in (3.9) off line.

Next we proceed to the region Γ2 defined by

Γ2 :=

{
(t, x) ∈ [0, T ]× R

∣∣ x+ e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz > 0

}
.

Similar to the derivations for the previous case, we obtain


P̃ (t) = e2
∫ T
t
A(s)ds,

g̃(t) = e
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz,

c̃(t) =

∫ T

t

f(v)e
∫ T
v
A(s)ds

∫ T

v

f(z)e
∫ T
z
A(s)dsdzdv,

η̃(t) = g̃(t)

P̃ (t)
= e−

∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz.

In Γ2, V is once again sufficiently smooth for the derivatives in (3.4) to be well-defined,
and

Vt(t, x) = 1
2

˙̃
P (t)x2 + ˙̃g(t)x+ ˙̃c(t), Vx(t, x) = P̃ (t)x+ g̃(t), Vxx(t, x) = P̃ (t).

Substituting into the LHS of (3.4), we obtain

LHS = Vt(t, x) + Vx(t, x)[A(t)x+ f(t)] + inf
u≥0

[
1
2Vxx(t, x)u

′D(t)′D(t)u+ Vx(t, x)B(t)u
]

=
[

1
2

˙̃
P (t)x2 + ˙̃g(t)x+ ˙̃c(t)

]
+ [P̃ (t)x+ g̃(t)][A(t)x+ f(t)]

+ inf
u≥0

{
1
2 P̃ (t)u′D(t)′D(t)u+ [P̃ (t)x+ g̃(t)]B(t)u

}
=

[
1
2

˙̃
P (t) +A(t)P̃ (t)

]
x2 +

[
˙̃g(t) +A(t)g̃(t) + f(t)P̃ (t)

]
x+

[
˙̃c(t) + f(t)g̃(t)

]
+ P̃ (t) inf

u≥0

{
1
2u

′D(t)′D(t)u+ [x+ η̃(t)]B(t)u
}
.

(3.23)
Since x+ η̃(t) > 0, the minimizer of (3.23) is

u∗(t, x) = 0.(3.24)

Substituting u∗(t, x) into (3.23), it is easy to show that V satisfies the HJB equation
(3.4) in Γ2.
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Finally, the switching curve Γ3 defined by

Γ3 :=

{
(t, x) ∈ [0, T ]× R

∣∣ x+ e−
∫ T
t
A(s)ds

∫ T

t

f(z)e
∫ T
z
A(s)dsdz = 0

}

is where the nonsmoothness of V occurs. First, a direct calculation shows that
V (t, x) = 1

2P (t)x2 + g(t)x + c(t) = 1
2 P̃ (t)x2 + g̃(t)x + c̃(t) = 0 on Γ3. Therefore,

V (t, x) is continuous at (t, x) ∈ Γ3. In addition, we also easily obtain{
Vt(t, x) = 1

2 Ṗ (t)x2 + ġ(t)x+ ċ(t) = 1
2

˙̃
P (t)x2 + ˙̃g(t)x+ ˙̃c(t) = 0,

Vx(t, x) = P (t)x+ g(t) = P̃ (t)x+ g̃(t) = 0.

That is, V (t, x) is also continuously differentiable at points on Γ3. However, Vxx does

not exist on Γ3, since P (t) �≡ P̃ (t). This means that V does not possess the necessary
smoothness properties to qualify as a classical solution of the HJB equation (3.4).
For this reason, we are required to work within the framework of viscosity solutions.
From Definition 6.1 in the appendix, it can be shown that for any (t, x) ∈ Γ3,{

D1, 2,+
t, x V (t, x) = {0} × {0} × [P̃ (t), +∞),

D1, 2,−
t, x V (t, x) = {0} × {0} × (−∞, P (t)].

(3.25)

For the HJB equation (3.4), we define G(t, x, u, p, P ) = p[A(t)x+B(t)u+ f(t)] +
1
2Pu

′D(t)′D(t)u. For any (q, p, P ) ∈ D1, 2,+
t, x V (t, x), where (t, x) ∈ Γ3, we have

q + inf
u≥0
G(t, x, u, p, P ) = inf

u≥0

{
1
2Pu

′D(t)′D(t)u
}
≥ inf
u≥0

{
1
2 P̃ (t)u′D(t)′D(t)u

}
= 0.

Therefore, V is a viscosity subsolution of the HJB equation (3.4). On the other hand,
for (q, p, P ) ∈ D1, 2,−

t, x V (t, x), where (t, x) ∈ Γ3, we have

q + inf
u≥0
G(t, x, u, p, P ) = inf

u≥0

{
1
2Pu

′D(t)′D(t)u
}
≤ inf
u≥0

{
1
2P (t)u′D(t)′D(t)u

}
= 0.

Therefore, V is also a viscosity supersolution of the HJB equation (3.4). Finally, it is
easy to see that the terminal condition V (T, x) = 1

2x
2 is satisfied. Hence, it follows

from Definition 6.1 that V (t, x) is a viscosity solution of the HJB equation (3.4). More-

over, for any (t, x) ∈ Γ3, take (q∗(t, x), p∗(t, x), P ∗(t, x), u∗(t, x)) := (0, 0, P̃ (t), 0) ∈
D1, 2,+
t, x V (t, x)× U [s, T ]; then

q∗(t, x) +G(t, x, u∗(t, x), p∗(t, x), P ∗(t, x)) = 0.

It then follows from the verification theorem in [38, Theorem 3.1] that u∗(t, x) defined
by (3.18) is the optimal feedback control.

Remark 3.5. We mention, once again, that our proof that the control (3.18) is
optimal for the problem (3.1)–(3.2) is based on the viscosity verification theorem from
[38, Theorem 3.1]. This enables us to solve the constrained LQ problem (3.1)–(3.2)
without the technicalities of the duality analysis in [6, 18].

4. Efficient strategies and efficient frontier. In this section we apply the
general results established in the previous section to the problem A(µ) formulated in
section 2. Set

x(t) = X(t)− (d− µ).
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Problem A(µ) is equivalent to the following problem:

minE
{

1
2x(T )2

}
,(4.1)

subject to

{
dx(t) = [A(t)x(t) +B(t)u(t) + f(t)]dt+

∑m
j=1Dj(t)u(t)dW

j(t),

x(0) = X0 − (d− µ),(4.2)

where u(·) ∈ L2
F (0, T ; Rm+ ) and

{
A(t) = r(t), B(t) = (b1(t)− r(t), . . . , bm(t)− r(t)),
f(t) = (d− µ)r(t), Dj(t) = (σ1j(t), . . . , σmj(t)).

(4.3)

Now, corresponding to (3.9) and (3.10), set

π̄(t) := arg min
π(t)∈[0,∞)m

1
2‖σ(t)−1π(t) + σ(t)−1(b(t)− r(t)1)‖2(4.4)

and

θ̄(t) := σ(t)−1π̄(t) + σ(t)−1(b(t)− r(t)1).(4.5)

4.1. An optimal strategy. Before analyzing the efficient frontier of the original
portfolio selection problem (2.6), we first present the optimal investment strategy for
the problem A(µ). The optimal control obtained in (3.18) translates into the following
strategy:

u∗(t,X)≡(u∗1(t,X), . . . , u∗m(t,X))′

=



−(σ(t)′)−1θ̄(t)

[
x+ (d− µ)(1− e−

∫ T
t
r(s)ds)

]
if x+ (d− µ)(1− e−

∫ T
t
r(s)ds) ≤ 0

0 if x+ (d− µ)(1− e−
∫ T
t
r(s)ds) > 0,

=



−(σ(t)σ(t)′)−1[π̄(t) + (b(t)− r(t)1)]

[
X − (d− µ)e−

∫ T
t
r(s)ds

]
if X − (d− µ)e−

∫ T
t
r(s)ds ≤ 0,

0 if X − (d− µ)e−
∫ T
t
r(s)ds > 0.

(4.6)

Theorem 4.1. An optimal investment strategy to the problem A(µ) is given by
(4.6).

4.2. Efficient frontier. In this subsection, we derive the efficient frontier for
the portfolio selection problem (2.6), i.e., we specify the relation between the variance
and the expected value of the terminal wealth for every efficient strategy. First of all,
note that

E
{

1
2x(T )2

}
= E

{
1
2 [X(T )− (d− µ)]2

}
= E

{
1
2 [X(T )− d]2

}
+ µ[EX(T )− d] + 1

2µ
2.
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Hence, for every fixed µ, we have

min
u(·)∈U [0,T ]

E
{

1
2 [X(T )− d]2 + µ[EX(T )− d]

}
= min
u(·)∈U [0,T ]

E
{

1
2x(T )2

}
− 1

2µ
2

= V (0, x(0))− 1
2µ

2

= 1
2P (0)x(0)2 + g(0)x(0) + c(0)− 1

2µ
2

= 1
2P (0)[X0 − (d− µ)]2 + g(0)[X0 − (d− µ)] + c(0)− 1

2µ
2,

where P (·), g(·), and c(·) are either P̄ (·), ḡ(·), and c̄(·) or P̃ (·), g̃(·), and c̃(·), respec-

tively, depending on whether or not X0 − (d− µ)e−
∫ T
0
r(s)ds ≤ 0 (see (3.17)). Now, if

X0 − (d− µ)e−
∫ T
0
r(s)ds ≤ 0, we have a concave quadratic function in µ

min
u(·)∈U [0,T ]

E
{

1
2 [X(T )− d]2 + µ[EX(T )− d]

}
= 1

2P (0)[X0 − (d− µ)]2 + g(0)[X0 − (d− µ)] + c(0)− 1
2µ

2

= 1
2e

− ∫ T
0

‖θ̄(s)‖2ds
[
X0e

∫ T
0
r(s)ds − (d− µ)

]2

− 1
2µ

2.

If X0 − (d− µ)e−
∫ T
0
r(s)ds > 0, we have a linear function in µ

min
u(·)∈U [0,T ]

E
{

1
2 [X(T )− d]2 + µ[EX(T )− d]

}
= 1

2 P̃ (0)[X0 − (d− µ)]2 + g̃(0)[X0 − (d− µ)] + c̃(0)− 1
2µ

2

= 1
2

[
X0e

∫ T
0
r(s)ds − (d− µ)

]2

− 1
2µ

2

= 1
2

(
X0e

∫ T
0
r(s)ds − d

)2

+
(
X0e

∫ T
0
r(s)ds − d

)
µ.

Therefore we conclude that under the optimal investment strategy (4.6) the optimal
cost for problem (2.7) is

(4.7)

min
u(·)∈U [0,T ]

E
{

[X(T )− d]2 + 2µ[EX(T )− d]
}

=



e−

∫ T
0

‖θ̄(s)‖2ds
[
X0e

∫ T
0
r(s)ds − (d− µ)

]2

− µ2 if X0 − (d− µ)e−
∫ T
0
r(s)ds ≤ 0,[

X0e
∫ T
0
r(s)ds − (d− µ)

]2

− µ2 if X0 − (d− µ)e−
∫ T
0
r(s)ds > 0.

Note that the above value still depends on the Lagrange multiplier µ. To obtain the
optimal value (i.e., the minimum variance Var X(T )) and optimal strategy for the
original portfolio selection problem (2.6) one needs to maximize the value in (4.7) over
µ ∈ R according to the Lagrange duality theorem [23]. A simple calculation shows
that (4.7) attains its maximum value(

d−X0e
∫ T
0
r(s)ds

)2

e
∫ T
0

‖θ̄(s)‖2ds − 1
at µ∗ =

d−X0e
∫ T
0
r(s)ds

1− e
∫ T
0

‖θ̄(s)‖2ds
.

(Note that in the calculation we made use of the fact that

X0 − (d− µ∗)e−
∫ T
0
r(s)ds =

de−
∫ T
0
r(s)ds −X0

e−
∫ T
0

‖θ̄(s)‖2ds − 1
≤ 0,
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due to Assumption 2.1.)
The above discussion leads to the following theorem.
Theorem 4.2. The efficient strategy of portfolio selection problem (2.6) corre-

sponding to the expected terminal wealth EX(T ) = d, as a function of time t and
wealth X, is

u∗(t,X)≡(u∗1(t,X), . . . , u∗m(t,X))′

=



−(σ(t)σ(t)′)−1[π̄(t) + (b(t)− r(t)1)]

[
X − (d− µ∗)e−

∫ T
t
r(s)ds

]
if X − (d− µ∗)e−

∫ T
t
r(s)ds ≤ 0,

0 if X − (d− µ∗)e−
∫ T
t
r(s)ds > 0,

(4.8)

where µ∗ = d−X0e
∫T
0 r(s)ds

1−e
∫T
0 ‖θ̄(s)‖2ds

, and π̄(·) and θ̄(·) are defined in (4.4) and (4.5), respectively.

Moreover, the efficient frontier is

Var X(T ) =
(d−X0e

∫ T
0
r(s)ds)2

e
∫ T
0

‖θ̄(s)‖2ds − 1
≡ (EX(T )−X0e

∫ T
0
r(s)ds)2

e
∫ T
0

‖θ̄(s)‖2ds − 1
.(4.9)

Remark 4.1. The form of the efficient strategy (4.8) suggests that it should put
all the money in the bond if the current wealth is large enough.

Remark 4.2. The so-called mutual fund theorem, due originally to Tobin [31]
for single-period investment, is a natural consequence of the mean-variance theory
and is the foundation of the CAPM (Capital Asset Pricing Model; Sharpe [29]). It
basically asserts that any mean-variance efficient portfolio is a convex combination
of the riskless asset and a prescribed portfolio containing only the risky assets. (The
latter is called the tangent fund.) As an immediate consequence, in all the efficient
portfolios the allocations among the risky assets have constant proportions—the same
as those in the tangent fund. In particular, it implies that those proportions should
not depend on the total wealth of the investor. It then follows from (4.8) that the
mutual fund theorem does not hold under the short-selling prohibition, because the
fraction of wealth in stocks in an efficient portfolio does depend on the wealth of the
agent. However, we see that a modified form of the mutual fund theorem still holds
true in the present case. Specifically, we now have two modes depending on whether

X − (d − µ∗)e−
∫ T
t
r(s)ds ≤ 0. In each mode the allocations among the stocks keep

constant proportions.
Remark 4.3. The efficient frontier in the mean-standard deviation diagram is still

a straight line, as with the single-period mean-variance setting (see, e.g., [24]). To be
specific, let σX(T ) be the standard deviation of the terminal wealth; then (4.9) gives

EX(T ) = X0e
∫ T
0
r(s)ds + σX(T )

√
e
∫ T
0

‖θ̄(s)‖2ds − 1,(4.10)

which is also called the capital market line.

5. An example. In this section, a numerical example is presented to demon-
strate the results in the previous section. Letm = 3. The interest rate of the bond and
the appreciation rate of the m stocks are r = 2

100 and (b1, b2, b3)
′ = ( 4

100 ,
5

100 ,
6

100 )′,
respectively, and the volatility matrix is

σ =


 1 0 2

3
0 1 0
0 0 2

3


 .



MEAN-VARIANCE PORTFOLIO SELECTION WITHOUT SHORTING 1553

Then we have

σ−1 =


 1 0 −1

0 1 0
0 0 3

2




and (b1−r, b2−r, b3−r)′ = ( 2
100 ,

3
100 ,

4
100 )′. Hence, θ := σ−1(b−r1) = ( −2

100 ,
3

100 ,
6

100 )′.

Obviously, s(π)
∆
= 1

2‖σ−1π+ θ‖2 over [0,∞)m has a unique minimizer π̄ =
(

2
100 , 0, 0

)′
with the minimum value s(π̄) = 1

2‖σ−1π̄ + θ‖2 = 9
4000 . Then we have

‖θ̄‖2 = ‖σ−1π̄ + θ‖2 = 9
2000

and

(σσ′)−1[π̄ + (b− r1)] =
(

0, 3
100 ,

9
100

)′
.

Therefore, Theorem 4.2 implies that an efficient strategy is

u∗(t,X)≡(u∗1(t,X), u∗2(t,X), u∗3(t,X))′

=





 0

3/100
9/100


 [(d− µ∗)e 2

100 (t−T ) −X] if X − (d− µ∗)e 2
100 (t−T ) ≤ 0,

0 if X − (d− µ∗)e 2
100 (t−T ) > 0,

where µ∗ = d−X0e
rT

1−e‖θ̄‖2T
= d−X0e

2
100

T

1−e 9
2000

T
. The efficient frontier is

Var X(T ) = (d−X0e
rT )2

e‖θ̄‖2T−1
=

[
EX(T )−X0e

2
100

T
]2

e
9

2000 −1
.

6. Conclusion. This paper investigates a continuous-time mean-variance port-
folio selection problem where short-selling is not allowed. The efficient strategies
and efficient frontier are derived explicitly based on stochastic LQ control technique
and viscosity solution theory. This also demonstrates that stochastic LQ control is a
powerful framework to treat some finance problems.

An immediate open problem is to extend the results in this paper to the case in
which all the market coefficients are random processes. This is a challenging problem
because the HJB equation becomes a backward stochastic partial differential equation
due to the randomness of coefficients for which viscosity solution theory is still largely
unexplored.

Appendix: Viscosity solutions. We list here some basic terminologies from
the theory of viscosity solutions which are referred to in the paper.

Let

G(t, x, u, p, P ) = 1
2σ(t, x, u)′Pσ(t, x, u) + p′h(t, x, u)− L(t, x, u),

where σ : [0, T )×R
n ×R

nu → R
n, h : [0, T )×R

n ×R
nu → R

n, and L : [0, T )×R
n ×

R
nu → R. Consider the second-order PDE{

vt + inf
u≥0

G(t, x, u, vx, vxx) = 0, (t, x) ∈ [0, T )× R
n,

v(T, x) = g(x),
(6.1)
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where g : R
n → R.

Clearly the HJB equation (3.4) is a special case of (6.1). It is well-known that
(6.1) does not in general have classical (smooth) solutions. A generalized concept of
solution, called a viscosity solution, is introduced in [5]. The main result in [35] is that
under certain mild conditions there exists a unique viscosity solution in the first-order
case. In the second-order case, uniqueness is proven in [15]. See also [9, 35] for more
details about the viscosity solution and its application in stochastic control.

Definition 6.1. Let v ∈ C([0, T ] × R
n) and (t0, x0) ∈ (0, T ) × R

n. Then the
second-order superdifferential of v at (t0, x0) is defined by

D1, 2,+
t, x v(t0, x0) =

{
(ϕt(t0, x0), ϕx(t0, x0), ϕxx(t0, x0))

∣∣∣
ϕ ∈ C∞((0, T )× R

n) and v − ϕ has a local maximum at (t0, x0)
}
,(6.2)

and the second order subdifferential of v is defined by

D1, 2,−
t, x v(t0, x0) =

{
(ϕt(t0, x0), ϕx(t0, x0), ϕxx(t0, x0))

∣∣∣
ϕ ∈ C∞((0, T )× R

n) and v − ϕ has a local minimum at (t0, x0)
}
.(6.3)

Moreover, v is a viscosity solution of (6.1) if

v(T, x) = g(x) ∀x ∈ R
n,(6.4)

and

q + inf
u∈U

G(t, x, u, p, P ) ≥ 0 ∀(q, p, P ) ∈ D1, 2,+
t, x v(t, x),(6.5)

q + inf
u∈U

G(t, x, u, p, P ) ≤ 0 ∀(q, p, P ) ∈ D1, 2,−
t, x v(t, x),(6.6)

for all (t, x) ∈ [0, T )× R
n.

In particular, v is called a viscosity subsolution if it satisfies (6.4)–(6.5), and a
viscosity supersolution if it satisfies (6.4) and (6.6).
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Abstract. This paper introduces the use of vector fields to design, optimize, and implement
reactive schedules for safe cooperative robot patterns on planar graphs. We consider automated
guided vehicles (AGVs) operating upon a predefined network of pathways. In contrast to the case of
locally Euclidean configuration spaces, regularization of collisions is no longer a local procedure, and
issues concerning the global topology of configuration spaces must be addressed. The focus of the
present inquiry is the definition, design, and algorithmic construction of controllers for achievement
of safe, efficient, cooperative patterns in the simplest nontrivial example (a pair of robots on a
Y-network) by means of a hierarchical event-driven state feedback law.

Key words. configuration spaces, AGV, graph network, hierarchical control
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1. Introduction. Recent literature suggests the growing awareness of a need
for “reactive” scheduling wherein one desires not merely a single deployment of re-
sources but a plan for successive redeployments against a changing environment [19].
However, scheduling problems have been traditionally solved by appeal to a discrete
representation of the domain at hand. Thus the need for “tracking” changing goals
introduces a conceptual dilemma: there is no obvious topology by which proximity to
the target of a given deployment can be measured. In contrast to problems entailing
the management of information alone, problems in many robotics and automation
settings involve the management of work—the exchange of energy in the presence
of geometric constraints. In these settings, it may be desirable to postpone the im-
position of a discrete representation long enough to gain the benefit of the natural
topology that accompanies the original domain.

This paper explores the use of vector fields for reactive scheduling of safe coop-
erative robot patterns on graphs. The word “safe” means that obstacles—designated
illegal portions of the configuration space—are avoided. The word “cooperative” con-
notes situations wherein physically distributed agents are collectively responsible for
executing the schedule. The word “pattern” refers to tasks that cannot be encoded
simply in terms of a point goal in the configuration space. The word “reactive” will
be interpreted as requiring feedback so that the desired pattern rejects perturbations:
conditions close but slightly removed from those desired remain close and, indeed,
converge toward the exactly desired pattern.

1.1. Setting: AGVs on a guidepath network of wires. An automated
guided vehicle (AGV) is an unmanned powered cart “capable of following an external
guidance signal to deliver a unit load from destination to destination,” where, in most
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common applications, the guidepath signal is buried in the floor [6]. Thus the AGV’s
work space is a network of wires—a graph. The motivation to choose AGV-based
materials handling systems over more conventional fixed conveyors rests not simply
in their ease of reconfigurability but in the potential they offer for graceful response to
perturbations in normal plant operation. In real production facilities, the flow of work
in process fluctuates constantly in the face of unanticipated work station downtime,
variations in process rate, and, indeed, variations in materials transport and delivery
rates [8]. Of course, realizing their potential robustness against these fluctuations in
work flow remains an only partially fulfilled goal of contemporary AGV systems.

Choreographing the interacting routes of multiple AGVs in a nonconflicting man-
ner presents a novel, complicated, and necessarily online planning problem. Nominal
routes might be designed offline, but they can never truly be traversed with the
nominal timing for all the reasons described above. Even under normal operating
conditions, no single nominal schedule can suffice to coordinate the work flow as the
production volume or product mix changes over time: new vehicles need to be added
or deleted, and the routing scheme needs to be adapted. In any case, abnormal
conditions—unscheduled process down times, blocked work stations, failed vehicles—
continually arise, demanding altered routes.

The traffic control schemes deployed in contemporary AGV systems are designed
to simplify the real-time route planning and adaptation process by “blocking zone
control” strategies. The work space is partitioned into a small number of cells, and,
regardless of the details of their source and destination tasks, no two AGVs are ever
allowed into the same cell at the same time [6]. Clearly, this simplification results in
significant loss of a network’s traffic capacity.

In this paper, we will consider a centralized approach that employs dynamical
systems theory to focus on real-time responsiveness and efficiency as opposed to com-
putational complexity or average throughput. Without a doubt, beyond a certain
maximum number of vehicles, the necessity to compute in the high dimensional con-
figuration space will limit the applicability of any algorithms that arise. However,
this point of view seems not to have been carefully explored in the literature. Indeed,
we will sketch some ideas about how an approach that starts from the coupled ver-
sion of the problem may lend sufficient insight to move back and forth between the
individuals’ and the group’s configuration spaces even in real time. For the sake of
concreteness we will work in the so-called pickup and delivery (i.e., where loads are
picked up at certain points and dropped off at others, as opposed to “stop and go,”
where an AGV network stands in for an assembly line [3]) paradigm of assembly or
fabrication (where a desired steady state “pattern”—a scheduled series of visits to
specific work stations by specific AGVs—is dispatched ahead of time), and we will
not be concerned with warehousing-style AGV applications.

1.2. Organization of the paper.

Section 2. We introduce the salient properties of a feedback controlled dynamical
system on a graph by addressing the closed loop motion planning problem of a single
AGV on its wire network. In this setting, configuration spaces are not required,
although the nonmanifold structure of the work space necessitates a mild adaptation
of the dynamical systems machinery, specified in Appendix A. We describe a simple
hybrid controller built from edge point fields—locally defined dynamics that realize
single letter patterns—which generalize the scheme Burridge, Rizzi, and Koditschek
have proposed in [5].

Section 3. Turning to the central topic, we address the case of multiple AGVs in
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the simplest possible setting—two AGVs on a Y-graph—as a local exemplar of the
general problem. The contributions of this section include

1. an intrinsic coordinate system for the configuration space;
2. a detailed analysis of the topology of the configuration space, affording im-

mediate recourse to previously developed methods of safe controller design
[12];

3. the construction of a “circulating flow” on this space that executes a sta-
ble safe periodic pattern as a canonical example of dynamically controlled
collision-free behavior suitable to more general settings of the problem.

Section 4. Because limit cycles are likely too rigid a means of arbitrary pattern
specification in the more generalized settings of the problem, we return to the notion
of building a palette of control laws that realize safe “letters” along with a hybrid
(logical level) scheme for concatenating them to produce arbitrary patterns in the
form of periodic attracting orbits whose limit set is any desired “word,” within a
“monotone cycle” grammar as formalized in Theorem 3. Section 4 ends with a con-
structive procedure for incorporating performance guarantees in the construction of
these grammars, concluding with a more speculative view of potential extensions of
this work.

Appendix A is included to place on a rigorous foundation the use of vector fields
on graphs and configuration spaces thereof.

2. Notation and background.

2.1. Graph topology. A graph, Γ, consists of a finite collection of 0-dimensional
vertices V:={vi}N1 , and 1-dimensional edges E :={ej}M1 assembled as follows. Each
edge is homeomorphic to the closed interval [0, 1] attached to V along its boundary
points {0} and {1}.1 We place upon Γ the quotient topology given by the endpoint
identifications: neighborhoods of a point in the interior of ej are homeomorphic images
of interval neighborhoods of the corresponding point in [0, 1], and neighborhoods of a
vertex vi consist of the union of homeomorphic images of half-open neighborhoods of
the endpoints for all incident edges.

The configuration spaces we consider in section 3 and throughout are subsets of
self-products of graphs. The topology of Γ × Γ is easily understood in terms of the
topology of Γ as follows [17]. Let (x, y) ∈ Γ×Γ denote an ordered pair in the product.
Then any small neighborhood of (x, y) within Γ × Γ is the union of neighborhoods
of the form N (u) × N (v), where N (·) denotes the neighborhood within Γ. In other
words, the products of neighborhoods form a basis of neighborhoods in the product
space.

Given a graph, Γ, outfitted with a finite number N of noncolliding AGVs con-
strained to move on Γ, the (labeled) configuration space of safe motions is defined
as

C:= (Γ × · · · × Γ) −N (∆),(2.1)

where ∆:={(xi) ∈ Γ×· · ·×Γ : xj = xk for some j �= k} denotes the pairwise diagonal
and N (·) denotes the (small) neighborhood.

1In our model, we will disallow “homoclinic” edges whose boundary points are attached to the
same vertex. With respect to the application setting, this is very natural since vertices correspond to
work stations along a path. It is hard to imagine networks designed with loops that do not service any
work stations. In the worst case, there is established precedent in the AGV technology literature for
introducing additional “transfer point” technology to a factory setting solely for purposes of traffic
control [3].
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For general graphs, the topological features of C can be extremely complicated, as
measured by, say, the rank of the fundamental group (see [17] for definitions). Even
in the case where the work space, Γ, is contractible (and thus, the product of its n
copies is contractible), removal of this collision diagonal often creates spaces with a
large fundamental group. For example, given a graph ΓK with K edges all connected
at a single point (forming a K-pronged “star”), it follows from the more general results
in [9] that the fundamental group of the configuration space ΓK × ΓK − N (∆) is a
free group on K2 −3K + 1 generators; i.e., the number of “independent” closed paths
in this space (with respect to continuous deformation) grows quadratically with K.

Mathematically, it is usually most interesting to pass to the quotient of C by
the action of the permutation group on N elements, thus forgetting the identities
of the AGV elements; however, as such spaces are almost completely divorced from
any applications involving coordinated transport, we work on the “full” configuration
space C. We do not treat the general aspects of this problem comprehensively in
this paper; rather, we restrict our attention to the simplest nontrivial example, which
illustrates nicely the relevant features present in the more general situation.

In order to proceed, it is necessary to clarify what we mean by a vector field on a
simplicial complex that fails to be a manifold. This is a nontrivial issue: for example,
in the case of a graph, the tangent space to a vertex with incidence number greater
than two is not well defined. We defer a more detailed discussion of these statements
to Appendix A. The essential difference is that we construct semiflows—flows which
possess unique forward orbits.

2.2. Edge point fields for single AGV control. In the context of describing
and executing patterns or periodic motions on a graph, one desires a set of building
blocks for moving from one goal to the next. We introduce the terminology and
philosophy for constructing patterns by way of the simplest possible examples: a
single AGV on a graph. This avoids the additional topological complications present
in the context of cooperative motion.

To this end, we introduce the class of edge point fields as a dynamical toolbox for
a hybrid controller. Given a specified goal point g ∈ ej within an edge of Γ, an edge
point field is a locally defined vector field Xg on Γ with the following properties:

Locally defined. Xg is defined on a neighborhood N (ej) of the goal edge ej within
the graph topology, and forward orbits under Xg are uniquely defined.

Point attractor. Every forward orbit of Xg asymptotically approaches the unique
fixed point g ∈ ej .

2

Navigation-like. Xg admits a C0 Lyapunov function, Φg : Γ → R.
The following existence lemma (whose trivial proof we omit) holds.
Lemma 1. Given any edge ej ⊂ Γ which is contractible within Γ, there exists an

edge point field Xg for any desired goal g ∈ ej.
As a remark, we note that, as is usual in the traditional dynamical systems

settings, the orbits of an edge point field may take an infinite amount of time to reach
their destination. We can always rectify this situation by modifying the flow in a
neighborhood of the goal via a sublinear term, e.g., ẋ = −x1/3. This comment applies
to vector fields used throughout the remainder of this work.

2.3. Discrete regulation of patterns. By an excursion on a graph, we mean
a (possibly infinite) sequence of edges from the graph, E = ei1 . . . eiN . . . ∈ EZ , having

2When it is not clear from the context, we shall denote the goal point achieved by an edge point
flow as g(Xg) = {g}.
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the property that each pair of contiguous edges eij and eij+1
share a vertex in common.

The set of excursions forms a language, L, the so-called subshift on the alphabet
defined by the named edges (we assume each name is unique) [13]. Given a legal
block, B = ei1 . . . eiM ∈ L, we say that an excursion realizes that pattern if its
periodic extension eventually reaches the “goal” BBBBB . . . under the iterates of
the block shift. In other words, after some transient behavior, the excursion consists
of repetitions of the block B (terminating possibly with the empty edge).

In a previous paper [5], Burridge, Rizzi, and Koditschek introduced a very simple
but effective discrete event controller for regulating patterns on abstract graphs rep-
resenting a “prepares” relation imposed on families of controllers over general smooth
manifolds. We introduce this prepares relation below and prune it as in [5]. The
resulting ordering on the controllers yields a controller transition logic that enlarges
the basin of any one member of the family to include the union of all “higher” con-
trollers. This simple idea has a much longer history. It was in introduced in robotics
as “preimage backchaining” [14], pursued in [15] as a method for building verifiable
hardened automation via the metaphor of a family of funnels, and pursued in [7] as a
means of prescribing sensor specifications from goals and action sets. In the discrete
event systems literature, an optimal version of this procedure has been introduced in
[4], and a generalization has recently been proposed in [18].

Let E0:=B ⊂ E denote the edges of Γ that appear in the block of letters specifying
the desired pattern. Denote by

En+1 ⊂ E −
⋃
k≤n

Ek

those edges that share a vertex with an edge in En but are not in any of the previously
defined subsets. This yields a finite partition of E into “levels,” {Ep}Pp=0, such that for

each edge, epi ∈ Ep, there can be found a legal successor edge, ep−1
j ∈ Ep−1, such that

epi e
p−1
j ∈ L is a legal block in the language. Note that we have implicitly assumed

that E0 is reachable from the entire graph—otherwise, there will be some “leftover”
component of E forming the last cell in the partition starting within which it is not
possible to achieve the pattern. Note as well that we impose some ordering of each

cell Ep = {epi }Mp

i=1: the edges of E0 = B are ordered by their appearance in the block;
the ordering of edges in higher level cells is arbitrary.

We may now define a “graph control” law G:E → E as follows. From the nature
of the partition {Ep} above, it is clear that the least legal successor function,

L(p, i):=

{
i + 1 mod M : p = 0,

min{j ≤ Mp : epi e
p−1
j ∈ L} : p > 0

(2.2)

is well defined. From this, we construct the graph controller:

G(epi ):=ep−1
L(p,i).(2.3)

It follows almost directly from the definition of this function that its successive appli-
cation to any edge leads eventually to a repetition of the desired pattern.

Proposition 2. The iterates of G on E achieve the pattern B.

2.4. Hybrid edge point fields. A semiflow, (X)t, on the graph induces excur-
sions in L parametrized by an initial condition as follows. The first letter corresponds
to the edge in which the initial condition is located. (Initial conditions at vertices
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are assigned to the incident edge along which the semiflow points.) The next letter is
added to the sequence by motion through a vertex from one edge to the next.

We will say of two edge point fields X1, X2 on a graph, Γ, that X1 prepares X2,
denoted X1 � X2, if the goal of the first is in the domain of attraction of the second,
g(X1) ⊂ N (X2). Given any finite collection of edge point fields on Γ, we will choose
some 0 < α < 1 and assume that their associated Lyapunov functions have been
scaled in such a fashion that X1 � X2, implies (Φ1)

−1
[0, α] ⊂ N (X2). In other words,

an α crossing of the trajectory Φ1 ◦ (X1)
t

signals arrival in N (X2).
Suppose now that for every edge in some pattern block, e0

i ∈ E0, there has
been designated a goal point g0

i along with an edge point field X0
i taking that goal:

g(X0
i ) = g0

i . Assume as well that the edge point field associated with each previous
edge in the pattern prepares the flow associated with the next edge; in other words,
using the successor function (2.2), we have

g
(
X0
j

) ⊂ N
(
X0
L(p,j)

)
.

Now construct edge point fields on all the edges of Γ such that the tree representation
of their � relations is exactly the tree pruned from the original graph above:

g
(
Xp
j

) ⊂ N
(
Xp−1
L(p,j)

)
.

We are finally in a position to construct a hybrid semiflow on Γ. This feedback
controller will run the piecewise smooth vector field, ẋ = X, as follows:

X:=

{
Xp
j :x ∈ epj and Φpj > α,

Xp−1
L(p,j) :x ∈ ep−1

L(p,j) or Φpj ≤ α.
(2.4)

It is clear from the construction that progress from edge to edge of the state of this
flow echoes the graph transition rule G constructed above.

Proposition 3. The edge transitions induced by the hybrid controller (2.4) are
precisely the iterates of the graph map G (2.3) in the language L.

3. The Y-graph. We now turn our attention to the safe control of multiple
AGVs on a graph work space via vector fields. Whereas the case of a single AGV on
a graph could be controlled by vector fields on the graph itself, the safe coordination
of multiple agents necessitates vector field controls on the appropriate configuration
space—a space whose topological features are by no means obvious.

For the remainder of this work, we consider the simplest example of a nontrivial
configuration space: that associated with the Y-graph, Υ, having four vertices {vi}3

0

and three edges {ei}3
1. Each edge ei attaches a vertex vi to the central vertex v0.

Although this is a simple scenario compared to what one finds in a typical setting,
there are several reasons why this example is in many respects canonical.

1. Simplicity. Any graph may be constructed by gluing index-K radial graphs
together for various K. The K = 3 model we consider is the simplest non-
trivial case and is instructive for understanding the richness and challenges
of local cooperative dynamics on graphs.

2. Genericity with respect to graphs. Graphs which consist of copies of Υ glued
together, the trivalent graphs, are generic: any nontrivial graph may be per-
turbed in a neighborhood of the vertex set so as to be trivalent. For example,
the 4-valent graph resembling the letter “X” may be perturbed slightly to
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resemble the letter “H”—a trivalent graph. An induction argument shows
that this is true for all graphs. Hence the dynamics on an arbitrary graph
are approximated by patching together dynamics on copies of Υ.

3. Genericity with respect to local dynamics. Finally, pairwise local AGV inter-
actions on an arbitrary graph restrict themselves precisely to the dynamics
of two agents on Υ as follows. Given a vertex v of a graph Γ, assume that
two AGVs x and y are on different edges e1 and e2 incident to v and moving
toward v with the goal of switching positions. A collision is imminent unless
one AGV “moves out of the way” onto some other edge e3 incident to v. The
local interactions thus restrict themselves to dynamics of a pair of AGVs on
the subgraph defined by {v; e1, e2, e3}. Hence the case we treat in this paper
is the generic scenario for the local resolution of collision singularities in co-
operative dynamics on graphs and forms a basis for decentralized control of
large numbers of independent agents.

3.1. Intrinsic coordinates. The configuration space C of two points on Υ is
a subset of the cartesian product Υ × Υ. Since Υ (and indeed any graph which is
physically relevant to the setting of this paper) is embedded in a factory floor or ceiling
and thus planar, the configuration space C embeds naturally in R4. We wish to modify
this embedding to facilitate both analysis on and visualization of the configuration
space. We will present alternate embeddings in both higher and lower dimensional
Euclidean spaces for these purposes.

We begin by representing the configuration space within a higher dimensional
Euclidean space via intrinsic coordinates—coordinates independent of the graphs em-
bedded in space. We illustrate this coordinate system with the Y-graph Υ, noting
that a few simple modifications yield coordinate schemes for general graphs.

Let {ei}3
1 denote the three edges in Υ, parametrized so that the closure of each

edge ei is identified with [0, 1] oriented so that [0, 1] is mapped to [v0, vi]. Any point in
Υ is thus given by a vector x in the {ei} basis whose magnitude |x| ∈ [0, 1] determines
the position of the point in the ei direction. For |x| > 0, denote by ι(x) the value of i
so that x = |x|eι(x). This parameterization embeds Υ as the positive unit axis frame
in R3. Likewise, a point in C is given as a pair of distinct vectors (x, y), i.e., as the
positive unit axis frame in R3 cross itself sitting inside of R3 × R3 ∼= R6. We have
thus embedded the configuration space of two distinct points on Υ in the positive
orthant of R6. It is clear that one can embed the more general configuration space of
N points on Υ in R3N in this manner.

This coordinate system is particularly well suited to describing vector fields on
C and implementing numerical simulations of dynamics, as the coordinates explicitly
track the physical position of each point on the graph.

3.2. A topological analysis. Visualizing C as a subset of R4 or R6 is unen-
lightening. More useful for visualization purposes is the following construction which
embeds C within R3.

Theorem 1. The configuration space C associated with a pair of AGVs restricted
to the Y -graph Υ is homeomorphic to a punctured disc with six 2-simplices attached
as per Figure 3.1.

Proof. Recall that C consists of pairs of distinct vectors (x, y) in intrinsic coordi-
nates. Restrict attention to the subspace D ⊂ C defined by

D := {(x, y) ∈ C : ι(x) �= ι(y)},(3.1)
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Fig. 3.1. The configuration space C embedded in R3. Dashed lines refer to open boundaries;
sample configurations for representative 2-cells are illustrated to the sides.

where an undefined index is considered to be not equal to one which is defined. Thus D
consists of configurations for which both AGVs do not occupy the same edge interior.

The set D has a cellular decomposition as follows. There are 2 AGVs and 3 edges
in Υ; hence there are 3 · 2 = 6 cells Di,j ⊂ D, where i := ι(x) �= ι(y) =: j. Since
(the closure of) each edge in Υ is homeomorphic to [0, 1] (determined by | · |), the cell
Di,j is homeomorphic to ([0, 1] × [0, 1]) − {(0, 0)}, where, of course, the origin (0, 0)
is removed as it belongs to the diagonal ∆. A path in D can move from cell to cell
only along the subsets where the index of one AGV changes, e.g., |x| = 0 or |y| = 0.
Thus the edges {0}× (0, 1] and (0, 1]×{0} of the punctured square Di,j are attached,
respectively, to Dk,j and Di,k, where k is the unique index not equal to i or j.

Furthermore, each 2-cell Di,j has a product structure as follows: decompose Di,j
along the lines of constant θ := tan−1( |y|

|x| ). It is clear that θ is the angle in the unit’s

first quadrant in which Di,j sits. Hence each Di,j is decomposed into a product of
a closed interval Si,j := θ ∈ [0, π/2] (an “angular” coordinate) with the half-open
interval (0, 1] (a “radial” coordinate). As this product decomposition is respected
along the gluing edges, we have a decomposition of all of D into the product of
(0, 1] × S, where S is a cellular complex given by gluing the six segments Si,j end-
to-end cyclically along their endpoints. The set S is a 1-manifold without boundary
since each Si,j is a closed interval, each of whose endpoints is glued to precisely one
other Si,j . Hence, by the classification of 1-manifolds, S is homeomorphic to a circle.
We have thus decomposed D as the cross product of a circle with (0, 1]—a punctured
unit disc.

The complement of D in C consists of those regions where ι(x) = ι(y). For each
i = 1 . . . 3, the subset of C where ι(x) = ι(y) = i is homeomorphic to ((0, 1]× (0, 1])−
{|x| = |y|}: this consists of two disjoint triangular “fins.” A total of six such fins are
thus attached to D along the six edges where |x| or |y| = 0. In the coordinates of the
product decomposition for D, these fins emanate along the radial lines where θ equals
zero or π/2, yielding the topological space illustrated in Figure 3.1.

Corollary 4. Given any point goal g ∈ D ⊂ C, there exists an explicit naviga-
tion function (of class piecewise real-analytic) generating a semiflow which sends all
but a measure-zero set of initial conditions to g under the gradient semiflow.

Proof. The subset D ⊂ C is homeomorphic to a punctured disc S× (0, 1] and may
easily be compactified to an annulus with boundary S × [ε, 1] by removing an open
neighborhood of the diagonal. Then the conditions for the theorems of Koditschek
and Rimon [12] are met since an annulus is a sphereworld. Hence not only does a
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navigation function Φ on this subspace exist, but an explicit procedure for determining
Φ is given [12]. One may then extend Φ to the remainder of C as follows: choose a
point (x, y) on the fin, and define

Φ(x, y) :=




1
1 − |x|Φ(0, y), |x| < |y|,

1
1 − |y|Φ(x, 0), |y| < |x|,(3.2)

so that Φ increases sharply along the fins.3 This directs the gradient flow to monoton-
ically “descend” away from the diagonal and onto D. Note that D is forward-invariant
under the dynamics and that, upon prescribing the vector field on the fins to point into
D, we have defined a semiflow and hence a well-defined navigational procedure.

This result is very satisfying in the sense that it guarantees a navigation function
by applying existing theory to a situation which, from the definition alone, would not
appear to be remotely related to a sphereworld. However, a deeper analysis of config-
uration spaces of graphs [9] reveals that, for more than two AGVs, the configuration
space of a graph is never a sphereworld.4

We thus consider alternate methods for realizing compatible goals by means of a
vector field on the configuration space, focusing, in particular, on the use of attracting
periodic orbits as a controller component in the “toolbox” for building up the sort of
hybrid feedback laws to be considered carefully in section 4.

3.3. Example: A circulating flow. We begin with a simple example of a
vector field on C which possesses an attracting limit cycle as a goal. This “circulating
field,” which cycles a pair of AGVs through states on the boundary of D ⊂ C, is a
canonical example of (1) a meaningful semiflow with limit cycle and (2) a practical
field for implementing collision avoidance in a hybrid controller (cf. item 3 in the
preface to section 3). Figure 3.2 (right) illustrates the flow restricted to D.

Theorem 2. There exists a piecewise-smooth vector field X on C which has the
following properties:

1. X defines a nonsingular semiflow on C.
2. The diagonal ∆ is repelling with respect to X.
3. Every orbit of X approaches a unique attracting limit cycle on C which cycles

through all possible ordered pairs of distinct edge states.

Proof. Recall that D denotes that portion of the configuration space correspond-
ing to a placement of the AGVs on distinct edges of the graph; from the proof of
Theorem 1, D is homeomorphic to a punctured disc. The intrinsic coordinates on
the configuration space C are illustrated in Figure 3.2 (left), where only D is shown
for simplicity. The reader should think of this as a collection of six square coordi-
nate planes, attached together pairwise along axes with the origin removed.5 The six
triangular fins are then attached as per Figure 3.1.

Recall that any point in the graph is represented as a vector x = |x|ei for some
i. Denote by êi the unit tangent vector in each tangent space Txei pointing in the

3This construction does not satisfy the formal requirements for a “navigation function” since it is
not bounded on the closure of the configuration space. There is a straightforward procedure detailed
in [12] that can be used to complete the construction.

4Any configuration space of any graph is aspherical; there are no essential closed spheres of
dimension larger than one, in contrast to a sphereworld. Thus, although a navigation is guaranteed
to result in any case, the explicit constructions [12] are inapplicable.

5In the natural product metric on C, these six 2-cells are flat Euclidean squares.
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(e1, 0)

(0, e3)(e2, 0)

(0, e1)

(e3, 0) (0, e2)

Fig. 3.2. Left: The coordinate system on the unfinned region D of C. Right: The circulating
flow with a typical orbit.

positive (outward) direction toward the endpoint vi. The vector field we propose is
the following. Given (x, y) ∈ C,

1. if ι(x) = ι(y), then{
ẋ = −|y|êι(x),
ẏ = |y|(1 − |y|)êι(y),

}
0 < |x| < |y|,{

ẋ = |x|(1 − |x|)êι(x),
ẏ = −|x|êι(y),

}
0 < |y| < |x|;

(3.3)

2. if ι(x) = ι(y) + 1 or |x| = 0, then{
ẋ = |y|ê(ι(y)+1),
ẏ = |y|(1 − |y|)êι(y),

}
0 ≤ |x| < |y|,{

ẋ = |x|(1 − |x|)êι(x),
ẏ = −|x|êι(y),

}
0 < |y| ≤ |x|;

(3.4)

3. if ι(y) = ι(x) + 1 or |y| = 0, then{
ẋ = −|y|êι(x),
ẏ = |y|(1 − |y|)êι(y),

}
0 < |x| ≤ |y|,{

ẋ = |x|(1 − |x|)êι(x),
ẏ = |x|ê(ι(x)+1),

}
0 ≤ |y| < |x|.

(3.5)

Note that all addition operations on ι(x) and ι(y) are performed mod three.
The vector field is nonsingular as follows: if |x||y| �= 0, then the vector field is by

inspection nonsingular. If |x| = 0, then |y| > 0 since the points are distinct. It then
follows from (3.4) that the vector field on this region has d|x|/dt = |y| �= 0. A similar
argument holds for the case where |y| = 0.

The vector field defines a semiflow as follows: on those regions where 0 �= |x| �=
|y| �= 0, the vector field is smooth and hence defines a true flow. Along the lines where
|x| = |y|, the vector field is not smooth but nevertheless is constructed so as to define
unique solution curves; hence the region D, where ι(x) �= ι(y), is invariant under the
flow. Finally, along the branch line curves where |x| = 0 or |y| = 0, the vector field
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points into the branch lines from the fins, implying that the dynamics is a semiflow
(see the remarks in Appendix A).

This vector field admits a C0 Lyapunov function Φ : C → [0, 1) of the form

Φ(x, y):=

{
1 − |(|x| − |y|)| : ι(x) = ι(y),

1 − max {|x|, |y|} : ι(x) �= ι(y).
(3.6)

From (3.3), one computes that on the fins (where ι(x) = ι(y)),

dΦ

dt
= −

∣∣∣∣
(
d|x|
dt

− d|y|
dt

)∣∣∣∣ < 0(3.7)

since here |x| �= |y|. Furthermore, on the disc D (ι(x) �= ι(y)), Φ changes as dΦ
dt =

Φ(Φ − 1). Hence Φ strictly decreases off of the boundary of the disc

∂D:= {(x, y) : |x| = 1 or |y| = 1} = Φ−1(0).(3.8)

It follows from the computation of dΦ/dt that the diagonal set ∆ of Υ×Υ is repelling
and that the boundary cycle ∂D is an attracting limit cycle.

This example illustrates how one can use a relatively simple vector field on the
configuration space to construct a pattern which is free from collisions. Indeed, as
part of a hybrid control scheme, one could use this circulating flow to resolve potential
collisions between AGVs in a general setting by localizing the dynamics near a pairwise
collision to those on a trivalent subgraph. In practice, the fact that the outer vertices of
the Y-graph are never quite reached by an interior orbit is irrelevant: a near-approach
suffices for any practical application.

4. Patterns and vector fields for monotone cycles. In this section, we
consider the problem of constructing vector fields which are tuned to trace out specific
collision-free patterns—scheduled series of visits to specific work stations by the pair
of AGVs whose regularity we wish to achieve at steady state, and return back to from
any temporary perturbation or disruption. We begin with a specification of a suitable
language for describing patterns.

4.1. A grammar for patterns. The setting we envisage is as follows: the
three ends of the graph Υ are stations at which an AGV can perform some function.
The AGV pair is required to execute an ordered sequence of functions, requiring an
interleaved sequence of visitations. In order to proceed with vector field controls for
cooperative patterns, it is helpful to construct the appropriate symbolic language, as
introduced in section 2 for single AGV systems. Denote the pair of AGV states as x
and y, respectively. Also, denote the three docking stations as vertices v1 through v3

as in Figure 3.1. The grammar G we use is defined as follows:
• (xi): These represent configurations for which the AGV x is docked at the

vertex vi, i = 1 . . . 3. The AGV y is at an unspecified undocked position.
• (yi): These represent configurations for which the AGV y is docked at the

vertex vi, i = 1 . . . 3. The AGV x is at an unspecified undocked position.
• (xiyj): These represent configurations for which the AGV x is docked at

vertex vi, while the AGV y is simultaneously docked at the vertex vj , j �= i.
For example, the word (x1)(y2)(x3y2) executes a sequence in which the first AGV
docks at Station v1 and then undocks while the second AGV docks at Station v2.
Finally, the AGVs simultaneously dock at Stations v3 and v2, respectively.
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As we have assumed from the beginning, the one-dimensional nature of the graph-
constraints precludes the presence of multiple agents at a single docking station; hence
there are exactly twelve symbols in the grammar G. From this assumption, it follows
that particular attention is to be paid to those trajectories which do not make excur-
sions onto the “fins” of the configuration space. It is obvious from the physical nature
of the problem that planning paths which involve traveling on the fins is not a locally
optimal trajectory with respect to minimizing distance or elapsed time. It suffices to
say that we restrict our attention for the moment to trajectories and limit cycles for
patterns, in particular, which are constrained to the region D ⊂ C.

We identify each symbol with a region of the boundary of the unbranched portion
of C; namely, ∂D is partitioned into twelve docking zones as in Figure 4.1. Note further
that there is a cyclic ordering, ≺, on G induced by the orientation on the boundary of
the disc along which the zones lie. By a cyclic ordering, we mean a way of determining
whether a point q lies between any ordered pair of points (p1, p2).

(x1)

(x1y2)(y2)

(x3y2)

(x3)(x3y1)

(y1)

(x2y1) (x2)

(x2y3)

(y3) (x1y3)

Fig. 4.1. Labels for the cyclically ordered grammar G.

We proceed with the analysis of limit cycles on C. Consider the class of pattern
vector fields, XP , on C defined as follows. For every X ∈ XP ,

1. X defines a semiflow on C and a true flow off the nonmanifold set of C;
2. there is a unique limit cycle γ which is attracting and which traces out a

nonempty word in the grammar G;
3. the diagonal set ∆ is a repeller with respect to X;
4. there are no fixed invariant sets of X which attract a subset of positive mea-

sure save γ.

Denote by XM the subset of XP for which the limit cycle, γ, lies in D. The question
of which words in the grammar G are admissible for the class XP has a simple answer
in terms of the cyclic ordering ≺. A word w composed of elements w = w1w2 . . . wn
in the grammar G said to be monotone with respect to the cyclic ordering ≺ if wi−1 ≺
wi ≺ wi+1 for every i (index operations all mod n).

Theorem 3. Within the class of vector fields XM , the limit cycles trace out
monotone words in the cyclically ordered grammar (G,≺).

Proof. The idea of the proof is simple and follows from the observation that any
limit cycle of the flow must be embedded (the curve does not intersect itself). After
a small perturbation, one may assume that the boundary zone ∂D is visited by γ in
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a finite number of points, Q := γ ∩ ∂D. Consider two points p, q ∈ Q, which are
consecutive in the limit cycle: that is, there is an embedded subarc α ⊂ γ which
connects p to q within the interior of D. The arc α separates D into two topological
discs (this is the Jordan curve theorem [17]); hence γ must lie entirely within the
closure of one of these discs. This implies that the limit cycle cannot visit any point
x ∈ ∂D satisfying p ≺ x ≺ q. Repeating this argument for all pairs of consecutive
points yields the monotonicity property.

Although the only admissible words in the grammar G are those which are mono-
tone, it is possible to realize many if not all of the nonmonotone cycles as limit cycles
for a semiflow on the full configuration space C; one must design the semiflow so as to
utilize the fins for “jumping” over regions of D cut off by the limit cycle. Such vector
fields quickly become very convoluted, even for relatively simple nonmonotone limit
cycles, and a more explicit constructive procedure would need stronger motivation
from the application domain than we are presently aware of.

4.2. Isotopy classes of limit cycles. Given a limit cycle γ which traces out
a pattern by visiting the boundary zone ∂D in the ordered set Q ⊂ ∂D, one wants
to know which other limit cycles minimize a given performance functional while still
visiting Q in the proper sequence. The mathematical framework for dealing with this
problem is the notion of isotopy classes of curves.

Two subsets A0 and A1 of a set B are said to be (ambiently) isotopic rel C (where
C ⊂ B) if there exists a continuous 1-parameter family of homeomorphisms ft : B→B
such that

1. f0 is the identity map on B,
2. f1(A0) = A1, and
3. ft|C is the identity map on C for all t.

As t increases, ft deforms B, pushing A0 to A1 without cutting or tearing the spaces
and without disturbing C.

There are two ways in which optimization questions relate to isotopy classes of
limit cycles: (1) Given an element of the grammar G, in which isotopy class (rel the
docking zones) of curves does an optimal limit cycle reside? (2) Within a given isotopy
class of cycles rel Q, which particular cycle is optimal?

For a monotone limit cycle on D, question (1) focuses on the location of the cycle
with respect to the central point (0, 0), which is deleted from the disc D. It is a
standard fact from planar topology that every curve in the punctured disc has a well-
defined winding number, which measures how many times the cycle goes about the
origin, and, furthermore, that this number is −1, 0, or 1 if the cycle is an embedded
curve. This winding number determines the isotopy class of the curve in D. Hence the
problem presents itself as follows: given an element of the grammar G, which isotopy
class rel the docking zones is optimal (with respect to any or all of the functionals
defined)? Is the winding number zero or nonzero?6

To address this question, we define the gap angles associated to a limit cycle.
For the remainder of this section, we will place standard polar coordinates on the
region D (given as a subset of the plane as per Figures 3.2 and 4.1) with the central
puncture corresponding to the origin. Given a set of “docked states”—or points
Q = {q1, q2, . . . , qJ} ordered with respect to time—we define the gap angles to be
the successive differences in the angular coordinates of the qj : thus � j := P (qj+1) −
P (qj), where P denotes projection of points in D onto their angular coordinates, and

6The difference between +1 and −1 is the orientation of time.
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subtraction is performed with respect to the orientation on ∂D.

For simplicity, we consider the optimization-isotopy problem in the case of a
discrete cost functional Wd, defined to be the intersection number of the path with
the branch locus of C, i.e., the number of times an AGV occupies the central vertex
(the shared resource in the problem). Similar arguments are possible for other natural
performance metrics.

Proposition 5. Given a cyclically ordered set of points Q = {qj}J1 on the
boundary of D, consider the class of embedded monotone cycles on D which trace out
the points of Q.

1. There is a Wd-minimizing embedded monotone cycle on D having winding
number zero with respect to the origin if there is a gap angle greater than π.

2. Conversely, if there are no gap angles greater than π, then there is a Wd-
minimizing embedded cycle of index ±1.

Proof. Define the gap angles { � j}J1 to be the differences of the angles between
the points qj and qj+1 (in standard planar polar coordinates with all indices mod J).
Since

∑
j
� j = 2π, there can be at most one gap angle greater than π. To simplify the

problem, use a 1-parameter family Pt of maps from the identity P0 to the projection
P = P1, which deforms D to the boundary circle S := ∂D by projecting along radial
lines. The index of a curve on D is invariant under this deformation as is the functional
Wd.

Denote by γj the subarc of γ between points qj and qj+1 (all indices mod J).
Denote by αj the subarc of the boundary S between points qj and qj+1, where the
arc is chosen to subtend the gap angle � j . Since the boundary curve S = ∪jαj is a
curve of index ±1, the arcs γj and αj are isotopic in D rel their endpoints for all j if
and only if γ is a curve of index ±1.

Assume first that there is a gap angle � j > π with γ an index ±1 curve on S
which intersects the branch angles Θ = {nπ/3 : n ∈ Z} in a minimal number of points
among all other closed curves on S which visit the points Q in the specified order. It
follows that the arc P (γj) subtends an angle greater than π and thus increments Wd

by at least three. One may replace γj by a curve γ′
j , which substitutes for the arc γj ,

one which wraps around “the other way” monotonically. This changes the index of
γ from nonzero to zero since the arc γ′

j is no longer isotopic to αj . Also, it is clear
that this either decreases the number of intersections with Θ or leaves this number
unchanged.

We must show that the replacement arc γ′
j can be chosen in such a way that it

does not intersect the remainder of γ. However, since γ is a curve of index ±1, we
may isotope each arc γi to the boundary curve αi without changing the value of Wd.
Thus we may remove γj and replace it with the curve which is, say, a geodesic (in
the natural metric geometry) from qj to qj+1. As this curve does not approach the
boundary S apart from its ends, the new curve γ′ is an embedded curve of index zero
without an increase in Wd.

Now assume, on the contrary, that γ is a Wd minimizer of index zero which has
all gap angles strictly less than π. Then each arc from γi must intersect the branch set
Θ in at most three components since, otherwise, the subtended arc would be in excess
of 4π/3. In the case where there exists an arc with exactly three intersections with
the branch set, this arc may be replaced by an arc which goes around the singularity
in the other direction without changing the number of intersections with the branch
set (since there are a total of six branch lines); however, the index of the curve is
toggled between zero and nonzero.
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The final case is that in which each arc intersects the branch set in at most two
places. However, since γ is a curve of index zero, some arc γj must not be isotopic to
αj . Hence the projection deformations Pt must push γj to a curve in the boundary
S whose subtended gap angle is 2π − � j > π. Thus γj intersects the branch set in
at least three places, yielding a contradiction. Replacing γj by the appropriate arc
which is isotopic to αj yields a Wd-minimal cycle of nonzero index.

4.3. Tuning cycles. Designing a customized “pattern” of two AGVs on the
Y-graph is as simple as drawing a vector field on C with a stable limit cycle tracing
out the desired motion. The problem then is how to specify such a vector field in
coordinates. Since we focus on those limit cycles which are contained within D, we
can exploit the fact that D is topologically a punctured disc. We thus give an explicit
coordinate-change between the natural polar coordinates on a disc and the intrinsic
coordinates of section 3. Once we possess an explicit coordinate change (and its
inverse), we can design a vector field in polar coordinates (an easy task to do in these
coordinates) and then take the push-forward of the vector field under the coordinate
change.

It will be convenient to keep track of which “wedge” of the annular region a point
(r, θ) is. To do so, we introduce a parity function

P (θ) := (−1){	3θ/π
+	6θ/π
},(4.1)

where �t� is the integer-valued floor function. Recall the notation for the intrinsic
coordinates for a point x on the graph Υ: x = |x|êι(x), where |x| ∈ [0, 1] is the
distance from x to the central vertex, and êι(x) is the unit tangent vector pointing
along the direction of the ι(x)-edge. Here the index ι(x) is an integer (defined modulo
3) and will be undefined in the case when |x| = 0, i.e., x is at the central vertex.

Lemma 6. The following is a piecewise-linear homeomorphism from the punctured
unit disc in R2 to the subset D. Define F (r, θ) = (x, y), where

ι(x) =
⌊
− 3

2π (θ − π)
⌋

, |x| =

{
r P(θ) = +1,

r
∣∣cot 3

2θ
∣∣ P(θ) = −1,

ι(y) =
⌊
− 3

2π θ
⌋

, |y| =

{
r
∣∣tan 3

2θ
∣∣ P(θ) = +1,

r P(θ) = −1.

(4.2)

The inverse of this homeomorphism is given by F−1(x, y) = (r, θ), where

θ =




2
3 tan−1 |y|

|x| − 2π
3 (ι(y) + 1),

ι(y) = ι(x) + 1,
or |x| = 0,

− 2
3 tan−1 |y|

|x| − 2π
3 (ι(x) − 1),

ι(x) = ι(y) + 1,
or |y| = 0,

r =

{ |x| P(θ) = +1,
|y| P(θ) = −1.

(4.3)

Note that all θ values are defined modulo 2π, and all index values are integers defined
modulo 3.

Proof. Begin by working on the region D1,2 ⊂ D, where ι(x) = 1 and ι(y) = 2.
As noted earlier, this subspace is isometric to the positive unit square in R2 with the
origin removed. We need to map this to the subset {(r, θ) : r ∈ (0, 1], θ ∈ [0, π/3]}.
The simplest such homeomorphism is to first shrink along radial lines, leaving the
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angle invariant; hence

r =

{ |x| : |x| ≤ |y|,
|y| : |y| ≤ |x|.(4.4)

Next, we squeeze the quarter-circle into a sixth of a circle by multiplying the angle
by 2/3, leaving the radial coordinate invariant:

θ =
2

3
tan−1 |y|

|x| .(4.5)

This gives the basic form of F−1 as per (4.3). To extend this to the remainder of D, it
is necessary to carefully keep track of ι(x) and ι(y) and subtract the appropriate angle
from the computation of θ. Also, the condition of |x| ≤ |y|, etc., in (4.4) is incorrect on
other domains of D since the inequalities flip as one traverses from square to square:
the parity function P(θ) keeps track of which “wedge” one is working on.

To determine F from F−1 is a tedious but unenlightening calculation, made more
unpleasant by the various indices to be kept track of. Briefly, given r and θ on the first
sixth of the unit disc, one knows from (4.4) that either |x| = r or |y| = r, depending
on whether θ is above or below π/4. To solve for the other magnitude, one inverts
(4.5) to obtain |y| = r

∣∣tan 3
2θ
∣∣ or |x| = r

∣∣cot 3
2θ
∣∣, respectively. To generalize this to

the other Di,j domains of D, it is necessary to take absolute values and to use the
parity function P(θ) as before. Finally, the computation of the index is obtainable
from the combinatorics of the coordinate system as illustrated in Figure 3.2.

For the design of limit cycles, it is easier to work on the polar disc and write
out an explicit vector field X = (ṙ, θ̇) with a limit cycle. To transform this into
intrinsic coordinates, one takes the push-forward of X with respect to F , obtaining
the piecewise-smooth vector field



(
˙|x| = ṙ,
˙|y| = ṙ

∣∣tan( 3
2θ)
∣∣+ 3

2rθ̇ sec2( 3
2θ)

)
P(θ) = +1,(

˙|x| = ṙ
∣∣cot( 3

2θ)
∣∣+ 3

2rθ̇ csc2( 3
2θ),

˙|y| = ṙ

)
P(θ) = −1,

(4.6)

which simplifies to





˙|x| = ṙ,

˙|y| = ṙ
|y|
|x| + 3

2 θ̇
|x|

1 +
(

|y|
|x|
)2


 P(θ) = +1,




˙|x| = ṙ
|x|
|y| + 3

2 θ̇
|y|

1 +
(

|x|
|y|
)2 ,

˙|y| = ṙ


 P(θ) = −1.

(4.7)

We present a more explicit example. Given a simple closed curve γ in R2 which
has nonzero winding number with respect to the origin, γ may be parametrized as
{(r, θ) : r = f(θ)} for some periodic positive function f . To construct a vector field on
R2 whose limit sets consist of the origin as a source and γ as an attracting limit cycle,
it suffices to take the push-forward of the vector field ṙ = r(1 − r), θ̇ = ω under the
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planar homeomorphism φ : (r, θ) �→ (f(θ)r, θ), which rescales linearly in the angular
component. The calculations follow:

φ∗

(
ṙ

θ̇

)
= Dφ

(
ṙ

θ̇

)∣∣∣∣
r �→ r

f

=

[
f rf ′

0 1

](
r(1 − r)

ω

)∣∣∣∣
r �→ r

f

=


 r

(
1 − r − f ′ω

f

)
ω


 .

(4.8)

Hence, given f(θ), we may tune a vector field to trace out the desired limit cycle and
then use (4.2) and (4.3) to map it into intrinsic coordinates.

4.4. Optimal chords within a hybrid controller. To design optimal cycles
with winding number zero, then we turn to constructing customized portions of limit
cycles, or chords which can be pieced together via a state-actuated hybrid controller,
much as in section 2. In other words, instead of building a simple fixed vector field
with a limit cycle, we will use a set of vector fields which vary discretely in time and
which may be pieced together so as to tune a limit cycle to the desired specifications.
There is nothing in this construction which relies on the index-zero property, and thus
these chords can be used to generate all monotone limit cycles on C.

Let G denote a word representing a desired monotone limit cycle on the configu-
rations space C. Choose points {qi} on the boundary of D which correspond to the
docking zones for the cycle given by G. Choose arcs αi on D which connect qi to
qi+1 (using cyclic index notation). The arcs αi are assumed given in the intrinsic
coordinates on D, as would be the case if one were determining a length-minimizing
curve.

In the case where the limit cycle α := ∪iαi is an embedded curve of nonzero
index, the procedure of the previous subsection determines a vector field Xα on C
which realizes α as an attracting limit cycle with the appropriate dynamics on the
complementary region. Recall that one translates α to a curve on the disc model via
the homeomorphism of (4.3). Then, representing the limit cycle α as a function fα(θ),
one takes the vector field of (4.8) and, if desired, takes the image of this vector field
under (4.7).

If, however, this is not the case, consider the arc αj for a fixed j, and construct

an index ±1 cycle βj = ∪iβji which has docking zones {qi} such that βjj = αj . Then

the vector field Xj as constructed above has β as an attracting limit cycle. Denote
by Φj the Lyapunov function which measures proximity to β: Φj(p) :=

∥∥p− βj
∥∥

(with distance measured in say the product metric on C). Then consider the modified
Lyapunov function Ψj(p) := Φj(p) + ‖p− qj+1‖ , which measures the distance to the

endpoint of the arc βjj in addition to the proximity to βj .

Repeat this procedure for each j, yielding the vector fields {Xj} which attract,
respectively, to limit cycles βj . It follows that Xj prepares Xj+1 since the goal point
of Xj , qj+1 lies on the attracting set of Xj+1. The Lyapunov functions {Ψj} serve as
a set of funnels which channel the orbit into the sequence of arcs αj , forming α. One
scales the Ψj so that a Ψj < ε event triggers the switching in the hybrid controller
from Xj to Xj+1:

X :=

{
X1 : Φj > ε ∀ j,
Xj : Φj < ε and Ψj > ε.

(4.9)
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By construction, the hybrid controller (4.9) realizes a limit cycle within ε of α as
the attracting set.

5. Future directions. A point of primary concern is the adaptability of the
global topological approach to systems which increase in complexity, either through
more intricate graphs or through increased numbers of AGVs. The latter is of greater
difficulty than the former since the dimension of the resulting configuration space is
equal to the number of AGVs. Hence, no matter how simple the underlying graph
is, a system with ten independent AGVs will require a dynamical controller on a
(topologically complicated) ten-dimensional space—a formidable problem both from
the topological, dynamical, and computational viewpoints.

However, there are some approaches which may facilitate working with such
spaces. Consider the model space C with which this paper is concerned: although
a two-dimensional space C is homeomorphic to the product of a graph (a circle with
six radial edges attached) with the interval (0, 1]. In fact, if we consider the circulating
flow of (3.3)–(3.5), one can view this as a product field of a semiflow on the graph
(which “circulates”) with a vector field on the factor (0, 1] (which “pushes out” to the
boundary).

A similar approach is feasible for arbitrary graphs [9].
Theorem 4. Given any graph Γ (except the graph homeomorphic to a circle),

the configuration space of N distinct points on Γ can be deformation retracted to a
subcomplex whose dimension is bounded above by the number of vertices of Γ of valency
greater than two.7

This theorem implies the existence of low dimensional spines which carry all of
the topology of the configuration space. For example, the configuration space of N
points on the Y-graph can be continuously deformed to a one-dimensional graph,
regardless of the size of N . Since the full space can be deformation retracted onto
the spine, a vector field defined on the spine can be pulled back continuously to
the full configuration space, thus opening up the possibility of reducing the control
problem to that on a much “smaller” space. Additional results about the topology of
configuration spaces on graphs may yield computationally tractable means of dealing
with complex path planning: for example, having a presentation for the fundamental
group of a configuration space of a graph in terms of a suitably simple set of cycles
would be extremely well-suited to a hybrid control algorithm based on “localized”
vector fields supported on small portions of the full configuration space.

Results connected with computational issues for configuration spaces of graphs
are also being developed. Abrams has developed a “discretization” algorithm for
converting the configuration space of a graph into a cubical complex [1]. This is then
perfectly suited to the recent algorithms in computational homology [11] which prefer
cube complex structures and can quickly determine geodesic paths.

The optimization problem is another avenue for inquiry. The fact that a dynam-
ical approach allows for increased density of AGVs on a graph (as compared with
blocking-zone strategies) would indicate an increased efficiency with respect to, say,
elapsed time of flight. However, a more careful investigation of the tuning of optimal
cycles is warranted. A careful treatment of the geometry of configuration spaces of
graphs is essential to the optimization problem: it follows from the recent thesis of
Abrams [1] that these spaces always possess a remarkable geometric property (NPC
or nonpositively curved) which implies, among other things, that geodesics are unique

7Added in proof: A similar result has been shown in [16].
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within their homotopy class. Such properties, though rare in the world of topological
spaces, appear to be not at all uncommon among real-world robotic systems [2].

We believe that the benefits associated with using the full configuration space
to tune optimal dynamical cycles justifies a careful exploration of these challenging
spaces.

Appendix A. The topology and dynamics of graphs.
In this appendix, we provide a careful basis for the use of vector fields on config-

uration spaces of graphs. In the setting of manifolds, all of the constructions used in
this paper are entirely natural and well defined. However, on spaces like C, the most
fundamental of notions (like the existence and uniqueness theorems for ODEs) are
not in general valid.

We begin by defining vector fields on graphs. For present purposes, it is convenient
to work with an intrinsic formulation (i.e., directly in the graph rather than via an
embedding) of these objects. To this end, denote by v a vertex with K incident edges
{ei}K1 and by {Xi}K1 a collection of nonsingular vector fields locally defined on a
neighborhood of the endpoint of each ei (homeomorphic to [0, 1)).

Lemma 7. A set of nonsingular vector fields {Xi} on the local edge set of a graph
Γ generates a well-defined semiflow on Γ if the following hold:

1. Each edge field Xi generates a well-defined local semiflow on (0, 1).
2. The magnitude of the endpoint vectors ‖Xi(0)‖ (taken with respect to the

attaching homeomorphisms) are all identical.
3. Among the signs of the endpoint vectors Xi(0) (either positive if pointing into

[0, ε) or negative if pointing out) there is a single positive sign.
Proof. Since the vector field is well defined away from the vertex, it is only nec-

essary to have the magnitudes ‖Xi(0)‖ agree in order to have a well-defined function
‖X‖ on Γ. In order to make this a well-defined field of directions, we must also con-
sider in which direction the vector is pointing. Again, this is determined off of the
vertex by (1). Condition (3) means that at the vertex there is a unique direction along
which the vector field is pointing out: all other edges point in. Hence the direction
field, as well as the magnitude field, is well defined.

The semiflow property follows naturally from this. Assume that the Nth edge
of Γ has the positive sign. Then, given an initial point x ∈ Γ, if x ∈ eN , then the
orbit of x under the local field XN remains in eN and is well defined. If x ∈ ej for
some j �= N , then the union of the edges ej ∪ eN is a manifold homeomorphic to R on
which the vector fields Xj and XN combine to yield a well-defined vector field, since
the directions are “opposite.” As we are now on a manifold, the standard existence
theorem implies that x has a forward orbit (which passes through the vertex and
continues into eN ). Thus every point on Γ has a well-defined forward orbit.

In the case where the vector fields have singularities, it is a simpler matter. If the
singularities are not at the vertex, then there is no difference. If there is a singularity
at the vertex, then condition (3) in Lemma 7 is void—all such vector fields are well
defined.

In order to extend these results to the configuration space of this paper, consider
the space C = Υ × Υ − ∆, and let (x, y) ∈ C denote a point on the branch set of
C. Because of the structure of Υ and the fact that the diagonal points are deleted,
it follows that at most one AGV may occupy a nonmanifold point of Υ. Hence
a neighborhood of (x, y) in C has a natural product structure N ∼= Υ × R. Let
P : N → Υ denote projection onto the first factor.

Lemma 8. A nonsingular vector field X on the individual cells of C generates
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a well-defined semiflow if (1) the projection of the local vector fields onto the graph
factor, P∗(X|{x}×Υ), satisfies Lemma 7 for each point x in the branch set of C and

(2) the projections of the vector fields on the branch set to the R-factor are equal up
to the attaching maps.

Proof. Off of the branch set, the space is a manifold, and hence the vector field
gives a well defined flow. If p is a point on the branch line, condition (2) implies that
the vector field is well defined with respect to the attaching maps and the net effect
in the R-factor is a drift in this direction. In the graph factor, condition (1) and the
proof of Lemma 7 imply that there is a unique forward orbit through p.

Intuitively, this condition means that, as in the case of a graph, the vector field
must point “in” on all but one sheet of the configuration space in order to have well-
defined orbits. We may thus lift the criteria of Lemma 7 to the product configuration
space. All of the vector fields in this paper are so constructed.
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Abstract. This paper concerns the filtering problem for a class of stochastic nonlinear sys-
tems where the drift term may depend either on some external function (open-loop system) or on
the system output (closed-loop system), through a controller. Such systems are denoted feedback
systems. The following result is proven: for feedback systems, the optimal filter in the open-loop
case remains optimal when the feedback is closed. The proof is obtained by showing equivalence
of suitable expressions for the estimators of the open-loop and closed-loop systems, obtained using
the Kallianpur–Striebel formula [G. Kallianpur and C. Striebel, Ann. Math. Statist., 39 (1968), pp.
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1. Introduction. Consider the class of nonlinear stochastic systems described
by the equations

dXφ
t = f(t,Xφ

t , u(t, φ[0,t]))dt+ b(t,X
φ
t )dW

′
t ,

(1.1)
dY φt = h(t,Xφ

t )dt+B(t)dW
′′
t ,

where Xφ
t ∈ R

n is the system state, Y φt ∈ R
m is the observation process, and

u(t, φ[0,t]) ∈ R
p is the input function, generated by some driving function φ. f, h

are vector functions of suitable dimensions. W ′
t ∈ R

n and W ′′
t ∈ R

m are independent
Wiener processes. (Without loss of generality, we consider square diffusion matrices
b and B.)

If in system (1.1) the driving function φ is replaced by the system output Y , we
obtain the following system:

dXt = f(t,Xt, u(t, Y[0,t]))dt+ b(t,Xt)dW
′
t ,

(1.2)
dYt = h(t,Xt)dt+B(t)dW

′′
t .

So the term u(t, Y[0,t]) represents a causal map of the observation process into the
input, describing a behavior of some feedback control device (the controller). We will
refer to system (1.1) as the open-loop system, and to system (1.2) as the closed-loop
system.
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Fig. 1.1. The optimal filter for the open-loop system.

Let F : R
n �→ R

n′
be a function of the system state that defines a signal to be

estimated for the open- and closed-loop systems:

Sφt = F
(
Xφ
t

)
,(1.3)

St = F
(
Xt
)
.(1.4)

Assume for every fixed t there is a function Ψt(y[0,t];φ[0,t]), (yt, φ(t), t ≥ 0, are
continuous vector functions valued in R

p) such that

Ψt(Y
φ
[0,t];φ[0,t]) = E

(
Sφt /Y

φ
[0,t]

)
.(1.5)

This is the open-loop filter, i.e., the optimal filter for the open-loop system (1.1),
forced by the system output and by the forcing term φ. For every t, also assume that
there exists a function Φt(y[0,t]) such that

Φt(Y[0,t]) = E
(
St/Y[0,t]

)
, P -a.s.(1.6)

This is the closed-loop filter, i.e., the optimal filter for the closed-loop system (1.2)
that is forced by the system output only.

The following question arises:

Ψt(Y[0,t];Y[0,t])
?
= Φt(Y[0,t]), P -a.s.(1.7)

Stated in other words, if we apply the open-loop filter to the closed-loop system, then
does the estimate agree with the optimal state-estimate for the closed-loop system?

This problem is also depicted in Figures 1.1 and 1.2, where a switch can commute
from position 0 (open-loop system) to position 1 (closed-loop system). For each
position of the switch there is a different optimal filter. An affirmative answer to
question (1.7) means that the filter of Figure 1.1 remains optimal when the switch
commutes from position 0 to position 1.

The question if (1.7) holds or not is not only interesting by itself but is impor-
tant in many applications. For instance, in all cases in which a finite-dimensional
filter exists for the open-loop system (see [4]), identity (1.7) proves that the filter
remains optimal and finite-dimensional also when the feedback is closed. Another
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Fig. 1.2. The optimal filter for the closed-loop system.

interesting application is when Φt(Y[0,t]) is computed by the Monte Carlo method via

Ψt(Y
φ
[0,t];φ[0,t]).

Up to now, the correctness of (1.7) has been proved only for particular cases of the
problem, such as in the case of the linear-Gaussian system under nonlinear feedback
[6], [10], [11] of the type

dXt = (A(t, Y[0,t])Xt + u(t, Y[0,t]))dt+ F (t, Y[0,t])dW
′
t ,

dYt = C(t, Y[0,t])Xtdt+G(t, Y[0,t])dW
′′
t ,

which is important from an application point of view.
In this paper, we give an affirmative answer to question (1.7) for the nonlinear

models (1.1), (1.2), under some not very restrictive assumptions.
The paper is organized as follows: section 2 reports the rigorous statement of the

problem, and section 3 presents the main theorem. Conclusions follow.

2. Problem statement. On a probability space {Ω,F , P}, consider two inde-
pendent Wiener processesW ′

t andW
′′
t , t ∈ [0,∞), of dimension n andm, respectively,

and a random vector X ∈ R
n. Let F t be the nondecreasing family of σ-algebras gen-

erated by {(X ,W ′
s,W

′′
s ), 0 ≤ s ≤ t}. Throughout the paper, C[0,∞)(R

q) shall denote
the space of R

q-valued continuous functions over the interval [0,∞). On this space,
let Bqt , t ≥ 0, be the σ-algebra generated by cylinder sets of the form{

ϕ ∈ C[0,∞)(R
q) : φ(tk) ∈ Bk; tk ≤ t; k=1,. . . ,k̄; k̄ ∈ N; Bk ∈ B(Rq)

}
,(2.1)

where B(Rq) is the Borel σ-algebra of R
q. Moreover, let Bq∞ = ∨t≥0Bqt . Let R+ be

the Borel σ-algebra on R+.
Given a process ξt, let σt(ξ) be the σ-algebra generated by {ξs, 0 ≤ s ≤ t}.
For a given φ ∈ C[0,∞)(R

m), consider the open-loop model:

dXφ
t = f(t,Xφ

t , u(t, φ))dt+ b(t,X
φ
t )dW

′
t , Xφ

0 = X ,
dY φt = h(t,Xφ

t )dt+B(t)dW
′′
t , Y φ0 = 0,(2.2)

Sφt = F
(
Xφ
t

)
.

Consider also the closed-loop model:
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dXt = f(t,Xt, u(t, Y ))dt+ b(t,Xt)dW
′
t , X0 = X ,

dYt = h(t,Xt)dt+B(t)dW
′′
t , Y0 = 0,(2.3)

St = F
(
Xt
)
.

In both models the state space is R
n, the observation space is R

m, and the signal
space is R

n′
.

For models (2.2) and (2.3), we make the following assumptions:
(i) The function u : R+×C[0,∞](R

m) �→ R
p is R+⊗Bm∞-measurable and {Bmt }t≥0-

adapted.
(ii) For any t ∈ R+, the functions f(t, ·, ·), h(t, ·), F (·) have bounded components.
(iii) There exist an increasing function L(t) and a measure µ(dt) on R+, with∫ t

0
µ(ds) <∞, t > 0, so that (here ‖ · ‖ is the Euclidean norm)

∥∥f(t, x′, u(t, y′)) − f(t, x′′, u(t, y′′))∥∥
≤ L(t)

(
‖x′ − x′′‖+

∫ t

0

‖y′s − y′′s ‖µ(ds)
)
,

(2.4) ∥∥h(t, x′) − h(t, x′′))∥∥ ≤ L(t)(‖x′ − x′′‖),∥∥b(t, x′) − b(t, x′′))∥∥ ≤ L(t)(‖x′ − x′′‖).
(iv) Matrices Dt := BB

∗(t) and dt := bb
∗(t, x) (∗ is the transposition symbol) are

uniformly nonsingular, respectively, in R+ and in R+ × R
n, with bounded

inverse.
(v) (Open-loop filter.) There exists a function Ψ : R+×C[0,∞](R

m)×C[0,∞](R
m) �→

R
n′
, R+ ⊗ Bm∞ ⊗ Bm∞-measurable and {Bmt ⊗ Bmt }t≥0-adapted, such that

Ψt(Y
φ;φ) = E

(
Sφt /σt(Y

φ)
)
, P -a.s., ∀t ∈ R+.(2.5)

(vi) (Closed-loop filter.) There exists a function Φ : R+ × C[0,∞](R
m) �→ R

n′
,

R+ ⊗ Bm∞-measurable and {Bmt }t≥0-adapted, such that

Φt(Y ) = E
(
St/σt(Y )

)
, P -a.s., ∀t ∈ R+.(2.6)

Note that thanks to the assumption of {Bt}t≥0-measurability of the function u,
the term u(t, Y ) performs a causal mapping of the observation process into the input.
Moreover, note that condition (iii) guarantees existence and uniqueness of strong
solutions of (2.2) and of (2.3), adapted to F t.

3. Main result. The main result of this paper is given by the following theorem,
which answers question (1.7).

Theorem 3.1. Consider the open-loop and the closed-loop nonlinear stochastic
models (2.2) and (2.3). Let the assumptions (i)–(vi) be satisfied. Then the functions
Ψt and Φt defined in (2.5) and (2.6) are such that

Ψt(Y ;Y ) = Φt(Y ), P -a.s., ∀ t ∈ R+.(3.1)

Before proving this theorem, we have to state some preliminary results. Through-
out the paper we will use the following notation:

∥∥h(t, x)∥∥2

D−1
t

= h∗(t, x) (BB∗)−1
(t)h(t, x).(3.2)
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Moreover, for a given process ξ taking values on C[0,∞)(R
q), we shall denote by µtξ the

measure induced by the process on {C[0,∞)(R
q),Bqt }.

Let Ft : C[0,∞](R
n) �→ R

n′
be the bounded function defined by the equality

Ft(z) = F (z(t)), where F is the function defining the signals for systems (2.2), (2.3).
Lemma 3.2 (Kallianpur–Striebel formula for Ψt(Y

φ;φ)). For any t ≥ 0, the
open-loop filter can be written as

Ψt(Y
φ;φ) =

∫
C[0,∞)(Rn)

Ft(z)Λt(z, Y
φ)µtXφ(dz)∫

C[0,∞)(Rn)
Λt(z, Y φ)µtXφ(dz)

,(3.3)

where

Λt(X
φ, Y φ) = exp

(∫ t

0

h∗(s,Xφ
s )D

−1
s dY

φ
s −

1

2

∫ t

0

∥∥h(s,Xφ
s )
∥∥2

D−1
s
ds

)
.(3.4)

Proof. Consider the process

dζt = B(t)dW
′′
t , ζ0 = 0.(3.5)

By Theorem 7.20 of [5] and comments from subsection 7.6.4 after this theorem in [5],
for any t ≥ 0 the distributions of processes (Xφ

s , Y
φ
s )s≤t, (X

φ
s , ζs)s≤t are equivalent.

Moreover, we have

Λt(z, y) =
dµtXφ,Y φ

dµt
Xφ,ζ

(z, y),

(3.6)

(z, y) ∈ C[0,∞)(R
n)× C[0,∞)(R

m).

From this, the following equation is obtained:∫
C[0,∞)(Rn)

Λt(z, y)µ
t
Xφ(dz) =

dµtY φ

dµtζ
(y), y ∈ C[0,∞)(R

m).(3.7)

From Theorem 7.23 in [5] and its multidimensional analogue Lemma 2.3 in [12], it is

Ψt(Y
φ;φ) =

∫
C[0,∞)(Rn)

Ft(z)ρt(z, Y
φ)µtXφ(dz),(3.8)

with

ρt(z, y) =
dµtXφ,Y φ

dµt
Xφ,ζ

(z, y)

/
dµtY φ

dµtζ
(y).(3.9)

From the expressions of the Radon–Nikodym derivatives, it follows that

ρt(z, y) =
Λt(z, y)∫

C[0,∞)(Rn)
Λt(z, y)µtXφ(dz)

,

(3.10)

(z, y) ∈ C[0,∞)(R
n)× C[0,∞)(R

m),

and from this (3.3) follows.
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From assumptions (i)–(iii), there exists a Q : R+×R
n×C[0,∞)(R

n)×C[0,∞)(R
m) �→

R
n, measurable and {B(Rn) ⊗ Bnt ⊗ Bmt }-adapted, such that the closed-loop state

process can be written as

Xt = Qt(X ,W ′, Y ).(3.11)

Q(X ,W ′, Y ) will denote the process {Qs(X ,W ′, Y ), s ∈ R+}.
Lemma 3.3 (Kallianpur–Striebel formula for Φt(Y )). For any t ≥ 0, the closed-

loop filter can be written as

Φt(Y ) =

∫
Rn×C[0,t](Rn)

F
(
Q(x,w, Y )

)
At(x,w, Y )µX (dx)µtW ′(dw)∫

Rn×C[0,t](Rn)
At(x,w, Y )µX (dx)µtW ′(dw)

,(3.12)

where

At(x,w, Y ) = exp

{∫ t

0

h∗
(
s,Qs(x,w, Y )

)
D−1
s dYs

(3.13)

− 1

2

∫ t

0

∥∥h(s,Qs(x,w, Y ))∥∥2

D−1
s
ds

}
.

Proof. As in the proof of Lemma 3.2, apply Theorem 7.20 of [5] to the processes(X ,W ′, Y
)
and

(X ,W ′, ζ
)
: for all t ≥ 0 the distributions µtX ,W ′,Y and µtX ,W ′,ζ are

equivalent, and the Radon–Nikodym derivative is

dµtX ,W ′,Y

dµtX ,W ′,ζ
(x,w, y) = At(x,w, y),

(3.14)

(x,w, y) ∈ R
n × C[0,∞)(R

n)× C[0,∞)(R
m),

where At is defined in (3.13). The following equation can be verified:∫
C[0,∞)(Rn)

At(x,w, y)µX (dx)µtW ′(dw) =
dµtY
dµtζ

(y), y ∈ C[0,∞)(R
m).(3.15)

Again, using Theorem 7.23 in [5] and its multidimensional analogue Lemma 2.3 in
[12], we have

Φt(Y ) =

∫
Rn×C[0,∞)(Rn)

F
(
Qs(x,w, Y )

)
γs(x,w, Y )µX (dx)µtW ′(dw),(3.16)

with

γt(x,w, y) =
dµtX ,W ′,Y

dµtX ,,W ′,ζ
(x,w, y)

/
dµtY
dµtζ

(y).(3.17)

From these one has

γt(x,w, y) =
At(x,w, y)∫

Rn×C[0,∞)(Rn)
At(x,w, y)µX (dx)µtW ′(dw)

,

(3.18)

(x,w, y) ∈ R
n × C[0,∞)(R

n)× C[0,∞)(R
m).
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Equation (3.12) follows.
Let us define the process Γ as follows:

Γt(X,Y ) = exp

{∫ t

0

h∗(s,Xs)D−1
s dYs −

1

2

∫ t

0

∥∥h(s,Xs)∥∥2

D−1
s
ds

}
.(3.19)

Note that from (3.11) and (3.13) we have

Γt
(
Q(X ,W ′, Y ), Y

)
= At(X ,W ′, Y ).(3.20)

In the following, we have to rewrite the expressions of the open- and closed-loop
filters, given by (3.3) and (3.12), respectively, in a more convenient form related to

the underlying probability space. For this purpose, we introduce a copy (Ω̃, F̃ , P̃ ) of
the original probability space so that all of the processes defined on it are independent
copies of the original ones. We also introduce random variables and processes on the
product probability space

(
Ω× Ω̃,F ⊗ F̃ , P × P̃ ).

Let Z(ω, ω̃) be a random variable defined on the product space. Let us define the

operator Ẽ as follows:

Ẽ(Z)(ω) =

∫
Ω̃

Z(ω, ω̃)P (dω̃).(3.21)

For a given process ξ defined on the original space, we shall denote by ξ̃ a process
defined on the product space as ξ̃(ω, ω̃) = ξ(ω̃). Whenever it does not cause confusion,
we shall use the same symbol ξ to denote both the original process and its extension
to the product space: ξ(ω, ω̃) = ξ(ω).

On the product space it is possible to define the process X̃Y as follows:

X̃Y
t = Qt(X̃ , W̃ ′, Y ).(3.22)

With these positions, recalling also the definition of Γ given in (3.19), we can rewrite
expressions (3.3) and (3.12) as follows:

Ψt(Y
φ;φ) =

Ẽ
{
Ft(X̃

φ)Λt(X̃
φ, Y φ)

}
Ẽ
{
Λt(X̃φ, Y φ)

} , P -a.s.,(3.23)

Φt(Y ) =
Ẽ
{
Ft(X̃

Y )Γt(X̃
Y , Y )

}
Ẽ
{
Γt(X̃Y , Y )

} , P -a.s.(3.24)

Now we are in a position to give the proof of Theorem 3.1.
Proof of Theorem 3.1. From expressions (3.23) and (3.24), Theorem 3.1 is proved

as soon as it is shown that

Λt(X̃
φ, Y φ)

∣∣
φ=Y

= Γt(X̃
Y , Y ), P × P̃ -a.s.(3.25)

From definitions (3.4) and (3.19) we have

Λt(X̃
φ, Y φ) = exp

(∫ t

0

h∗(s, X̃φ
s )D

−1
s dY

φ
s −

1

2

∫ t

0

∥∥h(s, X̃φ
s )
∥∥2

D−1
s
ds

)
,(3.26)
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Γt(X̃
Y , Y ) = exp

(∫ t

0

h∗(s, X̃Y
s )D

−1
s dYs −

1

2

∫ t

0

∥∥h(s, X̃Y
s )
)∥∥2

D−1
s
ds

)
.(3.27)

Since the integrals in (3.26) are σt(X̃
φ, Y φ)-adapted processes, there exist func-

tions H and L : C[0,∞)(R
n)× C[0,∞)(R

m) �→ C[0,∞)(R) that are Bnt ⊗Bmt -adapted and
that are such that their values at time t are

Ht(X̃
φ, Y φ) =

∫ t

0

h∗(s, X̃φ
s )D

−1
s dY

φ
s , P × P̃ -a.s.,

(3.28)

Lt(X̃
φ, Y φ) =

∫ t

0

∥∥h(s, X̃φ
s )
∥∥2

D−1
s
ds, P × P̃ -a.s.

Similarly, the integrals in (3.27) can be written as

H ′
t(X̃

Y , Y ) =

∫ t

0

h∗(s, X̃Y
s )D

−1
s dYs, P × P̃ -a.s.,

(3.29)

L′
t(X̃

Y , Y ) =

∫ t

0

∥∥h(s, X̃Y
s )
)∥∥2

D−1
s
ds, P × P̃ -a.s.,

where H ′ and L′ are functions with the same properties of H and L. We can use
Lemma 4.10 of [5] to prove that1

Ht(X̃
Y , Y ) = H ′

t(X̃
Y , Y ),

Lt(X̃
Y , Y ) = L′

t(X̃
Y , Y ),

P × P̃ -a.s.,(3.30)

by showing that the measures µt
X̃φ,Y φ

and µt
X̃Y ,Y

are equivalent.

As a matter of fact, Theorem 7.19 of [5] guarantees the equivalence of the measures

induced by the processes (X̃φ, Xφ, Y φ) and (X̃Y , X, Y ), which are defined on
(
Ω ×

Ω̃,F ⊗ F̃ , P × P̃ ) as follows:
dX̃φ

t = f(t, X̃φ
t , u(t, φ))dt+ b(t, X̃

φ
t )dW̃

′
t , X̃φ

0 = X̃ ,
dXφ

t = f(t,Xφ
t , u(t, φ))dt+ b(t,X

φ
t )dW

′
t , Xφ

0 = X ,(3.31)

dY φt = h(t,Xφ
t )dt+B(t)dW

′′
t , Y φ0 = 0,

dX̃Y
t = f(t, X̃Y

t , u(t, Y ))dt+ b(t, X̃
Y
t )dW̃

′
t , X̃Y

0 = X̃ ,
dXt = f(t,Xt, u(t, Y ))dt+ b(t,Xt)dW

′
t , X0 = X ,(3.32)

dYt = h(t,Xt)dt+B(t)dW
′′
t , Y0 = 0.

Since µt
X̃φ,Y φ

and µt
X̃Y ,Y

are marginal distributions of µt
X̃φ,Xφ,Y φ

and µt
X̃Y ,X,Y

, re-

spectively, their equivalence follows as well.

4. Conclusion. The contribution of this paper is Theorem 3.1, which represents
a general property of stochastic systems that can be informally expressed in these
words: whenever the optimal filter is available for a given open-loop system, the same
filter will work optimally on the closed-loop system. One important implication of
Theorem 3.1 is that any system admitting a finite-dimensional filter when in open-loop
also admits a finite-dimensional filter when in closed-loop.

1It may seem that an alternative way of proving (3.30) and, by consequence, (3.25) could be
provided by the Karandikar method [9], [3] dealing with the “pathwise definition” of the Itô integral.
Our proof of (3.30) permits the traditional definition of the Itô integral and heavily uses only the
equivalence of probability measures.
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Abstract. The asymptotic behavior of receding horizon optimal control problems with terminal
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1. Introduction. This research is devoted to the analysis of certain aspects of a
receding horizon formulation to optimal control problems. To motivate the approach
we consider

inf

∫ T∞

0

f0(x(t), u(t)) dt(1.1)

subject to {
d
dtx(t) = f(x(t), u(t)) for t > 0,
x(0) = x0, u(t) ∈ U.

(1.2)

We refer to x(·) and u(·) as state and control variables and assume that x(t) ∈ Rn and
U ⊂ Rm. Under appropriate conditions, (1.1)–(1.2) admit a solution which satisfies
the minimum principle (e.g., [FR, IK]):


d
dtx(t) = Hp(x(t), u(t), p(t)), x(0) = x0,

d
dtp(t) = −Hx(x(t), u(t), p(t)), p(T∞) = 0,

u(t) = argminu∈U H(x(t), u, p(t)),

(1.3)

where H(x, u, p) = f0(x, u) + f(x, u) · p. The coupled system of two-point boundary
value problems with initial condition for the primal equation and terminal condition
for the adjoint equation represents a significant numerical challenge in the case when
T∞ is large, and it has therefore been the focus of many research efforts. If (1.1)–
(1.2) arises as the discretization of an optimal control problem governed by partial
differential equations, e.g., from fluid mechanics, then the numerical realization of
(1.3) may become infeasible. Alternatively, if the optimal control task is for a smaller
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problem but requires a fast, possibly real-time, computation, then again it may be
inadequate to aim for a solution of (1.3).

Difficulties similar to those explained above occur as well for infinite horizon
problems, where T∞ = ∞. Moreover, when expressing the optimality condition by
means of the minimum principle (1.3), we focused on open loop solutions. Closed loop
solutions for (1.1)–(1.2) are given by the Hamilton–Jacobi–Bellman equation, which
is even less tractable numerically.

In view of the difficulties explained above, the question of obtaining suboptimal
controls arises. One of the possibilities is given by receding horizon formulations. To
briefly explain the concept, let {Ti}i∈I , with Ti−1 < Ti and I an index set, be sampling
points, and let T stand for the control horizon, satisfying maxi∈I |Ti − Ti−1| ≤ T 

T∞. Receding horizon suboptimal solutions to (1.1)–(1.2) are obtained by solving a
sequence of auxiliary optimal control problems on the subintervals [Ti, Ti + T ] and
utilizing the informations obtained on [Ti−1, Ti−1 + T ] to initialize the problem on
the new horizon [Ti, Ti + T ]. If T > Ti − Ti−1, then we have overlapping horizons.
If x(Ti) is observed, then the receding horizon control is a state feedback. In fact,
the receding horizon optimal control on [Ti, Ti+1] is determined as a function of the
state x(Ti). It is obtained by solving the two-point boundary value problem (1.3) on
the interval [0, T ], with x0 replaced by x(Ti) and an appropriately modified terminal
condition for p. If T > 0 is small, then the optimality system on the short time
interval is better conditioned and easier to solve numerically than (1.3). For surveys
of this general concept for continuous as well as for discrete systems, we refer, e.g., to
[ABQRW, GPM, SMR].

Receding horizon formulations have proved to be effective numerically both for
optimal control problems governed by ordinary (e.g., [CA, JYH, PND]) and for par-
tial differential equations, e.g., in the form of the instantaneous control technique
for problems in fluid mechanics [CHK, CTMC, HV] and heat conduction [TU]. For
discrete time systems we refer to [NP], for example. The theoretical justification of
receding horizon control techniques is commonly addressed by means of the stabiliza-
tion problem [ABQRW, GPM, SMR]. Assuming that x = 0 is a steady state for (1.2)
with u = 0 which can be stabilized by means of an optimal control formulation (1.1)
with T∞ =∞, the question of whether stabilization can also be achieved by means of
a receding horizon technique is addressed. To guarantee that this is the case, different
variations of receding horizon formulations were utilized. An important aspect of the
analysis in each of the approaches is the monotonicity of the cost functional with
respect to the time horizon. In earlier versions of the formulation of receding horizon
problems, the terminal condition x(Ti + T ) = 0 was added to the auxiliary problems;
see [KG, K, MM] and the references given there. Later this condition was relaxed to
requiring x(ti+T ) to be contained in an appropriate neighborhood of the origin; see,
e.g., [ABQRW, SMR].

In this paper, we address the stabilization problem by terminal penalty terms
rather than terminal constraints; i.e., we consider a sequence of auxiliary problems of
the type

min

∫ Ti+T

Ti

f0(x(t), u(t)) dt+G(x(Ti + T ))(1.4)
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subject to

d

dt
x(t) = f(x(t), u(t)), t ≥ Ti

x(Ti) = x̄(Ti),

where x̄ is the solution to the auxiliary problem on [Ti−1, Ti−1+T ]. The optimal pair
for (1.4) has the property that (x̄(t − Ti), ū(t − Ti)), t ∈ [Ti, Ti+1], satisfies the two-
point boundary value problem (1.3) on the interval [0, T ], with the terminal condition
p(T ) = Gx(x(T )) and the initial condition x(0) = x̄. The functional G : Rn → R will
be chosen as an appropriately defined control Liapunov function (see Definition 2.1).
It will be shown that the addition of the terminal costG to the cost functional provides
asymptotic stability, and hence the receding horizon strategy is a suboptimal synthesis
for the optimal control problem (1.1).
Control Liapunov functions received considerable attention as a means of ana-

lyzing the stability of the control system (1.1)–(1.2), regardless of issues related to
optimal control. We refer to the monograph [FK] and the references given there. The
use of control Liapunov functions within the context of receding horizon control is a
recent one. In [PND], control Liapunov functions were utilized as explicit constraints
in the auxiliary problems to guarantee that the final state x(Ti + T ) lies within the
level curve of the control Liapunov function that is determined by the trajectory con-
trolled by a minimum norm control. The analysis in [JYH] utilizes control Liapunov
functions as a terminal penalty as in (1.4). The stabilizing properties of the resulting
receding horizon optimal control strategy are analyzed under the assumption that f
possesses an exponentially stabilizable critical point.
Let us now outline the contributions of this paper. Throughout, we use only a

penalty term as opposed to terminal constraints to analyze and justify the receding
horizon technique. We assume that the sampling points are equidistant and that the
sampling rate coincides with the time horizon so that T = Ti − Ti−1 and Ti = i T ,
i = 0, 1, . . . . If G is a control Liapunov function (see Definition 2.1 and Theorem 2.2),
then we first establish the monotonicity of the value function VT (x0):

VT (x0) = inf

{∫ T

0

f0(x(t), u(t)) dt+G(x(T )) subject to (1.2)

}

with respect to T ; i.e., VT (x0) ≤ VT̂ (x0) ≤ G(x0) for 0 ≤ T̂ ≤ T and x0 ∈ Rn. Thus
we have (see Theorems 2.3–2.5)

G(xi+1) +

∫ Ti+1

Ti

f0(x̄(t), ū(t)) dt ≤ G(xi),

where xi = x̄(Ti), i = 1, 2, . . . . This implies that the values xi are confined to the level
set Sα = {x ∈ Rn : G(x) ≤ G(x0) = α}. Assume that f(0, 0) = 0, G(0) = 0, and that
f0(x, u) > 0 and G(x) > 0 except at (0, 0). Then, we have G(xi+1) < VT (xi) ≤ G(xi).
Assuming further that Sα is compact, we have the existence of ρ < 1 such that
G(xi+1) ≤ ρG(xi) for all x ∈ Sα. Hence G(xk) ≤ ρkG(x0) → 0 as k → ∞, which
implies asymptotic stability. Moreover, if f0(x, u) ≥ ωG(x) for some ω > 0, then
G(xi+1) ≤ e−ωTG(xi) (see Theorem 2.13). We prove that the quadratic functional
G(x) = α

2 |x|2, α > 0, can be chosen as a control Liapunov function if the control
system (1.2) is closed loop dissipative (Definition 2.6), and we argue that this is
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satisfied for certain classes of dissipative equations. In general, the quadratic terminal
penalty is not a Liapunov function. However, we have VT (x) ≤ ρT G(x) with ρT < 1
for T sufficiently large (see Theorem 2.7) provided that the value function V (x) of the
infinite time horizon problem satisfies V (x) ≤ β

2 |x|2 and the corresponding optimal
trajectory satisfies |x∗(t)| ≤M e−ω t|x0|, ω > 0.
In our discussion above, it is implicitly assumed that the infinite time horizon

optimal control problem admits solutions, as, for example, in the case of stabilizable
steady states. We refer to this situation as the regulator case, which is discussed in
sections 2.1 and 2.2, and distinguish it from the general case, which is analyzed in
section 2.3. The latter applies to disturbance attenuation problems and to problems
with cost functionals of tracking type. We introduce control λ-Liapunov functions
(see Definition 2.8) and extend the previously described analysis to the general case
(Theorems 2.10–2.12). Here the positive constant λ represents the attenuation or

tracking rate given by limT→∞ 1
T

∫ T
0

f0(x̄(t), ū(t)) dt.
While section 2 treats continuous time systems, section 3 is devoted to discrete

time problems. Our interest is the case when the discrete time problems arise from
a finite difference approximation of (1.1)–(1.2) as, for example, the explicit Euler
approximation xj = xj−1 + ∆t f(xj−1, uj) and general one-step methods. Concepts
as well as results paralleling those of the continuous time case are established. In
section 4 we investigate the asymptotic behavior of continuous time systems (1.2) if the
controls are determined by means of a discrete time synthesis, specifically, the one-step
receding horizon formulation. This analysis is of practical importance since numerical
methods for solutions of (1.3) commonly use a finite difference approximation of (1.1)–
(1.2), and thus the control synthesis ū(t) is computed in terms of discrete time control
systems.
The final section contains examples illustrating the applicability of the concepts

and results of this paper.

2. Receding horizon control problems: Continuous case. We consider the
control system in Rn {

d
dtx(t) = f(x(t), u(t)), t > 0,

x(0) = x0,
(2.1)

where f : Rn × U → Rn is C2, f(0, 0) = 0, and U is a closed subset of Rm. It
is assumed that for every x0 ∈ Rn and T > 0 there exists an admissible control
u ∈ Uad = {u ∈ L1(0, T ;Rm) : u(t) ∈ U a.e.} such that (2.1) admits a solution
x ∈W 1,1(0, T ;Rn). In our notation, we do not indicate the dependence of Uad on T .
If T =∞, then Uad = {u ∈ L1

loc(0,∞;Rn) : u(t) ∈ U a.e.}. Consider the infinite time
horizon optimal control problem

inf
u∈Uad

∫ ∞

0

f0(x(t), u(t)) dt(2.2)

subject to (2.1). Here f0 : Rn × U → R+ is assumed to be C2. We suppose further
that for each (x, p) ∈ Rn ×Rn the functional

u→ f0(x, u) + p · f(x, u)
admits a unique minimizer over U denoted by Ψ(x, p) and that Ψ is continuous. A
sufficient condition for the continuity of Ψ is that f(x, u) is linear in u and f0(x, u)
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is strictly convex in u. Together with (2.2), we consider the finite horizon optimal
control problems on [0, T ], T > 0:

inf
u∈Uad

∫ T

0

f0(x(t), u(t)) dt+G(x(T ))

subject to (2.1). Here G : Rn → R+ is a continuous function.
We shall discuss and analyze the receding horizon control strategy: it consists in

successively solving the finite horizon optimal control problems on [(k − 1)T, kT ]:

min
u∈Uad

∫ kT

(k−1)T

f0(x(t), u(t)) dt+G(x(kT ))(2.3)

subject to

d

dt
x(t) = f(x(t), u(t)), x((k − 1)T ) = xk−1,(2.4)

where (x̄k, ūk) is an optimal pair for the kth horizon [(k − 1)T, kT ] and xk = x̄k(kT )
for k = 1, 2, . . . .

2.1. Regulator case.
Definition 2.1. A nonnegative continuous function G with G(0) = 0 is a control

Liapunov function for (2.1)–(2.2) if for all x0 ∈ Rn and T > 0 there exists a control
u = u(·;x0, T ) ∈ Uad such that∫ T

0

f0(x(t), u(t)) dt+G(x(T )) ≤ G(x0),(2.5)

where x(t) is a solution to (2.1).
Our definition of a control Liapunov function is adapted to (1.1)–(1.2), and it

therefore involves f0 as well as f , as opposed to the one for control systems (1.2), which
only involves f [S]. The following relationship between control Liapunov functions
and a certain differential inequality will be useful for providing concrete examples for
control Liapunov functions.

Theorem 2.2. Assume that G is C1 with G(0) = 0 and {x ∈ Rn : G(x) ≤ α} is
bounded for every α ≥ 0.
(a) If there exists a locally Lipschitz continuous function u = Φ(x) ∈ U such that

f(x, u) ·Gx(x) + f0(x, u) ≤ 0(2.6)

for all x ∈ Rn, then G is a control Liapunov function for (2.1)–(2.2).
(b) If U is compact and if for all x0 ∈ Rn and δ > 0 there exists τ > 0 (which

may depend on x0 and δ > 0) such that

|x(t)− x0| ≤ δ for all t ∈ [0, τ ] and u ∈ U ,(2.7)

where u ∈ U = {u ∈ Uad :
∫ τ
0
f0(x(t), u(t)) dt ≤ G(x0)}, then (2.5) implies that for

each x ∈ Rn there exists u ∈ U such that (2.6) holds.
Proof. (a) Choose x ∈ Rn, and let α = 2G(x). By assumption, the set S =

{y : G(y) ≤ α} is compact, and, therefore, Φ is uniformly Lipschitz continuous on S.
Hence there exists τ = τ(α) such that the closed loop system

d

dt
x(t) = f(x(t),Φ(x(t))), x(0) = x0,(2.8)
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admits a unique solution on [0, τ ]. Thus

d

dt
G(x(t)) = f(x(t),Φ(x(t))) ·Gx(x(t)) ≤ −f0(x(t), u(t))

on [0, τ ]. Integrating with respect to t, we have

G(x(τ)) +

∫ τ

0

f0(x(t), u(t)) dt ≤ G(x0),

and thus G(x(τ)) ≤ G(x0) and x(τ) ∈ S. By the continuation method, there exists a
unique global solution to (2.8), and (2.5) holds.
(b) If the conclusion was false, then, by compactness of U and continuity of f, f0,

and Gx, there exist x0 ∈ Rn and δ > 0 such that, for |x− x0| ≤ δ,

f(x, u) ·Gx(x) + f0(x, u) ≥ δ(2.9)

for all u ∈ U . Let x(0) = x0, choose τ > 0 such that (2.7) holds, and let u denote any
control satisfying (2.5). Then, in particular, u ∈ U , and consequently |x(t)− x0| ≤ δ
by (2.7). Thus (2.9) implies

G(x(τ)) +

∫ τ

0

f0(x(t), u(t))dt ≥ G(x0) + δ τ,

which contradicts (2.5).
Remark 2.1. Consider the optimal control problem{

inf
∫∞
0
(!(x(t)) + 1

2 |u(t)|2)dt,
ẋ(t) = a(x(t)) +B(x(t))u(t), x(0) = x0,

(2.10)

with u(t) ∈ Rm, x(t) ∈ Rn, and !(0) = 0. The Hamilton–Jacobi–Bellman equation
associated to (2.10) is given by

a(x) · Vx(x)− 1
2
|bT (x)Vx(x)|2 + !(x) = 0,(2.11)

with V (0) = 0. Assuming that (2.11) admits a solution in C1, the feedback solution to
(2.10) is given by u(x) = −BT (x)Vx(x). In particular, (2.6) holds as an equality if G is
chosen as the minimal value function V associated to (2.10) and Φ(x) = −BT (x)Vx(x).
In [Lu], the existence of a C1-solution to (2.11) is proved in a neighborhood N of
an equilibrium point (x0, 0) of (2.10), assuming that the linearized control system
of (2.10) at (x0, 0) is stabilizable and observable. In this case, N is an invariant
neighborhood of the closed loop system. In general, a global C1-solution may not
exit. However, consider the special case of system (2.10) with a(x) = Ax−BBtUx(x),
B(x) = B, where U is a convex C1-function satisfying Ux(0) = 0. SettingW = V +U ,
we can write the Hamilton–Jacobi–Bellman equation (2.11) as

Ax ·Wx(x)− 1
2
|bTWx(x)|2 + !(x)−Ax · Ux + 1

2
|bTUx|2 = 0.

Thus if (A, b) is controllable and the function x → !(x) − Ax · Ux + 1
2 |bTUx|2 with

!(0) = 0 is convex, then it can be proved [FS] that W is convex and C1, and thus
V =W − U is C1.



RECEDING HORIZON OPTIMAL CONTROL 1591

For the following discussion, we introduce the value function VT (x0) of the finite
horizon optimal control problem

VT (x0) = inf
u∈Uad

∫ T

0

(f0(x(t), u(t)) dt+G(x(T ))

subject to (2.1) and the value function V (x0) of the infinite horizon optimal control
problem

V (x0) = inf
u∈Uad

∫ ∞

0

f0(x(t), u(t)) dt

subject to (2.1).
Theorem 2.3. Assume that G is a control Liapunov function. Then V (x0) ≤

VT (x0) ≤ G(x0) for every T ≥ 0 and x0 ∈ Rn.
Proof. The assertion VT (x0) ≤ G(x0) follows directly from Definition 2.1. By

repeated application of (2.5) for some T > 0 we construct a control u ∈ L1
loc(0,∞;Rn)

with u(t) ∈ U for a.e. t ∈ [0,∞) and an associated trajectory x ∈W 1,1
loc (0,∞;Rn) such

that for k ≥ 1

G(x(kT )) +

∫ kT

(k−1)T

f0(x(t), u(t)) dt ≤ G((x(k − 1)T )).

Summation of these inequalities implies for every k ≥ 1

G(x(kT )) +

∫ kT

0

f0(x(t), u(t)) dt ≤ G(x0).

Thus, by the Lebesgue–Fatou lemma,

lim
k→∞

∫ kT

0

f0(x(t), u(t)) dt =

∫ ∞

0

f0(x(t), u(t)) dt ≤ G(x0),

and hence V (x0) is finite and V (x0) ≤ G(x0). Next we note that∫ T

0

f0(x(t), u(t)) dt+G(x(T ))

=

∫ T

0

f0(x(t), u(t)) dt+ V (x(T )) +G(x(T ))− V (x(T ))

(2.12)

and recall the optimality principle

V (x0) = inf
u∈Uad

{∫ T

0

f0(x(t), u(t)) dt+ V (x(T ))

}
.(2.13)

Since G(x(T )) ≥ V (x(T )), we have V (x0) ≤ VT (x0) by (2.12)–(2.13).
Theorem 2.4 (monotonicity). Assume that G is a control Liapunov function

for (2.1)–(2.2). If VT (x0) is the value function of the finite horizon optimal control
problem, then VT̂ (x0) ≥ VT (x0) for 0 ≤ T̂ ≤ T .

Proof. For every ε > 0 there exists a pair (x, u) such that (2.1) is satisfied,
u ∈ Uad, and

VT̂ (x0) + ε ≥
∫ T̂

0

f0(x(t), u(t)) dt+G(x(T̂ )).
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From (2.5) it follows that there exists u(t+ T̂ ) = u(t;x(T̂ ), T − T̂ ) for t ∈ [0, T − T̂ ]
such that ∫ T

T̂

f0(x(t), u(t)) dt+G(x(T )) ≤ G(x(T̂ )).

Concatenation of the solutions on [0, T̂ ] and [T̂ , T ] implies that

∫ T̂

0

f0(x(t), u(t)) dt+G(x(T̂ )) ≥
∫ T

0

f0(x(t), u(t)) dt+G(x(T )) ≥ VT (x0),

and hence VT̂ (x0) + ε ≥ VT (x0). Since ε > 0 is arbitrary, VT̂ (x0) ≥ VT (x0) for

0 ≤ T̂ ≤ T .
A result related to Theorem 2.4 is contained in [JYH].
Remark 2.2. Theorem 2.4 asserts that a sufficient condition for monotonic decay

of T → VT (x) is the control Liapunov function property of G. As will be illustrated
in section 2.2, this property requires, in some sense, that G be sufficiently large. Note
also that αV , with V the value function of the infinite horizon problem, is a control
Liapunov function if α ≥ 1. On the other hand, if α < 1, then αV will not be
a control Liapunov function in general, as can already be seen for linear-quadratic
optimal control problems in dimension one.
For this purpose, consider


min 1

2

∫∞
0

q x2(t) dt+
∫∞
0

u2(t) dt

subject to

ẋ(t) = ax(t) + u(t), x(0) = x0,

(2.14)

where q ≥ 0. The associated Riccati equation is given by

2ap∞ − p2
∞ + q = 0,(2.15)

with solutions p±∞ = a ±
√

a2 + q. The optimal control in feedback form is given

by u∗(t) = −p+
∞x∗(t), where p+

∞ = a +
√

a2 + q, and the optimal value function is
V (x) = 1

2p
+
∞x2. Consider also the finite horizon problems



min 1

2

∫ T
0

q x2(t) dt+ 1
2

∫ T
0

u2(t) dt+ 1
2gx

2(T )

subject to

ẋ(t) = ax(t) + u(t), x(0) = x0.

(2.16)

The associated Liapunov differential equation is given by

d

dt
p(t) + 2ap(t)− p2(t) + q = 0, p(T ) = g.(2.17)

If pT is a nonnegative solution to (2.17), then u∗(t) = −pT (t)x∗(t), t ∈ [0, T ], defines
a feedback solution to (2.16) and the optimal value is given by VT (x) =

1
2pT (0)x

2.
Note that the two solutions to the algebraic equation (2.15) are steady states for
(2.17) with p+

∞ unstable and p−∞ stable. All trajectories of (2.17) are monotone and
nonintersecting. In particular, if g ≥ p+

∞, then p+
∞ ≤ pT (0) < pT̂ (0) if 0 ≤ T̂ < T . If,

on the other hand, g ∈ (−p−∞, p+
∞), then pT̂ (0) < pT (0) for 0 ≤ T̂ < T .
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The following main result for receding horizon problems can be obtained from the
definition of a control Liapunov function and Theorems 2.3–2.4.

Theorem 2.5. Assume that G is a control Liapunov function and that (x̄, ū) is
a solution to the receding horizon problem (2.3)–(2.4) on [0,∞). Then we have

G(xk) +

∫ Tk

Tk−1

f0(x̄(t), ū(t)) dt ≤ G(xk−1)

and VT (x̄(t)) ≤ VT (xk−1) for t ∈ [Tk−1, Tk] and k = 1, 2, . . . . Thus

G(xk) +

∫ kT

0

f0(x̄(t), ū(t)) dt ≤ G(x0)

for all k ≥ 1. Moreover, if we assume that VT (x) ≤ ρT G(x) for some ρT ≤ 1 and
T ≥ 0 independently of x ∈ Rn, then G(xk) ≤ ρkT G(x0) for all k ≥ 1.

Proof. The second assertion follows from the optimality principle∫ t

Tk−1

f0(t, x̄(t), ū(t)) dt+ VTk−t(x(t)) = VT (xk−1), t ∈ [Tk−1, Tk],

and the monotonicity of VT . If VT (x) ≤ ρT G(x), then G(x1) ≤ VT (x0) ≤ ρT G(x0)
since f0 ≥ 0. The final claim then follows by iteration.
Note that if, in addition to the assumptions of Theorem 2.5, the level-set Sx0 =

{x : g(x) ≤ G(x0)} is bounded, G(x) �= 0 for x �= 0, and ρT < 1, then limk→∞ xk = 0.
From Theorem 2.5 we conclude that the receding horizon trajectory x̄(t) is con-

fined in the set {x ∈ Rn : VT (x) ≤ V (x0)}. Concerning the assumption that ρT ≤ 1
in Theorem 2.5, note that ρT is nonincreasing with respect to T by Theorem 2.4.
We refer to the following remark and section 2.2 for a discussion of cases which allow
ρT < 1.

Remark 2.3. Let us briefly comment on a localization of the concept of a control
Liapunov function. For α > 0, we define the level-set Sα = {x : G(x) ≤ α}. A
nonnegative function G with G(0) = 0 is called a local (by α)-control Liapunov
function for (2.1)–(2.2) if for all x ∈ Sα and T > 0 there exists a control u(·;x, T ) ∈
Uad such that (2.5) holds. Theorems 2.3–2.5 can be appropriately modified to hold
for local-control Liapunov functions if x, respectively, x0 are chosen in Sα. If S is a
compact subset of Sα not containing 0, and f

0(x, u) > 0 and G(x) > 0 for x �= 0, then
there exists ρT < 1 such that G(x(T )) ≤ ρT G(x0) for every x0 ∈ S. In fact, if x0 �= 0,
we have f0(x̄(t), ū(t)) �= 0 for t in a subinterval of [0, T ], and hence G(x(T )) < G(x0).
Compactness of S implies the existence of ρT < 1 such that G(x(T )) ≤ ρT G(x0) for
all x0 ∈ S.

2.2. Quadratic terminal penalty. In this section, we discuss the case when
G(x) = α

2 |x|2, α > 0, serves as a control Liapunov function.
Definition 2.6. The control system (2.1)–(2.2) is called closed loop dissipative

if there exists a locally Lipschitzian feedback law u = −K(x) ∈ U such that

f(x,−K(x)) · (αx) + f0(x,−K(x)) ≤ 0
for some α > 0 and all x ∈ Rn.
If (2.1)–(2.2) is closed loop dissipative, then α

2 |x|2 is a control Liapunov function
for (2.1)–(2.2) by Theorem 2.2. In the case when (2.1)–(2.2) is not closed loop dissipa-
tive, we have the following result, which allows us to use α2 |x|2 as a control Liapunov
function.
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Theorem 2.7. Let G(x) = α
2 |x|2, and let V (x) and VT (x) be the infinite and the

finite horizon value functionals, respectively. We assume that for every x ∈ Rn there
exists an admissible control u∗(t) = u∗(t;x) such that

V (x∗(T )) +
∫ T

0

f0(x∗(t), u∗(t)) dt = V (x)

for all T ≥ 0 and that the corresponding trajectory x∗(t) satisfies |x∗(t)| ≤M e−ωt|x|,
with M ≥ 0, ω > 0, independently of t ≥ 0 and x ∈ Rn. Then

VT (x) ≤ V (x) +
M2α

2
e−2ωT |x|2.

Moreover, if V (x) ≤ β
2 |x|2, then

VT (x) ≤
(
β

2
+

M2α

2
e−2ωT

)
|x|2 ≤

(
β

α
+M2e−2ωT

)
G(x).

Proof. Note that

VT (x) ≤
∫ T

0

f0(x∗(t), u∗(t)) dt+ V (x∗(T )) +G(x∗(T ))− V (x∗(T )) ≤ V (x) +G(x∗(T )),

which implies the first assertion. The second assertion simply follows from the first
one.
Theorem 2.5 implies that for every α > β there exists T̄ > 0 such that for T ≥ T̄

we have VT (x) ≤ ρT G(x) with ρT < 1, and thus Theorem 2.5 applies for T ≥ T̄ .

2.3. General case. In this section, we discuss the case when the value func-
tional V (x) of the infinite horizon optimal control problem (2.1)–(2.2) does not exist
for every x ∈ X. This includes, for example, the disturbance attenuation problem:
consider the problem (2.1)–(2.2) with the linear control system f = Ax+Bu+ d and
quadratic performance f0 = |x|2 + |u|2, where a nonzero constant vector d denotes
the disturbance. In order to deal with this case, the following two approaches suggest
themselves. One of them is the introduction of a discounted cost functional

min
u∈Uad

∫ ∞

0

e−ρt f0(x(t), u(t)) dt, ρ > 0.

The other is the ergodic cost functional

min
u∈Uad

lim
T→∞

1

T

∫ T

0

f0(x(t), u(t)) dt.

We discuss the ergodic cost functional and return to the discounted cost functional
at the end of this subsection.

Definition 2.8. A nonnegative continuous function G is called a control λ-
Liapunov function for (2.1)–(2.2) if for every x0 ∈ Rn and T > 0 there exists a
control u = u(·;x, T ) ∈ Uad satisfying∫ T

0

f0(x(t), u(t)) dt+G(x(T )) ≤ G(x0) + λT,(2.18)
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where x(·) is a solution to (2.1).
We have the following relationship of control λ-Liapunov functions to a differential

inequality.
Theorem 2.9. Assume that G is a nonnegative C1-function and that {x ∈

Rn : G(x) ≤ α} is bounded for every α > 0.
(a) If there exists a locally Lipschitzian function u = Φ(x) ∈ U such that for all

x ∈ Rn

f(x, u) ·Gx(x) + f0(x, u) ≤ λ,(2.19)

then G is a control λ-Liapunov function for (2.1)–(2.2).
(b) If U is compact and for all x0 ∈ Rn and δ > 0 there exists a τ = τδ,x0 > 0

such that

|x(t)− x0| ≤ δ for all t ∈ [0, T ] and u ∈ U ,
where U = {u ∈ Uad :

∫ τ
0
f0(x(t), u(t)) dt ≤ G(x) + λT}, then (2.18) implies that for

each x ∈ Rn there exists u ∈ U such that (2.19) holds.
The proof is analogous to that for Theorem 2.2, and it is therefore omitted.
Theorem 2.10 (monotonicity). Assume that G is a control λ-Liapunov function

for (2.1)–(2.2). Then VT̂ (x0)− λT ≥ VT (x0)− λT̂ for 0 ≤ T̂ ≤ T .
The proof is analogous to that of Theorem 2.3.
Theorem 2.11. Assume that G is a control λ-Liapunov function and f0(x, u) ≥

ωG(x) for some ω > 0 and all x ∈ Rn and u ∈ U . Then if (u(t), x(t)) minimizes∫ T
0

f0(x(t), u(t)) dt+G(x(T )) over u ∈ Uad subject to (2.1), we have

G(x(T )) ≤ e−ωT (G(x0) + λT ) + λ

(
1

ω
− e−ωT

(
T +

1

ω

))
.

Proof. By the optimality principle,∫ τ

t

f0(x(s), u(s)) ds+ VT−τ (x(τ)) = VT−t(x(t))(2.20)

for every 0 ≤ t ≤ τ ≤ T . From (2.20) it follows that t → g(t) = VT−t(x(t)) is a
W 1,1-function. By Definition 2.8 and the lower bound on f0 it follows that

ω

∫ τ

t

VT−s(x(s)) ds+ VT−τ (x(τ)) ≤ VT−t(x(t)) + ωλ

∫ τ

t

(T − s) ds,

and, consequently,

ωg(t) +
d

dt
g(t) ≤ ωλ(T − t) for a.e. t ∈ [0, T ].

Multiplying by eωt and integrating on [0, T ] imply

eωT g(T )− g(0) ≤ λ

(
1

ω
eωT − T − 1

ω

)
.

We conclude that

G(x(T )) ≤ e−ωTVT (x0) + λ

(
1

ω
− e−ωT

(
T +

1

ω

))
,
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and the claim follows since VT (x0) ≤ G(x0) + λT .
Theorem 2.12 (stability). Assume that (x̄, ū) is a solution to the receding hori-

zon problem (2.3)–(2.4). If G is a control λ-Liapunov function, then

G(xk) +

∫ kT

0

f0(x̄(t), ū(t)) dt− λkT ≤ G(x0)(2.21)

for all k = 1, 2, . . . . Moreover, if the assumption of Theorem 2.11 holds, then

G(xk) ≤ e−kωTG(x0)

+

(
λTe−ωT + λ

(
1

ω
− e−ωT

(
T +

1

ω

)))
1− e−kωT

1− e−ωT
.

(2.22)

Note that Theorem 2.12 implies that

lim
τ→∞

1

τ

∫ τ

0

f0(x̄(t), ū(t)) dt ≤ λ

and that {G(xk)} is uniformly bounded in k.
Proof of Theorem 2.12. Inequality (2.21) follows by repeated application of Defi-

nition 2.8. An induction argument and Theorem 2.11 imply (2.22).
For the particular case when λ = 0, we obtain the following theorem as a corollary

to Theorems 2.11 and 2.12.
Theorem 2.13. Under the assumptions of Theorem 2.11 with λ = 0, we have

G(x(T )) ≤ e−ωTVT (x) ≤ e−ωTG(x0).

Moreover, if (x̄, ū) denotes a solution to the receding horizon problem (2.3)–(2.4), then

G(xk) ≤ e−kωTG(x0).

Remark 2.4. We discuss the particular case when the control λ-Liapunov function
can be taken as a quadratic penalty function G(x) = α

2 |x|2, α > 0.
Consider (2.1) with right-hand side

f(x, u) = f̃(x, u) + d,(2.23)

where d ∈ Rn. Assume that (2.1)–(2.2) with f replaced by f̃ is uniformly closed loop
dissipative; i.e., there exist α > 0, κ > 0, and a locally Lipschitz continuous feedback
law u = −K(x) ∈ U such that

f̃(x,−K(x)) · (αx) + f0(x,−K(x)) ≤ −κ|x|2

for all x ∈ Rn. Then

f(x,−K(x)) · (αx) + f0(x,−K(x)) ≤ −κ|x|2 + αdx ≤ α2

4κ
d2,

and hence G(x) = α
2 |x|2 is a control λ-Liapunov function with λ = α2

4κd
2 for (2.1),

(2.2) with f given by (2.23).
Right-hand sides of the type (2.23) occur in disturbance attenuation and in

tracking-type problems. As for the latter, assume that A is exponentially stable,
and consider for z ∈ Rn{

inf 1
2

∫ T
0
|y(t)− z|2dt+ γ

2

∫ T
0
|u(t)|2dt,

d
dty(t) = Ay(t) +Bu(t), y(0) = y0.
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Then, setting x = y − z, we find the equivalent problem{
inf 1

2

∫ T
0
|x(t)|2dt+ γ

2

∫ T
0
|u(t)|2dt,

d
dtx(t) = Ax(t) +Bu(t) +Az, x(0) = y0 + z,

where the right-hand side is of the form (2.23).
Remark 2.5. Let us briefly return to the discounted cost functional formulation.

In this case, a nonnegative functional G is called a d-control λ-Liapunov function
if there exists λ > 0 such that for every x ∈ Rn and T > 0 there exists a control
u = u(·;x, T ) ∈ Uad satisfying∫ T

0

e−λtf0(x(t), u(t)) dt+ e−λTG(x(T )) ≤ G(x0),(2.24)

where x(·) is a solution to (2.1). For d-control λ-Liapunov functionals, the analogues
of Theorems 2.2–2.4 can readily be derived. The receding horizon control strategy
based on the discounted cost functional requires us to successively solve

min
u∈Uad

∫ kT

(k−1)T

eλtf0(x(t), u(t)) dt+ e−λTG(x(kT ))(2.25)

subject to d
dtx(t) = f(x(t), u(t)), x((k − 1)T ) = xk−1, where (x̄k, ūk) is the opti-

mal pair for the kth horizon [(k − 1)T, kT ], and xk = x̄k(kT ). Assuming existence
of solutions (x̄k, ūk) to (2.25) it follows from (2.25) that

∫∞
0

e−λtf0(x̄(t), ū(t)) dt ≤
G(x0), provided that G is a d-control λ-Liapunov functional. Here (x̄, ū) arises from
concatenation of the solutions (x̄k, ūk) on [(k − 1)T, kT ]. Comparing the estimate∫∞
0

e−λtf0(x̄(t), ū(t)) dt ≤ G(x0) to the asymptotic properties that were obtained
in Theorem 2.12 for the ergodic formulation, the discounted cost formulation gives
weaker properties.

3. Receding horizon control problems: Discrete time. In this section, we
consider the discrete infinite time horizon problem

inf
uj∈U

∞∑
j=1

∆t f0(xj−1, uj)(3.1)

subject to

xj = xj−1 +∆t F (xj−1, uj), x0 given,(3.2)

with ∆t > 0. Here (3.2) represents a finite difference discretization to (2.1), where
the continuous function F : Rn × U → Rn may also depend on ∆t. For example, in
the case of the explicit Euler rule,

F (x, u) = f(x, u),

and in the case of the implicit midpoint rule,

F (x, u) = f(x̂, u),

where x̂ ∈ Rn satisfies

x̂− x =
∆t

2
f(x̂, u).



1598 KAZUFUMI ITO AND KARL KUNISCH

The minimal value functional associated to (3.1)–(3.2) will be denoted by V (x). To-
gether with (3.1)–(3.2) we consider the finite time problem

inf
uj∈U

N∑
j=1

∆t f0(xj−1, uj) +G(xN )(3.3)

subject to (3.2). Here N ∈ N, and G : Rn → R+ is a continuous function. The
value function associated to (3.3) is denoted by VN (x). The receding horizon control
approach to (3.1)–(3.2) consists in iteratively solving problem (3.3):

min
uj∈U

kN∑
j=(k−1)N+1

∆t f0(xj−1, uj) +G(xkN )(3.4)

subject to

xj = xj−1 +∆t F (xj−1, uj), x(k−1)N = x̄(k−1)N ,(3.5)

where (x̄(k−1)N+j , ū(k−1)N+j), 1 ≤ j ≤ N , is the sequence of optimal pairs for the kth
optimal control problem, where k ∈ N.

3.1. Regulator case.
Definition 3.1. A nonnegative continuous functional G with G(0) = 0 is called

a discrete control Liapunov functional if for all x0 ∈ Rn there exists u ∈ U such that

∆t f0(x0, u) +G(x0 +∆t F (x0, u)) ≤ G(x0).(3.6)

If G is a discrete control Liapunov functional, then for every x0 ∈ Rn and N ∈ N

there exists a sequence {uj}Nj=1 in U such that

N∑
j=1

∆t f0(xj−1, uj) +G(xN ) ≤ G(x0),(3.7)

where {xj}Nj=1 satisfies (3.2). In fact, (3.6) implies for each xj−1 the existence of
uj ∈ U , j = 1, . . . , N, such that

∆t f0(xj−1, uj) +G(xj−1 +∆t F (xj−1, uj)) ≤ G(xj−1).

Summation with respect to j and (3.2) imply (3.7).
The following result is the analogue to Theorem 2.2 for discrete control Liapunov

functions.
Theorem 3.2. Assume that G is a nonnegative C1-function with G(0) = 0.
(a) If G is a convex discrete control Liapunov function, then for each x ∈ Rn

there exists u ∈ U such that

F (x, u) ·Gx(x) + f0(x, u) ≤ 0.

(b) Assume that Gx and F are Lipschitz continuous, with F (0, 0) = 0, and that
there exists a Lipschitz continuous function u = φ(x) ∈ U , with φ(0) = 0, such that

F (x, φ(x)) ·Gx(x) + f0(x, φ(x)) ≤ −κ|x|2
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for some κ > 0 independent of x ∈ Rn. Then there exists ∆̄ > 0 such that G is a
discrete control Liapunov function for ∆t ≤ ∆̄.

Proof. (a) follows directly from (3.6) and the convexity of G. To verify (b), choose
x ∈ Rn and u = φ(x). Let Ki, i = 1, 2, 3, denote the Lipschitz constants of F, φ, and
Gx. By the Lagrange form of the mean value theorem we find

∆t f0c(x, u) +G(x+∆t F (x, u))−G(x)

= ∆t f0(x, u) + ∆tGx(x) · F (x, u)

+∆t

∫ 1

0

(Gx(x+ s∆t F (x, u))−Gx(x))F (x, u)ds,

and, therefore,

∆t f0(x, u) +G(x+∆t F (x, u))−G(x)

≤ −κ∆t|x|2 + (∆t)
2

2
K2

1K3(|x|2 + |φ(x)|2) ≤ ∆t
(
∆t

2
K2

1K3(1 +K2
2 )− κ

)
|x|2,

and the claim follows.
Theorem 3.3. Assume that G is a discrete control Liapunov function. Then

V (x0) ≤ VN (x0) ≤ VN̂ (x0) ≤ G(x0) for all x0 ∈ Rn and 0 ≤ N̂ ≤ N .
The proof is similar to that of Theorems 2.3 and 2.4, and it is therefore omit-

ted. For the discrete receding horizon problem, we find the following theorem by the
argument implying (3.7).

Theorem 3.4. Assume that G is a discrete Liapunov function and that
{(x̄j−1, ūj)}kNj=1 is a solution to the discrete receding horizon problem. Then we have

kN∑
j=1

∆t f0(x̄j−1, ūj) +G(x̄kN ) ≤ G(x0).

3.2. Quadratic terminal penalty. We discuss situations in which G(x) =
α
2 |x|2, α > 0, can serve as a discrete control Liapunov functional.

Definition 3.5. The discrete infinite time horizon problem (3.1)–(3.2) is closed
loop dissipative if there exist a Lipschitz continuous feedback law u = −K(x) ∈ U , for
x ∈ Rn, and κ > 0, α > 0 such that

F (x,−K(x)) · (αx) + f0(x,−K(x)) ≤ −κ|x|2

for all x ∈ Rn.
If (3.1)–(3.2) is closed loop dissipative, F is Lipschitz continuous, F (0, 0) = 0,

and K(0) = 0, then G(x) = α
2 |x|2 is a discrete Liapunov functional whenever ∆t is

sufficiently small. This follows immediately from Theorem 3.2 (b). In the case when
(3.1)–(3.2) is not closed loop dissipative, the following result gives sufficient conditions
which imply that α2 |x|2 is a discrete control Liapunov function.

Theorem 3.6. Let G(x) = α
2 |x|2, and assume that there exist M ≥ 1 and ρ > 0

such that for every x0 ∈ Rn there is an optimal control {u∗
j}∞j=1 with associated states

{x∗
j}∞j=1 satisfying |x∗

j | ≤M e−ρj |x0| for j = 1, 2, . . . . If, moreover, V (x) ≤ β
2 |x|2 for

some β > 0, then VN (x0) ≤ (β2 +M2e−2ρN )G(x0) for every x0 ∈ Rn and N ≥ 1.
Further, there exists N̄ > 0 such that for all N ≥ N̄

VN (x0) ≤ ρNG(x0)
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for some ρN < 1 independent of x ∈ Rn.
Proof. For every N we have

VN (x0) = ∆t

N∑
j=1

f0(x∗
j−1, u

∗
j ) +G(x∗

N )− V (x∗
N ) + V (x∗

N )

≤ V (x0) +G(x∗
N ) = V (x0) +

α

2
M2e−2ρN |x0|2 ≤

(
β

2α
+M2e−2ρN

)
G(x0).

The first assertion is a consequence of this estimate. The second one follows directly
from the first.

3.3. General case. Here we discuss the ergodic case for the discrete receding
horizon problem.

Definition 3.7. A nonnegative continuous function G is called a discrete control
λ-Liapunov functional for (3.1)–(3.2) if for every x ∈ Rn there exists u ∈ U satisfying

∆t f0(x, u) +G(x+∆t F (x, u)) ≤ G(x) + λ∆t.(3.8)

If G is a discrete control λ-Liapunov functional for (3.1)–(3.2), then for every
x ∈ Rn and N ∈ N there exists a sequence {uj}Nj=1 in U such that

N∑
j=1

∆t f0(xj−1, uj) +G(xN ) ≤ G(x0) + λN∆t,(3.9)

where {xj}Nj=1 satisfies (3.2). Moreover, we have

VN (x0)− λ N̂∆t ≤ VN̂ (x0)− λN∆t(3.10)

for 0 ≤ N̂ ≤ N . Under appropriate conditions, one also obtains the analogue of
Theorem 3.2 relating (3.8) to F (x, u) · Gx(x) + f0(x, u) ≤ λ. We shall not pursue
this aspect and shall rather turn to the asymptotic behavior of the discrete receding
horizon problem. We require the following result.

Theorem 3.8. Assume that G is a discrete control λ-Liapunov functional and
that f0(x, u) ≥ ωG(x) for some ω ∈ (0, 1] independently of x ∈ Rn and u ∈ U . Then
if {(xj−1, uj)}Nj=1 is a solution to (3.3), we have

G(xN ) ≤ e−ωN∆t(G(x0) + λN∆t) + λω∆t

[
1

ω
− e−ωN∆t

(
N∆t+

1

ω

)]
.

Proof. For every 0 < N1 ≤ N2 ≤ N we have

N2∑
J=N1

∆t f0(xj−1, uj) +

N∑
j=N2+1

∆t f0(xj−1, uj) +G(xN ) = VN (x0),

and hence by the optimality principle

N2∑
j=N1

∆t f0(xj−1, uj) + VN−N2(xN2) = VN−N1+1(xN1−1),
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and by assumption

ω

N2∑
j=N1

∆tG(xj−1) + VN−N2(xN2) ≤ VN−N1+1(xN1−1).

Using (3.9) with x = xj−1, we find

ω

N2∑
j=N1

∆t VN−j+1(xj−1) + VN−N2
(xN2
) ≤ VN−N1+1(xN1−1) + ωλ(∆t)2

N2∑
j=N1

(N − j + 1).

Setting rj = VN−j(xj) and N1 = N2 implies that

ω∆t rj−1 + rj − rj−1 ≤ ωλ(∆t)2(N − j + 1).

Multiplying with eωj∆t, summing with respect to j, and rearranging terms give

eω∆tNrN + (ω∆t− 1)eω∆tr0 + (ω∆t+ e−ω∆t − 1)
N∑
j=2

eωj∆trj−1

≤ ωλ(∆t)2
N∑
j=1

eωj∆t(N − j + 1),

and, consequently,

rN ≤ e−ω(N−1)∆t(1− ω∆t)r0 + ωλ(∆t)2e−ωN∆t
N∑
j=1

eωj∆t(N − j + 1)

≤ e−ωN∆tr0 + λeω∆t

[
1

ω
− e−ωN∆t

(
N∆t+

1

ω

)]
.

By the definition of rj and (3.9), the last inequality implies

G(xN ) ≤ e−ωN∆t(G(x0) + λN∆t) + λeω∆t

[
1

ω
− e−ωN∆t

(
N∆t+

1

ω

)]
.

Theorem 3.9. Let {x̄j−1, ūj}∞j=1 denote a solution to the discrete receding hori-
zon problem (3.4)–(3.5). Then, under the assumptions of Theorem 3.8, we have

G(xkN ) +

kN∑
j=1

∆t f0(xj−1, uj) ≤ G(x0) + λkN∆t(3.11)

and

G(xkN ) ≤ e−ωkN∆tG(x0) + µ
1− e−kωN∆t

1− e−ωN∆t
(3.12)

for all k = 1, 2, . . . , where µ = λN∆t e−ωN∆t + λ eωN∆t[ 1ω − e−ωN∆t(N∆t+ 1
ω )].

Theorem 3.9 implies that

lim
k→∞

1

kN

kN∑
j=1

f0(xj−1, uj) ≤ G(x) + λ

and that {G(xkN )}∞k=1 is bounded.
Proof of Theorem 3.9. Inequality (3.11) follows from (3.9). An induction argument

over k utilizing the estimate given in Theorem 3.8 implies (3.12).
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4. Approximation and stabilization by the discrete receding horizon
problem. In this section, we therefore analyze some aspects of controlling (2.1) by
means of the one-step discrete receding horizon problems

min
u∈U
{∆t f0(x0, u) +G(x0 +∆t F (x0, u))}.(4.1)

Here x1 = x0 + ∆t F (x0, u) is a one-step approximation to
d
dtx(t) = f(x(t), u(t)),

x(0) = x0, with step-size ∆t. In the notation of section 3, we have N = 1. One of the
motivations for considering this case is given by large scale optimal control problems;
see, e.g., [CHK, CTMC] and the references given there. Computing the solutions to
(2.3) or (3.3) can still be very expensive, and one therefore resorts to the extreme case
consisting of the one-step receding horizon strategy.
We first consider the case when the full state x(t) of (2.1) can be observed. Let G

be a locally Lipschitz continuous control Liapunov function for (2.1)–(2.2) such that
level-sets {x : G(x) ≤ α}, α > 0, are bounded in Rn. We assume that for every α > 0
there exists a continuous nondecreasing function ε with ε(0) = 0 such that for each
x0 with G(x0) ≤ α

|ū(t)− u|+ |x̄(t)− x0| ≤ ε(∆t) for all t ∈ [0,∆t].(4.2)

Here u minimizes (4.1), and (x̄, ū) is an optimal pair for the finite horizon problem

min

∫ ∆t

0

f0(x(t), u(t)) dt+G(x(∆t))(4.3)

subject to d
dt x(t) = f(x(t), u(t)), x(0) = x0. It is further assumed that there exists

ω > 0 such that

V∆t(x0) ≤ (1− ω∆t)G(x0) for all x0 ∈ Rn(4.4)

and all sufficiently small ∆t > 0. Finally, we shall assume that U ⊂ Rm is bounded.
In the two theorems below, this requirement can be replaced by assuming that{

u = argmin [∆tf0(x0, u) +G(x0 +∆tF (x0, u))] : ∆t ∈ [0, 1], x0 ∈ S
}

(4.5)

is a bounded subset of Rm whenever S is bounded in Rn. Note that (4.5) can be
verified, for example, if f0 is quadratic in x and u, G is quadratic, and F is affine in
u.
We are now prepared to analyze the following strategy: given xk−1, solve (4.1)

with initial condition x0 = xk−1 for uk, then advance (2.1) on [(k − 1)∆t, k∆t] by
means of

d

dt
x(t) = f(x(t), uk), x((k − 1)∆t) = xk−1,(4.6)

and set xk = x(k∆t). Henceforth we put tk = k∆t.
Theorem 4.1. Assume that G is a locally Lipschitz continuous control Liapunov

function with bounded level-sets, that (4.2) and (4.4) hold, and that U is bounded.
Then for every r > 0 there exists C > 0 such that, for all sufficiently small ∆t and
all k,

G(xk) ≤ (1− ω∆t)kG(x0) +
C

ω
ε(∆t)
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and ∫ k∆t

0

f0(x(t), u(t)) dt ≤ (1− ω∆t)G(x0) +
C ε(∆t)

ω(1− ω∆t)k−1

whenever |x0| ≤ r. Here x(·) is the concatenation of the solutions to (4.6), u(t) = uk
on [tk−1, tk], and uk ∈ U minimizes [∆t f0(xk−1, u) +G(xk−1 + F (xk−1, u))].

Proof. Throughout, we assume that ∆t is sufficiently small so that ∆t < 1
and ε(∆t) < 1. Let r > 0, and set α = max{G(x) : |x| ≤ r}. Then the level-set
{x : G(x) ≤ α} is contained in a closed ball B(0, ρ) with radius ρ ≥ r centered at
the origin. Let ‖f‖, ‖f0‖, and ‖G‖ denote the Lipschitz constants of f, f0, and G on
B(0, ρ+ 1)× U and B(0, ρ+ 1), respectively. Let x0 ∈ Rn be such that |x0| ≤ r.
First we argue that for xk−1 with G(xk−1) ≤ α, k = 1, . . . , (4.6) admits a

solution. Let (x̂, û) be a solution to the finite horizon problem (4.3) with initial
condition x0 = xk−1, and denote by (x̄, ū) its translation from [0,∆t] to [tk−1, tk]. By
Gronwall’s lemma we have the a priori estimate

|x(t)− x̄(t)| ≤ ‖f‖∆t ε(∆t) e‖f‖∆t for t ∈ [tk−1, tk],(4.7)

and, therefore, by (4.2)

|x(t)| ≤ |xk−1|+ |xk−1 − x̄(t)|+ |x(t)− x̄(t)|
≤ ρ+ ε(∆t) + ‖f‖∆t ε(∆t) e‖f‖∆t ≤ ρ+ 1

for all t ∈ [tk−1, tk], provided that ∆t is sufficiently small. In particular, this implies
the existence of a solution to (4.6) on [tk−1, tk]. To estimate G(xk), we utilize (4.2),
(4.4), and (4.7):

G(xk) +

∫ tk

tk−1

f0(x(t), u(t)) dt = G(xk)−G(x̄(tk)) +G(x̄(tk))

+

∫ tk

tk−1

(f0(x(t), u(t))− f0(x̄(t), ū(t))) dt+

∫ tk

tk−1

f0(x̄(t), ū(t)) dt

≤ V∆t(xk−1) + (‖G‖+ ‖f0‖∆t) ‖x− x̄‖C([tk−1,tk])

+∆t ‖f0‖ ‖u− ū‖C([tk−1,tk])

≤ (1− ω∆t)G(xk−1) + C ∆t ε(∆t),

where C = (‖G‖ + ‖f0‖)‖f‖ e‖f‖ + ‖f0‖. In the above estimate, we used the facts
that |x(t)| ≤ ρ+ 1, |x̄(t))| ≤ ρ+ 1, uk ∈ U , and u(t) ∈ U for all t ∈ [tk−1, tk] and the
assumption that ε(∆t) ≤ 1. Hence

G(xk) +

∫ tk

tk−1

f0(x(t), u(t)) dt ≤ (1− ω∆t)G(xk−1) + C∆t ε(∆t),(4.8)

and, therefore, G(xk) ≤ α for all ∆t sufficiently small. Repeated application of (4.8)
implies

G(xk) +

k−1∑
i=0

(1− ω∆t)i
∫ tk−i

tk−i−1

f0(x(t), u(t)) dt ≤ (1− ω∆t)kG(x0) +
Cε(∆t)

ω
,
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and the desired estimates follow.
Next we consider the case when x(t) is not observed. We assume that G(x) is a

discrete control Liapunov function satisfying

V1(x) ≤ (1− ω∆t) G(x),(4.9)

where ω > 0 and V1 is the optimal value function for (4.1). We analyze the strategy
of solving the discrete time optimal control problem (3.4) for k = 1, . . . (and N = 1)
to obtain a sequence of optimal controls {ūk} with corresponding states {x̄k} and to
utilize these controls in (2.1) with u(t) = ūk on (tk−1, tk). We assume that

(f(x1, u)− f(x2, u), x1 − x2) ≤ β |x1 − x2|2(4.10)

for some β ∈ R and all x1, x2 ∈ Rn, and u ∈ U , and we define the linear interpolation

ξ(t) = x̄k−1 + (t− tk−1)
x̄k − x̄k−1

∆t
on (tk−1, tk).(4.11)

Note that

d

dt
ξ(t) = f(ξ(t), u(t)) + d(t),

where

d(t) = F (x̄k−1, ūk)− f(ξ(t), ūk) on (tk−1, tk).(4.12)

Theorem 4.2. Assume that G is a locally Lipschitz continuous discrete control
Liapunov function with bounded level-sets, that (4.9) and (4.10) are satisfied, that U
is bounded, and that there exist some x ∈ Rn and û ∈ L1(0, T ;Rm) with T = k∆t
such that (2.1) admits a solution x̂ on [0, T ]. Then for every r > 0 there exists a
constant C = C(r, k∆t) such that

G(x(k∆t)) ≤ (1− ω∆t)kG(x0) + C ε̃(∆t)(4.13)

and ∫ k∆t

0

f0(x(t), u(t)) dt ≤ (1− ω∆t)G(x0) + C(ε̃(∆t) + k(∆t)2)

for every x0 with |x0| ≤ r. Here x(t) is the solution to (2.1) with x = x0,

u = ūj on (tj−1, tj),(4.14)

with ūj the solution of the discrete receding horizon problem (3.4) with N = 1, and

ε̃(∆t) =
∫ k∆t
0

d(s) ds.
Proof. Choose r > 0. Since level-sets of G are bounded, there exists ρ > 0 such

that the set {x : G(x) ≤ r} as well as the trajectory {x̂(t) : t ∈ [0, T ]} are contained
in B(0, ρ) ⊂ Rn. Due to (4.10), the existence of a reference solution x̂ on [0, k,∆t],
and the assumption that U is bounded, there exists, for every u ∈ Uad and x0 ∈ Rn

with |x0| ≤ r, a solution x(·;u, xo) to (2.1), and the set {x(t;u, x0) : t ∈ [0, k∆t],
u ∈ Uad, |x0| ≤ r} is contained in a ball B(0, ρ̄) with ρ̄ ≥ ρ. Let ‖f0‖ and ‖G‖ denote
the Lipschitz constants of f0 and G on B(0, ρ̄)× U and B(0, ρ̄), respectively.
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Now fix x0 ∈ R with |x0| ≤ r, and determine the discrete receding horizon se-
quence {(x̄j−1, ūj)}kj=1 according to (3.4) with N = 1. Due to (4.9), we have G(x̄j) ≤
G(x0) for all j = 1, . . . , k (in fact all j ≥ 1), and hence {(x̄j−1, ūj)}kj=1 ⊂ B(0, ρ̄)×U .
Let x denote the solution to (2.1) with x(0) = x0 and u = ūj on [tj−1, tj ], j = 1, . . . , r,
and note that x(t) ∈ B(0, ρ̄) for t ∈ [0, k∆t]. For the interpolation ξ, according to
(4.11) we find

d

dt
(ξ(t)− x(t)) = f(ξ(t), u(t))− f(x(t), u(t)) + d(t),

with d given in (4.12). It thus follows from (4.10) that

|ξ(t)− x(t)| ≤
∫ t

0

(β|ξ(s)− x(s)|+ d(s)) ds,

and by Gronwall’s inequality

|ξ(t)− x(t)| ≤ eβt
∫ t

0

|d(s)|ds for t ∈ [0, k∆t].(4.15)

From (4.9) we deduce that

G(x̄k) + ∆t

k−1∑
j=0

γk−jf0(x̄j−1, ūj) ≤ γkG(x0),(4.16)

where we put γ = 1− ω∆t. This implies

G(x(k∆t)) ≤ γkG(x0) + ‖G‖ |x(k∆t)− x̄k|
≤ γkG(x0) + ‖G‖ |x(k∆t)− ξ(k∆t)| ≤ γkG(x0) + ‖G‖ exp(βk∆t) ε̃(∆t),

and (4.13) follows with C = ‖G‖ exp(βk∆t). We utilize (4.16) once again to obtain
∫ tk

0

f0(x(s), u(s)) ds ≤ γG(x0) +

k−1∑
j=0

∫ tj

tj−1

|f0(x(s), u(s))− f0(x̄j−1, ūj)| ds

≤ γG(x0) + ‖f0‖
∫ tk

0

|x(s)− ξ(x)| ds+ ‖f0‖
k−1∑
j=0

∫ ∆t

0

s
|x̄j − x̄j−1|
∆t

ds.

By the continuity of F and the boundedness of {(x̄j−1, ūj)}kj=1, it follows that { 1
∆t (x̄j−

x̄j−1)}kj=1 is bounded by a constant c; hence∫ tk

0

f0(x(x), u(s)) ds ≤ γG(x0) + ‖f0‖
(
ε̃(∆t) +

k(∆t)2c

2

)
,

and (4.14) follows.

5. Applications. In this section, we demonstrate the applicability of the con-
cepts of this paper to certain classes of control systems. Most of the examples that
we consider are motivated by nonlinear dissipative control systems with finite or in-
finite dimensional dynamics (e.g., [T]). In the case of infinite dimensional systems,
we assume that an appropriate discretization has been carried out. A full account of
infinite dimensional systems will be given independently.
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We consider control systems of the general form

d

dt
x(t) = A0x(t) + F (x(t)) +B(x(t))u(t) + d,(5.1)

where A0 ∈ Rn×n, F : Rn → Rn, with F (0) = 0, d ∈ R
n, and B : Rn → Rn×m are

given. Many physical processes modeled by (5.1) have a natural dissipative mechanism
when u = 0, and thus it can be shown that a certain quadratic form can serve as a
control Liapunov function.

5.1. Gradient dynamics. Consider control systems of the form

d

dt
x(t) = A0x(t)−Ψx(x(t)) +Bu(t),(5.2)

where A0 ∈ Rn×n and B ∈ Rn×m. Further, Ψ is a convex C1-functional on Rn with
Ψx(0) = 0 and the property that there exists a positive definite symmetric matrix
P ∈ Rn×n such that

Ψx(x) · (Px) ≥ 0 for all x ∈ Rn.(5.3)

We assume that there exist positive constants β and c1 such that with u = −β BTPx

(A0x−Ψx(x) +Bu) · (Px) ≤ −c1 xTPx for all x ∈ Rn.(5.4)

Let f0(x, u) = 1
2 |x|2 + γ

2 |u|2, and let γ > 0 be given. Then by Theorem 2.2 the
quadratic functional G(x) = α

2 x
TPx is a control Liapunov function for all α suffi-

ciently large.
If P = I, then the uncontrolled dynamics (u = 0) consists of linear as well as

gradient dynamics. Due to the convexity of Ψ and Ψx(0) = 0, we have Ψx(x) · x ≥ 0,
and hence (5.3) holds. In this case, condition (5.4) is equivalent to assuming that

W (x) = −(A0x, x) + (Ψx(x), x) + β |BTx|2

is positive for x �= 0.
Example. As a specific case for (5.2), consider the control system (motivated by

the Schrödinger equation):

d

dt
z(t) = i Az(t)− |z(t)|p−2z(t) +B0v(t),

where z(t) ∈ Cn, v ∈ Cm, and A is a symmetric nonnegative definite matrix on Rn.
For z = x1 + i x2 with x = (x1, x2) ∈ R2n and v = u1 + i u2 with u = (u1, u2) ∈ R2m,
the above equation can be written as (5.2) with

A0 =


 0 A

−A 0


, B =


 B0 0

0 B0


, and Ψ(x) = 1

p
|x|p.

Example (damped vibration dynamics). System (5.2) is also motivated by the
damped wave equation. We consider the second order system

d2

dt2
z(t) + ψz

(
d

dt
z(t)

)
+ Λz(t) = B0u(t),
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where z(t) ∈ Rn, B0 ∈ Rn×m, and Λ ∈ Rn×n is positive definite. Further, ψ is a
convex functional on Rn with ψx(0) = 0 and |ψx(z)| ≤ c1|z| for a constant c1 inde-
pendent of z ∈ Rn. In the case of Coulomb-like friction ψ(z) =

∑n
i=1 γi |

√|zi|2 + ε|
with constants γi ≥ 0 and ε > 0. If we define x1(t) = z(t) and x2(t) =

d
dtz(t), then

x = col(x1, x2) satisfies (5.2) with

A0 =


 0 I

−Λ 0


, B =

(
0
B0

)
, and Ψ(x) =

(
0

ψ(x2)

)
.

Setting

P =


 Λ 0

0 I


,

we find

(A0x−Ψx(x)) · (Px) = −(ψx(x2), x2) ≤ 0.
Also note that

(A0x−Ψx(x)) ·Qx = |x2|2 − xT1 Λx1 − xT1 ψx(x2),

where Q(x) = xT1 x2. Let us define

G(x) =
α

2
xTPx+ xT1 x2.

Then for u = −BT0 x2 we find

(A0x−Ψx(x) +Bu) ·Gx = −xT1 Λx1−α (|BT0 x2|2+ (ψx(x2), x2)) + |x2|2− xT1 ψx(x2).

Thus if |BT0 x2|2 + (ψz(x2), x2) ≥ c2 |x2|2 for some c2 > 0 and α is sufficiently large,
thenG(x) is a control Liapunov function for f0(x, u) = c3

2 (x
TPx+|u|2) for 0 ≤ c3 ≤ 2.

We return to the general discussion at the beginning of this subsection and replace
condition (5.4) by the following assumptions:

A0x · Px ≤ 0 for all x ∈ R
n, and (A0 −BBTP ) is exponentially stable.

Let Π denote the solution to the Liapunov equation

(A0 −BBTP )TΠ+Π(A0 −BBTP ) + P = 0.

We choose the control Liapunov function G(x) = 1
2x
TΠx + αxTPx, with α ≥ 0 and

the feedback control law u = −BTPx. Then we have with Gx(x) = Πx+ αPx

(A0x−Ψx(x)−BBTPx) · (Πx+ αPx) = (A0x−BBTPx) ·Πx
−Ψx(x) ·Πx+ αA0x · Px− αΨx(x) · Px− α|PTPx|2

≤ −1
2
xTPx−Ψx(x) ·Πx− α|BTPx|2 − αΨx(x) · Px,

where we recall that Ψx(x) · Px ≥ 0. Assume that there exists ᾱ such that

Ψx(x) ·Πx ≤ ᾱΨx(x) · Px+
1

4
xTPx+

ᾱ

2
|BTPx|2.

With this choice of ᾱ, the functional G(x) is a control Liapunov function for the
control system (5.2) with cost given by f◦(x, u) = 1

4 xTPx+ ᾱ
2 |BTPx|2.
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5.2. Dissipative systems. The second class of dissipative nonlinear systems
that we consider here is motivated by the incompressible Navier–Stokes equations
(e.g., with homogeneous Dirichlet boundary conditions),

d

dt
x(t) = A0x(t) + F (x(t)) +Bu(t) + d,(5.5)

where F : Rn → Rn is a locally Lipschitz function satisfying (F (x), x)Rn = 0, A0 is
a nonpositive definite symmetric matrix on Rn, B ∈ Rn×m, and d ∈ Rn. Then for
u ∈ L2

loc(0,∞, Rm) there exists a globally defined unique solution to (5.5). In fact,
suppose x is a solution defined on [0, τ). Then

1

2

d

dt
|x(t)|2 = (A0x(t) + F (x(t)) +Bu(t) + d) · x(t) ≤ 1

2
|x(t)|2 + |B|2|u(t)|2 + |d|2

for t ∈ [0, τ). Thus we have the a priori bound

|x(t)|2 ≤ et |x0|2 + 2
∫ t

0

et−s(|B|2|u(t)|2 + |d|2) ds

for t ∈ [0, τ). By the continuation method there exists a unique global solution to
(5.5). Let us assume that

ker(A0) ⊂ range(B).

Further, let G(x) = α
2 |x|2, α > 0, and set u = −BTx. Then there exists ω1 > 0 such

that

(A0x+ F (x) +Bu) · (αx) = xTA0x− |BTx|2 ≤ −αω1 |x|2

for all x ∈ Rn. Consequently, G is a control Liapunov function for f0(x, u) =
1
2 |x|2 + γ

2 |u|2, γ > 0, and α = 0, whenever α is sufficiently large. Moreover, if
(F (x), A0x) ≥ 0 (for example, in the case of the incompressible Navier–Stokes equa-
tion with periodic boundary condition (F (x), A0x) = 0 [T]), then G(x) = −α2 xTA0x
is a control Liapunov function for all α sufficiently large and f0 as above. In fact, for
u = BTA0x, we have

(A0x+ F (x) +Bu) · (−A0x) = −|A0x|2 − |BTA0x|2 ≤ −ω2 |x|2

for some ω2 > 0, independently of x ∈ Rn, and the claim follows.

Example (Lorenz system). The following system, proposed by Lorenz as an evi-
dence of the limits of predictability in weather prediction, is also of the form (5.5). It is
a three-mode Galerkin approximation of the Boussinesq equations for fluid convection
in a two-dimensional layer heated from below and is given by

d

dt


 x1

x2

x3


 =


 −σ 0 0
0 −1 0
0 0 −b


x(t) +


 σx2

−σx1 − x1x3

x1x2




−

 0

0
b(r + σ)


+


 00
1


u(t).
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5.3. Localized control Liapunov function. We discuss the local control Li-
apunov function in the sense of Remarks 2.3 and 2.5 for systems of the form

d

dt
x(t) = Ax(t) + F (x(t)) +Bu(t) + d,(5.6)

where F (0) = 0. Suppose that (A,B) is controllable. Then there exists a unique
positive definite symmetric matrix solution Π to the Riccati equation ATΠ + ΠA −
ΠBBTΠ + I = 0. We shall argue that G(x) = 1

2 xTΠx is a local λ-control Liapunov
function for the feedback law u = −BTΠx provided that there exist α > 0 and ω > 0
such that

−1
2
(|BTΠx|2 + |x|2) + f0(x,−BTΠx) + (F (x),Πx) ≤ −ω

2
|x|2(5.7)

for all x ∈ Sα = {x : G(x) ≤ α}. In fact,

f(x,−BTΠ) · (Πx) + f0(x,−BTΠx) ≤ −ω

2
|x|2 + (d, x) ≤ |d|

2

2ω
,

and hence G(x) = 1
2 xTΠx is a local λ-control Liapunov function with λ = |d|2

2ω . For
example, consider system (5.6) with

A =


 0 1
1 0


, B =


 0
1


, F (x) =


 0

−Ux1(x1)


,

where U is a potential function on R and satisfies Ux1
(0) = 0. In the case of the

inverted pendulum, Ux1(x1) = x1 − sin(x1). Then Π =

(
1 + γ γ
γ γ

)
with γ = 1 +

√
2

solves the Riccati equation. Condition (5.7) is equivalent to

−1
2
(γ2 |x1 + x2|2 + |x|2)− γ (Ux1

(x1), x1 + x2) + f0(x,−γ (x1 + x2)) ≤ −ω

2
|x|2.

In the case of the inverted pendulum, it can be proved that this holds for all x ∈ R2,
where f◦(x, u) = c1

2 |x|2 + c2
2 |u|2 for appropriate choice of c1 > 0, c2 > 0.
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Abstract. Overlapping quadratic optimal control of linear time-invariant continuous-time sys-
tems by using generalized selection of complementary matrices has been recently developed as a
powerful and effective means of decentralized control design of linear time-invariant systems. In this
paper, it is shown that similar generalizations exist for linear time-varying systems. The results
presented here concern implicit conditions for a general form of the transition matrices and explicit
conditions for a commutative class of linear time-varying systems. Several important large classes of
complementary matrices are selected to offer computationally attractive results. The effectiveness of
this generalized selection scheme is illustrated by a numerical example of overlapping decentralized
control design.
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1. Introduction. In a large variety of physical, natural, and man-made systems,
subsystems share common parts. It is useful to recognize this reality, which is usually
determined by either system structure or computational requirements, in proposing
decentralized control schemes that use overlapping information sets. In certain con-
trol problems appearing in areas such as traffic systems, large space structures, power
systems, or data communication networks, this approach is the only effective way to
proceed. Decentralized control strategies offer satisfactory performance at minimum
communication cost. The designer of overlapping decentralized control first expands
the system into a larger space where the subsystems are disjoint, then designs decen-
tralized controllers in the expanded space by using standard weak coupling disjoint
control design methods, and finally contracts the system and local control laws into
the original space to implement such controllers.

This paper addresses the problem of overlapping decentralized control design via
state linear quadratic (LQ) optimal control for a commutative class of continuous-time
linear time-varying (LTV) systems.

1.1. Relevant references. The mathematical framework for expansion-contrac-
tion relations and conditions became known as the inclusion principle [11], [12], [13],
[22]. This principle defines a framework for two dynamic systems with different di-
mensions, in which solutions of the system with larger dimension include solutions of
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the system with smaller dimension. The relation between both systems is usually con-
structed on the basis of appropriate linear transformations between the corresponding
systems in the original and expanded spaces, where a key role in the selection of ap-
propriate structure of all matrices in the expanded space is played by the so-called
complementary matrices [11], [22]. The conditions given in these works on the com-
plementary matrices have a fundamental, implicit nature, in the sense that it is not
easy to select specific values for these matrices. In fact, only two particular forms
of aggregations and restrictions have been commonly adopted in the literature for
numerical computations [2], [15], [22], [24]. A new characterization of the comple-
mentary matrices for linear time-invariant (LTI) systems has been recently presented
in [3], [19], which gives a more explicit method for their selection and includes ag-
gregations and restrictions as particular cases. It relies on a new constructive way of
approaching the concept of canonical form within the inclusion principle previously
proposed in [13], [22]. This structural characterization has been used to develop the
strategy of generalized selection of complementary matrices in [4] to find both their
structure and the optimal values of their free elements with respect to suboptimality
when considering the problem of overlapping decentralized state LQ control design
for LTI systems. The importance of the inclusion principle is underlined by promising
applications in such diverse areas as applied mathematics [5], [6], [21], [26], automated
highway systems [10], [23], flexible structures [2], data communication networks [9],
and electric power systems [12], [22], [24].

One of the open research issues surrounding the inclusion principle is the extension
of the results available for LTI systems to LTV systems. To the authors’ knowledge,
the only available results in this direction are in [14], where overlapping decentralized
state LQ control of LTV systems is considered. However, the results in [14] are
restricted to the use of standard forms of complementary matrices, i.e., aggregations
and restrictions.

The present paper differs from all the cited references in the application of the
strategy of generalized selection of complementary matrices to LTV systems. It ex-
tends both the results in [14] as well as those in [3], [4], [19].

1.2. Outline of the paper. When abstracting the problem of quadratic optimal
control, the influence of complementary matrices on suboptimality is an important
issue. The strategy of generalized selection of complementary matrices has been de-
veloped as an effective tool to find both structure and optimal values of free elements
of complementary matrices for LTI systems. We devote the main part of this paper
to an extension of this strategy for overlapping state LQ optimal control from LTI
systems to a class of LTV systems possessing the commutativity property, including
contractibility conditions.

The paper is organized as follows. The problem is formulated in section 2. The
main results are presented in section 3, identifying a new block structure of the com-
plementary matrices that generalizes well-known results for expansion-contraction of
pairs of systems and optimal control criteria. Subsection 3.1 presents the general con-
ditions on the complementary matrices in the LQ control of LTV systems. Because
of their implicit dependence on the transition matrix, they cannot be used to derive
explicit conditions. The explicit conditions are derived for LTV systems possessing
the commutativity property in subsection 3.2. Subsection 3.3 presents the derivation
of structural properties of the complementary matrices. From this structure, subsec-
tion 3.4 outlines a selection procedure for these matrices. In section 4, this procedure
is used in an overlapping state LQ optimal control problem, which is illustrated by a
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numerical example.

2. Problem formulation.

2.1. Preliminaries. Consider the optimal control problems

min
u(t)

J(x0, u) = x
T (tf )Πx(tf ) +

∫ tf

t0

[
xT (t)Q∗(t)x(t) + uT (t)R∗(t)u(t)

]
dt,

subject to (s.t.) S : ẋ(t) = A(t)x(t) +B(t)u(t),

(2.1)

min
ũ(t)

J̃(x̃0, ũ) = x̃
T (tf )Π̃ x̃(tf ) +

∫ tf

t0

[
x̃T (t)Q̃∗(t)x̃(t) + ũT (t)R̃∗(t)ũ(t)

]
dt,

s.t. S̃ : ˙̃x(t) = Ã(t)x̃(t) + B̃(t)ũ(t),

(2.2)

where x(t) ∈ R
n

, u(t) ∈ R
m

are the state and input of S at time t for t ∈ [t0, tf ]; t0
and tf are the initial and the terminal time, respectively; x̃(t) ∈ R

ñ

and ũ(t) ∈ R
m̃

are the state and input of S̃. The matrices A(t), B(t) and Ã(t), B̃(t) are continuous
in t of dimensions n × n, n × m and ñ × ñ, ñ × m̃, respectively. Q∗(t), Q̃∗(t) are
symmetric, nonnegative definite matrices, continuous in t, of dimensions n×n, ñ× ñ,
respectively. R∗(t), R̃∗(t) are symmetric, positive definite matrices, continuous in t,
of dimensions m×m, m̃×m̃, respectively. Π, Π̃ are constant, symmetric, nonnegative
definite matrices of dimensions n×n, ñ× ñ, respectively. In problems (2.1) and (2.2),
the final time tf is fixed, and x(tf ) is free. The minimization of J(x0, u) searches for a
control u(t) able without an excessive effort to maintain the state vector x(t) close to
the zero required state at any time t ∈ [t0, tf ], with particular emphasis at the termi-
nal time tf as weighted by matrix Π. It is well known that the solution of (2.1) exists,
is unique, and is given in the form u(t) = −K(t)x(t) = −(R∗)−1(t)BT (t)P (t)x(t),
where P (t) is the nonnegative definite symmetric solution of the corresponding Ric-
cati equation [1]. If tf is finite, this control law ensures a bounded state, and the
stability issues are absent. If tf is infinite (with Π = 0), the question of stability
becomes important. It has been shown that this control guarantees that the closed-
loop system is exponentially stable under certain conditions related to controllability
and observability [14], [18]. We assume that the system S satisfies such conditions.
Similar comments hold for (2.2). Suppose that the dimensions of the state and input
vectors x(t), u(t) of S are smaller than (or at most equal to) those of x̃(t), ũ(t) of
S̃. Denote by x(t;x0, u) the solution of S for a fixed input u(t) and an initial state
x(0) = x0. Analogously, x̃(t; x̃0, ũ) is used for the system S̃. In order to simplify the
notation, define x(t;x0, u) = x(t) and x̃(t; x̃0, ũ) = x̃(t). It is well known that

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ,(2.3)

x̃(t) = Φ̃(t, t0) x̃0 +

∫ t

t0

Φ̃(t, τ)B̃(τ)ũ(τ) dτ(2.4)

are the unique, continuously differentiable solutions of the systems in (2.1) and (2.2),
respectively. The transition matrices Φ(t, t0), Φ̃(t, t0) are given by the Peano–Baker
series [20].

The systems S and S̃ are related by the following transformations:

x̃(t) = V x(t), x(t) = Ux̃(t), ũ(t) = Ru(t), u(t) = Qũ(t),(2.5)
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where V , U , R, and Q are constant matrices of appropriate dimensions and full ranks.
Definition 2.1. Consider S and S̃ given in (2.1) and (2.2), respectively. We say

that a system S̃ includes the system S—that is, S̃ ⊃ S—if there exists a quadruplet of
constant matrices (U, V,Q,R) such that UV = In, QR = Im, and for any initial state
x0 and any fixed input u(t) of S, x(t;x0, u) = Ux̃(t;V x0, Ru) for all t ∈ [t0, tf ].

Definition 2.2. A pair (S̃, J̃) includes a pair (S, J) if S̃ ⊃ S and J(x0, u) =
J̃(V x0, Ru).

Definition 2.3. If (S̃, J̃) ⊃ (S, J), then (S̃, J̃) is said to be an expansion of
(S, J), and (S, J) is called a contraction of (S̃, J̃).

In other words, this inclusion means that the problem (S, J) can be solved by
solving the problem (S̃, J̃).

Definition 2.4. Consider S and S̃ given in (2.1) and (2.2), respectively, such
that S̃ ⊃ S. Then a control law ũ(t) = −K̃(t) x̃(t) for S̃ is contractible to the con-
trol law u(t) = −K(t)x(t) for S if the choice x̃0 = V x0 and ũ(t) = Ru(t) implies
K(t)x(t;x0, u) = QK̃(t)x̃(t;V x0, Ru) for all t ∈ [t0, tf ], for any initial state x0 and
any fixed input u(t) of S.

We may also say that the gain matrix K̃(t) is contractible to the gain matrix
K(t). Contractibility implies that the expanded closed-loop system ˙̃x(t) = [Ã(t) −
B̃(t)K̃(t)]x̃(t) includes the closed-loop system ẋ(t) = [A(t)−B(t)K(t)]x(t).

In order to obtain conditions for expansions and contractions between problems
(2.1) and (2.2) as well as conditions for contractibility of control laws, the following
matrix relations are introduced:

Ã(t) = V A(t)U +M(t), B̃(t) = V B(t)Q+N(t),

Π̃ = UTΠU +MΠ, Q̃∗(t) = UTQ∗(t)U +MQ∗(t),

R̃∗(t) = QTR∗(t)Q+NR∗(t), K̃(t) = RK(t)U + F (t),

(2.6)

whereM(t), N(t),MΠ,MQ∗(t), NR∗(t), and F (t) are called complementary matrices.
Usually, the transformations (U, V ) and (Q,R) are selected a priori to define

structural relations between the state and control variables in both systems S and
S̃. Given these transformations, the choice of the complementary matrices gives
degrees of freedom to complete the definition of the expansion/contraction framework
involving problems (S, J) and (S̃, J̃) to meet some design requirements.

2.2. The problem. The motivation of this work is to systematically extend the
strategy of generalized selection of complementary matrices for overlapping state linear
quadratic optimal control from LTI systems to LTV systems. The specific objectives
are the following:
• To give implicit conditions on the complementary matrices for the inclusion

(S̃, J̃) ⊃ (S, J) and the contractibility of the gain matrix for general LTV systems.
• To give explicit conditions on the complementary matrices for the inclusion

(S̃, J̃) ⊃ (S, J) and the contractibility of the gain matrix for LTV commutative sys-
tems and to derive a systematic procedure for their selection, involving overlapping
decentralized state LQ optimal control design.
• To illustrate the derived results on a numerical example.
3. Main results. This section gives the results covering mainly the expansion-

contraction process for continuous-time LTV systems. Subsection 3.1 includes the
general results. Subsection 3.2 presents the results for LTV systems possessing the
commutativity property. Subsection 3.3 characterizes the expansion-contraction pro-
cess presented at a general level by using a new basis and including contractibility
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conditions. Subsection 3.4 offers the results of this process for selecting particular
transformation matrices.

3.1. General LTV systems. For (S̃, J̃) to be an expansion of (S, J) and to en-
sure contractibility, we must impose some conditions on the complementary matrices
given in (2.6). This is provided by the following theorems.

Theorem 3.1. Consider the problems given in (2.1) and (2.2). (S̃, J̃) ⊃ (S, J)
if and only if

U Φ̃(t, t0)V = Φ(t, t0), U Φ̃(t, τ)N(τ)R = 0, V TMΠV = 0,

V TMQ∗(t)V = 0, RTNR∗(t)R = 0
(3.1)

for all t ∈ [t0, tf ] and all τ ∈ [t0, t].
Proof. By Definition 2.2, suppose x(t) = Ux̃(t). Substituting (2.3) and (2.4)

into this relation and comparing both sides, we obtain (1) U Φ̃(t, t0)V = Φ(t, t0)

and (2)
∫ t
t0
U Φ̃(t, τ)B̃(τ)ũ(τ) dτ =

∫ t
t0
Φ(t, τ)B(τ)u(τ) dτ for all t ∈ [t0, tf ]. From

(2.6), relation (2) is equivalent to
∫ t
t0
U Φ̃(t, τ)N(τ)Ru(τ) dτ = 0 for all t ∈ [t0, tf ],

and consequently to U Φ̃(t, τ)N(τ)R = 0 for all t ∈ [t0, tf ] and all τ ∈ [t0, t]. The
remaining conditions can be obtained easily from J(x0, u) = J̃(V x0, Ru) and by using
(2.6).

Theorem 3.2. Consider the problems given in (2.1) and (2.2). (S̃, J̃) ⊃ (S, J)
if V TMΠV = 0, V

TMQ∗(t)V = 0, RTNQ∗(t)R = 0, and either

(a) M(t)V = 0, N(t)R = 0 or

(b) UM(t) = 0, UN(t)R = 0
(3.2)

for all t ∈ [t0, tf ].
Proof. We can view the transition matrix Φ̃(t, t0) as a function of two variables

defined by the Peano–Baker series

Φ̃(t, t0) = I +

∫ t

t0

Ã(σ1) dσ1 +

∫ t

t0

Ã(σ1)

∫ σ1

t0

Ã(σ2) dσ2dσ1

+

∫ t

t0

Ã(σ1)

∫ σ1

t0

Ã(σ2)

∫ σ2

t0

Ã(σ3) dσ3dσ2dσ1 + · · · ,
(3.3)

where Ã(σ
i
) = V A(σ

i
)U +M(σ

i
), i = 1, 2, . . . . Multiplying both sides of Φ̃(t, t0) by

U and V , respectively, and comparing to Φ(t, t0), the condition M(t)V = 0 implies
U Φ̃(t, t0)V = Φ(t, t0). Obviously, N(t)R = 0 implies U Φ̃(t, τ)N(τ)R = 0 for all
t ∈ [t0, tf ] and all τ ∈ [t0, t]. This proves part (a). Following a similar process
for part (b), UM(t) = 0 and UN(t)R = 0 are sufficient conditions in order for
U Φ̃(t, t0)V = Φ(t, t0) and U Φ̃(t, τ)N(τ)R = 0 to hold, respectively.

The conditions (a) and (b) are two independent sets of sufficient conditions for
(S̃, J̃) to be an expansion of (S, J). Condition (a) corresponds to a restriction, whereas
condition (b) corresponds to an aggregation [14].

Theorem 3.3. Consider S and S̃ given in (2.1) and (2.2), respectively, such
that S̃ ⊃ S. A control law ũ(t) = −K̃(t) x̃(t) for S̃ is contractible to the control law
u(t) = −K(t)x(t) for S if and only if

QF (t)

[
Φ̃(t, t0)V x0 +

∫ t

t0

Φ̃(t, τ)B̃(τ)ũ(τ) dτ

]
= 0(3.4)
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for all t ∈ [t0, tf ].
Proof. By Definition 2.4, a control law ũ(t) is contractible to the control law u(t)

when K(t)x(t;x0, u) = QK̃(t)x̃(t;V x0, Ru). Then, substituting K̃(t) given in (2.6)
and x̃(t) given in (2.4) into the above equation and comparing both sides, the proof
is straightforward.

Theorem 3.4. Consider S and S̃ given in (2.1) and (2.2), respectively, such
that S̃ ⊃ S. A control law ũ(t) = −K̃(t) x̃(t) for S̃ is contractible to the control law
u(t) = −K(t)x(t) for S if either

(a) M(t)V = 0, N(t)R = 0, QF (t)V = 0 or

(b) UM(t) = 0, UN(t)R = 0, QF (t) = 0
(3.5)

for all t ∈ [t0, tf ].
Proof. Substituting the transition matrix Φ̃(t, t0) given in (3.3) into (3.4) and

using (2.6), the sufficient conditions (a) and (b) independently imply Theorem
3.3.

Theorems 3.2 and 3.4 do not require that we know the transition matrices. How-
ever, the selections of M(t), N(t), F (t) are constrained only to restrictions and ag-
gregations.

The transition matrix Φ̃(t, t0) appears in the conditions given by Theorems 3.1
and 3.3. Since it depends on the system matrix Ã(t), Φ̃(t, t0) implicitly depends on
the complementary matrix M(t) as given in (2.6). On the other hand, it is very
difficult, if not impossible, to obtain expressions for the transition matrices except
for some particular classes of systems. The computation of the solutions via the
Peano–Baker series can be a complicated task excluding trivial cases. Thus the task
of obtaining explicit conditions for complementary matrices satisfying Theorems 3.1
and 3.3 is practically unsolvable for general time-varying systems. Therefore, we focus
our attention on a particular but sufficiently large and important class of time-varying
systems characterized by possessing the commutativity property.

3.2. Commutative systems. Let us start the presentation for this class of
systems.

Definition 3.5. An LTV system S such as (2.1) is a commutative system if and

only if A(t) satisfies A(t)(
∫ t
t0
A(τ) dτ) = (

∫ t
t0
A(τ) dτ)A(t) for all t ∈ [t0, tf ]. In such

a case, the matrix Φ(t, t0) is given by

Φ(t, t0) = e
∫ t
t0
A(τ) dτ

=

∞∑
k=0

1

k!

(∫ t

t0

A(τ) dτ

)k
.

In particular, this is the case for any A(t) given by A(t) =
∑r
i=1 fi(t)Ai, where

fi(t) are arbitrary real-valued functions of t and Ai are arbitrary constant n × n
matrices which satisfy the commutativity conditions AiAj = AjAi for all integers
1 ≤ i, j ≤ r. A linear system is called exponential when its state-transition matrix
can be written in the matrix exponential form Φ(t, t0) = e

Γ(t,t0), where Γ(t, t0) is
an n × n matrix function of t and t0. Any commutative system is exponential. In
such a case, Γ(t, t0) =

∫ t
t0
A(τ) dτ . If A(t) is a triangular matrix, then the solution

can be reduced to a readily solvable set of scalar differential equations. When A(t)
is a diagonal or a constant matrix, then it meets the commutative property and the
results are well known. Summarizing, the class of systems for which A(t) commutes
with its integral is actually fairly large [16], [20], [25].
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We need to know the conditions ensuring the commutativity property of an ex-
panded system S̃ when assuming the commutativity of the initial system S. This
result is given by the following proposition.

Proposition 3.6. Consider S and S̃ given in (2.1) and (2.2), respectively, such
that S̃ ⊃ S. Suppose S a commutative system. Then S̃ is a commutative system if
and only if

V A(t)U

(∫ t

t0

M(τ) dτ

)
+M(t)V

(∫ t

t0

A(τ) dτ

)
U +M(t)

(∫ t

t0

M(τ) dτ

)

= V

(∫ t

t0

A(τ) dτ

)
UM(t) +

(∫ t

t0

M(τ) dτ

)
V A(t)U +

(∫ t

t0

M(τ) dτ

)
M(t)

(3.6)

for all t ∈ [t0, tf ].
Proof. The relation Ã(t)(

∫ t
t0
Ã(τ) dτ)= (

∫ t
t0
Ã(τ) dτ)Ã(t) for all t ∈ [t0, tf ] holds

when considering Ã(t) = V A(t)U +M(t) given in (2.6) together with (3.6).
The remainder of this subsection specifies Theorems 3.1 and 3.3 for the class of

commutative systems.
Theorem 3.7. Consider that S and S̃ given in (2.1) and (2.2), respectively, are

commutative systems. (S̃, J̃) ⊃ (S, J) if and only if

U

(∫ t

t0

M(τ) dτ

)i
V = 0, U

(∫ t

τ

M(β) dβ

)i−1

N(τ)R = 0, V TMΠV = 0,

V TMQ∗(t)V = 0, RTNR∗(t)R = 0

(3.7)

for i = 1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t].
Proof. Since S̃ is a commutative system, the expanded transition matrix is given

by Φ̃(t, t0)=
∑∞
k=0

1
k! (
∫ t
t0
Ã(τ) dτ)

k
. Substituting Φ̃(t, t0) into the corresponding re-

quirements given in Theorem 3.1, the proof is concluded.
Theorem 3.8. Consider that S and S̃ given in (2.1) and (2.2), respectively, are

commutative systems such that S̃ ⊃ S. A control law ũ(t) = −K̃(t) x̃(t) for S̃ is
contractible to the control law u(t) = −K(t)x(t) for S if and only if

QF (t)

(∫ t

t0

M(τ) dτ

)i−1

V = 0, QF (t)

(∫ t

τ

M(β) dβ

)i−1

N(τ)R = 0(3.8)

for i = 1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t].
Proof. By Theorem 3.3 with Φ̃(t, t0)=

∑∞
k=0

1
k! (
∫ t
t0
Ã(τ) dτ)

k
and by using rela-

tions (2.6), the theorem is proved.

3.3. Expansion-contraction process.
Change of basis. Since the inclusion principle does not depend on the specific

basis used in the state, input, and output spaces, we may introduce convenient changes
of basis in S̃ [3], [4], [19]. Thus the expansion-contraction process between systems S
and S̃ can be illustrated in the form

S −→ S̃ −−→ ˜̄S −−→ S̃ −→ S,

R
n V−→ R

ñ T−1
A−−→ R̄

ñ T
A−−→ R

ñ U−→ R
n

,

R
m R−→ R

m̃ T−1
B−−→ R̄

m̃ T
B−−→ R

m̃ Q−→ R
m

,

(3.9)
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where ˜̄S denotes the expanded system with the new basis. The idea of using changes
of basis in the expansion-contraction process was already introduced by Ikeda, Šiljak,
and White [13] to represent S̃ in a canonical form. Given V and R, we define their
pseudoinverses as U = (V TV )−1V T and Q = (RTR)−1RT , respectively. Let us
consider the changes of basis

T
A
= (V W

A
) , T

B
= (R W

B
) ,(3.10)

where W
A
, W

B
are chosen such that ImW

A
= Ker U , ImW

B
= KerQ. Using

these transformations, it is easy to verify the conditions Ū V̄ = In, V̄ Ū = ( In 0
0 0 ),

and Q̄R̄ = Im, R̄Q̄ = ( Im 0
0 0 ), where V̄ = T−1

A
V = ( In0 ), Ū = UT

A
= ( In 0 ) and

R̄ = T−1
B
R = ( Im0 ), Q̄ = QT

B
= ( Im 0 ). In fact, obtaining these conditions is the

motivating factor for defining T
A
and T

B
in (3.10). These conditions will be crucial to

obtaining explicit block structures (with zero blocks) of the complementary matrices
and, further, to giving a general strategy for their selection.

Expansion-contraction in the new basis. For simplicity, we will consider the
system S having the following structure:

(
ẋ1(t)
ẋ2(t)
ẋ3(t)

)
=




A11(t) A12(t)
�

�

�

A13(t)

−−− −−−
A21(t)

�

�

�

A22(t)
�

�

�

A23(t)

−−− −−−
A31(t)

�

�

�

A32(t) A33(t)



(
x1(t)
x2(t)
x3(t)

)
+




B11(t) B12(t)
�

�

�

B13(t)

−−− −−−
B21(t)

�

�

�

B22(t)
�

�

�

B23(t)

−−− −−−
B31(t)

�

�

�

B32(t) B33(t)



(
u1(t)
u2(t)
u3(t)

)
,

(3.11)

where Aii(t), Bii(t), i = 1, 2, 3, are ni×ni, ni×mi matrices, respectively. This system
is composed of two subsystems with one overlapped part, but it is well known that
it can be easily generalized for any number of interconnected overlapped subsystems.
This structure has been extensively adopted as a prototype structure in the literature
[12], [14], [22].

Consider (˜̄S, ˜̄J) defined by the problem

min
˜̄u(t)

˜̄J
(
˜̄x0, ˜̄u(t)

)
= ˜̄xT (tf )

˜̄Π ˜̄x(tf ) +

∫ tf

t0

[
˜̄xT (t) ˜̄Q∗(t)˜̄x(t) + ˜̄uT (t) ˜̄R∗(t)˜̄u(t)

]
dt

s.t. ˜̄S : ˙̄̃x(t) = ˜̄A(t) ˜̄x(t) + ˜̄B(t) ˜̄u(t),

(3.12)

where ˜̄A(t), ˜̄B(t), ˜̄Π, ˜̄Q∗(t), and ˜̄R∗(t) denote the matrices in the system ˜̄S of appro-
priate dimensions. The vectors ˜̄x(t) and ˜̄u(t) are defined as ˜̄x(t) = T−1

A
V x(t) = V̄ x(t),

˜̄u(t) = T−1
B
Ru(t) = R̄u(t). Now, analogously to S̃, denote the relations for the system

˜̄S as

˜̄A(t) = V̄ A(t)Ū + M̄(t), ˜̄B(t) = V̄ B(t)Q̄+ N̄(t),

˜̄Π = ŪTΠŪ + M̄Π,
˜̄Q∗(t) = ŪTQ∗(t)Ū + M̄Q∗(t),(3.13)

˜̄R∗(t) = Q̄TR∗(t)Q̄+ N̄R∗(t),

where the new complementary matrices are

M̄(t) = T−1
A
M(t)T

A
, N̄(t) = T−1

A
N(t)T

B
, M̄Π = T

T
A
MΠTA ,

M̄Q∗(t) = TT
A
MQ∗(t)T

A
, N̄R∗(t) = TT

B
NR∗(t)T

B
.

(3.14)
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Note. Since changes of basis do not affect the commutativity property, the system
˜̄S is commutative if S̃ is commutative.

First, we analyze the structure of the matrices M̄(t), N̄(t), M̄Π, M̄Q∗(t), and

N̄R∗(t) in the expanded system. Consider the complementary matrices of S̃ having
the form M(t) = (Mij(t)), N(t) = (Nij(t)), MΠ = (MΠij ), MQ∗(t) = (MQ∗

ij
(t)),

NR∗(t) = (NR∗
ij
(t)) for i, j = 1, . . . , 4, with MΠij = M

T
Πji
, MQ∗

ij
(t) = MT

Q∗
ji
(t),

NR∗
ij
(t) = NT

R∗
ji
(t), where each matrix has appropriate dimensions corresponding to

the initial structure given in (3.11). It is convenient to deal with matrix blocks when
using the matrices T

A
, T

B
, T−1

A
, T−1

B
. Suppose the matrices

M̄(t) =
(
M̄11(t) M̄12(t)

M̄21(t) M̄22(t)

)
, N̄(t) =

(
N̄11(t) N̄12(t)

N̄21(t) N̄22(t)

)
, M̄Π =

(
M̄Π11 M̄Π12

M̄T
Π12

M̄Π22

)
,

M̄Q∗(t) =

(
M̄Q∗

11
(t) M̄Q∗

12
(t)

M̄T
Q∗

12
(t) M̄Q∗

22
(t)

)
, N̄R∗(t) =

(
N̄R∗

11
(t) N̄R∗

12
(t)

N̄TR∗
12

(t) N̄R∗
22

(t)

)
,

where M̄11(t), M̄22(t) are n×n, (ñ − n)× (ñ − n) matrices, respectively. N̄11(t),
N̄22(t) are n×m, (ñ − n)×(m̃ − m) matrices, respectively. M̄Π11

, M̄Π22
are n×n,

(ñ− n)×(ñ− n) matrices, respectively. M̄Q∗
11
(t), M̄Q∗

22
(t) are n×n, (ñ− n)×(ñ− n)

matrices, respectively. N̄R∗
11
(t), N̄R∗

22
(t) are m×m, (m̃ − m)× (m̃ − m) matrices,

respectively. We need to know the form of the submatrices M̄ij(t), N̄ij(t), M̄Πij ,
M̄Q∗

ij
(t), and N̄R∗

ij
(t) for i, j = 1, 2. This is given in the following propositions.

Proposition 3.9. Consider that S and ˜̄S given in (2.1) and (3.12), respectively,

are commutative systems such that ˜̄S ⊃ S. Then M̄(t) = (
0 M̄12(t)

M̄21(t) M̄22(t)
), where (0) de-

notes a matrix of order n, and the other blocks satisfy
∫ t
t0
M̄12(τ) dτ(

∫ t
t0
M̄22(τ) dτ)

i−2∫ t
t0
M̄21(τ) dτ = 0 for i = 2, . . . , ñ and all t ∈ [t0, tf ].
Proof. Imposing the first condition given in Theorem 3.7, Ū(

∫ t
t0
M̄(τ) dτ)

i
V̄ = 0

for i = 1, we get Ū(
∫ t
t0
M̄(τ) dτ)V̄ = 0 and consequently

∫ t
t0
M̄11(τ) dτ = 0 for all

t ∈ [t0, tf ]. Then M̄11(t) = 0 for all t ∈ [t0, tf ]. For µ = 2, . . . , ñ we obtain
(∫ t

t0

M̄(τ) dτ

)µ
=



∫ t
t0
M̄12(τ) dτ

(∫ t
t0
M̄22(τ) dτ

)µ−2 ∫ t
t0
M̄21(τ) dτ |

|(∫ t
t0
M̄22(τ) dτ

)µ−1 ∫ t
t0
M̄21(τ) dτ |

(3.15)

| ∫ t
t0
M̄12(τ) dτ

(∫ t
t0
M̄22(τ) dτ

)µ−1

|
|
(∫ t
t0
M̄22(τ) dτ

)µ
+
j=µ−2∑
j=0

(∫ t
t0
M̄22(τ) dτ

)j ∫ t
t0
M̄21(τ) dτ

∫ t
t0
M̄12(τ) dτ

(∫ t
t0
M̄22(τ) dτ

)µ−2−j


 .

Then, for i = k ≥ 2, Ū(∫ t
t0
M̄(τ) dτ)

k
V̄ = 0 implies

∫ t
t0
M̄12(τ) dτ (

∫ t
t0
M̄22(τ) dτ)

k−2∫ t
t0
M̄21(τ) dτ = 0. Repeating this process for i = ñ, Ū(

∫ t
t0
M̄(τ) dτ)

ñ
V̄ = 0 leads to∫ t

t0
M̄12(τ) dτ(

∫ t
t0
M̄22(τ) dτ)

ñ−2
∫ t
t0
M̄21(τ) dτ = 0 for all t ∈ [t0, tf ].

Proposition 3.10. Consider that S and ˜̄S, given in (2.1) and (3.12), respectively,

are commutative systems such that ˜̄S ⊃ S. Then N̄(t) = (
0 N̄12(t)

N̄21(t) N̄22(t)
), where (0) is

an n×m matrix and the other blocks satisfy
∫ t
t0
M̄12(τ) dτ (

∫ t
τ
M̄22(β) dβ)

i−2
N̄21(τ) =

0 for i = 2, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t].
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Proof. This proof is similar to Proposition 3.9 from the condition Ū (
∫ t
τ
M̄(β) dβ)

i−1

N̄(τ)R̄ = 0, i = 1, . . . , ñ, given in Theorem 3.7 and using Proposition 3.9.
Note. The conditions imposed by Theorem 3.7 on matricesM(t) andN(t) in order

to verify ˜̄S ⊃ S have been reduced to conditions on submatrices, that is,
∫ t
t0
M̄12(τ) dτ

(
∫ t
t0
M̄22(τ) dτ)

i−2
∫ t
t0
M̄21(τ) dτ = 0 and

∫ t
t0
M̄12(τ) dτ (

∫ t
τ
M̄22(β) dβ)

i−2
N̄21(τ) = 0

for i = 2, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t], where M̄(t) = (
0 M̄12(t)

M̄21(t) M̄22(t)
) and

N̄(t) = (
0 N̄12(t)

N̄21(t) N̄22(t)
).

Theorem 3.11. Consider that S and ˜̄S, given in (2.1) and (3.12), respec-

tively, are commutative systems. (˜̄S, ˜̄J) ⊃ (S, J) if M̄Π = (
0 M̄Π12

M̄T
Π12

M̄Π22

), M̄Q∗(t) =

(
0 M̄Q∗

12
(t)

M̄T
Q∗

12
(t) M̄Q∗

22
(t)
), N̄R∗(t) = (

0 N̄R∗
12

(t)

N̄TR∗
12

(t) N̄R∗
22

(t)
), and either

(a) M̄(t) =
(

0 M̄12(t)

0 M̄22(t)

)
, N̄(t) =

(
0 N̄12(t)

0 N̄22(t)

)
or

(b) M̄(t) =
( 0 0

M̄21(t) M̄22(t)

)
, N̄(t) =

(
0 N̄12(t)

N̄21(t) N̄22(t)

)(3.16)

for all t ∈ [t0, tf ].
Proof. Considering the conditions (a) and (b) given by Theorem 3.2, respectively,

in the new expanded system ˜̄S, the proof is straightforward.

Contractibility. The idea is to design control laws in the expanded system S̃
so that we can contract and implement them into the original system S. Now, we

want to determine the conditions under which a control law designed in ˜̄S can be
contracted into the system S in terms of the complementary matrices.

Suppose that the complementary matrix F (t) has the form F (t) = (Fij(t)), i, j =
1, . . . , 4, where F11(t), F22(t), F33(t), and F44(t) are m1 × n1, m2 × n2, m2 × n2,

and m3 × n3 matrices, respectively. Define F̄ (t) = ( F̄11(t) F̄12(t)

F̄21(t) F̄22(t)
), where F̄11(t) and

F̄22(t) are m×n and (m̃ − m)× (ñ − n) matrices, respectively. Similarly, denote
K(t) = (Kij(t)), i, j = 1, . . . , 3, where K11(t), K22(t), K33(t) are mi×ni matrices,
i = 1, . . . , 3, respectively. The gain matrix ˜̄K(t) for the system ˜̄S has the form ˜̄K(t) =

R̄K(t)Ū + F̄ (t), where ˜̄K(t) = T−1
B
K̃(t)T

A
and F̄ (t) = T−1

B
F (t)T

A
. By Definition

2.4, ˜̄u(t) = − ˜̄K(t)˜̄x(t) of ˜̄S is contractible to the control law u(t) = −K(t)x(t) of S

whenever K(t)x(t;x0, u) = Q̄
˜̄K(t)˜̄x(t; V̄ x0, R̄u) for all t ∈ [t0, tf ].

So far we do not know the form of the complementary matrix F (t) and the
conditions which must be satisfied in order to get a contractible control law. The
following theorem answers this question.

Theorem 3.12. Consider that S and ˜̄S given in (2.1) and (3.12), respectively,

are commutative systems such that ˜̄S ⊃ S. A control law ˜̄u(t) = − ˜̄K(t)˜̄x(t) in the
expanded system ˜̄S is contractible to the control law u(t) = −K(t)x(t) of S if and only

if F̄ = (
0 F̄12(t)

F̄21(t) F̄22(t)
) and satisfies

F̄12(t)

(∫ t

t0

M̄22(τ) dτ

)i−1 ∫ t

t0

M̄21(τ) dτ = 0,

F̄12(t)

(∫ t

τ

M̄22(β) dβ

)j−1

N̄21(τ) = 0(3.17)
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for i = 1, . . . , ñ− 1, j = 1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t].
Proof. Let F̄ (t) be F̄ (t) = ( F̄11(t) F̄12(t)

F̄21(t) F̄22(t)
). Imposing the first condition given in

Theorem 3.8, that is, Q̄F̄ (t) (
∫ t
t0
M̄(τ) dτ)

i−1
V̄ = 0 for i = 1, we obtain Q̄F̄ (t)V̄ = 0

and thus that F̄11(t) = 0. For i = k ≥ 2, Q̄F̄ (t)(
∫ t
t0
M̄(τ) dτ)

k−1
V̄ = 0 implies

F̄12(t)(
∫ t
t0
M̄22(τ) dτ)

k−2
∫ t
t0
M̄21(τ) dτ = 0. For i = ñ, Q̄F̄ (t) (

∫ t
t0
M̄(τ) dτ)

ñ−1
V̄ = 0

implies that F̄12(t)(
∫ t
t0
M̄22(τ) dτ)

ñ−2
∫ t
t0
M̄21(τ) dτ = 0 holds for all t ∈ [t0, tf ]. This

proves the first equation in (3.17). Similarly, Q̄F̄ (t)(
∫ t
τ
M̄(β) dβ)

i−1
N̄(τ)R̄ = 0 for i =

1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t]; this equality leads to F̄12(t)(
∫ t
τ
M̄22(β) dβ)

j−1·
N̄21(τ) = 0 for j = 1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t].

3.4. Selection of complementary matrices. The above results do not depend
on the selection of the matrices V and R, and thus they can be applied to any
expansion-contraction process. To use these results in a practical scheme, we start by
defining specific transformations V and R to expand a given problem (2.1). Here we
consider the following expansion transformation matrices:

V =


 In1 0 0

0 In2
0

0 In2
0

0 0 In3


 , R =


 Im1 0 0

0 Im2
0

0 Im2
0

0 0 Im3


 .(3.18)

These usual transformations are chosen to lead, in a simple natural way, to an ex-
panded system where the state vector x2(t) and the control vector u2(t) appear re-
peated in x̃(t) = (xT1 (t), x

T
2 (t), x

T
2 (t), x

T
3 (t))

T and ũ(t) = (uT1 (t), u
T
2 (t), u

T
2 (t), u

T
3 (t))

T ,

respectively. According to (3.10), the changes of basis to define the system ˜̄S for ma-
trices (3.18) are given by

T
A
=


 In1

0 0 0

0 In2 0 In2

0 In2
0 −In2

0 0 In3 0


 , T−1

A
=


 In1

0 0 0

0 1
2 In2

1
2 In2

0

0 0 0 In3

0 1
2 In2

− 1
2 In2

0


 .(3.19)

Analogously, they are given by T
B
, T−1

B
. The following theorems express the structure

of the complementary matrices M(t), N(t), MΠ, MQ∗(t), NR∗(t), and F (t) in the
initial basis.

Theorem 3.13. Consider that S and S̃, given in (2.1) and (2.2), respectively,
are commutative systems. S̃ ⊃ S if and only if




∫ t
t0
M12(τ) dτ∫ t

t0
(M23(τ)+M33(τ)) dτ∫ t

t0
M42(τ) dτ


(∫ t

t0

(M22(τ)+M33(τ) ) dτ

)i−2∫ t

t0

(M21(τ)M22(τ)+M23(τ)M24(τ) ) dτ = 0,




∫ t
t0
M12(τ) dτ∫ t

t0
(M23(τ)+M33(τ)) dτ∫ t

t0
M42(τ) dτ


(∫ t

τ

(M22(β)+M33(β) ) dβ

)i−2(
N21(τ)N22(τ)+N23(τ)N24(τ)

)
= 0

(3.20)

for i = 2, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t], where

M(t) =

(
0 M12(t) −M12(t) 0

M21(t) M22(t) M23(t) M24(t)
−M21(t) −(M22(t)+M23(t)+M33(t)) M33(t) −M24(t)

0 M42(t) −M42(t) 0

)
.(3.21)
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The matrix N(t) has the same structure as M(t).
Proof. Consider M̄(t) = T−1

A
M(t)T

A
, given in (3.14), where T

A
and T−1

A
are given

in (3.19). From Proposition 3.9, M̄11(t) = 0 and the matrix blocks M̄ij(t), i, j =
1, 2, can be identified. Consequently, we obtain the structure of the complementary
matrix M(t) given in (3.21). We proceed analogously for the matrix N(t) by using

N̄(t) = T−1
A
N(t)T

B
given in (3.14) and Proposition 3.10. Now, imposing

∫ t
t0
M̄12(τ) dτ

(
∫ t
t0
M̄22(τ) dτ)

i−2
∫ t
t0
M̄21(τ) dτ = 0 and

∫ t
t0
M̄12(τ) dτ (

∫ t
τ
M̄22(β) dβ)

i−2
N̄21(τ) = 0

for i = 2, . . . , ñ, given by Propositions 3.9 and 3.10, respectively, we get (3.20).
Proposition 3.14. Consider that S and S̃, given in (2.1) and (2.2), respectively,

are commutative systems such that S̃ ⊃ S. Then the corresponding expanded matrix
Ã(t) has the form

Ã(t) =




A11(t)
1
2A12(t)+M12(t)

1
2A12(t)−M12(t) A13(t)

A21(t)+M21(t)
1
2A22(t)+M22(t)

1
2A22(t)+M23(t) A23(t)+M24(t)

A21(t)−M21(t)
1
2A22(t)−(M22(t)+M23(t)+M33(t))

1
2A22(t)+M33(t) A23(t)−M24(t)

A31(t)
1
2A32(t)+M42(t)

1
2A32(t)−M42(t) A33(t)


 .

A similar structure can be presented for the expanded control matrix B̃(t).
Proof. The proof is straightforward by substituting the matrix M(t) given in

(3.21) into Ã(t) = V A(t)U+M(t). The same holds for B̃(t) = V B(t)Q+N(t).
Theorem 3.15. Consider that S and S̃, given in (2.1) and (2.2), respectively,

are commutative systems. (S̃, J̃) ⊃ (S, J) if

MΠ =




0 MΠ12
−MΠ12

0

MT
Π12

−MΠ23−MT
Π23

−MΠ33 MΠ23 MΠ24

−MT
Π12

MT
Π23

MΠ33 −MΠ24

0 MT
Π24

−MT
Π24

0


 ,

MQ∗(t) =




0 MQ∗
12

(t) −MQ∗
12

(t) 0

MT
Q∗

12
(t) −MQ∗

23
(t)−MT

Q∗
23

(t)−MQ∗
33

(t) MQ∗
23

(t) MQ∗
24

(t)

−MT
Q∗

12
(t) MT

Q∗
23

(t) MQ∗
33

(t) −MQ∗
24

(t)

0 MT
Q∗

24
(t) −MT

Q∗
24

(t) 0


 ,

NR∗(t) =




0 NR∗
12

(t) −NR∗
12

(t) 0

NTR∗
12

(t) −NR∗
23

(t)−NTR∗
23

(t)−NR∗
33

(t) NR∗
23

(t) NR∗
24

(t)

−NTR∗
12

(t) NTR∗
23

(t) NR∗
33

(t) −NR∗
24

(t)

0 NTR∗
24

(t) −NTR∗
24

(t) 0


 and either

(a) M(t) =

(
0 M12(t) −M12(t) 0
0 M22(t) −M22(t) 0
0 M32(t) −M32(t) 0
0 M42(t) −M42(t) 0

)
, N(t) =

(
0 N12(t) −N12(t) 0
0 N22(t) −N22(t) 0
0 N32(t) −N32(t) 0
0 N42(t) −N42(t) 0

)
or

(b) M(t) =

(
0 0 0 0

M21(t) M22(t) M23(t) M24(t)
−M21(t) −M22(t) −M23(t) −M24(t)

0 0 0 0

)
,

N(t) =

(
0 N12(t) −N12(t) 0

N21(t) N22(t) N23(t) N24(t)
−N21(t) −(N22(t)+N23(t)+N33(t)) N33(t) −N24(t)

0 N42(t) −N42(t) 0

)

(3.22)

for all t ∈ [t0, tf ].
Proof. By using the equations (3.14) together with Theorem 3.11, the proof is

concluded.
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Theorem 3.16. Consider that S and S̃, given in (2.1) and (2.2), respectively,
are commutative systems such that S̃ ⊃ S. A control law ũ(t) = −K̃(t)x̃(t) in the
expanded system S̃ is contractible to the control law u(t) = −K(t)x(t) of the system
S if and only if

(
F12(t)

F23(t)+F33(t)

F42(t)

)(∫ t

t0

(M22(τ)+M33(τ) ) dτ

)i−1 ∫ t

t0

(M21(τ) M22(τ)+M23(τ) M24(τ) ) dτ = 0,

(
F12(t)

F23(t)+F33(t)

F42(t)

)(∫ t

τ

(M22(β)+M33(β) ) dβ

)j−1(
N21(τ) N22(τ)+N23(τ) N24(τ)

)
= 0

(3.23)

for i = 1, . . . , ñ− 1, j = 1, . . . , ñ, all t ∈ [t0, tf ], and all τ ∈ [t0, t], where the matrix
F (t) has the form

F (t) =




0 F12(t) −F12(t) 0

F21(t) F22(t) F23(t) F24(t)

−F21(t) −(F22(t)+F23(t)+F33(t)) F33(t) −F24(t)

0 F42(t) −F42(t) 0


 .(3.24)

Proof. Consider F̄ (t) = T−1
B
F (t)T

A
with T−1

B
, T

A
given by (3.19). From Theorem

3.12, F̄11(t) = 0 and the other matrix blocks F̄ij(t), i, j = 1, 2, can be identified. Thus
we obtain the structure of the complementary matrix F (t) given in (3.24). We get
(3.23) by imposing (3.17).

Note. From (3.20), we may identify some important cases in order to obtain
possible structures of the complementary matrices M(t) and N(t). They are

(a) M12(t) = 0, M23(t) +M33(t) = 0, M42(t) = 0,

(b) M21(t) = 0, M22(t) +M23(t) = 0, M24(t) = 0, N21(t) = 0,(3.25)

N22(t) +N23(t) = 0, N24(t) = 0,

(c) others

for all t ∈ [t0, tf ].
We focus our attention on the case (c) because it offers more freedom to select the

corresponding complementary matrices than do cases (a) and (b). Now we assume
thatM22(t)+M33(t) = 0. Then (3.20) holds for i > 2, all t ∈ [t0, tf ], and all τ ∈ [t0, t].
If i = 2, choosing M23(t)+M33(t) = 0 or M22(t)+M23(t) = 0 in (3.20), two subcases
of case (c) are obtained.

Subcase (c1): M23(t) +M33(t) = 0. Then, relations (3.20) become(
M12(t)

0
M42(t)

)( ∫ t
t0
M21(τ) dτ

∫ t
t0
M22(τ) dτ

∫ t
t0
M24(τ) dτ

)
= 0,(

M12(t)
0

M42(t)

)(
N21(τ) N22(τ)+N23(τ) N24(τ)

)
= 0.

(3.26)

Subcase (c2): M22(t) +M23(t) = 0. Then (3.20) becomes(
M12(t)
M22(t)
M42(t)

)( ∫ t
t0
M21(τ) dτ 0

∫ t
t0
M24(τ) dτ

)
= 0,(

M12(t)
M22(t)
M42(t)

)(
N21(τ) N22(τ)+N23(τ) N24(τ)

)
= 0

(3.27)
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for all t ∈ [t0, tf ] and all τ ∈ [t0, t].
The above cases give possible structures for choosing M(t) and N(t). A similar

track should be followed to obtain structures for the other complementary matrices
[3], [4], [19]. Finally, the designer can select specific values of free elements of the block
complementary matrices in (3.26) or (3.27) according to given design requirements.
Simultaneously, it should be checked that the matrix M(t) satisfies condition (3.6) in
Proposition 3.6. In the next section, this procedure is illustrated in the context of the
design of overlapping decentralized controllers.

Note. It is important to recognize that it is not necessary to know the transi-
tion matrices explicitly in order to select the complementary matrices satisfying the
required conditions.

4. Example.

Objective. Consider problem (2.1) for system (3.11) with the specific matrices

A(t) =




−t 0 0 �

�
0

− − − − −
0 �

�
0 0 �

�
−t

0 �

�
0 0 �

�
0

− − − − −
0 �

�
0 0 −t


 , B(t) =




e−t 0 �

�
0

− − −
0 �

�
0 �

�
−0.5

−1 �

�
0 �

�
e−t

− − − −
−3 �

�
0 0


 ,(4.1)

Π = Q∗ = diag(1, 1, 1, 1), and R∗ = diag(1, 1, 1). The overlapping decomposition is
determined by dashed lines. Consider the initial and the terminal time as t0 = 0 and
tf = 3, respectively. System (4.1) is a commutative system by Definition 3.5.

The objective is to show the potential advantages offered by the characterization
of the presented complementary matrices for an overlapping decentralized state LQ
optimal control design.

We consider the following scheme as in [14].

(1) The pair (S, J) in (2.1) is expanded to (S̃, J̃). The system S̃ can be represented
as

S̃ : ˙̃x(t) = Ã
D
(t) x̃(t) + B̃

D
(t) ũ(t) + Ã

C
(t) x̃(t) + B̃

C
(t) ũ(t),(4.2)

where Ã
D
(t), B̃

D
(t) are the block diagonal matrices and Ã

C
(t), B̃

C
(t) the correspond-

ing interconnection matrices. Check the controllability of the pair (Ã
D
(t), B̃

D
(t)).

(2) A decentralized control law ũ
D
(t) is designed for the decoupled expanded

system

S̃
D
: ˙̃x(t) = Ã

D
(t) x̃(t) + B̃

D
(t) ũ(t),(4.3)

where ũ
D
(t) = −K̃

D
(t) x̃(t) and K̃

D
(t) = (R̃∗)−1(t)B̃T

D
(t)P̃

D
(t). The matrix P̃

D
(t) is

the symmetric, nonnegative definite solution of the Riccati equation

˙̃P
D
(t) = −ÃT

D
(t)P̃

D
(t)− P̃

D
(t)Ã

D
(t) + P̃

D
(t)B̃

D
(t)(R̃∗)

−1
(t)B̃T

D
(t)P̃

D
(t)− Q̃∗(t)

(4.4)

with the boundary condition P̃
D
(tf ) = Π̃D .

(3) This control is contracted to u
D
(t) = −QK̃

D
(t)V x(t) = −K

D
(t)x(t), to be

implemented into the original system S. The evaluation of this control law is made
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by means of the concept of suboptimality, which is determined by the value of the
cost function in (2.1) for this controller. It is known that this value is given by

J⊕(x0) = xT0H(t0)x0,(4.5)

where H(t) is the nonnegative definite solution of the differential Lyapunov equation

Ḣ(t) =− [A(t)−B(t)K
D
(t)]

T
H(t)−H(t) [A(t)−B(t)K

D
(t)]

− [Q∗(t) +KT
D
(t)R∗(t)K

D
(t)
](4.6)

satisfying the boundary condition H(tf ) = Π.
In order to eliminate the dependence of J⊕ on the initial state, it is possible

to assume x0 as a random variable uniformly distributed over a dimensional unit
sphere. Then the expected value of the performance criterion can be evaluated as
J⊕ = tr{H(t0)}, where tr{·} denotes the trace operator [7], [17].

Consider the complementary matrices N(t) = 0, MΠ = 0, MQ∗(t) = 0, NR∗(t) =
0, and F (t) = 0, which are particular simple cases that verify Theorems 3.15 and
3.16. The complementary matrix M(t) is selected within the cases described in the
previous section, and J⊕ is computed. To evaluate and compare the results obtained
by the proposed method, we will also consider the selection of M(t) corresponding to
the cases of aggregations and restrictions.

Results. Overlapping decomposition using an aggregation. Choosing a typical
matrix M used in the literature [22], we obtain

M(t) =




0 0 0 0

A21
1
2A22 − 1

2A22 −A23

−A21 − 1
2A22

1
2A22 A23

0 0 0 0


 =




0 0 0 0 0 0
0 0 0 0 0 t
0 0 0 0 0 0
0 0 0 0 0 −t
0 0 0 0 0 0
0 0 0 0 0 0


(4.7)

with the corresponding expanded system matrix

Ã(t) =

(
A11

1
2A12

1
2A12 A13

2A21 A22 0 0
0 0 A22 2A23

A31
1
2A32

1
2A32 A33

)
=




−t 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −2t
0 0 0 0 0 0
0 0 0 0 0 −t


 .(4.8)

Overlapping decomposition using a restriction. Another frequent choice of the
matrix M(t) [8], [12], [14], [22] is given by

M(t) =




0 1
2A12 − 1

2A12 0

0 1
2A22 − 1

2A22 0

0 − 1
2A22

1
2A22 0

0 − 1
2A32

1
2A32 0


 =


 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4.9)

with the corresponding expanded system matrix

Ã(t) =

(
A11 A12 0 A13

A21 A22 0 A23

A21 0 A22 A23

A31 0 A32 A33

)
=




−t 0 0 0 0 0
0 0 0 0 0 −t
0 0 0 0 0 0
0 0 0 0 0 −t
0 0 0 0 0 0
0 0 0 0 0 −t


 .(4.10)

Overlapping decomposition using the proposed method. Considering subcase (c1)
with the purpose of maximizing the number of zeros in the off-diagonal blocks of
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the expanded matrix Ã(t), we select the submatrices of M(t) as follows: M12(t) =
1
2A12(t) = ( 0 0 ), M21(t) = A21(t) = (

0

0
), M24(t) = −A23(t) = (

t

0
). We also select

M42(t) = ( 0 t ). From (3.26), if M42(t)M22(t) = 0, then the conditions for subcase

(c1) are satisfied. Consider M22(t) = (
0 m23

0 0
). Then the complementary matrix M(t)

has the form

M(t) =




0 0 0 0 0 0
0 0 m23 0 m23 t
0 0 0 0 0 0
0 0 −m23 0 −m23 −t
0 0 0 0 0 0
0 0 t 0 −t 0


(4.11)

with the degree of freedom to select the value of m23. Notice that M(t) satisfies
condition (3.6), ensuring that S̃ is a commutative system.

Following the steps given above and using an algorithm to minimize tr{H(t0)}
with respect to m23, we can summarize the obtained results as follows.

Proposed method Aggregation Restriction Centralized case

J⊕ = 7.95 J⊕ = 15.30 J⊕ = 14.80 J◦ = 5.39
m23 = −0.67

Note that J◦ is the cost for the centralized optimal control solving (2.1). Since
a goal of a decentralized control is to drive the system as close as possible to the
(ideal) centralized control, we may observe the best performance when using the
proposed method for the selection of the complementary matrices. This method
represents a reduction of 48% and 46.3% in the J⊕ with respect to the aggregations
and restrictions, respectively. These results illustrate the freedom introduced by this
approach in selecting the complementary matrices to minimize the cost function in
overlapping decentralized control design. The minimization can be considered for
more elements of M(t) and also for other complementary matrices.

5. Conclusion. The inclusion principle has been specialized for a quadratic op-
timal control design for both general and commutative continuous-time LTV systems.
The strategy of generalized selection of complementary matrices has been developed
for commutative continuous-time LTV systems. It includes the presentation of a gen-
eral structure of complementary matrices, including explicit conditions on them as
well as optimization of their free elements. This structure offers flexibility in selec-
tion of complementary matrices, resulting in more appropriate costs when designing
quadratic optimal control via overlapping decompositions for this class of systems.
The efficiency of the proposed method has been demonstrated on an illustrative ex-
ample.
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[10] A. İftar and Ü. Özgüner, Overlapping decompositions, expansions, contractions, and stabil-
ity of hybrid systems, IEEE Trans. Automat. Control, 43 (1998), pp. 1040–1055.
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Abstract. The finite time–horizon risk-sensitive limit problem for continuous nonlinear systems
is considered. Previous results are extended to cover more typical examples. In particular, the cost
may grow quadratically, and the diffusion coefficient may depend on the state. It is shown that the
risk-sensitive value function is the solution of the corresponding dynamic programming equation. It
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1. Introduction. The nonlinear, finite time–horizon risk-sensitive limit prob-
lem is considered. It is, by now, well known that the value functions of risk-sensitive
stochastic control problems tend to converge to the value functions of the correspond-
ing robust/H∞ control problems as one approaches infinite risk aversion. This was
addressed first in the LEQG (linear-exponential-quadratic-Gaussian) case in which,
in fact, one does not need to take the risk averse limit [28], [51], [6], [12]. In the
nonlinear case, results were first developed for finite time–horizon control problems
[52], [29], [17], [42], [43]. Further studies considered nonlinear, infinite time–horizon
problems (in which case one gets the H∞ limit) [18], [43], [19], [16], [44], [23], [47], [38],
[31], [5] and nonlinear escape problems [37], [9]. Other studies have involved discrete
systems [48], [13], [15] and the partial observations case [7], [30].

The results for both the finite time–horizon problem and the infinite time–horizon
problem have mainly been obtained under assumptions which preclude quadratic cost
criteria. In other words, the LEQG results were not subsumed by the nonlinear
results. Since control systems for nonlinear systems are often designed by analogy
with the linear-quadratic theory, it would be most desirable for the nonlinear theory
to subsume the LEQG theory. For the infinite time–horizon problem, this is addressed
in a preliminary fashion in [27] and [38] (with some results taken from [39], [40] in this
latter case). The infinite time–horizon case presents certain technical difficulties which
are not present in the finite time–horizon case. In particular, there is a certain lack of
uniqueness of solutions to the dynamic programming equation (DPE) in the infinite
time–horizon case which is not a problem in the finite time–horizon case. That is,
there may be an infinite number of viscosity solutions and multiple classical solutions
(when they exist) to the DPE. (This is in addition to the multiplicity incurred by
scaling with an additive constant.) This question is addressed in [39], [40].
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One approach to the finite time–horizon problem is to prove that the value func-
tion is a viscosity (or classical) solution to the associated DPE for the risk-sensitive
problem. This is the approach taken by most of the work to date, and is the approach
taken here as well. More specifically, let the parameter associated with risk-sensitivity
be ε (described more accurately below). This parameter will also be used to scale
the diffusion term. One wishes to show that as ε ↓ 0 (i.e., as the problem becomes
infinitely risk averse), the value function of the risk-sensitive problem converges to
that of a robust (H∞ ) control problem. It is easily seen that the DPE for the risk-
sensitive problem formally converges to the DPE for the robust control problem as
ε ↓ 0. One may also show that the value of the robust control problem is a viscosity
solution of this limit DPE. If one proves uniform boundedness and equicontinuity
results for the prelimit value functions, then by the stability of viscosity solutions
these converge (subsequentially) to viscosity solutions of the limit DPE. A key step is
to prove a uniqueness result for viscosity solutions of this limit DPE. Then, one can
assert that the solutions of the prelimit DPE (the risk-sensitive values) converge to
the unique solution of the limit DPE, which must also then be the value of the limit
robust control problem.

One of the key difficulties encountered in earlier attempts (cf. [17], [43]) employing
the plan outlined in the previous paragraph was that the viscosity solution unique-
ness results did not cover the limit DPEs except under rather strict conditions such
as globally Lipschitz conditions on the cost and dynamics. In [42], viscosity solution
uniqueness results were extended to cover certain cases in which the cost could grow
quadratically. However, it was still required that one prove a certain Lipschitz con-
dition with Lipschitz constant growing linearly with the norm of the state, uniformly
for the prelimit solutions as well as the limit. Some recent results (obtained indepen-
dently and concurrently; [3], [26]) have extended the uniqueness results in ways that
do not require this Lipschitz condition. These results allow one to extend the previous
risk-sensitive limit results to a larger class which subsumes a large variety of LEQG
problems. (However, it does not subsume all, and in particular, the control set must
be bounded.) Such extension is the subject of this paper. Consequently, the unique-
ness result of Theorem 4.1 is a central topic of the paper. Note that the uniqueness
results in [3], [26] do not cover the particular limit PDE encountered here. In section
4 of the present paper, the results of [3] are extended to yield the uniqueness result
needed here.

Some other technical difficulties arise in this case as well. In particular, there
is some difficulty with a Novikov condition that was not present previously (see the
discussion prior to Lemma 2.2). Some difficulties also arise in the proof of the equicon-
tinuity of the value functions. These last technical difficulties were overcome in this
paper by consideration of the risk-sensitive value function as the value function for
a stochastic game, and the use of known results showing that this game value is the
limit of the value of a discrete game as the time-step size goes to zero. The delicate-
ness of the required estimates is not surprising given the possible finite time blow-up
property of the Riccati equations associated with linear-quadratic problems.

In sections 2 and 3, a representation result will be obtained that states that any
classical solution of the risk-sensitive DPE must be the value function of the risk-
sensitive problem. The assumptions will also be listed in that section. Further, in
section 3, the existence of the above classical solution will be proved, and the uniform
boundedness and equicontinuity results will be obtained along the way. Section 4
contains the limit result. Of course these results require the uniqueness result dis-
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cussed above. This uniqueness result is stated and proved there. At the same time,
it is shown that this unique solution is the value of the robust control problem, thus
making the connection between the risk averse limit of the risk-sensitive problem and
the robust control problem.

2. Risk-sensitive representation result. In the stochastic (prelimit) risk-
sensitive problem, we consider a system of the form

dyεt = f(yεt , ut) dt+

√
ε

γ2
σ(yεt ) dBt,(1)

yεs = x,

where yεt is the state at time t taking values in �n, x is the (known) initial state
at time s ≥ 0, f represents the nominal dynamics with control u taking values in
U ∈ �l, and {B·,F·} is an m-dimensional Brownian motion on the probability space
(Ω,F , P ), where F0 contains all the P -negligible elements of F and σ is an n × m-
valued diffusion coefficient. The role of the parameters ε, γ > 0 will become more
clear subsequently. However, perhaps it should be remarked here that ε will be a
measure of the risk-sensitivity and scales the diffusion term in (1) above so that the
cost below will remain bounded (for each x, as a function of ε).

We consider a cost criterion of the form

Jε(s, x, u·) = E exp

{
1

ε

[∫ T

s

�(yεt , ut) dt+ ψ(yεT )

]}
,(2)

where 0 ≤ s ≤ T < ∞, T is a fixed terminal time, � is the running cost, and ψ is the
terminal cost. The value function is

V ε(s, x) = inf
u∈Us

ε log Jε(s, x, u·)

= ε log inf
u∈Us

Jε(s, x, u·),
(3)

where Us is the set of U -valued, Ft-progressively measurable controls such that there
exists a strong solution to (1).

We make the following assumptions throughout the paper.

(A0) U is a compact subset of �l,

(A1)



i) f ∈ C2(�n × U,�n),
ii) |fx(x, u)| ≤ K ∀x ∈ �n, u ∈ U,
iii) |f(x, u)| ≤ K(1 + |x|) ∀x ∈ �n, u ∈ U,
iv) |fxx(x, u)| ≤ K/(1 + |x|) ∀x ∈ �n, u ∈ U,

(A2)




i) σ ∈ C2(�n,L(�m,�n)),
ii) |σ(x)| ≤ M ∀x ∈ �n,
iii) ξTσ(x)σT (x)ξ ≥ η|ξ|2 ∀ξ, x ∈ �n,
iv) |σx(x)| ≤ Lσ/(1 + |x|) ∀x ∈ �n,
v) |σxx(x)| ≤ Lσ/(1 + |x|2) ∀x ∈ �n,

(A3)



i) � ∈ C∞(�n × U,�), |�xx(x, u)| ≤ C ∀(x, u) ∈ �n × U,
ii) �(x, u) ≥ 0 ∀(x, u) ∈ �n × U,
iii) |�(x, u)| ≤ C(1 + |x|2) ∀(x, u) ∈ �n × U,
iv) |�(x, u)− �(y, u)| ≤ C(1 + |x|+ |y|)|x − y| ∀x, y ∈ �n,∀u ∈ U,
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(A4)


i) ψ ∈ C∞(�n,�), |ψxx(x)| ≤ C ∀x ∈ �n,
ii) ψ(x) ≥ 0 ∀x ∈ �n,
iii) |ψ(x)| ≤ C(1 + |x|2) ∀x ∈ �n,
iv) |ψ(x)− ψ(y)| ≤ C(1 + |x|+ |y|)|x − y| ∀x, y ∈ �n,
v) higher (above second) derivatives of ψ uniformly bounded,

where Lσ, C, K, M, η ∈ (0,∞), and L(�m,�n) appearing in (A2.i) represents the
space of n×mmatrices. There is some intended redundancy in the above assumptions;
for instance, (A1.iii) is included to indicate that the same constant, K, will be used as
in (A1.ii), even though the existence of some constant for which (A1.iii) holds follows
from (A0), (A1.i), (A1.ii). Note that many of the assumptions are needed only for
the results of section 3, and in particular, are not needed for the uniqueness result
of section 4. Specifically in section 4 we use (A1.iii), (A2.ii), (A3.ii)–(A3.iv), (A4.ii)–
(A4.iv), while (A1.iv), (A2.v), and (A4.v) are used only to obtain the results in section
3. This is also true of the requirement of continuous, bounded second-derivatives in
(A3.i) and (A4.i). It seems that many of the above smoothness assumptions, which
are required in the prelimit analysis but not in the limit uniqueness result, might be
removable; however, the prelimit analysis is already quite technical, and so no attempt
is made to reduce the assumptions further. There will be one additional assumption
in section 3.

In section 3, it will be shown that there exists a classical solution Ṽ ε ∈ C1,2 to
the PDE

0 = Vs +
ε

2γ2

n∑
i,j=1

ai,j(x)Vxixj +
1

2γ2
∇V Ta(x)∇V(4)

+min
u∈U

[f(x, u) · ∇V + �(x, u)], 0 ≤ s ≤ T,

V (T, x) = ψ(x),

where a
.
= σσT . For the purposes of this section, assume that the classical solution

exists; we postpone the proof of this fact to the next section. Note that

1

2γ2
∇V Ta∇V = max

w∈�m

[
(σw) · ∇V − γ2

2
‖w‖2

]
.(5)

Define a measurable (see, for instance, [21]) feedback control

u(t, x) ∈ argmin[f(x, u) · ∇Ṽ ε(t, x) + �(x, u)].(6)

Using [50], one proves the existence of a strong solution, yε, to (1) with feedback
u (see [43]; also see [4] for a quicker proof of a weak solution). Then define the
Ft-progressively measurable control ũ· given by ũt(ω)

.
= u(t, yεt (ω)) for all ω ∈ Ω.

The first lemma is rather easily proved.

Lemma 2.1.

ε log Jε(s, x, ũ) ≤ Ṽ ε(s, x) ∀ s ∈ [0, T ], x ∈ �n.

Proof. By Ito’s rule and (1),
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Ṽ ε(T, yεT )− Ṽ ε(s, x) =

∫ T

s


f(yεt , ũt) · ∇Ṽ ε + Ṽ ε

t +
ε

2γ2

n∑
i,j=1

ai,j(y
ε
t )Ṽ

ε
xixj


 dt

+

∫ T

s

√
ε

γ2
(∇Ṽ ε)Tσ · dBt.

Using (4) and (6), one finds∫ T

s

�(yεt , ũt) dt+ψ(yεT ) = Ṽ ε(s, x)+

√
ε

γ2

∫ T

s

(∇Ṽ ε)Tσ dBt− 1

2γ2

∫ T

s

(∇Ṽ ε)Ta∇Ṽ ε dt,

which yields

E exp
1

ε

[∫ T

s

�(yεt , ũt) dt+ ψ(yεT )

]

= e
1
ε Ṽ

ε(s,x) · Eexp
[

1√
γ2ε

∫ T

s

(∇Ṽ ε)Tσ dBt − 1

2γ2ε

∫ T

s

(∇Ṽ ε)Ta∇Ṽ ε dt

]
.

By [25] (see also [46]), this last term is a supermartingale, and thus one has

E exp
1

ε

[∫ T

s

�(yεt , ũt) dt+ ψ(yεT )

]
≤ e

1
ε Ṽ

ε(s,x).

For the approach that we will use to prove a reverse inequality for (not neces-
sarily optimal) controls, one needs to use Girsanov’s theorem. Consequently, one is
interested in controls for which a weak form of the Novikov condition holds. More
specifically, we will be interested in controls for which there exists τ > 0, m < ∞ such
that

E exp
1

2γ2ε

[∫ t+τ

t

(∇Ṽ ε(t, yεt ))
Ta(yεt )∇Ṽ ε(t, yεt ) dt

]
≤ m ∀ 0 ≤ s ≤ t ≤ t+ τ ≤ T.

(7)
The following lemma applies only to controls satisfying (7), but this lemma will also
be useful in a generalization to appear at a later point in the paper.

Lemma 2.2. Let 0 ≤ s ≤ T and x ∈ �n. Let u ∈ Us be a control such that (7)
holds. Then

ε log Jε(s, x, u) ≥ Ṽ ε(s, x).

Proof. Let yε be the solution to (1) corresponding to the initial conditions and
control in the lemma statement. Consider the change of drift given by

yεt = x+

∫ t

s

f(yεr , ur) dr +

√
ε

γ2

∫ t

s

σ(yεr) dBr(8)

= x+

∫ t

s

[f(yεr , ur) + σ(yεr)wr] dr +

√
ε

γ2

∫ t

s

σ(yεr) dB̂r,

where w is an adapted process to be given below. By (7) (see, for instance, [32]), B̂

is a Brownian motion under new probability measure, P̂ , where

P (dω) = exp

[
− 1√

γ2ε

∫ t

s

(∇Ṽ ε(r, yεr))
Tσ(yεr) dB̂r

− 1

2γ2ε

∫ t

s

(∇Ṽ ε(r, yεr))
Ta(yεr)∇Ṽ ε(r, yεr) dr

]
P̂ (dω).
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Consequently,

E exp
1

ε

[∫ T

s

�(yεt , ut) dt+ ψ(yεT )

]

= Ê exp
1

ε

[∫ T

s

(
�(yεt , ut)− 1

2γ2
(∇Ṽ ε(t, yεt ))

Ta(yεt )∇Ṽ ε(t, yεt )

)
dt

−
√

ε

γ2

∫ T

s

(∇Ṽ ε(t, yεt ))
Tσ(yεt ) dB̂t + ψ(yεT )

]
.(9)

By Ito’s rule with dynamics (8),

Ṽ ε(T, yεT )−Ṽ ε(s, x) =

∫ T

s


Ṽ ε

t + (f(y
ε
t , ut) + σ(yεt )wt) · ∇Ṽ ε+

ε

2γ2

n∑
i,j=1

ai,j(y
ε
t )Ṽ

ε
xixj


dt

+

√
ε

γ2

∫ T

s

(∇Ṽ ε)Tσ(yεt ) dB̂t.

Taking wt
.
= 1

γ2 σT (yεt )∇Ṽ ε(yεt ) yields

ψ(yεT )− Ṽ ε(s, x) =

∫ T

s

[
Ṽ ε
t + f(yεt , ut) · ∇Ṽ ε +

1

2γ2
(∇Ṽ ε)Ta(yεt )∇Ṽ ε

+
ε

2γ2

n∑
i,j=1

ai,j(y
ε
t )Ṽ

ε
xixj

]
dt

+
1

2γ2

∫ T

s

(∇Ṽ ε)Ta(yεt )∇Ṽ ε dt+

√
ε

γ2

∫ T

s

(∇Ṽ ε)Tσ(yεt ) dB̂.(10)

Now, since this choice of u is not necessarily optimal in (4), one has at any time

(11)

0 ≤ Ṽ ε
t +

ε

2γ2

n∑
i,j=1

ai,j(y
ε
t )Ṽ

ε
xixj +

1

2γ2
(∇Ṽ ε)Ta(yεt )∇Ṽ ε + f(yεt , ut)∇Ṽ ε + �(yεt , ut).

Combining (10) and (11) yields

exp
1

ε
Ṽ ε(s, x) ≤ exp 1

ε

[∫ T

s

�(yεt , ut) dt+ ψ(yεT )−
√

ε

γ2

∫ T

s

(∇Ṽ ε)Tσ(yεt ) dB̂

− 1

2γ2

∫ T

s

(∇Ṽ ε)Ta(yεt )∇Ṽ ε dt,

]
,

which, by (9), implies

exp
1

ε
Ṽ ε(s, x) ≤ Eexp 1

ε

[∫ T

s

�(yεt , ut) dt+ ψ(yεT )

]
.

Summarizing the results in this section, we have the following.
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Lemma 2.3. Let 0 ≤ s ≤ T and x ∈ �n. For any u ∈ Us such that (7) holds, one
has

ε log Jε(s, x, u) ≥ Ṽ ε(s, x),

while with optimal ũ given by (6) one has

ε log Jε(s, x, ũ) ≤ Ṽ ε(s, x).

Lemma 2.3 is not quite what we will obtain for the risk-sensitive prelimit result.
The lemma is deficient, due to the requirement that (7) hold in order to obtain the

first assertion. Without that condition, the lemma would show that Ṽ ε is the value
of the risk-sensitive control problem. In the next section, while proving the existence
of a classical solution to (4), we will obtain results that allow one to improve Lemma
2.3 in this way; specifically, that the value, V ε, given by (3) is this classical solution.
The improved result will be Theorem 3.11.

3. Existence and uniformity. The representation results of the previous sec-
tion required the existence of a C1,2 solution to (4). That will be obtained in this
section. Also, in order to prove the risk averse limit result to follow, we will need
continuity and local boundedness estimates on Ṽ ε independent of ε > 0. These will
be obtained at the same time as the existence result. Finally, we will obtain the
promised improvement over Lemma 2.3. These results will all be obtained through
the stochastic game representation.

Before proceeding with the technical details, we give some formal indications of
the general concepts.

Using convex duality, one may rewrite DPE (4) as

0 = Vs +
ε

2γ2

n∑
i,j=1

ai,j(x)Vxixj +min
u∈U

max
w∈�m

{
[f(x, u) + σ(x)w]∇V + �(x, u)− γ2

2
|w|2

}
,

V (T, x) = ψ(x).(12)

In this form, it is intuitive that this PDE might be associated with the stochastic
differential game with dynamics

dyεt = [f(y
ε
t , ut) + σ(yεt )wt] dt+

√
ε

γ2
σ(yεt ) dBt,

yεs = x(13)

and payoff

Jε
g (s, x;u, w) = E

[∫ T

s

�(yεt , ut)− γ2

2
|wt|2 dt+ ψ(yεT )

]
.

In this game, w· is the control for the opposing (disturbance) player who is trying to
maximize this payoff which we are trying to minimize. The definitions of value for
such a game [24] are discussed further below. The connections between such games
and their corresponding DPEs (now second-order Isaacs equations) are not known for
the class of systems considered here, so it will be necessary to consider some more
restrictive assumptions and then to relax these assumptions to obtain the above game
and DPE.
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One technique that is sometimes useful for games associated with H∞ control is
to obtain an L2-bound on ε-optimal controls, w, for the disturbance player [41], [39],
[40]. This is then used to obtain continuity estimates on the value function. The
simplest analogue is to prove a bound of the form ‖w‖L2([s,T ]×Ω) ≤ M < ∞ for ε-
optimal w. Such a bound is not difficult to obtain in this case, but it does not yield
the equicontinuity estimates for the value needed for the proofs to follow. Instead,
one would ideally obtain an almost sure bound of some form. This bound is rather
technical due to the presence of the Brownian motion with its unbounded variation.
Instead, a discrete game is analyzed here in order to obtain an analogous bound
and consequent continuity estimates. A limit is then taken to obtain the continuity
estimates for the original game. We now proceed with the analysis.

We first work with a system where the dynamics and cost functions are all
bounded. Let

�̃R(x, u) =

{
�(x, u) if �(x, u) ≤ R,
R otherwise,

(14)

ψ̃R(x) =

{
ψ(x) if ψ(x) ≤ R,
R otherwise,

(15)

f̃ b(x, u) =

{
f(x, u) if |f(x, u)| ≤ b,

b f(x,u)
|f(x,u)| otherwise.

(16)

The final assumption in the paper is that for all R sufficiently large one can mollify
�̃R, ψ̃R, f̃ b yielding �R, ψR, f b such that


�R ∈ C2(�n × U)

�R(x, u) = �̃R(x, u) ∀|x| ≤ D�
R

�R(x, u) ≤ R ∀x ∈ �n

|∇�R(x, u)| ≤ 2C ′|x| ∀x ∈ �n

|�Rxx(x, u)| ≤ C
′ ∀x ∈ �n




,




ψR ∈ C2(�n)

ψR(x) = ψ̃R(x) ∀|x| ≤ Dψ
R

ψR(x) ≤ R ∀x ∈ �n

|∇ψR(x)| ≤ 2C ′|x| ∀x ∈ �n

|ψR
xx(x)| ≤ C

′ ∀x ∈ �n




,

(A5)




f b ∈ C2(�n × U)

f b(x, u) = f̃ b(x, u) ∀|x| ≤ Df
b , u ∈ U

|f b(x, u)| ≤ b ∀x ∈ �n, u ∈ U
|f b
x(x, u)| ≤ K ′ ∀x ∈ �n, u ∈ U

|f b
xx(x, u)| ≤ K ′/(1 + |x|) ∀x ∈ �n, u ∈ U




,

where D�
R, Dψ

R → ∞ as R → ∞, Df
b → ∞ as b → ∞. We claim that this can be

achieved by a relatively standard mollification, but as we do not want to take up
space with the technical details, we make it an assumption. In particular, for the
ψ case we claim that one would use the following convolution for R > C: ψR(x) =∫

Jε(x − y)ψ̃R(y) dy, where J1(z) = k exp{−1/(1− |z|2)} on |z| ≤ 1 and 0 elsewhere,
where k is such that

∫
�n J1 = 1, Jε(z) = ε−nJ1(z/ε), Dψ

R =
1
2

√
R/C − 1, ε = 0 for

|x| ≤ Dψ
R, ε = 1

2Dψ
R exp

{
1−1/[1− ∣∣ (|x|−3Dψ

R/2
)
/(Dψ

R/2)
∣∣]} for Dψ

R < |x| ≤ 3Dψ
R/2,

and ε = Dψ
R/2 for 3Dψ

R/2 < |x|. The bounds on the derivatives use the smoothness
of ψ itself (as well as maxx,R |εx|, maxx,R |εxx| bounded for sufficiently large R) on

|x| ≤ 3Dψ
R/2 and then rely on the fact that the derivatives can be translated onto

Jε itself in the convolution for |x| > 3Dψ
R/2 (cf. [1],[53]). Again, by making (A5) an

assumption, we avoid the details and leave them only to an interested reader.
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Also, let

Ws
.
= {Ft-adapted, right-continuous w· such that ‖w‖L2([s,T ]×Ω) < ∞},(17)

Wm
s

.
= {w ∈ Ws : |wt(ω)| ≤ m ∀t ∈ [s, T ], ω ∈ Ω}.(18)

Note that condition (17) implies that any w ∈ Ws is Ft-progressively measurable; see
[22], [10]. Let the dynamics of the modified game be

dyε,bt = [f b(yε,bt , ut) + σ(yε,bt )wt] dt+

√
ε

γ2
σ(yε,bt ) dBt,

yε,bs = x,(19)

and define the payoff by

Jε,b,R
g (s, x;u, w) = E

{∫ T

s

[
�R(yε,bt , ut)− γ2

2
|wt|2

]
dt+ ψR(yε,bT )

}
.(20)

An admissible strategy for the player with control u is a mapping θ : Ws → Us

(alternatively, θ : Wm
s → Us when the disturbance set is Wm

s ) such that if, almost
surely, wr = w̃r for almost every r ∈ [s, t], then, almost surely, θ[w]r = θ[w̃]r for
almost every r ∈ [s, t], for any t ∈ [s, T ]; see [24]. The set of all admissible strategies
will be denoted by Θs. Define the set of admissible strategies for the player with
control w analogously, and denote them by Λs in the case in which the disturbance
set is Ws. (In the case in which the disturbance set is Wm

s , denote it by Λ
m
s .) Then

(see [24]), the upper and lower values are

V ε,b,R,m(s, x) = inf
θ∈Θs

sup
w∈Wm

s

Jε,b,R
g (s, x, θ[w], w),(21)

V
ε,b,Rm

(s, x) = sup
λ∈Λms

inf
u∈Us

Jε,b,R
g (s, x, u, λ[u]),(22)

and we note that, by (20), these are bounded. Then, by [24], V ε,b,R,m = V
ε,b,R,m

is
the unique, bounded, continuous viscosity solution to the Isaacs equation

0 = Vs +
ε

2γ2

n∑
i,j=1

ai,j(x)Vxixj +min
u∈U

max
|w|≤m

{
[f b(x, u) + σ(x)w] · ∇V + �R(x, u)

− γ2

2
|w|2

}
,

V (T, x) = ψR(x).(23)

Lemma 3.1. V ε,b,R,m = V
ε,b,R,m

is the unique, bounded, C1,2 solution to (23).
Proof. From the above, we know that the equality in Lemma 3.1 is the unique,

bounded, continuous viscosity solution. Additionally, [24] tells us that it is Lipschitz
in x and Holder continuous in s. (We will be interested in specific bounds independent
of ε, b, R, m further below, but for simplicity we do not look for these here.) Under
our assumptions, it is not difficult to show that it is also Lipschitz in s, and we do so
now.

Fix s, s+δ ∈ [0, T ], δ > 0. We will bound |V ε,b,R,m(s, x)−V ε,b,R,m(s+δ, x)|. Fix
any x ∈ �n, u ∈ Us, and w ∈ Wm

s . Let the corresponding solution of (19) be denoted
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by y0,ε,b
· . Recall that the probability space is (Ω, {Ft}, P ). Define a new Brownian

motion Bδ
· by Bδ

t = Bt−δ on a new probability space with filtration F0
t = Ft−δ.

Let uδ
t = ut−δ and wδ

t = wt−δ. Let the solution of (19) corresponding to this new
Brownian motion, controls uδ, wδ, and initial condition x at time s+ δ be denoted by
yδ,ε,b· . Then

yδ,ε,bt = y0,ε,b
t−δ ∀ t ∈ [δ, T + δ].

Consequently, one has

Jε,b,R
g (s+ δ, x;uδ, wδ) = E

[∫ T−δ

s

�R(y0,ε,b
t , ut)− γ2

2
‖wt‖2 dt+ ψR(y0,ε,b

T−δ )

]
.

Therefore,

Jε,b,R
g (s+ δ, x;uδ, wδ)− Jε,b,R

g (s, x;u, w)

= E

[
ψR(y0,ε,b

T−δ )−
∫ T

T−δ

(
�R(y0,ε,b

t , ut)− γ2

2
‖wt‖2

)
dt − ψR(y0,ε,b

T )

]

≤
(

R+
γ2

2
m2

)
δ + E

[
ψR(y0,ε,b

T−δ )− ψR(y0,ε,b
T )

]

which by Ito’s rule

=

(
R+

γ2

2
m2

)
δ + E

{∫ T

T−δ

∇ψR(y0,ε,b
t ) ·

[
f b(y0,ε,b

t , ut) + σ(y0,ε,b
t )wt

]
dt

+
ε

2γ2

∫ T

T−δ

n∑
i=1,j=1

ψR
xixj (y

0,ε,b
t )aij(y

0,ε,b
t ) dt

}

≤
[
R+

γ2

2
m2 + 2MR(b+Mm) +

εCM2

2γ2

]
δ.

From this (and an analogous bound on the other side using approximately optimal
w), one easily finds that V ε,b,R,m is Lipschitz in s.

On the other hand, (23) has a C1,2 solution which is globally Lipschitz and
bounded ([45]; see also [35], [21]). Since classical solutions are viscosity solutions,
the uniqueness of viscosity solutions for (23) implies that V ε,b,R,m is, in fact, this C1,2

solution.
Lipschitz bounds dependent on ε, b, R, m were sufficient to obtain the above result.

Below, however, we will need bounds independent of these parameters. These bounds
require more technical arguments, which we now present. The first bound is actually
quite straightforward.

Lemma 3.2. There exists γ̃ < ∞ such that for all γ > γ̃,

V ε,b,R,m(s, x) ≤ MT (1 + |x|2) ∀ s ∈ [0, T ], x ∈ �n,

and further, for δ ≤ 1, any δ-optimal wδ ∈ Ws with respect to any θ ∈ Θs (i.e.,
Jε,b,R
g (s, x; θ[wδ], wδ) ≥ supw∈Ws

Jε,b,R
g (s, x; θ[w], w)− δ) satisfies

‖wδ‖2
L2(Ω×[0,T ]) ≤ M ′

T (1 + |x|2).(24)
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We note that MT , M ′
T depend on T but are independent of ε, b, R, m.

Remark 3.3. A value for γ̃ is easily obtained from the proof below. Since this γ̃
is general for all systems satisfying the assumptions, it is quite conservative. If one
has additional structure such as contractivity of f , a much smaller value for γ̃ can be
obtained [39], [40].

Proof. Suppressing certain arguments for notational simplicity, one has

|yε,bt |2 ≤ |x|2 + 2
∫ t

s

(yε,br )T [f b + σwr] dr + 2

√
ε

γ2

∫ t

s

(yε,br )Tσ dBr +
ε

γ2

∫ t

s

∑
aii dr,

where (see [36], for example) the stochastic integral is a square-integrable martingale.
Then, using (A1.iii), (A2.ii),

E|yε,bt |2 ≤ |x|2 + 2KE
∫ t

s

(|yε,br |+ |yε,br |2) dr + 2ME

∫ t

s

|yε,br ||wr| dr +
ε

γ2
M2(t − s)

≤ |x|2 + (3K +M)

∫ t

s

E|yε,br |2 dr +
( ε

γ2
M2 +K

)
(t − s) +M

∫ t

s

E|wr|2 dr.

By Gronwall’s inequality, there exists Ct < ∞ such that

E|yε,bt |2 ≤ Ct(1 + |x|2 + ‖w‖2
L2(Ω×[0,T ])).

Consequently,

Jε,b,R
g (s, x;u, w) ≤ C ′

T (1 + |x|2) + (γ̃2 − γ2)‖w‖2
L2(Ω×[0,T ])

for proper choice of C ′
T , γ̃ which depend on T but not b, R, and ε ≤ 1. This yields

the first assertion. The second then follows by comparison with w ≡ 0.
The proof of continuity estimates uniform over b, R, m, and ε ≤ 1 is considerably

more technical than the above results. In the deterministic setting, an L2-bound on
δ-optimal w is sufficient to yield equicontinuity estimates. However, in the stochastic
case, the type of L2-bound obtained in the previous lemma is not sufficient. This is
due to the fact that L2-bounds over the sample space as well as the state space do not
imply bounds on the expectation of the exponentiation of the state space L2-norm of
w, and this is exactly what appears when using Gronwall-type estimates. (Recall that
we are only assuming Lipschitz conditions on the dynamics, not stability.) However,
one expects that if a set of Brownian paths does not diverge much from the origin,
then the near-optimal disturbance paths over that portion of the sample space should
not have “too large” L2-norms. Measurability conditions make it difficult to refine
that idea into a proof in the continuous-time case, so we work first with discrete-
time approximations and then use well-known limit results to obtain the continuity
estimate.

Lemma 3.4. For γ sufficiently large (i.e., γ ≥ γ), there exists CT,D < ∞ (de-
pending on T, D ∈ [0,∞) but independent of b, R, m, ε) such that

|V ε,b,R,m(s, x)−V ε,b,R,m(ŝ, x̂)| ≤ CT,D[|x−x̂|+|s−ŝ|] ∀ s, ŝ ∈ [0, T ], x, x̂ ∈ BD(0).

Actually, CT,D is linear in D for the space estimate.
Proof. We first obtain the Lipschitz estimate in the space variable. This requires

the discrete game approximation. Once one has this, the estimate in the time variable
follows without having to use discrete approximations. The proof is very technical,
and a significant portion of it is moved to Appendix A.
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Define the discrete approximation as follows. Let the number of time-steps be N ,
and the step size is then ∆

.
= T/N . We assume ∆ ≤ 1 freely throughout the proof.

Let Bn be a sequence of independent identically distributed m-dimensional random
variables with E[Bn] = 0, E[BnBT

n ] = Im, and finite range. In particular, we will
actually take the Bn such that the components always consist entirely of the terms
−1 and 1 in order to simplify the proof. Let the Bn be adapted to the sequence of σ-
algebras Fn, where F0 is trivial. Let the control and disturbance at step n be un and
wn, which are measurable with respect to Fn−1. We suppress the b and R superscripts
on f, �, ψ and also use the original bounds (without the ′ superscripts) of assumption
(A5) to simplify matters—we note that these coefficients were independent of b, R.
The dynamics for the discrete game are then

yn = yn−1 + [f(yn−1, un) + σ(yn−1)wn]∆ +

√
ε∆

γ2
σ(yn−1)Bn.(25)

LetWN be the set of sequences of L2 disturbances, {wn}Nn=1, of length N , where each
wn is Fn−1-measurable. Let Θ

N be the set of admissible strategies for the player with
control u, where admissibility is defined analogously to that in the continuous-time
case above; we do not repeat it here. For any θ ∈ ΘN , w ∈ WN , and initial state
y0 = x, define the payoff

JN (x, θ, w) = E

[
N∑
i=1

[
�(yn−1, un)− γ2

2
|wn|2

]
∆+ ψ(yN )

]

and value

V N (x) = inf
θ∈ΘN

V
N
(x, θ),

V
N
(x, θ) = sup

w∈WN

JN (x, θ, w).

Note that if one obtains a Lipschitz bound in x on V
N
(x, θ) that is uniform over

θ ∈ ΘN , then one automatically obtains the desired Lipschitz bound in x on V N (x).

Consequently, we will work only with V
N
(x, θ) and, again to simplify the notation,

drop the θ argument, simply referring to V
N
(x).

We will use dynamic programming to work back from our assumed Lipschitz
continuity estimate on ψ to obtain the estimate on V N . Let

V
N

N (xN ) = ψ(xN ),

J
N

n−1(xn−1, vn) = E

[(
�(xn−1)− γ2

2
|vn|2

)
∆+ V

N

n (yn)

]
,

V
N

n−1(xn−1) = sup
vn∈�m

J
N

n−1(xn−1, vn) ∀n = 1, 2, . . . , N,

where we again drop θ, and let yn be given by

yn = xn−1 + [f(xn−1) + σ(xn−1)wn]∆ +

√
ε∆

γ2
σ(xn−1)Bn

and wn = vn, where xn−1, vn are deterministic. Then, of course,

V
N
(x) = V

N

0 (x).(26)
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We now proceed to obtain the Lipschitz bound in x on near-optimal V
N

0 (x). First
we obtain a bound on |vN | depending on |xN−1|. Given vN , let

yN = xN−1 + [f(xN−1) + σ(xN−1)vN ]∆ +

√
ε∆

γ2
σ(xN−1)BN ,(27)

y0
N = xN−1 + [f(xN−1)]∆ +

√
ε∆

γ2
σ(xN−1)BN .(28)

Then by assumption (A4),

ψ(yN ) − ψ(y0
N )

≤ C(3/2 + 2|yN |+ 2|y0
N |)|σ(xN−1)vN∆|

≤ C

[
(3/2 + 4K∆) + 2(1 + 2K∆)|xN−1|+ 2M |vN |∆+ 4

√
ε∆

γ2
M |BN |

]
M |vN |∆

≤ C
[
(3/2 + 4K∆) + 2(1 + 2K∆)|xN−1|

]
M |vN |∆+ 3CM2|vN |2∆2

+ 2CM2ε∆|BN |2/γ2.

(The weaker constants 3/2 and 2 appearing in the first term above are being used here
in place of 1 merely for reasons of consistency with later estimates; this will become
clear upon a reading of Appendix A.) This implies that for δ∆-optimal vN ,

−δ∆≤ J
N

N−1(xN−1, vn)− J
N

N−1(xN−1, 0)

≤ −
(

γ2

2
− 3CM2∆

)
|vN |2∆+ CM

[
(3/2 + 4K∆) + 2(1 + 2K∆)|xN−1|

]
|vN |∆

+ 2CM2ε∆/γ2

or

0 ≤ −
(

γ2

2
− 3CM2∆

)
|vN |2 + CM

[
(3/2 + 4K∆) + 2(1 + 2K∆)|xN−1|

]
|vN |

+ 2CM2ε/γ2 + δ.

(One can use a2+ b2 ≥ 2ab to eliminate the cross-terms in |vN |, |xN−1|, leading to an
additional term in the coefficient in the quadratic term, and thus leading to a stricter
requirement below on γ, but that is avoidable in this proof.) Consequently, with ∆
sufficiently small so that the coefficient on the quadratic term is negative, one obtains

|vN | ≤ C

γ
[C1 + C2|xN−1|](29)

for proper choice of C1, C2, which may be chosen independently of ∆ for sufficiently
small ∆.

Next we propagate the Lipschitz property back one step. This is a rather technical
step, and consequently we have moved the estimates to Appendix A. The resulting
Lipschitz bound is∣∣V N

N−1(xN−1)− V
N

N−1(x̂N−1)
∣∣

≤ b(|x̂N−1|)
[
1 + c1∆+ c2

K4

γ
∆+ c3

K2
4

γ2
∆2

]
|xN−1 − x̂N−1|

+ C

√
ε

γ2

[
K3∆+M

K4

γ
∆

]
|xN−1 − x̂N−1|,(30)
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provided that ∆ ≤ min{1, d1}, where the constants and restrictions are given in the
appendix. Also, the function b is given in the appendix as

b(x) =

{
C( 32 + 2|x|2) if |x| ≤ 1,
C( 32 + 2|x|) if |x| > 1.

(31)

This bound requires a one-sided bound on ψxx. In fact, the semiconvexity of
ψ is sufficient to obtain this step. Consequently, the next step is to propagate the

semiconvexity of ψ backward one step to obtain a semiconvexity bound on V
N

N−1.
This step also appears in Appendix A.

Next one works backwards with minor variants of (29), (30), and the semicon-
vexity bound. This appears in Appendix A and leads of course to a Lipschitz bound

on V
N

0 (x). One must then let N → ∞ and show that this bound does not blow
up. The corresponding sequences are given in the appendix, and the limit bound is
denoted simply as M∞b(|x|). Since there are well-known results demonstrating the
convergence of such discrete-time games to their continuous-time counterparts (see,
for instance, [14], [24]), one obtains a Lipschitz bound on the limit continuous-time
game. In other words (reinstating the superscripts), one has obtained the Lipschitz
bound

|V ε,b,R,m(s, x)− V ε,b,R,m(s, x̂)| ≤ M∞b(|x|)|x − x̂| ∀ s ∈ [0, T ], |x̂| ≤ |x| < ∞.

Once one obtains the above Lipschitz bound in the space variable, one may obtain
the bound in the time variable without resorting to the discrete-time setting. The
details are relatively long and technical, but rather standard. Consequently, they will
only be sketched. Perhaps it should be noted that they rely on the bounds on the
second derivatives of � and ψ, of course. As a first step, let us note a result which
is a slightly more specific bound on near-optimal disturbances than that of Lemma
3.2 and which is particularly oriented toward small time–horizons. It also allows for
a random initial state. It is stated as a lemma below, and the proof is sketched.
Following the sketched proof of the lemma, the remaining steps in the proof of the
Lipschitz bound in the time variable are presented.

Lemma 3.5. Consider the above stochastic game, but now let the terminal time
be denoted by τ , so as to differentiate this from the main problem of the section (with
terminal time denoted by T ), let τ ≤ 1, and let s ∈ [0, τ ]. Also, now let the initial
state, yεs = x, be random and independent of Bt for t ≥ s. Then there exists γ̃ < ∞
such that for all γ > γ̃, for δ ≤ τ − s, any δ-optimal wδ ∈ Ws with respect to any
θ ∈ Θs satisfies

‖wδ‖L2(Ω×[s,τ ]) ≤ M
′√
1 + E

[|x|2]√τ − s(32)

for properly chosen M
′
(independent of x, s, τ).

Proof. The proof relies again on comparison of the near-optimal disturbance with
the use of the disturbance process w ≡ 0. To simplify notation, we will work directly
with f, �, ψ, rather than with their cut-offs (f b, �R, ψR); the structure of the proof is
unchanged. Let θ ∈ Θs. Let yε satisfy (13) with disturbance wδ, which is δ-optimal
with respect to θ (for the problem over [s, τ ]). Using standard techniques, one shows

that there exists Ĉ1 < ∞ such that

E
[|yεt − x|2] ≤ Ĉ1

[(
1 + E

[|x|2])(t − s) +

∫ t

s

E|wδ
r |2 dr

]
∀ t ∈ [s, τ ].(33)
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Similarly,

E|yεt − x| ≤ Ĉ2

[(
1 + E|x|

)
(t − s) +

∫ t

s

E|wδ
r | dr

]
∀ t ∈ [s, τ ].(34)

Denote the payoff (with u = θ[wδ]) as

Jε
g,τ,δ(s, x;u, wδ)

.
= E

[∫ τ

s

�(yεt , ut)− γ2

2
|wδ

t |2 dt+ ψ(yετ )

]
≤ E[ψ(x)] + E[�(x)](τ − s)

+E

{∫ τ

s

[
|�x(x)||yεt − x|+ 1

2
|�xx(ξ′t)||yεt − x|2 − γ2

2
|wδ

t |2
]

dt

+ |ψx(x)||yετ − x|+ 1

2
|ψxx(ξ

′
τ )||yετ − x|2

}
,

where ξ′t is on the line from x to yεt for each t. Then, using (33), (34), (A3), and (A4)
yields

Jε
g,τ,δ(s, x;u, wδ)≤ E[ψ(x)] + E[�(x)](τ − s)

+ Ĉ3

[(
1 + E

[|x|2]) (τ − s) +

∫ τ

s

E
[
(1 + |x|)|wδ

t |
]

dt

]

+ Ĉ4

[ (
1 + E

[|x|2]) (τ − s) +

∫ τ

s

E|wδ
t |2 dt

]
− γ2

2

∫ τ

s

E|wδ
t |2 dt(35)

for proper choice of Ĉ3, Ĉ4.
On the other hand, let y0 be the solution of (13) with the same θ but with w0 ≡ 0.

Let the corresponding payoff be denoted by Jε
g,τ,0(s, x;u0, w0). By similar techniques,

one has

E|y0
t − x|2 ≤ Ĉ5

(
1 + E

[|x|2])(t − s) and E|y0
t − x| ≤ Ĉ6

(
1 + E|x|)(t − s)

for proper choice of Ĉ5, Ĉ6. This leads to

Jε
g,τ,0(s, x;u0, w0) ≥ E[ψ(x)] + E[�(x)](τ − s)− Ĉ7

(
1 + E

[|x|2])(τ − s)(36)

for proper choice of Ĉ7.
Now, using the δ-optimality of wδ and combining (35) and (36) yields

0≤ δ + Ĉ8

(
1 + E

[|x|2])(τ − s) + Ĉ3

∫ τ

s

E
[
(1 + |x|)|wδ

t |
]

dt −
(

γ2

2
− γ̃2

2

)∫ τ

s

E|wδ
t |2 dt

≤ δ + Ĉ8

(
1 + E

[|x|2])(τ − s) + Ĉ3

√
2(1 + E|x|2)√τ − s

[∫ τ

s

E|wδ
t |2 dt

] 1
2

−
(

γ2

2
− γ̃2

2

)∫ τ

s

E|wδ
t |2 dt,

where Ĉ8
.
= Ĉ3+ Ĉ4+ Ĉ7 and

γ̃2

2

.
= Ĉ4. Letting δ ≤ τ − s, solving this last quadratic

equation yields the desired result.
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Now we return to the sketch of the proof of the Lipschitz condition in the time
variable. Again, to simplify matters, we work directly with f, �, ψ, rather than with
their cut-offs (f b, �R, ψR). Consider V ε(s, x) and V

ε
(ŝ, x) (where we are suppressing

the cut-off superscripts), where 0 ≤ s ≤ ŝ ≤ T and τ
.
= ŝ − s. Note that, under the

given conditions, one has strong solutions of (13). Let the probability triple under
which V ε(s, x) is computed be (Ω, P,F·). As in the proof of Lemma 3.1, for the
computation of V ε(ŝ, x), one may use instead (Ω, P, F̂·), where F̂t

.
= Ft−τ for all

t ≥ ŝ = s+ τ ; the corresponding Brownian motion is B̂t = Bt−τ for all t ≥ ŝ.

Let U[r1,r2] (Û[r1,r2]) be the set of Ft- (F̂t-)progressively measurable controls over

time interval [r1, r2]. Let θ̃ be ε
2 -optimal for problem V ε(ŝ, x), and let θ̂ be any

extension of θ̃ to time T + τ . Noting that θ̂ : L2[s + τ, T + τ ] → Û[s+τ,T+τ ], let

θ : L2[s, T ] → U[s,T ] be given by θt[w] = θ̂t+τ [w̃], where w̃t+τ = wt. Then let w be
ε
2 -optimal for V ε(s, x) corresponding to θ. Let ŵ be given by ŵt = wt−τ for all t ≥ ŝ.

Let yε be the solution to (13) with the above w and u
.
= θ[w]. Let ŷε be the solution

to (13) with new initial condition ŷεŝ = x and the above ŵ and û
.
= θ̂[ŵ]. Then

ŷεt = yεt−τ ∀ t ∈ [ŝ, T ].

Note that

V ε(s, x)− V ε(ŝ, x) ≤ Jε
g (s, x, u, w)− Jε

g (ŝ, x, û, ŵ) + ε,

and, by the time shift, this is equal to

E

[∫ T

T−τ

�(yεt , ut)− γ2

2
|wt|2 dt+ ψ(yεT )− ψ(ŷεT−τ )

]
+ ε.

Letting ε ↓ 0, one must show that this is bounded above by CT,Dτ for any |x| ≤ D <
∞ (for proper choice of CT,D). The bound from below is similar, and thus is not
discussed here. Also, since the bound on the integral term is somewhat simpler than
the bound on the terminal cost difference, we consider only a bound on E[ψ(yεT ) −
ψ(ŷεT−τ )] of the desired form here. Note that by (A4),

E [ψ(yεT )]− E
[
ψ(ŷεT−τ )

] ≤ E [
ψx(y

ε
T−τ )[y

ε
T − yεT−τ ]

]
+
1

2
CE

[|yεT − yεT−τ |2
]

.(37)

Also, from Lemma 3.5 and the choice of w,

‖w‖L2(Ω×[T−τ,T ]) ≤ M
′√
1 + E

[|yεT−τ |2
]√

τ(38)

for ε sufficiently small. Using (37), using techniques similar to those in the proof of
Lemma 3.5, and employing (38) yields the desired bound. This completes the sketch
of the proof of the Lipschitz bound in the time variable.

Lemma 3.6. Given any sequences {bn}, {mn} such that bn, mn → ∞, there exists
a subsequence which we also subscript by n (to reduce notational complexity) such that

V ε,bn,R,mn → Ṽ ε,R

uniformly on compact sets, where Ṽ ε,R ∈ C1,2 (and the derivatives converge uniformly

on compact sets as well). Further, Ṽ ε,R is a solution to
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0 = Vs +
ε

2γ2

n∑
i,j=1

ai,j(x)Vxixj +min
u∈U

max
w∈�m

{
[f(x, u) + σ(x)w]∇V + �R(x, u)− γ2

2
|w|2

}
,

V (T, x) = ψR(x).(39)

Proof. By Lemmas 3.1, 3.2, and 3.4, we have that V ε,b,R,m, V ε,bn,R,mn
s ,∇V ε,bn,R,mn

are all uniformly bounded on compact sets. Combining this with (23) implies that∑n
i,j=1 ai,j · V ε,bn,R,mn

xi,xj are also bounded uniformly on compact sets. Then following
the method in [21, Appendix E] (see also [43]), one obtains the result.

Recall process (1) of section 2. Define the modified risk-sensitive cost and value,

Jε,R(s, x, u·) = E exp

{
1

ε

[∫ T

s

�R(yεt , ut) dt+ ψR(yεT )

]}
(40)

and

V ε,R(s, x) = inf
u∈Us

ε log Jε,R(s, x, u·).(41)

Theorem 3.7. Let 0 ≤ s ≤ T and x ∈ �n. For any u ∈ Us, one has

ε log Jε,R(s, x, u) ≥ Ṽ ε,R(s, x),

while with optimal ũR given by (6), with Ṽ ε,R, �R replacing Ṽ ε, �, one has

ε log Jε,R(s, x, ũR) = Ṽ ε,R(s, x).

Proof. By Ṽ ε,R ∈ C1,2, assumptions (A3.iv), (A4.iv), and (40), one easily shows
that there exists CR < ∞ such that

|∇Ṽ ε,R(s, x)| ≤ CR ∀ s ∈ [0, T ], x ∈ �n.

In this case, (7) holds for any u ∈ Us. Consequently, the proof of Lemma 2.2 holds

for Ṽ ε,R for any control u ∈ Us, and so

ε log Jε,R(s, x, u) ≥ Ṽ ε,R(s, x)

for any u ∈ Us. Lemma 2.1 also holds with Ṽ ε,R, Jε,R replacing Ṽ ε, Jε.
Corollary 3.8.

V ε,b,R,m → Ṽ ε,R

uniformly on compact sets (not just sequentially).
Proof. Combine the uniqueness implied by Theorem 3.7 with the subsequential

convergence of Lemma 3.6.
Corollary 3.9. Ṽ ε,R is monotonically increasing as a function of R and is

bounded above by

ε log Jε(s, x, ũ) ≤ Ṽ ε(s, x).

Proof. The first assertion follows by the definitions of �R, ψR. For the second
assertion, note that by Theorem 3.7

Ṽ ε,R(s, x) ≤ ε log Jε,R(s, x, ũ)

≤ ε log Jε(s, x, ũ),

which by Lemma 2.1
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≤ Ṽ ε(s, x).

We now obtain the promised existence result for (4).

Theorem 3.10. Ṽ ε,R(s, x) ↑ Ṽ ε(s, x) ∈ C1,2 as R → ∞, where Ṽ ε is a solution
to (4).

Proof. The result follows exactly as in Lemma 3.6, with the added monotonicity
from Corollary 3.9.

As an added bonus, we obtain the promised improvement over Lemma 2.3.
Theorem 3.11. There exists a solution Ṽ ε ∈ C1,2 of (4). Further, for any

0 ≤ s ≤ T , x ∈ �n, and u ∈ Us, one has

ε log Jε(s, x, u) ≥ Ṽ ε(s, x),

while with optimal ũ given by (6) one has

ε log Jε(s, x, ũ) = Ṽ ε(s, x).

Proof. Note that for any u ∈ Us,

ε log Jε(s, x, u) ≥ ε log Jε,R(s, x, u),

which by Theorem 3.7

≥ Ṽ ε,R(s, x).

Combining this with Theorem 3.10 yields the first assertion. The second assertion
follows by combining the first assertion with Lemma 2.1.

4. Uniqueness and risk-sensitive limit results. In this section we consider
the following terminal value problem:{ −Wt(t, x) +H(x, DxW (t, x)) = 0 in (0, T )×�n,

W (T, x) = ψ(x) in �n,
(42)

where the Hamiltonian H is

H(x, p) := max
u∈U

min
ω∈�m

{
−(f(x, u) + σ(x)ω) · p − �(x, u) +

γ2

2
|ω|2

}

= min
ω∈�m

{
γ2

2
|ω|2 − σ(x)ω · p

}
+max

u∈U
{−f(x, u) · p − �(x, u)}.(43)

This is the DPE corresponding to a robust/H∞ control problem. This problem can
be considered a differential game with the following cost functional:

J(s, x, u, ω) :=

∫ T

s

�(yx(t), u(t))− γ2

2
|ω(t)|2dt+ ψ(yx(T )),(44)

where u(·) ∈ U := {measurable functions [0, T ]→ U} is the control of the minimizing
player, ω(·) ∈ B := L2([0, T ],�m) is the control of the maximizing player, and yx(·)
is the unique solution of the following dynamical system:

(S)

{
y′(t) = f(y(t), u(t)) + σ(y(t))ω(t),
y(s) = x.
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Note that we switch notation for the time argument here from yt to y(t), to emphasize
that the y paths are now (deterministic) solutions of ODEs rather than (stochastic)
solutions of SDEs.

We define the set of nonanticipating strategies for the minimizing player to be

Θ := {θ:B → U : given any τ ∈ [0, T ], ω(t) = ω(t)

for all t ∈ [0, τ ] implies θ[ω](t) = θ[ω](t) for all t ∈ [0, τ ]} ,

and the set of nonanticipating strategies of the maximizing player to be

Λ := {λ:U → B : given any τ ∈ [0, T ], u(t) = u(t)

for all t ∈ [0, τ ] implies λ[u](t) = λ[u](t) for all t ∈ [0, τ ]} .

The lower value and the upper value of the game are given by (see, for instance, [11])

V (s, x) := inf
θ∈Θ

sup
ω∈B

J(s, x, θ[ω], ω),(45)

W (s, x) := sup
λ∈Λ

inf
u∈U

J(s, x, u, λ[u]).(46)

This section will be concerned with the lower value; analogous results hold for the
upper value as well.

In the following theorem we prove a uniqueness result for (42) in the set of non-
negative continuous functions with locally bounded superdifferential in the x variable
and growing at most quadratically. More precisely, given U : [0, T ] × �n → �, we
define

D+
x U(t, x) =

{
p ∈ �n : lim sup

|x−y|→0

U(t, y)− U(t, x)− (y − x) · p

|x − y| ≤ 0
}

,

||U ||R := sup{|U(t, x)|+ |p|, (t, x) ∈ [0, T ]× BR(0) , p ∈ D+
x U(t, x)},

and

K :=
{

U ∈ C([0, T ]×�n) : U(t, x) ≥ 0, ||U ||R < +∞ ∀R > 0

and sup
(t,x)∈[0,T ]×�n

|U(t, x)|
1 + |x|2 < +∞

}
.

For the uniqueness result, we use, besides some hypotheses stated in section 2,
the following less restrictive assumptions:
(H1) f ∈ C(�n ×U,�n), σ ∈ C(�n,L(�m,�n)), � ∈ C(�n ×U,�), ψ ∈ C(�n,�);
(H2) there exists M > 0 such that

|σ(x)| ≤ M(1 + |x|) ∀x ∈ �;(47)

(H3) for any R > 0 there exists LR > 0 such that

|f(x, u)− f(y, u)| ≤ LR|x − y| ∀x, y ∈ BR(0), u ∈ U,

|σ(x)− σ(y)| ≤ LR|x − y| ∀x, y ∈ BR(0).
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Theorem 4.1. Assume (A0), (A1.iii), (A3.ii)–(A3.iv), (A4.ii)–(A4.iv), and (H1)–
(H3). If W1, W2 ∈ K are viscosity solutions of (42), then W1 = W2 in [0, T ]×�n.

Proof. We follow some arguments used in the proof of Theorem 3.1 in [3] for
convex Hamiltonians. Let W1, W2 ∈ K be viscosity solutions of (42). We first note

that if (x, p) belongs to a compact K ⊆ �2n, then there exists R̃ > 0, depending on
K, such that

H(x, p) = H
R̃
(x, p) := min

|ω|≤R̃

{
γ2

2
|ω|2 − σ(x)ω · p

}
(48)

+ max
u∈U

{−f(x, u) · p − �(x, u)}.

In fact, it can be easily verified that

lim
|ω|→∞

inf
(x,p)∈K

{
γ2

2
|ω|2 − σ(x)ω · p

}
= +∞.

Thus, since γ2|0|2 − σ(x)0 · p = 0, the min in (43) can be computed in a compact
subset of �m. Now fix r > 0 and choose R > r. First we suppose that

T ≤ δ(γ, r, R) := min

(
1,

R − r

K(1 +R)
,

γ2(R − r)2

2M2(1 +R)2C(1 +R2) + 2γ2K(R − r)(1 +R)

)
,

(49)

where C = max(C, sup(t,x)∈[0,T ]×�n
|W1(t,x)|
1+|x|2 , sup(t,x)∈[0,T ]×�n

|W2(t,x)|
1+|x|2 ) and C is the

growth constant of � and ψ.
Since W1, W2 ∈ K and (48) holds, there exists R̃ > 0 such that

H(x, p) = H
R̃
(x, p) ∀ p ∈ D+

x W1(t, x) ∪ D+
x W2(t, x), (t, x) ∈ [0, T ]× BR(0).

Thus Wi (i = 1, 2) is a viscosity solution also of{ −Wt(t, x) +H
R̃
(x, DxW (t, x)) = 0 in (0, T )× BR(0),

W (x, T ) = ψ(x) in BR(0).
(50)

Under the current assumptions, the continuous viscosity solutions W of (50) satisfy
the so-called optimality principle (see, e.g., Propositions 2.1 and 2.2 in [34]); namely,
for all s ∈ [0, T ] and 0 ≤ ρ ≤ T − s, the following estimate holds:

W (s, x) = inf
θ∈Θ

sup
ω∈B
|ω|≤R̃

{
I(s, (s+ ρ) ∧ tRx (θ[ω], ω))

+ W ((s+ ρ) ∧ tRx (θ[ω], ω), yx((s+ ρ) ∧ tRx (θ[ω], ω)))
}

,(51)

where for all s, t ∈ [0, T ], I(s, t) :=
∫ t

s
�(y(τ), θ[ω](τ))− γ2

2 |ω(τ)|2dτ, yx(t) = yx(t, θ[ω],
ω) is the unique solution of (S) corresponding to θ[ω], ω (we drop the dependence on
θ[ω], ω for simplicity of notations), and tRx (θ[ω], ω) is the first exit time from BR(0),
i.e.,

tRx (θ[ω], ω) := inf{t ≥ s : |yx(t)| ≥ R}.

In particular, (51) is satisfied by Wi (i = 1, 2). We observe that, since Wi ≥ 0, for any
strategy θ the sup in (51), corresponding to ρ = T −s, may be confined to the controls
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ω such that I(s, T ∧ tRx (θ[ω], ω)) +Wi((T ∧ tRx (θ[ω], ω)), y(T ∧ tRx (θ[ω], ω))) ≥ 0. For
any strategy θ, we define the set

Aθ :=
{

ω ∈ B : I(s, T ∧ tRx (θ[ω], ω)) +Wi((T ∧ tRx (θ[ω], ω)), yx(T ∧ tRx (θ[ω], ω))) ≥ 0} .

We observe that Aθ �= ∅, since it contains the control ω ≡ 0. We claim that if
tRx (θ[ω], ω)) < T , then ω /∈ Aθ. In fact, suppose that yx(t) ∈ ∂BR(0), for some
t ∈ [s, T ), and yx(t) ∈ BR(0) for all t ∈ [s, t). Then we have the following estimate:

R − |x| = |yx(t)| − |x| ≤
∫ t

s

K(1 + |yx(τ)|)dτ +

∫ t

s

M(1 + |yx(τ)|)ω(τ)|dτ

≤ K(1 +R)(t − s) +M(1 +R)||ω||L2(s,t)(t − s)1/2.

Thus ||ω||L2(s,t) ≥ χ[r, R](t), where

χ[r, R](t) :=
R − r − K(1 +R)(t − s)

M(1 +R)(t − s)1/2
.

We observe that, by the assumption of (49), χ[r, R](t) is positive for all t ∈ [s, T ].
Hence we have

I(s, t) +Wi(t, yx(t)) ≤
∫ t

s

C(1 + |yx(t)|2)− γ2

2
|ω(t)|2 dt+ C̃(1 + |yx(t)|2)

≤ C(1 +R2)(t − s)− γ2

2
|χ[r, R](t)|2 + C̃(1 +R2)

≤ C(1 +R2) + γ2 K(R − r)(1 +R)

M2(1 +R)2
− γ2

2

(R − r)2

M2(1 +R)2(t − s)

− γ2

2

K2(t − s)

M2

≤ C(1 +R2) + γ2 K(R − r)

M2(1 +R)
− γ2

2

(R − r)2

M2(1 +R)2(T − s)
,

where C̃ := (sup(t,x)∈[0,T ]×�n
|W1(t,x)|
1+|x|2 , sup(t,x)∈[0,T ]×�n

|W2(t,x)|
1+|x|2 ).

By the condition (49), we have I(s, t)+W (t, yx(t)) < 0, and this proves the claim.
Therefore for all (s, x) ∈ [0, T ]× Br(0), each Wi (i = 1, 2) satisfies

Wi(s, x) = inf
θ∈Θ

sup
ω∈Aθ
|ω|≤R̃

{I(s, T ) + ψ(yx(T ))} ,(52)

and we can conclude that W1 = W2 in [0, T ] × Br(0). In the case of T > δ(γ, r, R),
we can divide the interval [0, T ] into subintervals whose length is less than δ(γ, r, R).
Let 0 = t0, t1, . . . , tn = T be the points of such a division, and for any k = 1, . . . , n
let us consider the following Cauchy problem:{ −Wt(t, x) +H

R̃
(x, DxW (t, x)) = 0 in (tk−1, tk)× BR(0),

W (x, tk) = ψk(x) in BR(0),
(53)

where the terminal value ψk(x) can coincide either with W1(tk, x) or with W2(tk, x).
We start with k = n. Since |tn − tn−1| < δ(γ, r, R), we can argue as above and obtain
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that the Wi’s coincide in [tn−1, tn]×Br(0). Then, by proceeding backward in the time
variable, we obtain that for all k ∈ {0, . . . , n}, W1 = W2 in [tk−1, tk]×Br(0), and this
completes the proof.

In [41] it is proved that, under the hypotheses of Theorem 4.1 (with (A2.ii) instead
of (H2)), for sufficiently large γ the lower value V is a locally Lipschitz continuous
function growing at most quadratically in the state variable (thus V ∈ K), and it is a
viscosity solution of (42). Thus we have the following corollary.

Corollary 4.2. Assume the hypotheses of Theorem 4.1, with (H2) replaced by
(A2.ii). Then for γ large enough the value V is the unique viscosity solution of (42)
in K.

As a consequence of the uniqueness Theorem 4.1 we get the convergence of the
value function Ṽ ε of the risk-sensitive problem to the value V of the robust/H∞
control problem as ε → 0. The proof of this result is standard (see, e.g., [2]), and
it follows directly from the stability of the viscosity solutions with respect to the
locally uniform convergence of the DPE for the risk-sensitive problem to the DPE
for the corresponding robust control problem and the local uniform boundedness and
equicontinuity estimates obtained in section 3.

Theorem 4.3. Assume (A0)–(A5). Then, for γ large enough, Ṽ ε → V uniformly
on the compact subsets of [0, T ]×�n.

Proof. From Lemmas 3.2, 3.4, 3.6 and Theorem 3.10 it follows that, for γ large
enough and for any D > 0, there exist CT,D, MT,D > 0 (independent of ε) such that

|Ṽ ε(s1, x)− Ṽ ε(s2, z)| ≤ CT,D[|x − z|+ |s1 − s2|](54)

∀ s1, s2 ∈ [0, T ], x, z ∈ BD(0)

and

|Ṽ ε(t, x)| ≤ MT,D ∀ t ∈ [0, T ], x ∈ BD(0).(55)

By using the Ascoli–Arzelà theorem and a standard diagonal procedure (see, e.g., [2]),

we get the existence of a subsequence of Ṽ ε converging uniformly on the compact
subsets of [0, T ] × �n to a function U ∈ K. From the stability of viscosity solutions
with respect to the locally uniform convergence of the DPE (4) for the risk-sensitive
problem to the DPE (42) for the robust control problem as ε → 0, it follows that U
is a viscosity solution of (42), and the uniqueness Theorem 4.1 implies that U = V.

Thus we can conclude that the entire sequence Ṽ ε converges to V as ε → 0, uniformly
on compact subsets of [0, T ]×�n.

Appendix A. In this appendix, we first propagate the Lipschitz bound for V
N

back one step from the terminal time; that is, we obtain the Lipschitz bound for V
N

N−1,

given the corresponding bound for V
N

N = ψ. We will then continue this procedure
back to the initial time.

Let vδN be δ-optimal at xN−1. Then

V
N

N−1(xN−1)− V
N

N−1(x̂N−1) ≤ E
[
ψ(yN )− ψ(ŷN )

]
+ C(1 + |xN−1|+ |x̂N−1|)

·|xN−1 − x̂N−1|∆+ δ,(56)

where yN is given by (27) with disturbance vδN , and

ŷN = x̂N−1 + [f(x̂N−1) + σ(x̂N−1)v
δ
N ]∆ +

√
ε∆

γ2
σ(x̂N−1)BN .(57)
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The following rather technical estimates will lead to a Lipschitz bound on the E[ψ(yN )−
ψ(ŷN )] term in (56). In particular, a one-sided Lipschitz bound is obtained using a
one-sided bound on ψxx. Symmetry then leads to the usual (two-sided) Lipschitz
bound. This approach is employed due to the semiconvexity-preserving nature of the
maximizing control problem, which has previously been applied, for instance, in [20].

First, we will replace the bound on ψx so as to smooth it near the origin. Note
that by Assumption (A4), |ψx(x)| ≤ C(1+2|x|) for all x. A quick computation shows
that C(1 + 2|x|) ≤ C( 32 + 2|x|2) for all x. Consequently, we have

ψx(x)≤ b(x) ∀x ∈ �n,

where

b(x)=

{
C( 32 + 2|x|2) if |x| ≤ 1,
C( 32 + 2|x|) if |x| > 1.

(58)

Now note that, by the mean value theorem,

ψ(yN )− ψ(ŷN ) = ψx(ξ)(yN − ŷN ),

where
ξ

.
= λyN + (1− λ)ŷN

and λ is a random variable with range [0, 1]. Use the notation (δf)
.
= f(xN−1) −

f(x̂N−1) and (δσ)
.
= σ(xN−1)− σ(x̂N−1), so that

yN − ŷN = (xN−1 − x̂N−1) +
(
(δf) + (δσ)vδN

)
∆+

√
ε∆

γ2
(δσ)BN .

(The δ in the notation (δf) is not intended to be confused with the δ superscript in
vδN ; it is merely intended as a shorthand to reduce the size of the displayed equations.)
Consequently, we have

E[ψ(yN )− ψ(ŷN )] = E[ψx(ξ)]
[
(xN−1 − x̂N−1) + ((δf) + (δσ)vδN )∆

]
+

√
ε∆

γ2
E[ψx(ξ)(δσ)BN ].(59)

We will work with each of the two terms on the right-hand side of (59) separately.
The second is easier, and we begin with that.

As mentioned in section 3, we let each component of BN , BNj be independent,
with

P
(

BNj = 1
)
=
1

2
, P

(
BNj = −1

)
=
1

2
for j = 1, . . . , m.

Then, by the definition of yN , (A1), (A2), and (29), there exists K1 < ∞ such that

|yN − xN−1| ≤ K(1 + |xN−1|)∆ +K1

√
∆+MDv(xN−1)∆ ∀ω ∈ Ω,(60)

where

K1 =

√
εm

γ2
M
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and, as a shorthand,

Dv(xN−1) =
C

γ
[C1 + C2|xN−1|] .

Similarly,

|ŷN − x̂N−1| ≤ K(1 + |x̂N−1|)∆ +K1

√
∆+MDv(x̂N−1)∆ ∀ω ∈ Ω.(61)

Let us take

|xN−1 − x̂N−1| ≤ ∆ ≤ 1,(62)

in order to simplify matters below. (The bound on |xN−1 − x̂N−1| is irrelevant to
the Lipschitz bound; the bound on ∆ is also not important, since we will be taking
∆ = T/N to zero.) Also, without loss of generality, let us suppose |x̂N−1| ≤ |xN−1|.
By the definition of ξ,

|ξ − xN−1| ≤ max {|yN − xN−1|, |ŷN − x̂N−1|+ |x̂N−1 − xN−1|} ,

which by (62)

≤ max {|yN − xN−1|, |ŷN − x̂N−1|+∆} .(63)

Then by (60), (61), and (63),

|ξ − xN−1| ≤ [K(2 + |xN−1|) +K1]
√
∆+MDv(xN−1)∆ ∀ω ∈ Ω.(64)

Now,

E [ψx(ξ)(δσ)BN ]

= E [ψx(xN−1)(δσ)BN ] + E [(ψx(ξ)− ψx(xN−1))(δσ)BN ]

= E [(ψx(ξ)− ψx(xN−1))(δσ)BN ] ,

which for proper choice of ζ on the line from xN−1 to ξ

= E [ψxx(ζ)(ξ − xN−1)(δσ)BN ] ,

which by (A2) and (A4)

≥ −CLσE

{
|ξ − xN−1| |xN−1 − x̂N−1|

1 + |x̂N−1| |BN |
}

,

which by (64) and (62)

≥ −C

[
K3 +M

K4

γ

]
|xN−1 − x̂N−1|

√
∆ ∀ω ∈ Ω,(65)

where

K3
.
= Lσ max

z∈�n

{
K(3 + |z|) +K1

1 + |z|
}

and K4
.
= CLσ max

z∈�n

{
C1 + C2(|z|+ 1)

1 + |z|
}

.
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Employing (65) in (59) yields

E[ψ(yN )− ψ(ŷN )] ≥ E[ψx(ξ)]
[
(xN−1 − x̂N−1) + ((δf) + (δσ)vδN )∆

]
− C

√
ε

γ2

[
K3 +M

K4

γ

]
∆|xN−1 − x̂N−1|.(66)

We now turn to the first term. Employing (A1), (A2), and (29) in (66) yields

E[ψ(yN )− ψ(ŷN )] ≥ − |E[ψx(ξ)]|
[
1 +

(
K + LσM

K4

γ

)
∆

]
|xN−1 − x̂N−1|

− C

√
ε

γ2

[
K3 +M

K4

γ

]
∆|xN−1 − x̂N−1|.(67)

A rather long argument will now be used to obtain a bound on

|E[ψx(ξ)]| .
This will involve the use of the bound b from (58). Recalling the form of b, we see
that this will involve bounds on E|yN |, E|ŷN |, E|yN |2, and E|ŷN |2.

We work first with E|yN | (and E|ŷN |). As a shorthand, let
zxN−1

.
= xN−1 + (f(xN−1) + σ(xN−1)v

δ
N )∆.

Then

E|yN |= E
∣∣∣∣zxN−1

+

√
ε

γ2
σ(x)

√
∆BN

∣∣∣∣
=

1

2m

2∑
j1=1

2∑
j2=1

· · ·
2∑

jm=1

∣∣∣∣zxN−1
+

√
ε

γ2

√
∆σ(x)

(−1j1 ,−1j2 , . . . ,−1jm)T ∣∣∣∣ .(68)

Define G, G by

G(zxN−1
,∆)

.
= max

u∈�m, |u|=1

1

2

[∣∣∣∣zxN−1
+

√
ε

γ2

√
∆σ(x)u

∣∣∣∣+
∣∣∣∣zxN−1

−
√

ε

γ2

√
∆σ(x)u

∣∣∣∣
]

≤ max
|v|≤M

1

2

[∣∣∣∣zxN−1
+

√
ε

γ2

√
∆v

∣∣∣∣+
∣∣∣∣zxN−1

−
√

ε

γ2

√
∆v

∣∣∣∣
]

(69)

.
= G(zxN−1

,∆),

and note that E|yN | ≤ G(zxN−1
,∆). It is an exercise in Lagrange multipliers (which

we do not include, since it is quite standard) to show that the maximum occurs when
v is perpendicular to zxN−1

. Consequently (using the Pythagorean theorem),

G(zxN−1
,∆) ≤ G(zxN−1

,∆) =

[
|zxN−1

|2 + ε

γ2
M2∆

] 1
2

.(70)

Note that

G(zxN−1
, 0) = |zxN−1

|,

d

d∆
G(zxN−1

, 0) =
ε

2γ2|zxN−1
|M

2,
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and

d2

d∆2
G(zxN−1

,∆) =


 −1
4
[
|zxN−1

|2 + ε
γ2 M2∆

] 3
2


 ε2

γ4
M4 < 0.

Consequently,

G(zxN−1
,∆) ≤ |zxN−1

|+ ε

2γ2|zxN−1
|M

2∆.(71)

Combining (68), (69), and (71), one finds

E|yN | ≤ |zxN−1
|+ ε

4γ2|zxN−1
|M

2∆.(72)

Further, from the definition of zxN−1
, (A1), (A2), and (29), zxN−1

≥ 1/4 for xN−1 ≥
1/2 if

∆ ≤ 5

4(2K +M(C1 + C2))

.
= d1.

Consequently, if ∆ ≤ min{1, d1}, then

E|yN | ≤ |zxN−1
|+ ε

γ2
M2∆(73)

for any xN−1 ≥ 1/2. Again using the definition of zxN−1
, (A1), (A2), and (29), this

implies

E|yN | ≤ |xN−1|+
[
K(1 + |xN−1|) +MDv(xN−1) +

εM2

γ2

]
∆ ∀|xN−1| ≥ 1

2
,(74)

provided ∆ ≤ min{1, d1}. A similar statement holds for ŷN .
Noting that ψx(x) ≤ b(x) ≤ C( 32 + 2|x|) for all x, one finds using (74) and (A4)

that

|Eψx(ξ)| ≤ C

{
3

2
+ 2|xN−1|+ [2K6(1 + |xN−1|) + 2MDv(xN−1)]∆

}

∀ |xN−1|, |x̂N−1| ≥ 1

2
,(75)

where K6 = max{K, εM2/(γ2)}, provided ∆ ≤ min{1, d1}.
We now turn to the quadratic portion of b(x), which occurs for |x| ≤ 1. Using

the fact that BN has zero mean,

E|yN |2= E
∣∣∣∣∣zxN−1

+

√
ε∆

γ2
σ(xN−1)BN

∣∣∣∣∣
2

= |zxN−1
|2 + ε

γ2
∆E

[
BT
NσTσBN

]
≤ |zxN−1

|2 + ε

γ2
M2∆,
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which by the definition of zxN−1
, (A1), (A2), and (29) again,

≤ |xN−1|2 +K7(1 + |xN−1|)2∆+ 2M2D2
v(xN−1)∆

2,

where K7 = 2[K+K2+M(K4/γ)+(ε/(2γ2))M2]. In a similar manner to that above,
this implies that

|Eψx(ξ)| ≤ C

[
3

2
+ 2|xN−1|2 + 2K7(1 + |xN−1|)2∆+ 4M2D2

v(xN−1)∆
2

]
(76)

∀xN−1, x̂N−1 ∈ �n.

Combining (75) and (76), one finds

|Eψx(ξ)| ≤ b(|xN−1|)
[
1 +K8∆+ 2M

K4

γ
∆+ 8M2 K2

4

γ2
∆2

]
∀ |xN−1− x̂N−1| ≤ 1

2
,

(77)
where K8 = max{2K6, 4K7}, provided ∆ ≤ min{1, d1}, which is the inequality indi-
cated earlier.

Combining (67) and (77), one finds

E[ψ(yN )− ψ(ŷN )] ≥ −b(|x̂N−1|)
[
1 + c1∆+ c2

K4

γ
∆+ c3

K2
4

γ2
∆2

]
|xN−1 − x̂N−1|

− C

√
ε

γ2

[
K3∆+M

K4

γ
∆

]
|xN−1 − x̂N−1|,(78)

where

c1 = K +K8 +KK8,

c2 = 2MK +K8MLσ,

c3 = M2[2Lσ + 8(1 +K)],

provided ∆ ≤ min{1, d1} and |xN−1 − x̂N−1| ≤ 1
2 . By symmetry, and by taking

intermediary steps (to remove the |xN−1 − x̂N−1| ≤ 1
2 bound), this implies

∣∣E[ψ(yN )− ψ(ŷN )]
∣∣ ≤ b(|x̂N−1|)

[
1 + c1∆+ c2

K4

γ
∆+ c3

K2
4

γ2
∆2

]
|xN−1 − x̂N−1|

+ C

√
ε

γ2

[
K3∆+M

K4

γ
∆

]
|xN−1 − x̂N−1|,(79)

provided ∆ ≤ min{1, d1}.
Finally, combining (79) with (56) (and letting δ ↓ 0) yields

∣∣V N

N−1(xN−1)− V
N

N−1(x̂N−1)
∣∣

≤ b(|x̂N−1|)
[
1 + c1∆+ c2

K4

γ
∆+ c3

K2
4

γ2
∆2

]
· |xN−1 − x̂N−1|

+ C

√
ε

γ2

[
K3∆+M

K4

γ
∆

]
· |xN−1 − x̂N−1|,(80)

provided ∆ ≤ min{1, d1}, where c1 = c1 + 1.
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Lemma A.1. V
N

N−1 is semiconvex with uniform constant C[2K∆+ 4Lσ
K4

γ ∆] +

C{1 + c4∆+ c5
K4

γ ∆+ c6
K2

4

γ2 ∆
2}, where c4, c5, c6 are given in the proof.

Proof. Recall that

V
N

N−1(xN−1) = sup
|vN |≤C1+C2|xN−1|

J
N

N−1(xN−1, vN ),

where

J
N

N−1(xN−1, vN ) = E

[(
�(xN−1)− γ2

2
|vN |2

)
∆+ ψ(yN )

]
.

Fix a vN satisfying |vN | ≤ C1 + C2|xN−1|. First, a lower bound on
d2

dh2
J
N

N−1(xN−1 + hη, vN )
∣∣∣
h=0

(81)

will be obtained for any η ∈ �n with |η| = 1.
One has

d2

dh2
J
N

N−1(xN−1+hη, vN )|h=0 = ηT lxx(xN−1)η∆+E{ζ1Tψxx(yN )ζ
1}+E{ψx(yN )ζ

2},

where

ζ1 .
=

d

dh
yhN

∣∣
h=0

,

ζ2 .
=

d2

dh2
yhN

∣∣
h=0

,

yhN = (xN−1 + hη) + [f(xN−1 + hη) + σ(xN−1 + hη)vN ]∆ +

√
ε∆

γ2
σ(xN−1 + hη)BN .

Consequently, by Assumption (A4),

d2

dh2
J
N

N−1(xN−1 + hη, vN )|h=0 ≥ −C∆+E{ζ1Tψxx(yN )ζ
1}+ E{ψx(yN )ζ

2}.(82)

Note that

ζ1 = η + [fx(xN−1)η + σx(xN−1)ηvN ]∆ +

√
ε∆

γ2
σx(xN−1)ηBN .

Using the facts that E(BN ) = 0 and E(B
2
N ) = 1, this yields

E
{

ζ1Tψxx(yN )ζ
1
}
≥−CE

∣∣∣∣∣η + [fx(xN−1)η + σx(xN−1)ηvN ]∆ +

√
ε∆

γ2
σx(xN−1)ηBN

∣∣∣∣∣
2

≥−C

[
1 +

(
2|fx(xN−1)|+ 2|σx(xN−1)vN |+ ε

γ2
|σx(xN−1)|2

)
∆

+
(|fx(xN−1)|+ |σx(xN−1)vN |)2

∆2

]
,
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which by Assumptions (A1) and (A2), and by (29),

≥ −C

[
1 +K9∆+ 2

K4

γ
∆+ 2

K2
4

γ2
∆2

]
,(83)

where K9 = 2K + 2K2 + εL2
σ/γ2.

Next, one finds

ζ2 =
[
ηT fxx(xN−1)η + ηTσxx(xN−1)ηvN

]
∆+

√
ε∆

γ2
ηTσxx(xN−1)ηBN .

Then using (componentwise)

(ψx)i(yN ) = (ψx)i(xN−1) + [(ψxx)i(ξi)](yN − xN−1)

for the proper choice of ξi on the line segment from xN−1 to yN (leaving out the xN−1

argument where it is clear), and letting H({ξi}) be the matrix composed of the rows
(ψxx)i(ξi), one finds

E{ψx(yN )ζ
2} = ψx(xN−1)

[
ηT fxx(xN−1)η + ηTσxx(xN−1)ηvN

]
∆

+ E

{
H({ξ}i)

[
ηT (fxx + σxxvN )η(f + σvN )∆

2

+

[
(f + σvN )η

Tσxxη

√
ε

γ2
+ ηT (fxx + σxxvN )ησ

√
ε

γ2

]
BN∆

3/2

+ ηTσxxησ
ε

γ2
B2
N∆

]}

≥ −|ψx(xN−1)| [|fxx(xN−1)|+ |σxx(xN−1)vN |]∆
− C

[(|fxx|+ |σxxvN |)(|f |+ |σvN |)∆2

+
(
(|f |+ |σvN |)|σxx|+ (|fxx|+ |σxxvN |)|σ|

)√ ε

γ2
∆3/2 + |σxx| |σ| ε

γ2
∆

]
,

from which with a few bounds on rational functions of |x| (such as (3/2 + 2|x|)/(1 +
|x|) ≤ 2) one has

≥ −C

[
2K + 4Lσ

K4

γ

]
∆

− C

{[
K2 +MLσ

K2
4

γ2
+KM

K4

γ
+ 2KLσ

K4

γ

]
∆2

+

[
K(Lσ +M) + 2MLσ

K4

γ

]√
ε

γ2
∆3/2 +MLσ

ε

γ2
∆

}

≥ −C

[
2K∆+ 4Lσ

K4

γ
∆

]
− C

{
K11∆+K12

K4

γ
∆+K13

K2
4

γ2
∆2

}
,(84)

where

K11 = K2∆+K(Lσ +M)

√
ε

γ2

√
∆+MLσ

ε

γ2
,
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K12 = (KM + 2KLσ)∆ + 2MLσ

√
ε

γ2

√
∆,

K13 = MLσ.

Combining (82), (83), and (84) yields

d2

dh2
J
N

N−1(xN−1 + hη, vN )|h=0≥ −C

[
2K∆+ 4Lσ

K4

γ
∆

]

− C

{
1 + c4∆+ c5

K4

γ
∆+ c6

K2
4

γ2
∆2

}
,(85)

where c4 = 1 +K9 +K11, c5 = 2 +K12, and c6 = 2 +K13.

This implies that J
N

N−1(x, vN ) is semiconvex, with uniform constant given by the
right-hand side of (85) over all of �n if |vN | ≤ (C/γ)[C1 + C2|x|]. By the definition
of V

N

N−1 as a supremum of these, V
N

N−1 is semiconvex with this same constant. This
completes the proof of the lemma.

We now proceed to step backwards. Note that we used the derivatives of ψ in the

above argument. One can first smooth V
N
via convolution with approximations to the

identity, before proceeding backwards; since this is an obvious, but time-consuming,
technicality, we do not include it. Instead, simply assuming differentiability, we now
have from (29), (80), and the above lemma,

|vN (x)| ≤ C

γ
[C1 + C2|x|] ,(86)

∣∣V N

N−1x
(x)

∣∣ ≤ b(|x|)
[
1 + c1∆+ c2

K4

γ
∆+ c3

K2
4

γ2
∆2

]
+ C

√
ε

γ2

[
K3∆+M

K4

γ
∆

]
,

(87)

and that V
N

N−1 is semiconvex with constant

C1 = C

[
2K∆+ 4Lσ

K4

γ
∆

]
+ C0

{
1 + c4∆+ c5

K4

γ
∆+ c6

K2
4

γ2
∆2

}
,(88)

where C0
.
= C.

Define

K
(0)
4 = K4,

M0 = 1,

M1 =




1 + c1∆+ c2

K
(0)
4

γ
∆+ c3

K
(0)
4

2

γ2
∆2


+ C0

b(0)

√
ε

γ2

[
K3∆+M

K
(0)
4

γ
∆

]
M0.

Note then that the above Lipschitz and semiconvexity bounds become

∣∣V N

N−1x
(x)

∣∣ ≤ b(|x|)M1,

C1 = C0


1 + c4∆+ c5

K
(0)
4

γ
∆+ c6

K
(0)
4

2

γ2
∆2


+ CM0

[
2K∆+ 4Lσ

K
(0)
4

γ
∆

]
.
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Stepping backward, one finds

|vN−1(x)| ≤ C

γ
[C1 + C2|x|]M1,

∣∣V N

N−2x
(x)

∣∣ ≤ b(|x|)M2,

C2
.
= C1


1 + c4∆+ c5

K
(1)
4

γ
∆+ c6

K
(1)
4

2

γ2
∆2


+ CM1

[
2K∆+ 4Lσ

K
(1)
4

γ
∆

]
,

where

K1
4 = M1K

(0)
4 ,

M2 =




1 + c1∆+ c2

K
(1)
4

γ
∆+ c3

K
(1)
4

2

γ2
∆2


+ C1

b(0)

√
ε

γ2

[
K3∆+M

K
(1)
4

γ
∆

]
M1.

Continuing this process, one has

|vN−n(x)| ≤ C

γ
[C1 + C2|x|]Mn,

∣∣V N

N−(n+1)x
(x)

∣∣ ≤ b(|x|)Mn+1,

Cn+1
.
= Cn


1 + c4∆+ c5

K
(n)
4

γ
∆+ c6

K
(n)
4

2

γ2
∆2


+ CMn

[
2K∆+ 4Lσ

K
(n)
4

γ
∆

]
,

where

K
(n)
4 = MnK

(0)
4 ,

Mn+1 =




1 + c1∆+ c2

K
(n)
4

γ
∆+ c3

K
(n)
4

2

γ2
∆2


+ Cn

b(0)

√
ε

γ2

[
K3∆+M

K
(n)
4

γ
∆

]
Mn.

Now, we note that one is interested here in the Lipschitz constant for V
N

0 , and
in particular, in whether this stays bounded as N → ∞. Noting in the above that
∆ = T/N , we see that this question reduces to consideration of the sequence

MN,0 = 1,

CN,0 = C,

MN,n+1 =

{[
1 + c1

T

N
+ c2

K
(N,n)
4

γ

T

N
+ c3

K
(N,n)
4

2

γ2

T 2

N2

]

+
CN,n

b(0)

√
ε

γ2

[
K3

T

N
+M

K
(N,n)
4

γ

T

N

]}
MN,n,

CN,n+1
.
= CN,n

{
1 + c4

T

N
+ c5

K
(N,n)
4

γ

T

N
+ c6

K
(N,n)
4

2

γ2

T 2

N2

}

+ CMN,n

[
2K

T

N
+ 4Lσ

K
(N,n)
4

γ

T

N

]
,
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where

K
(N,n)
4 = MN,nK4.

Note that |V N

0 x(x)| ≤ b(|x|)MN,N .
Showing that MN,N stays bounded for sufficiently large γ can be done with some

rather crude estimates. Again, we are not interested here in the minimal possible γ,
but mainly in developing the machinery to handle risk-sensitive control limit problems
under quadratic growth assumptions. In that spirit, one may define

RN,n
.
= max

{
MN,n, CN,n

}
.

Then, for N > K4T one has

MN,n+1 ≤ RN,n

{
1 + c1

T

N
+

c2

γ
RN,n

T

N
+

c3

γ2
R2
N,n

T

N

}
,

CN,n+1 ≤ RN,n

{
1 + c4

T

N
+

c5

γ
RN,n

T

N
+

c6

γ2
R2
N,n

T

N

}
,

where c2 = c2 +
√

εK3/b(0), c3 = c3 +
√

εMK4/b(0), c4 = c4 + 2CK, c5 = c5K4 +
4LσCK4, and c6 = c6K4. This implies

RN,n+1 ≤ RN,n

{
1 + c7

T

N
+

c8

γ
RN,n

T

N
+

c9

γ2
R2
N,n

T

N

}
,

where c7 = c1 + c4, c8 = c2 + c5, and c7 = c3 + c6. Letting ρN,n
.
= ln(RN,n), one has

ρN,n+1 ≤ ρN,n +

[
c7 +

c8

γ
eρN,n +

c9

γ2
e2ρN,n

]
T

N
,

and perhaps one should note ρN,0 = max{0, ln(C)}. Then ρN,n ≤ ρN,n for all N, n,
where ρN,n satisfies

ρN,n+1 = ρN,n +

[
c7 +

c10

γ
e2ρN,n

]
T

N
,(89)

ρN,0 = max{0, ln(C)},(90)

and c10 = c8 + (c9/γ). Note that then

MN,N ≤ eρN,N ∀N.

Also, note that (89), (90) is simply the Euler numerical method (with N time-steps)
for the ODE problem over [0, T ] given by

˙̂ρ = c7 +
c10

γ
e2ρ,

ρ̂(0) = max{0, ln(C)}.

By elementary calculus, one can show that, given T < ∞, there is γ̃ < ∞ such that
this ODE has a solution over [0, T ]. Letting the maximum of this solution be ρM ,
one sees that MN,N ≤ eρM+1 for sufficiently large N . This behavior (increasingly
large γ required for increasingly large T ) is expected, since the Riccati equation for
the linear-quadratic case displays the finite-time blow-up property. (A reader curious

about this point might note that letting M̂ .
= exp(ρ̂), one finds that M̂ satisfies the

ODE
˙̂M = c7M̂ + (c10/γ)M̂3, which is somewhat worse than the Riccati equation

which has a squared term only on the right-hand side; thus we have lost a bit in all
the bounding estimates.)
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Abstract. We consider perpetual American options, assuming that under a chosen equivalent
martingale measure the stock returns follow a Lévy process. For put and call options, their analogues
for more general payoffs, and a wide class of Lévy processes that contains Brownian motion, normal
inverse Gaussian processes, hyperbolic processes, truncated Lévy processes, and their mixtures, we
obtain formulas for the optimal exercise price and the fair price of the option in terms of the factors in
the Wiener–Hopf factorization formula, i.e., in terms of the resolvents of the supremum and infimum
processes, and derive explicit formulas for these factors. For calls, puts, and some other options, the
results are valid for any Lévy process.

We use Dynkin’s formula and the Wiener–Hopf factorization to find the explicit formula for the
price of the option for any candidate for the exercise boundary, and by using this explicit represen-
tation, we select the optimal solution.

We show that in some cases the principle of the smooth fit fails and suggest a generalization of
this principle.
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1. Introduction. Consider the market of a riskless bond and a stock whose
returns follow a Lévy process. If the Lévy process is neither a Brownian motion nor a
Poisson process, then the market is incomplete. According to the modern martingale
approach to option pricing [16], arbitrage-free prices can be obtained as expectations
under any equivalent martingale measure (EMM), which is absolutely continuous
w.r.t. the historic measure.

Let the riskless rate r > 0 and the dividend rate λ ≥ 0 be fixed, let S = {St}t≥0,
St = expXt, be the price process of the stock, and let Q be an EMM chosen by
the market. Let {Xt} be a Lévy process under Q, and (Ω,F ,Q) the corresponding
probability space. (For general definitions of the theory of Lévy processes, see, e.g.,
[32], [5], and [33].)

Let g(Xt) be the payoff function for a perpetual American option on the stock
(e.g., for a put, g(x) = K − ex, and for a call, g(x) = ex −K, where K is the strike
price; for the formulation of our results, it is more convenient to use g(Xt) rather than
max{g(Xt), 0}). Set q = r + λ, and denote by V∗(x), where x = lnS, the rational
price of the perpetual American option. It is given by

V∗(x) = supEx[e−qτg(Xτ )],(1.1)

where Ex denotes the expectation under Q, and the supremum is taken over a setM
of all stopping times τ = τ(ω) satisfying 0 ≤ τ(ω) <∞, ω ∈ Ω (see, e.g., [34, Chapter
XVIII, section 2]).
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Suppose that the optimal stopping time is the hitting time of the exterior of an
open set C ⊂ R:

τ∗ = inf{t ≥ 0 | Xt ∈ C}.(1.2)

In the pure diffusion case, one finds a candidate for the optimal stopping time (1.2)
or, equivalently, a boundary of C, by using the smooth fit principle as in [21] and in
[27]; see also [34]. When jumps are present, this principle may fail. This effect was
demonstrated in [30] for sequential testing problems for the Poisson process, and in [7],
[8] and [10], [11], [12] for a discrete-time model of the investment under uncertainty,
the perpetual American put in discrete time, and the perpetual American put in
continuous time, respectively. (In [7], [8] and [10], [11], [12], only the free boundary
value problem was considered.)

We use a direct reduction of the problems for puts and calls to the free boundary
problem based on Dynkin’s formula, and we solve this problem directly by using
the Wiener–Hopf factorization method in the form which is standard in the theory
of pseudodifferential operators (PDO) (see, e.g., [20]).1 A similar but less direct
approach was used in [28] for pure jumps and jump-diffusion mixtures of special forms;
only puts and calls were considered. In [15], the perpetual call for random walks was
considered, and the answer in terms of the supremum process was obtained. In [29],
the paper [15] was used to derive results in the same nonexplicit form for calls and
puts and any Lévy process.

We do not use the smooth pasting principle but make the direct comparison of
expected payoffs for different choices of candidates for the exercise price. We formulate
the optimality conditions for a relatively general payoff, and verify them for puts, calls,
and other options with payoffs of the form

g(x) =
m∑
j=1

cj exp(γjx);(1.3)

the list of examples can be extended. An example of (1.3) is an option which gives
its owner the right to sell the stock for K + a

√
St.

We obtain the optimal solution in the class M0 of hitting times of semi-infinite
intervals; the verification in the class M is made for Brownian motions (BM), nor-
mal inverse Gaussian processes (NIG) and their generalizations, hyperbolic processes
(HP), truncated Lévy processes (TLP), and any finite mixture of independent BM,
NIG, HP, and TLP.

The results are formulated in terms of the infinitesimal generator and the factors in
the Wiener–Hopf factorization formula (equivalently, in terms of the resolvents of the
supremum and infimum processes); in this form, they make sense for any Lévy process.
We prove the results by using explicit analytic expressions for the factors, obtained in
the paper for a wide class of Lévy processes. This class can be loosely characterized
as a class of Lévy processes with the Lévy measures exponentially decaying at infinity
and having polynomial singularity at the origin; we call these processes regular Lévy
processes of exponential type (RLPE).2 Notice that BM, NIG, HP, and TLP and any
finite mixture of independent BM, NIG, HP, and TLP are RLPE.

1Notice that the stochastic version of the Wiener–Hopf method was used to solve boundary value
problems for stochastic processes in queuing theory and insurance (see [13] and [31]).

2In [9], [10], [11], [12], a misleading name generalized truncated Lévy processes was used. Here
we use the name suggested in [4].
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We exclude variance gamma processes (VGP), since they need special treatment
at many places; in particular, the explicit formulas for the factors in the Wiener–Hopf
factorization formula, which we use, need regularization in the case of VGP.

Not only BM, but also the other mentioned processes have been widely used
to describe the behavior of stock prices in real financial markets: VGPs have been
used by Madan and coauthors in a series of papers during the 90s (see [23] and the
bibliography there); HP were constructed and used by Eberlein and coauthors [17],
[18], [19]; hyperbolic distributions were constructed in [1]; NIG were constructed in
[2] and used to model German stocks in [3]; TLP constructed in [22] were used for
modeling in real financial markets in [6], [14], [26]; a generalization of this family
was constructed in [9], [11], [12]. As A. N. Shiryaev and O. E. Barndorff-Nielsen
remarked, the name TLP was misleading, and thus from now on we will call this
family of processes the KoBoL family.

Earlier, noninfinitely divisible truncations of stable Lévy distributions were con-
structed and used to model the behavior of the Standard & Poor 500 Index by Man-
tegna and Stanley [24], [25].

Notice that the Lévy measure of any Lévy process can be approximated by a
sequence of Lévy measures of RLPE so that the factors in the Wiener–Hopf factoriza-
tion formula also converge, and in the case of payoffs of the form (1.3), the answers
and conditions are formulated in terms of these factors. Hence, for these payoffs, our
results are valid for any Lévy process. Whether they are valid for any Lévy process
when payoffs are more general than (1.3) remains an open question.

As is well known, simple formulas for the factors in the Wiener–Hopf factorization
formula can be obtained in few cases only. Here we obtain them (in two versions) by
using only one integration, and for model classes HP, NIG, and the KoBoL family we
derive really simple approximate formulas, with small errors if the rate of decay of
the tails is large. As empirical studies in [3] and [26] suggest, this is usually the case,
and so these approximate formulas may be of some interest.

The plan of the paper is as follows. In section 2, we introduce the class RLPE,
give examples, and prove several properties of the characteristic exponents of RLPE.
In section 3, we derive two sets of explicit formulas for factors in the Wiener–Hopf
factorization formula and necessary bounds for these factors; for model classes of
RLPE, we also obtain approximate effective formulas for the factors.

In section 4 (resp., section 5), we solve the problem for the perpetual American
put (resp., call) and similar more general payoffs, in the class M0. In section 6, we
formulate the free boundary value problem, prove that its solution solves the optimal
stopping problem in the class M, and for model classes of RLPE and mixtures of
independent processes of the model classes, verify that the explicit solutions found in
sections 4–5 for puts, calls, and some other options with the payoffs of the form (1.3)
solve the free boundary value problem and, hence, solve problem (1.1).

In section 7 we show that in some cases the smooth pasting condition fails, and
we offer its generalization, which is valid for RLPE; in the appendix, we prove the
most technical statements of sections 2–6.

2. RLPEs.

2.1. Some basic facts about Lévy processes (See, e.g., [32, section I.4],
[5, pp. 3, 13], and [33, p. 3]). We assume as given a filtered probability space
(Ω,F , (Ft)0≤t<+∞,P) satisfying the usual hypotheses.
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Definition 2.1. An adapted process X = (Xt)0≤t<+∞ with X0 = 0 a.s. is a
Lévy process if and only if

(i) X has increments independent of the past, i.e., Xt − Xs is independent of
Fs, 0 ≤ s < t < +∞;

(ii) X has stationary increments, i.e., Xt − Xs has the same distribution as
Xt−s, 0 ≤ s < t < +∞;

(iii) X is continuous in probability.
There exists a nice formula (the Lévy–Khintchine formula) which explicitly de-

scribes a Lévy process in terms of its characteristic exponent, ψ, defined by E[eiξXt ] =
e−tψ(ξ). Since we consider only one-dimensional Lévy processes here, we formulate
the corresponding theorem in the one-dimensional case only.

Theorem 2.2. (a) Let X be a Lévy process on R. Then its characteristic
exponent admits the representation

ψ(ξ) =
σ2

2
ξ2 − iγξ −

∫
Rn

(
eixξ − 1− ixξ1[−1,1](x)

)
Π(dx),(2.1)

where σ ≥ 0, γ ∈ R, and Π is a measure supported on R \ {0} that satisfies

Π({0}) = 0,

∫ +∞

−∞
(|x|2 ∧ 1)Π(dx) <∞.(2.2)

(b) The representation (2.1) is unique.
(c) Conversely, if σ ≥ 0, γ ∈ R, and Π is a measure supported on R \ {0}

that satisfies (2.2), then there exists a Lévy process X with the characteristic
exponent defined by (2.1); X is uniquely defined in law.

The triple (σ2,Π, γ) is called the generating triplet of X. The σ2 and Π are called
the Gaussian coefficient and Lévy measure of X. When Π = 0, X is Gaussian, and if
σ = 0, then X is called purely non-Gaussian.

The infinitesimal generator, L, of a Lévy process X acts as follows:

Lf(x) =
σ2

2
f ′′(x) + γf ′(x) +

∫ +∞

−∞
(f(x + y)− f(x)− yf ′(x)1[−1,1](y))Π(dy).

(2.3)

Apply −L to an oscillating exponent f(x) = eixξ and use (2.3):

(−L)eixξ =

[
σ2

2
ξ2 − iγξ −

∫ +∞

−∞

(
eiyξ − 1− iyξ1(−1,1)(y)

)
Π(dy)

]
eixξ = ψ(ξ)eixξ.

(2.4)

By decomposing a sufficiently regular function u into the Fourier integral

u(x) = (2π)−1

∫ +∞

−∞
eixξû(ξ)dξ,

where

û(ξ) =

∫ +∞

−∞
e−ixξu(x)dx(2.5)
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is the Fourier transform of a function u (this is the standard definition in the literature
on PDOs), and using (2.4), we conclude that −L is a pseudodifferential operator with
the symbol ψ(ξ):

−L = ψ(D).

Recall that a pseudodifferential operator with the (constant) symbol a is defined by

a(D)u(x) = (2π)−1

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ.

For an introduction to the general theory of PDOs, see [20].

2.2. Lévy processes of exponential type.
Definition 2.3. Let λ− < 0 < λ+. We call X a Lévy process of exponential

type [λ−, λ+] if its Lévy measure satisfies∫ −1

−∞
e−λ+xΠ(dx) +

∫ +∞

1

e−λ−xΠ(dx) <∞.(2.6)

Lemma 2.4. Let X be a Lévy process of exponential type [λ−, λ+]. Then
(a) the characteristic exponent ψ is holomorphic in the strip �ξ ∈ (λ−, λ+) and

continuous up to the boundary of the strip;
(b) there exist C and ν > 0 such that for all ξ in the strip �ξ ∈ [λ−, λ+]

|ψ(ξ)| ≤ C(1 + |ξ|)ν ;(2.7)

(c) for any q > 0 there exist δ > 0 and σ− < 0 < σ+ such that for any [ω−, ω+] ⊂
(σ−, σ+) and all ξ in the strip �ξ ∈ [ω−, ω+]

q + �ψ(ξ) ≥ δ,(2.8)

where δ = δ(ω−, ω+) > 0;
(d) if

q + ψ(i(σ− + 0)) ≥ 0, and q + ψ(i(σ+ − 0)) ≥ 0,(2.9)

then (2.8) holds;
(e) for any q > 0, the equation

q + ψ(ξ) = 0(2.10)

has at most one purely imaginary root in the lower half-plane (call it −iβ+)
and at most one, −iβ−, in the upper half-plane;

(f) the root −iβ∓ exists if and only if

q + ψ(iλ± ∓ 0) < 0,(2.11)

and if it exists, it is a simple root.
Proof. (a) is immediate from (2.6), and (b) can be easily deduced from the

Lévy–Khintchine formula, by considering separately the integral over |x| ≤ |ξ|−1 and
|x| ≥ |ξ|−1.

(c)–(d) Set M1(σ) =
∫ +∞
−∞ e−σxµ1(dx), where µ1(dx) is the probability distribu-

tion of X1. By differentiating twice, we conclude that M1 is convex and, clearly,
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M1(0) = 1 < eq. Hence, there exist ω− < 0 < ω+ and δ > 0 such that for all
σ ∈ [ω−, ω+], M1(σ) ≤ eq−δ.

Now, for any ξ ∈ R and these σ,

exp(−�ψ(ξ + iσ)) = | exp(−ψ(ξ + iσ))|

=

∣∣∣∣
∫ +∞

−∞
eiξx−σxµ1(dx)

∣∣∣∣ ≤
∫ +∞

−∞
e−σxµ1(dx);

therefore (2.8) holds with σ− = inf ω−, σ+ = supω+, and (2.9) implies (2.8).

(e)–(f) Notice that by the proof of (c), σ �→ q + ψ(iσ) is concave and equal to
q > 0 at 0.

2.3. Two definitions of RLPEs. For the sake of brevity, we consider processes
with Lévy measures (almost) symmetric in a neighborhood of the origin.

Definition 2.5. Let λ− < 0 < λ+ and ν ∈ [0, 2). A purely non-Gaussian Lévy
process is called an RLPE of type [λ−, λ+] and order ν if its Lévy measure satisfies
(2.6) and, in a neighborhood of zero, admits a representation Π(dx) = f(x)dx, where
f satisfies the following condition: There exist ν′ < ν, c > 0, and C > 0 such that

∣∣f(x)− c|x|−ν−1
∣∣ ≤ C|x|−ν′−1 ∀ |x| ≤ 1.(2.12)

If the sample paths of a Lévy process have bounded variation on every compact
time interval a.s., one says that the Lévy process has bounded variation. A regular
Lévy process of exponential type has bounded variation if and only if ν < 1, since
this is equivalent to

∫ +∞
−∞ (|x| ∧ 1)Π(dx) < +∞ (see, e.g., [5], p. 15).

Straightforward calculation (see [9]) shows that an RLPE of order ν > 0 in the
sense of Definition 2.5 is an RLPE in the sense of the following definition.

Definition 2.6. Let λ− < 0 < λ+ and ν ∈ (0, 2]. A Lévy process is called an
RLPE of type [λ−, λ+] and order ν > 0 if the following two conditions are satisfied:

(i) the characteristic exponent admits a representation

ψ(ξ) = −iµξ + φ(ξ),(2.13)

where φ is holomorphic in the strip �ξ ∈ (λ−, λ+), is continuous up to the
boundary of the strip, and admits a representation

φ(ξ) = c|ξ|ν + O(|ξ|ν1)(2.14)

as ξ →∞ in the strip �ξ ∈ [λ−, λ+], where ν1 < ν;
(ii) there exist ν2 < ν and C such that the derivative of φ in (2.13) admits a

bound

|φ′(ξ)| ≤ C(1 + |ξ|)ν2 , �ξ ∈ [λ−, λ+].(2.15)

One can easily generalize both definitions by using c± ≥ 0 in (2.12) on the half-
axis ±x > 0, and in (2.14) as �ξ → ±∞.

2.4. Model classes of RLPEs. All model classes listed in the introduction
except for VGP are RLPE:

• BM are RLPE of order 2 and any exponential type;
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• a KoBoL process of order ν ∈ (0, 2), with steepness parameters λ− < 0
and λ+ > 0, is an RLPE of order ν and exponential type [λ−, λ+]. An
(asymmetric) version can be defined as a purely non-Gaussian Lévy process
with the Lévy measure

Π(dx) = c+x
−ν−1
+ eλ−xdx + c−x−ν−1

− eλ+xdx,(2.16)

where x+ = max{x, 0} and c± > 0. An RLPE in the sense of Definitions
2.5–2.6 holds with c+ = c−. Direct calculation shows that if ν ∈ (0, 2), ν = 1,
and c+ = c− = c, then the characteristic exponent of a KoBoL process is of
the form

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν ].

(2.17)

In the case ν = 1, the formula differs from (2.17) (see [9], [12]).
• a normal tempered stable Lévy process of order ν ∈ (0, 2), with parameters
δ > 0, α > β > −α, is an RLPE of order ν and exponential type [−α+β, α+
β]; in particular, NIG processes are RLPE of order 1. The characteristic
exponent is of the form

ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)ν/2 − (α2 − β2)ν/2];(2.18)

• an HP with parameters δ > 0, α > β > −α, is an RLPE of order 1 and
exponential type [λ−, λ+] for any [λ−, λ+] ⊂ (−α+β, α+β). Its characteristic
exponent is equal to

ψ(ξ) = −iµξ − ln

[(
αδ

K1(αδ)

)
K1(δ

√
α2 − (β + iξ)2)

δ
√
α2 − β2

]
.(2.19)

2.5. Properties of the characteristic exponent of an RLPE.

2.5.1. General properties. Clearly, an RLPE is a Lévy process of exponential
type; therefore the properties listed in Lemma 2.4 hold for any RLPE.

2.5.2. Additional properties of the characteristic exponents from model
classes. In order to derive simple approximate formulas for the factors in the Wiener–
Hopf factorization formula, we need the following lemma, which we managed to prove
only for model classes on a case-by-case basis. We conjecture that this lemma holds
for a much wider variety of RLPE, if not for all RLPE.

Lemma 2.7. Let X be one of the model processes, of order ν > 0 and exponential
type [λ−, λ+]. Then

(a) the φ in (2.13) admits the analytic continuation into the complex plane with
two cuts, (−i∞, iλ−] and [iλ+,+i∞), and outside any neighborhood of iλ−
and iλ+ it satisfies the following estimate:

|φ(ξ)| ≤ C(1 + |ξ|)ν ;(2.20)

(b) all the roots in the plane with the cuts are purely imaginary.

For the proof, see the appendix.
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3. The Wiener–Hopf factorization.

3.1. General Lévy processes. Let (Ω,F ,P) be a probability space on which
a one-dimensional Lévy process X is defined, and let Ω0 be a subset of Ω such that
for each ω ∈ Ω0 the trajectory X·(ω) is right-continuous with left limits. Define, on
Ω0, Mt = sup0≤s≤tXs and Nt = inf0≤s≤tXs. On Ω \ Ω0, both Mt and Nt are set to
be 0. M = {Mt} and N = {Nt} are called the supremum process and the infimum
process, respectively. The Laplace transform (in t) of the distribution of Xt, or more
precisely,

qEx

[∫ ∞

0

e−qteiξXtdt

]
= q(q + ψ(ξ))−1,

can be factorized by using the Laplace transforms (in t) of the distributions of the
supremum and infimum processes. Among many factorization identities, we will use
only the simplest one ([33, Theorems 45.2 and 45.5]; for more detailed exposition, see
[33, section 45]).

Let µt be the law of X.
Theorem 3.1. (a) Let q > 0. There exists a unique pair of infinitely divisible

distributions µ+
q and µ−

q supported on (−∞, 0] and [0,+∞), respectively, such that
their Fourier transforms φ+

q and φ−
q satisfy

q(q + ψ(ξ))−1 = φ+
q (ξ)φ−

q (ξ), ξ ∈ R.(3.1)

(b) The functions φ+
q and φ−

q admit the following representations:

φ+
q (ξ) = q

∫ +∞

0

e−qtE[eiξMt ]dt = q

∫ +∞

0

e−qtE[eiξ(Xt−Nt)]dt,(3.2)

φ−
q (ξ) = q

∫ +∞

0

e−qtE[eiξNt ]dt = q

∫ +∞

0

e−qtE[eiξ(Xt−Mt)]dt(3.3)

and

φ+
q (ξ) = exp

[∫ +∞

0

t−1e−qtdt

∫ +∞

0

(eixξ − 1)µt(dx)

]
,(3.4)

φ−
q (ξ) = exp

[∫ +∞

0

t−1e−qtdt

∫ 0

−∞
(eixξ − 1)µt(dx)

]
.(3.5)

Notice that φ+
q (ξ) (resp., φ−

q (ξ)) admits the analytic continuation into the upper
half-plane �ξ > 0 (resp., lower half-plane �ξ < 0) and does not vanish there. Thus,
(3.1) is a special case of the Wiener–Hopf factorization introduced in solving integral
equations by Wiener and Hopf in 1931 [35], and widely used in the theory of boundary
value problems for PDE and PDO.

The formulas (3.2)–(3.3) are by no means explicit, though very convenient for the-
oretical considerations, and (3.4)–(3.5) are rather involved. Simple explicit analytical
formulas can be obtained for special cases only.

Example 3.1. Let X be a BM with the drift γ and variance σ2. Then the character-

istic exponent is ψ(ξ) = σ2

2 ξ
2− iγξ. It is clear that for q > 0 the equation q+ψ(ξ) = 0

has two roots −iβ− and −iβ+ in the upper and lower half-planes, respectively, and
therefore, q(q + ψ(ξ))−1 admits the factorization (3.1) with

φ+
q (ξ) =

β+

β+ − iξ
, φ−

q (ξ) =
−β−

−β− + iξ
.(3.6)
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Clearly, φ−
q is the Fourier transform of the exponential distribution with parameter

−β−, and φ+
q is the Fourier transform of the dual to the exponential distribution with

parameter β+.

3.2. Lévy processes of exponential type. We fix a branch of ln by the re-
quirement ln a ∈ R for a > 0. We also fix ω− < 0 < ω+, for which (2.8) holds.

Theorem 3.2. Let X be a Lévy process of exponential type, let there exist
C, c, ν > 0 such that

�ψ(ξ) ≥ c(1 + |ξ|)ν , �ξ ∈ [ω−, ω+],(3.7)

and let there exist q > 0 such that for ω = ω±∫ +∞+iω

−∞+iω

|ψ′(η)|
(1 + |η|)(q + �ψ(η))

dη < +∞.(3.8)

Then (a) φ+
q (ξ) admits the analytic continuation into a half-plane �ξ > ω− and

can be calculated as follows:

φ+
q (ξ) = exp

[
(2πi)−1

∫ +∞+iω−

−∞+iω−

ψ′(η)

q + ψ(η)
ln
η − ξ

η
dη

]
(3.9)

= exp

[
(2πi)−1

∫ +∞+iω−

−∞+iω−

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
;(3.10)

(b) φ−
q (ξ) admits the analytic continuation into a half-plane �ξ < ω+ and can be

calculated as follows:

φ−
q (ξ) = exp

[
−(2πi)−1

∫ +∞+iω+

−∞+iω+

ψ′(η)

q + ψ(η)
ln
η − ξ

η
dη

]
(3.11)

= exp

[
−(2πi)−1

∫ +∞+iω+

−∞+iω+

ξ ln(q + ψ(η))

η(ξ − η)
dη

]
;(3.12)

(c) φ+
q (ξ)−1 (resp., φ−

q (ξ)−1) admits the analytic continuation into a wider half-
plane �ξ > λ− (resp., �ξ < λ+) by

φ+
q (ξ)−1 = q−1(q + ψ(ξ))φ−

q (ξ), �ξ ∈ (λ−, ω−](3.13)

φ−
q (ξ)−1 = q−1(q + ψ(ξ))φ+

q (ξ), �ξ ∈ [ω+, λ+).(3.14)

Proof. (a) Consider the expression under the exponent sign in (3.4):

f(ξ) : =

∫ +∞

0

e−qt

t

∫ +∞

0

(eixξ − 1)µt(dx)dt

=

∫ +∞

0

e−qt

t

∫ +∞

0

(eixξ − 1)(2π)−1

∫ +∞

−∞
e−ixη−tψ(η)dηdxdt.

On the strength of (3.7), we may apply the Cauchy theorem and shift the line of
integration:

f(ξ) =

∫ +∞

0

e−qt

t

∫ +∞

0

(eixξ − 1)(2π)−1

∫ +∞+iω−

−∞+iω−
e−ixη−tψ(η)dηdxdt.
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Now the inner double integral converges absolutely; hence we can apply the Fubini
theorem and integrate w.r.t. x first:

f(ξ) =

∫ +∞

0

e−qt

t
(2πi)−1

∫ +∞+iω−

−∞+iω−
e−tψ(η)((η − ξ)−1 − η−1)dηdt.

Integrate by parts:

f(ξ) =

∫ +∞

0

e−qt

t
(2πi)−1

∫ +∞+iω−

−∞+iω−
ln
η − ξ

η
tψ′(η)e−tψ(η)dηdt

= (2πi)−1

∫ +∞

0

∫ +∞+iω−

−∞+iω−
ln
η − ξ

η
ψ′(η)e−t(q+ψ(η))dηdt.

From (3.8), the integral above, calculated in the reverse order dtdη, converges abso-
lutely. Hence we can apply the Fubini theorem once again and obtain (3.9); integrating
in (3.9) by parts, we arrive at (3.10).

(b) The dual process X̃ is of exponential type [−λ+,−λ−], its characteristic ex-
ponent is ψ̄, and [−ω+,−ω−] plays the part of [ω−, ω+] in Lemma 2.4. Write down
the Wiener–Hopf factorization for X̃ and apply the complex conjugation; then the
“+”-factor for X̃ becomes the “−”-factor for X, and (3.9) for X̃ becomes (3.11) for
X.

(c) This part follows from (3.1) and Lemma 2.4(a).
Remark 3.1. If X is an RLPE in the sense of Definition 2.6, then (3.8) and (3.7)

hold; hence, Theorem 3.2 holds as well.
Lemma 3.3. Let ω− and ω+ be as in Theorem 3.2. Then there exists C > 0 such

that in the half-plane ±�ξ ≥ ±ω∓, φ±
q admits estimates

(1 + |ξ|)−C ≤ |φ±
q (ξ)| ≤ (1 + |ξ|)C .(3.15)

Proof. In (3.9) and (3.11), make the change of variables η �→ |ξ|η and use (2.7) to
notice that the expressions under the exponential sign admit an estimate via C ln(2+
|ξ|).

Equation (3.15) is insufficient for the proofs in sections 4–6. More information
about properties of the factors is obtained below.

3.3. RLPE. Let σ− < 0 < σ+ be from (2.8). Fix λ > max{−σ−, σ+}, and set
Λ±(ξ)s = (λ∓ iξ)s = exp[s ln(λ∓ iξ)]. Next, choose d > 0 and κ−, κ+ ∈ R so that

B(ξ) := d−1Λ+(ξ)−κ+Λ−(ξ)−κ−(q + ψ(ξ))(3.16)

satisfies

lim
ξ→±∞

B(ξ) = 1.(3.17)

Choices of d, κ+, and κ− depend on the properties of ψ, and hence on ν, µ, and c in
(2.13)–(2.14). We have to consider four cases.

1. If ν ∈ (1, 2) or ν ∈ (0, 1] and µ = 0, we set d = c, κ+ = κ− = ν/2.
2. If ν ∈ (0, 1) and µ > 0, we set d = µ, κ+ = 1, κ− = 0.
3. If ν ∈ (0, 1) and µ < 0, we set d = |µ|, κ+ = 0, κ− = 1.
4. If ν = 1, we set d = (c2 + µ2)1/2, κ± = 1/2± π−1 arctan(µ/c).
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In all cases, (3.17) follows from (2.13)–(2.14). In the first three cases, (3.17) is imme-
diate, and in the last case, the simplest way is to check that lnB(ξ)→ 0 as ξ → ±∞:

lim
ξ→±∞

lnB(ξ) = ±πi
2
κ+ ∓ πi

2
κ− + ln

c∓ iµ

(c2 + µ2)1/2
+ (−κ+ − κ− + 1) ln |k|

= ±(κ+ − κ−)
πi

2
∓ i arctan

µ

c
= 0

by our choice of κ+ and κ−.
The last factor in (3.16) assumes values in a half-plane �z > 0 by (2.8), and the

same is true of the product of the first three factors, since the first one is positive,
Λ−(ξ) and Λ+(ξ) assume values in the half-plane but in different quadrants, and
0 ≤ κ± ≤ 1. Hence, for all ξ ∈ R, −π < argB(ξ) < π, and therefore b = lnB is
well-defined on R. Fix ω− < 0 < ω+ such that σ− < ω−, ω+ < σ+, where σ± are from
(2.8), and notice that all the arguments above are valid on any line �ξ = σ ∈ [ω−, ω+].

Next, for τ > ω−, τ1 ∈ [ω−, τ) and real ξ, set

b+(ξ + iτ) =
i

2π

∫ +∞+iτ1

−∞+iτ1

b(η)

ξ + iτ − η
dη(3.18)

(by the Cauchy theorem, b+(η+ iτ) is independent of a choice of τ1), and for τ < ω+,
τ2 ∈ (τ, ω+], and real ξ, set

b−(ξ + iτ) = − i

2π

∫ +∞+iτ2

−∞+iτ2

b(η)

ξ + iτ − η
dη.(3.19)

It follows from (2.13), (2.14), (3.16), and (3.17) that there exist C1, ρ > 0 such that
for any η in a strip �η ∈ [ω−, ω+]

|b(η)| ≤ C1(1 + |η|)−ρ.(3.20)

Hence, the integrals in (3.18)–(3.19) converge, and b+(ξ) (resp., b−(ξ)) is well-defined
in a half-plane �ξ ω− (resp., �ξ < ω+). We set a±(ξ) = Λ±(ξ)κ± exp b±(ξ).

Theorem 3.4. (a) a+ (resp., a−) is holomorphic in a half-plane �ξ > ω− (resp.,
�ξ < ω+). It admits the analytic continuation into a wider half-plane �ξ > λ− (resp.,
�ξ < λ+) and the continuous extension up to the boundary, by

a+(ξ) = a(ξ)/a−(ξ), �ξ ∈ [λ−, ω−],

a−(ξ) = a(ξ)/a+(ξ), �ξ ∈ [ω+, λ+],

where a(ξ) = d−1(q + ψ(ξ));
(b) on a strip �ξ ∈ [λ−, λ+],

q + ψ(ξ) = da+(ξ)a−(ξ);(3.21)

(c) there exist C, c > 0, and ρ1 > 0 such that in a half-plane �ξ ≥ ω−,

c(1 + |ξ|)κ+ ≤ |a+(ξ)| ≤ C(1 + |ξ|)κ+ ,(3.22)

|a+(ξ)±1 − Λ+(ξ)±κ+ | ≤ C(1 + |ξ|)±κ+−ρ1 ,(3.23)
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and in a half-plane �ξ ≤ ω+,

c(1 + |ξ|)κ− ≤ |a−(ξ)| ≤ C(1 + |ξ|)κ− ,(3.24)

|a−(ξ)±1 − Λ−(ξ)±κ− | ≤ C(1 + |ξ|)±κ−−ρ1 ;(3.25)

(d) factors in (3.1) and (3.21) are related by

φ±
q (ξ)−1 = a±(ξ)/a±(0).(3.26)

Proof. (a) The first statement is straightforward from (3.20), and once (c) is
proven, the second one follows, since a(ξ) is holomorphic on a strip �ξ ∈ (λ−, λ+)
and admits the continuous extension up to the boundary of the strip.

(b) By the residue theorem, we have for τ1 ∈ (ω−,�ξ) and τ2 ∈ (�ξ, ω+)

b+(ξ) =
i

2π

(∫ +∞+iτ1

−∞+iτ1

−
∫ +∞+iτ2

−∞+iτ2

)
b(η)

ξ − η
dη +

i

2π

∫ +∞+iτ2

−∞+iτ2

b(η)

ξ − η
dη = b(ξ)− b−(ξ).

Hence, exp b+(ξ) exp b−(ξ) = B(ξ), and (3.21) is immediate on a narrow strip ω− <
�ξ < ω+; on a wider strip �ξ ∈ [λ−, λ+], it holds by construction.

(c) By using (3.20), we obtain

|(ξ + iτ − η)−1b(η)| ≤ C(1 + |ξ − η|)−1(1 + |η|)−ρ.

By separately considering a region, where |ξ − η| ≥ |ξ|/2, and its complement, it is
easy to show that the right-hand side (RHS) admits an upper bound via

C1(1 + |ξ|)−ρ1(1 + |η|)−1−ρ1 + C1(1 + |ξ|)−ρ1(1 + |ξ − η|)−1−ρ1 ,

where ρ1 = min{1, ρ}/2 > 0. By integrating, we obtain for ξ in a half-plane ±�ξ ≥ ω∓
(see (3.18)–(3.19))

|b±(ξ)| ≤ C3(1 + |ξ|)−ρ1 ,(3.27)

and (3.22)–(3.25) follow from (3.27) and the definition of a±.
(d) Notice that a±, 1/a±, φ±

q , and 1/φ±
q are bounded by a polynomial in the

half-plane ±�ξ ≥ ±ω∓; therefore, by comparing (3.1) and (3.21), we conclude that
a±φ±

q is holomorphic, polynomially bounded, and nonvanishing on the complex plane.
By the Liouville theorem, this is constant, and taking into account that φ±

q (0) = 1,
we obtain (3.26).

3.4. Approximate formulas for the factors in the case of NIG, HP, and
KoBoL. We can write these formulas down for both representations (in (3.1) and
(3.21)). In the case of the former, the argument and formulas are shorter. We use
(3.9) and Lemma 2.7 to transform the line of integration into the contour along the
banks of the cut (−i∞, iλ−]. In empirical studies (see, e.g., [3] and [26]), the λ+ and
−λ− are usually large, of order 40–50, and then for typical values of other parameters
both roots −iβ± in Lemma 2.7 exist. Therefore, in the process of transformation, the
contour crosses the simple pole at η = −iβ+. By the residue theorem we obtain, for
ξ in the upper half-plane,

φ+
q (ξ) = exp

[
ln
−iβ+

−iβ+ − ξ
+ Φ+

q (ξ)

]
,
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where

Φ+
q (ξ) = (2π)−1

∫ λ−

−∞

[
ψ′(iz − 0)

q + ψ(iz − 0)
− ψ′(iz + 0)

q + ψ(iz + 0)

]
ln
−z − iξ

−z dz.(3.28)

Thus,

φ+
q (ξ) =

β+

β+ − iξ
exp Φ+

q (ξ).(3.29)

Similarly, from (3.11) we deduce, for ξ in the lower half-plane,

φ−
q (ξ) =

−β−
−β− + iξ

exp Φ−
q (ξ),(3.30)

where

Φ−
q (ξ) = (2π)−1

∫ +∞

λ+

[
ψ′(iz − 0)

q + ψ(iz − 0)
− ψ′(iz + 0)

q + ψ(iz + 0)

]
ln
z + iξ

z
dz.(3.31)

If −λ− (resp., λ+) is large, then |Φ+
q (ξ)| (resp., |Φ+

q (ξ)|) is small uniformly in ξ in the
upper (resp., lower) half-plane, which can be easily seen from the explicit formulas
for the characteristic exponents and (3.28) (resp., (3.31)). Hence, we may calculate
the integrals in (3.28) and (3.31) with large relative error and still obtain φ+

q (ξ) from
(3.29) and φ−

q (ξ) from (3.30) with good accuracy. This observation can be used to
develop effective numerical procedures. In fact, even the simple approximations

φ+
q (ξ) ∼ β+

β+ − iξ
, φ−

q (ξ) ∼ −β−
−β− + iξ

(3.32)

produce errors of only several percent for many typical parameters values.
The comparison of (3.6) and (3.32) provides an analytical explanation of why a

simple adjustment of parameters of the Gaussian model can give fairly good fit even
in a very non-Gaussian situation.

4. Pricing of the perpetual American put and similar perpetual op-
tions.

4.1. Sufficient conditions for the solution for the perpetual put-like
options, in the class M0 of hitting times τ (a) of segments (−∞, a]. Let Q
be an EMM chosen by the market, and assume that X under Q is an RLPE with the
characteristic exponent ψ and the infinitesimal generator L. For g(Xt) the payoff, set

V (h, x) := Ex[e−qτ(h)g(Xτ(h))],(4.1)

where Ex is the expectation operator of the process X started at x, under Q.
Lemma 4.1. Let there exist h∗ with the following properties:
(a) if h < h∗, then there exists x such that

V (h, x) < g(x);(4.2)

(b) for any x ≥ h∗,

V (h∗, x) ≥ g(x);(4.3)
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(c) if h > h∗, then for any x ≥ h,

V (h∗, x) ≥ V (h, x).(4.4)

Then τ(h∗) is an optimal stopping time of the classM0.
Proof. Clearly, the rational price of the option must satisfy (4.3); hence (4.2)

excludes h < h∗. Due to (4.3), h∗ is an admissible choice, and (4.3)–(4.4) ensure that
a choice h > h∗ is no better than h∗.

To apply Lemma 4.1, we need an explicit formula for V (h, x). We derive it by
using Dynkin’s formula and the solution to the Wiener–Hopf equation. Let Uq = Uq

X

be the potential operator (the resolvent) of the process X:

UqW (x) = Ex

[∫ +∞

0

e−qtW (Xt)dt

]
.

If V ∈ C0 is sufficiently regular, for instance, (q − L)V ∈ C0, then

Uq(q − L)V = V(4.5)

(see, e.g., [33, Theorem 31.3]). We will need (4.5) for not-so-regular V .
Lemma 4.2. Let W := (q − L)V := (q + ψ(D))V belong to L1 and

(q + �ψ)−1Ŵ ∈ L1.(4.6)

Then (4.5) holds.
Proof. Since W ∈ L1, we have

(UqW )(x) =

∫ +∞

0

e−qt(PtW )(x)dt

=

∫ +∞

0

e−qt(2π)−n

∫
Rn

e−i〈x,ξ〉−tψ(ξ)f̂(ξ)dξdt.

Due to (4.6), the last integral, computed in the reverse order dtdξ, converges abso-
lutely, and hence we can apply the Fubini theorem and obtain UqW = (q+ψ(D))−1W ;
(4.5) follows.

If W is universally measurable, then for any stopping time τ , Dynkin’s formula
is valid (see, e.g., [33, equation (41.3)]):

UqW (x) = Ex

[∫ τ

0

e−qtW (Xt)dt

]
+ Ex

[
e−qτUqW (Xτ )

]
.(4.7)

It follows that (4.7) holds for g ∈ L1 := L1(Rn), which admits a representation
g = g1 + g2, where g1 ∈ C0 and g2 is a nonnegative (or nonpositive) function of the
class L1. Denote the class of such sums by UL := UL(Rn). This class is sufficiently
wide for all the applications that we will need in the paper.

Lemma 4.3. Let W := (q − L)V := (q + ψ(D))V ∈ UL satisfy (4.6). Then

W (x) = Ex

[∫ τ

0

e−qt(q − L)W (Xt)dt

]
+ Ex

[
e−qτW (Xτ )

]
.(4.8)

Proof. Apply (4.7) to W . Due to (4.6), (4.5) holds, and hence, (4.7) becomes
(4.8).
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Let σ+ > 0 be from Lemma 2.4. Let g(s) = Dsg, s = 0, . . . ,m, be measurable,
and let ∑

0≤s≤m

|g(s)(x)| ≤ Ce−ω′
+x, x ≤ 0,(4.9)

∑
0≤s≤m

|g(s)(x)| ≤ Ce−ω′
−x, x ≥ 0,(4.10)

In subsection 4.3, we will prove the following theorem.
Theorem 4.4. Let g satisfy (4.9)–(4.10) with ω′

− < ω′
+ < σ+ and m = 2. Then

(a) for any h ∈ R, a solution of the problem

(q − L)V (x) = 0, x > h,(4.11)

V (x) = g(x), x ≤ h,(4.12)

in the class of measurable functions, bounded on [h,+∞), exists.
(b) (1) If κ− = 1, then a continuous bounded solution is unique. It is given by

V = φ−
q (D)1(−∞,h)φ

−
q (D)−1g.(4.13)

(2) If κ− ∈ (0, 1), then a bounded solution is unique. It is given by (4.13),
and it is continuous.

(3) If κ− = 0, then a bounded solution is unique. It is given by (4.13), and
it is continuous if and only if (φ−

q (D)−1g)(h) = 0.
(4) If κ− ∈ (0, 1], then V ′(h−0) = V ′(h+0) if and only if (φ−

q (D)−1g)(h) =
0.

Remark 4.1. (a) The condition κ− = 0 is equivalent to ν ∈ (0, 1) and µ > 0. This
is the case of the process of bounded variation, with positive drift.

(b) The regularity condition on g can be relaxed: For some s > κ− + 1/2 and
ω′
− < ω′

+ < σ+,

(e−ω′
−x + e−ω′

+x)−1g ∈ Hs(R).

(c) Equation (4.13) can be written as

V (h, ·) := V (·) = qUq
N1(−∞,h)w(·),(4.14)

where

w := φ−
q (D)−1g = Uq

M (q − L)g(4.15)

and Uq
M and Uq

N are the resolvents of the supremum and infimum processes, respec-
tively.

We continue to study the optimal stopping problem. If κ− > 0 or κ− = 0 and
w(h) = 0, then the next lemma provides the representation of W := (q −L)V , which
implies that W ∈ UL and (4.6) holds. The lemma is formulated and proven under
simplifying assumptions, which hold for model classes. We also require more regularity
of g.

Thus, in these cases, we may use (4.8) due to Lemma 4.2. If κ− = 0, the condition
w(h) = 0 can be used formally to find the optimal exercise boundary as the only
boundary for which the solution is continuous, and in section 6 we will show that this
is really the optimal boundary (for model classes, at least). Otherwise, we cannot
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justify the usage of Dynkin’s formula for discontinuous V . This is the reason why we
exclude the case ν ∈ (0, 1) and µ > 0 below.

Lemma 4.5. Assume that ν1 = ν − 1 in (2.15), and that (4.9)–(4.10) hold with
m = 3. Then the following hold:

(a) If κ+ < 1, then W is continuous on (h,+∞), exponentially decays as x →
+∞, and admits the following representation in the right neighborhood of h:

W (x) = a+(0)−1w(h)Γ(1− κ+)−1(x− h)−κ+(1 + O((x− h)γ1) + O((x− h)γ2)

(4.16)

for some γ1, γ2 > 0.
(b) If κ+ = 1 and w(h) = 0, then W is continuous on (h,+∞) and exponentially

decays as x→ +∞; in addition, W (h + 0) exists.
(c) If κ+ = 1 and (2.14) holds with ν = 2 and ν1 < 1 (that is, the process X is a

mixture of a BM with independent RLPE of order less than 1), then the statement in
(b) holds.

(d) In all cases, W satisfies (4.6).
Proof of this lemma will be given in subsection 4.4.
Thus, our further considerations in this section do not apply in the case of the

mixture of a BM with RLPE of order ≥ 1. Notice that we will not use the additional
conditions when we verify the sufficient optimality conditions in section 6 for all
mixtures of processes from model classes and put options.

Under the conditions of Lemma 4.5, we can use (4.8); from (4.11)–(4.12), we
conclude that V is nothing else but V (h, x) given by (4.1). Hence, (4.13) is the
formula for V (h, x) that we need, and we can formulate a simple sufficient optimality
condition in the class M0.

Theorem 4.6. Let p−q , the (generalized) density of the distribution µ−
q in Theo-

rem 3.1, be continuous; let (4.9)–(4.10) hold with ω′
− < ω′

+ < σ+ and m = 3; and let

there exist h̃1 ≤ h̃2 such that the following conditions are satisfied:

w(x) > 0 ∀ x < h̃1,(4.17)

w(x) = 0 ∀ h̃1 ≤ x ≤ h̃2,(4.18)

w(x) < 0 ∀ x > h̃2.(4.19)

Then for any h̃ ∈ [h̃1, h̃2], τ(h̃) is an optimal stopping time in the classM0.
Proof. Write (4.13), for x > h, as

V (h, x) =

∫ h

−∞
p−q (x− y)w(y)dy(4.20)

and as

V (h, x) = g(x)−
∫ +∞

h

p−q (x− y)w(y)dy.(4.21)

If h < h̃1, we notice that suppp−q ⊂ [0,+∞), and therefore from (4.17) and (4.21)
we conclude that there exist x such that V (h, x) < g(x), which violates the necessary
optimality conditions. Now consider h on the half-axis (h̃2,+∞), and x > h. By
differentiating (4.20) w.r.t. h and using (4.19), we find

V ′
h(h, x) = p−q (x− h)w(h) < 0;
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hence for these h, x, we have V (h, x) < V (h̃2, x). Finally, for h̃1 ≤ h ≤ h̃2 and x > h,
we have from (4.18)

V ′
h(h, x) = p−q (x− h)w(h) = 0;

hence

V (h, x) = V (h̃1, x) ∀ h ∈ [h̃1, h̃2] and x > h.

We conclude that any h ∈ [h̃1, h̃2] is an optimal exercise boundary.
Let us show that if (2.15) holds with any ν1 ∈ (ν−1, ν) (this condition is satisfied

for model processes), then p−q is continuous on (0,+∞). For x > 0,

p−q (x) = (2π)−1

∫ +∞

−∞
eixξφ−

q (ξ)dξ.(4.22)

By choosing ν1 sufficiently closely to ν − 1, it is possible to refine the proof of (3.25)
and obtain (3.25) with any ρ1 ∈ (0, 1) (and C depending on ρ1). Then from (3.25)
and (3.26), we deduce

φ−
q (ξ) = a−(0)(λ + iξ)−κ− + f̂(ξ),(4.23)

where f̂(ξ) = O((1+ |ξ|)−s) as ξ →∞, with some s > 1. Hence, f , the inverse Fourier

transform of f̂ , is a continuous function, and since for ν < 1∫ +∞

0

e−ixξx−ν−1e−λxdx = Γ(−ν)(λ + iξ)ν ,(4.24)

we deduce from (4.22)–(4.23) that

p−q (x) = a−(0)Γ(κ−)−11(0,+∞)(x)xκ−−1e−λx + f(x)(4.25)

is continuous on (0,+∞).
Example 4.1. Let g be given by (1.3). Then

w(x) =

l∑
j=1

cjφ
−
q (−iγj)−1eγjx,(4.26)

and it is easy to verify the sufficient conditions of Theorem 4.6 in concrete cases. In
particular, if they are satisfied, then h̃1 = h̃2; call it h̃.

For instance, if the option owner has the right to sell a share of the stock for
K + a

√
S, where S is the spot price, then g(x) = K + aex/2 − ex, w(x) = K +

aφ−
q (−i/2)−1ex/2−φ−

q (−i)−1ex, and the optimal exercise price is
√
Y , where Y is the

only positive root of

K + aφ−
q (−i/2)−1Y − φ−

q (−i)−1Y 2 = 0.

When an optimal h̃ is found, we can calculate the rational price by using the
explicit formulas for φ−

q :

V (h̃, x) = (2π)−1

∫ +∞+iσ

−∞+iσ

φ−
q (ξ)û(h̃, ξ)dξ,(4.27)
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where σ ∈ (ω′
+, λ+) is arbitrary and û is the Fourier transform of

u(h̃, x) := 1(−∞,h̃)(x)w(x)

w.r.t. x. If û(ξ) and ψ are holomorphic in the upper half-plane with pole(s) and/or
cut(s), then we can reduce the calculation of the integral in (4.27) to the sum of terms
corresponding to poles, and integrals over these cuts. This procedure allows one to
derive more effective formulas. We illustrate this procedure for puts.

4.2. Perpetual American put. For puts, g(x) = K−ex; (4.9) and (4.10) hold
with ω′

+ = 0 and ω′
− = −1, respectively, and any m; and h̃ is defined as the solution

to the equation K − φ−
q (−i)−1ex = 0, that is,

eh̃ = Kφ−
q (−i) = KqE

[∫ ∞

0

e−qt+Ntdt | N0 = 0

]
.(4.28)

Take σ ∈ (0, λ+) and calculate for �ξ = σ

û(h̃, ξ) =

∫ h̃

−∞
e−ixξ(K − φ−

q (−i)−1ex)dx

=
Ke−ih̃ξ

(−iξ)(1− iξ)
=
−Ke−ih̃ξ

ξ(ξ + i)
.

By substituting into (4.27), we obtain the formula for the rational perpetual put price

V (h̃, x) = −K

2π

∫ +∞+iσ

−∞+iσ

exp[i(x− h̃)ξ]φ−
q (ξ)

ξ(ξ + i)
dξ,(4.29)

where σ ∈ (0, λ+) is arbitrary.
Assume that φ in (2.13) admits the analytic continuation into the upper half-plane

�ξ > 0 with the cut [iλ+,+i∞) and satisfies (2.20) there. (If φ(ξ) = aξ2 + φ1(ξ),
we assume that φ1 satisfies (2.20) with ν1 < 2, in the upper half-plane with the cut.)
Assume also that q+ψ has the only zero −iβ− in the upper half-plane, 0 < −β− < λ+;
by Lemma 2.7, these conditions are satisfied for model processes. Then φ−

q admits
the analytic continuation into the upper half-plane with one simple pole at −iβ−, and
the cut [iλ+,+i∞), by

φ−
q (ξ) = q(q + ψ(ξ))−1φ+

q (ξ)−1.(4.30)

For z ∈ (λ+,+∞), set

Φ−
q (z) = iq[(q + ψ(iz + 0))−1 − (q + ψ(iz − 0))−1]φ+

q (iz)−1.(4.31)

By transforming the contour in (4.29) into the integral over the banks of the cut
[iλ+,+i∞), we meet the simple pole, which gives the first term in (4.32) below; in
the integral over the banks of the contour, we make the change of variables ξ = iz,
and, finally, obtain for x > h̃

V (h̃, x) =
iqK exp[β−(x− h̃)]

ψ′(−iβ−)φ+
q (−iβ−)(−β−)(1− β−)

+ (2π)−1

∫ +∞

λ+

KΦ−
q (z) exp[−(x− h̃)z]

z(1 + z)
dz.

(4.32)
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As the empirical studies of financial markets reveal, λ+ is usually large; hence, the
second term in (4.32) is small. Therefore, one may calculate it with a large relative
error. This observation facilitates the numerical implementation of (4.32). The lead-
ing term is a decaying exponential function, as in the Gaussian case, when there is no
cut at all, and the second term in (4.32) is zero.

In particular, in the Gaussian case,

(q + ψ(ξ))/q = ((−β− + iξ)/(−β−)) ((β+ − iξ)/β+) = φ−
q (ξ)−1φ+

q (ξ)−1,(4.33)

and hence q−1ψ′(−iβ−) = i(−β−)−1φ+
q (−iβ−)−1. By substituting into (4.28) and

(4.32), we obtain the optimal exercise price

eh̃ =
Kβ−
β− − 1

(4.34)

and the rational put price, for x > h̃,

V (h̃, x) =
K exp[β−(x− h̃)]

1− β−
=

(
K

1− β−

)1−β−

(−β−)−β−eβ−x.(4.35)

This is Merton’s result. One can easily calculate û for payoffs of the form (1.3), and
obtain the analogues of (4.29) and (4.32) and, in the Gaussian case, of (4.34) and
(4.35) as well.

4.3. Proof of Theorem 4.4. We need several basic definitions and facts of the
theory of PDO. For the sake of completeness, and in order to demonstrate the role of
the conditions that we impose, we give the proof of two crucial facts (for more details,
see [20]).

Hs(Rn) is the space of generalized functions on Rn with the finite norm

||u||s =

(∫
Rn

(1 + |ξ|2)s|û(ξ)|2dξ
)1/2

.(4.36)

Denote by
o

H s(R+) (resp., by
o

H s(R−)) the subspace of Hs(R) consisting of gener-
alized functions supported on [0,+∞) (resp., on (−∞, 0]).

Theorem 4.7. Let s,m ∈ R, and let φ be a measurable function which admits
the following estimate, for ξ ∈ R:

|φ(ξ)| ≤ C(1 + |ξ|)m.(4.37)

Then

φ(D) : Hs(R)→ Hs−m(R) is bounded.(4.38)

Proof. Apply the Fourier transform and the definition of the norm (4.36) to obtain
the conclusion.

We call φ a symbol of order m, and φ(D) is called a PDO of order m.
Theorem 4.8. Let s,m ∈ R. Let φ± be holomorphic in the half-plane ±�ξ > 0,

continuous up to the boundary, and admitting of the estimate (4.37) in the closed
half-plane. Then

(a) for any v ∈ C∞
0 ((−∞, 0)) (resp., v ∈ C∞

0 ((0,+∞))), the function φ+(D)v
(resp., φ−(D)v) is supported on (−∞, 0) (resp., on (0,+∞);
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(b) for any s ∈ R, φ∓(D) :
o

H s(R±)→ o

H s−m(R±) is bounded.
We call φ+ (resp., φ−) a positive (resp., negative) symbol of order m.
Proof. Consider φ−(D) and v ∈ C∞

0 ((0,+∞)). (a) Let x0 := inf suppv(> 0). We
will prove that φ−(D)v(x) = 0 for all x ≤ x0. By changing the variable, we may
assume x0 = 0. Take x ≤ 0 and calculate

φ−(D)v(x) = (2π)−1

∫ +∞

−∞
eixξφ−(ξ)û(ξ)dξ.(4.39)

Change the line of integration in (4.39):

φ−(D)v(x) = (2π)−1

∫ +∞+iσ

−∞+iσ

eixξφ−(ξ)û(ξ)dξ,(4.40)

where σ < 0. Since u ∈ C∞
0 ((0,+∞)), its Fourier transform admits the following

estimate in the half-plane �ξ ≤ 0:

|û(ξ)| ≤ CN (1 + |ξ|)−N(4.41)

for any N . From (4.37) and (4.41), we conclude that the integrand admits the bound
via

CNe
−σx(1 + |ξ|)m−N

for any N . By choosing N > m + 1 and passing to the limit σ → −∞ in (4.40), we
obtain 0.

(b) Since C∞
0 ((0,+∞)) is dense in

o

H s(R+), we deduce (b) from Theorem 4.7
and from (a).

By the change of the variable x �→ h + x, we reduce the proof of Theorem 4.4
to the case h = 0. Next, for ω′

+ < σ+ in (4.9), take any γ ∈ (ω′
+, σ+) and set

Vγ(x) = eγxV (x). Denote

a(D) := q + ψ(D) = q − L,

insert V (x) = e−γxVγ(x) into (4.11), after that multiply (4.11) and (4.12) by eγx and
use the equality

eγxa(D)e−γx = a(D + iγ).(4.42)

We obtain

a(D + iγ)Vγ(x) = 0, x > 0,(4.43)

Vγ(x) = gγ(x), x ≤ 0.(4.44)

Notice that gγ decays exponentially as x→ −∞: From (4.9), on (−∞, 0],∑
0≤s≤2

|g(s)
γ (x)| ≤ Ce−ε|x|,(4.45)

where ε = γ − ω′
+ > 0. Construct Gγ , which coincides with gγ on R− and admits a

bound (4.45) on R, and set uγ = Vγ −Gγ , Fγ = −a(D + iγ)Gγ . Then uγ solves the
problem

a(D + iγ)uγ(x) = Fγ(x), x > 0,(4.46)

uγ(x) = 0 x ≤ 0.(4.47)
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Now (4.45) implies that Gγ ∈ H2(R), and from (2.13)–(2.14) we conclude that Fγ ∈
H2−ν̄(R), where ν̄ = ν if ν ≥ 1 or µ = 0, and ν̄ = max{ν, 1}, otherwise. Recall
that we are looking for V , which is measurable and bounded on (0,+∞). Hence, uγ
is measurable and admits a bound via Ceγx. We want to reduce to the case of an
unknown function of the class L2(R+). Since σ− < 0, we can choose γ′ ∈ (σ−−γ,−γ).
Set uγ,γ′(x) = eγ

′xuγ(x), insert uγ(x) = e−γ′xuγ,γ′(x) into (4.46) and (4.47), and after

that multiply (4.46) by eγ
′x. By using (4.42), we obtain

a(D + i(γ + γ′))uγ,γ′(x) = Fγ,γ′(x), x > 0,(4.48)

uγ,γ′(x) = 0, x ≤ 0.(4.49)

Now uγ,γ′ ∈ L2(R+), and on the strength of (2.13)–(2.14), Theorem 4.7 gives a(D +
i(γ + γ′))uγ,γ′ ∈ H−ν̄(R). Hence, we can write the Wiener–Hopf equation (4.48) in
the form

a(D + i(γ + γ′))uγ,γ′ = Fγ,γ′ + F−,(4.50)

where F− ∈
o

H −ν̄(R−). Multiply by q−1, and then apply φ+
q (D + i(γ + γ′)). Since in

the strip �ξ ∈ (λ−, λ+)(⊃ (σ−, σ+) ⊃ (σ−, 0))

q−1a(ξ) = φ+
q (ξ)−1φ−

q (ξ)−1,

and by our choice, γ + γ′ ∈ (σ−, 0), we obtain

φ−
q (D + i(γ + γ′))−1uγ,γ′ = K + K−,(4.51)

where

K : = q−1φ+
q (D + i(γ + γ′))Fγ,γ′

= q−1φ+
q (D + i(γ + γ′))eγ

′x(−a(D + iγ))Gγ

= −φ−
q (D + i(γ + γ′))−1eγ

′xGγ

and

K− := q−1φ+
q (D + i(γ + γ′))F−.

By construction, Gγ ∈ H2(R), and uγ,γ′ ∈ L2(R+) =
o

H 0(R+), F− ∈
o

H −ν̄(R−).
From Theorem 3.4, we know that for any σ ∈ (σ−, σ+),

c(1 + |ξ|)κ± ≤ |φ±
q (ξ)| ≤ C(1 + |ξ|)κ± , ±�ξ ≥ σ;

therefore, by applying Theorem 4.7 and Theorem 4.8, we conclude that

φ−
q (D + i(γ + γ′))−1uγ,γ′ ∈ o

H
−κ−(R+), K− ∈

o

H
−κ−(R−), K ∈ H−κ−(R+).

Notice that κ− ∈ [0, 1], and consider two cases: (i) κ− ∈ [0, 0.5) and (ii) κ− ∈ [0.5, 1].

In case (i), H−κ−(R) is the direct sum of the subspaces
o

H −κ−(R±), the pro-
jections being θ±, the closures of the multiplication-by-1R± operators defined on a
dense subset L2(R) ⊂ H−κ−(R) (see [20, Theorem 5.1 and Lemma 5.4]). Hence, from
(4.51), we deduce

φ−
q (D + i(γ + γ′))−1uγ,γ′ = −θ+φ−

q (D + i(γ + γ′))−1eγ
′xGγ .(4.52)
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Next, we multiply (4.52) by φ−
q (D + i(γ + γ′)), which establishes an isomorphism

between
o

H −κ−(R+) and L2(R+):

uγ,γ′ = −φ−
q (D + i(γ + γ′))θ+φ−

q (D + i(γ + γ′))−1eγ
′xGγ .(4.53)

Then we multiply (4.53) by e−γ′x and use (4.42):

uγ = −φ−
q (D + iγ)θ+φ

−
q (D + iγ)−1Gγ .

After that, we return to

Vγ = Gγ + uγ

= Gγ − φ−
q (D + iγ)θ+φ

−
q (D + iγ)−1Gγ

= φ−
q (D + iγ)θ−φ−

q (D + iγ)−1Gγ

and notice that, since Gγ coincides with gγ on R−, Theorem 4.8 ensures that suppφ−
q (D+

iγ)−1(Gγ − gγ) ⊂ [0,+∞). Thus,

θ−φ−
q (D + iγ)−1Gγ = θ−φ−

q (D + iγ)−1gγ ,

and in the formula for Vγ , we may replace Gγ with gγ . By using (4.42), we finally
arrive at

V = φ−
q (D)θ−φ−

q (D)−1g.(4.54)

Due to (4.9)–(4.10) and Theorem 4.7, w := φ−
q (D)−1g ∈ H2−κ−(R). Since 2− κ− >

1/2, we can apply Lemma 5.5 of [20] and obtain

θ−φ−
q (D)−1g = w(0)(1− iD)−1δ + (1− iD)−1θ−(1− iD)φ−

q (D)−1g,(4.55)

where δ is the Dirac delta-function. Notice that for any ε > 0, δ ∈ H−1/2−ε(R) and
θ−(1− iD)φ−

q (D)−1g ∈ H0(R). Hence, if κ− > 0, we obtain V ∈ H1/2+ρ(R) for any
ρ ∈ (0, κ−). But for s > 1/2, Hs(R) ⊂ C(R), and therefore, V is continuous. By
using (4.42) and (4.9), it is easy to show that the RHS in (4.54) decays exponentially.

If κ− = 0, we have from (3.25) and (3.26)

φ−
q (D) = a−(0) + T (D),(4.56)

where T (ξ) admits an estimate (4.37) with m < 0; therefore from (4.54) and (4.55)
we conclude that

V = a−(0)w(0)(1− iD)−1δ + V1,(4.57)

where V1 ∈ C(R). It is straightforward to check that the Fourier transform of
1(−∞,0](x)ex is (1− iξ)−1; therefore (1− iD)−1δ = 1(−∞,0]e

x, and we conclude from
(4.57) that V is continuous if and only if w(0) = 0.

In case (ii), we notice that for s ∈ (−3/2,−1/2), the decomposition of Hs(R) into

the sum of the subspaces
o

H s(R±) is not direct, the intersection of the latter couple
being C ·δ, where δ is the Dirac delta-function. It follows that in (4.52), an additional
term Cδ may appear, and in (4.54), the term Cφ−

q (D)δ, where C is a constant.
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If κ− = 0, we use (3.25) and (3.26) and conclude from (4.55) that V = Cδ + V1,
where V1 ∈ Hs(R) for some s > −1/2. Since δ ∈ Hs(R), for s > −1/2, and V is
bounded, we conclude that C must be 0.

If κ− ∈ (0, 1), we can show with the help of (3.25) and (3.26) that

φ−
q (D)δ(x) = (2π)−1

∫ +∞

−∞
eixξφ−

q (ξ)dξ

is unbounded as x→ +0. Further, for κ− > 0, V in (4.54) belongs to Hs(R) for some
s > 1/2 and hence is continuous. We conclude that Cφ−

q (D)δ +V is bounded only in
the case C = 0, and so we are left with the same (4.54). Finally, if κ− = 1, then the
argument in part (i) shows that V in (4.54) is continuous, and the same argument
shows that φ−

q (D)δ(x) is discontinuous at 0. Hence, in order to get a continuous
solution, we need C = 0. This finishes the proof of part (a) and part (b) (1)–(3). The
last part (b) (4) can be proven by the same argument, after differentiating in (4.54).

Theorem 4.4 has thus been proven.

4.4. Proof of Lemma 4.5. As in the proof of Theorem 4.4, we change the
variable so that h = 0, and the usage of (4.42) establishes the exponential decay at
infinity. The main difficulty is the regularity at 0. We have

(q − L)V = a(D)V = φ+
q (D)−1θ−φ−

q (D)−1g.

Under our regularity assumption on g, we can use Lemma 5.5 in [20] with one more
term than in (4.55) and obtain

(q − L)V = W1 + W2 + W3,(4.58)

where

W1 = φ+
q (D)−1(1− iD)−1(φ−

q (D)−1g)(0)δ,

W2 = φ+
q (D)−1(1− iD)−2(φ−

q (D)−1(1− iD)g)(0)δ,

W3 = φ+
q (D)−1(1− iD)−2θ+(1− iD)2φ−

q (D)−1g.

Equality (4.58) holds, provided that for some s > 5/2, φ−
q (D)−1g ∈ Hs(R) (locally).

By using (4.9)–(4.10), we conclude that, locally, g ∈ H3(R), and by Theorem 4.7,
φ−
q (D)−1g ∈ H3−κ−(R). Since κ− ∈ [0, 1], (4.58) holds.

For |s| < 1/2, θ− : Hs(R)→ o

Hs(R−) is bounded, and since κ+ ≤ 1, we conclude

that W3 ∈
o

H s(R) for some s > 1/2. For such s, Hs(R) ⊂ C0(R); hence W3 is

continuous and vanishes on [0,+∞). Since δ ∈ o

H −s(R) for any s > 1/2 and since

κ+ ≤ 1, we obtain W2 ∈
o

H 2−κ+−s(R−). If κ+ < 1, we conclude that W2 ∈
o

H s(R−).
If κ+ = 1, we use (3.23) and represent φ+

q (D)−1(1− iD)−2 in the form

φ+
q (D)−1(1− iD)−2 = a+(0)−1(1− iD)−1 + T (D),(4.59)

where T (ξ) is a positive symbol of order less than one. Hence, f := T (D)δ is contin-
uous and vanishes on [0,+∞), and

(φ+
q (D)−1(1− iD)−2δ)(x) = a+(0)−11(−∞,0](x)ex + f(x).(4.60)
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It remains to consider W1. Since in part (b), w(h) = 0 and hence W1 = 0, the
application of (4.60) finishes the proof of part (a). Let κ+ < 1. By using (2.14) with
ν1 = ν − 1 and the same sort of argument as in the proof of (4.25), we obtain

φ+
q (D)−1(1− iD)−1δ = Γ(κ+ − 1)−1a+(0)−11(−∞,0](x)(−x)−κ+ex + f1(x),(4.61)

where f1 is continuous and vanishes on [0,+∞), and (4.16) follows from (4.61).
The proof of part (c) differs from the one above. We represent q − L in the form

q −L = a2(D) + aν′(D), where a2(D) is a differential operator of order 2 and aν′(D)
is a PDO of order ν′ < 1, and consider separately a2(D)V and aν′(D)V on (−∞, 0).
Since a2(D) is local, we obtain, for x < 0,

a2(D)V (x) = φ−
q (D)θ+φ

−
q (D)−1a2(D)g(x).

By Theorem 4.7, φ−
q (D)−1a2(D)g ∈ H3−κ−−2(R) = L2(R), since κ− = 2 − κ+ = 1,

and hence, by the same theorem, φ−
q (D)θ+φ

−
q (D)−1a2(D)g ∈ H1(R). Hence, this

is a continuous function. Since ν′ < 1 and the order of φ−
q (D) is −κ− = −1, the

continuity of aν′(D)V = aν′(D)φ−
q (D)θ−φ−

q (D)−1g is established as in the proof of
part (a) above.

It remains to verify (d). In the course of the proof of (a)–(c), we have shown that

|V̂ (ξ)| ≤ C(1 + |ξ|)−1−κ− ;

therefore, from (2.13)–(2.14),

(q + �ψ(ξ))−1|Ŵ (ξ)| = (q + �ψ(ξ))−1|(q + ψ(ξ))V̂ (ξ)| ≤ C(1 + |ξ|)−1+κ+−ν .

If κ− > 0, then ν − κ+ > 0 and (4.6) holds.
Lemma 4.5 has thus been proven.

5. Pricing of the perpetual American call and similar perpetual op-
tions.

5.1. Sufficient conditions for the solution for the perpetual call-like
options, in the class M0 of hitting times τ (a) of segments [a,+∞). The
substitutions −x for x and the dual process X̃ for X transform a problem for an
RLPE X on (h,+∞) into a problem for an RLPE X̃ on (−∞,−h). Therefore, all
the statements and proofs for call-like options are obtained from the corresponding
statements for put-like options by changing the direction on the real axis and the
reflection of the complex plane w.r.t. the real axis. The boundedness conditions (4.9)
and (4.10) allow for the growth of the payoff in the direction to −∞, so the growth of
the payoff for the call option is not a problem, insofar as the main considerations in
the proof of the analogue of Theorem 4.4 can be restricted to a strip �ξ ∈ (σ−, σ+),
where the real part of a(ξ) = q + ψ(ξ) is positive. In the case of calls, the payoff
is g(x) = ex − K; hence we need a(−i) = q + ψ(−i) to be positive. If there is no
dividend, q = r, and the EMM condition for the measure means that q + ψ(−i) = 0.
This provides the formal explanation of why we need the condition q > r in the case
of calls; standard considerations can be used to show that in the no-dividend case, it
is nonoptimal to exercise the call option ever.

The analogue of Lemma 4.1 is obtained by inverting signs in all the inequalities
there, and we will not state it explicitly. The reformulation of Theorem 4.4 is also
straightforward; in addition to changing the signs of inequalities and reflections, the
condition ω′

− < ω′
+ < σ+ must be replaced with σ− < ω′

− < ω′
+.
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Notice only that we consider a problem

(q − L)V (x) = 0, x < h,(5.1)

V (x) = g(x), x ≥ h,(5.2)

in the class of measurable functions bounded on (−∞, h], and its solution is

V = φ+
q (D)1(h,+∞)φ

+
q (D)−1g.(5.3)

The solution can be written as

V (h, ·) := V (·) = qUq
M1(h,+∞)w(·),(5.4)

where

w = Uq
N (q − L)g(5.5)

and Uq
M and Uq

N are the resolvents of the supremum and infimum processes, respec-
tively.

Theorem 5.1. Assume that ν1 = ν − 1 in (2.15), and that (4.9)–(4.10) hold
with σ− < ω′

− < ω′
+ and m = 2, and let there exist h̃1 ≤ h̃2 such that the following

conditions are satisfied:

w(x) < 0 ∀ x < h̃1,(5.6)

w(x) = 0 ∀ h̃1 ≤ x ≤ h̃2,(5.7)

w(x) > 0 ∀ x > h̃2.(5.8)

Then for any h̃ ∈ [h̃1, h̃2], τ(h̃) is an optimal stopping time in the classM0.

5.2. Perpetual American call. For calls g(x) = ex−K, (4.9) and (4.10) hold
with ω′

+ = 0 and ω′
− = −1, respectively, and any m. So, we have to assume that

σ− < −1, which is equivalent to q > r.
Here h̃ is defined as the solution to the equation φ+

q (−i)−1ex −K = 0, that is,

eh̃ = Kφ+
q (−i) = KqE

[∫ ∞

0

e−qt+Mtdt | M0 = 0

]
.(5.9)

When an optimal h̃ is found, we can calculate the rational price by using the explicit
formulas for φ+

q :

V (h̃, x) = (2π)−1

∫ +∞+iσ

−∞+iσ

φ+
q (ξ)û(h̃, ξ)dξ,(5.10)

where σ ∈ (λ−,−1) is arbitrary and û(h̃, ξ) is the Fourier transform of u(h̃, x) :=
1(h̃,+∞)(x)w(x):

û(h̃, ξ) =

∫ +∞

h̃

e−ixξ(φ+
q (−i)−1ex −K)dx =

Ke−ih̃ξ

(−iξ)(1− iξ)
=
−Ke−ih̃ξ

ξ(ξ + i)
.

By substituting into (5.10), we obtain the formula for the rational perpetual call price

V (h̃, x) = −K

2π

∫ +∞+iσ

−∞+iσ

exp[i(x− h̃)ξ]φ+
q (ξ)

ξ(ξ + i)
dξ,(5.11)
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where σ ∈ (λ−,−1) is arbitrary. One can easily calculate û for payoffs of the form
(1.3) and obtain the analogue of (5.11).

Assume that φ in (2.13) admits the analytic continuation into the lower half-plane
�ξ < 0 with the cut (−i∞, iλ−] and satisfies (2.20) there. (If φ(ξ) = aξ2 +φ1(ξ), then
we require that φ1 satisfies (2.20) with ν1 < 2, in the lower half-plane with the cut.)
Assume also that q+ψ has the only zero −iβ+ in the lower half-plane, λ− < −β+ < 0;
by Lemma 2.7, these conditions are satisfied for model processes. Then φ+

q admits
the analytic continuation into the lower half-plane with one simple pole at −iβ+, and
the cut (−i∞, iλ−], by

φ+
q (ξ) = q(q + ψ(ξ))−1φ−

q (ξ)−1.(5.12)

For z ∈ (λ+,+∞), set

Φ+
q (z) = iq[(q + ψ(iz − 0))−1 − (q + ψ(iz + 0))−1]φ−

q (iz)−1.(5.13)

By transforming the contour in (5.11) into the integral over the banks of the cut
(−i∞, iλ−], we meet the simple pole, which gives the first term in (5.14) below; in
the integral over the banks of the contour, we make the change of variables ξ = iz,
and, finally, obtain for x < h̃

V (h̃, x) =
iqK exp[β+(x− h̃)]

ψ′(−iβ+)φ−
q (−iβ+)β+(β+ − 1)

+ (2π)−1

∫ λ−

−∞

KΦ+
q (z) exp[−(x− h̃)z]

z(1 + z)
dz.

(5.14)

As the empirical studies of financial markets reveal, −λ− is usually large; hence,
the second term in (5.14) is small. Therefore, one may calculate it with a large
relative error. This observation facilitates the numerical implementation of (5.14).
The leading term is a decaying exponential function, as in the Gaussian case, when
there is no cut at all, and the second term in (5.14) is zero.

6. Reduction to the free boundary value problem and verification of
optimality in the class M.

6.1. Main lemma. Consider the following free boundary value problem: Given
a nonnegative continuous function g, find an open set C and a function V such that

(q − L)V (x) = 0, x ∈ C,(6.1)

V (x) = g(x), x ∈ C,(6.2)

V (x) ≥ g(x), x ∈ C,(6.3)

(q − L)V (x) ≥ 0, x ∈ C.(6.4)

Lemma 6.1. Let (C̃, Ṽ ) be a solution of (6.1)–(6.4), let τ∗ be the hitting time of
C, and let

W̃ : = (q − L)Ṽ be universally measurable;(6.5)

UqW̃ = Ṽ .(6.6)

Then τ∗ and V∗ = Ṽ solve the optimization problem (1.1).
Proof. Due to (6.1) and (6.4), W̃ is nonnegative, and by (6.5), it is universally

measurable; therefore, for any stopping time τ , (4.7) holds, and by substituting from
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(6.6), we obtain (4.8). From (4.8), (6.4), and (6.1), we conclude that for any stopping
time τ ,

Ṽ (x) ≥ Ex
[
e−qτ Ṽ (Xτ )

]
,(6.7)

and from (4.8) and (6.1), for a chosen stopping time τ∗,

Ṽ (x) = Ex
[
e−qτ∗ Ṽ (Xτ∗)

]
.(6.8)

By using (6.3) and (6.2), we deduce from (6.7) and (6.8)

Ṽ (x) ≥ Ex[e−qτg(Xτ )],

Ṽ (x) = Ex[e−qτ∗g(Xτ∗)].

But this means that a pair (τ∗, V∗), where V∗ = Ṽ , is the optimal stopping time and
the rational price.

6.2. Verification of conditions of Lemma 6.1 for puts and options with
payoffs (1.3). Assume that the conditions of Theorem 4.4 hold. Let h̃ be defined by
conditions (4.17)–(4.19), and set C = (h̃,+∞). Define Ṽ (x) = V (h, x) by (4.11). Then
(6.1)–(6.2) hold by Theorem 4.4, and by repeating a part of the proof of Theorem
4.6, we see that (6.3) holds. It remains to verify (6.4)–(6.6). We formulate sufficient
conditions, which hold for puts and many other payoffs of the form (1.3).

Of the process, we require the following:
A. The function φ in (2.14) admits the analytic continuation into the lower half-

plane with the cut (−i∞, iλ−], and admits the bound (2.20) in this half-plane, outside
a vicinity of iλ−. If ν = 2, there exist c and ν1 < 2 such that φ(ξ)− cξ2 satisfy (2.20)
with ν1 instead of ν.

B. In a neighborhood of iλ−, φ may have a weak singularity:

|φ(ξ)| ≤ C|ξ − iλ−|−α(6.9)

for some α < 1.
C. For any z ∈ (−∞, λ−), the limit

Ψ−(z) = i[ψ(iz − 0)− ψ(iz + 0)](6.10)

exists and is nonpositive.
Lemma 6.2. Let X be a mixture of independent BM, HP, NIG, normal tempered

stable (NTS) Lévy, and KoBoL. Then A–C hold.
Proof. For the proof, see the appendix.
Theorem 6.3. Let X be an RLPE of exponential type [λ−, λ+], let A–C hold,

and let

g(x) = K −
l∑

j=1

cje
γjx,(6.11)

where K > 0, cj > 0, and −iγj ∈ [iσ−, 0), j = 1, . . . , l. Then
(a) the solution of the optimal stopping problem (1.1) in the class M exists and

belongs toM0;
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(b) the optimal exercise price, h̃, is the solution to the equation

K =

l∑
j=1

cjφ
−
q (−iγj)−1eγjh;(6.12)

(c) the price of the option can be calculated from (4.27) with any σ ∈ (0, σ+) and

û(ξ) = K(−iξ)−1 −
l∑

j=1

cjφ
−
q (−iγj)−1(γj − iξ)−1.(6.13)

Proof. Notice that û admits the meromorphic continuation into the complex plane
with a finite number of simple poles at points {0,−iγ1, . . . ,−iγl} ⊂ (iλ−, iσ), and it
has the following asymptotics, as ξ →∞:

û(ξ) = c1ξ
−1 + c2ξ

−2 + O(|ξ|−3).(6.14)

Under condition (6.12), c1 = 0, which means that the candidate for the optimal
solution is more smooth than a solution for a generic h. Hence, much simpler con-
siderations than in the proof of Lemma 4.5 for a generic h, and without additional
conditions, show that (q − L)V ∈ UL (in fact, it turns out to be even bounded),
and therefore, (6.5) and (6.6) hold. It remains to verify (6.4). The conditions (6.4)
and (6.12) are evidently “additive” w.r.t. g in the sense that if g1 and g2 satisfy (6.4)
(resp., (6.12)), then g1 + g2 satisfies (6.4) (resp., (6.12)) as well. Hence, it suffices to
prove that if g is a payoff of the form

g(x) = A−Beγx,(6.15)

where A,B > 0, σ− ≤ γ < 0, and

A−Bφ−
q (−iγ)−1eγh = 0,(6.16)

then V = φ−
q (D)1(−∞,h)φ

−
q (D)−1g satisfies (q − L)V ≥ 0. The payoff (6.15) being

essentially the same as the one for puts, the calculations leading to (4.29) give

V (x) =
A

2π

∫ +∞+iσ

−∞+iσ

exp[i(x− h)ξ]φ−
q (ξ)

(−iξ)(γ − iξ)
dξ,(6.17)

where σ ∈ (0, λ+) is arbitrary. By applying (q−L) = q +ψ(D) to (6.17), we see that
it suffices to prove that the following function is nonnegative on (0,+∞):

W (x) = (2π)−1

∫ +∞+iσ

−∞+iσ

exp[ixξ](q + ψ(ξ))φ−
q (ξ)

(−iξ)(γ − iξ)
dξ.

By using A–C, we can transform the contour of integration and reduce to the integral
over the banks of the cut (−i∞, iλ−]. In the process of the transformation, the
contour crosses two simple poles at ξ = 0 and ξ = −iγ (if −iγ is a root of q + ψ(ξ),
as in the case of puts on a nondividend-paying stock, there is no second pole, but
there is no need to consider this case separately: The corresponding term below will
automatically be 0), which gives the first two terms; in the integral over the banks of
the cut, we make the change of the variable ξ = iz. The result is

W (x) = q/γ − (1/γ)(q + ψ(−iγ))φ−(−iγ)eγx + (2π)−1

∫ λ−

−∞

Ψ−(z)φ−
q (iz) exp[−zx]

z(z + γ)
dz.

(6.18)
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For z ≤ 0, φ−
q (iz) > 0, and since λ− < −γ, the denominator of the integrand is

positive. From (6.10), the integrand is negative; hence it is a decreasing function of x
on (−∞, 0). Since 0 < γ ≤ −σ−, (1/γ)(q + ψ(−iγ))φ−(−iγ) ≥ 0. It follows that W
is decreasing on (−∞, 0), and hence it suffices to show that W (+0) ≥ 0.

If κ+ < 1, the integrand is absolutely integrable uniformly in x ∈ (−∞, 0], and
therefore

W (+0) = W (0) = (q/γ)− (1/γ)(q + ψ(−iγ))φ−(−iγ) + (2π)−1

∫ λ−

−∞

Ψ−(z)φ−
q (iz)

z(z + γ)
dz.

By transforming the contour of integration back, and taking into account that
(q + ψ(ξ))φ−

q (ξ) = qφ+
q (ξ)−1, we arrive at

W (+0) = W (0) = q(2π)−1

∫ +∞+iσ

−∞+iσ

dξ

φ+
q (ξ)(−iξ)(γ − iξ)

.

The integrand is holomorphic in the upper half-plane �ξ > 0 and admits an estimate
via C(1 + |ξ|)−2+κ+ for �ξ ≥ σ > 0. Hence, we can push the line of integration up,
and in the limit σ → +∞ obtain zero. This finishes the proof in the case κ+ < 1.

If κ+ = 1, we can represent (q + ψ(ξ))φ−
q (ξ) = qφ+

q (ξ)−1 in the form

(q + ψ(ξ))φ−
q (ξ) = qa+(0)−1(−iξ) + χ(ξ),

where a+(0) > 0 and χ enjoys all the properties of (q + ψ(ξ))φ−
q (ξ) in the case

κ+ < 1 that have been used above. Hence, if we use χ instead of (q + ψ(ξ))φ−
q (ξ)

in the constructions above, we obtain a nonnegative function. To finish the proof, it
remains to notice that

W1(x) := (2π)−1

∫ +∞+iσ

−∞+iσ

exp[ixξ]qa+(0)−1(−iξ)
(−iξ)(γ − iξ)

dξ

= qa+(0)−11(−∞,0](x)eγx ≥ 0.

Now we consider the general case of payoffs of the form (1.3).
Theorem 6.4. Let the following conditions be satisfied:
(1) the equation

m∑
j=1

cjφ
−
q (−iγj)−1eγjh = 0(6.19)

has the unique solution, call it h̃;
(2) g can be represented in the form

g(x) =

l∑
k=1

c+k exp[γ+
k x]−

l∑
k=1

c−k exp[γ−k x],(6.20)

where c±k are positive, γ±k ∈ (−σ+,−σ−] are not necessarily different and satisfy

γ+
k < γ−k ∀ k,(6.21)

c+k φ
−
q (−iγ+

k )−1eγ
+
k
h = c−k φ

−
q (−iγ−k )−1eγ

−
k
h ∀ k.(6.22)

Then
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(a) the solution of the optimal stopping problem (1.1) in the class M exists and
belongs toM0, the h̃ being the optimal exercise price;

(b) the price of the option can be calculated from (4.27) with any σ ∈ (maxj(−γj), σ+),
and

û(ξ) =
l∑

j=1

cjφ
−
q (−iγj)−1(γj − iξ)−1.(6.23)

Proof. First, notice that for payoffs (6.11), (2) follows from (1).
Second, the conditions (1) and (6.4) are evidently “additive” w.r.t. g in the sense

that if g1 and g2 satisfy (1) (resp., (6.4)), then g1 + g2 also satisfies (1) (resp., (6.4)).
Condition (2) allows one to reduce to the case of the payoff of the form

g(x) = Aeγ
+x −Beγ

−x,

where A,B > 0 and σ− ≤ −γ+ < −γ− < σ+. Further, by using (4.42), we can
reduce the verification to the case of the payoff (6.15), where γ = γ− − γ+ > 0, and
ψ(· − iγ+) instead of ψ. Since the conditions A–C are invariant under such a shift
in the argument of the characteristic exponent, we can repeat the end of the proof of
Theorem 6.3.

6.3. Verification of conditions of Lemma 6.1 for calls and options with
payoffs (1.3). In all formulations and proofs above, change the signs and make the
reflection w.r.t. the origin.

7. The smooth fit principle. Consider the case of put options.
Theorem 7.1. Let φ−

q satisfy

∫ +∞+iσ

−∞+iσ

|φ−
q (ξ)(1− iξ)−1|dξ < +∞(7.1)

for some σ ∈ (0, σ+). Then the price of the perpetual American put satisfies the
smooth fit principle.

Proof. By differentiating under the integral sign in (4.27), we obtain V ′ = v,
where

v(x) := −K

2π

∫ +∞+iσ

−∞+iσ

ei(x−h̃)ξφ−
q (ξ)(1− iξ)−1dξ < +∞.

Hence, V is smooth if and if only v is continuous. Under condition (7.1), the Fourier
transform of v is of the class L1(R); hence v is continuous, and the smooth fit principle
holds.

Theorem 7.2. Let φ−
q admit a representation φ−

q (ξ) = c+χ(ξ), where c = 0 and
χ satisfies (7.1). Then the smooth fit principle fails.

Proof. This time we obtain that v = v1 + v2, where v1 is continuous, and

v2(x) = −cK
2π

∫ +∞+iσ

−∞+iσ

exp[i(x− h̃)ξ]dξ

1− iξ
= −cK1(−∞,h̃)(x)ex−h̃,

which is discontinuous.
Notice that for RLPE, condition (7.1) fails if and only if µ > 0 and ν ∈ (0, 1).
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As our results in sections 4 and 6 show, the natural candidate is determined from
the equation w(x) := φ−

q (D)−1g(x) = 0, and it can be singled out formally in one of
the following forms:

I. If there is a unique h such that V (h; ·) is continuous, this h is the candidate;
if V (h; ·) is continuous for all h, then the candidate is chosen by the standard smooth
fit principle. (This observation was used in [30] for a jump process with the drift.)

II. If there is an h such that V ′
x(h;H±0) are finite, then h is the optimal boundary.

The second principle works for purely non-Gaussian RLPE, i.e., for RLPE of
order ν < 2.

In all cases, one may say that the optimal choice of h makes V (h, ·) “more smooth”
at h than generically.

8. Appendix.

8.1. Proof of Lemma 6.2. The verification of A for NIG (and more generally,
normal tempered stable Lévy processes (NTSLP)) and KoBoL is trivial due to the
simplicity of the analytic expressions (2.18) and (2.17). In both cases, the charac-
teristic exponents are continuous at the ends of the cuts, and there is no singularity
mentioned in B.

Verification of C for NTSLP: Here λ− = −α + β, and for z < −α + β,

Ψ−(z) = iδ[(α2 − (β + i(iz − 0)2)ν/2 − (α2 − (β + i(iz + 0)2)ν/2]

= iδ[((α + β − z − i0)(α− β + z + i0))ν/2 − ((α + β − z + i0)(α− β + z − i0))ν/2]

= iδ(α + β − z)ν/2[(α− β + z + i0)ν/2 − (α− β + z + i0)ν/2]

= iδ(α + β − z)ν/2(−α + β − z)ν/2[eiπν/2 − e−iπν/2]

= −δ(α + β − z)ν/2(−α + β − z)ν/22 sin[πν/2] < 0.

Verification for KoBoL: For z < λ−,

Ψ−(z) = icΓ(−ν)[−(−λ− − i(iz − 0))ν + (−λ− − i(iz + 0))ν ]

= −icΓ(−ν)[(−λ− + z + i0)ν − (−λ− + z − i0)ν ]

= −icΓ(−ν)(−z + λ−)ν [eiπν − e−iπν ]

= cΓ(−ν)(−z + λ−)ν2 sin(πν) < 0,

since Γ(−ν) sin(πν) < 0.
Equation (2.19) being more involved, the verification of A–C for HP is rather

long, and we omit it here to save space.

8.2. Proof of Lemma 2.7. Part (a) for the lower half-plane is a part of the
statement A of Lemma 6.2 proven above, so it remains to prove that there are no
roots of q + ψ(ξ) outside the imaginary axis. Take a large R and small ε > 0 so that
all roots of q + ψ(ξ) on (iλ−, iλ+) lie on (i(λ− + 2ε), i(λ+ − 2ε)), and construct a
contour

Lε,R = L+
ε,R ∪ Llε,R ∪ L−

ε,R ∪ Lrε,R,
where

L+
ε,R = {ξ | |ξ| ≤ R, �ξ ≥ λ+ − ε, dist(ξ, [iλ+,+i∞)) = ε},
L−
ε,R = {ξ | |ξ| ≤ R, �ξ ≤ λ− + ε, dist(ξ, (−i∞, iλ−]) = ε},
Llε,R = {ξ | |ξ| = R, �ξ < 0, dist(ξ, [iλ+,+i∞) ∪ (−i∞, iλ−]) ≥ ε},
Lrε,R = {ξ | |ξ| = R, �ξ > 0, dist(ξ, (−i∞, iλ−] ∪ [iλ+,+i∞)) ≥ ε}.
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Let Uε,R be a part of the complex plane, bounded by Lε,R, and N ∈ {0, 1, 2} (resp.,
Nε,R) the number of roots of q + ψ(ξ) on (i(λ− + 2ε), i(λ+ − 2ε)) (resp., on Uε,R).
Since the complex plane with cuts (−i∞, iλ−] and [iλ+,+i∞) is a union of all Uε,R,
and since Uε,R ⊂ Uε′,R′ whenever ε ≥ ε′ and R ≤ R′, it suffices to show that for
sufficiently large R and small ε > 0, N = Nε,R.

We will do this for KoBoL; the other cases can be considered similarly. First we
check that

q + ψ(ξ) = 0(8.1)

for any ξ ∈ Lε,R, provided that ε > 0 is sufficiently small and R is sufficiently large:
(1) For ξ ∈ Lε,R such that �ξ ∈ [λ−, λ+], (8.1) holds by continuity of ψ for all

ε ∈ (0, ε0) and R ≥ R0, provided that ε0 > 0 is sufficiently small and R0 large.
(2) As R→ +∞ and |ξ| = R,

q + ψ(ξ) ∼ −iµξ + o(|ξ|), ν ∈ (0, 1),(8.2)

and if ν ∈ (1, 2) or µ = 0 and ν ∈ (0, 1),

q + ψ(ξ) ∼ cΓ(−ν)[(−iξ)ν + (iξ)ν ] + o(|ξ|ν);(8.3)

hence (8.1) holds for these R and ξ.
(3) Fix such R; then on parts of Lε,R near the cuts, (8.1) holds since the limits

of the imaginary part of q + ψ(ξ) are nonzero, namely, for z > λ+,

�(q + ψ(iz ∓ 0)) = −cΓ(−ν)(z − λ+)ν sin(∓πν),(8.4)

and for z < λ−,

�(q + ψ(iz ∓ 0)) = −cΓ(−ν)(−z + λ−)ν sin(±πν).(8.5)

Thus, (8.1) has been proven, and now, to show that N = Nε,R, it suffices to verify an
equality

1

2π

∫
∂Uε,R

d arg(q + ψ(ξ)) = N.(8.6)

One can check (8.6) by considering various N and ν ∈ (0, 1), ν ∈ (1, 2); if N = 1, one
has to distinguish cases q+ψ(iλ−) > 0, q+ψ(iλ−) < 0, and if ν ∈ (0, 1), cases µ = 0,
µ > 0, and µ < 0.

We write down the argument for two cases; the other cases can be considered
similarly.

1. If ν ∈ (1, 2) or ν ∈ (0, 1) and µ = 0, and N = 2, then at ξ = i(λ− + ε) and
ξ = i(λ+ − ε), q + ψ(ξ) is negative and (8.3) holds. When ξ moves from i(λ+ − ε)
along Lε,R counterclockwise till an intersection point with a circle |ξ| = R, and ε > 0
is small enough, q + ψ(ξ) moves to the right half-plane due to (8.3), passing below
the origin in the complex plane due to (8.4) and an inequality −Γ(−ν) sin(−πν) < 0.
At the intersection point, it is (approximately) equal to 2cΓ(−ν) cos(πν)Rν , due to
(8.3). When ξ moves along Llε,R till the intersection with a line �ξ = −ε, q + ψ(ξ)
remains in an angle of less than 2π and arrives at approximately the starting point
2cΓ(−ν) cos(πν)Rν , due to (8.3). After that, ξ moves to i(λ− + ε); due to (8.5),
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q + ψ(ξ) passes above the origin till a point on the negative real axis. In the result,
we obtain

1

2π

∫
ξ∈Lε,R,�ξ≤0

d arg(q + ψ(ξ)) = 1.(8.7)

Similarly, we obtain (8.7) with �ξ ≥ 0, and by adding the two integrals, we finish the
proof of (8.6).

2. Let N = 1, q + ψ(iλ−) < 0, and ν ∈ (0, 1), µ > 0. Then q + ψ(iλ+) > 0,
and therefore the first part of the journey described above is in the right half-plane
�ξ > 0, due to (8.2) and an assumption µ > 0. During the second part of the journey,
q + ψ(ξ) moves above the origin and arrives at (approximately) −µR, and after that
moves to i(iλ− + ε), remaining in the left half-plane. Thus, this time we obtain (8.7)
with 1/2 in the RHS, and after completing the full circle, we obtain (8.6) with N = 1.
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[4] O. E. Barndorff-Nielsen and S. Levendorskǐi, Feller processes of normal inverse Gaussian
type, Quantitative Finance, 1 (2001), pp. 1–14.
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[9] S. I. Boyarchenko and S. Z. Levendorskǐi, Generalizations of the Black-Scholes Equation
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Abstract. The quadratic and cubic normal forms of discrete time nonlinear control systems
are presented. These are the normal forms with respect to the group of state coordinate changes
and invertible state feedbacks. We introduce the concept of a control bifurcation for such systems.
A control bifurcation takes place at an equilibrium where there is a loss of linear stabilizability in
contrast to a classical bifurcation, which typically takes place at an equilibrium where there is a
loss of linear stability. We present the analogous control bifurcations to the well-known classical
bifurcations; the fold, the transcritical, the flip, and the Neimark–Sacker bifurcations. When the
loop is closed, a control bifurcation can lead to a classical bifurcation.

Key words. discrete time nonlinear control system, normal forms, bifurcations, control bifur-
cations
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1. Introduction. The theory of normal forms and bifurcations of nonlinear dif-
ference equations is well known [1], [5], [9], [13]. Briefly, it is as follows. Consider two
smooth (C4) n dimensional difference equations with equilibrium points

x+ = f(x),(1.1)

0 = f(0)

and

z+ = g(z),(1.2)

0 = g(0),

where x+(t) = x(t + 1). These are locally diffeomorphic if there exists a local diffeo-
morphism

z = φ(x),(1.3)

0 = φ(0)

which carries (1.1) to (1.2),

g(φ(x)) = φ(f(x)).

Such a local diffeomorphism carries trajectories x(t) in its domain onto trajectories
z(t) in its range,

z(t) = φ(x(t));
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hence the two dynamics are locally smoothly equivalent.
There is a weaker notion of equivalence; (1.1) is locally topologically conjugate

to (1.2) if there is a local homeomorphism (1.3) which carries trajectories x(s) in its
domain onto trajectories z(t) in its range while preserving the orientation of time, but
not the exact time.

The linear approximation of (1.1) around the fixed point x = 0 is

δx+ =
∂f

∂x
(0) δx,(1.4)

and this is a hyperbolic fixed point if ∂f∂x (0) has no eigenvalues on the unit circle. The
discrete time Grobman–Hartman theorem states that if the equilibrium x = 0 of (1.1)
is hyperbolic, then it is locally topologically conjugate to its linear approximation
(1.4). A related theorem is that two hyperbolic equilibria are locally topologically
conjugate if their linear approximations have the same number of eigenvalues strictly
inside the unit circle, the signs of their products are the same, and the same number
of eigenavalues strictly outside and the signs of their products are the same [9].

A parametrized system

x+ = f(x, µ)(1.5)

can have a locus of equilibria

xe = f(xe, µe).

It undergoes a local bifurcation at an equilibrium xe, µe that is not locally topologically
conjugate to every nearby equilibrium. In light of the above, such a bifurcation can
happen only if one or more eigenvalues of the linearized system cross the unit circle,
or the sign of the product of the strictly stable eigenvalues changes, or the sign of the
product of the strictly unstable eigenvalues changes.

A standard approach to analyzing the behavior of the parametrized system (1.5)
around a bifurcation point is to add the parameter as an additional state with trivial
dynamics

µ+ = µ(1.6)

and then compute the center manifold through the bifurcation point and the dynamics
restricted to this manifold [3], [9]. The center manifold is an invariant manifold of
the extended difference equation (1.5)–(1.6), which is tangent at the bifurcation point
to the eigenspace of the eigenvalues on the unit circle. In practice, one does not
compute the center manifold and its dynamics exactly; in most cases of interest, an
approximation of degree two or three suffices. If the other eigenvalues are off the unit
circle, then this part of the dynamics cannot affect the local topological conjugacy
around the bifurcation point. If at the bifurcation point all of the eigenvalues of the
linear approximation are inside or on the unit circle, then the bifurcation point will
be locally asymptotically stable for the complete dynamics iff the dynamics on the
center manifold is locally asymptotically stable. Of course, at some nearby equilibria
the dynamics may be unstable.

The next step is to compute the Poincaré normal form of the center manifold
dynamics. This is a normal form under smooth changes of coordinates

z = φ(x) = Tx− φ[2](x)− φ[3](x)− · · · ,(1.7)
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where φ[d](x) denotes a vector field that is a homogeneous polynomial of degree d in
x. The linear part of the change of coordinates T puts the linear part of the center
manifold dynamics in Jordan form. The quadratic, cubic, and higher parts of the
change of coordinates φ[2] and φ[3] simplify the quadratic, cubic, and higher parts of
the center manifold dynamics by putting them in Poincaré normal form. From its
normal form the bifurcation is recognized and understood. Examples are the fold (or
saddle-node), the flip, and the Neimark–Sacker bifurcations. The first depends on the
normal form of degree two, and the last two depend on the normal form of degree
three. These are the only ones that are generic and of codimension 1, i.e., depend on
a single parameter, so these are the most important.

Kang and Krener [6] developed a quadratic normal form for continuous time non-
linear systems whose linear part is controllable. This was extended to discrete time
systems by Barbot, Monaco, and Normand-Cyrot [2]. These authors considered a
larger group of transformations to bring the system to normal form, including invert-
ible state feedback as well as change of state coordinates. Kang [7], [8] also developed
a quadratic normal form for continuous time nonlinear systems whose linear part may
have uncontrollable modes. Krener, Kang, and Chang [10], [4] described the quadratic
and cubic normal forms of continuous time nonlinear control systems and also their
bifurcations.

In this paper, we will develop quadratic and cubic normal forms for discrete time
nonlinear control systems of the form

x+ = f(x, u) = Ax+Bu+ f [2](x, u)

+f [3](x, u) +O(x, u)4,(1.8)

where x, u are of dimensions n, 1 and f [d](x, u) denotes a vector field that is a homo-
geneous polynomial of degree d in x, u. We do not assume that the linear part of the
system is controllable. Moreover, our linear and quadratic normal forms differ from
that of [2] for linearly controllable systems.

We also describe some of the simplest bifurcations of discrete time nonlinear
control systems. A control system does not need a parameter to bifurcate; the control
can play the same role. The equilibria of a controlled difference equation,

x+ = f(x, u),(1.9)

are those values of xe, ue such that f(xe, ue) = xe. The equilibria are conveniently
parametrized by u or one of the state variables. Two key facts differentiate bifurcations
of a control system (1.8) from that of a parametrized system (1.5). The first is that
for the latter the structural stability of the equilibria is the crucial issue, but for the
former the stabilizability by state feedback is the crucial issue. A control system (1.8)
is linearly controllable (linearly stabilizable) at xe, ue if the local linear approximation

δx+ =
∂f

∂x
(xe, ue) δx+

∂f

∂u
(xe, ue) δu

is controllable (stabilizable). If the linear approximation is stabilizable, then the non-
linear system is locally stabilizable. If the linear approximation is not stabilizable,
then the nonlinear system may or may not be locally stabilizable, depending on higher
degree terms. A control bifurcation of (1.8) takes place at an equilibrium where the
linear approximation loses stabilizability. Notice that this is different from the bifur-
cation of a parametrized system (1.5), which takes place at an equilibrium where there
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is a loss of structural stability with respect to parameter variations. To emphasize
this distinction, we shall refer to the latter as a classical bifurcation.

The other difference between control and classical bifurcations is that when bring-
ing the control system into normal form, a different group of transformations is used.
For classical bifurcations, we use parameter dependent change of state coordinates
and change of parameter coordinates, but for control bifurcations we use change of
state coordinates and state dependent change of control coordinates (invertible state
feedback) to simplify the dynamics.

2. Quadratic normal form. Consider a smooth (C3) system of the form (1.8)
under the action of linear and quadratic change of state coordinates and state feedback

z = φ(x) = Tx− φ[2](x),(2.1)

v = α(x, u) = Kx+ Lu− α[2](x, u),(2.2)

where T, L are invertible.
It is well known that there exist a linear change of coordinates T and a linear

feedback K, L that transform the system into the linear normal form[
x+

1

x+
2

]
=

[
f1(x1, x2, u)
f2(x1, x2, u)

]

=

[
A1 0
0 A2

] [
x1

x2

]
+

[
0
B2

]
u

+

[
f

[2]
1 (x1, x2, u)

f
[2]
2 (x1, x2, u)

]
+O(x1, x2, u)

3,(2.3)

where x1, x2 are n1, n2 dimensional, n1 + n2 = n, A1 is in Jordan form, and A2, B2

are in controller (Brunovsky) form:

A2 =




0 1 . . . 0
. . .

. . .

0 0 . . . 1
0 0 . . . 0


 , B2 =




0
...
0
1


 .

The following result generalizes [11].
Theorem 2.1. Consider the system (2.3), where A1 is diagonal and A2, B2 are

in Brunovsky form. There exist a quadratic change of coordinates and a quadratic
feedback [

z1
z2

]
=

[
x1

x2

]
−
[

φ
[2]
1 (x1, x2)

φ
[2]
2 (x1, x2)

]
,

v = u− α[2](x1, x2, u)

which transform the system (2.3) into the quadratic normal form[
z+
1

z+
2

]
=

[
A1 0
0 A2

] [
z1
z2

]
+

[
0
B2

]
v(2.4)

+

[
f̃

[2;0]
1 (z1; z2, v) + f̃

[1;1]
1 (z1; z2, v) + f̃

[0;2]
1 (z1; z2, v)

0 + 0 + f̃
[0;2]
2 (z1; z2, v)

]

+O(z1, z2, v)
3,
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where f̃
[d1;d2]
i (z1; z2, v) is a polynomial vector field homogeneous of degree d1 in z1 and

homogeneous of degree d2 in z2, v. For notational convenience, we define z2,n2+1 = v.

The vector field f̃
[2;0]
1 is in the quadratic normal form of Poincaré,

f̃
[2;0]
1 =

∑
λi=λjλk

βjki ei1 z1,j z1,k,(2.5)

where λ1, . . . , λn1 are the eigenvalues of A1, eir is the ith unit vector in zr space, and
zr,i is the ith component of zr. The other vector fields are as follows:

f̃
[1;1]
1 =

∑
λi=0

∑
λj=0

n2+1∑
k=1

γjki ei1 z1,j z2,k(2.6)

+
∑
λi �=0

∑
λj �=0

γj1i ei1 z1,j z2,1,

f̃
[0;2]
1 =

∑
λi �=0

n2+1∑
k=1

δ1k
i ei1 z2,1 z2,k,(2.7)

f̃
[0;2]
2 =

n2−1∑
i=1

n2+1∑
k=i+2

ε1ki ei2 z2,1 z2,k.(2.8)

The normal form is unique; that is, each system (2.3) can be transformed into
only one such normal form (2.4)–(2.8) by a quadratic change of coordinates (2.1) and
quadratic feedback (2.2). This follows from the fact that the numbers in the above,

βjki , γjki , δ1k
i , ε1ki for the indicated indices, are moduli, i.e., continuous invariants of

the system (2.3) under a quadratic change of coordinates and quadratic feedback. Let
σjk = 2 if j = k and σjk = 1 otherwise. The moduli are defined as follows:

βjki =
1

σjk

∂2f1,i

∂x1,j∂x1,k
(0, 0, 0)(2.9)

for 1 ≤ i, j, k ≤ n1, and λi = λjλk,

γjki =
∂2f1,i

∂x1,j∂x2,k
(0, 0, 0)(2.10)

for 1 ≤ i, j ≤ n1, 1 ≤ k ≤ n2 + 1, and λi = λj = 0,

γj1i =

n2∑
l=0

(
λi
λj

)l
∂2f1,i

∂x1,j∂x2,l+1
(0, 0, 0)(2.11)

for 1 ≤ i, j ≤ n1, and λiλj �= 0,

δ1k
i =

1

σ1k

n2−k+1∑
l=0

λli
∂2f1,i

∂x2,1+l∂x2,k+l
(0, 0, 0)(2.12)

for 1 ≤ i ≤ n1, 1 ≤ k ≤ n2 + 1, and λi �= 0,

ε1ki =

n2−k+1∑
l=0

∂2f2,i+l

∂x2,1+l∂x2,k+l
(0, 0, 0)(2.13)

for 1 ≤ i ≤ n2 − 1 and i+ 2 ≤ k ≤ n2 + 1.

Remarks. If some of the eigenvalues of A1 are complex, then a linear complex
change of coordinates is required to bring it to Jordan form. In this case, some of
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the coordinates of z1 are complex conjugate pairs, and some of the coefficients in the
normal form are complex. These complex coefficients occur in conjugate pairs so that
the real dimension of the coefficient space of the normal form is unchanged.

In the normal form of Poincaré (2.5), the eigenvalues satisfying λi = λjλk are
said to be in quadratic resonance.

We defer the proof to a later section as it is quite lengthy.

3. Cubic normal form. We present the cubic normal form of a system that is
already in linear and quadratic normal form.

Theorem 3.1. Consider a smooth (C4) system

[
x+

1

x+
2

]
=

[
f1(x1, x2, u)
f2(x1, x2, u)

]

=

[
A1 0
0 A2

] [
x1

x2

]
+

[
0
B2

]
u(3.1)

+

[
f

[2;0]
1 (x1;x2, u)

0

]
+

[
f

[1;1]
1 (x1;x2, u)

0

]
+

[
f

[0;2]
1 (x1;x2, u)

f
[0;2]
2 (x1;x2, u)

]

+

[
f

[3]
1 (x1;x2, u)

f
[3]
2 (x1;x2, u)

]
+O(x1, x2, u)

4,

where A1 is diagonal, A2, B2 are in Brunovsky form, and the quadratic terms are in
the normal form of Theorem 2.1. There exist a cubic change of coordinates and a
cubic feedback

[
z1
z2

]
=

[
x1

x2

]
−
[

φ
[3]
1 (x1, x2)

φ
[3]
2 (x1, x2)

]
,

v = u− α[3](x1, x2, u)

which transform the system (3.1) into the cubic normal form

[
z+
1

z+
2

]
=

[
A1 0
0 A2

] [
z1
z2

]
+

[
0
B2

]
v

+

[
f

[2;0]
1 (z1; z2, v)

0

]
+

[
f

[1;1]
1 (z1; z2, v)

0

]
+

[
f

[0;2]
1 (z1; z2, v)

f
[0;2]
2 (z1; z2, v)

]
(3.2)

+

[
f̃

[3;0]
1 (z1; z2, v)

0

]
+

[
f̃

[2;1]
1 (z1; z2, v)

0

]

+

[
f̃

[1;2]
1 (z1; z2, v)

f̃
[1;2]
2 (z1; z2, v)

]
+

[
f̃

[0;3]
1 (z1; z2, v)

f̃
[0;3]
2 (z1; z2, v)

]
+O(z1, z2, v)

4.

The vector field f̃
[3;0]
1 is in the cubic normal form of Poincaré,

f̃
[3;0]
1 =

∑
λi=λjλkλl

βjkli ei1 z1,j z1,k z1,l,(3.3)

and the other vector fields are as follows:
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f̃
[2;1]
1 =

∑
λi=0

∑
λjλk=0

n2+1∑
l=1

γjkli ei1 z1,j z1,k z2,l

+
∑
λi �=0

∑
λjλk �=0

γjk1i ei1 z1,j z1,k z2,1,(3.4)

f̃
[1;2]
1 =

∑
λi=0

∑
λj=0

n2+1∑
k=1

n2+1∑
l=k

δjkli ei1 z1,j z2,k z2,l

+
∑
λi �=0

∑
λj �=0

n2+1∑
l=1

δj1li ei1 z1,j z2,1 z2,l,(3.5)

f̃
[0;3]
1 =

∑
λi �=0

n2+1∑
k=1

n2+1∑
l=k

ε1kli ei1 z2,1 z2,k z2,l,(3.6)

f̃
[1;2]
2 =

n2−1∑
i=1

∑
λj �=0

n2+1∑
l=i+2

ζj1li ei2 z1,j z2,1 z2,l,(3.7)

f̃
[0;3]
2 =

n2−1∑
i=1

n2+1∑
l=i+2

l∑
k=1

η1kl
i ei2 z2,1 z2,k z2,l.(3.8)

The normal form is unique; that is, each system (3.1) can be transformed into
only one such normal form (3.2)–(3.8). This follows from the fact that the numbers

in the above, βjkli , γjkli , δ1kl
i , ε1kli , ζj1li , η1kl

i for the indicated indices, are moduli of the
system (2.3) under a cubic change of coordinates and cubic feedback. Let σjkl = 6 if
j = k = l and σjkl = σjkσklσjl otherwise. These moduli are defined as follows:

βjkli =
1

σjkl

∂3f1,i

∂x1,j∂x1,k∂x1,l
(0, 0, 0)(3.9)

for 1 ≤ i, j, k, l ≤ n1, and λi = λjλkλl,

γjkli =
1

σjk

∂3f1,i

∂x1,j∂x1,k∂x2,l
(0, 0, 0)(3.10)

for 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ n1, 1 ≤ l ≤ n2 + 1,

and λi = λjλk = 0,

γjk1i =
1

σjk

n2−k+1∑
r=0

(
λi

λjλk

)r
∂3f1,i

∂x1,j∂x1,k∂x2,r+1
(0, 0, 0)(3.11)

for 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ n1, and λiλjλk �= 0,

δjkli =
1

σkl

∂3f1,i

∂x1,j∂x2,k∂x2,l
(0, 0, 0)(3.12)

for 1 ≤ i, j ≤ n1, 1 ≤ k ≤ l ≤ n2 + 1, and λi = λj = 0,

δj1li =
1

σ1l

n2−l+1∑
r=0

(
λi
λj

)l
∂3f1,i

∂x1,j∂x2,1+r∂x2,l+r
(0, 0, 0)(3.13)

for 1 ≤ i, j ≤ n1, 1 ≤ k ≤ n2 + 1, and λiλjλk �= 0,

ε1kli =
1

σ1kl

n2−l+1∑
r=0

λri
∂3f1,i

∂x2,1+r∂x2,k+r∂x2,l+r
(0, 0, 0)(3.14)
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for 1 ≤ i ≤ n1, 1 ≤ k ≤ l, i+ 2 ≤ l ≤ n2 + 1, and λi �= 0,

ζj1li =
1

σ1l

n2−l+1∑
r=0

λ−r
j

∂3f2,i+r

∂x1,j∂x2,1+r∂x2,l+r
(0, 0, 0)(3.15)

for 1 ≤ i ≤ n2 − 1, i+ 2 ≤ l ≤ n2 + 1, and λj �= 0,

η1kl
i =

1

σ1kl

n2−l+1∑
r=0

∂3f2,i+r

∂x2,1+r∂x2,k+r∂x2,l+r
(0, 0, 0)(3.16)

for 1 ≤ i ≤ n2 − 1, 1 ≤ k ≤ l, and i+ 2 ≤ l ≤ n2 + 1.

Remarks. Once again, if some of the eigenvalues of A1 are complex, then a linear
complex change of coordinates is required to bring it to Jordan form. In this case,
some of the coordinates of z1 are complex conjugate pairs, and some of the coefficients
in the normal form are complex. These complex coefficients occur in conjugate pairs
so that the real dimension of the coefficient space of the normal form is unchanged.

In the normal form of Poincaré (3.3), the eigenvalues satisfying λi = λjλkλl are
said to be in cubic resonance.

We defer the proof to a later section as it is quite lengthy.

4. Control bifurcations. In the above theorems, there are many more details
than are necessary to understand the types of bifurcations that are possible. Recall
that, in the bifurcation theory of a parametrized system of difference equations, the
interesting part of the dynamics is that restricted to the center manifold. This leads
to a great reduction in the dimension of space that must be explored. A similar
fact holds true when studying control bifurcations. In most applications, one will
ultimately use state feedback in an attempt to stabilize the system so the coordinates
that are linearly stabilizable can be ignored to a large extent. If there are modes
which are neutrally stable and are not linearly stabilizable, then the particular choice
of feedback will influence the shape of the center manifold of the closed loop system
and the dynamics thereon. It might be possible to achieve asymptotically stable
center manifold dynamics by the proper choice of feedback although it will not be
exponentially stable. We now discuss some important bifurcations of control systems.

4.1. Fold control bifurcation. Just as with classical bifurcations of discrete
time dynamical systems, the simplest control bifurcation is the fold. The uncon-
trollable part is one dimensional and unstable with A1 > 1. Because the linearly
controllable part of the quadratic normal form (2.4) is in Brunovsky form, the equi-
libria ze, ve are conveniently parametrized by µ = ve. The equilibria ze(µ), ve(µ) are
given by

ze1 = µ2(1−A1)
−1δ̃ +O(µ)3,(4.1)

ze2,i = µ+O(µ)2, i = 1, . . . , n2,(4.2)

ve = µ,(4.3)

where

δ̃ =

n2+1∑
k=1

δ1k
1 .

The local linearization around ze, ve is
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[
z̃+
1

z̃+
2

]
=

([
A1 + µγ11

1 µ∆
0 A2

]
+O(µ)2

)[
z̃1
z̃2

]

+

([
µB1

B2

]
+O(µ)2

)
ṽ,(4.4)

where z̃ = z − ze(µ), ṽ = v − ve(µ), and

∆ =
[
δ̃ + δ11

1 δ12
1 . . . δ1n2

1

]
,

B1 = δ1,n2+1
1 .

If the transversality condition

δ̃ + δ11
1 +A1δ

12
1 + · · ·+An2

1 δ1,n2+1
1 �= 0(4.5)

is satisfied, then the system is linearly controllable and hence stabilizable about any
equilibrium except µ = 0. Consider a parametrized family of feedbacks

v = κ(z, µ),

ṽ = K1(µ)z̃1 +K2(µ)z̃2.(4.6)

Ideally one would like to find a smooth family of feedbacks that makes the family
of equilibria asymptotically stable, i.e., for each small µ, the closed loop system

z+ = f̃(z, κ(z, µ))

is asymptotically stable to ze(µ). Notice that the lowest degree terms of more general
smooth feedbacks will be like (4.6). We restrict our attention to smooth feedbacks for
practical and mathematical reasons. Smooth feedbacks are easy to implement, and
they allow an analysis of the closed loop system based on the low degree terms.

Clearly the z2 subsystem is stabilizable for all µ by the proper choice of K2, and
this feedback gain can be chosen independent of µ. The question is: Can we find
K1(µ) which stabilizes the z1 coordinate?

Since the linear approximations are stabilizable for µ �= 0, it is certainly possible
to find a stabilizing feedback at each such µ. The linear approximation at µ = 0 has
an uncontrollable, unstable mode, so it is not possible to stabilize it. But is it possible
to stabilize the approximations for µ �= 0 with a feedback that is bounded through
µ = 0? The answer is no for systems with a fold control bifurcation. For any bounded
feedback, the closed loop system will be unstable in some neighborhood of µ = 0.

To see this, note that the closed loop linear approximation[
z̃+
1

z̃+
2

]
=

([
A1 + µ

(
γ11
1 +B1K1

)
µ (∆ +B1K2)

B2K1 A2 +B2K2

]
+O(µ)2

)[
z̃1
z̃2

]
(4.7)

is clearly unstable at µ = 0 since it has an eigenvalue A1 > 1. Furthermore, if the
feedback v = K2(µ)z2 stabilizes the z2 subsystem, then A1 is a simple root of the
characteristic polynomial of the closed loop system when µ = 0. Hence there is a
simple root near A1 of the characteristic polynomial for all small |µ|.

By using larger and larger gain, it is possible to stabilize the system closer and
closer to µ = 0. But if the feedback gain is continuous, at best it will stabilize the
closed loop system for only some small but not too small µ > 0 or only some small
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but not too small µ < 0. The controllability of z1 reverses direction (folds) at µ = 0,
so a continuous choice of feedback gain cannot stabilize on both sides of µ = 0. If a
smooth family of feedbacks (4.6) does stabilize the system for some small µ > 0, the
parametrized closed loop system generically undergoes a classical fold bifurcation at
some smaller µ > 0. A classical fold bifurcation is also called a limit point bifurcation,
a saddle-node bifurcation, or a turning point bifurcation.

We illustrate this with a simple example in normal form:

z+
1 = 2z1 − z2

2 ,

z+
2 = v.

The equilibria are ze,1 = µ2, ze,2 = µ, ve = µ. Under the feedback v = K1(µ)z̃1 +
K2(µ)z̃2, the closed loop linear approximation is[

z̃+
1

z̃+
2

]
=

[
2 −2µ

K1(µ) K2(µ)

] [
z̃1
z̃2

]
,

where z̃ = z−ze(µ), ṽ = v−ve(µ). If K(µ) is bounded, then as µ→ 0 one eigenvalue
converges to 2, so the system is unstable for small |µ|. If we choose K1 = 15/2 and
K2 = −1/2, then the closed loop linear approximation is stable for |µ| > 0.1 and
unstable for |µ| < 0.1. It undergoes a fold bifurcation at µ = 0.1.

To see this, consider the closed loop nonlinear system under this feedback in
coordinates centered at the bifurcation z̄1 = z1 − 0.01, z̄2 = z2 − 0.1, µ̄ = µ− 0.1,

z̄+
1 = 2z̄1 − 0.2z̄2 − z̄2

2 ,

z̄+
2 = 7.5z̄1 − 0.5z̄2 − 7.5µ̄2.

It is convenient to reparametrize by ν = 7.5µ̄2 ≥ 0. The center manifold is given by

z̄2 = −2ν + 5z̄1 + 440ν2 − 600νz̄1 + 250z̄2
1 +O(z̄1, ν)

3,

and the center manifold dynamics is

z̄+
1 = 0.4ν + z̄1 − 92ν2 + 140νz̄1 − 75z̄2

1 +O(z̄1, ν)
3

or, in the variables ẑ1 =
√
75(z̄1 − 0.9333ν), ν̂ = 0.4ν − 26.667ν2,

ẑ+
1 = ν̂ + ẑ1 − ẑ2

1 +O(ẑ1, ν̂)
3,

the familiar form of a discrete time fold bifurcation [9].

4.2. Transcritical control bifurcation. A degenerate form of the above bifur-
cation occurs when the uncontrollable part is one dimensional and neutrally stable,
A1 = 1. The equilibria ze, ve depend on roots z1, µ of the quadratic form

0 = β11
1 z2

1 + γ11
1 z1µ+ δ̃µ2.

If this form is positive or negative definite, then there is only an isolated equilibrium
z1 = z2,1 = · · · z2,n2 = v = 0.

If this form is indefinite but not degenerate, i.e., if it has a positive and a negative
eigenvalue, then there are two curves of equilibria that cross at z1 = z2,1 = · · · z2,n2 =
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v = 0. Suppose that z1 = ckµ, k = 1, 2, are the two lines of roots of the quadratic
form; then the equilibria ze, ve are given by

z1 = ckµ+O(µ)2, k = 1, 2,

ze2,i = µ+O(µ)2, i = 1, . . . , n2,

ve = µ.

Suppose ze(µ), ve(µ) is one curve of equilibria, and one chooses a parametrized
family of smooth feedbacks (4.6), where z̃ = z− ze(µ), ṽ = v−ve(µ). Notice that the
closed loop system has a single curve of equilibria. The closed loop approximation
(4.7) has λ = A1 = 1 as an eigenvalue at µ = 0. This eigenvalue is a function λ = λ(µ)
and

dλ

dµ
(0) = γ11

1 +B1K1(0),

so generically the eigenvalues pass through the unit circle at µ = 0, and the closed
loop system goes from stable to unstable through a classical fold bifurcation.

Suppose one chooses a parametrized family of smooth feedbacks that preserves
both curves of equilibria,

v = κ(z, µ),

ṽ = K1(µ)(z1 − c1µ+O(µ)2)(z1 − c2µ+O(µ)2) +K2(µ)z̃2.

Then generically the closed loop system undergoes a classical transcritical bifurcation.
If the quadratic form is degenerate, then the locus or loci of equilibria may depend

on cubic and higher terms.

4.3. Flip control bifurcation. The next simplest control bifurcation of a dis-
crete time system is the flip. The uncontrollable part is again one dimensional and
unstable, but now A1 ≤ −1. The equilibria ze, ve are conveniently parametrized by
µ = ve. The equilibria ze(µ), ve(µ) are given by (4.1), and the local linearizations
are given by (4.4). If the transversality condition (4.5) is satisfied, then these are
controllable when µ �= 0 but unstabilizable when µ = 0.

One can find a parametrized family of smooth feedbacks (4.6) which will stabilize
the z2 modes for all µ and the z1 mode for some range of µ �= 0. If A1 < −1, then as
µ→ 0 it requires larger and larger gain to stabilize the latter. To see this, note that
the closed loop linear approximation (4.7) is clearly unstable at µ = 0 since A1 < −1.
Furthermore, if the feedback v = K2(µ)z2 stabilizes the z2 subsystem, then A1 is a
simple root of the characteristic polynomial of the closed loop system when µ = 0.
Hence there is a simple root near A1 of the characteristic polynomial for all small |µ|.

By using larger and larger gain, it is possible to stabilize the system closer and
closer to µ = 0. But if the feedback gain is bounded, at best it will stabilize the closed
loop system only for some small but not too small µ > 0 and/or only some small but
not too small µ < 0. If a smooth family of feedbacks (4.6) does stabilize the system
for some small µ > 0, the parametrized closed loop system generically undergoes a
classical flip bifurcation at some smaller µ > 0.

We illustrate this with an example:

z+
1 = −2z1 + z2

2 ,

z+
2 = v.
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The equilibria are ze,1 =
1
3µ

2, ze,2 = µ, ve = µ. Under the feedback v = K1(µ)z̃1 +
K2(µ)z̃2, the closed loop linear approximation is[

z̃+
1

z̃+
2

]
=

[ −2 2µ
K1(µ) K2(µ)

] [
z̃1
z̃2

]
,

where z̃ = z−ze(µ), ṽ = v−ve(µ). If K(µ) is bounded, then as µ→ 0 one eigenvalue
converges to −2, so the system is unstable for small |µ|. If we choose K1 = −15/2
and K2 = 1/2, then the closed loop linear approximation is stable for |µ| > 0.1 and
unstable for |µ| < 0.1. It undergoes a classical flip bifurcation at µ = 0.1.

To see this, consider the closed loop nonlinear system under this feedback in
coordinates centered at the the bifurcation z̄1 = z1 − 1/300, z̄2 = z2 − 1/10, µ̄ =
µ− 1/10,

z̄+
1 = −2z̄1 + 0.2z̄2 + z̄2

2 ,

z̄+
2 = −7.5z̄1 + 0.5z̄2 + µ̄+ 2.5µ̄2.

It is convenient to reparametrize by ν = µ̄+ 2.5µ̄2. The center manifold is given by

z̄2 = 0.67ν + 5z̄1 − 10.37ν2 + 111.11νz̄1 − 83.33z̄2
1 +O(z̄1, ν)

3,

and the center manifold dynamics is

z̄+
1 = 0.13ν − z̄1 − 1.63ν2 + 2.89νz̄1 + 8.33z̄2

1

−123.12ν3 + 1763.0ν2z̄1 − 111.11νz̄2
1 − 1944.4z̄3

1 +O(z̄1, ν)
4,

or, in the variables

ν̂ = 3ν + 172.50ν2,

ẑ1 = −2.87ν + 43.30z̄1 − 8.02ν2 + 24.06νz̄1 − 180.42z̄2
1

+48.11ν3 − 360.84ν2z̄1 + 2706.3νz̄1,

the parametrized closed loop system is

ν̂+ = ν̂,

ẑ+
1 = −ẑ1 + ν̂ẑ1 − ẑ3

1 +O(ν̂, ẑ1)
4,

a familiar form of a discrete time flip bifurcation [9].

4.4. Neimark–Sacker control bifurcation. The discrete time analogue of a
classical Hopf bifurcation is called a Neimark–Sacker bifurcation. We present the
control analogue of this bifurcation. The uncontrollable modes are a nonzero complex
conjugate pair,

A1 =

[
λ 0
0 λ̄

]
,

where λ = ρeiθ, λ̄ = ρe−iθ, θ �= 0, π/2, π, 3π/2. The equilibria ze(µ), ve(µ) are given
by [

ze1,1
ze1,2

]
= µ2(I −A1)

−1

[
δ̃1
δ̃2

]
+O(µ)3,(4.8)

ze2,i = µ+O(µ)2, i = 1, . . . , n2,(4.9)

ve = µ,(4.10)
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where

δ̃i =

n2+1∑
k=1

δ1k
i .

The local linearization around ze, ve is[
z̃+
1

z̃+
2

]
=

([
A1 + µΓ µ∆

0 A2

]
+O(µ)2

)[
z̃1
z̃2

]

+

([
µB1

B2

]
+O(µ)2

)
ṽ,(4.11)

where z̃ = z − ze(µ), ṽ = v − ve(µ), and

Γ =

[
γ11
1 γ21

1

γ11
2 γ21

2

]
,

∆ =

[
δ̃1 + δ11

1 δ12
1 . . . δ1n2

1

δ̃2 + δ11
2 δ12

2 . . . δ1n2
2

]
,

B1 =

[
δ1,n2+1
1

δ1,n2+1
2

]
.

If the transversality condition[
δ̃1 + δ11

1

δ̃2 + δ11
2

]
+A1

[
δ12
1

δ12
2

]
+ · · ·+An2

1

[
δ1,n2+1
1

δ1,n2+1
2

]
�= 0(4.12)

is satisfied, then the system is linearly controllable and hence stabilizable about any
equilibrium except µ = 0. Consider a parametrized family of feedbacks (4.6).

If ρ < 1, then the system is stabilizable about any equilibrium, but if ρ ≥ 1, then
the system is not stabilizable when µ = 0. The case ρ ≥ 1 is called a Neimark–Sacker
control bifurcation. We distinguish two subcases, ρ > 1 and ρ = 1.

If ρ > 1, then it requires larger and larger gain to stabilize the system closer and
closer to µ = 0. Since the feedback (4.6) is smooth, it will stabilize only for some small
µ > 0 or for some small µ < 0 but not both. At µ = 0, the poles of the closed loop
system are λ, λ̄ and the poles of A2+B2K2(0). The latter can be made stable, but the
former are unstable. Since the feedback is bounded, as µ → 0 the poles converge to
these. The system is controllable for µ �= 0, so the poles can be placed arbitrarily by
feedback. The poles associated primarily with the z2 subsystem can be kept stable,
but the two poles associated primarily with the z1 subsystem will leave the unit disk at
some small value(s) of µ. Depending on the choice of feedback, they will leave one at a
time as real poles, leave together through ±1, or leave together as a nonzero complex
conjugate pair. If they leave separately as real poles, then generically the closed loop
system undergoes a fold or flip bifurcation as the first pole leaves through ±1. If they
leave together as a complex conjugate pair that is neither real nor imaginary, then
generically the system undergoes a Neimark–Sacker bifurcation. If they leave together
through ±1, the situation can be quite complicated and will not be discussed here.

If ρ = 1 and the feedback (4.6) is continuous, then generically the system under-
goes a Neimark–Sacker bifurcation at µ = 0 provided that eikθ �= 1 for k = 1, 2, 3, 4.
We illustrate this with an example:

z+
1,1 = eiπ/4z1,1 + z2

2 ,
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z+
1,2 = e−iπ/4z1,2 + z2

2 ,

x2 = u.

The equilibria are

ze1,1 = cµ2,

ze1,2 = c̄µ2,

xe2 = µ,

ue = µ,

where c =
(
1− eiπ/4

)−1
. The linear approximations are

z̃+
1,1 = eiπ/4z̃1,1 + 2µz̃2,

z̃+
1,2 = e−iπ/4z̃1,2 + 2µz̃2,

x̃+
2 = ũ,

where z̃1,1 = z1,1 − cµ2, z̃1,2 = z1,2 − c̄µ2, x̃z = z2 − µ, ũ = u − µ. The linear
approximations are controllable except at µ = 0.

The feedback

u = µ+ 0.5(z1,1 − cµ2) + 0.5(z1,2 − c̄µ2) + 0.5(x2 − µ)

places the poles of the closed loop system inside the open unit disk at 0.7953 ±
0.5743i, 0.3957 at µ = 0.1. A pair of poles leaves the unit disk at e±iπ/4 when µ = 0.

The closed loop dynamics undergoes a Neimark–Sacker classical bifurcation at µ =
0. The discrete time analogue of the first Lyapunov coefficient is found in Kuznetsov
[9, p. 186, formula (5.74)]. For this example, its value is 46.8, which indicates that the
system undergoes a subcritical Neimark–Sacker bifurcation at µ = 0. For small µ > 0,
the equilibrium is exponentially stable, but there is an unstable invariant closed curve
nearby. For small µ < 0, the equilibrium is unstable as is the bifurcation equilibrium
µ = 0.

5. Proof of the quadratic normal form. We can expand the change of coor-
dinates and feedback as follows:[

z1
z2

]
=

[
x1

x2

]
−
[

φ
[2;0]
1 (x1;x2)

φ
[2;0]
2 (x1;x2)

]

−
[

φ
[1;1]
1 (x1;x2)

φ
[1;1]
2 (x1;x2)

]
−
[

φ
[0;2]
1 (x1;x2)

φ
[0;2]
2 (x1;x2)

]
,

v = u− α[2;0](x1;x2, u)

−α[1;1](x1;x2, u)− α[0;2](x1;x2, u).

These do not change the linear part of the dynamics. The quadratic part of the
dynamics is changed to

f̃
[d1;d2]
i (z1; z2, v) = f

[d1;d2]
i (z1; z2, v)

−φ[d1;d2]
i (A1z1;A2z2)

+Aiφ
[d1;d2]
i (z1; z2)

−Biα[d1;d2](z1; z2, v),
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where B1 = 0, so the proof splits into six cases, i = 1, 2; d1 = 0, 1, 2; d2 = 2− d1.

The normal form of f̃
[0;2]
2 (z1; z2, v). We start by showing that f̃

[0;2]
2 (z1; z2, v) can

be brought into the above form. There are two basic operations, pull up and push
down, which are used to achieve this. Consider a part of the dynamics

z+
2,i−1 = z2,i + · · · ,
z+
2,i = z2,i+1 + cz2,jz2,k + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

where 1 < i ≤ n2, 1 ≤ j ≤ k ≤ n2 + 1; recall that z2,n+1 = v.
If 1 < j, we can pull up the quadratic term by defining

z̄2,i = z2,i − cz2,j−1z2,k−1,

and then the dynamics becomes

z+
2,i−1 = z̄2,i + cz2,j−1z2,k−1 + · · · ,
z̄+
2,i = z2,i+1 + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

and all the other quadratic terms remain the same. Notice that if i = 1, we can still
pull up, and the term disappears. By pulling up all the quadratic terms until j = 1,
we obtain

z+
2,i = z2,i+1 + cz2,1z2,k + · · · .(5.1)

The other operation on the dynamics is push down. If k ≤ n2, define

z̄2,i+1 = z2,i+1 + cz2,jz2,k

yielding

z+
2,i−1 = z2,i + · · · ,
z+
2,i = z̄2,i+1 + · · · ,

z̄+
2,i+1 = z2,i+2 + cz2,j+1z2,k+1 + · · · ,

and all the other quadratic terms remain unchanged. Notice that if i+ 1 = n2, then
we can absorb the quadratic term into the control using feedback. From (5.1) we push
down every term where k ≤ i+ 1. These terms can be pushed all the way down and
absorbed in the control. The result is (2.8).

Next we show that the number ε1ki (2.13) is an invariant. Clearly ε1ki is potentially

changed only by φ
[0;2]
2 (x1;x2) and α

[0;2]
2 (x1;x2, u). Therefore, we need only consider

coordinate changes of the form

x̄2,ρ = x2,ρ + cx2,σx2,τ ,

where 1 ≤ ρ ≤ n2, 1 ≤ σ ≤ τ ≤ n2, and feedbacks of the form

ū = u+ cx2,σx2,τ ,
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where 1 ≤ σ ≤ τ ≤ n2 + 1 with x2,n+1 = u. More general coordinate changes and
feedbacks are just compositions of these. The coordinate change affects only a piece
of the dynamics (2.3),

x+
2,ρ−1 = x2,ρ + f

[2]
2,ρ−1(x1, x2, u) +O(x1, x2, u)

3,

x+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) +O(x1, x2, u)

3

is transformed to

x+
2,ρ−1 = x̄2,ρ + f

[2]
2,ρ−1(x1, x2, u)− cx2,σx2,τ +O(x1, x2, u)

3,

x̄+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) + cx2,σ+1x2,τ+1 +O(x1, x2, u)

3,

and ε1ki is unchanged. The feedback affects only

x+
2,n2

= u+ f
[2]
2,n2

(x1, x2, u) +O(x1, x2, u)
3,

transforming it into

x+
2,n2

= ū+ f
[2]
2,n2

(x1, x2, u)− cx2,σx2,τ +O(x1, x2, u)
3,

and again ε1ki is unchanged because i+ l ≤ n2 − 1.

The normal form of f̃
[1;1]
2 (z1; z2, v). The two basic operations, pull up and push

down, are slightly different. Consider a part of the dynamics

z+
2,i−1 = z2,i + · · · ,
z+
2,i = z2,i+1 + cz1,jz2,k + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

where 1 < i ≤ n2, 1 ≤ j ≤ n1, 1 ≤ k ≤ n2 + 1.
If λj �= 0 and 1 < k, we can pull up the quadratic term by defining

z̄2,i = z2,i − c

λj
z1,jz2,k−1;

then the dynamics becomes

z+
2,i−1 = z̄2,i +

c

λj
z1,jz2,k−1 + · · · ,

z̄+
2,i = z2,i+1 + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

and all the other quadratic terms remain the same. Again, if i = 1, we can still pull
up, and the term disappears. So by pulling up all quadratic terms where λj �= 0 until
k = 1, we obtain

z+
2,i = z2,i+1 + cz1,jz2,1 + · · · .

Repeated pushing down eliminates this term. Define

z̄2,i+1 = z2,i+1 + cz1,jz2,1,
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yielding

z+
2,i−1 = z2,i + · · · ,
z+
2,i = z̄2,i+1 + · · · ,

z̄+
2,i+1 = z2,i+2 + cλjz1,jz2,2 + · · · ,

and all the other quadratic terms remain unchanged. If λj = 0, then the term drops
out. If λj �= 0, then we can continue to push down until i+1 = n2 and the quadratic

term can be absorbed into the control using feedback. The result is f̃
[1;1]
2 (z1; z2, v) = 0.

The normal form of f̃
[2;0]
2 (z1; z2, v). Consider a part of the dynamics

z+
2,i = z2,i+1 + cz1,jz1,k + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

where 1 ≤ i ≤ n2, 1 ≤ j ≤ k ≤ n1.
Pushing down one or more times eliminates this term. Define

z̄2,i+1 = z2,i+1 + cz1,jz1,k,

yielding

z+
2,i−1 = z2,i + · · · ,
z+
2,i = z̄2,i+1 + · · · ,

z̄+
2,i+1 = z2,i+2 + cλjλkz1,jz1,k + · · · ,

and all the other quadratic terms remain unchanged. If λjλk = 0, then the term
drops out. Otherwise, the quadratic term can be pushed down repeatedly until it is

absorbed in the control. The result is f̃
[2;0]
2 (z1; z2, v) = 0.

The normal form of f̃
[2;0]
1 (z1; z2, v). This is just the quadratic normal form of

Poincaré as described in the introduction, and βjki are the invariants. See [1], [5], [9],
or [13]. Consider a part of the dynamics

z+
1,i = λiz1,i + cz1,jz1,k + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ n1.
If λi �= λjλk, then define

z̄1,i = z1,i − c

(λjλk − λi)
z1,jz1,k

so that

z̄+
1,i = λiz̄1,i + · · · .

Next we show that the numbers βjki (2.9) are invariants. Clearly βjki is potentially

changed only by φ
[2;0]
1 (x1;x2). Therefore, we need only consider coordinate changes

of the form

x̄1,ρ = x1,ρ + cx1,σx1,τ ,
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where 1 ≤ ρ ≤ n1, 1 ≤ σ ≤ τ ≤ n1, because more general ones are just compositions
of these. This coordinate change affects only a piece of the dynamics (2.3), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) +O(x1, x2, u)

3

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + c(λσλτ − λρ)x1,σx1,τ +O(x1, x2, u)

3.

Clearly, if λρ = λσλτ , then βjki (2.9) is unchanged.

The normal form of f̃
[1;1]
1 (z1; z2, v). Consider a part of the dynamics

z+
1,i = λiz1,i + cz1,jz2,k + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ n1, 1 ≤ k ≤ n2 + 1.
If λj �= 0 and k > 1, then we can pull up by defining

z̄1,i = z1,i − c

λj
z1,jz2,k−1

so that

z̄+
1,i = λiz̄1,i +

cλi
λj

z1,jz2,k−1 + · · · .

If λi = 0, then the term disappears; otherwise, we can continue to pull up until k = 1.
If λi �= 0, then we can push down by defining

z̄1,i = z1,i +
c

λi
z1,jz2,k;

then

z̄+
1,i = λiz̄1,i +

cλj
λi

z1,jz
+
2,k + · · · .

If λj = 0, then the term disappears.
If λi = λj = 0, then we cannot pull up or push down. The result is (2.7).

Next we show that the numbers γjki (2.10)–(2.11) are invariants. Clearly γjki is

potentially changed only by φ
[1;1]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx1,σx2,τ ,

where 1 ≤ ρ, σ ≤ n1, 1 ≤ τ ≤ n2, because more general ones are just compositions of
these. This coordinate change affects only a piece of the dynamics (2.3), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) +O(x1, x2, u)

3

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + cλσx1,σx2,τ+1 − cλρx1,σx2,τ +O(x1, x2, u)

3.

Clearly, if λρ = λσ = 0, then γjki (2.10) is unchanged. A simple calculation shows

that if λρλσ �= 0, then γj1i (2.11) is unchanged.
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The normal form of f̃
[0;2]
1 (z1; z2, v). Consider a part of the dynamics

z+
1,i = λiz1,i + cz2,jz2,k + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ n2.
If j > 1, then we can pull up by defining

z̄1,i = z1,i − cz2,j−1z2,k−1;

then

z̄+
1,i = λiz̄1,i + cλiz2,j−1z2,k−1 + · · · .

If λi = 0, then the term disappears; otherwise, we can continue to pull up until j = 1.
The result is (2.7).

Finally, we show that the numbers δ1k
i (2.12) are invariants. Clearly, δ1k

i is po-

tentially changed only by φ
[0;2]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx2,σx2,τ ,

where 1 ≤ ρ ≤ n1, 1 ≤ σ ≤ τ ≤ n2, because more general ones are just compositions
of these. This change of coordinates affects only a piece of the dynamics (2.3), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) +O(x1, x2, u)

3

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + cx2,σ+1x2,τ+1 − cλρx2,σx2,τ +O(x1, x2, u)

3.

Clearly, if λρ �= 0, then δ1k
i (2.12) is unchanged.

6. Proof of the cubic normal form. Cubic changes of coordinates and cubic
feedbacks do not change the linear and quadratic parts of the system. Their effect
on the cubic part of the system splits into cases, this time eight cases, i = 1, 2; d1 =
0, 1, 2, 3; d2 = 3− d1.

The normal form of f̃
[0;3]
2 (z1; z2, v). We again use the two basic operations pull

up and push down. Consider a part of the dynamics

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz2,jz2,kz2,l + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + · · · ,

where 1 < i ≤ n2, 1 ≤ j ≤ k ≤ l ≤ n2 + 1; recall that z2,n+1 = v.
If 1 < j, we can pull up the cubic term by defining

z̄2,i = z2,i − cz2,j−1z2,k−1z2,l−1;

then the dynamics becomes

z+
2,i−1 = z̄2,i + f

[2]
2,i−1(z1, z2, v) + cz2,j−1z2,k−1z2,l−1 + · · · ,

z̄+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + · · · ,
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and all the other cubic terms remain the same. Notice that if i = 1, we can still pull
up, and the term disappears. By pulling up all cubic terms until j = 1, we obtain
that

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz2,1z2,kz2,l + · · · .(6.1)

The other operation on the dynamics is push down. If l ≤ n2, define

z̄2,i+1 = z2,i+1 + cz2,jz2,kz2,l,

yielding

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z̄2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z̄+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + cz2,j+1z2,k+1z2,l+1 + · · · ,

and all the other cubic terms remain unchanged. Notice that if i + 1 = n2, then we
can absorb the cubic term into the control. From (6.1) we push down every term
where l ≤ i + 1. These terms can be pushed all the way down and absorbed in the
control. The result is (3.8).

Next we show that the number η1kl
i (3.16) is an invariant. Clearly η1kl

i is po-

tentially changed only by φ
[0;3]
2 (x1;x2) and α

[0;3]
2 (x1;x2, u). Therefore, we need only

consider coordinate changes of the form

x̄2,ρ = x2,ρ + cx2,σx2,τx2,υ,

where 1 ≤ ρ ≤ n2, 1 ≤ σ ≤ τ ≤ υ ≤ n2, and feedbacks of the form

ū = u+ cx2,σx2,τx2,υ,

where 1 ≤ ρ ≤ n2, 1 ≤ σ ≤ τ ≤ υ ≤ n2 + 1 with x2,n+1 = u because more general
ones are just compositions of these. The coordinate change affects only a piece of the
dynamics (3.1),

x+
2,ρ−1 = x2,ρ + f

[2]
2,ρ−1(x1, x2, u) + f

[3]
2,ρ−1(x1, x2, u),

x+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) + f

[3]
2,ρ(x1, x2, u)

is transformed to

x+
2,ρ−1 = x̄2,ρ + f

[2]
2,ρ−1(x1, x2, u) + f

[3]
2,ρ−1(x1, x2, u)− cx2,σx2,τx2,υ,

x̄+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) + f

[3]
2,ρ(x1, x2, u) + cx2,σ+1x2,τ+1x2,υ+1,

and η1kl
i is unchanged. The feedback affects only

x+
2,n2

= u+ f
[2]
2,n2

(x1, x2, u) + f
[3]
2,n2

(x1, x2, u),

transforming it into

x+
2,n2

= ū+ f
[2]
2,n2

(x1, x2, u) + f
[3]
2,n2

(x1, x2, u)− cx2,σx2,τx2,υ,

and again η1kl
i is unchanged because i+ r ≤ n2 − 1.
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The normal form of f̃
[1;2]
2 (z1; z2, v). The two basic operations, pull up and push

down, are slightly different. Consider a part of the dynamics

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz1,jz2,kz2,l + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i(z1, z2, v) + · · · ,

where 1 < i ≤ n2, 1 ≤ j ≤ n1, 1 ≤ k ≤ l ≤ n2 + 1.

If λj �= 0 and 1 < k, we can pull up the cubic term by defining

z̄2,i = z2,i − c

λj
z1,jz2,k−1z2,l−1;

then the dynamics becomes

z+
2,i−1 = z̄2,i +

c

λj
z1,jz2,k−1z2,l−1 + · · · ,

z̄+
2,i = z2,i+1 + · · · ,

z+
2,i+1 = z2,i+2 + · · · ,

and all the other cubic terms remain the same. Again, if i = 1, we can still pull up,
and the term disappears. So by pulling up all cubic terms where λj �= 0 until k = 1,
we obtain

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz1,jz2,1z2,l + · · · .

If l ≤ n2, we can also push down by defining

z̄2,i+1 = z2,i+1 + cz1,jz2,1z2,l,

yielding

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z̄2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z̄+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + cλjz1,jz2,2z2,l+1 + · · · ,

and all the other cubic terms remain unchanged. If λj = 0, then the term drops out.
If λj �= 0 and l ≤ i + 1, then the cubic term can be pushed down repeatedly and
absorbed in the control. The result is (3.7).

Next we show that the number ζj1li (3.15) is an invariant. Clearly ζj1li is po-

tentially changed only by φ
[1;2]
2 (x1;x2) and α

[1;2]
2 (x1;x2, u). Therefore, we need only

consider coordinate changes of the form

x̄2,ρ = x2,ρ + cx1,σx2,τx2,υ,

where 1 ≤ ρ ≤ n2, 1 ≤ σ ≤ n1, 1 ≤ τ ≤ υ ≤ n2 and feedbacks of the form

ū = u+ cx1,σx2,τx2,υ,
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where 1 ≤ σ ≤ n1, 1 ≤ τ ≤ υ ≤ n2+1 with x2,n+1 = u because more general ones are
just compositions of these. The coordinate change affects only a piece of the dynamics
(3.1),

x+
2,ρ−1 = x2,ρ + f

[2]
2,ρ−1(x1, x2, u) + f

[3]
2,ρ−1(x1, x2, u),

x+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) + f

[3]
2,ρ(x1, x2, u)

is transformed to

x+
2,ρ−1 = x̄2,ρ + f

[2]
2,ρ−1(x1, x2, u) + f

[3]
2,ρ−1(x1, x2, u)− cx1,σx2,τx2,υ,

x̄+
2,ρ = x2,ρ+1 + f

[2]
2,ρ(x1, x2, u) + f

[3]
2,ρ(x1, x2, u) + cλσx1,σx2,τ+1x2,υ+1,

and ζj1li is unchanged. The feedback affects only

x+
2,n2

= u+ f
[2]
2,n2

(x1, x2, u) + f
[3]
2,n2

(x1, x2, u),

transforming it into

x+
2,n2

= ū+ f
[2]
2,n2

(x1, x2, u) + f
[3]
2,n2

(x1, x2, u)− cx1,σx2,τx2,υ,

and again ζj1li is unchanged.

The normal form of f̃
[2;1]
2 (z1; z2, v). Consider a part of the dynamics

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz1,jz1,kz2,l + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + · · · ,

where 1 < i ≤ n2, 1 ≤ j ≤ k ≤ n1, 1 ≤ l ≤ n2 + 1.
If λjλk �= 0 and 1 < l, we can pull up the cubic term by defining

z̄2,i = z2,i − c

λjλk
z1,jz1,kz2,l−1;

then the dynamics becomes

z+
2,i−1 = z̄2,i + f

[2]
2,i−1(z1, z2, v) +

c

λjλk
z1,jz1,kz2,l−1 + f

[2]
2,i(z1, z2, v) + · · · ,

z̄+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + · · · ,

and all the other cubic terms remain the same. Again, if i = 1, we can still pull up,
and the term disappears. So by pulling up all cubic terms where λjλk �= 0 until l = 1,
we obtain

z+
2,i = z2,i+1 + cz1,jz1,kz2,1 + · · · .

Pushing down eliminates this term and any term with λjλk = 0. Define

z̄2,i+1 = z2,i+1 + cz1,jz1,kz2,1,
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yielding

z+
2,i−1 = z2,i + f

[2]
2,i−1(z1, z2, v) + · · · ,

z+
2,i = z̄2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z̄+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + cλjλkz1,jz1,kz2,2 + · · · ,

and all the other cubic terms remain unchanged. If λjλk = 0, then the term drops
out. If λjλk �= 0, then we can push down repeatedly until the cubic term is absorbed

in the control. The result is f̃
[2;1]
2 (z1; z2, v) = 0.

The normal form of f̃
[3;0]
2 (z1; z2, v). Consider a part of the dynamics

z+
2,i = z2,i+1 + f

[2]
2,i(z1, z2, v) + cz1,jz1,kz1,l + · · · ,

z+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + · · · ,

where 1 ≤ i ≤ n2, 1 ≤ j ≤ k ≤ l ≤ n1.
Pushing down one or more times eliminates this term. Define

z̄2,i+1 = z2,i+1 + cz1,jz1,kz1,l,

yielding

z+
2,i = z̄2,i+1 + f

[2]
2,i(z1, z2, v) + · · · ,

z̄+
2,i+1 = z2,i+2 + f

[2]
2,i+1(z1, z2, v) + cλjλkλlz1,jz1,kz1,l + · · · ,

and all the other cubic terms remain unchanged. If λjλkλl = 0, then the term drops
out. Otherwise, the term can be pushed down repeatedly until it is absorbed in the

control. The result is f̃
[3;0]
2 (z1; z2, v) = 0.

The normal form of f̃
[3;0]
1 (z1; z2, v). This is just the cubic normal form and in-

variants of Poincaré (see [1], [5], [9], and [13]). Consider a part of the dynamics

z+
1,i = λiz1,i + f

[2]
1,i(z1, z2, v) + cz1,jz1,kz1,l + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ l ≤ n1.
If λi �= λjλkλl, then define

z̄1,i = z1,i − c

(λjλkλl − λi)
z1,jz1,kz1,l

so that

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) + · · · .

Next we show that the numbers βjkli (3.9) are invariants. Clearly, βjkli is po-

tentially changed only by φ
[3;0]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx1,σx1,τx1,υ,

where 1 ≤ ρ ≤ n1, 1 ≤ σ ≤ τ ≤ υ ≤ n1 because more general ones are just
compositions of these. This coordinate change affects only a piece of the dynamics
(3.1), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u) +O(x1, x2, u)

3
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is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u) + c(λσλτλυ − λρ)x1,σx1,τ +O(x1, x2, u)

3.

Clearly, if λρ = λσλτλυ, then βjkli (3.9) is unchanged.

The normal form of f̃
[2;1]
1 (z1; z2, v). Consider a part of the dynamics

z+
1,i = λiz1,i + f

[2]
1,i(z1, z2, v) + cz1,jz1,kz2,l + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ n1, 1 ≤ l ≤ n2.
If λjλk �= 0 and l > 1, we can pull up by defining

z̄1,i = z1,i − c

λjλk
z1,jz1,kz2,l−1

so that

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) +

cλi
λjλk

z1,jz1,kz2,l−1 + · · · .

If λi = 0, then the term disappears; otherwise, we can continue to pull up until l = 1.
If λi �= 0 and λjλk = 0, then the term disappears by pushing down

z̄1,i = z1,i +
c

λi
z1,jz1,kz2,l

so that

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) +

cλjλk
λi

z1,jz1,kz
+
2,l + · · · ,

= λiz̄1,i + f
[2]
1,i(z1, z2, v) + · · · .

If λi = λjλk = 0, then we cannot pull up or push down. The result is (3.4).

Next we show that the numbers γjkli (3.10)–(3.11) are invariants. Clearly, γjkli is

potentially changed only by φ
[2;1]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx1,σx1,τx2,υ,

where 1 ≤ ρ ≤ n1, 1 ≤ σ ≤ τ ≤ n1, 1 ≤ υ ≤ n2 because more general ones are just
compositions of these. This coordinate change affects only a piece of the dynamics
(3.1), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u) +O(x1, x2, u)

4

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u)

+cλσλτx1,σx1,τx2,υ+1 − cλρx1,σx1,τx2,υ +O(x1, x2, u)
4.

Clearly, if λρ = λσλτ = 0, then γjkli (3.10) is unchanged. A simple calculation shows

that if λρλσλτ �= 0, then γjk1i (3.11) is unchanged.
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The normal form of f̃
[1;2]
1 (z1; z2, v). Consider a part of the dynamics

z+
1,i = λiz1,i + f

[2]
1,i(z1, z2, v) + cz1,jz2,kz2,l + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ n1, 1 ≤ k ≤ l ≤ n2.
If λj �= 0 and k > 1, then we can pull up by defining

z̄1,i = z1,i − c

λj
z1.jz2,k−1z2,l−1;

then

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) +

cλi
λj

z1,jz2,k−1z2,l−1 + · · · .

If λi = 0, then the term disappears; otherwise, we can continue to pull up until k = 1.
If λi �= 0 and λj = 0, then the term disappears by pushing down

z̄1,i = z1,i +
c

λi
z1,jz2,kz2,l;

then

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) +

cλj
λi

z1,jz
+
1,kz

+
2,l + · · · ,

= λiz̄1,i + f
[2]
1,i(z1, z2, v) + · · · .

If λi = λj = 0, then we cannot pull up or push down. The result is (3.5).

Next we show that the numbers δjkli (3.12)–(3.13) are invariants. Clearly, δjkli is

potentially changed only by φ
[1;2]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx1,σx2,τx2,υ,

where 1 ≤ ρ, σ ≤ n1, 1 ≤ τ ≤ υ ≤ n2 because more general ones are just compositions
of these. This coordinate change affects only a piece of the dynamics (3.1), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u) +O(x1, x2, u)

4

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u)

+cλσλτx1,σx1,τx2,υ+1 − cλρx1,σx1,τx2,υ +O(x1, x2, u)
4.

Clearly, if λρ = λσλτ = 0, then δjkli (3.12) is unchanged. A simple calculation shows

that if λρλσλτ �= 0, then δj1li (3.13) is unchanged.

The normal form of f̃
[0;3]
1 (z1; z2, v). Consider a part of the dynamics

z+
1,i = λiz1,i + f

[2]
1,i(z1, z2, v) + cz2,jz2,kz2,l + · · · ,

where 1 ≤ i ≤ n1, 1 ≤ j ≤ k ≤ l ≤ n2.
If j > 1, we can pull up by defining

z̄1,i = z1,i − cz2,j−1z2,k−1z2,l−1;



1722 ARTHUR J. KRENER AND LONG LI

then

z̄+
1,i = λiz̄1,i + f

[2]
1,i(z1, z2, v) + cλiz2,j−1z2,k−1z2,l−1 + · · · .

If λi = 0, then the term disappears; otherwise, we can continue to pull up until j = 1.
The result is (3.6).

Finally, we show that the numbers ε1kli (3.14) are invariants. Clearly, ε1kli is

potentially changed only by φ
[0;3]
1 (x1;x2). Therefore, we need only consider coordinate

changes of the form

x̄1,ρ = x1,ρ + cx2,σx2,τx2,υ,

where 1 ≤ ρ ≤ n1, 1 ≤ σ ≤ τ ≤ υ ≤ n2 because more general ones are just
compositions of these. This change of coordinates affects only a piece of the dynamics
(2.3), and

x+
1,ρ = λρx1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u)

is transformed to

x̄+
1,ρ = λρx̄1,ρ + f

[2]
1,ρ(x1, x2, u) + f

[3]
1,ρ(x1, x2, u)

+cx2,σ+1x2,τ+1x2,υ+1 − cλρx2,σx2,τx2,υ.

Clearly, if λρ �= 0, then ε1kli (3.14) is unchanged.

7. Conclusion. We have developed a theory of quadratic and cubic normal
forms for discrete time control systems. To avoid notational difficulties, we have
restricted our attention to scalar input systems whose uncontrollable part is diago-
nalizable. But the basic operations of pull up and push down extend to more general
systems. We have also shown the uniqueness of the normal forms.

We have introduced the concept of control bifurcation and have exhibited some
simple examples.
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Abstract. An optimal stochastic control problem is considered for systems with unbounded
controls satisfying an integral constraint. It is shown that there exists an optimal control within the
class of generalized controls leading to impulse actions. Applying an approach of time transformation,
developed recently for deterministic systems, the original control problem is shown to be equivalent
to an optimal stopping problem. Moreover, the description of generalized solutions is given in terms
of stochastic differential equations governed by a measure.

Key words. nonlinear stochastic systems, impulse control, generalized solutions, discontinuous
time-change
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1. Introduction. In this paper, the existence of an optimal control is discussed
for the nonlinear stochastic system defined by the following equation:

xt
.
= ζ +

∫ t

0

A(s, xs)ds+

∫ t

0

B(s, xs)usds+

∫ t

0

D(s, xs)dWs,(1)

where the functions A, B, and D are deterministic, {Wt} is a Brownian motion, and
{ut} is the control. All the processes are assumed to be defined on a probability space
(Ω,F , P, {Ft}). Let K be a closed convex cone. The class of admissible controls,
labeled Ca, is defined by the class of K-valued, {Ft}-predictable processes subject to
the following constraint:

∫ T

0

|us|ds ≤M.(2)

For an admissible control u, the cost is given by

J [u] = E[g(xT )],(3)

where g is a deterministic function and T is the terminal time.
When the control satisfies condition (2), it is easy to see that the optimal solution

may not exist within the class of admissible control (see the example in section 3).
Indeed, this constraint (2) implies that the admissible control can be chosen as close
as desired to a control of impulsive type. An approach to solve this problem in
a deterministic context, based on a time transformation, was originally suggested by
Warga [21] and has been actively developed recently (see, for example, the survey [15]).
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In the stochastic context, this approach was introduced by Miller and Runggaldier in
[17] to solve a special case of the problem studied in the present work. In this context,
it appears necessary to introduce a new concept to describe the limit of a sequence of
control processes subject to the constraint (2); this is the so-called generalized control.
(For a more precise exposition, see Definition 3.1.) Similarly, the limit of a sequence
of solutions of (1) is defined as a generalized solution. These definitions of generalized
control and generalized solution are taken from the deterministic context (see, for
example, [1, 16, 18]).

Our aim is to characterize the value of infu∈Ca J [u]. By introducing the class of ad-
missible generalized controls, labeled C

a
, it is shown that infu∈Ca J [u] = infu∈C

a J [u].
The characterization of infu∈Ca J [u] will be completed when it is shown that the there
exists an optimal generalized control u∗ ∈ C

a
such that infu∈C

a J [u] = J [u∗]. It proves
that there exists an optimal generalized control for the original control problem, jus-
tifying, therefore, the introduction of this class of process, C

a
. This existence result

is obtained by using a time transformation to convert the original control problem
into an optimal stopping problem. Moreover, the representation of the generalized
solution is given in terms of a stochastic differential equation governed by a measure.
This important property enhances the link existing between this control problem and
the class of singular control problems.

Singular stochastic control problems have recently received considerable attention
in the literature (see [9, 10, 22] and the references therein). However, until now the
theoretical basis for this kind of stochastic control problem was restricted to the class
of systems where the gain of the singular control does not depend on the state process
(see, for example, [9, 10] and the references therein). Therefore, our work can be
considered as a first attempt to extend these results in the case where the gain of the
singular control may depend on the state process. Other extensions of our approach
are already planned, and in [4] it will be shown how this method can be applied
to re-examine the singular problem studied in [9]. It must be pointed out that the
control problem defined in (1)–(3) cannot be solved directly by using the results in
[8, Theorem 4.7]. Our work can be generalized in several directions by adding soft
constraints and considering the optimal stopping problem.

The paper is organized as follows. In section 2, we formulate the original control
problem. The concept of generalized control is introduced in section 3 by analogy with
the deterministic case. It is shown that the infimum of the expected cost over the
class of admissible controls and the infimum over the class of admissible generalized
controls are the same (see Proposition 3.2). Section 4 contains the description of
the time transformation and introduces an auxiliary control problem that will be
shown to be equivalent to the original one. On the basis of known results [8], the
existence theorem is proved for the auxiliary problem. A consequence of this result
is derived in section 5 and shows that there exists an optimal generalized control
for the original control problem. Its representation is given in terms of a stochastic
differential equation governed by a measure. In the appendix, some technical results
are derived.

We introduce the following notation and terminology.
Notation. NN is the set of the first N integers, that is, NN = {1, . . . , i, . . . , N}.

R+
.
= {x ∈ R : x ≥ 0}. The ith component of a vector M is denoted by M i. The

symbol |.| is used to denote the norm of vectors and matrices. If X is a normed space,
then for R > 0 the set BR(X) is defined by {x ∈ X : |x| < R} and BR(X) .= {x ∈
X : |x| ≤ R}. (′) denotes the transpose operation. 0n ∈ R

n is the zero vector. The
indicator function of a set A is defined as IA(x). On a probability space (Ω,F , P ),
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the mathematical expectation will be denoted by EP [.].
In order to define the state processes, let us introduce the following data:
• K is a subset of R

p.
• A : R+ × R

n → R
n.

• B : R+ × R
n → R

n×p.
• D : R+ × R

n → R
n×m.

• g : R
n → R+.

• ζ is a fixed vector in R
n.

• T and M are fixed real numbers.
• G : R+ → R+ such that G(T ) = 0 and G(t) =∞ for t �= T .

The following assumptions will be used in the paper.
(A.1) There are constants L1 and L2 such that for all t, s ∈ R+ and x, y ∈ R

n

|A(t, x)|+ |B(t, x)|+ |D(t, x)| ≤ L1(1 + |x|),
|A(t, x)−A(s, y)|+ |B(t, x)−B(s, y)|+ |D(t, x)−D(s, y)| ≤ L2(|x− y|+ |t− s|).

(A.2) The function g is continuous, and there exist a constant L3 and a positive
integer q such that

|g(x)|2 ≤ L3(1 + |x|q).

(A.3) K is a closed cone which is convex.
(A.4) For all (t, x) ∈ [0, T )× R

n, the set K(t, x) defined by

K(t, x)
.
=
{
((1− |θ|)A(t, x) +B(t, x)θ, (1− |θ|)D(t, x)D(t, x)′, |θ|) : θ ∈ B1(K)

}
is convex.

2. Problem statement. In this section, we formulate the stochastic control
problem presented in the introduction using the formulation described in Haussmann
and Lepeltier [8] and El Karoui, Nguyen, and Jeanblanc-Picqué [5].

Definition 2.1. A control is defined by the term

C
.
= (Ω,F , P, {Ft}, {ut}, {Wt}, {xt}),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Ft}.
(ii) {ut} is a K-valued, {Ft}-predictable process such that

∫ T

0

|us|ds ≤M.(4)

(iii) {Wt} is an {Ft} standard m-dimensional Brownian motion.
(iv) {xt} is an R

n-valued, {Ft} progressively measurable process such that

(∀t ∈ [0, T ]), xt .= ζ +
∫ t

0

A(s, xs)ds+

∫ t

0

B(s, xs)usds

+

∫ t

0

D(s, xs)dWs.(5)
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We write C for the set of controls satisfying the previous conditions.
The cost is given by

J [C]
.
= EP [g(xT )].(6)

The set Ca of admissible controls is defined by

Ca
.
= {C ∈ C : J [C] <∞}.(7)

We shall consider as a control objective the minimization of J [C] on Ca.
As already pointed out in the introduction, since we do not assume any conditions

such as the coercivity condition (see (3.5) in [8]), the existence of an optimal control for
the previous problem cannot be claimed using the approach described in [8]. Before
presenting the concept of generalized control, let us derive the following technical
lemma.

Lemma 2.2. The stochastic differential equation (5), where {ut} satisfies item
(ii) of Definition 2.1, has a unique solution such that

(∀q ∈ N) EP

[
sup
t∈[0,T ]

|xt|2q
]
< D,(8)

where D is a constant.
Proof. Using (A.1) and Theorem 7, page 197 in [19], the existence and the unique-

ness of the solution are straightforward. The proof of (8) is given in the appendix.
We cannot use standard arguments to derive it since the process {ut} may not be
bounded but satisfies the inequality (4).

3. Generalized controls. An optimal control may not exist within the class of
ordinary admissible controls Ca. An example is now presented in order to illustrate
this assertion. A deterministic problem is considered where T = 1,M = 1, the control
ut ∈ K .

= R+, and the state satisfies the following equation:

(∀t ∈ [0, 1]) xt
.
=

∫ t

0

(us − xs)ds.

The aim is to minimize the cost J [C] = (1 − x1)
2. It is easy to show that x1 =∫ 1

0
e(s−1)usds, and, by using the fact that

∫ 1

0
usds ≤ 1, it follows that for any admis-

sible control J [C] > 0.
Now let us introduce the sequence of admissible controls

unt =

{
0 for 0 ≤ t ≤ 1− 1

n ,
n for 1− 1

n < t ≤ 1.

Clearly,
∫ 1

0
uns ds = 1, and the cost J [C

n] associated to un is equal to [1−n(1−e− 1
n )]2.

Consequently, limn→∞ J [Cn] = 0, showing that an optimal control does not exist
within the class of ordinary admissible controls Ca. This is a consequence of the
discontinuous behavior of the minimizing sequence {unt } at t = 1.

In order to characterize infC∈Ca J [C], we introduce the concept of generalized
control, labeled Cg, and its associated class of admissible controls C

a
. Moreover, the

correspondence between infC∈Ca J [C] and infCg∈C
a J [Cg] is given in Proposition 3.2,

justifying the introduction of this new class of controls C
a
.
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Definition 3.1. A generalized control is defined by the term

Cg
.
= (Ω,F , P, {Ft}, {Ut}, {Wt}, {Xt}),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Ft}.
(ii) {Ut} is a K-valued, corlol, {Ft} progressively measurable process satisfying

Var
[0,T ]

[Ut] ≤M, Ut − Us ∈ K for t ≥ s.(9)

(iii) {Wt} is an {Ft} standard m-dimensional Brownian motion.
(iv) {Xt} is an R

n-valued, corlol, {Ft} progressively measurable semimartingale
such that the continuous part of {Xt} satisfies

(∀t ∈ [0, T ]) Xc
t
.
= ζ +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dU
c
s

+

∫ t

0

D(s,Xs)dWs.(10)

(v) There exists a sequence {Cn}n∈N
defined by

Cn
.
= (Ω,F , P, {Fnt }, {unt }, {Wn

t }, {xnt })
such that

(∀n ∈ N) Cn ∈ Ca

and

(∀t ∈ [0, T )) Xt = lim sup
s→t
s>t

lim
n→∞x

n
s , P− a.s.,

and XT = lim
n→∞x

n
T , P− a.s.(11)

We write C for the set of controls satisfying the previous conditions.
The cost is given by

J [Cg]
.
= EP [g(XT )].(12)

The set C
a
of admissible controls is defined by

C
a .
= {Cg ∈ C : J [Cg] <∞}.(13)

Note that the discontinuous part of {Xt} is generated by the discontinuous part
of {Ut}.

The following result provides a correspondence between the sets of control Ca

and C
a
. Its proof is an immediate consequence of the definitions of Ca and C

a
and

assumption (A.2).
Proposition 3.2. The set of control Ca is a subset of C

a
, and

inf
C∈Ca

J [C] = inf
Cg∈C

a
J [Cg].(14)
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4. Time transformation and the auxiliary control problem. In this sec-
tion, we introduce an auxiliary control problem which is given in terms of an optimal
stopping problem (see Definition 4.1). It is shown in Corollary 4.16 that this problem
is equivalent to the initial one. A key property of the auxiliary control problem is
that the controls take their values in a compact set.

Definition 4.1. An auxiliary control is defined by the term

Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt}, γ),

where the following hold:
(i) (Ω,F , P ) is a complete probability space with a right continuous complete

filtration {Gt}.
(ii) {θt} is a B1(K)-valued, {Gt}-predictable process.
(iii) {Vt} is a {Gt} standard m-dimensional Brownian motion.
(iv) γ is a {Gt} stopping time such that

γ ≤ T +M.(15)

(v) {Λt .= (ηt, ξ′t)′} is an R
n+1-valued, {Gt} progressively measurable process such

that

ηt
.
= t−

∫ t

0

|θs|ds,(16)

ξt
.
= ζ +

∫ t

0

(1− |θs|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θsds

+

∫ t

0

√
1− |θs|D(ηs, ξs)dVs(17)

for t ∈ [0, γ].
We write Υ for the set of controls satisfying the previous conditions.

The cost is given by

M[Ψ]
.
= EP [g(ξγ) +G(ηγ)].(18)

The set Υ
a
of admissible auxiliary controls is defined by

Υ
a .
= {Ψ ∈ Υ :M[Ψ] <∞}.(19)

Our aim is to show the equivalence between the auxiliary and the initial control
problems. However, we first show the existence of an optimal control for the auxiliary
problem.

Theorem 4.2. For the auxiliary control problem there exists an optimal control
Θ∗:

inf
Ψ∈Υ

a
M[Ψ] =M[Θ∗] and Θ∗ ∈ Υa.(20)

Proof. Applying Corollary 4.8 in [8], it follows that there exist a probability space

(Ω, F̃ , P̃ ) and a filtration {G̃t} such that
• {θ̃t} is a B1(K)-valued, {G̃t} progressively measurable process,
• {Vt} is a {G̃t} standard m-dimensional Brownian motion,
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and

E
P̃
[g(ξγ)] ≤ inf

Ψ∈Υ
a
M[Ψ],(21)

where γ is a {G̃t} stopping time and

ηt = t−
∫ t

0

|θ̃s|ds,

ξt = ζ +

∫ t

0

(1− |θ̃s|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θ̃sds+

∫ t

0

√
1− |θ̃s|D(ηs, ξs)dVs.

In (21), we do not have an equality because in the control problem studied by Hauss-
mann and Lepeltier [8] the set of admissible controls is defined on the set of progres-
sively measurable processes and for an arbitrary probability space. In our case, the
admissible controls are defined in the smaller set of predictable processes and on a
probability space that must satisfy the usual hypotheses (completion and right conti-
nuity). However, using Lemmas A.1 and A.2, it can be shown that there exists a new
probability space (Ω,F , P, {Gt}) satisfying the usual hypotheses based on a modifica-
tion of (Ω, F̃ , P̃ , {G̃t}). Moreover, the existence of a B1(K)-valued, {Gt}-predictable
process {θt} such that
Θ∗ .

= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ) ∈ Υ
a

and M[Θ∗] ≤ inf
Ψ∈Υ

a
M[Ψ]

is guaranteed by Lemma A.3.
Consequently, we haveM[Θ∗] = infΨ∈Υ

aM[Ψ], which gives the result.
In order to establish the correspondence between the auxiliary control problem

and the initial one, we need to introduce the following subset of Υ
a
, labeled Υa (see

Definition 4.3). We prove in Theorem 4.9 that

inf
Ψ∈Υa

M[Ψ] = min
Ψ∈Υ

a
M[Ψ]

=M[Θ∗].(22)

Then it is shown in Theorem 4.15 that

inf
C∈Ca

J [C] = inf
Ψ∈Υa

M[Ψ].(23)

Therefore, combining (22) and (23), the main result of this section (see Corollary
4.16) will follow; that is,

inf
C∈Ca

J [C] =M[Θ∗].

The rest of this section is devoted to the proofs of relations (22) and (23).
First, in order to show that (22) holds, we prove that for any control Ψ ∈ Υa

there exists a sequence of controls {Ψn} in Υa such that limn→∞M[Ψn] = M[Ψ].
This is not a trivial consequence of the closure of Υa by Υ

a
since it is necessary to

approximate the stopping time γ. Now we need the following definitions and technical
results.

Definition 4.3. Let us introduce the set Υ ⊂ Υ:

Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt}, γ) ∈ Υ⇐⇒



Ψ ∈ Υ
and
{θt} is a B1(K)-valued process
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and the corresponding set of admissible controls

Υa = Υ ∩Υa.(24)

Definition 4.4. For Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ) ∈ Υ

a
,

define on (Ω,F , P )

νn
.
= inf

{
t ≥ 0 : t−

∫ t

0

n

n+ 1
|θs|ds ≥ nT

n+ 1

}
,(25)

ν
.
= inf{t ≥ 0 : ηt ≥ T},(26)

αn
.
=
T +M − νn − T

n+1

T +M − νn .(27)

Lemma 4.5. If Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ) is an element of

Υ
a
, then ν and νn are {Gt} stopping times (for all n ∈ N) and

lim
n→∞ ν

n = ν, P− a.s.,(28)

and

0 ≤ αn < 1.(29)

Proof. See the appendix.
Using Lemma 4.5, we can now show that a sequence of control {Ψn} in Υa can

be constructed from any element Ψ in Υ
a
as described below.

Proposition 4.6. Assume that Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ)

is an element of Υ
a
. Define the sequence {Ψn}n∈N

by

Ψn
.
=
(
Ω,F , P, {Gt}, {θnt }, {Vt}, {Λnt = (ηnt , ξnt ′)′}, γn),(30)

where

θnt
.
=

n

n+ 1
θtI[[0,νn]] + α

ne1I]]νn,ν]] + α
nθtI]]ν,γ]] ( e1

.
= (1, 0, . . . , 0)′ ∈ R

p ),(31)

ηnt
.
= t−

∫ t

0

|θns |ds,(32)

ξnt
.
= ζ +

∫ t

0

(1− |θns |)A(ηns , ξns )I{s≤γn}ds+
∫ t

0

B(ηns , ξ
n
s )θ

n
s I{s≤γn}ds

+

∫ t

0

√
1− |θns |D(ηns , ξns )I{s≤γn}dVs,(33)

γn
.
= inf{t ≥ 0 : ηnt > T}.(34)

Then Ψn ∈ Υa for all n ∈ N.
Proof. From Lemma 4.5 and assumption (A.2), it follows that for all n ∈ N,

{θnt } is a B1(K)-valued process. Moreover, using the fact that α
n is measurable with

respect to Gνn , Gνn ⊂ Gν , and Corollary 6.34 in [6], it follows easily that for all n ∈ N,
the process {θnt } is {Gt}-predictable. From the definitions of {ηnt } and γn, we obtain
that ηnT+M ≥ ηnγn . Therefore, we have that

γn ≤ T +M(35)
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because {ηnt } is a strictly increasing process.
Now, applying Theorem 7, page 197 in [19], it is easy to see that (33) has a

unique solution. Therefore, for all n ∈ N the control Ψn satisfies all of the conditions
of Definition 4.3.

Clearly, we have EP [G(η
n
γn)] = 0 and

EP

[
sup

s≤T+M

|ξns |p
]
≤ C(36)

for a constant C depending on p but independent of n.
Combining hypothesis (A.2), the previous inequalities, and (35), we obtain that

M[Ψn] = EP [g(ξ
n
γn)] < ∞,(37)

and so Ψn ∈ Υa for all n ∈ N.
In order to derive the convergence ofM[Ψn] to the cost functionM[Ψ], we need

the following technical lemma.
Lemma 4.7. Assume that Ψ

.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ) is an

element of Υ
a
. Then

0 ≤ γn − γ ≤ T

n+ 1
(38)

and

EP

[∣∣∣∣
∫ γ

0

|θs − θns |2ds
∣∣∣∣
2

+

∫ γ

0

|ηs − ηns |2ds
]
≤ C

{
1

(n+ 1)2
+ EP [|ν − νn|2]

}
(39)

for a constant C independent of n.
Proof. See the appendix.
Finally, based on the previous lemma, we can prove that the sequence {Ψn}

satisfies the desired property.
Proposition 4.8. Assume that Ψ

.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ)

is an element of Υ
a
. Then the sequence {Ψn} in Υa satisfies

lim
n→∞M[Ψn] =M[Ψ].(40)

Proof. Let us introduce the following equation:

χt = ζ +

∫ t

0

(1− |θs|)A(ηs, χs)I{s≤γ}ds+
∫ t

0

B(ηs, χs)θsI{s≤γ}ds

+

∫ t

0

√
1− |θs|D(ηs, χs)I{s≤γ}dVs.(41)

Applying Theorem 7, page 197 in [19], it is easy to see that this equation has a unique
solution.

By using Doob’s inequality and Gronwall’s lemma, it is easy to show that there
exists a constant C such that

(∀t ∈ [0, T +M ]) EP

[
sup
s≤t
|χs − ξns |2

]
≤ C

[
1

n+ 1
+
√
EP [|νn − ν|2]

]
.(42)



GENERALIZED STOCHASTIC CONTROL PROBLEMS 1733

Moreover, we clearly have χT+M = ξγ and ξ
n
T+M = ξnγn , and so

EP [|ξγ − ξnγn |2] ≤ C
[

1

n+ 1
+
√
EP [|νn − ν|2]

]
.(43)

The sequence νn is bounded by T +M , and so it is uniformly integrable. There-
fore, using Lemma 4.5, we have that limn→∞EP [|νn − ν|2]. With (43), we obtain
that g(ξnγn)−→P

n→∞ g(ξγ) since the function g is continuous. Clearly, the sequence{
g(ξnγn)

}
is uniformly integrable, and so

lim
n→∞EP [g(ξ

n
γn)] = EP [g(ξγ)],(44)

giving the result.
In conclusion, we obtain the following result.
Theorem 4.9. Let Θ∗ ∈ Υ

a
be the optimal control for the auxiliary control

problem. Then

inf
Ψ∈Υa

M[Ψ] =M[Θ∗].(45)

Proof. The existence of Θ∗ has been shown in Theorem 4.2. Since Υa ⊂ Υa, we
clearly have

inf
Ψ∈Υa

M[Ψ] ≥M[Θ∗].

However, using Proposition 4.8, the result follows.
Now let us show that (23) holds. Its proof is given in Theorem 4.15 and is based

on Propositions 4.12 and 4.14. Here we use two time transformations which establish
the correspondence between Ca and Υa.

Let us introduce the following time-change.
Lemma 4.10. Let (Ω,F , P, {Ft}, {ut}, {Wt}, {zt = (yt, x′t)′}) be an element of C,

and let {Γt} be the process defined by

Γt
.
= t+

∫ t

0

|us∧T |ds.(46)

Denote by {Φt} the right inverse of Γ:

Φt
.
= inf{s ≥ 0 : Γs > t}.(47)

Then {Φt} is a continuous time-change satisfying the following properties:
(i) (∀ t ∈ R+) ΦΓt = t and ΓΦt = t.

(ii) (∀ t ∈ R+) Φt =
∫ t
0

1
1+|uΦs∧T |ds.

Proof. Item (i) is obvious. Differentiating the second equality in (i) and using
(46), item (ii) follows easily.

Remark 4.11. An immediate consequence of the previous lemma is the following
assertion:

(∀t ∈ [0,ΓT ]) Φt =

∫ t

0

1

1 + |uΦs |
ds,(48)

which will be used repeatedly in what follows.
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The following proposition shows that for any control C ∈ Ca, there exists a control
Θ ∈ Υa having the same cost.

Proposition 4.12. Assume that C
.
= (Ω,F , P, {Ft}, {ut}, {Wt}, {xt}) is an

element of Ca. Write Θ for (Ω,F , P, {FΦt}, {θt}, {Vt}, {∆t},ΓT ), where

θt
.
=

uΦt

1 + |uΦt |
, Vt

.
=

∫ Φt

0

√
1 + |us|dWs, ∆t

.
=

(
Φt
xΦt

)
,(49)

and Φt (respectively, Γt) is defined by (47) (respectively, (46)). Then Θ belongs to Υa

and

M[Θ] = J [C].(50)

Proof. From Proposition 1.1 in [20, Chapter V], {FΦt} defines an increasing and
right continuous filtration which is complete. Then assertion (i) of Definition 4.1 is
satisfied. Now, using Theorem 3.52 in [11], it follows that { uΦt

1+|uΦt |} is an {FΦt}-
predictable process. Moreover, for all t ∈ R+,

uΦt

1+|uΦt | ∈ B1(K).

The process {Nt .=
∫ t
0

√
1 + |us|dWs} is an {Ft} continuous local martingale such

that

(∀t ∈ [0, T ], ∀(i, j) ∈ N
2
n) 〈N i, N i〉t = Γt, 〈N i, N j〉t = 0 (i �= j).(51)

Therefore, according to Theorem 4.13 in [12], {Vt = NΦt} is an {FΦt} standard
m-dimensional Brownian motion which gives item (iii) of Definition 4.1.

By Remark 2.9 and Theorem 2.33 in [6], the process {∆t} is adapted to {FΦt}.
Clearly, the process {∆t} is corlol. Consequently, {∆t} is progressively measurable
with respect to {FΦt}.

Using Proposition 1.1 in [20, Chapter V], ΓT is an {FΦt} stopping time. With
(4), we have that ΓT = T +

∫ T
0
|us|ds ≤ T +M . Therefore, item (iv) of Definition 4.1

is satisfied.
Now let us show that the components of {∆t} satisfy (16) and (17) on [0,ΓT ].

Using (48) and the definition of {θ}, we have

(∀t ∈ [0,ΓT ]) Φt = t−
∫ t

0

|θs|ds.(52)

Therefore, the first component of the process {∆t} satisfies (16).
Now the process {xΦt} satisfies (for all t ∈ [0,ΓT ])

xΦt
.
= ζ +

∫ Φt

0

A(s, xs)ds+

∫ Φt

0

B(s, xs)usds+

∫ Φt

0

D(s, xs)dWs.(53)

Since {Γt} is continuous, we can use Proposition 1.4 in [20, Chapter V] and Lemma
4.10 in order to obtain that

(∀t ∈ [0,ΓT ])
∫ Φt

0

A(s, xs)ds =

∫ t

0

A(Φs, xΦs)dΦs

=

∫ t

0

A(Φs, xΦs)(1− |θs|)ds.(54)

We can repeat the same argument to show that

(∀t ∈ [0,ΓT ])
∫ Φt

0

B(s, xs)usds =

∫ t

0

B(Φs, xΦs)θsds.(55)
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Moreover,

(∀t ∈ [0,ΓT ])
∫ Φt

0

D(s, xs)dWs =

∫ Φt

0

D(s, xs)
1√

1 + |us|
dNs

=

∫ t

0

D(Φs, xΦs)
√
1− |θs|dVs,(56)

where the last equality is obtained by using Proposition 4.8 in [12].
Combining (53)–(56), we obtain that the process {xΦt} satisfies

(∀t ∈ [0,ΓT ]) xΦt = ζ +

∫ t

0

(1− |θs|)A(Φs, xΦs)ds+

∫ t

0

B(Φs, xΦs)θsds

+

∫ t

0

√
1− |θs|D(Φs, xΦs)dVs.(57)

Therefore, assertion (iv) of Definition 4.1 is satisfied for the process {∆t} (see (49)
for its definition). Finally, it follows that Θ ∈ Υ. However, we have shown that {θt}
is a B1(K)-valued process. Consequently, Θ ∈ Υ.

Now the cost corresponding to Θ is given byM(Θ) = EP [g(xΦΓT
) +G(ΦΓT )].

However, ΦΓT = T (see item (i) of Lemma 4.10). Therefore, we have M[Θ] =
EP [g(xT )] = J [C] <∞, implying that Θ ∈ Υa.

The proof of the following lemma is similar to that of Lemma 4.10. Therefore, it
is omitted.

Lemma 4.13. Let (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ) be an element of
Υ, and let {ψt} be the right inverse of η:

ψt
.
= inf{s ≥ 0 : ηs > t}.(58)

The process {ψt} is a continuous time-change satisfying the following properties:
(i) (∀ t ∈ R+) ψηt = t and ηψt = t.

(ii) (∀ t ∈ R+) ψt =
∫ t
0

1
1−|θψs |ds.

Conversely to Proposition 4.12, we show that, for any control Ψ ∈ Υa, there exists
a control S ∈ Ca having the same cost. The ideas to show this result are the same
as the one used in the proof of Proposition 4.12. Consequently, this result is quoted
without proof.

Proposition 4.14. Let Ψ
.
= (Ω,F , P, {Gt}, {θt}, {Vt}, {Λt = (ηt, ξ′t)′}, γ) be an

element of Υa. Write S for (Ω,F , P, {Gψt}, {ut}, {Wt}, {ξψt}), where

ut
.
=

θψt
1− |θψt |

, Wt
.
=

∫ ψt

0

√
1− |θs|dVs,(59)

and {Ψt} is defined in (58).
Then S belongs to Ca, and

J [S] =M[Ψ].(60)

Now we obtain the following result.
Theorem 4.15. The following property holds:

inf
C∈Ca

J [C] = inf
Ψ∈Υa

M[Ψ].(61)
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Proof. The result is an immediate consequence of Propositions 4.12 and 4.14.
Finally, we derive an important characterization of infC∈Ca J [C].
Corollary 4.16. Let Θ∗ ∈ Υa be the optimal control for the auxiliary control

problem. Then

inf
C∈Ca

J [C] =M[Θ∗].(62)

Proof. It is a straightforward combination of Theorems 4.9 and 4.15.
Remark 4.17. Let us denote by Θ∗ .

= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ) the
optimal control in Υ

a
. There is no loss of generality to assume that

inf{s : ηs > T} = γ.
Indeed, if this is not the case, let Θ̃ be the control defined by

Θ̃
.
= (Ω,F , P, {Gt}, {θ̃t}, {Vt}, {(η̃t, ξ̃′t)′}, γ),

θ̃t
.
= θtI[[0,γ]],

η̃t
.
= t−

∫ t

0

|θ̃s|ds,

ξ̃t
.
= ζ +

∫ t

0

(1− |θ̃s|)A(η̃s, ξ̃s)ds+
∫ t

0

B(η̃s, ξ̃s)θ̃sds

+

∫ t

0

√
1− |θ̃s|D(η̃s, ξ̃s)dVs.

Clearly, Θ̃ ∈ Υa and inf{s : η̃s > T} = γ. Moreover, it is easy to check that

(for all t ∈ [0, γ]) θ̃t = θt, η̃t = ηt, and ξ̃t = ξt. Therefore,
M(Θ̃) =M(Θ∗) = min

Ψ∈Υ
a
M[Ψ].

5. Existence of an optimal generalized control. In this section, we obtain
the last characterization of infC∈Ca J [C] in terms of an optimal generalized control.

Theorem 5.1. There exists a generalized control Cg∗ ∈ C
a
such that

inf
C∈Ca

J [C] = J [Cg∗]

= min
Cg∈C

a
J [Cg].

Proof. Let us denote by

Θ∗ .
= (Ω,F , P, {Gt}, {θt}, {Vt}, {(ηt, ξ′t)′}, γ)

the optimal control in Υ
a
.

Define

ψt
.
= inf{s : ηs > t},(63)

Xt
.
= ξψt ,(64)

Ut
.
=

∫ ψt

0

θsds,(65)

Wt
.
=

∫ ψt

0

√
1− |θs|dVs.(66)
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On the probability space (Ω,F , P ), {ψt} is a time-change (see Proposition 1.1 in [20,
Chapter V]). Moreover, {Gψt} defines a right continuous complete filtration. There-
fore, the processes {Xt}, {Yt}, and {Ut} are {Gψt} progressively measurable (see
Theorem T57, page 105 in [14]). Since {ξt} is a continuous process, {Xt}, {Yt}, and
{Ut} are corlol. Moreover, since K is a separable metric space satisfying assumption
(A.3), it is easy to obtain that {Ut} is a K-valued process and Ut−Us ∈ K for t ≥ s.

According to Theorem 4.13 in [12], {Wt} is a {Gψt} standard m-dimensional
Brownian motion.

Now, using Theorem 6.46 in [6], there exists a sequence {τn} of stopping times
which exhausts the jumps of {ψt}. Clearly, we have

∞∪
n=1

[[ψτn−, ψτn ]] ⊂ {(t, ω) ∈ R+ × Ω : |θt| = 1}.

Define

D .
= {(t, ω) ∈ R+ × Ω : |θt| = 1} −

∞∪
n=1

[[ψτn−, ψτn ]].

Consequently,

(∀t ∈ [0, T ]) Ut =

∫ ψt

0

I{|θs|<1}θsds+
∫ ψt

0

I{|θs|=1}θsds

=

∫ ψt

0

[I{|θs|<1} + ID]θsds+
∑
n∈N

∫ ψτn

ψτn−
θsds I[[τn,∞[[.

For (t, ω) ∈ ∪∞n=1[[ψτn−, ψτn ]], we have I{|θt|<1}(ω) + ID(t, ω) = 0.
Therefore, {∫ t

0
[I{|θs|<1} + ID]θsds} is a {ψt} continuous process. Consequently,

the decomposition of the process {Ut} is given by

U ct =

∫ ψt

0

[I{|θs|<1} + ID]θsds,

Udt =
∑
n∈N

∫ ψτn

ψτn−
θsds I[[τn,∞[[.

From Lemma 1.37 in [11], we have

(∀t ∈ R+) ηψt = t.(67)

Moreover, using Proposition 4.8 in [12], it follows that

(∀t ∈ [0, T ])
∫ ψt

0

√
1− |θs|D(ηs, ξs)dVs =

∫ t

0

D(s, ξψs)dWs.

Note that {ηt} is a {ψt} continuous process. Moreover, {ηt} is a process of finite
variation because it is absolutely continuous. Therefore, using Proposition 1.4 in [20,
Chapter V] and (67), we obtain that

(∀t ∈ [0, T ))
∫ ψt

0

(1− |θs|)A(ηs, ξs)ds =
∫ ψt

0

A(ηs, ξs)dηs

=

∫ t

0

A(s, ξψs)ds.
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Again, using the fact that {∫ t
0
[I{|θs|<1} + ID]θsds} is a {ψt} continuous process and

Proposition 1.4 in [20, Chapter V], we have∫ ψt

0

B(ηs, ξs)θsds =

∫ ψt

0

B(ηs, ξs)
[
I{|θs|<1} + ID

]
θsds

+
∑
n∈N

∫ ψτn

ψτn−
B(ηs, ξs)θsds I[[τn,∞[[

=

∫ t

0

B(s, ξψs)dU
c
s +

∑
n∈N

∫ ψτn

ψτn−
B(ηs, ξs)θsds I[[τn,∞[[.

It follows that the process {Xt} satisfies the following equation:

(∀t ∈ [0, T ]) Xt = ζ +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dU
c
s +

∫ t

0

D(s,Xs)dWs

+
∑
n∈N

∆Xτn I[[τn,∞[[,(68)

where

∆Xτn
.
=

∫ ψτn

ψτn−
B(ηs, ξs)θsds.(69)

According to Proposition 4.8, there exists a sequence {Ψn} such that Ψn ∈ Υa
for all n ∈ N. Write

ψnt
.
= inf{s : ηns > t}.

From Proposition 4.6, it follows that {ψnt } is a continuous, strictly increasing process
and such that (

∀t ∈
[
0,

nT

n+ 1

))
ψnt ≤ ψn+1

t ≤ ψt.(70)

Therefore, for t in [0, T )), ψt
.
= limn→∞ ψnt exists. Again, using (70), this limit is

lower semicontinuous and increasing on [0, T ).
Using similar arguments as in the proof of Lemma 4.5, it can be shown easily that

(∀t ∈ [0, T )) ηψt
= t.(71)

Combining (67) with (71), we obtain that

(∀t ∈ R+)
∑
n

I]]τn∧T,τn+1∧T [[ψt =
∑
n

I]]τn∧T,τn+1∧T [[ψt.

However, recalling that {ψt} is a lower semicontinuous, increasing process and {ψt}
is corlol, it follows that {ψt} is collor and

(∀t ∈ [0, T )) ψt = ψt+.(72)

There is no loss of generality to assume that limt→0t<0 ψt = 0, and so

(∀t ∈ [0, T )) ψt = ψt−.(73)
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Moreover, since ψn ∈ Υa, we have that ηnγn = T . Recalling that {ηnt } is strictly
increasing and continuous, we obtain that ψnT = γn. Note that ψT = γ (see Remark
4.17). Using Lemma 4.7, it follows that

ψT
.
= lim
n→∞ψ

n
T = ψT = γ, P− a.s.(74)

Using (73) and the fact that {ψt} is an increasing process, we have that, for all
t ∈ [0, T ), ψt ≤ ψT− ≤ ψT = ψT . Consequently, {ψt} is increasing.

However, using similar arguments as in the proof of Proposition 4.8 (see (42)),
it can be shown easily that there exists a subsequence, still denoted by n, such that
(for all t ∈ [0, T ])

lim
n→∞ ξ

n
ψnt
= ξψt

, P− a.s., and lim
n→∞

∫ ψnt

0

|θns |ds =
∫ ψt

0

|θs|ds, P− a.s.(75)

Define

Cn =

(
Ω,F , P, {Gψnt },

{
θnψnt

1− |θnψnt |

}
,

{∫ ψnt

0

√
1− |θns |dVs

}
, {(ψnt − t, ξnψnt

′)′}
)
.

Since Ψn ∈ Υa for all n ∈ N and using Proposition 4.14, it follows that Cn ∈ Ca for
all n ∈ N.

Using the fact that {ξt} is continuous, (72), and (75), we obtain that
(∀t ∈ [0, T )) Xt = lim

s→t
s>t

lim
n→∞ ξ

n
ψns
, P− a.s.

Moreover, using (74) and (75),

XT = ξψT = ξψT
= lim
n→∞ ξ

n
ψn
T
, P− a.s.(76)

From the definition of {ψnt } and since Ψn ∈ Υa, we can use Lemma 4.13 in order to
obtain

(∀t ∈ [0, T ]) ψnt − t =
∫ t

0

|θnψns |
1− |θnψns |

ds

=

∫ t

0

|θnψns |dψns .

Using Proposition 1.4 in [20, Chapter V] and the fact that {ψnt } is a continuous
process, we have

(∀t ∈ [0, T ]) ψnt − t =
∫ ψnt

0

|θns |ds.(77)

Therefore, combining (74), (75), and (77) yields∫ ψT

0

|θs|ds = γ − T.

However,

Var
[0,T ]

[Ut] ≤ Var
[0,T ]

[∫ ψt

0

|θs|ds
]
=

∫ ψT

0

|θs|ds.
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Consequently, using (15), it follows that

Var
[0,T ]

[Ut] ≤M.

Finally, the generalized control Cg∗ defined by

Cg∗ .
= (Ω,F , P, {Ft}, {Ut}, {Wt}, {Xt})

is an element of C
a
.

However, by hypothesis, infC∈Ca J [C] = EP [g(ξγ)], and so we obtain with (76)

inf
C∈Ca

J [C] = EP [g(XT )] = J [C
g∗].

Now, using Proposition 3.2, we obtain the result.

Appendix. In this section, we prove some technical results.
Proof of Lemma 2.2. Let us consider R > |ζ| and define τR .

= inf{t : |xt| ≥ R}.
Clearly, the process {xt∧τR} is solution of the following equation:

xt∧τR
.
= ζ +

∫ t

0

A(s, xs∧τR)I{s≤τR}ds+
∫ t

0

B(s, xs∧τR)usI{s≤τR}ds

+

∫ t

0

D(s, xs∧τR)I{s≤τR}dWs.

Using (A.1) and (4), it follows that

|xt∧τR | ≤ |ζ|+ L1(T +M) +

∣∣∣∣
∫ t

0

D(s, xs∧τR)I{s≤τR}dWs

∣∣∣∣
+

∫ t

0

|xs∧τR |L1(1 + |ut|)ds.

Using Gronwall’s lemma, we obtain that

|xt∧τR | ≤M1 +M2 sup
s≤t

∣∣∣∣
∫ s

0

D(s, xs∧τR)I{s≤τR}dWs

∣∣∣∣,
where M1 and M2 are two constants. Using Theorem 6.5, page 87 in [7], assumption
(A.1), and Gronwall’s lemma, we finally have that

EP

[
sup
t≤T
|xt∧τR |2q

]
≤M

for a constant M .
Due to the continuity of {xt}, τR → ∞ as R → ∞. Therefore, using Fatou’s

lemma and the previous equation, the result follows.
Lemma A.1. Suppose (Ω,F , P ) is a probability space with a filtration {Gt} and

{Vt} is a {Gt} standard Brownian motion. Then {Vt} is a {Gqt } standard Brownian
motion on the probability space

(
Ω,Fq, P ), where

Fq .= {A ⊂ Ω : (∃B ∈ F) such that A�B ∈ N},
Gqt .
= {A ⊂ Ω : (∃B ∈ Gt) such that A�B ∈ N},

N .
= {A ⊂ Ω : (∃B ∈ F) such that A ⊂ B and P (B) = 0},
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and the probability P is defined by (for all A ∈ Fq) P (A) = P (B), where B ∈ F and
A�B ∈ N .

Proof. From the definition of Gqs and N , it follows that
(∀s > 0, ∀A ∈ Gqs ) (∃(B,N) ∈ Gs ×N ) such that A = B +N.

Therefore, for all t > s ≥ 0 and for all A ∈ Gqs we have∫
A

exp[iu′(Vt − Vs)] dP = exp−|u|
2(t− s)
2

P (B).(78)

Moreover, P (B) = P (A), and, using (78), we obtain

EP [ exp[iu
′(Vt − Vs)] |Gqs ] = exp−

|u|2(t− s)
2

,

which gives the result.
Lemma A.2. Suppose (Ω,F , P ) is a complete probability space with a complete

filtration {Gt} and {Vt} is a {Gt} standard Brownian motion. Then {Vt} is a {Gt+}
standard Brownian motion.

Proof. For all t > s ≥ 0 and 0 < ε < t− s we have

EP [ exp[iu
′(Vt − Vs+ε)] |Gs+ε] = exp−|u|

2(t− s− ε)
2

.

Since Gs+ =
⋂
ε>0 Gs+ε, we obtain that

(∀A ∈ Gs+) lim
ε→0
ε>0

∫
A

exp[iu′(Vt − Vs+ε)] dP = exp−|u|
2(t− s)
2

P (A).

By using the bounded convergence theorem and the fact that the {Vt} is a continuous
process, we have

EP [ exp[iu
′(Vt − Vs)] |Gs+] = exp−|u|

2(t− s)
2

,

and the result follows.
Lemma A.3. Assume that {θt} is a B1(K)-valued, {Gt} progressively measurable

process. Then (16) and (17) have a unique solution such that

(∀q ∈ N) EP

[
sup
t∈[0,γ]

|ξt|2q
]
<∞.(79)

Moreover, there exist a B1(K)-valued, {Gt}-predictable process {θt} such that
θ = θ, λ⊗ P − a.e.,(80)

and the process {ξt} solution of the following stochastic differential equation:

ξt
.
= ζ +

∫ t

0

(1− |θs|)A(ηs, ξs)ds+
∫ t

0

B(ηs, ξs)θsds+

∫ t

0

√
1− |θs|D(ηs, ξs)dVs,

where ηt = t−
∫ t
0
|θs|ds is indistinguishable from {ξt}.
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Proof. Using (A.1) and Theorem 7, page 197 in [19], the existence and the unique-
ness of the solution are straightforward. The conditions of Corollary 10, page 85 in
[13] are satisfied, and the inequality (79) follows.

By hypothesis, the process θ is progressively measurable with respect to {Gt}.
Using Theorem 3.7 in [3], it follows that the function θ : R+×Ω→ K is P∗ measurable,
where

P∗ .
= {A ∈ B(R+)⊗F : A�B ∈ N for some B ∈ P},

P denoting the predictable σ-field and N .
= {N ∈ B(R+)⊗F : λ⊗ P (N) = 0}. Since

B1(K) is a locally compact separable metric space, we can use the lemma and its
associated remark [2, pp. 59–60] to obtain the existence of a B1(K)-valued, {Gt}-
predictable process {θt} satisfying (80).

Consequently,

ηt = t−
∫ t

0

|θs|ds.(81)

Moreover, since {ηt} and {ηt} are continuous, they are indistinguishable processes.
Combining (81), (8), and (A.1), we obtain that

∫
[0,T+M ]×Ω

|B(., x.)u.| λ⊗ P <∞, so

(∀t ∈ [0, γ])
∫ t

0

B(ηs, ξs)θsds =

∫ t

0

B(ηs, ξs)θsds

by using Fubini’s theorem.
Similarly, we have that

(∀t ∈ [0, γ])
∫ t

0

(1− |θs|)A(ηs, ξs)ds =
∫ t

0

(1− |θs|)A(ηs, ξs)ds

and

(∀t ∈ [0, γ])
∫ t

0

(1− |θs|)|D(ηs, ξs)|2ds =
∫ t

0

(1− |θs|)|D(ηs, ξs)|2ds.

Consequently, we obtain that

(∀t ∈ [0, γ])
∫ t

0

√
1− |θsD(ηs, ξs)ds =

∫ t

0

√
1− |θs|D(ηs, ξs)ds,

which implies that {ξt} satisfies (17).
By the uniqueness of the solution of (17), ξt = ξt, P − a.s., for all t in [0, γ].

However, {ξt} and {ξt} are continuous processes, so they are indistinguishable.
Proof of Lemma 4.5. Clearly, ν and νn are {Gt} stopping times (for all n ∈ N).

Since Ψ ∈ Υa, we have that EP [G(ηγ)] < ∞, implying that ηγ = T . With (15) and
the definition of ν, we obtain that

ν ≤ γ ≤ T +M.(82)

Note that

νn ≤ inf
{
t ≥ 0 : t−

∫ t

0

n+ 1

n+ 2
|θs|ds ≥ nT

n+ 1

}
.
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Since the process {t − ∫ t
0

n
n+1 |θs|ds} is continuous and strictly increasing, we have

νn < νn+1. Similarly, it can be shown that

νn < ν.(83)

Therefore, the sequence {νn} converges almost surely to a limit labeled ν such that
ν ≤ ν.(84)

By definition of νn, we have

νn −
∫ νn

0

n

n+ 1
|θs|ds = nT

n+ 1
,(85)

and letting n→∞, we obtain
ην = T.

From the definition of ν, we have ν ≥ ν. However, with (84) we obtain that ν = ν,
and so limn→∞ νn = ν.

From the definition of ν and (85), we obtain that

ν − νn − T

n+ 1
≥ 0.

With (84), we have T +M − νn− T
n+1 ≥ 0. Moreover, using (82) and (83), we obtain

that T +M − νn > 0. Finally, 0 ≤ αn < 1, which gives the result.
Proof of Lemma 4.7. Since the process {ηnt } is strictly increasing, it follows that

γn is the unique solution of the following equation:

ηnγn = T.(86)

However,

ηnγ = η
n
νn + γ − νn −

∫ γ

νn
|θns |ds

=
nT

n+ 1
+

T (γ − νn)
(n+ 1)(T +M − νn) .(87)

Using (15), it follows that

ηnγ ≤ T.(88)

From (86), we have

ηnγ + γ
n − γ = T.(89)

Combining (87)–(89), we obtain (38).
By using the definition of {θnt }, (15), and the fact that |θt| ≤ 1, we have∫ γ

0

|θs − θns |2ds ≤ 2
[∫ νn

0

|θs − θns |ds+
∫ ν

νn
|θs − θns |ds+

∫ γ

ν

|θs − θns |ds
]

≤ 2
[
T +M

n+ 1
+ ν − νn + T

n+ 1

γ − ν
T +M − νn

]
.
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From (15), (82), and (83), it follows that

γ − ν
T +M − νn ≤

T +M − ν
T +M − νn ≤ 1.

Consequently, there exists a constant C1 such that

EP

[∣∣∣∣
∫ γ

0

|θs − θns |2ds
∣∣∣∣
2
]
≤ C1

{
1

(n+ 1)2
+ EP [|ν − νn|2]

}
.

Similarly, it is easy to deduce the same bound for EP [
∫ γ
0
|ηs−ηns |2ds], which gives the

result.
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SYSTEMS OF CONTROLLED FUNCTIONAL DIFFERENTIAL
EQUATIONS AND ADAPTIVE TRACKING∗
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SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1746–1764

Abstract. An adaptive servomechanism is developed in the context of the problem of approx-
imate or practical tracking (with prescribed asymptotic accuracy), by the system output, of any
admissible reference signal (absolutely continuous and bounded with essentially bounded derivative)
for every member of a class of controlled dynamical systems modelled by functional differential
equations.

Key words. adaptive control, nonlinear systems, functional differential equations, practical
tracking, universal servomechanism

AMS subject classifications. 93C23, 93C10, 93C40, 34K20

PII. S0363012900379704

1. Introduction. A servomechanism problem is addressed in the context of a
class of controlled dynamical systems having the interconnected structure shown in
the dashed box in Figure 1. In particular, the aim is the development of an adaptive
servomechanism which, for every system of the underlying class, ensures practical
tracking (in the sense that prespecified asymptotic tracking accuracy, quantified by
λ > 0, is assured), by the system output, of an arbitrary reference signal assumed to be
locally absolutely continuous and bounded with essentially bounded derivative. (We
denote by R the class of such functions and remark that bounded globally Lipschitz
functions form an easily recognized subclass.) The system consists of the intercon-
nection of two blocks: The dynamic block Σ1, which can be influenced directly by the
system input/control u (an R

M -valued function), is also driven by the output w from
the dynamic block Σ2. Viewed abstractly, the block Σ2 can be considered as a causal
operator which maps the system output y (an R

M -valued function) to w (an internal
quantity, unavailable for feedback purposes).

In essence, the underlying system class S consists of infinite-dimensional nonlinear
M -input u, M -output y systems (p, f, g, T ), given by a controlled nonlinear functional
differential equation of the form

ẏ(t) = f(p(t), (Ty)(t)) + g(p(t), (Ty)(t), u(t)), y|[−h,0] = y0 ∈ C([−h, 0];RM ),

(1.1)

where, loosely speaking, h ≥ 0 quantifies the “memory” of the system, p may be
thought of as a (bounded) disturbance term, and T is a nonlinear causal operator.
While a full description of the system class S is postponed to section 3, we remark
here that diverse phenomena are incorporated within the class including, for exam-
ple, diffusion processes, delays (both point and distributed), and hysteretic effects.
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Σ2 : w = Ty

System of class S

Σ1 : ẏ = f(p, w) + g(p, w, u) output
input

u = −kφ(e), k̇ = ψλ(‖e‖)
Servomechanism

r ∈ R−
+

y

e

y

w

u

Fig. 1. (R,S)-universal λ-servomechanism.

Furthermore, we remark that results pertaining to adaptive control of functional dif-
ferential equations are also contained in [3], wherein both the underlying class of
systems and the analytic framework differs in an essential manner from those of the
present paper; restricted to a problem of adaptive stabilization, related results are also
reported in [19], with the fundamental distinction that, in [19], discontinuous stabi-
lizing feedback strategies are developed within an analytic framework of differential
inclusions.

The control objective is to determine an (R,S)-universal λ-servomechanism: specif-
ically, to determine continuous functions φ : R

M → R
M and ψλ : R+ → R+ (param-

eterized by λ > 0) such that, for each system of class S and every reference signal
r ∈ R, the control

u(t) = −k(t)φ(y(t)− r(t)), k̇(t) = ψλ(‖y(t)− r(t)‖), k|[−h,0] = k0(1.2)

applied to (1.1) ensures (i) convergence of the controller gain, and (ii) tracking of r(·)
with asymptotic accuracy quantified by λ > 0, in the sense that max{‖y(t)− r(t)‖ −
λ, 0} → 0 as t→∞. See Figure 1.

Given λ > 0, r ∈ R and writing

F : (t, w, y, k) → (f(p(t), w) + g(p(t), w,−kφ(y − r(t))), ψλ(‖y − r(t)‖)),(1.3)

we see that analysis of the behavior of a system (p, f, g, T ) ∈ S under control (1.2)
constitutes a study of an initial-value problem of the form

ẋ(t) = F (t, (T̂ x)(t)), x|[−h,0] = x0 := (y0, k0) ∈ C([−h, 0];RN ),(1.4)

where N = M+1, x(t) = (y(t), k(t)), and T̂ is an operator defined on C([−h,∞);RN )
by

(T̂ x)(t) = (T̂ (y, k))(t) := ((Ty)(t), y(t), k(t)).(1.5)

The contribution of this paper is threefold in theme: First, we provide an ex-
istence theory for initial-value problems of the general form (1.4) under relatively

mild hypotheses on F and T̂ ; second, and within the framework of the first theme,
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we develop a universal servomechanism1 for a class of nonlinear, infinite-dimensional
systems; third, we elucidate the hypotheses on the right-hand side ψλ of the gain
adaptation equation in (1.2) under which the tracking objective is achievable. In
the very specific context of the linear systems of section 2.2 below we will show that
ψλ : [0,∞) → [0,∞) may be chosen as any continuous function with the properties
ψ−1
λ (0) = [0, λ] and lim infs→∞ ψλ(s) �= 0. (In particular, ψλ may be chosen to be a

bounded function; one such choice is given by ψλ(s) = max{s−λ, 0}/s for s > 0 with
ψλ(0) := 0.) This ensures that the gain k can exhibit at most linear growth, a feature
with attendant practical advantages.

We close this section with some remarks on notation. For I ⊂ R an interval
C(I;RN ) (respectively, ACloc(I;R

N )) denotes the set of continuous (respectively, lo-
cally absolutely continuous) functions I → R

N ; L∞
loc(I;R

N ) denotes the space of
measurable locally essentially bounded functions I → R

N . For x : I → R
N , the

restriction of x to J ⊂ I is denoted by x|J . The open ball of radius r > 0, centered
at c ∈ R

N , is written as Br(c). For λ > 0, dλ denotes the Euclidean distance function
for [−λ, λ] given by

dλ(ξ) := max{0, |ξ| − λ}.(1.6)

R denotes the space of bounded functions in ACloc(R;R
M ) with essentially bounded

derivative; when equipped with the norm ‖ · ‖1,∞ given by ‖r‖1,∞ = supt∈R ‖r(t)‖+
ess-supt∈R‖ṙ(t)‖ , R can be identified as the Sobolev space W 1,∞(R;RM ). We write
R+ := [0,∞). K denotes the class of continuous, strictly increasing functions α :
R+ → R+ with α(0) = 0; the subclass of unbounded class K functions is denoted K∞.
KL is the class of functions γ : R

2
+ → R+ such that for each t ∈ R+, γ(·, t) is of class

K and for each s ∈ R+, γ(s, ·) is decreasing with γ(s, t)→ 0 as t→∞.

2. Functional differential equations. The focus of this section is the devel-
opment of an existence theory, for initial-value problems of the form (1.4), of sufficient
generality to accommodate the analysis of dynamic behavior of the adaptively con-
trolled systems of later sections. While the literature is rich in existence results for
functional differential equations (see, for example, [4]), we are unaware of a result
directly applicable to the particular class of equations which form the focus of the
present paper. For this reason, and to make the present paper self-contained, we pro-
vide an appropriate result in Theorem 2.3 below (with proof in the appendix). First,

we make precise the class of admissible operators T̂ in (1.4).

Definition 2.1 (the operator class T N,K
h ). For h ≥ 0 and N,K ∈ N, let T N,K

h

denote the space of operators T : C([−h,∞);RN )→ L∞
loc(R+;R

K) with the following
properties.

1. For every δ > 0 and every bounded interval I ⊂ R+, there exists ∆ > 0 such
that, for all x ∈ C([−h,∞);RN ),

sup
t∈[−h,∞)

‖x(t)‖ < δ =⇒ ‖(Tx)(t)‖ < ∆ for almost all (a.a.) t ∈ I .

2. For all t ∈ R+, the following hold:
(a) for all x, ξ ∈ C([−h,∞);RN ),

x(·) ≡ ξ(·) on [−h, t] =⇒ (Tx)(s) = (Tξ)(s) for a.a. s ∈ [0, t];

1The servomechanism can also tolerate disturbances on the output measurement in a sense to be
described in section 3.
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(b) for all continuous ζ : [−h, t] → R
N , there exist τ, δ, c > 0 such that, for

all x, ξ ∈ C([−h,∞);RN ) with x|[−h,t] = ζ = ξ|[−h,t] and x(s), ξ(s) ∈
Bδ(ζ(t)) for all s ∈ [t, t+ τ ],

ess sup
s∈[t,t+τ ]

‖(Tx)(s)− (Tξ)(s)‖ ≤ c sup
s∈[t,t+τ ]

‖x(s)− ξ(s)‖ .

Remark 2.2. (i) The essence of property 1 of Definition 2.1 is a “bounded-input,
locally bounded-output” assumption.

(ii) Property 2(a) is an assumption of causality.
(iii) Property 2(b) is a technical assumption on T of a “locally Lipschitz” nature.

(iv) Let T ∈ T N,K
h and t ≥ 0. Given x ∈ C([−h, t);RN ), let xe denote an

arbitrary extension of x to C([−h,∞);RN ). By virtue of property 2(a), Txe|[0,t) is
uniquely determined by the function x, in the sense that the former is independent of
the extension xe chosen for the latter. Expanding on this observation, we will adopt
the following notational convention: For s ∈ [0, t), we simply write (Tx)(s) in place
of (Txe)(s), where xe ∈ C([−h,∞);RN ) is any continuous extension of x.

(v) For ω ∈ R, let Sω denote the shift operator on functions R → R
M given by

(Sωx)(t) := x(t+ ω) for all t ∈ R. Then

T ∈ T N,K
h =⇒ TS−ω ∈ T N,K

h+ω for all ω ≥ 0.(2.1)

(vi) Let T1, T2 ∈ T N,K
h and τ1, τ2 ∈ R. Then the operator τ1T1 + τ2T2, defined by

(τ1T1 + τ2T2)(y)(t) := τ1(T1y)(t) + τ2(T2y)(t), is also of class T N,K
h .

(vii) The class T N,N
h differs from class T N

h of [19, Definition 4] only insofar as
operators of the former class have range C([−h,∞);RN ) while operators of the latter
class have domain L∞

loc(R;R
N ).

2.1. An existence theorem. Consider the initial-value problem

ẋ(t) = F (t, (T̂ x)(t)), x|[−h,0] = x0 ∈ C([−h, 0];RN ),(2.2)

where T̂ is a causal operator of class T N,K
h and F : [−h,∞) × R

K → R
N is a

Carathéodory function. (Specifically, (i) for almost all t ∈ R, F (t, ·) is continuous; (ii)
for each fixed w ∈ R

K , F (·, w) is measurable; (iii) for each compact C ⊂ R
K there

exists κ ∈ L1
loc([−h,∞);R+) such that

‖F (t, w)‖ ≤ κ(t) for almost all t ∈ [−h,∞) and all w ∈ C.)

By a solution of (2.2) on [−h, ω), we mean a function x ∈ C([−h, ω);RN ), with
ω ∈ (0,∞] and x|[−h,0] = x0, such that x|[0,ω) is absolutely continuous and satisfies
the differential equation in (2.2) for almost all t ∈ [0, ω); x is maximal if it has no
right extension that is also a solution.

Theorem 2.3. Let N,K ∈ N, T̂ ∈ T N,K
h , and x0 ∈ C([−h, 0];RN ). Assume

F : [−h,∞)× R
K → R

N is a Carathéodory function.
There exists a solution x : [−h, ω) → R

N of the initial-value problem (2.2), and
every solution can be extended to a maximal solution; moreover, if F ∈ L∞

loc([−h,∞)×
R

K ;RN ) and x : [−h, ω)→ R
N is a bounded maximal solution, then ω =∞.

Proof. For proof, see the appendix.
Next, we show that the operators of the class T N,K

h encompass the input-output
behavior of a diverse range of subsystems Σ2 (see Figure 1).
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2.2. Linear systems. The finite-dimensional prototype. Consider the well-
studied class L of finite-dimensional, real, linear, minimum-phase, M -input (u(t)),
M -output (y(t)) systems having high-frequency gain B ∈ R

M×M with spectrum in
the open right half complex plane. Under a suitable coordinate transformation (see,
for example, [5, Proposition 2.1.2]), every system in L can be expressed in the form
of two coupled subsystems

ẏ(t) = A1y(t) +A2z(t) +Bu(t), y(0) = y0

ż(t) = A3y(t) +A4z(t), z(0) = z0

}
(2.3)

with y(t), u(t) ∈ R
M , z(t) ∈ R

N−M , and where A4 has spectrum in the open left half
complex plane. Introducing the linear operator T given by

(Ty)(t) := A1y(t) +A2

∫ t

0

exp(A4(t− s))A3y(s)ds(2.4)

and the function p given by p(t) := A2 exp(A4t)z
0, then, with respect to an operator

theoretic viewpoint, system (2.3) can be interpreted as

ẏ(t) = p(t) + (Ty)(t) +Bu(t), y(0) = y0.(2.5)

With reference to Figure 1, (2.4) and (2.5) correspond to components Σ2 and Σ1 of
the interconnected system.

Regular linear systems with bounded observation operator. The following exam-
ple is adapted from [19] and extends the prototype linear class L to an infinite-
dimensional setting by replacing the second of the differential equations (2.3) by
an infinite-dimensional analogue on a Hilbert space X. Let G denote the transfer
function of a regular (in the sense of [22]) linear system with state space X, with
generating operators (A,B,C,D), and with R

M -valued input and R
Q-valued out-

put. This means, in particular, that (i) A generates a strongly continuous semigroup
S = (St)t≥0 of bounded linear operators onX, (ii) the control operator B is a bounded
linear operator from R

M to X−1, (iii) the observation operator C is a bounded linear
operator from X1 to R

Q, and (iv) the feedthrough operator D is a linear operator
from R

M to R
Q. Here X1 denotes the space dom(A) (the domain of A) endowed

with the graph norm, and X−1 denotes the completion of X with respect to the norm
‖z‖−1 = ‖(s0I−A)−1z‖, where s0 is any fixed element of the resolvent set of A and ‖·‖
denotes the norm on X. As a regular linear system, the transfer function G is holo-
morphic and bounded on every half-plane Cα with α > ω(S) := limt→∞ t−1 ln ‖St‖ .
Moreover,

lim
s→∞, s∈R

G(s) = D.

The system is said to be exponentially stable if the semigroup S is exponentially
stable—that is, if ω(S) < 0. Henceforth, we assume that the system is exponentially
stable and, moreover, we assume that the observation operator C can be extended to
a bounded linear operator from X to R

Q; this extended operator is again denoted by
C.

In terms of the generating operators (A,B,C,D), the transfer functionG is given
by

G(s) = C(sI −A)−1B +D.
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For any z0 ∈ X and input y ∈ L∞
loc(R+;R

M ), the state z(·) and the output w(·) of
the regular system (with bounded observation operator) satisfy the equations

ż(t) = Az(t) +By(t) , z(0) = z0,(2.6)

w(t) = Cz(t) +Dy(t)(2.7)

for almost all t ≥ 0. The derivative on the left-hand side of (2.6) has, of course, to be
understood in X−1. In other words, if we consider the initial-value problem (2.6) in
the space X−1, then for any z0 ∈ X and y ∈ L∞

loc(R+;R
M ), (2.6) has a unique strong

solution given by the variation of parameters formula (see [16, Chapter 4, Theorem
2.9])

z(t) = Stz
0 +

∫ t

0

St−sBy(s) ds.(2.8)

Restricting to continuous inputs, define the operator T : C(R+;R
M )→ L∞

loc(R+;R
Q)

by

(Ty)(t) := C

∫ t

0

St−sBy(s) ds+Dy(t), t ≥ 0.(2.9)

(We remark that the above operator is the infinite-dimensional counterpart of the op-
erator (2.4) in the case of the finite-dimensional prototype.) By exponential stability
of the semigroup S, there then exist constants c1 > 0 such that

‖z‖L∞(R+;X) ≤ c1
[‖z0‖+ ‖y‖L∞(R +;RM )

]
for all (z0, y) ∈ X × L∞(R+;R

M ).

(2.10)

Setting h = 0, we see that property 2(a) of Definition 2.1 holds and property 2(b) is a
consequence of the linearity of T and (2.10), in view of (2.10), and causality property

1 of Definition 2.1 also holds. Therefore, the operator T is of class T M,Q
0 .

2.3. Nonlinear systems. Input-to-state stable (ISS) systems. Let Z : R
L ×

R
M → R

L be locally Lipschitz with Z(0, 0) = 0. For y ∈ L∞
loc(R+;R

M ), let z(·, z0, y)
denote the maximal solution of the initial-value problem

ż(t) = Z(z(t), y(t)), z(0) = z0 ∈ R
L.(2.11)

Assume that the system is input-to-state stable (ISS) [20]; that is, there exist functions
θ ∈ KL and γ ∈ K such that, for all (z0, y) ∈ R

L × L∞
loc(R+;R

M ),

‖z(t, z0, y)‖ ≤ θ(‖z0‖, t) + ess sup
s∈[0,t]

γ(‖y(s)‖) for all t ≥ 0.(2.12)

Let W : R
L → R

Q be locally Lipschitz and such that there exists c > 0 such that
‖W (z)‖ ≤ c‖z‖ for all z ∈ R

L. Now consider system (2.11) with output w given by

w(t) = W (z(t, z0, y)).

Fix z0 ∈ R
L arbitrarily. Again, restricting to continuous inputs, define the operator

T : C(R+;R
M )→ L∞

loc(R+;R
Q) by

(Ty)(t) := W (z(t, z0, y)), t ≥ 0.(2.13)
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In view of (2.12), property 1 of Definition 2.1 evidently holds; setting h = 0, we see
that property 2(a) also holds. Arguing as in [19, section 3.2.3], via an application of
Gronwall’s lemma, it can be shown that property 2(b) holds. Therefore, the operator

T is of class T M,Q
0 . We note that, strictly speaking, the above construction yields a

family of operators Tz0 parameterized by the initial data z0.
Systems in input affine form. A particular generalization of the prototype class L

of linear, finite-dimensional, minimum-phase systems is the class of nonlinear systems
in input affine form

ẏ(t) = a(t, y(t), z(t)) + b(t, y(t), z(t))u(t), y(0) = y0

ż(t) = c(t, y(t), z(t)), z(0) = z0

}
(2.14)

where a : R+×R
M×R

L → R
M , b : R+×R

M×R
L → R

M×M , and c : R+×R
M×R

L →
R

L are Carathéodory functions and (ye, ze, ue) is an equilibrium ((ye, ze, ue) = (0, 0, 0)
in the linear prototype) in the sense that

a(t, ye, ze) = 0, b(t, ye, ze)ue = 0, c(t, ye, ze) = 0 for all t ≥ 0.

The problem of construction of a λ-servomechanism for such systems has been in-
vestigated in [1, 6]. There, the minimum-phase property of the linear prototype in
(2.3) is replaced by the assumptions that ze is a global, uniformly exponentially stable
equilibrium of

η̇(t) = c(t, ye, η(t)).(2.15)

We assume that (i) for each compact set C ⊂ R
M × R

L, there exists κ ∈ L1
loc(R+)

such that ‖c(t, y, z) − c(t, ξ, ζ)‖ ≤ κ(t)‖(y, z) − (ξ, ζ)‖ for almost all t ∈ R+ and all
(y, z), (ξ, ζ) ∈ C, and (ii) for some constant c0 > 0,

‖c(t, y, z)− c(t, ye, z)‖ ≤ c0 [1 + ‖y − ye‖] for all (t, y, z) ∈ R+ × R
M × R

L.

Considering the second equations of (2.14) in isolation, for y ∈ L∞
loc(R+,RM ) we

denote by z(·, z0, y) the unique solution of

ż(t) = c(t, y(t), z(t)) = c(t, ye, z(t)) + [c(t, y(t), z(t))− c(t, ye, z(t))], z(0) = z0.

Invoking exponential stability of the equilibrium of (2.15) in conjunction with converse
Lyapunov theory (details omitted here), we may conclude the existence of a constant
c1 > 0 such that, for each (z0, y) ∈ R

L × L∞
loc(R+;R

M ),

‖z(t, z0, y)‖ ≤ c1[‖z0‖+ 1 + ess sup
s∈[0,t]

‖y(s)‖] for all t ≥ 0.(2.16)

Fix z0 ∈ R
L arbitrarily. Define the operator T : C(R+;R

M )→ L∞
loc(R+;R

L) by

(Ty)(t) := z(t, z0, y), t ≥ 0.(2.17)

In view of (2.16), property 1 of Definition 2.1 evidently holds; setting h = 0, we
see that property 2(a) also holds. An application of Gronwall’s lemma (analogous
to that adopted in [19, section 3.2.3] in the context of ISS systems) yields property

2(b). Therefore, the operator T is of class T M,L
0 . As in the case of ISS systems, we

remark that, strictly speaking, the above construction yields a family of operators Tz0

parameterized by the initial data z0.
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The general case. Elaborating on the above two cases, consider the system

ż(t) = Z(t, z(t), y(t)), z(0) = z0 ∈ R
L ,(2.18)

with input y ∈ L∞
loc(R+;R

M ) and output

w(t) = W (t, z(t)) ∈ R
Q.

Assume that W : R+ × R
L → R

Q and Z : R+ × R
L × R

M → R
L are Carathéodory

functions and such that the following hold: (i) for some constant c > 0, ‖W (t, z)‖ ≤
c‖z‖ for almost all t ≥ 0 and all z ∈ R

L; (ii) for each compact set C ⊂ R
L×R

M , there
exists κ ∈ L1

loc(R+) such that ‖Z(t, z, y)−Z(t, ζ, ξ)‖ ≤ κ(t)‖(z, y)− (ζ, ξ)‖ for almost
all t ∈ R+ and all (z, y), (ζ, ξ) ∈ C; and (iii) for each (z0, y) ∈ R

L × L∞
loc(R+;R

M ),
the unique maximal solution of initial-value problem (2.18) has interval of existence
R+. (We denote the solution by z(·, z0, y).) Furthermore, we assume the existence of
a function γ ∈ K such that, for each z0 ∈ R

L, there exists a constant c > 0 such that,
for all y ∈ L∞

loc(R+;R
M ),

‖z(t, z0, y)‖ ≤ c[1 + ess-sups∈[0,t]γ(‖y(s)‖)] for all t ≥ 0(2.19)

(a weaker condition than the ISS inequality (2.12)). Fix z0 ∈ R
L arbitrarily. Define

the operator T : C(R+;R
M )→ L∞

loc(R+;R
Q) by

(Ty)(t) = W (t, z(t, z0, y)), t ≥ 0.

Then this construction yields a family (parameterized by the initial data z0) of oper-

ators T of class T M,Q
0 : This family subsumes the operators discussed in sections 2.2

and 2.3 above.

2.4. Nonlinear delay elements. Let DM,Q denote the class of functions R ×
R

M → R
Q : (t, y) → Ψ(t, y) that are measurable in t and locally Lipschitz in y

uniformly with respect to t. Precisely, (i) for each fixed y, Ψ(·, y) is measurable, and
(ii) for every compact C ⊂ R

M there exists a constant c such that

for a.a. t, ‖Ψ(t, y)−Ψ(t, z)‖ ≤ c‖y − z‖ for all y, z ∈ C.

For i = 0, . . . , n, let Ψi ∈ DM,Q and hi ∈ R+. Define h := maxi hi. For y ∈
C([−h,∞);RM ), let

(Ty)(t) :=

∫ 0

−h0

Ψ0(s, y(t+ s)) ds+

n∑
i=1

Ψi(t, y(t− hi)), t ≥ 0.(2.20)

The operator T , so defined, is of class T M,Q
h ; for details, see [19].

2.5. Hysteresis. A general class of nonlinear operators C(R+;R)→ C(R+;R),
which includes many physically motivated hysteretic effects, is defined via assumptions
(N1)–(N8) of [11, section 3]. Assumption (N1) implies that property 2(a) of Definition
2.1 holds with h = 0. Assumption (N5) implies that property 2(b) of Definition 2.1
holds. Finally, (N8) implies that property 1 of Definition 2.1 holds. Therefore, the
nonlinear operators considered in [11] are of class T 1,1

0 . Examples of such operators,
including relay hysteresis, backlash hysteresis, elastic-plastic hysteresis, and Preisach
operators, are detailed in [11, section 5]. By way of illustration, we briefly describe
the first two of these examples.
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Fig. 3. Backlash hysteresis.

Relay hysteresis. Let a1 < a2 and let ρ1 : [a1,∞) → R, ρ2 : (−∞, a2] → R be
continuous, globally Lipschitz, and satisfying ρ1(a1) = ρ2(a1) and ρ1(a2) = ρ2(a2).
For a given input y ∈ C(R+;R) to the hysteresis element, the output w is such that
(y(t), w(t)) ∈ graph(ρ1) ∪ graph(ρ2) for all t ∈ R+: The value w(t) of the output at
t ∈ R+ is either ρ1(y(t)) or ρ2(y(t)), depending on which of the threshold values a2

or a1 was “last” attained by the input y. This situation is illustrated by Figure 2.

When suitably initialized, such a hysteresis element has the property that, to
each input y ∈ C(R+;R) there corresponds a unique output w = Ty ∈ C(R+;R);
the operator T , so defined, is of class T 1,1

0 . Full details may be found in [11, section
5]. (See also [12, 10].)

Backlash hysteresis. Next consider a one-dimensional mechanical link consisting
of the two solid parts I and II, as shown in Figure 3(a), the displacements of which
(with respect to some fixed datum) at time t ≥ 0 are given by y(t) and w(t) with
|y(t)− w(t)| ≤ a for all t, and w(0) := y(0) + ξ for some prespecified −a ≤ ξ ≤ a.

Within the link there is mechanical play; that is to say, the position w(t) of II
remains constant as long as the position y(t) of I remains within the interior of II.
Thus, assuming the continuity of y, we have ẇ(t) = 0 whenever |y(t) − w(t)| < a.
Given a continuous input y ∈ C(R+;R), describing the evolution of the position of
I, denote the corresponding position of II by w = Ty. The operator T so defined (in
effect we define a family Tξ of operators parameterized by the initial offset ξ) is known

as backlash or play and is of class T 1,1
0 . Full details may be found in [11, section 5].
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3. Adaptive control. We now focus on the adaptive control problem. The
following subclass J of K functions will play an important role:

J := {α ∈ K| for each δ ∈ R+ there exists ∆ ∈ R+ : α(δτ) ≤ ∆α(τ) for all τ ≥ 0}.

Furthermore, we define J∞ := J ∩K∞. For example, (a) for each s > 0, the function
τ → τ s is of class J∞, and (b) the function τ → ln(1 + τ) is of class J∞; its inverse
τ → exp(τ) − 1 is of class K∞ but is not of class J . In addition to their defining
property, the ensuing properties of class J functions are readily established and will
be freely invoked later in the analysis:

1. α, β ∈ J =⇒ α ◦ β ∈ J and α+ β ∈ J ;
2. α ∈ J =⇒ ∃∆ > 0 : α(a+ b) ≤ ∆[α(a) + α(b)] for all a, b ∈ R+.

We also record a property of K functions (and, a fortiori, a property of J functions):
3. Let t > 0, I = [0, t], ξ ∈ C(I;R+), and α ∈ K; then α(maxs∈I ξ(s)) =

maxs∈I α(ξ(s)).
Definition 3.1 (the system class). Let αf , αT ∈ J ; then S = S(αf , αT ) denotes

the class of M -input, M -output systems of the form (1.1) with the following properties
(wherein P,Q ∈ N are arbitrary):

1. p ∈ L∞([−h,∞);RP );
2. f : R

P × R
Q → R

M is continuous and, for every compact set C ⊂ R
P , there

exists a constant cf ≥ 0 such that

‖f(p, w)‖ ≤ cf [1 + αf (‖w‖)] for all (p, w) ∈ C × R
Q ;

3. g : R
P ×R

Q ×R
M → R

M is continuous and, for every compact set C ⊂ R
P ,

there exists a positive definite, symmetric G ∈ R
M×M such that

〈Gu, g(p, w, u)〉 ≥ ‖u‖2 for all (p, w, u) ∈ C × R
Q × R

M ;

4. T : C([−h,∞);RM )→ L∞
loc(R+;R

Q) is of class T M,Q
h , and there exist αT ∈

J and constant cT ≥ 0 such that, for all y ∈ C([−h,∞);RM ),

‖(Ty)(t)‖ ≤ cT

[
1 + max

s∈[0,t]
αT (‖y(s)‖)

]
for almost all t ∈ R+ .(3.1)

For convenience, we denote a system of class S(αf , αT ) by (p, f, g, T ) ∈ S(αf , αT )
and, whenever the functions αf and αT are contextually evident, we simply write S
in place of S(αf , αT ). We emphasize that, in the construction of an (R,S)-universal
control strategy, only the (instantaneous) tracking error e(t) = y(t)− r(t) is assumed
to be available for feedback, and the only a priori structural information assumed is
knowledge of the functions αf , αT ∈ J . Some examples follow.

Assume f has the polynomial form given by f(p, w) :=
∑l

i=0 piw
i . Then prop-

erty 2 of Definition 3.1 holds with αf : s → sm for m ≥ l; if an upper bound for the
degree l of the polynomial is unknown, then the map αf : s → exp(s)− 1 suffices.

If g(p, w, u) = Bu, as in the linear prototype (2.3), and B ∈ R
M×M has spectrum

in the open right half complex plane, then there exists a positive definite G ∈ R
M×M

satisfying GB +BTG = 2I, whence property 3 of Definition 3.1.
Consider again the examples of operators in sections 2.2–2.5.
Let T ∈ T M,Q

h , given by (2.9), be the input-output operator of an exponentially
stable regular linear system with R

M -valued input and R
Q-valued output. Then (2.10)

and causality imply that (3.1) holds with the αT ∈ J given by αT (s) = s.
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Let T ∈ T M,Q
h , given by (2.13), be the input-output operator of an ISS system

with R
M -valued input and R

Q-valued output. If (2.12) holds for some function γ of
class J , then (3.1) holds with αT := γ.

Let β ∈ J , h ∈ R+, and Ψ ∈ DM,Q (recall section 2.4), and assume that

‖Ψ(t, y)‖ < µ [1 + β(‖y‖)] for all (t, y) ∈ R+ × R
M

for some µ ∈ R+. Both the point delay given by (Ty)(t) = Ψ(t, y(t − h)) and the

distributed delay given by (Ty)(t) =
∫ 0

−h
Ψ(s, y(t+s)) ds are of class T M,Q

h , and (3.1)
holds with αT := β.

Last, for the nonlinear operators of section 2.5, assumption (N8) of [11, section
3] asserts that such operators satisfy (3.1) with the αT ∈ J given by αT (s) = s.

3.1. The servomechanism. The servomechanism is designed as follows. Let
αf , αT ∈ J . Choose α ∈ J∞ with the property

lim inf
s→∞

α(s)

s+ αf (αT (s))
�= 0.(3.2)

For example, the choice α : s → s+αf (αT (s)) suffices. For λ > 0, choose ψλ : R+ →
R+ to be a continuous function with the properties

(i) lim inf
s→∞

sψλ(s)

α(s)
�= 0 and (ii) ψ−1

λ (0) := {s | ψλ(s) = 0} = [0, λ].(3.3)

For example, the choice ψλ given by ψλ(s) := dα(λ)(α(s))/s for s > 0, with ψλ(0) := 0,
suffices.

Define the continuous function

φ : R
M → R

M , e →
{

α(‖e‖)‖e‖−1e, e �= 0,

0, e = 0.
(3.4)

Writing S = S(αf , αT ), the next objective is to show that the strategy

u(t) = −k(t)φ(e(t)), k̇(t) = ψλ(‖e(t)‖), e(t) := y(t)− r(t)(3.5)

is an (R,S)-universal λ-servomechanism.
Theorem 3.2. Let αf , αT ∈ J . Choose α ∈ J∞ so that (3.2) holds and define

the continuous φ : R
M → R

M by (3.4). Let λ > 0 and let ψλ : R+ → R+ be
continuous with properties (3.3). Then feedback strategy (3.5) is an (R,S)-universal λ-
servomechanism in the sense that for all (p, f, g, T ) ∈ S(αf , αT ), r ∈ R, and (y0, k0) ∈
C([−h, 0];RM+1) the feedback controlled initial-value problem

ẏ(t) = f(p(t), (Ty)(t)) + g(p(t), (Ty)(t),−k(t)φ(y(t)− r(t)))

k̇(t) = ψλ(‖y(t)− r(t)‖)
(y, k)|[−h,0] = (y0, k0)


(3.6)

has a solution. Every solution can be extended to a maximal solution and every
maximal solution (y, k) : [0, ω)→ R

M+1 has the following properties:
(i) (y, k) is bounded;
(ii) ω =∞ ;
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(iii) limt→∞ k(t) exists and is finite;
(iv) limt→∞ dλ(‖y(t)− r(t)‖) = 0, with dλ as in (1.6).
We preface the proof of Theorem 3.2 by a proposition. (Proof of the latter is

straightforward and omitted here.)
Proposition 3.3. Let ξ ∈ ACloc(R+;R+), k ∈ C(R+;R+), β ∈ K, and c ≥ 0.

If k is monotonically nondecreasing and unbounded, and ξ̇(t) ≤ c − k(t)β(ξ(t)) for
almost all t ∈ R+, then ξ(t)→ 0 as t→∞.

Proof of Theorem 3.2. Write N := M + 1 and K := Q + M + 1. Define F :
[−h,∞) × R

K → R
N by (1.3) and define T̂ : C([−h,∞);RN ) → L∞

loc(R+;R
K) by

(1.5). Thus, the initial-value problem (3.6) is equivalent to (2.2). By the continuity
of f , g, φ, ψλ and (essential) boundedness of p, it follows that F is a Carathéodory
function with the property that, for each w ∈ R

K , F (·, w) ∈ L∞
loc([−h,∞);RN ). By

assumption, T ∈ T M,Q
h and so T̂ ∈ T N,K

h . Therefore, by Theorem 2.3, (3.6) has
a solution and every solution can be maximally extended. Moreover, every bounded
maximal solution has interval of existence [−h,∞).

Let (y, k) : [−h, ω)→ R
N be a maximal solution of (3.6). Writing e := y − r, we

have

ė(t) = f(p(t), (T (e+ r))(t))
+ g(p(t), (T (e+ r))(t)),−k(t)φ(e(t)))− ṙ(t)

k̇(t) = ψλ(‖e(t)‖)


 for a.a. t ∈ [0, ω).

(3.7)

By (essential) boundedness of p and property 3 of Definition 3.1 of g, there exists a
positive definite, symmetric G such that

〈Ge(t), g(p(t), (T (e+ r))(t)),−k(t)φ(e(t)))〉 ≤ −k(t)α(‖e(t)‖)‖e(t)‖ for a.a. t ∈ [0, ω).
(3.8)

Define c0 :=
√
2‖G−1‖ and c1 :=

√
2/‖G‖. For notational convenience, we introduce

functions V,W ∈ ACloc([0, ω);R+) given by

V (t) :=
1

2
〈Ge(t), e(t)〉 and W (t) :=

√
V (t)

with

c−1
0 ‖e(t)‖ ≤W (t) ≤ c−1

1 ‖e(t)‖ for all t ∈ [0, ω).(3.9)

By (3.7), (3.8) and properties of f , g, and T , together with (essential) boundedness
of p, r, and ṙ, there exist constants cf , cT > 0 such that

(3.10)

V̇ (t) = 〈Ge(t), ė(t)〉 ≤ cf‖G‖
[
1 + αf

(
cT + cT max

s∈[0,t]
αT (‖e(s) + r(s)‖)

)]
‖e(t)‖

− k(t)α(‖e(t)‖)‖e(t)‖+ ‖G‖‖r‖1,∞‖e(t)‖ for a.a. t ∈ [0, ω).

Invoking properties of J functions, we may conclude that, for some constant c2 > 0,

V̇ (t) ≤ c2

[
1 + max

s∈[0,t]
αf (αT (‖e(s)‖))

]
‖e(t)‖ − k(t)α(‖e(t)‖)‖e(t)‖ a.a. t ∈ [0, ω).

(3.11)
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By (3.2) and the first of properties (3.3), there exist constants γ > ‖e(0)‖, cγ , c̃γ > 0
such that

αf (αT (s)) ≤ cγα(s) for all s ≥ γ and ψλ(s) ≥ cγα(s)

c̃γs
for all s ≥ γ.

(3.12)

With a view to proving Theorem 3.2(i), we first show that e is bounded. Seeking
a contradiction, suppose that e (equivalently, W ) is unbounded. For each n ∈ N,
define

τn := inf{t ∈ [0, ω) | c1W (t) = n+ 1 + γ}, σn := sup{t ∈ [0, τn] | c1W (t) = n+ γ}.

Recalling that γ > ‖e(0)‖ ≥ c1W (0), this construction yields a sequence of disjoint
intervals (σn, τn) such that

max
t∈[0,τn]

c1W (t) = c1W (τn) = n+ 1 + γ

c1W (σn) = n+ γ

c1W (t) ∈ (n+ γ, n+ 1 + γ) for all t ∈ (σn, τn)


 for all n ∈ N.

Moreover, for all n ∈ N,

max
s∈[0,t]

c1W (s) = max
s∈[σn,t]

c1W (s) ≤ n+ 1 + γ < 2n+ 2γ ≤ 2c1W (t) for all t ∈ [σn, τn],

which, together with (3.9) and properties of J functions, implies the existence of
constants c3, c4 > 0 such that

(3.13) max
s∈[0,t]

α(‖e(s)‖) ≤ max
s∈[0,t]

α(c0W (s)) ≤ α(2c0W (t)) ≤ α(2c0c
−1‖e(t)‖)

≤ c3α(‖e(t)‖) ≤ c3α(c0W (t)) ≤ c4α(c1W (t)) for all t ∈ ∪n∈N[σn, τn].

Noting that, for all n ∈ N, α(‖e(t)‖) ≥ α(γ) for all t ∈ [σn, τn] and invoking (3.13)
together with (3.9), (3.11), and (3.12), we may conclude the existence of constants
c5, c6 > 0 such that

V̇ (t) ≤ [c5 − k(t)]α(‖e(t)‖)‖e(t)‖ ≤ c6α(c1W (t))W (t) for all t ∈ ∪n∈N[σn, τn].

(3.14)

Our next task is to show that supposition of the unboundedness of e implies the
unboundedness of k. Invoking (3.12), (3.14), and (3.9) yields

2 ln

(
n+ 1 + γ

1 + γ

)
= lnV (τn)− lnV (σ1) =

n∑
j=1

[lnV (τj)− lnV (σj)] =

n∑
j=1

∫ τj

σj

V̇ (t)

V (t)
dt

≤ c6

n∑
j=1

∫ τj

σj

α(c1W (t))

W (t)
dt ≤ c6c0

n∑
j=1

∫ τj

σj

α(‖e(t)‖)
‖e(t)‖ dt.(3.15)

By construction of (σn, τn) we have

γ < ‖e(t)‖ if t ∈ (σj , τj).
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Hence substituting the second inequality of (3.12) into (3.15) yields

2 ln

(
n+ 1 + γ

1 + γ

)
≤ c6c0

c̃γ
cγ

n∑
j=1

∫ τj

σj

ψλ(‖e(t)‖) dt ≤ c6c0
c̃γ
cγ

k(τn) for all n ∈ N,

and so k(t) → ∞ as t ↑ ω. Let n∗ ∈ N be such that k(σn∗) ≥ 2c5. By the first
inequality in (3.14),

V̇ (t) ≤ −c5α(‖e(t)‖)‖e(t)‖ < 0 for a.a. t ∈ [σn∗ , τn∗ ] ,

which contradicts the fact that V (τn∗) = W 2(τn∗) > W 2(σn∗) = V (σn∗). Therefore,
e is bounded.

By the boundedness of e and continuity of ψλ, it follows that k̇ is bounded, and
so k is bounded on every compact subinterval of [0, ω). Therefore ω =∞.

Next, we prove the boundedness of k. By the boundedness of e and (3.11), there
exists a constant c9 > 0 such that

V̇ (t) ≤ c9 − k(t)β(V (t)) for a.a. t ∈ [0,∞),

where β ∈ K is given by β(s) = α (c1
√
s) c1

√
s. Seeking a contradiction, suppose k

is unbounded. Then k(t) ↑ ∞ as t → ∞ and so, by Proposition 3.3, V (t) → 0 as
t → ∞. Therefore, there exists τ ∈ [0,∞) such that ‖e(t)‖ < λ for all t ∈ [τ,∞)
and so k̇(t) = 0 for all t ∈ [τ,∞), which again contradicts the supposition of the
unboundedness of k.

We have now established Theorem 3.2(i) and (ii). Assertion (iii) follows by the
boundedness and monotonicity of k. By the boundedness of e and ė (see (3.6)), it
follows that t → e(t) is uniformly continuous. By the continuity of ψλ(‖·‖), we see that
ψλ(‖e(·)‖) is also uniformly continuous. By the boundedness of k,

∫∞
0

ψλ(‖e(t)‖)dt <
∞. By Barbălat’s lemma [2], we conclude that ψλ(‖e(t)‖) → 0 as t → ∞, whence,
recalling that ψ−1

λ (0) = [0, λ], we have assertion (iv).

3.2. Discussion. Theorem 3.2 also holds in the situation wherein the output
measurement is subject to an additive disturbance term η, in which case the control
and gain adaptation become

u(t) = −k(t)φ(y(t)− r(t) + η(t)), k̇(t) = ψλ(‖y(t)− r(t) + η(t)‖), k|[−h,0] = k0.

If the disturbance η is of class R, then, by Theorem 3.2, limt→∞ dλ(‖y(t) + η(t) −
r(t)‖) = 0. Thus, from a strictly analytical viewpoint, in the presence of output
disturbances of class R, the disturbance-free analysis is immediately applicable to
replacing the reference signal r by the signal r − η =: r̂ ∈ R. Even though the
reference signal r and disturbance signal η are assumed to be of the same class R, in
practice these signals might be distinguished by their respective spectra (η typically
having “high-frequency” content). Moreover, from a practical viewpoint, one might
reasonably expect that the disturbance η is “small”; if an a priori bound on the
magnitude of the disturbance is available, then λ should be chosen to be commensurate
with such a bound.

We remark on the flexibility of choice in the controller functions α ∈ J∞ and
ψλ (continuous), which are required only to satisfy (3.2) and (3.3). In essence, (3.2)
reflects the reasonable requirement that the “strength” of the controller nonlinear-
ity α should be capable of counteracting the potentially destabilizing effects of the
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(unknown) system nonlinearities; condition (3.3)(i) translates to a requirement that
the gain adaptation function ψλ should be commensurate (in the sense of (3.3)(i))
with the strength of the function α. Next, we illustrate by example that the latter
condition is also reasonable.

Consider the scalar nonlinear system

ẏ(t) = a|y(t)|εy(t) + u(t), y(0) = y0 ∈ R,(3.16)

with a ∈ R and ε > 0. The choice α : s → s1+ε implies that (3.2) holds. For λ > 0,
the choice

ψλ : s → sε min{dλ(s), 1}(3.17)

implies that (3.3) holds. Therefore, by Theorem 3.2, the control

u(t) = −k(t)|y(t)− r(t)|ε(y(t)− r(t)),

k̇(t) = |y(t)− r(t)|ε min{dλ(|y(t)− r(t)|), 1}, k(0) = k0,

ensures that, for every r ∈ R, the tracking objective is achieved with asymptotic
accuracy quantified by λ > 0.

Now assume that ε > 0 is “small.” We will investigate the consequences of re-
placing the above choice of ψλ (for which (3.3)(i) holds) by the simpler function
s → min{dλ(s), 1} (equivalent to setting ε = 0 in (3.17) and for which (3.3)(i) fails
to hold). Taking r = 0, a = 1, y0 > 0, and (for simplicity) k0 = 0, a straightforward
calculation reveals that the control objective is not achievable by the control

u(t) = −k(t)|y(t)|εy(t), k̇(t) = min{dλ(s), 1}, k(0) = 0.

In particular, the feedback-controlled initial-value problem can exhibit finite-time
“blow-up” of its solution: Specifically, for each y0 > (2/ε)1/ε, the solution of the
feedback-controlled system is such that y(t) ↑ ∞ as t ↑ T with T ∈ (0, T ∗), where
T ∗ := 1−√1− (2/ε)(y0)−ε < 1.

Now consider again linear systems, such as the motivating class L of finite-
dimensional, linear, minimum-phase systems described in section 2.2, and letR be the
space of bounded absolutely continuous functions R→ R

M with essentially bounded
derivative. As is well known (see, for example, [7]), the following output feedback
strategy (a variant of the seminal results in [23, 15, 13, 14]) is an (R,L)-universal
λ-servomechanism in the sense that, for each system of class L and reference signal
r ∈ R, the strategy ensures (i) boundedness of the state, (ii) convergence of the con-
troller gain, and (iii) output tracking with prescribed accuracy λ (in the sense that
dλ(‖e(t)‖)→ 0 as t→∞, where e(t) := y(t)− r(t) is the tracking error):

u(t) = −k(t)e(t), k̇(t) = d2
λ(‖e(t)‖), k(0) = k0.(3.18)

Generalizations of this strategy to nonlinear finite-dimensional settings are reported
in, for example, [7, 17, 6, 18, 24]; applications to biotechnological processes are con-
tained in [8, 9].

Each of αf and αT can be taken to be the identity map id : s → s, and so
L ⊂ S(id, id). In this context, α : s → s and ψλ : s → d2

λ(s) are allowable choices,
in which case we recover (3.18). Note that the latter choice for ψλ, being quadratic
in nature, implies that the controller gain k(·) can exhibit rapid growth whenever the
tracking error is large. Such behavior may be undesirable from a practical viewpoint.
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A very simple but admissible alternative choice of a bounded function ψλ is s →
min{dλ(s), 1}. This choice ensures that k exhibits at most linear growth and the
overall control strategy (3.5) reduces to

u(t) = −k(t)(y(t)− r(t)), k̇(t) = min{dλ(‖y(t)− r(t)‖), 1}, k|[−h,0] = k0.

(3.19)

Theorem 3.2 ensures that this control achieves the tracking objective, with prespec-
ified asymptotic error bound λ > 0, not only for the motivating finite-dimensional
class L, but also for general interconnections of linear systems of the form in Figure 1,
encompassing those cases where Σ2 corresponds to linear delay elements (both point-
wise and distributed) or to an exponentially stable infinite-dimensional regular linear
system (such as a diffusion process), or linear combinations of these.

Appendix. Proof of Theorem 2.3. (i) By property 2(b) of Definition 2.1
there exist τ > 0, δ > 0, and c > 0 such that, for all x, ξ ∈ C([−h,∞);RN ) with
x|[−h,0] = x0 = ξ|[−h,0] and x(t), ξ(t) ∈ Bδ(x

0(0)) for all t ∈ [0, τ ],

ess sup
t∈[0,τ ]

‖(T̂ x)(t)− (T̂ ξ)(t)‖ ≤ c sup
t∈[0,τ ]

‖x(t)− ξ(t)‖.

By property 1 of Definition 2.1 of T̂ , there exists ∆ > 0 such that for all x ∈
C([−h,∞);RN ),

sup
t∈[−h,∞)

‖x(t)‖ < δ∗ := δ + ‖x0‖∞ =⇒ ‖(T̂ x)(t)‖ < ∆ for almost all t ∈ [0, τ ].

Since F is a Carathéodory function, there exists integrable γ : [0, τ ]→ R such that

‖F (t, w)‖ ≤ γ(t) for all (t, w) ∈ [0, τ ]× B∆(0).(A.1)

Define Γ : [−h, τ ]→ R+ by

Γ(t) :=

{
0, t ∈ [−h, 0),∫ t

0
γ(s)ds, t ∈ [0, τ ],

and let 0 < β < τ be such that Γ(β) < δ.
Next, we construct a sequence {xn}n∈N of continuous functions [−h, β]→ R

N as
follows. Let n ∈ N. For i = 1, . . . , n, define xi

n : [−h, iβ/n] → R
N by the recursive

formula:

i = 1 : x1
n(t) :=

{
x0(t), t ∈ [−h, 0],

x0(0), t ∈ (0, β/n],

i > 1 : xi
n(t) :=

{
xi−1
n (t), t ∈ [−h, (i− 1)β/n],

x0(0) +
∫ t−(β/n)

0
F (s, (T̂ xi−1

n )(s))ds, t ∈ ((i− 1)β/n, iβ/n] .

Observe that if i ∈ {1, . . . , n− 1} and ‖xi
n(t)‖ < δ∗ for all t ∈ [−h, (iβ)/n], then (a)

‖xi+1
n (t)‖ < δ∗ for all t ∈ [−h, (iβ)/n], and (b) ‖(T̂ xi

n)(t)‖ < ∆ for all t ∈ [0, (iβ)/n],
which, in turn, implies for all t ∈ (iβ/n, (i+ 1)β/n]

‖xi+1
n (t)− x0(0)‖ ≤

∫ t−β/n

0

‖F (s, (T̂ xi
n)(s))‖ds ≤

∫ t−β/n

0

γ(s)ds = Γ(t− β/n) < δ.



1762 A. ILCHMANN, E. P. RYAN, AND C. J. SANGWIN

Noting that ‖x1
n(t)‖ ≤ ‖x0‖∞ < δ∗ for all t ∈ [−h, β/n], we may now infer (by

induction on i) that

‖xi
n(t)‖ < δ∗ for all i ∈ {1, . . . , n}, t ∈ [−h, iβ/n].

For notational convenience, we write xn := xn
n. By causality of T̂ , the sequence

{xn}n∈N so constructed has the property that, for each n ∈ N,

xn(t) =




x0(t), t ∈ [−h, 0],

x0(0), t ∈ (0, β/n],

x0(0) +
∫ t−(β/n)

0
F (s, (T̂ xn)(s))ds, t ∈ (β/n, β].

(A.2)

Moreover, for all n ∈ N, ‖xn(t)‖ < δ∗ for all t ∈ [−h, β], and so the sequence {xn}n∈N

is uniformly bounded.
Next we prove that the sequence {xn}n∈N is equicontinuous. Let ε > 0. On the

closed interval [0, β], Γ is uniformly continuous, and so there exists some δ̄ > 0 such
that

t, s ∈ [0, β] with |t− s| < δ̄ =⇒ |Γ(t)− Γ(s)| < ε.(A.3)

Let n ∈ N, s, t ∈ [0, β] with |t − s| < δ̄. Without loss of generality, we assume that
s ≤ t. We consider three exhaustive cases.

First, if 0 ≤ s ≤ t ≤ β/n, then ‖xn(t) − xn(s)‖ = 0. Second, if 0 < s ≤ β/n ≤
t ≤ β, then t− β/n < δ̄, and so

‖xn(t)− xn(s)‖ = ‖xn(t)− x0(0)‖ ≤ Γ(t− β/n) < ε.

Third, if β/n ≤ s ≤ t ≤ β, then

‖xn(t)− xn(s)‖ ≤ |Γ(t− β/n)− Γ(s− β/n)| < ε.

Recalling that xn|[−h,0] = x0 for all n, we conclude that the sequence {xn}n∈N is
equicontinuous. By the Arzelà–Ascoli theorem and extracting a subsequence if nec-
essary, we may assume that the sequence {xn}n∈N converges uniformly on [−h, β] to
a continuous limit which we denote by x. Clearly x|[−h,0] = x0.

By property 2(b) of Definition 2.1, limn→∞(T̂ xn)(t) = (T̂ x)(t) for almost all
t ∈ [0, β] and so, by the continuity of the function F (t, ·),

lim
n→∞F (t, (T̂ xn)(t)) = F (t, (T̂ x)(t)) for a.a. t ∈ [0, β].

Noting that ‖(T̂ xn)(s)‖ < ∆ for all s ∈ [0, β], and also invoking (A.1), we next have

‖F (s, (T̂ x)(s))‖ ≤ γ(s) for all s ∈ [0, β] and all n ∈ N. Therefore,

lim
n→∞

∫ t

t−β/n

F (s, (T̂ xn)(s))ds = 0 for all t ∈ (0, β](A.4)

and, by the Lebesgue dominated convergence theorem,

lim
n→∞

∫ t

0

F (s, (T̂ xn)(s))ds =

∫ t

0

F (s, (T̂ x)(s))ds for all t ∈ [0, β].(A.5)



CONTROLLED FDEs AND ADAPTIVE TRACKING 1763

By (A.2), (A.4), and (A.5), it follows that

x(t) =

{
x0(t), t ∈ [−h, 0],

x0(0) +
∫ t

0
F (s, (T̂ x)(s))ds, t ∈ (0, β],

and so x is a solution of the initial-value problem.
(ii) Let x : [−h, ω)→ R

N be a solution of (2.2). Define

A :=
{
(ρ, ξ)| ω ≤ ρ ≤ ∞, ξ : [−h, ρ)→ R

N is a solution of (2.2) with ξ|[−h,ω) = x
}
.

On this nonempty set define a partial order " by

(ρ1, ξ1) " (ρ2, ξ2) ⇐⇒ ρ1 ≤ ρ2 and ξ1(t) = ξ2(t) for all t ∈ [−h, ρ1).

Let O be a totally ordered subset of A. Let P := sup{ρ|(ρ, ξ) ∈ O} and let Ξ :
[−h, P ) → R

M be defined by the property that, for every (ρ, ξ) ∈ O, Ξ|[0,ρ) = ξ.
Then (P,Ξ) is in A and is an upper bound for O. By Zorn’s lemma, it follows that
A contains at least one maximal element.

(iii) Assume that x ∈ C([−h, ω);RN ) is a bounded maximal solution of (2.2) and
that F ∈ L∞

loc([−h,∞) × R
K ;RN ). Seeking a contradiction, suppose ω < ∞. By

the boundedness of x, together with property 1 of Definition 2.1 of T̂ , it follows that
ẋ(·) is essentially bounded. Therefore, x is uniformly continuous and so extends to a
continuous function x : [−h, ω]→ R

N . Now consider the initial-value problem

v̇(t) = Sω F
(
t, (T̂ S−ωv)(t)

)
, v|[−(h+ω),0] = Sωx.(A.6)

By (2.1) and the above existence result, the initial-value problem (A.6) has a solution
ṽ : [−(h + ω), τ) → R

N , τ > 0. It follows that x̃ = S−ω ṽ : [−h, ω + τ) → R
N is a

solution of the original initial-value problem (2.2) and is a proper right extension of
the solution x. This contradicts the maximality of x. Therefore, ω =∞.
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OPTIMAL CONSUMPTION AND PORTFOLIO WITH BOTH FIXED
AND PROPORTIONAL TRANSACTION COSTS∗
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Abstract. We consider a market model with one risk-free and one risky asset, in which the
dynamics of the risky asset are governed by a geometric Brownian motion. In this market we
consider an investor who consumes from the bank account and who has the opportunity at any time
to transfer funds between the two assets. We suppose that these transfers involve a fixed transaction
cost k > 0, independent of the size of the transaction, plus a cost proportional to the size of the
transaction.

The objective is to maximize the cumulative expected utility of consumption over a planning
horizon. We formulate this problem as a combined stochastic control/impulse control problem, which
in turn leads to a (nonlinear) quasi-variational Hamilton–Jacobi–Bellman inequality (QVHJBI). We
prove that the value function is the unique viscosity solution of this QVHJBI. Finally, numerical
results are presented.

Key words. portfolio selection, transaction cost, impulse control, quasi-variational inequalities,
viscosity solutions
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1. Introduction. Let (Ω,F , P ) be a probability space with a given filtration
{Ft}t≥0. We denote by X(t) the amount of money the investor has in the bank at
time t and by Y (t) the amount of money invested in the risky asset at time t. We
assume that in the absence of consumption and transactions the process X(t) grows
deterministically at exponential rate r, while Y (t) is a geometric Brownian motion;
i.e.,

dX(t) = rX(t)dt, X(0) = x,(1.1)

dY (t) = αY (t)dt+ σY (t)dW (t), Y (0) = y,(1.2)

where W (t) is one-dimensional Ft-Brownian motion and α > r > 0 and σ �= 0 are
constants.

Suppose that at any time t the investor is free to choose a consumption rate
c(t) ≥ 0. This consumption is automatically drawn from the bank account holding
with no extra costs. Moreover, at any time the investor can decide to transfer money
from the bank account to the stock and conversely. Assume that a purchase of size � of
stocks incurs a transaction cost consisting of a sum of a fixed cost k > 0 (independent
of the size of the transaction) plus a cost λ� proportional to the transaction (λ ≥ 0).
These costs are drawn from the bank account. Similarly a sale of size m of stocks
incurs the fixed cost K > 0 plus the proportional cost µm (µ ≥ 0). For simplicity we
will assume that K = k and µ = λ. In this context the investor will only change his
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portfolio finitely many times in any finite time interval. The control of the investor
will consist of a combination of a regular stochastic control c(t) and an impulse control
v = (τ1, τ2, . . . ; ξ1, ξ2, . . .). Here 0 ≤ τ1 < τ2 < · · · are Ft-stopping times giving the
times when the investor decides to change his portfolio, and {ξj ∈ R; j = 1, 2, . . .} are
Fτj -measurable random variables giving the sizes of the transactions at these times.
We assume that

c(t) is Ft-adapted, c(t, ω) ≥ 0, and lim
j→∞

τj =∞ a.s.(1.3)

(possibly τn =∞ a.s. for some n <∞).
If such a control w = (c, v) is applied to the system (X(t), Y (t)), it gets the form

dX(t) = (rX(t)− c(t))dt, τi ≤ t < τi+1,(1.4)

dY (t) = αY (t)dt+ σY (t)dW (t), τi ≤ t < τi+1,(1.5)

X(τi+1) = X(τ−i+1)− k − ξi+1 − λ|ξi+1|,(1.6)

Y (τi+1) = Y (τ−i+1) + ξi+1.(1.7)

Thus a positive value of ξi+1 indicates that money is being taken from the bank
account at time τi+1 to buy stocks, and conversely if ξi+1 is negative.

If our agent has the amounts x in the bank account and y in stocks, his net wealth
is given by

H(x, y) = max{x+ y − λ|y| − k,min{x, y}}.(1.8)

Therefore it is natural to define the solvency region S by
S = {(x, y) ∈ R2;H(x, y) ≥ 0},(1.9)

and we set

S̃ = R+ × S.(1.10)

Define the line segments �1, �2 by

�1 = {(x, y); x+ (1− λ)y = k, x < 0},(1.11)

�2 = {(x, y); x+ (1 + λ)y = k, y < 0},(1.12)

and let the points P,Q be the end points of these segments, i.e.,

P =

(
0,

k

1− λ

)
, Q = (k, 0).(1.13)

(See Figure 1.1 and also Remark 2.4.) The investor’s objective is to maximize over
all combined controls w = (c, v) the expression

Jw(s, x, y) = Es,x,y
[ ∞∫

0

e−δ(s+t)
cγ(t)

γ
dt

]
= e−δsEx,y

[ ∞∫
0

e−δt
cγ(t)

γ
dt

]
,(1.14)

where δ > 0, 0 < γ < 1 are constants (1 − γ is the relative risk aversion coefficient)
and Es,x,y denotes the expectation with respect to the probability law P s,x,y of

Z(t) = Zw(t):= (s+ t,X(t), Y (t)), t ≥ 0,(1.15)
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x

0

x+ (1 + λ)y = k
Q

P

S
�1

�2

x+ (1 − λ)y = k

y

Fig. 1.1. The solvency region.

starting at z = (s, x, y).
We seek the value function(s)

Φ(s, x, y) = sup
w∈W

Jw(s, x, y), Ψ(x, y) = Φ(0, x, y),(1.16)

where W = W(x, y) is the set of all admissible controls, i.e., all combined controls
which satisfy (1.3) and which do not cause the process Z(t) to exit from S. Note that

Jw(s, x, y) = e−δsJw(0, x, y) and Φ(s, x, y) = e−δsΦ(0, x, y) = e−δsΨ(x, y),(1.17)

so the introduction of the s-variable is not really necessary. However, it turns out to
be convenient in order to simplify the notation and the arguments in some of the later
proofs.

We also seek a corresponding optimal control, i.e., a combined control w∗ such
that

Φ(s, x, y) = Jw
∗
(s, x, y) = e−δsΨ(x, y).(1.18)

This problem may be regarded as a generalization of the optimal consumption and
portfolio problems studied by Merton [M] and Davis and Norman [DN]. See also
Shreve and Soner [SS]. [M] considers the case with no transaction costs (λ = k = 0), in
which case the problem is no longer a combined control problem but a pure stochastic
control problem. In this case it is proved in [M] that it is optimal to choose the
portfolio such that

Y (t)

X(t)
=

π∗

1− π∗ for all t(1.19)

(the Merton line), where

π∗ =
α− r

(1− γ)σ2
.(1.20)

Moreover, the corresponding value function in the Merton case λ = k = 0 is given by

Ψ0(x, y) = C1(x+ y)γ ,(1.21)
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where

C1 =
1

γ
Cγ−1

0 with C0 =
1

1− γ

[
δ − γr − γ(α− r)2

2σ2(1− γ)

]
,(1.22)

provided that

δ > γ

[
r +

(α− r)2

2σ2(1− γ)

]
.(1.23)

See, e.g., [DN, section 2].
From now on we assume that (1.23) holds.
It is easy to see that

Ψ(x, y) ≤ Ψ0(x, y).(1.24)

This is also pointed out in Corollary 2.2, to be proved later.
[DN] and [SS] consider the case with proportional transaction costs only (k = 0),

in which case the problem can be formulated as a singular stochastic control problem.
It is proved in [DN] and [SS] that under some conditions there exist two straight
lines Γ1,Γ2 through the origin, bounding a cone NT , such that it is optimal to make
no transactions if (X(t), Y (t)) ∈ NT and make transactions corresponding to local
time at ∂(NT ), resulting in reflections back to NT every time (X(t), Y (t)) ∈ ∂(NT ).
Depending on the parameters, the Merton line may or may not go between the lines
Γ1,Γ2 (see Figure 1.2 and the discussion in [AMS, section 7.2]). For an extension of
these results to markets with jumps, see [FØS1] and [FØS2].

x

y = π∗
1−π∗ x

Γ2

Γ1

NT

The Merton line

y

Fig. 1.2. The no-transaction cone when k = 0.

The first paper to model markets with fixed transaction costs k > 0 by impulse
control theory seems to be [EH], but they do not consider optimal consumption.

Perhaps the paper which is closest to ours is [K]. Here optimal consumption in
markets with fixed transaction costs is considered, but consumption is allowed only
at the discrete times of the transactions. This makes it possible to put the problem
within the framework of impulse control and quasi-variational inequalities.

In our paper we allow consumption to take place at any time, independent of
the (discrete) times chosen for the transactions. As explained above, we model this
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as a combined stochastic control and impulse control problem, or a combined control
problem, for short.

In section 2 we introduce quasi-variational Hamilton–Jacobi–Bellman inequalities
(QVHJBI) associated with this combined control problem. We point out that if a
function ψ(x, y) satisfies these QVHJBI (and some additional smoothness conditions),
then ψ coincides with the value function Ψ, defined by (1.16). (See Theorem 2.1).

In section 3 we prove that the value function Ψ is the unique viscosity solution of
the QVHJBI formulated in section 2.

Finally in section 4 we present some numerical estimates for Ψ and the optimal
consumption-investment policy w∗ = (c∗, v∗).

For other recent papers on impulse control and combined control see, e.g., [BØ],
[MØ], [CZ1], [CZ2], and [BP] and the references therein. We refer to [BL] and [ØS]
for a comprehensive treatment of the general theory of impulse control and its quasi-
variational inequalities.

Remark 1.1. Another natural choice of solvency region would be the set

S+: = [0,∞)× [0,∞).(1.25)

This choice models a situation in which no borrowing or short-selling is allowed. We
will mostly use the choice S given by (1.9) in this paper, but we point out that the
proofs carry over to the S+ case with only minor modifications. (Usually the S+ case
is simpler.)

2. Quasi-variational Hamilton–Jacobi–Bellman inequalities (QVHJBI).
Let Ac be the generator of the process Zc(t) = (s+ t,Xc(t), Y c(t)) when there are no
transactions; i.e., Ac is the partial differential operator given by

(Acf)(s, x, y) =
∂f

∂s
+ (rx− c)

∂f

∂x
+ αy

∂f

∂y
+ 1

2σ
2y2 ∂

2f

∂y2
(2.1)

for any f : R3 → R and (s, x, y) such that the derivatives exist. In particular, if
f(s, x, y) = e−δsg(x, y), then

(Acf)(s, x, y) = e−δsLcg(x, y),

where

Lcg(x, y) = −δg + (rx− c)
∂g

∂x
+ αy

∂g

∂y
+ 1

2σ
2y2 ∂

2g

∂y2
.(2.2)

For (x, y) ∈ S and ξ �= 0 set

x′ = x′(ξ) = x− k − ξ − λ|ξ|, y′ = y′(ξ) = y + ξ.(2.3)

We define the intervention operator M by

Mh(x, y) = sup{h(x′, y′); ξ ∈ R \ {0}, (x′, y′) ∈ S}(2.4)

for all locally bounded h : S → R+, (x, y) ∈ S.
If (x′, y′) �∈ S for all ξ ∈ R \ {0}, we setMh(x, y) = 0. If for all (x, y) ∈ S there

exists (x′, y′) = (x′(ξ), y′(ξ)) ∈ S such that

Mh(x, y) = h(x′, y′),
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then we set

ξ̂(x, y) = ξ̂h(x, y) = (x
′, y′).(2.5)

(More precisely, we let ξ̂(x, y) denote a measurable selection of the map (x, y) →
(x′, y′).)

If Φ is the value function for our problem, then for each s we can interpret
MΦ(s, x, y) as the maximal value we can obtain by making an admissible transaction
at (s, x, y).

Following [BØ] we call a locally bounded function h : S̃ → R+ stochastically
C2 with respect to Zc if (Ach)(z) exists for almost all z = (s, x, y) with respect to
the Green measure (expected occupation time measure) G(z0, ·), and the generalized
Dynkin formula holds for h, i.e.,

E
z0 [h(Zc(τ ′))] = E

z0 [h(Zc(τ))] + E
z0

[ τ ′∫
τ

(Ach)(Zc(t))dt

]

for all stopping times τ, τ ′ such that

τ ≤ τ ′ ≤ TR: = inf{t > 0, |Zc(t)| ≥ R} ∧R for some R <∞.(2.6)

Recall (see, e.g., [Ø]) that for each z0 ∈ S̃ the Green measure G(z0, ·) of the process
Zc in S̃ is defined by

G(z0, H) = E
z0

[ τ∫
0

XH(Zc(t))dt
]

for all Borel sets H ⊂ S̃,

where τ = inf{t > 0;Zc(t) �∈ S̃} and XH(z) = 1 if z ∈ H, XH(z) = 0 if z �∈ H.
If h is a function on S, we define

Lh(x, y) = sup
c≥0

{
Lch(x, y) +

cγ

γ

}
, (x, y) ∈ S,(2.7)

and

L0h(x, y) = L0h(0, y) = −δh+ αy
∂h

∂y
+ 1

2σ
2y2 ∂

2h

∂y2
(2.8)

for all points (x, y) where the partial derivatives of h involved in Lch exist.
We then set (see (1.11)–(1.13) for definitions of �1, �2, and P )

L1h(x, y) =

{
Lh(x, y) for (x, y) ∈ S \ (�1 ∪ �2) \ [0, P ],
L0h(x, y) for (x, y) ∈ [0, P ].(2.9)

Note that at [0, P ] the only admissible consumption is c = 0.
By adapting Theorem 3.1 in [BØ] to our situation, we get the following sufficient

QVHJBI.
Theorem 2.1. Let S and S̃ be as defined in (1.9) and put U = S \ (�1 ∪ �2),

Ũ = [0,∞)× U .
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(i) Suppose we can find a locally bounded function ψ : S → R+ such that ψ ∈
C1(U) and

φ(s, x, y):= e−δsψ(x, y) is stochastically C2 with respect to Zc(t)(2.10)

for all Markov controls c = c(x, y);

L1ψ ≤ 0 a.e. with respect to G(z0, ·) on Ũ for all z0 ∈ Ũ ;(2.11)

ψ(x, y) ≥Mψ(x, y) for all (x, y) ∈ U.(2.12)

Then

ψ(x, y) ≥ Ψ(x, y) for all (s, x, y) ∈ Ũ .

(ii) Define the continuation region

D = {(x, y) ∈ U ;ψ(x, y) >Mψ(x, y)}.

Suppose

L1ψ(x, y) = 0 on D(2.13)

and that ξ̂(x, y) = ξ̂ψ(x, y) (defined in (2.5)) exists for all (x, y) ∈ S. Define

c∗(x, y) =

{
(∂ψ∂x )

1
γ−1 for (x, y) ∈ U \ [0, P ],

0 for (x, y) ∈ [0, P ],
and define the impulse control

v∗: = (τ∗1 , τ
∗
2 , . . . ; ξ

∗
1 , ξ

∗
2 , . . .)

as follows.
Put τ∗0 = 0 and inductively

τ∗k+1 = inf{t > τ∗k ; (X
(k)(t), Y (k)(t)) �∈ D},(2.14)

ξ∗k+1 = ξ̂(X(k)(τ∗−k+1), Y
(k)(τ∗−k+1)),(2.15)

where ξ̂ is as defined in (2.5) and (X(k), Y (k)) is the process obtained by applying the
combined control

w(k): = (c∗, (τ∗1 , . . . , τ
∗
k ; ξ

∗
1 , . . . , ξ

∗
k)), k = 1, 2, . . . .

Suppose w∗: = (c∗, v∗) ∈ W and that

e−δtψ(X(w∗)(t), Y (w∗)(t))→ 0 as t→∞ a.s.(2.16)

and that the family

{e−δτψ(X(w∗)(τ), Y (w∗)(τ)); τ stopping time}(2.17)

is uniformly integrable. Then

ψ(x, y) = Ψ(x, y)(2.18)
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and w∗ is optimal.
Proof. This follows by the proof of Theorem 3.1 in [BØ] with only minor modifi-

cations. Note that the Hamilton–Jacobi–Bellman inequality (HJBI) (3.7) in [BØ] has
the following form in our case, if (x, y) ∈ U \ [0, P ]:

Lψ(x, y) = sup
c≥0

{
− δψ + (rx− c)

∂ψ

∂x
+ αy

∂ψ

∂y
+
1

2
σ2y2 ∂

2ψ

∂y2
+

cγ

γ

}
≤ 0.

This can only hold if ∂ψ∂x > 0, and then the supremum of this expression is obtained
when

c = c∗ =
(
∂ψ

∂x

) 1
γ−1

.(2.19)

If (x, y) ∈ [0, P ], then only the zero consumption c = c∗ = 0 is admissible, so again
by the HJBI we get L0ψ(0, y) = 0.

We can use this to prove the claim (1.24), as follows.
Corollary 2.2.
(i) As in (1.21)–(1.22) let

Ψ0(x, y) = C1(x+ y)γ(2.20)

be the value function for the Merton problem (k = λ = 0). Then

Ψ(x, y) ≤ Ψ0(x, y) for all (x, y) ∈ S.(2.21)

(ii) Let b be a constant such that

1− λ ≤ b ≤ 1 + λ.(2.22)

Suppose

δ > γα.(2.23)

Then there exists K <∞ such that

Ψ(x, y) ≤ K(x+ by)γ for all (x, y) ∈ S.(2.24)

Proof. (i) We verify that ψ: = Ψ0 satisfies the conditions of Theorem 2.1(i). First,
φ(s, x, y) = e−δsψ(x, y) is C2 and therefore trivially stochastically C2. Hence (2.10)
holds. Second, ψ satisfies (2.11), because Ψ0 satisfies the Hamilton–Jacobi–Bellman
(HJB) equation. Third, if we put, as in (2.3),

x′ = x′(ξ) = x− ξ − k − λ|ξ| and y′ = y′(ξ) = y + ξ,

then x′ + y′ ≤ x+ y for all x, y, ξ and therefore

MΨ0(x, y) = sup
ξ 
=0

Ψ0(x
′, y′) = sup

ξ 
=0
{C1(x

′ + y′)γ}

≤ C1(x+ y)γ = Ψ0(x, y),(2.25)

where C1 is defined in (1.22). Therefore (2.12) also holds. Hence (2.21) follows.
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(ii) We proceed as in (i), except that now we choose K <∞ and define

u(x, y) = K(x+ by)γ .(2.26)

Then we get

x′ + by′ =
{
x+ by − k − ξ(1 + λ− b) for ξ > 0,
x+ by − k − ξ(1− λ− b) for ξ < 0.

Thus in any case we have, by (2.22),

x′ + by′ ≤ x+ by,

and this proves that

u(x, y) ≥Mu(x, y).

It remains to verify that ψ: = u satisfies (2.11). By (2.26) we get

Lu(x, y) = (x+ by)γ−2

[(
1− γ

γ
(Kγ)

γ
γ−1 − δK

)
(x+ by)2

+ Kγ(rx+ αby)(x+ by)− 1
2σ

2Kγ(1− γ)b2y2

]
.

Hence Lu(x, y) ≤ 0 for all (x, y) ∈ S if and only if[
1− γ

γ
(Kγ)

γ
γ−1 − δK +Kγα

]
(x+ by)2 ≤ 1

2σ
2Kγ(1− γ)b2y2

for all (x, y) ∈ S. This holds if and only if

δ > γα+ (1− γ)(Kγ)
1

γ−1 .(2.27)

If (2.23) holds, then (2.27) holds for K large enough. Thus (2.24) follows from Theo-
rem 2.1(i).

Remark 2.3. Corollary 2.2 proves in particular that the value function Ψ is finite.
Moreover, Ψ(x, y) is bounded on every straight line in S of the form

x+ by = constant

for every constant b ∈ [1− λ, 1 + λ].
Remark 2.4 (Some comments on the boundary behavior). Suppose the current

position of the investor is a point (x, y) ∈ S. If we make a transaction of size ξ at
that instant, then after the transaction the new position is given by{

x′ = x− ξ − λ|ξ| − k,
y′ = y + ξ.

(2.28)

Hence

x′ + (1− λ)y′ = x+ (1− λ)y − k − λ(|ξ|+ ξ)(2.29)

and

x′ + (1 + λ)y′ = x+ (1 + λ)y − k − λ(|ξ| − ξ).(2.30)
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x
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�2

(x′, y′)
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(x′, y′) (x, y)

(x, y)

�1

y

Fig. 2.1. Examples of transactions (buying and selling).

In particular, if we sell stocks (ξ < 0), then x′ + (1 − λ)y′ = x + (1 − λ)y − k, so
(x, y) will move to a point (x′, y′) on the line parallel to �1 lying k

1−λ units below the
parallel of �1 through (x, y). See Figure 2.1. Similarly, if we buy stocks (ξ > 0), then
x′ + (1 + λ)y′ = x + (1 + λ)y − k, so (x, y) will move to a point (x′, y′) on the line
parallel to �2 lying

k
1+λ units below the parallel of �2 through (x, y).

We now use this to deduce the boundary behavior of the value function Ψ on ∂S.
(a) If (x, y) ∈ �1, then we have to make an immediate transaction to avoid the

diffusion Y (t) taking us out of S. By the above we see that the only possibility
is to sell stocks of such an amount that (x′, y′) = (0, 0). We conclude that

Ψ(x, y) =MΨ(x, y) = 0 for (x, y) ∈ �1.(2.31)

(b) If (x, y) ∈ �2, we argue similarly: The only admissible action is to buy stocks
immediately of such an amount that (x′, y′) = (0, 0). Hence

Ψ(x, y) =MΨ(x, y) = 0 for (x, y) ∈ �2.(2.32)

(c) On the segment 0 < x < k, y = 0, we are not allowed to make any transaction.
There is no diffusion and all we can do is consume optimally. Hence the HJB
equation indicates that, with L as in (2.7), we should have

LΨ = −δΨ+ rx
∂Ψ

∂x
+
1− γ

γ

(
∂Ψ

∂x

) γ
γ−1

= 0 for x ∈ (0, k),(2.33)

provided that Ψ is smooth enough (see section 4).
(d) On the segment x = 0, 0 < y < k

1−λ , we cannot consume because this would
bring us outside S. Hence the HJB equation indicates that

LΨ(0, y) = c∗ = 0 for 0 < y <
k

1− λ
,(2.34)

and hence that

L0Ψ:= −δΨ+ αy
∂Ψ

∂y
+ 1

2σ
2y2 ∂

2Ψ

∂y2
= 0 for 0 < y <

k

1− λ
,(2.35)
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provided that Ψ is smooth enough (see section 4).
Summarizing, we see that the boundary behavior of Ψ on ∂S can be described by

Ψ(x, y) =MΨ(x, y) = 0 for (x, y) ∈ �1 ∪ �2,
LΨ(x, y) = 0 for 0 ≤ x ≤ k, y = 0, i.e., (x, y) ∈ [0, Q],
L0Ψ(x, y) = 0 for x = 0, 0 ≤ y ≤ y1 =

k
1−λ , i.e., (x, y) ∈ [0, P ].

(2.36)

Note that Ψ is not continuous on ∂S: The points (0, k
1−λ ) and (k, 0) are points of

discontinuity. However, Ψ is upper semicontinuous.

3. Viscosity solutions. Theorem 2.1 is a verification theorem, stating that if
we can find a smooth enough function satisfying the required (quasi-) variational
inequalities, then we have also found the value function of the problem. It is natural
to ask if the converse is also true: Is the value function always a solution of the
corresponding (quasi-) variational inequalities? The problem is that the value function
need not be smooth enough for these inequalities to be well defined in the strong sense.
In fact, the value function is not even continuous at the points P and Q (see (2.36)
and below). However, we shall see that the inequalities are satisfied in a weak sense:
The value function is a viscosity solution of the (quasi-) variational inequalities.

We first recall the following concepts, which will be useful for us.
Definition 3.1. If C is a topological space and u:C → R is a function, then the

upper semi-continuous (usc) envelope u:C → R and the lower semi-continuous (lsc)
envelope u:C → R of u are defined by

u(x) = lim sup
y→x
y∈C

u(y), u(x) = lim inf
y→x
y∈C

u(y), respectively.

We let USC(C) and LSC(C) denote the set of usc functions and lsc functions on
C, respectively.

Note that in general we have

u ≤ u ≤ u,

and that u is usc if and only if u = u, u is lsc if and only if u = u. In particular, u is
continuous if and only if

u = u = u.

We establish some auxiliary results about the operatorM, as follows.
Lemma 3.2.
(i) If u : S → R is usc, thenMu is usc.
(ii) If u : S → R is continuous, thenMu is continuous.
Proof. (i) Suppose that u : S → R is usc. For ζ = (x, y) ∈ S define

�(ζ) = �(x, y) = {(x′(ξ), y′(ξ)) ∈ S; ξ ∈ R \ {0}},
where x′, y′ are as in (2.3). Then �(ζ) is a union of two closed finite line segments,
and since u is usc there exists ζ∗ ∈ �(ζ) such that

Mu(ζ) = sup{u(ζ ′); ζ ′ ∈ �(ζ)} = u(ζ∗).

Fix ζ0 ∈ S and let {ζn}∞n=1 be a sequence in S such that ζn → ζ0 as n → ∞. We
must show that

Mu(ζ0) ≥ lim sup
n→∞

Mu(ζn).
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Let ζ̂ be a cluster point of
{
ζ∗n
}∞
n=1

, i.e., ζ̂ is the limit of some convergent subsequence{
ζ∗nk
}∞
k=1

of
{
ζ∗n
}∞
n=1

. Since ζn → ζ0, we see that �(ζn)→ �(ζ0), in the natural sense.

Hence, since ζ∗nk ∈ �(ζnk) for all k, we conclude that ζ̂ = lim
k→∞

ζ∗nk ∈ �(ζ0). Therefore

Mu(ζ0) ≥ u(ζ̂) ≥ lim sup
n→∞

u(ζ∗n) = lim sup
n→∞

Mu(ζn).

(ii) Suppose that u : S → R is continuous. Fix ζ0 ∈ S and let ζn → ζ0 as in (i).
By (i) it suffices to show that

(∗) Mu(ζ0) ≤ lim inf
n→∞ Mu(ζn).

Suppose not. Then u(ζ∗0 ) =Mu(ζ0) > lim inf
n→∞ Mu(ζn)+ε = lim inf

n→∞ u(ζ∗n)+ε for some

ε > 0.
Since u is continuous, there is a neighborhood G of ζ∗0 such that

u(ζ ′) ≥ lim inf u(ζ∗n) + ε for all ζ ′ ∈ G.

But if n is big enough we have �(ζn)∩G �= ∅, so since ζ∗n is a maximum point of u on
�(ζn) we have

u(ζ∗n) ≥ u(ζ ′) for n big enough.

This contradiction shows that (∗) holds, and the proof is complete.
Lemma 3.3.
(i) Let u : S → R. ThenMu ≤Mū.
(ii) Let ψ : S → R be such that ψ ≥Mψ. Then ψ ≥Mψ.
Proof. (i) Choose ζ0, ζn ∈ S, n = 1, 2, . . . , such that ζn → ζ0 and Mu(ζn) →

Mu(ζ0) as n→∞. Then by Lemma 3.2(i) applied to the usc function ū,

Mu(ζ0) = lim
n→∞Mu(ζn) ≤ lim sup

n→∞
Mū(ζn) ≤Mū(ζ0).

(ii) Choose ζ0, ζn ∈ S, n = 1, 2, . . . , such that ζn → ζ0 and Mψ(ζn) →Mψ(ζ0)
as n→∞. Then

ψ(ζ0) ≥Mψ(ζ0) = lim
n→∞Mψ(ζn) ≥ lim inf

n→∞ Mψ(ζn) ≥Mψ(ζ0).

Corollary 3.4. Suppose u : S → R is usc and u(ζ0) >Mu(ζ0) + η for some
ζ0 ∈ S, η > 0. Then u(ζ0) >Mu(ζ0) + η.

Proof. u(ζ0) >Mu(ζ0) + η =Mū(ζ0) ≥Mu(ζ0) + η by Lemma 3.3(i).
As in (2.7) we let L be the differential operator

Lh(x, y) = sup
c≥0

{
− δh+ (rx− c)

∂h

∂x
+ αy

∂h

∂y
+
1

2
σ2y2 ∂

2h

∂y2
+

cγ

γ

}
,(3.1)

and as in (2.2) we set

Mh(x, y) = sup
ξ 
=0
{h(x′, y′); (x′, y′) ∈ S} for (x, y) ∈ S,(3.2)

where

x′ = x− k − ξ − λ|ξ|, y′ = y + ξ.(3.3)
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The inequalities (2.11), (2.12), and (2.13) of Theorem 2.1 together with the boundary
behavior (2.36) can be combined into one equation as follows:

F (D2Ψ(ζ), DΨ(ζ),Ψ, ζ) = 0 for all ζ = (x, y) ∈ S,(3.4)

where

F :R2×2 ×R2 ×RS ×R2 → R

is defined by

F (A, p, g, ζ) =



max{Λ(A, p, g, ζ), (Mg − g)(ζ)}, ζ ∈ S0,

Λ(A, p, g, ζ), ζ ∈ [0, Q],
Λ0(A, p, g, ζ), ζ ∈ [0, P ],
(Mg − g)(ζ), ζ ∈ �1 ∪ �2,

(3.5)

where

Λ(A, p, g, ζ) = −δg + rζ1p1 + αζ2p2 +
1
2σ

2ζ2
2A22 +max

c≥0

(
−cp1 +

cγ

γ

)
(3.6)

and

Λ0(A, p, g, ζ) = −δg + αζ2p2 +
1
2σ

2ζ2
2A22, A =

[
Aij
]
1≤i,j≤2

.(3.7)

Note that F is not a local operator: The value of F at (A, p, g, ζ) depends on the
value of g on the whole space S.

Also note that

F (A, p, g, ζ) = max{Λ(A, p, g, ζ), (Mg − g)(ζ)} for all ζ ∈ S(3.8)

and that

F (A, p, g, ζ) = F (A, p, g, ζ) (i.e., F is lsc).(3.9)

Following Barles [B], we now give the definition of the viscosity solution of elliptic
equations of type (3.4).
Definition 3.5.
(i) A function u ∈ USC(S) is a viscosity subsolution of

F (D2u(ζ), Du(ζ), u, ζ) = 0 for all ζ = (x, y) ∈ S(3.10)

if for every function f which is C2 in a neighbourhood of S and for every point ζ0 ∈ S
such that f ≥ u on S and f(ζ0) = u(ζ0) we have

F (D2f(ζ0), Df(ζ0), u, ζ0) ≥ 0.(3.11)

(ii) A function u ∈ LSC(S) is a viscosity supersolution of (3.10) if for every
function f which is C2 in a neighbourhood of S and for every point ζ0 ∈ S such that
f ≤ u on S and f(ζ0) = u(ζ0) we have

F (D2f(ζ0), Df(ζ0), u, ζ0) ≤ 0.(3.12)
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(iii) We say that a function u:S → R is a viscosity solution of (3.10) if u is
locally bounded and u is a viscosity subsolution and u is a viscosity supersolution of
(3.10).

An equivalent definition of viscosity solutions which is useful for proving unique-
ness results is the following (see [CIL, section 2]).
Definition 3.6.
(i) A function u ∈ USC(S) is a viscosity subsolution of (3.4) if

F (A, p, u, ζ) ≥ 0 for all (p,A) ∈ J̄2,+
S u(ζ), ζ ∈ S.(3.13)

(ii) A function u ∈ LSC(S) is a viscosity supersolution of (3.4) if
F (A, p, u, ζ) ≤ 0 for all (p,A) ∈ J̄2,−

S u(ζ), ζ ∈ S.

Here the second order “superjets” J2,+
S , J2,−

S and their “closures” J̄2,+
S , J̄2,−

S are
defined by

J2,+
S u(ζ) =

{
(p,A) ∈ R2 ×R2×2;

lim sup
η→ζ
η∈S

{
[u(η)− u(ζ)− p · (η − ζ)− 1

2 (η − ζ)TA(η − ζ)]|η − ζ|−2
} ≤ 0

}
(3.14)

(where ( )T denotes matrix transposed),

J̄2,+
S u(ζ) = {(p,A) ∈ R2 ×R2×2 ; ∃(ζn, pn, An) ∈ S ×R2 ×R2×2,

with (pn, An) ∈ J2,+
S u(ζn) and (ζn, u(ζn), pn, An)

→ (ζ, u(ζ), p, A), when n→∞},(3.15)

and

J2,−
S u = −J2,+

S (−u), J̄2,−
S u = −J̄2,+

S (−u).(3.16)

We are now ready for the first main result of this section.
Theorem 3.7. Suppose that (2.23) holds. Then the value function Ψ is a viscosity

solution of (3.4).
Proof. We first make some useful observations. Suppose w = (c, v) ∈ W is an

admissible control with v = (τ1, τ2, . . . ; ξ1, ξ2, . . .), where τ1 > 0 a.s. Then by the
Markov property we have, with Jw as in (1.14),

Jw(z) = Ez
[ τ∫

0

e−δ(s+t)
cγ(t)

γ
dt+ Jw(Z(w)(τ))

]
(3.17)

for all stopping times τ ≤ τ1.
Note that

Ψ(ζ) ≥MΨ(ζ) for all ζ ∈ S.(3.18)

To see this, suppose on the contrary that there exists ζ1 such that

Ψ(ζ1) <MΨ(ζ1).
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This would mean that we could improve the performance at ζ1 by making a transaction
immediately. This contradicts that Ψ(ζ1) is the optimal performance value at ζ1.

Also note that since τ1 is a stopping time, we know that {ω; τ1(ω) = 0} is F0-
measurable and hence this event has probability either 1 or 0. So we either have

τ1(ω) = 0 a.s. or τ1(ω) > 0 a.s.

(A) We prove that Ψ̄ is a viscosity subsolution. To this end, let f be a C2 function
in a neighborhood of S and let ζ0 ∈ S be such that f ≥ Ψ̄ on S and f(ζ0) = Ψ̄(ζ0).
We consider the following two cases separately.

Case 1. Ψ̄(ζ0) ≤MΨ̄(ζ0).
Then by (3.8) F̄ (D2f(ζ0), Df(ζ0), f(ζ0), Ψ̄, ζ0) ≥ (MΨ̄−Ψ̄)(ζ0) = 0, and hence (3.11)
holds at ζ0 for u = Ψ̄.

Case 2. Ψ̄(ζ0) >MΨ̄(ζ0).
It suffices to prove that Lf(ζ0) ≥ 0. We argue by contradiction: Suppose ζ0 =
(x0, y0) ∈ S and Lf(ζ0) < 0. Then from the definition (3.1) of L we deduce that
∂f
∂x (ζ0) > 0. Hence by continuity, ∂f∂x (ζ) > 0 in a neighborhood G of ζ0. But then,
with ζ = (x, y),

Lf(ζ) = −δf(ζ) + (rx− ĉ)
∂f

∂x
+ αy

∂f

∂y
+ 1

2σ
2y2 ∂

2f

∂y2
+

ĉγ

γ

with ĉ = ĉ(ζ) = (∂f∂x )
1

γ−1 for all ζ ∈ G ∩ S.
Hence Lf(ζ) is continuous on G∩S and so there exists a (bounded) neighborhood

Gρ of ζ0 such that Gρ = {(x, y); |x− x0| < ρ and |y − y0| < ρ} for some ρ > 0 and

Lf(ζ) < 1
2Lf(ζ0) < 0 for all ζ ∈ Gρ ∩ S.(3.19)

Now let η be any number such that

0 < η < (Ψ̄−MΨ̄)(ζ0).(3.20)

Since Ψ̄(ζ0) >MΨ̄(ζ0)+η, we can by Corollary 3.4 find a sequence {ζn}∞n=1 ⊂ Gρ∩S
such that ζn → ζ0 and Ψ(ζn)→ Ψ̄(ζ0) as n→∞ and

MΨ(ζn) < Ψ(ζn)− η for all n ≥ 1.(3.21)

Choose ε ∈ (0, η). Since Ψ̄(ζ0) = f(ζ0), we can choose n0 such that

|Ψ(ζn)− f(ζn)| < ε for all n ≥ n0.(3.22)

In the following we fix n ≥ n0 and put ζ = ζn.
Let w̃ = (c̃, ṽ) with ṽ = (τ̃1, τ̃2, . . . ; ξ̃1, ξ̃2, . . .) be an ε-optimal control for ζ, in the

sense that

Ψ(ζ) ≤ J w̃(0, ζ) + ε.

If τ̃1 = 0 a.s., then (X(w̃), Y (w̃)) makes an immediate jump from ζ to some point
ζ ′ ∈ S, and hence by (3.17)

J w̃(0, ζ) = E0,ζ0 [J w̃(0, ζ ′)].
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But then

Ψ(ζ) ≤ J w̃(0, ζ) + ε = E0,ζ [J w̃(0, ζ ′)] + ε ≤ E0,ζ [Ψ(ζ ′)] + ε ≤MΨ(ζ) + ε,

which contradicts (3.21). We conclude that τ̃1 > 0 a.s.

Fix R <∞ and define τ to be the stopping time

τ = τ(ε) = τ̃1 ∧R ∧ inf{t > 0; (X(w̃)(t), Y (w̃)(t)) �∈ Gρ}.

Then by the Dynkin formula we have

E0,ζ [e−δτf(X(w̃)(τ), Y (w̃)(τ))] = f(ζ) + E0,ζ

[ τ∫
0

e−δtLc̃f(X(w̃)(t), Y (w̃)(t))dt

]

+E0,ζ [e−δτ [f(X(w̃)(τ), Y (w̃)(τ))− f(X(w̃)(τ−), Y (w̃)(τ−))]]

or

E0,ζ [e−δτf(X(w̃)(τ−), Y (w̃)(τ−))]=f(ζ)+E0,ζ

[ τ∫
0

e−δtLc̃f(X(w̃)(t), Y (w̃)(t))dt

]
.

Combining this with (3.17) we get, since Ψ ≥MΨ,

Ψ(ζ) ≤ J (w̃)(0, ζ) + ε

= E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ J w̃(Z(w̃)(τ))

]
+ ε

≤ E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ e−δτΨ(X(w̃)(τ), Y (w̃)(τ))

]
+ ε

≤ E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ e−δτ{Ψ(X(w̃)(τ−), Y (w̃)(τ−)) · χτ<τ̃1

+MΨ(X(w̃)(τ−), Y (w̃)(τ−)) · χτ=τ̃1}
]
+ ε

≤ E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ e−δτΨ(X(w̃)(τ−), Y (w̃)(τ−))

]
+ ε

≤ E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ e−δτf(X(w̃)(τ−), Y (w̃)(τ−))

]
+ ε

= f(ζ) + E0,ζ

[ τ∫
0

e−δt
(
Lc̃f(X(w̃)(t), Y (w̃)(t)) +

c̃γ(t)

γ

)
dt

]
+ ε

≤ Ψ(ζ) + E0,ζ

[ τ∫
0

e−δtLf(X(w̃)(t), Y (w̃)(t))dt

]
+ 2ε.
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We conclude from this that

E0,ζ

[ τ∫
0

e−δtLf(X(w̃)(t), Y (w̃)(t))dt

]
≥ −2ε.(3.23)

On the other hand, from (3.19) we deduce that

E0,ζ

[ τ∫
0

e−δtLf(X(w̃)(t), Y (w̃)(t))dt

]
≤ 1

2δ
Lf(ζ)(1− E0,ζ [e−δτ ]).(3.24)

We claim that

E0,ζn [e−δτ(ε)] is bounded away from 1(3.25)

when n→∞ and ε→ 0.
If this claim is proved, then we see that (3.23) contradicts (3.24) if ε is small

enough. This contradiction proves that Lf(ζ0) ≤ 0 and hence (3.11) holds. Therefore,
to complete the proof we must verify the claim (3.25).

First note that for t < τ we have by (1.4)

X(w̃)(t) = X(0)ert − ert
t∫

0

e−rs c̃(s)ds ≥ X(0)− ρ,

and hence, with some constant C2 <∞,
τ∫

0

e−δt
c̃γ(t)

γ
dt ≤ 1

γ

[ τ∫
0

e−rtc̃(t)dt
]γ[ τ∫

0

e
rγ−δ
1−γ tdt

]1−γ

≤ C2

(
X(0)(1− e−rτ ) + ρe−rτ

)γ
, since rγ − δ < 0 by (1.2) and (2.23).

Combining this with (3.17), we get

Ψ(ζ)− ε ≤ J (w̃)(0, ζ)

≤ E0,ζ

[ τ∫
0

e−δt
c̃γ(t)

γ
dt+ e−δτΨ(X(w̃)(τ), Y (w̃)(τ))

]

≤ E0,ζ [C2(x− (x− ρ)e−rτ )γ ] + E0,ζ [e−δτΨ(X(w̃)(τ−), Y (w̃)(τ−)) · Xτ̃1>τ ]
+ E0,ζ [e−δτ{Ψ(X(w̃)(τ), Y (w̃)(τ))−Ψ(X(w̃)(τ−), Y (w̃)(τ−))} · Xτ̃1≤τ ]

≤ E0,ζ [C2(x− (x− ρ)e−rτ )γ ] + E0,ζ [e−δτΨ(X(w̃)(τ−), Y (w̃)(τ−)) · Xτ̃1>τ ]
+ E0,ζ [e−δτMΨ(X(w̃)(τ−), Y (w̃)(τ−)) · Xτ̃1≤τ ]

≤ E0,ζ [C2(x− (x− ρ)e−rτ )γ ] + E0,ζ [e−δτXτ̃1>τ ] · sup{Ψ(ζ̃); ζ̃ ∈ Gρ}
+ E0,ζ [e−δτXτ̃1≤τ ] · sup{MΨ(ζ̃); ζ̃ ∈ Gρ}.(3.26)

Now if there exists a sequence εk → 0 and a subsequence {ζnk} of {ζn} such that

E
0,ζnk [e

−δτ(εk)]→ 1 when k →∞,
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then

E
0,ζnk [e

−δτ(εk)Xτ̃1>τ ]→ 0 when k →∞,

so by choosing ζ = ζnk , τ = τ(εk) in (3.26) and letting k →∞, we obtain

Ψ̄(ζ0) ≤ C2ρ
γ + sup{MΨ(ζ̃); ζ̃ ∈ Gρ}.

Hence by Lemma 3.3 and (3.20)

Ψ̄(ζ0) ≤ lim
ρ→0

(C2ρ
γ + sup{MΨ(ζ̃); ζ̃ ∈ Gρ})

=MΨ(ζ0) ≤MΨ̄(ζ0) < Ψ(ζ0)− η.

This contradiction proves claim (3.25) and completes the proof that Ψ̄ is a viscosity
subsolution.

(B) Next we prove that Ψ is a viscosity supersolution. So we let f be a C2

function in a neighborhood of S and we let ζ0 ∈ S be such that f ≤ Ψ on S and
f(ζ0) = Ψ(ζ0). We want to show that

F (D2f(ζ0), Df(ζ0), f(ζ0),Ψ, ζ0) ≤ 0.

Since by Lemma 3.3(ii) MΨ − Ψ ≤ 0 everywhere, we see from (3.5) that this holds
for ζ0 ∈ �1 ∪ �2 and it suffices to show that

Lf(ζ0) ≤ 0 for ζ0 ∈ S0 ∪ [0, Q]

and

L0f(ζ0) ≤ 0 for ζ0 ∈ [0, P ].

For ε > 0 let ŵ = ŵε,c be an admissible control beginning with a constant consumption
rate c ≥ 0 and no transactions up to the first time τε at which the process Zc(t) exits
from

Kε = {(s, x, y); |(s, x, y)− (0, x0, y0)| < ε} ∩ S̃,

where ζ0 = (x0, y0). Choose ζn ∈ Kε such that ζn → ζ0 and Ψ(ζn) → Ψ(ζ0) as
n→∞.

Then by combining Dynkin’s formula with the dynamic programming principle
([Kr, Theorem 6, p. 150]) we get for all n

Ψ(ζn) ≥ E0,ζn

[ τ∫
0

e−δt
cγ

γ
dt+ e−δτΨ(X(ŵ)(τ), Y (ŵ)(τ))

]

≥ E0,ζn

[ τ∫
0

e−δt
cγ

γ
dt+ e−δτf(X(ŵ)(τ), Y (ŵ)(τ))

]

= f(ζn) + E0,ζn

[ τ∫
0

e−δt
(
Lcf(X(ŵ)(t), Y (ŵ)(t)) +

cγ

γ

)
dt

]
.
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We conclude that

E0,ζn

[ τε∫
0

e−δt
{
Lcf(X(ŵ)(t), Y (ŵ)(t)) +

cγ

γ

}
dt

]
≤ Ψ(ζn)− f(ζn) for all n.

Taking the limit as n→∞, we obtain

E0,ζ0

[ τε∫
0

h(t)dt

]
≤ 0,

where

h(t) = e−δt
(
Lcf(X(ŵ)(t), Y (ŵ)(t)) +

cγ

γ

)
.

By dividing the left-hand side by E0,ζ0 [τε] we get

E0,ζ0
[ ∫ τε

0
h(t)dt

]
E0,ζ0 [τε]

=
E0,ζ0

[ ∫ τε
0
(h(t)− h(0))dt

]
+ h(0)E0,ζ0 [τε]

E0,ζ0 [τε]

−→ h(0) as ε→ 0, since h(t) is continuous at t = 0.

We conclude that

h(0) = Lcf(ζ0) +
cγ

γ
≤ 0(3.27)

for all c ≥ 0 such that ŵε,c is admissible for ε small enough. If ζ0 ∈ S0 ∪ [0, Q], then
this is clearly the case for all c ≥ 0, and therefore (3.27) implies that Lf(ζ0) ≤ 0. If
ζ0 ∈ [0, P ], then the only such admissible c is c = 0. Therefore we get L0f(ζ0) ≤ 0 in
this case, as required.

Next we turn to the question of uniqueness. Our second main result in the section
is the following theorem.
Theorem 3.8 (Comparison theorem).
(i) Suppose that u is a viscosity subsolution and v is a viscosity supersolution of

(3.4) and that u and v satisfy the estimates

−C|x+ y|γ ≤ u(x, y) for all (x, y) ∈ S,(3.28)

v(x, y) ≤ C|x+ y|γ for all (x, y) ∈ S,(3.29)

for some constant C <∞. Then
u ≤ v in S0.

(ii) Moreover, if in addition

v(x, y) = lim inf
(ξ,η)→(x,y)

(ξ,η)∈S0

v(ξ, η) for all (x, y) ∈ ∂S,(3.30)

then

u ≤ v in S.
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Corollary 3.9. Suppose that u and v are two viscosity solutions of (3.4) satis-
fying (3.28) and (3.29). Then

u = v in S0,

and u is continuous in S0. In particular, if (2.23) holds, then the value function Ψ is
continuous on S0.

Proof of Corollary 3.9. Since u is a viscosity solution, it follows that u is a
viscosity subsolution and u is a viscosity supersolution, and similarly for v. Hence,
by Theorem 3.8,

u ≤ v ≤ v ≤ u ≤ u in S0.

This implies that

u = u = v = v in S0.

The last statement of Corollary 3.9 now follows from Theorem 3.7 and Corollary
2.2.

Proof of Theorem 3.8. The proof is based on the technique of Ishii (see [B], [CIL],
and [IL]) and on the proofs of Lemma 3.12 in [AMS] and Theorem 5.7 in [AST].
Consequently we shall not give a detailed proof here but rather point out the special
treatment required to handle the nonlocal intervention operatorM.

Let u and v be as in Theorem 3.8. We first construct a strict supersolution of
(3.4) by making a perturbation of v. Choose γ′ ∈ (γ, 1) such that (see (1.23))

δ > γ′
[
r +

(α− r)2

2σ2(1− γ′)

]
.(3.31)

Set

g(x, y) = (x+ y)γ
′

(3.32)

and choose ε > 0. Then

M(v + εg) ≤Mv + εMg(3.33)

and hence

M(v + εg)− (v + εg) ≤ (Mv − v) + ε(Mg − g).(3.34)

Since v is a supersolution, we have

Mv − v ≤ 0.(3.35)

Moreover, with ζ = (x, y),

(Mg − g)(ζ) = sup
ξ 
=0
{g(x− k − ξ − λ|ξ|, y + ξ)} − g(x, y)

= sup
ξ 
=0
{(x+ y − k − λ|ξ|)γ′} − (x+ y)γ

′

≤ (x+ y)γ
′
[(
1− k

x+ y

)γ′

− 1
]
.(3.36)
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Therefore, for each compact subset C of S \ {0} there exists ρ1 > 0 such that
(Mg − g)(ζ) ≤ −ρ1 for all ζ ∈ C. So from (3.34) and (3.35) we get

M(v + εg)− (v + εg) ≤ −ερ1 in C.(3.37)

Now if we define the operator L0 by (see (2.2))

L0 = −δI + rx
∂

∂x
+ αy

∂

∂y
+ 1

2σ
2y2 ∂2

∂y2
,(3.38)

where I is the identity operator, then

L0g(x, y) = −δ(x+ y)γ
′
+ (rx+ αy)γ′(x+ y)γ

′−1

+ 1
2σ

2y2γ′(γ′ − 1)(x+ y)γ
′−2

= (x+ y)γ
′
[
− δ + γ′

rx+ αy

x+ y
+ 1

2σ
2γ′(γ′ − 1) y2

(x+ y)2

]
.(3.39)

If we put

η =
y

x+ y
so that

x

x+ y
= 1− η,

then we get

L0g(x, y) = (x+ y)γ
′
[−δ + γ′r + γ′(α− r)η + 1

2σ
2γ′(γ′ − 1)η2].

By (3.31) it follows that

L0g(x, y) < 0 for all (x, y) �= (0, 0).
Consequently, on every compact C of S \ {0} there exists ρ2 > 0 such that

L0g(x, y) + max
c≥0

(
−c ∂g

∂x

)
≤ −ρ2 on C.

Therefore, since v is a supersolution of (3.4), we conclude that on every compact C
of S \ {0} there exists ρ > 0 such that

vε: = v + εg

is a viscosity supersolution of

F (D2vε(ζ), Dvε(ζ), vε(ζ), vε, ζ) = −ερ for ζ ∈ C.

Let us now prove the theorem by contradiction. Assume that

sup
ζ∈S
{u(ζ)− v(ζ)} > 0.(3.40)

Choose ε > 0 such that

sup
ζ∈S
{u(ζ)− vε(ζ)} > 0.(3.41)

Define

h(ζ):= u(ζ)− vε(ζ).(3.42)
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Since h is usc and tends to −∞ when |ζ| → ∞, the set
Argmax h: = {ζ;h(ζ) = sup{h(ζ); ζ ∈ S}}

is nonempty and compact in S \ {0}. Choose an open set G ⊂ S \ {0} containing this
compact (G open relative to S) and with G compact. In order to get a contradition
it suffices to prove that

u ≤ vε in G.

Thus we have reduced the problem to proving a comparison theorem for a strict
supersolution vε and a subsolution u of (3.4) in an open subset G of S \ {0} with
compact closure G, when the supremum of u−vε is attained in G only. This is proved
by using Ishii’s technique, adapted as in [B, Theorem 4.6] and in [AMS, Theorem 5.7]
for the boundary conditions. We now explain this in more detail, as follows.

For j = 1, 2, . . . , define, for (ζ, η) ∈ S × S,

Hj(ζ, η) = u(ζ)− vε(η)− j

2
|ζ − η|2(3.43)

and set

mj = sup{Hj(ζ, η); (ζ, η) ∈ S × S}(3.44)

and

m = sup{h(ζ); ζ ∈ S}.(3.45)

Proceeding exactly as in [AMS], we obtain that there exist ζj , ηj in S such that
mj = Hj(ζj , ηj) <∞.(3.46)

Moreover,

j|ζj − ηj |2 → 0 as j →∞(3.47)

and

mj → m as j →∞.(3.48)

Suppose

Argmax h is contained in S0(3.49)

and choose ζ̂ ∈ S0 such that

m = h(ζ̂).

Then we get that

(ζj , ηj) ∈ S0 × S0 for j large enough.(3.50)

By applying [CIL, Theorem 3.2] we now obtain that there exist 2× 2 matrices Pj , Qj
such that

(pj , Pj) ∈ J̄2,+u(ζj) and (qj , Qj) ∈ J̄2,−vε(ηj)
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and [
Pj 0
0 −Qj

]
≤ 3j

[
I −I
−I I

]
,(3.51)

where

pj = j(ζj − ηj) and qj = pj .

Since u is a subsolution and vε is a strict supersolution, we obtain

F (Pj , pj , u, ζj) ≥ 0(3.52)

and

F (Qj , qj , vε, ηj) ≤ −ερ.(3.53)

From (3.53) it follows that

Λ(Qj , qj , vε, ηj) < 0,

and proceeding as in [AMS], we obtain

Λ(Pj , pj , u, ζj)− Λ(Qj , qj , vε, ηj) < 0.(3.54)

Consequently Λ(Pj , pj , u, ζj) < 0, and from (3.52) we obtain that

(Mu− u)(ζj) ≥ 0.(3.55)

From (3.53) we have

(Mvε − vε)(ηj) ≤ −ερ < 0.(3.56)

Therefore, combining (3.55) and (3.56), we get

mj < u(ζj)− vε(ηj) <Mu(ζj)−Mvε(ηj)− ερ.(3.57)

Since ζj , ηj → ζ̂ and u is usc, we obtain

m < lim inf
j→∞

[Mu(ζj)−Mvε(ηj)].(3.58)

Since u is usc and vε is lsc we see, after some reflections, that

lim sup
j→∞

Mu(ζj) ≤Mu(ζ̂)(3.59)

and

lim sup
j→∞

(−Mvε(ηj)) ≤ −Mvε(ζ̂).(3.60)

Hence we get the desired contradiction:

m <Mu(ζ̂)−Mvε(ζ̂)

= sup
ξ1 
=0
{u(x̂′(ξ1), ŷ′(ξ1))} − sup

ξ2 
=0
{vε(x̂′(ξ2), ŷ′(ξ2))}

≤ sup
ξ 
=0
{(u− vε)(x̂

′(ξ), ŷ′(ξ))}

≤ sup{(u− vε)(ζ); ζ ∈ S} = m,
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where ζ̂ = (x̂, ŷ) and (see (2.3))

x̂′(ξ) = x̂− ξ − λ|ξ| − k, ŷ′(ξ) = ŷ + ξ.

This contradiction shows that assumption (3.49) cannot hold. Therefore we must
have

ζ̂ ∈ Argmax h ∩ ∂S.(3.61)

To treat the boundary points we proceed exactly as in the proof of Theorem 5.7 of
[AST], which itself is based on the proof of Theorem 4.6 in [B] (see the appendix
there, p. 166).

From (3.30) there exists a sequence {ζj} ⊂ S0 ∩ G converging to ζ̂ such that

vε(ζj)→ vε(ζ̂) when j →∞. Let εj = |ζj − ζ̂|. The idea is now to introduce the test
function

wj(ζ, η) = u(ζ)− vε(η)− θj(ζ, η), (ζ, η) ∈ S × S,
where

θj(ζ, η) =
|ζ − η|2
2εj

+
1

4

(
d(η)− d(ζ)

d(ζj)
− 1
)4

+
1

4
|ζ − ζ̂|4.

Here d(η) denotes the distance from η to ∂S, and similarly for d(ζ), d(ζj).
Following exactly the same steps as in [AST] and treating the termMu−u as we

did before, we obtain a contradiction also in the case (3.61). This shows that (3.40)
cannot hold and this completes the proof of Theorem 3.8.

We summarize the results of this section in the following.
Theorem 3.10. Let Ψ(x, y) be the value function given by (1.17). Suppose (2.23)

holds, i.e.,

δ > γα.(3.62)

Then Ψ is continuous on S0, and Ψ is the unique viscosity solution of (3.4) with the
property that there exists C <∞ such that

|Ψ(x, y)| ≤ C|x+ y|γ for all (x, y) ∈ S.(3.63)

4. Numerical results. In this section we present the result of a numerical
method used to approximate the viscosity solution of (3.4) in the case when the
solvency region is S+ = [0,∞) × [0,∞). (See Remark 1.1.) This method is detailed
in [CØS].

The problem is first localized on D := (0, L) × (0, L), assuming zero Neumann
boundary conditions on the localized boundary. The localized problem is then solved
by using an iterative method, which permits us to obtain the QVHJBI as a limit of
variational HJBIs. Each variational inequality is approximated by a finite difference
scheme and then solved by a Howard algorithm.

Figure 4.1 represents the optimal transaction policy for the following values of the
parameters: k = 0.05, λ = 0.1, σ = 0.3, r = 0.07, δ = 0.1, γ = 0.3, α = 0.11, L = 100.

The results are relevant only in a smaller domain, for example [0, 50] × [0, 50],
because of the side effects of the truncature and the artificial boundary conditions set
for x = 100 and y = 100.
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V=57.74

V=57.51

V=57.948

V=57.915

S

B

Sell

Buy

NT

Fig. 4.1. Optimal transaction policy (see text for parameter values).

The domain consists of 3 regions: buy (B), sell (S), and no transaction (NT ).
The set of states ∆1 and ∆2 reached after a purchase or a sale of stock are plotted.

They are situated inside the continuation set NT . Unlike the case of no fixed costs,
these lines do not coincide with the boundaries δ1 and δ2 of NT .

After a transaction, the position of the investor evolves as a pure diffusion process
inside NT until it reaches the boundary. Then, a jump occurs back to the closest of
the two lines ∆1, ∆2 in the transaction directions.

It is natural to ask whether it is possible to obtain more information about the
shape of the no-transaction region NT , both for this choice S+ of solvency region and
for the choice S given by (1.9). As mentioned in the introduction, we know that if
k = 0, then NT is bounded by two straight lines from the origin [DN] (see Figure
1.2). If k > 0, is NT still bounded by two curves? If so, what can be said about the
form of these curves? Can they be given an explicit description?

Remark 4.1. For results on the viscosity solutions of QVIs corresponding to
impulse control problems (which, however, do not apply to our situation), see [I], [P],
and [TY].

Acknowledgments. We wish to thank Marianne Akian, Guy Barles, Jean-
Philippe Chancelier, Nils Christian Framstad, and Kristin Reikvam for very helpful
comments and fruitful discussions.
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Abstract. This paper discusses nonlinear optimization techniques in robust control synthe-
sis, with special emphasis on design problems which may be cast as minimizing a linear objective
function under linear matrix inequality (LMI) constraints in tandem with nonlinear matrix equal-
ity constraints. The latter type of constraints renders the design numerically and algorithmically
difficult. We solve the optimization problem via sequential semidefinite programming (SSDP), a
technique which expands on sequential quadratic programming (SQP) known in nonlinear optimiza-
tion. Global and fast local convergence properties of SSDP are similar to those of SQP, and SSDP
is conveniently implemented with available semidefinite programming (SDP) solvers. Using two test
examples, we compare SSDP to the augmented Lagrangian method, another classical scheme in
nonlinear optimization, and to an approach using concave optimization.

Key words. nonlinear programming, sequential semidefinite programming, robust gain-
scheduling control design, linear matrix inequalities, nonlinear matrix equalities
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1. Introduction. A variety of problems in robust control design can be cast as
minimizing a linear objective subject to linear matrix inequality (LMI) constraints
and additional nonlinear matrix equality constraints:

minimize dTx

(D) subject to A(x) ≤ 0,
B(x) = 0,

where d is a given vector, x denotes the vector of decision variables, A(x) is an affine
symmetric matrix function, ≤ 0 means negative semidefinite, and B(x) is a nonlinear
matrix valued function, which in many cases is bilinear in x. In the present paper, we
are primarily interested in robust gain-scheduling control design, but a variety of other
design problems may be cast in the form (D). Without aiming at completeness, let us
just mention examples like fixed or reduced-orderH2 andH∞ synthesis, robust control
synthesis with different classes of scalings, robust control design with parameter-
dependent Lyapunov functions, robust control of nonlinear systems with integral-
quadratic-constraints (IQC)-defined components, and, more generally, minimization
or feasibility problems with bilinear matrix inequality (BMI) constraints. We discuss
some of these applications of (D) at more detail.

Example 1. Observe that the reduced-order H∞ synthesis problem may be cast
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†Université Paul Sabatier, Mathématiques pour l’Industrie et la Physique, 118, route de Narbonne,

31062 Toulouse, France (fares@cict.fr, noll@mip.ups-tlse.fr).
‡ONERA-CERT, Control Systems Department, 2 av. Edouard Belin, 31055 Toulouse, France

(apkarian@cert.fr).

1791



1792 B. FARES, D. NOLL, AND P. APKARIAN

as

minimize dTx

(H∞) subject to A(x) ≤ 0,
rank Q(x) ≤ r,

where A(x) and Q(x) are symmetric affine. One way to transform (H∞) into the
form (D) is to introduce a slack matrix variable W of size q × r, q the dimension of
Q(x), let x̃ = (x,W ) be the new decision vector, and introduce the quadratic equality
constraint

B(x̃) = Q(x)−WTW = 0.

In special situations, there may be better suited ways to obtain the form (D).
Example 2. The BMI-feasibility problem is a near at hand application of our

method. If the BMI appears in standard form

B(x) = A(x) +
∑

1≤i<j≤n
Bijxixj

for an affine symmetric matrix valued function A and symmetric matrices Bij , we
are readily led to introduce a slack variable zij = xixj , and replace the BMI with a
new LMI in tandem with the nonlinear constraints zij − xixj = 0. In practice, we
are more likely to encounter BMIs or even multilinear matrix inequalities, featuring
terms of the form XiAXj with Xi, Xj parts of the decision vector. In this event,
introducing an auxiliary decision matrix variable Zij = XiAXj will have the same
effect and transform the constraint set into the form of LMIs plus algebraic equalities.

Example 3. As a special case of a BMI problem, consider static output feedback
control design, where we have to find a Lyapunov matrix variable X > 0 and a
controller K such that for given matrices A, B, C the BMI

(A+BKC)X +X(A+BKC)T < 0

is satisfied. Introducing a new variable W = KCX, we could readily transform this
into an LMI plus a nonlinear matrix equality, KCX −W = 0, to obtain the program
(D).

An alternative way to obtain the form (D) is to open the BMI via the projection
lemma [18]. This leads to two LMIs,

N T
BT (AX +XA

T )NBT < 0, N T
C (Y A+A

TY )NC < 0,

in tandem with X = Y −1. Here NBT , NC are bases for the null spaces of BT , C.
With the nonlinear equality constraint rearranged as XY − I = 0, we obtain a second
version of (D).

It seems appealing to include the LMI(
X I

I Y

)
≥ 0

among the above; as with Y > 0, and via Schur complement, it is equivalent to
X − Y −1 ≥ 0. While becoming redundant near the optimum, the new LMI will
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Fig. 1. Designing reduced LFT model.

help to stabilize the problem. Notice, however, that this idea, which has even been
used to relax the static output feedback problem into an LMI problem, is no longer
applicable in the more complicated robust design problem we shall present in more
detail in section 2.

Example 4. Yet another important case is robust control design via generalized
Popov multipliers (cf. [33, 28]), also known as km or µ synthesis. Here we encounter
a BMI of the form

(P + UKV )TST + S(P + UKV ) ≤ 0
to be solved for S and K for given P , U , V . By introducing a slack matrix variable
G = SUKV + (SUKV )T , the design problem may be cast in the form (D) as

minimize dTx, x = (S,C,G)

subject to PTST + SP +G ≤ 0,
SUKV + (SUKV )T −G = 0.

A similar situation occurs in mixed H2/H∞-control design, where a BMI of the more
general form

Ψ + (P + UKV )TSTΦ+ ΦS(P + UKV ) ≤ 0
with fixed Ψ, Φ, P , U , V , to be solved for S, K, arises. This could now be handled
using G = ΦSUKV + (ΦSUKV )T .

Example 5. For many robust control problems, linear fractional transformations
(LFT) are used to model plants with uncertain components or to represent nonlinear
systems as uncertain linear systems. The corresponding LFTs are often highly com-
plex and difficult to handle numerically, and techniques for reducing the order of LFT
representations are required. One way to compute a reduced-order LFT approxima-
tion of the nominal LFT is by minimizing the worst-case energy discrepancy between
outputs of the nominal and the reduced plant in response to arbitrary finite-energy
input signals (see Figure 1). This approach admits a formulation of the form (D).
See, e.g., [21] for more details.

The nonlinear constraint B(x) = 0 renders problem (D) highly complex and
difficult to solve in practice (cf. [13]). Nonetheless, due to its importance, various
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heuristics and ad hoc methods have been developed over recent years to obtain sub-
optimal solutions to (D). Methods currently employed are usually coordinate descent
schemes, which alternatively and iteratively fix parts of the coordinates of the deci-
sion vector, x, trying to optimize the remaining indices. The D-K (scaling-controller)
iteration procedure is an example of this type [6, 37], whose popularity may be at-
tributed to the fact that it is conceptually simple and easily implemented as long as
the intermediate steps are convex LMI programs. The latter may often be guaranteed
through an appropriate choice of the decision variables held fixed at each step. How-
ever, a major drawback of coordinate descent schemes is that they almost always fail
to converge, even for starting points close to a local solution (see [22]). As a result,
controllers obtained via such methods are highly questionable and bear the risk of
unnecessary conservatism.

A new optimization approach to robust control design was initiated in [5], where
the authors showed that reduced-order H∞ control could be cast as a concave mini-
mization problem. It was observed, however, that in a number of cases local concave
minimization, which is known to be numerically difficult, produced unsatisfactory re-
sults. This occurs, in particular, when iterations get stalled, which is probably due
to the lack of second-order information.

In [16], we therefore proposed a different approach to (D), again based on non-
linear optimization techniques. The augmented Lagrangian method from nonlinear
optimization was successfully extended to program (D). The difficult nonlinear con-
straints were incorporated into an augmented Lagrangian function, while the LMI
constraints, due to their linear structure, were kept explicitly during optimization. A
Newton-type method including a line search, or, alternatively, a trust-region strategy,
was shown to work if the penalty parameters were appropriately increased at each
step, and if the so-called first-order update rule for the Lagrange multiplier estimates
(cf. [9]) was used.

The disadvantage of the augmented Lagrangian method is that its convergence
is at best linear if the penalty parameter c is held fixed. Superlinear convergence is
guaranteed if c→∞, but the use of large c, due to the inevitable ill-conditioning, is
prohibitive in practice. The present investigation therefore aims at adapting methods
with better convergence properties, like sequential quadratic programming (SQP), to
the case of LMI constrained problems. Minimizing at each step the second-order Tay-
lor expansion of the Lagrangian of (D) about the current iterate defines the tangent
subproblem, (T ), whose solution will provide the next iterate. Due to the constraints
A(x) ≤ 0, (T ) is not a quadratic program, as in the case of SQP, but requires minimiz-
ing a quadratic objective function under LMI constraints. After convexification of the
objective, (T ) may be turned into a semidefinite program, conveniently solved with
current LMI tools (cf., for instance, [20, 36]). We refer to this approach as sequential
semidefinite programming (SSDP). It will be discussed in section 4, and a local con-
vergence analysis will be presented in section 5. Although more complex than most
coordinate descent schemes, the advantages of the new approach are at hand:

• The entire vector x of decision variables is updated at each step, so, for
instance, we do not have to separate Lyapunov and scaling variables from
controller variables.

• Like SQP, SSDP is guaranteed to converge globally, which means, for an
arbitrary and possibly remote initial guess, if an appropriate line search or
trust region strategy is applied.

• Being of second-order type, the rate of convergence of SSDP is superlinear in
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a neighborhood of attraction of a local optimum.
The present paper discusses and compares three nonlinear optimization techniques

suited for the design problem (D) with special emphasis on SSDP since it performed
best. The reader might be missing an approach via interior-point techniques—perhaps
more in the spirit of the age. In fact, in a different context, Jarre [24] proposes such
a method based on the log-barrier function known from the interior-point approach
to the semidefinite programming (SDP) problem but does not present any numerical
evidence as to the practicality of the approach. Theoretical and practical results
are presented by Leibfritz and Mostafa [25, 26], who consider static output feedback
control and mixed H2/H∞-control. Our own numerical experiments [3] with interior-
point methods for robust control design seem to indicate that those are generally less
robust and that the different parameters may be difficult to tune. We emphasize
that the method proposed for robust control design is modulable in the sense that
the optimization procedure featuring SSDP may be replaced by any other tool based
on the user’s favorite optimizer. Future investigations will show which methods work
best in a given situation, and the present contribution does not claim to present the
ultimate tool.

The paper is organized as follows. Section 2 presents and develops the setting
of the robust gain-scheduling control, a particularly important application of (D).
Even though the full robust gain-scheduling case has never been presented, let alone
attacked algorithmically, we keep this part rather cursory, as the individual steps of
the method are essentially known. We rely on a recent excellent exposition of the
material by Scherer [35] and related texts [29, 1, 21]. We have chosen this problem
as our main motivating case study, as it seems to be among the most difficult and
numerically demanding cases of the scheme (D).

Section 3 aims at practical aspects. We offer more specific choices of parameter
uncertainties and scaling variables which help to reduce the algorithmic complexity
of the problem and, as far as our own experiments go, work well in practice.

Section 4 gives a description of the SSDP method as it naturally emerges from the
classical SQP method. Local superlinear and quadratic convergence of SSDP is shown
in section 5. While several convergence proofs for the SQP method are known in the
literature, (cf. [11, 12]), they all seem to depend heavily on the polyhedrality of the
classical-order cone, and no extension addressing the semidefinite cone seems available.
The proof we present here is fairly general and includes nonlinear programming with
more general order cones.

Numerical aspects of the SSDP method are discussed in section 7. Using two
typical test examples, we compare it to the augmented Lagrangian method and to
concave programming. While apparently of moderate size, these examples represent
cases where classical approaches like the D-K iteration perform poorly or are even at
complete loss.

2. Robust gain-scheduling control design. We wish to design a robust gain-
scheduling controller for a plant which depends rationally on the uncertain and sched-
uled parameters. Consider an LFT plant in standard form described by the state-space
equations


ẋ

zθ

z

y


 =




A Bθ B1 B2

Cθ Dθθ Dθ1 Dθ2

C1 D1θ D11 D12

C2 D2θ D21 0






x

wθ

w

u


 , wθ = Θzθ,(1)
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where Θ(t) is a time-varying matrix valued parameter assumed to have a two-block
diagonal structure

Θ =

(
Θm

Θu

)
.(2)

Here Θm(t) represents the scheduled parameters, measured on-line, and Θu(t) repre-
sents the time-varying parametric uncertainties, which we allow to vary in a known
compact set K of matrices. We call parameters Θ of this form admissible, and the set
of admissible (scheduled and bounded uncertain) parameters is denoted Θ.

We recall that the limiting case, no Θu (all parameters measured), is called the
linear parameter-varying (LPV) or gain-scheduling control problem, while the case no
Θm (all parameters uncertain) is referred to as the robust control problem.

The state-space entries of the plant (1) with inputs w, u and outputs z, y are
rational functions of the parameters Θm and Θu. The meaning of the signals is as
follows: u is the control input, y is the measurement signal, w stands for the vector
of exogenous signals, and z stands for regulated variables.

The robust gain-scheduling control design requires finding a linear controller K
of the form


˙̄x

z̄θ

u


 =




AK BKθ BK1

CKθ DKθθ DKθ1

CK2 DK2θ DK21






x̄

w̄θ

y


 , w̄θ = φ(Θm)z̄θ,(3)

where φ is called the scheduling function, to be determined as part of the design, such
that (3) fulfills the following requirements:

• The closed-loop system, obtained by substituting (3) into (1), is internally
stable.

• The L2-gain of the closed-loop operator mapping w to z is bounded by γ.
• The above specifications hold for all admissible parameter trajectories Θ ∈ Θ.

In order to continue our analysis, we apply a convenient procedure first used in
[29, 1]. We gather all parameter-dependent components into a single block, which
leads to an augmented plant P̄ (s) described in the frequency domain as



z̄θ
zθ

z

y

w̄θ


 =

P̄ (s)︷ ︸︸ ︷

0 0 I

0 P (s) 0

I 0 0







w̄θ
wθ

w

u

z̄θ


 .(4)

It is easy to verify pictorially that the original scheme shown on the left-hand side of
Figure 2 is equivalent to the one shown on the right-hand side using the augmented
system P̄ (s). After closing the loop, i.e., substituting (3) into (1), respectively, (4),
the closed-loop systems mapping exogenous inputs w to regulated outputs z are the
same on both sides.

By inspecting the left-hand diagram in Figure 2, we see that the original robust
gain-scheduling control problem can now be viewed as a standard robust control
problem for the time-invariant plant P̄ facing the augmented uncertain parameter
matrix Θ̃, where

Θ̃ =

(
φ(Θm)

Θ

)
, Θ =

(
Θm

Θu

)
.
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Fig. 2. Gain-scheduling robust control.

Based on this reformulation, sufficient conditions for the existence of a robust
gain-scheduling linear time-invariant (LTI) controller (3) are consequently obtained
by a suitable extension of the usual procedure in robust control design: Apply the
bounded real lemma and the generalized S-procedure with a suitable choice of scalings
to obtain sufficient conditions for robust stability of the closed-loop system (Lemma 1).
Then use the projection theorem [18, 35] to eliminate the state-space variables of the
controller K. The sufficient conditions for solvability are now again formulated in
terms of the state-space entries (1) in conjunction with the Lyapunov and scaling
variables (Theorem 2). They form, as we shall see, a mix of LMIs and nonlinear alge-
braic equalities. Now, at the core of the procedure, calculate the optimal gain using
the proposed optimization techniques. As a final step, extract the robust controller K
from the decision parameters used during optimization using, e.g., the method in [1].

We proceed to present the details of this scheme for the robust gain-scheduling
control case. At the present stage, we aim at a fairly general approach, but the next
section will focus on the practical aspects, where some of the theoretically possible
steps will have to be reconsidered regarding their numerical performance. This con-
cerns, in particular, the choice of the Lyapunov test matrix used in the bounded real
lemma, the S-procedure, and the choice of the scalings (structured or general).

In this section, we allow for a fairly general class of scalings Q of the form

Q =
(
Qm

Qu

)
, Qm =

(
Q1 Q2

QT2 Qm

)
(5)

compatible with the block structure of Θ̃. Later on we shall, at the cost of some
conservatism, consider more special classes of scalings in order to reduce the numerical
burden in the design.

Remark. Let us address the question of choosing the Lyapunov test function.
Although parameter-dependent Lyapunov functions can be used (see [7, 17] for dis-
cussions), in the present paper, we shall restrict our attention to the more traditional
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single quadratic Lyapunov approach based on a parameter-independent Lyapunov
matrix P0. This choice is at the cost of some conservatism but keeps the theoretical
descriptions simple and practically useful.

For the notation, observe that we use script matrix symbols A, B1, Bθ, etc., for
the state-space data of the closed-loop system obtained by substituting (3) into (4);
see Figure 2. We have the following lemma.

Lemma 1. Suppose there exists a Lyapunov matrix P0 > 0 and scalings Q, R,
and S of the above form (5) such that the nonlinear matrix inequality

(




0 I

I 0

Q S
ST R

−γ 0

0 1
γ







P0 0 0

A Bθ B1

0 I 0

Cθ Dθθ Dθ1
0 0 I

C1 D1θ D11



< 0(6)

is satisfied. Further suppose that the scalings satisfy the condition(
Θ̃

I

)T ( Q S
ST R

)(
Θ̃

I

)
≥ 0(7)

for each admissible Θ̃. Then the closed-loop system is robustly stable over the uncertain
set Θ. Moreover, for every admissible Θ̃ ∈ Θ, the operator mapping the exogenous
signal w into the regulated variables z has an L2-gain bounded above by γ.

Proof. The result is essentially the same as that of Theorem 10.4 in [35]. It consists
of applying the bounded real lemma in tandem with the full block S-procedure.

Remark. The derived sufficient conditions for robust gain-scheduling control are
not suited for practice as they stand. This is mainly due to the infinite constraint
(7), which involves an infinity of test matrices Θ̃. In the following section, we shall
indicate in which way (7) may, at the cost of some conservatism, be turned into a
finite condition.

A second aspect of the derived criteria is that (6) is not jointly convex in the
decision variables P0, Q, R, S, and K. As a consequence, using these variables in the
design is a difficult problem not suited for the usual convexity techniques in control.

As we shall see in our next step, the nonconvexity of the design problem may to
some extent be reduced through the projection lemma [18]. As a result, the solvabil-
ity conditions are stated back in terms of the original state-space entries in tandem
with the Lyapunov and scaling variables, whereas the controller variable K has been
eliminated. The mild inconvenience of this is that the actual controller has to be
obtained in an extra step using the decision variables in Theorem 2 below. This step
may itself be numerically demanding if the scheduling function φ has some undesirable
properties.

Theorem 2. Consider the LFT plant (1) with scheduled and uncertain parame-
ters Θ ∈ Θ as in (2). Let NX and NY be bases of the null spaces of (C2, Dθ2, D12, 0, 0)
and (BT2 , D

T
2θ, D

T
21, 0, 0), respectively. Suppose there exist scalings Q, R, S, Q̃, R̃, S̃

of the form

Q =

(
Qm

Qu

)
, R =

(
Rm

Ru

)
, etc.(8)
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compatible with the block structure of Θ in (2) and a pair of symmetric matrices (X,Y )
satisfying the matrix completion conditions(

X I

I Y

)
> 0,(9)

such that the linear matrix inequalities (10)–(12)

N T
X




ATX +XA XBθ + C
T
θ S

T XB1 CTθ R CT1

BTθ X + SCθ Q+ SDθθ +D
T
θθS

T SDθ1 DT
θθR DT

1θ

BT1 X DT
θ1S

T −γI DT
θ1R DT

11

RCθ RDθθ RDθ1 −R 0

C1 D1θ D11 0 −γI



NX < 0,(10)

N T
Y




AY + Y AT Y CTθ +BθS̃ Y CT1 BθQ̃ B1

CθY + S̃
TBTθ DθθS̃ + S̃

TDθθ − R̃ S̃TDT
1θ DθθQ̃ Dθ1

C1Y D1θS̃ −γI D1θQ̃ D11

Q̃BTθ Q̃DT
θθ Q̃DT

1θ Q̃ 0

BT1 DT
θ1 DT

11 0 −γI



NY < 0,

(11)

(
Θ

I

)T (
Q S

ST R

)(
Θ

I

)
≥ 0 for every Θ ∈ Θ(12)

in tandem with the nonlinear algebraic equality(
Qu Su

STu Ru

)−1

=

(
Q̃u S̃u

S̃Tu R̃u

)
(13)

are satisfied. Then there exists an nth order gain-scheduling controller K (n the order
of the plant (1)), and a choice of the scheduling function φ such that the closed-loop
system is internally and robustly stable, and the operator mapping w into z has L2-
gain bounded by γ for all admissible parameter trajectories Θ ∈ Θ.

Proof. The argument is based on a solvability test for quadratic inequalities
developed in [34, 1, 2]. The most recent reference is Lemma 10.2 in [35]. This result
is used to eliminate the controller variable K from the solvability conditions (6) in
Lemma 1.

When applying the solvability test, due to the special structure of P̄ (s), the solv-
ability conditions obtained simplify to (9)–(12), (13). The question which remains
is how the scheduled part of the coupling condition (13) is avoided. Following The-
orem 10.11 of [35], one may show that the variables Q1, Q2, R1, R2, S1, S2 in the
scheduled part of the multipliers are not called for by the matrix inequalities (9)–(12)
and are therefore free to be chosen to satisfy the scheduled part of (13). This also
requires a special choice of the scheduling function φ given in [35].

As already mentioned, condition (12) needs to be worked on in order to become
numerically tractable. This aspect is treated in the next section.
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3. Choices suited for practice. In this section, we address the practical as-
pects of the control design part and indicate that, at the cost of some conservatism,
the difficulty of the design may be greatly reduced by accepting some restrictions in
the general outline.

To begin with, let us assume that the uncertain matrix function Θu(t) varies in a
polyhedral convex and compact set K of matrices, i.e., Θu(t) ∈ K = co{Θu1, . . . ,ΘuN}
at all times t. We refer to the Θui as the vertices of the value set. Let us examine the
consequence of this choice. Observe that due to the block structure of Θ̃, the infinite
dimensional scaling condition (12) already decouples into a scheduled part and an
uncertain part. Concerning the uncertain part, we have the following lemma.

Lemma 3. Suppose the value set of Θu(t) is polyhedral and the scaling satisfies
Qu < 0. Then the uncertain part of condition (12) is equivalent to the finite condition

(
Θui

I

)T (
Qu Su

STu Ru

)(
Θui

I

)
≥ 0 for every i = 1, . . . , N.(14)

The proof is in fact a straightforward convexity argument based on Qu < 0 and
may be found, e.g., in [19, 35]. This settles the question of finiteness for the uncertain
part of (12) at the slight cost of conservatism introduced by assuming Qu < 0.

Remark. We mention that in practice it is sufficient to let Θu have a block diagonal
structure of the form

Θu(t) = diag(θu1(t)Ip1 , . . . , θur(t)Ipr ),(15)

where we may without loss assume that |θuj | ≤ 1, so the set K will be a cube with
the 2r vertices θuj(t) = ±1.

The conservatism introduced to obtain the finite condition (14) is minor and
acceptable in practice. Notice that the number N may become inconveniently large
if the number of parameters θui grows. We therefore mention another strategy to
avoid the infinite scaling condition. Assuming that the uncertain parameters have the
block diagonal structure (15), we consider what we call structured scalings satisfying
the following conditions: (i) Qu and Su commute with Θu(t); (ii) Ru = −Qu and
Ru > 0; (iii) STu = −Su. We check that the scheduled part of condition (7) is
satisfied. Developing the term gives

Θ2
uQu +ΘuSu + S

T
uΘu +Ru = (I −Θ2

u)Ru ≥ 0

as required. This choice of the scaling appears rather special and therefore bears the
risk of unnecessary conservatism, but its merit is that it greatly reduces the number
of decision variables and LMI constraints.

Let us now consider the corresponding questions for the scheduled part of (12).
We start with the following technical lemma, which was already used in the proof of
Theorem 2; cf. [35].

Lemma 4. Suppose the scalings Qm, Sm, and Rm have been found such that

(
Θm

I

)T (
Qm Sm

STm Rm

)(
Θm

I

)
≥ 0 for every Θ ∈ Θ.(16)

Then there is a choice of the scheduling function φ along with appropriate choices of
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Q1, Q2, R1, R2, and S1, S2 such that the scheduled part of (7) is satisfied, i.e.,(
Θ̃m

I

)T ( Qm Sm
STm Rm

)(
Θ̃m

I

)
≥ 0 for every Θ ∈ Θ.(17)

Proof. As shown in [35], if Φm := [QmSm;S
T
mRm] satisfies (16), it is always

possible to adjust the extended scalings Qm = [Q1Q2;Q
T
2Qm], Rm = [R1R2;R

T
2 Rm],

Sm = [S1S2;S
T
2 Sm] in such a way that, with an appropriate choice of the scheduling

function φ, the scheduled part (17) of condition (12) holds true. An explicit formula
for φ is given in [35].

This means that we are left to define a class of scalings Qm, Rm Sm, which allows
the reduction of the infinite set of LMIs (16) to a finite set. If Θm has a block diagonal
structure

Θm = diag(θm1I�1 , . . . , θmsI�s)(18)

and if prior bounds |θmj(t)| ≤ 1 like for the uncertain parameters are available, this
may be done in exactly the same way as for the uncertain part.

Assuming block diagonal structures (15), (18) for both types of parameters, we
find it useful in practice to pursue different strategies for the two types of parameters.
We use the vertex idea to render the uncertain part of (7) finite, and we use structured
scalings for the scheduled parameters. This avoids numerical difficulties which may
arise when constructing K if a complicated scheduling function φ is required. The
use of structured scalings allows the choice φ(x) = x. Notice that for the scheduled
parameters, due to conditions (i) above, choosing structured scalings implies that each
of the subblocks Q1, Q2, Qm of Qm has the block diagonal structure with diagonal
blocks of sizes /1, . . . , /s in (18). This option finally was a good compromise in our
numerical tests, and we recommend its use for the type of problem under investigation.

4. Sequential semidefinite programming. In this section, we cast the robust
gain-scheduling control design problem as an optimization problem and present an
algorithmic approach to its solution.

Recall from Theorem 2 that the complete vector of decision variables for design
is x = (γ,Q,R, S, Q̃, R̃, S̃,X, Y ). We find it notationally useful to point to parts of
the vector x by introducing the notation

Φu =

(
Qu Su

STu Ru

)
, Φ̃u =

(
Q̃u S̃u

S̃Tu R̃u

)
,

involving the uncertain blocks of the scaling variables. Similarly, Φm, Φ̃m regroup the
scheduled parts of Q, R, S, Q̃, R̃, S̃.

Let A(x) ≤ 0 represent the LMI constraints (9)–(12), where (12), using one
of the techniques from the previous section, has been replaced with a finite set of
LMIs, along with Q ≤ 0 and Q̃ ≤ 0 required for these procedures. Finally, let
B(x) = ΦuΦ̃u − I = 0 represent the nonlinear algebraic constraint (13). Then the
robust gain-scheduling control problem may be cast in the form (D). More generally,
we consider an augmented version (Dc) of (D) for a penalty parameter c ≥ 0:

minimize fc(x) = γ +
c
2‖ΦuΦ̃u − I‖2

(Dc) subject to A(x) ≤ 0,
B(x) = ΦuΦ̃u − I = 0.
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Remark. Notice that problems (D) and (Dc) are equivalent since the penalty
term c

2‖ΦuΦ̃u − I‖2 added in (Dc) will vanish at the optimal x. Using (Dc) instead
of (D), as we shall see, may add some numerical stability.

Remark. We observe that the variables Qm, Rm, Sm, Q̃m, R̃m, S̃m, and X, Y
occur only in the LMI constraint, which strongly indicates that we expect redun-
dancies in the decision parameters. In fact, our experiments indicate that this is a
strong point for using structured scalings in the Θm block, as this tends to limit these
redundancies. In general, we propose to put bounds ‖ · ‖∞ ≤M on the free variables
in order to avoid degeneracy or failure of the successive LMI subproblems. As these
additional constraints may be included among the LMIs, A(x) ≤ 0, we do not change
the notation here.

Remark. Notice that the trick used in Examples 1 and 2 of the introductory sec-
tion does not apply in the robust synthesis case, as the matrices Φu, Φ̃u are indefinite.
This shows that the problem is as a rule numerically harder than, e.g., static output
feedback design or reduced order design.

Let us now extend the idea of SQP to the augmented program (Dc). As we aim
at a primal-dual method, this requires maintaining estimates for the decision and
Lagrange multiplier variables. Consider the Lagrangian associated with (Dc):

Lc(x; Λ, λ) = fc(x) + trace(Λ · A(x)) + λTvec(ΦuΦ̃u − I),(19)

where Λ ≥ 0 is a positive semidefinite dual matrix variable, λ is a traditional Lagrange
multiplier variable whose dimension is m2, and m is the size of the matrices Φu, Φ̃u.
Given the current iterate x and the current Lagrange multiplier estimates λ, Λ ≥ 0,
we define the tangent problem

minimize ∇fc(x)T∆x+ 1
2∆x

T∇2Lc(x; Λ, λ)∆x

(T ) subject to A(x+∆x) ≤ 0,
ΦuΦ̃u +Φu∆Φ̃u +∆ΦuΦ̃u − I = 0,

which consists of minimizing the second-order Taylor polynomial of Lc(x+∆x; Λ, λ)
about the current x for possible steps ∆x, subject to the LMI constraints A ≤ 0 and
the equality constraint B = 0 linearized about the current Φu, Φ̃u. Notice that the
equality constraint above is given in matrix notation. The equivalent expression in
long vector notation using the Kronecker product ⊗ is

(Φ̃u ⊗ I) vec(∆Φ) + (I ⊗ Φu) vec(∆Φ̃u)− vec(I − ΦuΦ̃u) = 0.(20)

Here Φ̃u ⊗ I is invertible as soon as Φ̃u has maximal rank, while I ⊗ Φu is invertible
as soon as Φu has maximal rank.

Remark. If either Φu or Φ̃u is positive definite, we may symmetrize the equality
constraint, as considered, e.g., in [15]. As mentioned before, this is typically not
possible in the robust synthesis case but may help in different cases.

The choice of (T ) is understood by inspecting the necessary optimality conditions,
which show that the solution ∆x of (T ) may be considered as the Newton step from
the current point x to the new iterate x+ = x+∆x. The Lagrange multipliers Λ+ ≥ 0
and λ+ belonging to the linear constraints in (T ) are the updates for Λ and λ. Notice
that Λ+ ≥ 0 as a consequence of the Kuhn–Tucker conditions for (T ). Further notice
that, despite the notation, Λ does not explicitly appear in the Hessian ∇2Lc(x; Λ, λ)
of the Lagrangian, a fact which is due to the linearity of A ≤ 0. On the other hand,



ROBUST CONTROL VIA SSDP 1803

due to nonlinearity of the equality constraint, λ appears explicitly in the Hessian of
the Lagrangian. Updating Λ is then still mandatory to obtain the update λ+.

Remark. At this stage, we observe that due to the linearity of the LMI constraints,
the iterates produced by the SSDP scheme will always satisfy the LMIs, while the
nonlinear equality constraint will of course be only approximately satisfied. The
fact that we iterate on decision variables satisfying the LMIs is an advantage of our
method since it may render even suboptimal solutions of the optimization problem
(Dc) useful for the design (cf. the termination phase in the robust control design
algorithm presented at the end of this section).

The special structure and the moderate size of the variable (Φu, Φ̃u) occurring in
the equality constraint B = 0 suggest using a reduced Hessian technique. For fixed x,
respectively, Φu, Φ̃u, we can eliminate either ∆Φu or ∆Φ̃u from the linearized equality
constraint in (T ) as long as we maintain iterates x with full rank Φu, Φ̃u. In that
event, the matrix B = [Φ̃u⊗ I I ⊗Φu] has full row rank m2, m the size of the matrix
Φu, and eliminating the equality constraint therefore reduces the problem size by m

2.
Following the standard notation in SQP, let Z be a matrix whose columns form

a basis (preferably orthogonal) of the null space of the matrix B belonging to (20),
and let the columns of Y form a basis for the range of BT . Then we may write
the displacement ∆x as ∆x = Z∆x̃ + Y w0 = Z∆x̃ + p0 for the fixed vector p0 =
Y (BY )−1vec(I − ΦuΦ̃u), where ∆x̃ is now the reduced decision vector.

With this notation, the reduced tangent problem is

minimize (∇fc(x)TZ + pT0∇2LcZ)∆x̃+
1
2∆x̃Z

T∇2LcZ∆x̃
(T̃ )

subject to A∗ ◦ Z(∆x̃) ≤ −A(x+ p0),

where A∗ is the linear part of A. Notice that in general (T̃ ) is not yet an SDP since the
reduced Hessian ZT∇2LcZ may be indefinite. In order to obtain a convex program,
we have to convexify the reduced Hessian, which may be done in several ways. We
comment on these at the end of the section.

When the correction is done, the subproblem is convex and may easily be trans-
formed into an SDP problem. Ideally, the solution ∆x̃ gives rise to a step ∆x in
the original tangent problem, and the new iterate x+ is obtained as x + ∆x, but in
practice a line search using an appropriate merit function is required. For appropriate
choices avoiding the Maratos effect, we refer to the vast literature on the subject (see,
e.g., [10], [12]).

In order to obtain the Lagrange multiplier updates, we have to inspect the nec-
essary optimality conditions for (T̃ ). Let Λ̃+ ≥ 0 be the Lagrange multiplier matrix
variable in (T̃ ) associated with the constraint A ≤ 0, and let ∆x̃ be the optimal
solution of (T̃ ). Then the optimal ∆x is readily obtained via (20), Λ+ is chosen as
Λ̃+, while λ+ is found through

Y T∇fc(x) + Y T∇2Lc(Z∆x̃+ p0) + Y
TAT∗ Λ+ + Y TBTλ+ = 0,(21)

which determines λ+ uniquely if B has full rank. Conceptually, the SSDP algorithm
proposed to solve (D) may be described as follows.

SSDP Algorithm.
1. Find an initial point x0, such that A(x0) ≤ 0 and such that Φ0

u, Φ̃
0
u are full

rank. Select Lagrange multiplier estimates λ0 and Λ0 ≥ 0 using formula (21).
2. Given the iterate xk with Φku and Φ̃

k
u nonsingular and multiplier estimates

Λk ≥ 0, λk, form the reduced tangent problem (T̃k) about the current data.
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Render the reduced Hessian positive definite if required. Obtain the reduced
step ∆x̃k as a solution to the SDP problem, and let ∆xk = Zk∆x̃

k + pk0 .
Obtain Lagrange multipliers Λ� ≥ 0 and λ� from (T̃k) using (21).

3. Do a line search in direction ∆xk using an appropriate merit function, and
determine the new iterate xk+1 = xk + αk∆x

k. Set Λk+1 = Λk + αk(Λ
� −

Λk) and λk+1 = λk + αk(λ
� − λk). Choose αk so that Φk+1

u and Φ̃k+1
u are

nonsingular.
4. Check the stopping criteria. Either halt or replace k by k + 1, and go back
to step 2.

In order to compute the Hessian ∇2L(x; Λ, λ) of the Lagrangian in step 2, only
second-order derivatives with respect to Φu and Φ̃u are required, as fc(x) is linear in
γ and does not depend on the other decision variables. Using the Kronecker product
⊗, we have the following formulae (cf. also [16]).

Lemma 5.

∇2
ΦuΦu

Lc = c(Φ̃u ⊗ I)T (Φ̃u ⊗ I), ∇2
Φ̃uΦ̃u

Lc = c(I ⊗ Φu)T (I ⊗ Φu),
∇2

Φ̃uΦu
Lc = (I ⊗mat(λ))T + c((ΦuΦ̃u − I)T ⊗ I + (I ⊗ Φu)T (Φ̃u ⊗ I)).

Remark. Let us comment on the convexification of the reduced tangent prob-
lem (T̃ ) required to obtain an SDP problem. Recent trends in optimization indicate
that one should dispense with this procedure. It is considered important to take
the directions of negative curvature of the (reduced) Hessian into account, e.g., by
using a trust region strategy or by doing sophisticated line searches which combine
the Newton direction and the dominant direction of negative curvature. While the
second idea could be at least partially realized, a trust region approach is not fea-
sible as yet in the presence of LMI constraints as optimizing a nonconvex quadratic
function subject to LMIs is presently too difficult numerically to become a functional
scheme. We therefore have to use the well-known convexification methods used in
nonlinear optimization over many years, and we refer to [9, 23] for several such strate-
gies.

In our numerical experiments, we tested Powell’s idea of doing a Cholesky fac-
torization, and adding correction terms as soon as negative square roots appear, and
a direct method which used the QR-factorization to correct negative eigenvalues of
the reduced Hessian. A third method adapted to the structure of the problem which
we found even more efficient consisted of a Gauss–Newton-type idea. We neglect the
term ΦuΦ̃u − I in the Hessian matrix (22), performing the modified Cholesky fac-
torization on the remaining term. This is motivated by the fact that dropping this
term leaves a positive semidefinite matrix, which is still close to the correct Hessian
as long as the neglected term ΦuΦ̃u − I is small. This is the case when the nonlinear
constraint (13) is approximately satisfied, and the matrix is therefore asymptotically
close to the correct (reduced) Hessian. As a consequence, and in contrast with the
true Gauss–Newton method, this procedure therefore does not destroy the superlinear
quadratic convergence of the scheme.

Observe that in all these procedures, the augmented form (Dc) of the program
helps. In fact, the penalty term renders the Hessian more convex than in the original
form (D), and so the corrections are often very mild in practice and, according to the
theory in polyhedral programming, are not even required asymptotically (cf. [8, 10,
12]. This observation is corroborated in our experiments with LMI constraints.

We summarize the result of this section by presenting the following algorithmic
approach to the robust gain-scheduling design problem.
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Algorithm for robust gain-scheduling control design.
• Step 1. Initialization. Locate a strictly feasible decision vector x0 for the
LMI constraints: For fixed large enough γ = γ0, render the LMIs (9)–(12)
maximally negative by solving the SDP problem

min{t : LMIs (9)–(12) < tI}.
Then determine X0, Y0, Φ

0
u, and Φ̃

0
u so that Φ

0
uΦ̃

0
u − I is as close as possible

to zero. Then initialize the Lagrange multiplier estimates λ0 and Λ0 ≥ 0.
• Step 2. Optimization. Solve the optimization problem (Dc) via SSDP, using
(x0,Λ0, λ0) as a primal-dual starting point. The primal solution is x.

• Step 3. Terminating phase. Due to nonlinearity, the algebraic constraint
(13) is never exactly satisfied at the solution x. It is, however, possible to
terminate the program without strict satisfaction of the nonlinear constraints
by a simple perturbation technique [5], which is applicable as long as the LMIs
(9)–(12) are strictly satisfied. One can then replace Φu with Φ̃

−1
u and check

whether the LMI constraints (9)–(12) hold, possibly with new X and Y . In
this case, a controller is readily obtained. Dually, we can replace Φ̃u with Φ

−1
u

and check the LMI constraints (9)–(11), with (7), respectively, (17) suitably
replaced with its dual form(

I

−ΘTi

)T
Φ̃u

(
I

−ΘTi

)
< 0 ∀i = 1, . . . , N.

If the test fails, the numerical solution to (Dc) is unsatisfactory and has to be
improved, e.g., by changing the stopping criteria or by increasing the penalty
constant c and rerunning step 2.

Remark. Notice that strict feasibility < 0 is a priori not guaranteed by SSDP
but may easily be forced if we replace ≤ 0 in the corresponding LMIs by the stronger
≤ −εI for a small ε > 0. Moreover, if the SDP subproblem is solved by the notorious
interior point techniques, the LMIs are automatically strictly satisfied, and the above
perturbation argument is applicable.

5. Fast local convergence of SSDP. In this section, we prove local superlin-
ear and quadratic convergence of the SSDP method under mild regularity hypotheses.
It is interesting to recall the history of the SQP method, which was already popular
during the late 1970s, even though the first proof of superlinear and quadratic con-
vergence under realistic assumptions was published as late as 1994 by Bonnans [11].
A more compact version of that proof is published in [12]. Both versions are based
on techniques introduced by Robinson in the 1980s.

The time interval is the more remarkable, as the equality constrained case was
settled much earlier, apparently first by Boggs and Tolle around 1982. See [10] and
the references given there. Early proofs of the general case existed but always reduced
the situation to the equality constrained case under the (unrealistic) assumption of
strict complementarity at the optimal pair.

Inspecting the convergence proofs for Newton’s method in [11, 12] shows that
they heavily depend on the polyhedrality of the order cone in classical nonlinear
programming, so a natural extension to the present case of SSDP does not seem near
at hand. Our present approach is nevertheless inspired by Bonnans’s paper [11]. It
turns out that our method of proof applies even to more general situations, and we
present the method in a fairly general context.
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We consider the nonlinear programming problem of the form

minimize f(x)

(P ) subject to gE(x) = 0,

gI(x) ∈ K0,

where f : Rn → R, gE : R
n → R

m, and gI : R
n → R

p are C2-functions, K is a cone in
R
p, and K0 is its polar cone defined as

K0 = {y ∈ R
p : 〈x, y〉 ≤ 0 for each x ∈ K}.

In the classical nonlinear programming case, K = R
p
+, K

0 = R
p
−, and the constraint

gI(x) ∈ K0 becomes gi(x) ≤ 0 componentwise, while in the semidefinite case, Rp ∼= S
r

(with p = r(r+1)/2), the space of symmetric r×r-matrices, K = S
r
+ (with K

0 = S
r
−),

the cone of positive semidefinite matrices, and the constraint gi(x) ∈ K0 means that
the matrix gi(x) is negative semidefinite. We use the notation 〈·, ·〉 for the scalar
product employed, since this may include the classical case 〈x, y〉 = ∑i xiyi as well
as 〈x, y〉 = trace(x · y) in the semidefinite case. The adjoint of an operator A with
respect to this scalar product is denoted A∗; derivatives with respect to 〈·, ·〉 in the
x-variable are indicated by primes. Notice also that gI(x) was an affine matrix valued
function in our applications, but we prefer to include the general nonlinear case as
applications of this type are eminent.

We suppose that x̄ is a local minimum of (P ) and that there exists a Lagrange
multiplier λ̄ = (λ̄E , λ̄I) satisfying the necessary optimality condition

(1) f ′(x̄) + g′(x̄)∗λ̄ = 0,

(KT ) (2) gE(x̄) = 0,

(3) gI(x̄) ∈ K0, λI ∈ K, 〈gI(x), λ̄I〉 = 0.
Observe that the existence of λ̄ is guaranteed under a weak regularity assumption like,
for instance, Robinson’s constraint qualification hypothesis (cf. [32]). The Lagrangian
associated with (P ) is

L(x;λ) = f(x) + 〈g(x), λ〉 = f(x) + 〈gE(x), λE〉+ 〈gI(x), λI〉.(22)

We consider Newton’s method for solving the Kuhn–Tucker system (KT), which
generates a sequence (xk, λk) approximating the optimal pair (x̄, λ̄). Given the kth
iterate (xk, λk), the (k + 1)st iterate is obtained by solving the tangent problem

minimize 〈f ′(xk),∆x〉+ 1
2 〈∆x, L′′(xk;λk)∆x〉

(Tk) subject to gE(x
k) + g′E(x

k)∆x = 0,

gI(x
k) + g′I(x

k)∆x ∈ K0.

If ∆x is the solution to (Tk), then x
k+1 = xk + ∆x. The Lagrange multiplier up-

date λk+1 = (λk+1
E , λk+1

I ) is just the Lagrange multiplier belonging to the linearized
constraints in (Tk). The Kuhn–Tucker conditions for (Tk) are the following:

L′(xk;λk+1) + L′′(xk;λk)(xk+1 − xk) = 0,
gE(x

k) + g′E(x
k)(xk+1 − xk) = 0,

(KTk)
gI(x

k) + g′I(x
k)(xk+1 − xk) ∈ K0, λk+1

I ∈ K,
〈gI(xk) + g′I(xk)(xk+1 − xk), λk+1

I 〉 = 0.
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The aim of the following analysis is to give sufficient conditions for local quadratic or
superlinear convergence of the sequence (xk, λk).

Remark. The usual choice of quasi-Newton methods is easily obtained from our
scheme by approximating the Hessian L′′(xk;λk) of the Lagrangian of (P ) by a ma-
trix Mk. In order to account for modifications of L′′(xk;λk) like convexifications as
proposed in our experimental section, we include the quasi-Newton approach into our
convergence analysis. We shall use the notation (Tk(M

k)) for the modified tangent
problem with Mk replacing the Hessian of the Lagrangian.

Inspecting classical approaches for the usual polyhedral cone in nonlinear pro-
gramming shows that local convergence of Newton’s method usually requires two
types of hypothesis: (a) the second-order sufficient optimality condition and (b) a
constraint qualification. As we mentioned before, a third type of condition, strict
complementarity, is often used but should be avoided since it is artificial as a rule. At
the core is the second-order sufficient optimality condition, saying that the Hessian
of the Lagrangian L′′(x̄, λ̄) is positive definite along critical directions. We adopt the
definition of critical directions from [32, 11], which in the presence of a multiplier
leads to the following.

Definition. The direction h != 0 is critical at x̄ with respect to the Lagrange
multiplier λ̄ if the following hold:

1. g′E(x̄)h = 0.
2. There exist hk → h, xk = x̄ + tkh

k with tk → 0+ in tandem with λkI → λ̄I ,
λkI ∈ K such that for some vk with vk = o(tk), gI(x

k) − vk ∈ K0 and
〈gI(xk)− vk, λkI 〉 = 0.

Remark. Recall that in the case of the polyhedral cone K = R
p
+ in nonlinear

programming, a critical direction h satisfies conditions (1) for the equality constraints
along with the following condition (2′) for inequalities: g′i(x̄)h = 0 for active con-
straints i ∈ I having multiplier λ̄i > 0, and g′i(x̄)h ≤ 0 for active constraints i ∈ I,
where λ̄i = 0. It is an easy exercise to show that, in this case, (2) is equivalent to this
classical definition of criticality (2′).

Let us now start analyzing the Newton step for (P ) via the following perturbation
result.

Lemma 6. Suppose there exist sequences xk → x̄, λk → λ̄, δk → 0+, and uk,
vk = (vkE , v

k
I ) satisfying u

k = O(δk), vk = O(δk) such that
1. L′(xk;λk) = uk;
2. gE(x

k) = vkE;
3. gI(x

k)− vkI ∈ K0, 〈gI(xk)− vkI , λkI 〉 = 0, λkI ∈ K.
Further suppose that the second-order sufficient optimality condition is satisfied at
(x̄, λ̄), i.e., 〈h, L′′(x̄; λ̄)h〉 > 0 for every critical direction h != 0, and that g′(x̄) has
maximal rank. Then xk − x̄ = O(δk) and λk − λ̄ = O(δk).

Proof. Subtracting equation (1) in the Kuhn–Tucker equations from the perturbed
equation (1) above gives

L′(xk; λ̄)− L′(x̄; λ̄) + g′(xk)∗(λk − λ̄) = uk.(23)

Now it suffices to show xk − x̄ = O(δk), for then the first term L′(xk; λ̄)−L′(x̄; λ̄) on
the left-hand side of (23) is O(δk), and hence so is the second term. Since g′(xk) =
g′(x̄)+O(xk−x̄), this implies g′(x̄)∗(λk−λ̄) = O(xk−x̄), and since g′(x̄) has maximal
rank, we conclude λk − λ̄ = O(xk − x̄) = O(δk).

Suppose now that the result is incorrect, so uk/‖xk − x̄‖ → 0, vk/‖xk − x̄‖ → 0.
Picking a subsequence if necessary, we may assume that (xk − x̄)/‖xk − x̄‖ → h with
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‖h‖ = 1. We show that h is a critical direction.
Notice first that subtracting the perturbed condition (2) from condition (2) in

the Kuhn–Tucker ensemble gives

gE(x
k)− gE(x̄)
‖xk − x̄‖ =

vkE
‖xk − x̄‖ → 0;

hence the equality part (1) of criticality is satisfied. As for the inequality part, observe
that the perturbed conditions (1)–(3) just match the second part of the definition of
criticality if we use the standing hypothesis that xk → x̄ slower than δk → 0. Hence
h is critical.

To conclude the proof, let us multiply (23) by xk − x̄ and divide by ‖xk − x̄‖2.
The right-hand term of the modified equation is then

〈uk, xk − x̄〉
‖xk − x̄‖2 → 0

by our standing hypothesis, so the left-hand side of the modified equation also has to
converge to 0. The first term on the left-hand side of the modified equation is

〈L′(xk; λ̄)− L′(x̄; λ̄), xk − x̄〉
‖xk − x̄‖2 ,

which converges to 〈L′′(x̄; λ̄)h, h〉. Since the direction h was seen to be critical, this
term is strictly positive. We shall now obtain the sought for contradiction by showing
that the remaining term on the left-hand side of the modified equation is asymp-
totically nonnegative. This is verified by splitting this term into its equality and
inequality parts.

The equality part of the term in question is

〈g′E(xk)(xk − x̄), λkE − λ̄E〉
‖xk − x̄‖2 ,

which, due to g′E(x̄)h = 0, tends to 0. This argument uses the fact that λ
k
E − λ̄E =

O(xk − x̄), which itself is a consequence of the standing hypothesis (23) and the
constraint qualification.

Inspecting the inequality term remains. Via Taylor expansion, the latter is

〈gI(xk)− gI(x̄), λkI − λ̄I〉
‖xk − x̄‖2 + o(1),(24)

again using λk − λ̄ = O(xk − x̄). The left-hand term of (24) is recast as
〈gI(xk)− vkI − gI(x̄), λkI − λ̄I〉

‖xk − x̄‖2 +
〈vkI , λkI − λ̄I〉
‖xk − x̄‖2 ,(25)

and the second term in (25) tends to 0 due to the standing hypothesis. The first term
in (25) is nonnegative, for expanding its nominator gives

〈gI(xk)− vkI , λkI 〉 − 〈gI(xk)− vkI , λ̄I〉 − 〈gI(x̄), λkI 〉+ 〈gI(x̄), λ̄I〉.
Here the first and the last terms vanish as a consequence of the complementarity
condition (3) in the Kuhn–Tucker ensemble (KT ) and the perturbed condition (3)
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above, while the two terms with the negative signs are themselves negative, again
due to the conditions (3) above and in (KT ). Indeed, λkI , λ̄I ∈ K and gI(x̄) ∈ K0,
gI(x

k)− vkI ∈ K0 imply 〈gI(xk)− vkI , λ̄〉 ≤ 0 and 〈gi(x̄), λkI 〉 ≤ 0. This settles the case
by providing the desired contradiction.

With this observation, we are now ready to state our first result.
Lemma 7. Suppose Newton’s method for solving (P ) via a successive solution of

(Tk(M
k)) with a choice of matricesMk generates a sequence of iterates (xk, λk) which

converges to the Kuhn–Tucker pair (x̄, λ̄). Further suppose that g′(x̄) has maximal
rank and that the second-order sufficient optimality condition is satisfied at (x̄, λ̄).

1. If Mk → L′′(x̄; λ̄), convergence (xk, λk)→ (x̄, λ̄) is superlinear.
2. If Mk − L′′(x̄; λ̄) = O(xk − x̄), then convergence (xk, λk) → (x̄, λ̄) is even
quadratic.

Proof. We observe that with xk+1 = xk + ∆x, and λk+1 the Lagrange multi-
plier in (Tk(M

k)), the quasi-Newton step about the current iterate (xk, λk) may be
represented as

(i) L′(xk+1;λk+1) = uk,
(ii) gE(x

k+1) = vkE ,
(iii) gI(x

k+1)− vkI ∈ K0, λk+1
I ∈ K, 〈gI(xk+1)− vkI , λk+1

I 〉 = 0,
where the perturbation terms uk and vk = (vkE , v

k
I ) are as follows:

uk = L′(xk+1; λ̄)− L′(xk; λ̄)− L′′(xk; λ̄)(xk+1 − xk) + (L′′(x̄; λ̄)−Mk)(xk+1 − xk)
+ (L′′(xk; λ̄)− L′′(x̄; λ̄))(xk+1 − xk) + (g′(xk+1)− g′(xk))∗(λk+1 − λ̄),

vk = −g(xk+1) + g(xk) + g′(xk)(xk+1 − xk).
As we wish to bring in the perturbation Lemma 6 above, we let δk → 0 be the speed
of convergence of (uk, vk) → (0, 0); then (xk, λk) − (x̄, λ̄) = O(δk) as a consequence
of that lemma.

Now observe that vk = o(xk+1−xk) and, similarly, uk = o(xk+1−xk) if we use the
hypothesis Mk − L′′(x̄; λ̄) = o(1). Altogether, δk = o(xk+1 − xk). The perturbation
lemma therefore implies

xk+1 − x̄ = O(δk) = o(xk+1 − xk) = o(‖xk+1 − x̄‖+ ‖xk − x̄‖).
Similarly, as g′(x̄) has maximal rank,

λk+1 − λ̄ = O(δk) = o(‖xk+1 − x̄‖+ ‖xk − x̄‖).
These estimates prove superlinear convergence.

The argument giving quadratic convergence under the stronger hypothesis in (2)
is standard and left to the reader (see, for instance, [11]).

As a consequence of Lemma 7, what remains to be checked is mere convergence
of Newton’s method under the same regularity hypotheses. Here we shall be able to
follow a known line of argument already present in Robinson’s approach [32]. Let us
consider the limiting tangent problem

minimize 〈f ′(x̄), d〉+ 1
2 〈d, L′′(x̄; λ̄)d〉

(T∞) subject to gE(x̄) + 〈g′E(x̄), d〉 = 0,
gI(x̄) + 〈g′I(x̄), d〉 ∈ K0,

whose optimal solution is d̄ = 0, and for which λ̄ is a Lagrange multiplier. Observe
that the second-order optimality conditions for (T∞) are identical with those of (P ),
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so if we adopt the constraint qualification from before and the second-order sufficient
optimality condition for (P ), they also hold for (T∞). Using a result obtained by
Robinson [32, Theorems 2.3, 3.1], we have the following lemma.

Lemma 8. Suppose the second-order sufficient optimality condition for (P ) is
satisfied at the optimal pair (x̄, λ̄). Further suppose that g′(x̄) has maximal rank.
Then, given ε > 0, there exists δ > 0 such that if ‖xk − x̄‖ < δ, ‖λk − λ̄‖ < δ, and
‖Mk − L′′(x̄; λ̄)‖ < δ, then the tangent problem (Tk(M

k)) has a local minimum xk+1

and an associated Lagrange multiplier λk+1 satisfying ‖xk+1 − x̄‖ < ε and ‖λk+1 −
λ̄‖ < ε.

Proof. Notice that the tangent subproblem (Tk(M
k)) may be considered a per-

turbed version of the ideal tangent problem (T∞) in the sense of [32, (2.7)]. Now by
assumption g′(x̄) has maximal rank, and hence (T∞) is regular in the sense of [32].
Second, since (P ) satisfies the second-order sufficient optimality condition at (x̄, λ̄),
so does (T∞) at the optimal pair (0, λ̄). Using [32, Theorem 3.1], there exist neigh-
borhoods N1 of x̄, N2 of λ̄, and N3 of L

′′(x̄; λ̄) such that for xk ∈ N1, λ
k ∈ N2, and

Mk ∈ N3 the tangent problem (Tk(M
k)) has a solution xk+1. We may, in addition,

choose N1 small enough to guarantee that g
′(xk) has maximal rank, and therefore

(Tk(M
k)) also admits Lagrange multipliers λk+1.

Now using Theorem 2.3 of the same paper, the set valued operator mapping the
datum (xk, λk,Mk) of (Tk(M

k)) into the set of possible optimal pairs (xk+1, λk+1) is
upper semicontinuous. By second-order sufficient optimality, (x̄, λ̄) is locally unique.
Therefore, upper semicontinuity translates into the following statement: Given ε > 0,
there exists δ > 0 such that if (xk, λk,Mk) is in the δ-neighborhood of (x̄, λ̄, L′′(x̄; λ̄)),
then any (xk+1, λk+1) lies in the ε-neighborhood of (x̄, λ̄). This is just what we
claimed.

With these auxiliary results, we are now ready to state our local convergence
theorem for Newton’s method.

Theorem 9. Let (x̄, λ̄) be a Kuhn–Tucker pair for (P ) satisfying the second-order
sufficient optimality condition, and suppose g′(x̄) has maximal rank. Then there exists
δ > 0 such that if ‖x0 − x̄‖ < δ, ‖λ0 − λ̄‖ < δ, ‖Mk − L′′(x̄; λ̄)‖ < δ for every k,
and Mk → L′′(x̄; λ̄), then the sequence (xk, λk) obtained by successive solution of the
tangent subproblems (Tk(M

k)) is well defined and converges superlinearly to (x̄, λ̄).
Convergence is even quadratic if Mk − L′′(x̄; λ̄) = O(‖xk − x̄‖+ ‖λk − λ̄‖).

Proof. (1) Observe that the perturbation Lemma 6 tells that, due to second-
order sufficient optimality, the Kuhn–Tucker conditions for (P ) follow a Lipschitz-type
behavior with respect to specific perturbations uk, vk. Let us quantify this: There
exist δ1 > 0 and α > 0, β > 0 such that if u

k, vk are sufficiently small in the sense that
‖vk‖, ‖uk‖ < δ1 and if x

k, λk along with uk, vk satisfy (1)–(3) in the perturbation
Lemma 6, then ‖xk − x̄‖+ ‖λk − λ̄‖ < α, and ‖xk − x̄‖+ ‖λk − λ̄‖ < β(‖uk‖+ ‖vk‖).

(2) Let δ3 ≤ min(α, 1
3β ). According to Lemma 8, there exists δ2 > 0 such that

whenever ‖x̂ − x̄‖ < δ2, ‖λ̂ − λ̄‖ < δ2, and ‖M̂ − L′′(x̄; λ̄)‖ < δ2, the result (x, λ) of

the Newton step with datum (x̂, λ̂, M̂) satisfies ‖(x, λ)− (x̄, λ̄)‖ < δ3.
(3) Choose δ4 > 0 such that the following five conditions are satisfied. First,

‖g(x1)− g(x2)− g′(x2)(x1 − x2)‖ ≤ 1

24β
‖x1 − x2‖

whenever x1, x2 ∈ B(x̄, δ4). Second,

‖L′(x1; λ̄)− L′(x2; λ̄)− L′′(x2; λ̄)(x1 − x2)‖ ≤ 1

24β
‖x1 − x2‖
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whenever x1, x2 ∈ B(x̄, δ4). Third, δ4 < 1/24β, and fourth

‖L′′(x1; λ̄)− L′′(x̄, λ̄)‖ ≤ 1

24β

whenever x1 ∈ B(x̄, δ4). Finally,

‖(g′(x2)− g′(x1))(λ1 − λ2)‖ ≤ 1

24β
‖λ1 − λ2‖

whenever λ1, λ2 ∈ B(λ̄, δ4) and x1, x2 ∈ B(x̄, δ4).
(4) Now choose δ = min(δ1, δ2, δ3, δ4); then the conclusion of the theorem holds.

In fact, let (xk, λk,Mk) be the datum of the kth Newton step. As δ ≤ δ1, an optimal
pair (xk+1, λk+1) exists and satisfies ‖(xk+1, λk+1)− (x̄, λ̄)‖ < δ3.

As in the proof of Lemma 7, let us write the Newton step in the form
(i) L(xk+1;λk+1) = uk,
(ii) gE(x

k+1) = vkE ,
(iii) gI(x

k+1)− vkI ∈ K0, λk+1
I ∈ K, 〈gI(xk+1)− vkI , λk+1

I 〉 = 0,
where uk, vk have the meaning given there. Then δ ≤ δ2 and δ ≤ δ1 and step (1)
imply ‖uk‖ ≤ 1

6β ‖xk+1 − xk‖ and ‖vk‖ ≤ 1
6β (‖xk+1 − xk‖+ ‖λk+1 − λk‖). Therefore,

step (1) implies

‖xk+1 − x̄‖ ≤ β 1
6β
(‖xk+1 − xk‖+ ‖λk+1 − λk‖)

≤ 1

6
(‖xk − x̄‖+ ‖xk+1 − x̄‖+ ‖λk − λ̄‖+ ‖λk+1 − λ̄‖),

and similarly for ‖λk+1 − λ̄‖. Adding both estimates gives

‖(xk+1, λk+1)− (x̄, λ̄)‖ ≤ 1

3
(‖(xk, λk)− (x̄, λ̄)‖+ ‖(xk+1, λk+1)− (x̄, λ̄)‖).

Therefore,

‖(xk+1, λk+1)− (x̄, λ̄)‖ ≤ 1

2
‖(xk, λk)− (x̄, λ̄)‖,

and this proves linear convergence of the sequence. This settles the case, since it
proves, in particular, that the situation needed to start this argument is reproduced
at each step.

Remarks. (1) Notice that Newton’s method Mk = L(xk;λk) satisfies hypothesis
(2) and therefore converges quadratically.

(2) As is well known, superlinear and quadratic convergence of the primal-dual
pair (xk, λk) does not imply superlinear or quadratic convergence of the primal se-
quence xk. In order to establish primal superlinear convergence, an extra argument
is needed, and this leads to a result in the style of the classical Dennis–Moré char-
acterization of superlinear convergence for unconstrained optimization. The result is
similar to [12, Theorem 11.5], and we do not present the details here.

In the same vein, a more thorough analysis of the SSDP method will have to
address the following elements not considered here due to the lack of space: a global
convergence analysis based on an appropriate merit function and an extension of the
known result in polyhedral programming saying that the Hessian of the augmented
Lagrangian is positive definite at the optimal pair if the penalty parameter c is prop-
erly chosen (cf., for instance, [12, Proposition 12.2]). In particular, in our numerical
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tests, we observed this effect, and it should be proven rigorously in order to fully
justify our approach via SSDP.

(3) Let us point to the main difference of our approach to the setting [11]. Follow-
ing Robinson’s methods, Bonnans embeds the Newton step for (P ) into the Newton
step of a suitably formulated variational inequality and then establishes a perturba-
tion Lemma in the style of Lemma 6 but with perturbations based on the variational
formulation. Consequently, more (and in fact, too many) perturbations are allowed,
and the Lipschitz-type behavior is then established only under polyhedrality.

6. Existing techniques and comparison. In principle, the optimization step
in our control design algorithm may be replaced with any optimization technique
adapted to deal with LMI constraints. Here we shall compare SSDP to two other
methods which we have previously used in robust control design: the augmented
Lagrangian method and an approach via concave programming. Numerical experi-
ments based on interior-point methods have been reported by Leibfritz and Mostafa
[25, 26] for a different but related type of application. Our own experiments with the
interior-point approach will be presented in [3].

A thorough investigation of nonlinear optimization techniques in robust control
synthesis should include comparison with existing techniques like the D-K iteration
scheme. This has already been addressed in [16], where test examples similar to the
ones here were used to compare these approaches. As a result, we observed that the
D-K iteration scheme was not at ease with these seemingly innocent cases and very
often could not even be started due to the lack of a useful initial controller.

A partially augmented Lagrangian scheme for solving (D) was discussed in [16],
and we reproduce it here for the convenience of the reader.

Augmented Lagrangian method.
1. Select an initial penalty parameter c0 > 0, a Lagrange multiplier estimate λ

0,
and an initial decision vector x0 satisfying the LMIs, A(x0) ≤ 0.

2. For given ck, λ
k, and xk, solve

minimize Lck(x; 0, λ
k)

subject to A(x) ≤ 0,(26)

and let xk+1 be the solution to (26).
3. Update the Lagrange multiplier using the first-order update formula

λk+1 = λk + ckB(xk+1).(27)

4. Update the penalty parameter such that ck+1 ≥ ck, increase k, and go back
to step 2.

This scheme is often called the first-order method of multipliers. It takes the constraint
set {x : A(x) ≤ 0} as an unstructured set and does not attempt to exploit its special
LMI structure, which would require attaching a matrix Lagrange multiplier variable
Λ ≥ 0 to the LMI. As a consequence, its rate of convergence is only linear if the penalty
parameter ck = c is held fixed, while superlinear convergence is guaranteed if ck →∞.
The latter is of minor practical importance due to the inevitable ill-conditioning for
large c.

Remark. Aiming at good theoretical local convergence properties, we should cer-
tainly avoid the augmented Lagrangian method. To ensure superlinear convergence
with fixed large enough c, we have to use second-order methods like the proposed
SSDP method. Nevertheless, the augmented Lagrangian method has some merits as
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it is robust in practice and, similar to the case of SSDP, may be tackled by a series
of SDP subproblems if the Newton step called for to solve (26) is suitably convexi-
fied. In contrast with the tangent subproblem (T ) in SSDP, these SDP subproblems
may be solved by primal methods, as Lagrange multipliers Λ are not required. This
may be an advantage of the augmented Lagrangian approach since, for instance, in
our experiments, a well-implemented primal SDP solver like [20] often outperformed
existing primal-dual software, even though the latter is preferred by theory.

Let us finally recall an approach to (D) discussed in [4]. Primarily, this scheme
is suited for the feasibility problem (find x such that B(x) = 0, A(x) ≤ 0) but may
be modified to apply to (D).

Consider (D) with a nonlinear equality constraint of the form B(x) = PP̃ −I = 0
as encountered in our applications. Introducing a slack matrix variable Z, problem
(D) may be replaced by the concave program (cf. [4] for a proof)

minimize fc(x) = γ + c trace(Z1 − ZT3 Z−1
2 Z3)

subject to A(x) ≤ 0,
(C)

L(x) =



Z1 ZT3 P I

Z3 Z2 I P̃

∗ ∗ I 0

∗ ∗ 0 I


 ≥ 0.

We may solve (C) by a sequence of subproblems, each of which minimizes the first-
order Taylor polynomial of fc(x) about the inner current iterate x and over the convex
set {A ≤ 0,L ≥ 0}. This procedure is known as the conditional gradient or Frank
and Wolfe method. In order to improve its performance, second-order information
is at least partially included by approximating the concave second-order term of the
objective fc(x) by a linear underestimate (see [30]). This modification improves con-
vergence but still has the inconvenience of a high CPU cost. Altogether, concave
methods cannot compete with the SSDP or augmented Lagrangian techniques, as
they are very slow and, due to the slack variable Z, lead to large size problems. We
use the concave programming approach in order to check on the quality of our local
optimal solutions. In a reasonable number of tests, SSDP did, in fact, terminate with
values of γ close to the global optimum. Yet another way to test the quality of the
gain γ is to establish a lower bound γ� for the optimal γopt by solving (D) without
the nonlinear constraint B = 0.

7. Numerical experiments. In this section, two typical test examples are used
to compare the SSDP method to the augmented Lagrangian method proposed in [16]
for a related situation and a concave programming approach.

7.1. Robust control of a flexible actuator. Consider the unbalanced oscil-
lator described in Figure 3. The plant is built with a cart of weight M , fixed to a
vertical plane by a linear spring k and constrained to move only along the z axis.
An embedded pendulum with mass m and moment of inertia I is attached to the
cart’s center of mass and can be rotated in the vertical plane. The cart is submitted
to an external disturbance F , and a control torque N is applied to the pendulum to
stabilize its movement. The nonlinear equations of motion are

(M +m)Z̈ +meϑ̈ cosϑ = meϑ̇2 sinϑ− kZ + F, meZ̈ cosϑ+ (I +me2)ϑ̈ = N,
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Fig. 3. Flexible actuator.

Table 1
Behavior of SSDP for the flexible actuator (computations on PC with CPU Pentium II 333 MHz).

SSDP method Augmented Lagrangian

Step γ ‖PP̃ − I‖2F c γ ‖PP̃ − I‖2F c

0 7 1.152 e+002 0.5 7 1.152 e+002 0.5
1 4.429 1.935 e−000 3.771 1.085 e+001
2 2.976 1.529 e+001 2.870 1.156 e+001
3 1.795 1.717 e−000 2.083 1.297 e+001
4 1.287 6.214 e−000 1.849 1.415 e+001
5 1.262 1.762 e−000 1.276 7.169 e−000
6 1.259 7.276 e−001 1.245 2.615 e−000
7 1.261 4.679 e−001 1.246 4.716 e−001
8 1.262 1.526 e−002 1.249 1.274 e−001 2
9 — 2.647 e−004 2 1.251 4.247 e−002
10 1.796 e−006 1.254 1.676 e−002
11 — 7.462 e−003 8
12 1.179 e−003
13 9.584 e−005 32
14 2.145 e−005
15 1.217 e−006 128

where ϑ and ϑ̇ denote the angular position and velocity of the pendulum and Z, Ż
denote the position and velocity of the cart. We normalize these equations as in [14]:

ζ̈ + εϑ̈ cosϑ = εϑ̇2 sinϑ− ζ + w, εζ̈ cosϑ+ ϑ̈ = u,

where [ζζ̇ϑϑ̇]T is the new state vector. We assume θm = cosϑ is measured, and we
express the remaining nonlinear term in the left-hand equation through the uncertain
parameter θu = ϑ̇ sinϑ. The parameter block becomes Θ = diag(θm, θuI3). The LFT
model of the plant is then derived, and numerical data are given below in order to
allow testing of our results with different approaches. Table 1 displays the behavior of
the SSDP algorithm. We can see that SSDP achieves good values of γ already after
a few iterations. The nonlinear constraints decrease with an approximately linear
rate. In practice, one may stop the algorithm whenever γ is no longer reduced over
a certain number of iterations and the nonlinear constraint norm is sufficiently small,
say, smaller than 10−6 or 10−7. The final steps in the table are only for illustration of
the asymptotic behavior of the method. Note that the number of decision variables in
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Table 2
Behavior of modified conditional gradient algorithm for flexible actuator.

Modified conditional gradient

Step γ ‖PP̃ − I‖2F c Step γ ‖PP̃ − I‖2F c

0 7 1.152 e+002 0.5 11 1.725 e−002 512
1 1.295 2.169 e+001 12 1.315 7.642 e−003
2 1.292 2.576 e+001 13 1.319 2.764 e−003 1024
3 1.302 1.145 e+001 2 14 1.321 9.476 e−004
4 1.307 5.872 e+000 8 15 — 6.125 e−004 2048
5 1.309 2.057 e+000 16 4.679 e−004
6 1.311 8.451 e−001 17 1.325 2.762 e−004
7 — 4.251 e−001 32 18 — 1.927 e−004
8 1.312 2.745 e−001 19 1.322 2.169 e−004
9 — 7.567 e−002 128 20 1.324 1.742 e−004
10 4.571 e−002

this example was 94. The gain γopt = 1.262 obtained by SSDP was close to the lower
estimate γ� = 1.18 obtained by solving (D) without the constraint B = 0. Note that
these results improve on those of the modified conditional gradient which is slower
and leads to higher cost values in Table 2.

The numerical data for the flexible actuator LFT plant are

P (s) ∼=




0 1 0 0 0 0 0 0 0 0

−1 0 0 0 5ε ε −ε −ε 1 −0.2
0 0 0 1.02 0 0 0 0 0 0

0.2 0 0 0 −ε ε ε 0 −0.2 1

0 0 0 0 0 0 0 0 0 0

0.84 0 0 0 −4ε −ε 0 ε −0.84 0.16

1.23 0 0 0 −6ε 0 2ε 2ε −1.23 0.23

0 0 0 0 0 0 0 0 0 1

0.1 0 0 0 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.2

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0




,

where ε, a coupling parameter, is chosen in this problem to equal 0.01. The vector of
regulated variables z consists of three components: zζ , zθ are the damping specifica-
tions on ζ, θ; and zu serves to limit the control activity. The exogenous input w is
the external force F .
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Fig. 4. Aerodynamic model for air-to-air missile.

7.2. Robust autopilot of a missile. Consider the missile-airframe control
problem illustrated in Figure 4, where the missile is flying with an angle of attack α.
The control problem requires that the autopilot generate the elevator deflection δ to
maintain the angle of attack αc called for by the guidance law. The tail-fin actuator
is modeled as a first-order system

δ̇ = τ(u− δ)

with time constant τ = 1/150 seconds, so δ itself becomes a state of the system. The
nonlinear dynamics of the missile are adopted from [31]:

α̇ = f
cos(α/f)

mV
Z + q, q̇ = fM�/Iy,

where m is the mass, V = M/Vs is the speed, Iy is the pitch moment of inertia,
Z = CZ(α, δ,M)QS is the normal force, M� = Cm(α, δ,M)QSd is the pitch moment,
Q is the dynamic pressure, and S, d reference area and diameter. The normal force and
pitch moment aerodynamic coefficients are approximated by third-order polynomials
in α and first-order polynomials in δ and M .

Sensor measurements y for feedback include the pitch rate q and α, while the
state of the actuator deflection δ is unmeasured. The robust control scheme for the
missile autopilot is shown in Figure 5. The time-varying matrix valued parameter is
Θ = diag(θmI4, θu), where θu is used to translate the nonlinearity in α in the left-hand
equation into an LFT with uncertainty. The scheduled parameter θm is the variation
in Mach number M about nominal flight conditions, M0 = 3. The Mach number is
slowly time-varying and is easily measured on-line.

The vector of regulated variables z consists of two components (see Figure 5).
The first, z1, corresponds to a frequency-weighted sensitivity design goal, for tracking
error accuracy, while z2 = cδ δ̇ = cδτ(u − δ) serves to limit the tail-fin actuator rate
δ̇ and indirectly to bound the controller bandwidth in order to avoid trouble with
unmodeled flexible modes. The vector of exogenous inputs w includes the command
αc and the pitch rate sensor noise n.

For the problem considered, it is desired to track the step input command αc =
200 with a steady state accuracy of 2%, to achieve a rise time of less than 0.3 seconds,
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Fig. 5. Configuration for synthesis.

Table 3
Behavior of SSDP for the missile autopilot (computations on PC with CPU Pentium II 333

MHz).

SSDP method Augmented Lagrangian

Step γ ‖PP̃ − I)‖2F c γ ‖PP̃ − I‖2F c

0 7 6.254 e+003 0.25 7 6.254 e+003 0.25
1 1.124 0.476 e−001 1.552 2.147 e+002
2 0.854 1.876 e−000 1.467 6.345 e−001
3 0.762 1.287 e−000 0.745 1.827 e−000
4 0.631 2.655 e−001 0.642 1.845 e−000
5 0.609 1.425 e−002 0.598 1.475 e−000
6 0.597 1.721 e−005 2 0.617 7.857 e−001 2
7 0.607 5.749 e−003 8
8 0.596 4.671 e−003
9 0.597 2.612 e−005 64
10 — 1.682 e−006

and to limit overshoot to 5% for a wide range of angles of attach ±20 deg and under
variations in Mach number ranging from 2 to 4.

For comparison, the numerical data for this LFT model of the missile are repro-
duced below. Our optimization techniques are then readily applicable, and the results
are shown in Table 3. SSDP achieves good values of γ after a few iterations with a
similar rate of decrease for the nonlinear constraints. The autopilot example involved
132 decision variables. Again the gain γopt = 0.597 observed at the optimum was
close to the lower estimate γ� = 0.57. The optimal controller obtained by SSDP was
then tested in a time domain simulation based on the nonlinear model. The results
are shown in Figure 6. The upper curve shows the tracking in α, and the lower curve
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Fig. 6. Nonlinear simulation for missile autopilot example.

shows the corresponding elevator deflection δ.

P (s) ∼=




−0.876 1 −0.1209 0 0.201 1.185 0 0 0.273 0 0 0

M8.9117 0 −130.75 0 86.32 0 3 1 23.46 0 0 0

0 0 −150 0 0 0 0 0 0 0 0 150

−1 0 0 −0.05 0 0 0 0 0 0 1 0

0.5 0 0 0 0 0 0 0 0 0 0 0

−0.123 0 −0.017 0 0.028 0 0 0 0.038 0 0 0

0.495 0 −7.264 0 4.796 0 0 0 1.303 0 0 0

1.485 0 −21.79 0 14.38 0 .5 0 3.91 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

−0.25 0 0 3.487 0 0 0 0 0 0 .25 0

0 0 −3 0 0 0 0 0 0 0 0 3

−1 0 0 0 0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0 0 .01 0 0




.

Remark. Computational experience with a larger set of typical design examples
indicates that the number of iterations (in terms of semidefinite programs) required
by SSDP is almost independent of the problem dimension, whereas the CPU of course
strongly depends on the efficiency of the SDP solver. As it turns out, in its actual
state, the bottleneck of SSDP is the SDP solver. The public domain software for
SDP we tested could be reliably used to problem sizes of up to 500–1000 decision
variables. For larger sizes, the method may fail due to failure of the SDP solver, often
already at the stage of finding feasible starting values, or while trying to solve one of
the LMI subproblems. Solvers exploiting at best the structure of the problem under
consideration may then be required.

Remark. A special type of LMI solver which replaces the SDP by an eigenvalue
optimization and uses the bundle method from nonsmooth optimization was presented
by Lemaréchal and Oustry [27] and was reported to work well for certain large-size
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LMI problems. On the other hand, for large-size problems where most SDP solvers
are at ill, the direct approach via interior-point methods may be preferable.

8. Concluding remarks. In this paper, we have developed SSDP, a technique
for finding local solutions to robust control design problems. SSDP is an extension
of (and is inspired by) SQP, a method in nonlinear optimization known since the
late 1970s. Expanding on SQP, SSDP comprises LMI constraints, which are handled
explicitly in the course of the algorithm. The method is comfortably implemented
with available SDP codes if the Hessian or reduced Hessian is suitably convexified.
We found the approach highly reliable (as we demonstrated on a set of test examples),
exhibiting local superlinear convergence properties, and applicable to a rich list of
problems in robust control theory.
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Linköping, Sweden, 1995.



1820 B. FARES, D. NOLL, AND P. APKARIAN

[22] J. W. Helton and O. Merino, Coordinate optimization for bi-convex matrix inequalities, in
Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, 1997,
pp. 3609–3613.

[23] N. J. Higham and S. H. Cheng, Modifying the inertia of matrices arising in optimization,
Linear Algebra Appl., 275/276 (1998), pp. 261–279.

[24] F. Jarre, A QQP-Minimization Method for Semidefinite and Smooth Nonconvex Programs,
Technical report, University of Notre Dame, South Bend, IN, 1999.

[25] F. Leibfritz and E. S. Mostafa, An interior point constrained trust region method for a
special class of nonlinear semidefinite programming problems, SIAM J. Optim., to appear.

[26] F. Leibfritz and E. S. Mostafa, Trust Region Methods for Solving the Optimal Output
Feedback Design Problem, Forschungsbericht Nr. 00-01, Universität Trier, Trier, Germany,
2000.

[27] C. Lemaréchal and F. Oustry, Nonsmooth algorithms to solve semidefinite programs, in
Advances in Linear Matrix Inequality Methods in Control, Adv. Des. Control 18, SIAM,
Philadelphia, 2000, pp. 57–77.

[28] J. Ly, M. G. Safonov, and R. Y. Chiang, Real/complex multivariable stability margin com-
putation via generalized Popov multiplier—LMI approach, in Proceedings of the American
Control Conference, Baltimore, MD, 1994, pp. 425–429.

[29] A. Packard, Gain scheduling via linear fractional transformations, Systems Control Lett., 22
(1994), pp. 79–92.

[30] P. Pardalos and J. Rosen, Constrained Global Optimization: Algorithms and Applications,
Lecture Notes in Comput. Sci. 268, Springer-Verlag, Berlin, 1987.

[31] R. T. Reichert, Robust autopilot design using µ-synthesis, in Proceedings of the American
Control Conference, San Diego, CA, 1990, pp. 2368–2373.

[32] S. Robinson, Generalized equations and their solutions. II. Applications to nonlinear program-
ming, Math. Programming Stud., 19 (1982), pp. 200–221.

[33] M. G. Safonov, K. C. Goh, and J. H. Ly, Control system synthesis via bilinear matrix
inequalities, in Proceedings of the American Control Conference, Baltimore, MD, 1994,
pp. 45–49.

[34] C. W. Scherer, A full block S-procedure with applications, in Proceedings of the IEEE Con-
ference on Decision and Control, San Diego, CA, 1997, pp. 2602–2607.

[35] C. W. Scherer, Robust mixed control and linear parameter-varying control with full block
scaling, in Advances in Linear Matrix Inequality Methods in Control, Adv. Des. Control
20, SIAM, Philadelphia, 2000, pp. 187–207.

[36] S. Wu and S. Boyd, Software for Semidefinite Programming and Determinant Maximization
Problems with Matrix Structure, User’s Guide, Stanford University, Stanford, CA, 1996.

[37] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper
Saddle River, NJ, 1996.



ε-EQUILIBRIA FOR STOCHASTIC GAMES WITH UNCOUNTABLE
STATE SPACE AND UNBOUNDED COSTS∗

ANDRZEJ S. NOWAK† AND EITAN ALTMAN‡

SIAM J. CONTROL OPTIM. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1821–1839

Abstract. We study a class of noncooperative stochastic games with unbounded cost functions
and an uncountable state space. It is assumed that the transition law is absolutely continuous with
respect to some probability measure on the state space. Undiscounted stochastic games with expected
average costs are considered first. It is shown under a uniform geometric ergodicity assumption that
there exists a stationary ε-equilibrium for each ε > 0. The proof is based on recent results on uniform
bounds for convergence rates of Markov chains [S. P. Meyn and R. L. Tweedie, Ann. Appl. Probab.,
4 (1994), pp. 981–1011] and on an approximation method similar to that used in [A. S. Nowak, J.
Optim. Theory Appl., 45 (1985), pp. 591–602], where an ε-equilibrium in stationary policies was
shown to exist for the bounded discounted costs. The stochastic game is approximated by one with
a countable state space for which a stationary Nash equilibrium exists (see [E. Altman, A. Hordijk,
and F. M. Spieksma, Math. Oper. Res., 22 (1997), pp. 588–618]); this equilibrium determines an
ε-equilibrium for the original game. Finally, new results for the existence of stationary ε-equilibrium
for discounted stochastic games are given.

Key words. nonzero-sum stochastic games, approximate equilibria, general state space, long
run average payoff criterion
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1. Introduction. This paper treats nonzero-sum stochastic games with general
state space and unbounded cost functions. Our motivation for studying unbounded
costs comes from applications of stochastic games to queuing theory and telecommu-
nication networks (see [2, 3, 4, 38]). We assume that the transition law is absolutely
continuous with respect to some probability measure on the state space. For the ex-
pected average cost case, we impose some stochastic stability conditions, considered
often in the theory of Markov chains in general state space [25, 26]. These assump-
tions imply the so-called ν-geometric ergodicity condition for Markov chains governed
by stationary multipolicies of players. Using an approximation technique similar to
that in [29], we prove the existence of stationary ε-equilibria in m-person average cost
games satisfying the mentioned stability conditions and some standard regularity as-
sumptions. A similar result is stated for discounted stochastic games, but then we
do not impose any ergodicity assumptions. To obtain an ε-equilibrium, we apply a
recent result by Altman, Hordijk, and Spieksma [4] given for nonzero-sum stochastic
games with countably many states. Completely different approximation schemes for
stochastic games with a separable metric state space were given by Rieder [39] and
Whitt [48]. As in [29], they considered only (bounded) discounted stochastic games.

The passage from finite (or even countably infinite) state space with possibly
unbounded cost turns out to be quite a tough problem. In fact, the question of
the existence of stationary Nash equilibria in nonzero-sum stochastic games with un-
countable state space remains open even in the discounted case. Only some special
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classes of games are known to possess a stationary Nash equilibrium. For example,
Parthasarathy and Sinha [37] proved the existence of stationary Nash equilibria in
discounted stochastic games with finitely many actions for the players and state in-
dependent nonatomic transition probabilities. Their result was extended by Nowak
[30] to a class of uniformly ergodic average cost games. There are papers on cer-
tain economic games in which a stationary equilibrium is shown to exist by exploit-
ing a very special transition and payoff structure; see, for example, [5, 7]. Mertens
and Parthasarathy [24] reported the existence of nonstationary subgame-perfect Nash
equilibria in a class of discounted stochastic games with norm continuous transition
probabilities. Some results for nonzero-sum stochastic games with additive reward
and transition structure (and, in particular, games with complete information) are
given by Küenle [19, 20]. Finally, Harris, Reny, and Robson [13] proved the existence
of correlated subgame-perfect equilibria in a class of stochastic games with weakly
continuous transition probabilities. We would like to point out that the only papers
which deal with nonzero-sum average cost stochastic games with uncountable state
space are [20] and [30]. In the zero-sum case, the theory of stochastic games with
uncountable state spaces is much more complete. Mertens and Neyman [23] provided
some conditions for the existence of value, and Maitra and Sudderth [21, 22] devel-
oped a general theory of zero-sum stochastic games with limsup payoffs. Stationary
optimal strategies exist in the average cost zero-sum games only if some ergodicity
conditions are imposed in the model; see, for example, [31, 34, 15, 17, 18].

In this paper, we make use of an extension of Federgruen’s work [11] given by Alt-
man, Hordijk, and Spieksma [4]. Other approaches (based on different assumptions)
to nonzero-sum stochastic games with countably many states can be found in [6, 40]
and [33]. Some results on sensitive equilibria in a class of ergodic stochastic games
are discussed in [33, 16, 35]. To close this brief overview of the existing literature, we
note that the theory of stochastic games is much more complete in the case of finite
state and action spaces. On one hand, many deep existence theorems are available at
the moment; see [23, 22, 44, 45] and some references therein. On the other hand, a
theory of algorithms for solving special classes of stochastic games with finitely many
states and actions is also well developed [12].

In order to study the uncountable state space, we make use of Lyapunov-type
techniques [25] (which also allows us to treat unbounded costs) and of approxima-
tions based on discretization. Unfortunately, the discretization to a countable state
space does not directly yield a setting for which we can apply the existing theory for
stochastic games with a countable state [4]. For example, the Foster (or Lyapunov)-
type conditions that have been used for countable Markov chains always involved the
requirement of a negative drift outside a finite set, whereas our discretization provides
a negative drift outside a countable set. Also, ensuring that the approximating game
maintains the same type of ergodic structure as the initial game turned out to be a
highly complex problem. The fact that our model allows us to handle unbounded
costs is very useful in stochastic games occurring in queueing and in networking ap-
plications; see [2, 3, 4, 38], in which bounded costs turn out to be unnatural.

The involved process of discretization given in our paper, which requires assump-
tions that may be restrictive in some applications, may suggest that, when possible,
other equilibrium concepts might be sought instead of the Nash equilibrium. Indeed,
some results on the existence of stationary correlated equilibria are available at the
moment [36, 30, 10]. This type of equilibrium allows for some coordination between
players, and the proof of existence is considerably simpler.
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This paper is organized as follows. In section 2, we describe our game model.
Section 3 is devoted to studying the average cost games. In section 4, we examine
discounted stochastic games. An appendix is given in section 5, which contains some
auxiliary results on piecewise constant policies in controlled Markov chains.

2. The model and notation. Before presenting the model, we collect some
basic definitions and notation. Let (Ω,F) be a measurable space, where F is the
σ-field of subsets in Ω. By P(Ω) we denote the space of all probability measures on
(Ω,F). If Ω is a metric space, then F is assumed to be the Borel σ-field in Ω. Let
(S,G) be another measurable space. We write P (·|ω) to denote a transition probability
from Ω into S. Recall that P (·|ω) ∈ P(S) for each ω ∈ Ω, and P (D|·) is a measurable
function for each D ∈ G.

We now describe the game model:
(i) S—the state space, endowed with a countably generated σ-field G.
(ii) Xi—a compact metric action space for player i, i = 1, 2, . . . ,m. Let X =

X1 ×X2 × · · · ×Xm. We assume that X is given the Borel σ-field.
(iii) ci : S ×X → R—a product measurable cost (payoff) function for player i.
(iv) Q(·|s, x)—a (product measurable) transition probability from S ×X into S,

called the law of motion among states.
We assume that actions are chosen by the players at discrete times k = 1, 2, . . ..

At each time k, the players observe the current state sk and choose their actions
independently of one another. In other words, they select a vector xk = (x1

k, . . . , x
m
k )

of actions, which results in a cost ci(sk, xk) at time k incurred by player i, and in
a transition to a new state, whose distribution is given by Q(·|sk, xk). Let H1 = S
and let Hn = S×X×S×X× · · · ×S (2n − 1 factors) be the space of all n-stage
histories of the game, endowed with the product σ-field. A randomized policy γi for
player i is a sequence γi = (γi1, γ

i
2, . . .), where each γin is a (product measurable)

transition probability γin(·|hn) from Hn into Xi. The class of all policies for player
i will be denoted by Γi. Let U i be the set of all transition probabilities ui from S
into Xi. A Markov policy for player i is a sequence γi = (ui1, u

i
2, . . .), where uik ∈ U i

for every k. A Markov policy γi for player i is called stationary if it is of the form
γi = (ui, ui, . . .) for some ui ∈ U i. Every stationary policy (ui, ui, . . .) for player i can
thus be identified with ui ∈ U i. Denote by Γ =

∏m
i=1 Γi the set of all multipolicies,

and by U the subset of stationary multipolicies. Let H = S ×X × S ×X × · · · be the
space of all infinite histories of the game, endowed with the product σ-field. For any
γ ∈ Γ and every initial state s1 = s ∈ S, a probability measure P γ

s and a stochastic
process {Sk, Xk} are defined on H in a canonical way, where the random variables
Sk and Xk describe the state and the action, respectively, chosen by the players on
the kth stage of the game (see Proposition V.1.1 in [28]). Thus, for each initial state
s ∈ S, any multipolicy γ ∈ Γ, and any finite horizon n, the expected n-stage cost of
player i is

J in(s, γ) = Eγ
s

(
n∑
k=1

ci(Sk, Xk)

)
,

where Eγ
s means the expectation operator with respect to the probability measure

P γ
s . (Later on we make an assumption on the functions ci that assures that all the

expectations considered in this paper are well defined.)
The average cost per unit time to player i is defined as

J i(s, γ) = lim sup
n→∞

J in(s, γ)/n.
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If β is a fixed real number in (0, 1), called the discount factor, then the expected
discounted cost to player i is

Di(s, γ) = Eγ
s

( ∞∑
k=1

βk−1ci(Sk, Xk)

)
.

For any multipolicy γ = (γ1, . . . , γm) ∈ Γ and a policy σi for player i, we define
(γ−i, σi) to be the multipolicy obtained from γ by replacing γi with σi.

Let ε ≥ 0. A multipolicy γ is called an ε-equilibrium for the average cost stochastic
game if for every player i and any policy σi ∈ Γi,

J i(s, γ) ≤ J i(s, (γ−i, σi)) + ε.

We similarly define ε-equilibria for the expected discounted cost games. Of course, a
0-equilibrium will be called a Nash equilibrium.

To ensure the existence of ε-equilibrium strategies for the players in the stochas-
tic game, we will accept some regularity conditions on the primitive data, and in
the average expected cost case we will also impose some general Lyapunov stability
assumptions on the transition structure.

In both the discounted and average cost cases, we make the following assumptions.

C1: For each player i and s ∈ S, ci(s, ·) is continuous on X. Moreover, there
exists a measurable function ν : S → [1,∞) such that

L
def
= sup

s∈S,x∈X,i=1,...,m

|ci(s, x)|
ν(s)

<∞.(2.1)

C2: There exists a probability measure ϕ ∈ P(S) such that

Q(B|s, x) =

∫
B

z(s, t, x)ϕ(dt)

for each B ∈ G and (s, x) ∈ S ×X. Moreover, we assume that if xn → x0 in X, then

lim
n→∞

∫
S

|z(s, t, xn)− z(s, t, x0)|ν(t)ϕ(dt) = 0,

where ν was defined above (2.1).

Remark 2.1. Let w be a measurable function such that 1 ≤ w(s) ≤ ν(s) + δ for
all s ∈ S and for some δ > 0. If xn → x0 in X as n→∞, then

∫
S

|z(s, t, xn)− z(s, t, x0)|w(s)ϕ(dt)→ 0.

This follows from C2, since ν ≥ 1 implies that

∫
S

|z(s, t, xn)− z(s, t, x0)|ϕ(dt)→ 0.
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3. The undiscounted stochastic game. To formulate our further assump-
tions, we introduce some helpful notation. Let s ∈ S, u = (u1, . . . , um) ∈ U. We
set

ci(s, u) =

∫
X1

· · ·
∫
Xm

ci(s, x1, . . . , xm)u1(dx1|s) · · ·um(dxm|s),

and, for any set D ∈ G, we set

Q(D|s, u) =

∫
X1

· · ·
∫
Xm

Q(D|s, x1, . . . , xm)u1(dx1|s) · · ·um(dxm|s).

By Qn(·|s, u), we denote the n-step transition probability induced by Q and the
multipolicy u ∈ U.

C3 (Drift inequality): Let ν : S → [1,∞) be some given measurable function.
There exists a set C ∈ G such that ν is bounded on C and for some ξ ∈ (0, 1) and
η > 0 we have ∫

S

ν(t)Q(dt|s, x) ≤ ξν(s) + η1C(s)

for each (s, x) ∈ S ×X. Here 1C is the characteristic function of the set C.
C4: There exist a λ ∈ (0, 1) and a probability measure ζ concentrated on the set

C such that

Q(D|s, x) ≥ λζ(D)

for any s ∈ C, x ∈ X and for each measurable set D ⊂ C.
For any measurable function w : S → R, we define the ν-weighted norm as

‖w‖ν = sup
s∈S
|w(s)|
ν(s)

.

We write L∞
ν to denote the Banach space of all measurable functions w for which

‖w‖ν is finite.
Condition C3 implies that, outside a set C, the function ν decreases under any

stationary multipolicy u; i.e.,

Eu
s (ν(Sk+1)− ν(Sk)|Sk) ≤ −(1− ξ)ν(Sk) ≤ −(1− ξ).(3.1)

This is known as a drift condition. If (i) the state space is countable, (ii) the set C
is finite, and (iii) the state space is communicating under a stationary policy u, then
(3.1) implies that the Markov chain (when using u) is ergodic. (This is the well known
Foster criterion for ergodicity; see, e.g., [27].)

In the uncountable infinite state space, the same drift condition should be used
to obtain the ergodicity condition. However, the finiteness of the set C is replaced by
a weaker assumption. Namely, C has to be a small set or a petite set [25]; condition
C4 is a simple sufficient condition for the set C to be small.

Beyond the ergodicity of the Markov chain {Sk} under a stationary multipolicy,
Foster-type criteria (i.e., conditions C3–C4) also ensure the finiteness of the expec-
tation Eu

s ν(Sk) in steady state, as well the finiteness of the expected cost Eu
sw(Sk)
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for every potential cost function w ∈ L∞
ν ; moreover, they provide a geometric rate

of convergence of the expected costs at time k to the steady state cost for w ∈ L∞
ν .

These statements will be made precise below.
Note that C3–C4 provide uniform conditions for ergodicity; i.e., ξ, ζ, C, and λ

do not depend on the actions (or on the policies). This will be needed in order for
approximating games (with countable state space) to have stationary Nash equilibria
[4].

Lemma 3.1. Assume C3–C4. Then the following properties hold.
C5: For every u ∈ U , the corresponding Markov chain is aperiodic and ψu-

irreducible for some σ-finite measure ψu on G. (The latter condition means that if
ψu(D) > 0 for some set D ∈ G, then the chance that the Markov chain (starting at
any s ∈ S and induced by u) ever enters D is positive.) Thus the state process {Sn}
is a positive recurrent Markov chain with the unique invariant probability measure
denoted by πu.

C6: For every stationary multipolicy u,
(a) ∫

S

ν(s)πu(ds) <∞.

(b) {Sn} is ν-uniformly ergodic; that is, there exist θ > 0 and α ∈ (0, 1) such that∣∣∣∣∣∣
∫
S

w(t)Qn(dt|s, u)−
∫
S

w(t)πu(dt)

∣∣∣∣∣∣ ≤ ν(s)‖w‖νθαn

for every w ∈ L∞
ν and s ∈ S, n ≥ 1.

Proof. C3–C4 imply that for any stationary u, the chain is positive Harris
recurrent (see Theorem 11.3.4 in [25]). It is thus ψu-irreducible (see Chapter 9 of [25]).
The aperiodicity (and, in fact, strong aperiodicity) follows from condition C4 (see [25,
p. 116]). This establishes C5. C6 follows from Theorem 2.3 in [26].

Remark 3.1. From Lemma 3.1 it follows that for any player i and u ∈ U we have

J i(u) :=

∫
S

ci(s, u)πu(ds) = J i(s, u);

that is, the expected average cost of player i is independent of the initial state. The-
orem 2.3 in [26] implies that the constants α and θ in Lemma 3.1 depend only on
ξ, η, λ, and νC = sups∈C ν(s) (and, in particular, they do not depend on u). C1, C3,
and C4 imply that the expected costs considered in this section are well defined for
any multipolicy γ ∈ Γ; see [34] or [14].

In what follows, whenever we assume C1–C4, we shall take the same function ν
in C1 as in C3. We are now ready to state our first main result.

Theorem 3.1. Consider an undiscounted stochastic game satisfying C1–C4.
Then for any ε > 0 there exists a stationary ε-equilibrium.

The proof of this result is based on an approximation technique and consists of
several steps which will be described later on. Before proving the result, we briefly
mention the approach and the steps we are using, the difficulties, and the way we
overcome these difficulties.

Basic idea behind the proof. Our basic goal is to approximate our game by a
sequence of m-person games with countable state spaces and compact action spaces
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and which have equilibria in stationary policies; based on such approximating games,
we shall construct a stationary policy which is an ε-equilibrium for the original game.
The basic idea here is similar to the one already used in [29] for the problem with
discounted cost. However, the situation here is much more involved; indeed, in the
discounted case one does not need to bother about the ergodic structure of the approx-
imating games in order to show that they possess equilibrium in stationary policies.
Here, in contrast, we need to carefully construct the approximating games so as to
ensure that they not only have the required ergodic property but also are uniform
ergodic and have some additional “good” properties for the cost. Our first step in
the proof will be to construct such approximating games, which will also satisfy con-
ditions C1–C4. The function ν, as well as the other objects that appear in these
assumptions, will be approximated as well. (We will have to show, for example, that
the approximation of ξ is indeed within (0, 1), etc.) The approximation of the game
in a way that allows conditions similar to C1–C4 to hold is done in the next two
subsections.

Properties similar to C2–C4 were used in [4] to establish the existence of equilib-
ria in stationary policies for games with countable state space; the properties imply,
for example, that the costs are continuous in the policies. Unfortunately, the counter-
part of property C4 that is used to establish ergodicity in the literature of countable
state Markov chains (or for Markov decision processes, or for Markov games) requires
that the set C that appears in conditions C3–C4 be finite. Unfortunately, we were
not able to come up with a direct approximation scheme for which C is finite. To
overcome this problem, we first use some results from [26] to obtain uniform ergodic-
ity results for the approximating chains. Using a key theorem from [41], this will be
shown to imply that there exist some function (instead of the original approximation
of ν) and constants for which properties C3–C4 hold and for which C is a singleton.
This is done in subsection 3.3.

3.1. Transition operators and their ν-weighted norms. If f ∈ L∞
ν and σ

is a finite signed measure on (S,G), then for convenience we set

σ(f) =

∫
S

f(s)σ(ds),

provided that this integral exists. Let P1 and P2 be transition subprobabilities from
S into S. Define

‖P1 − P2‖ν = sup
s∈S

sup
|f |≤ν

|P1(f |s)− P2(f |s)|
ν(s)

.(3.2)

We will also use the definition (3.2) in the case in which P1 and P2 are probability
measures on (S,G), or when one of them is zero. Note that if P2 = 0 and P1 is a
transition probability, then it follows from (3.2) that

‖P1‖ν = sup
s∈S

P1(ν|s)

ν(s)
.

If P1 and P2 are transition probabilities and ‖P1 − P2‖ < ∞, then P1 − P2 induces
a bounded linear operator from L∞

ν into itself, and ‖P1 − P2‖ν is its operator norm
(see Lemma 16.1.1 in [25]).

We now come back to our game model and accept the following notation. For any
u ∈ U , we use Q(u) to denote the operator on L∞

ν defined by Q(u)f(s) = Q(f |s, u),
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s ∈ S, and f ∈ L∞
ν . By C3, we have

‖Q(u)‖ν ≤ ξ + η.(3.3)

Clearly, (3.3) implies that Q(u) is (under condition C3) a bounded linear operator
from L∞

ν into itself. By Π(u) we denote the invariant probability measure operator
given by

Π(u)f = πu(f),

where πu is the invariant probability measure for Q(·|s, u), u ∈ U , and f ∈ L∞
ν .

3.2. Approximating games. We define ΓA to be the class of stochastic games
that “resemble” stochastic games with countably many states and can be used to
approximate the original game. The games in ΓA will depend on some parameter
δ > 0. The transition probability in a game belonging to ΓA is denoted by Qδ, and
the cost function of player i is denoted by ciδ.

We introduce some notation:
• N—the set of positive integers,
• C(X)—the Banach space of all continuous functions on X, endowed with the

supremum norm ||·||,
• L1

ν = L1
ν(S,G, ϕ)—the Banach space of measurable functions f : S → R such

that
∫
S
|f(s)|ν(s)ϕ(ds) <∞.

We assume that each game Gδ ∈ ΓA corresponds to some sequences {Yn}, {cin},
{zn}, and {νn}, where n belongs to some subset N1 ⊂ N and {Yn} is a measurable
partition of the state space such that Yn ⊂ C or Yn ⊂ S \ C for each n ∈ N1 (the set
C is introduced in assumption C3),

ciδ(s, x) = cin(x), and Qδ(B|s, x) =

∫
B

zn(t, x)ϕ(dt)

for all s ∈ Yn, x ∈ X, and n ∈ N1. Moreover, νn are rational numbers and νn ≥ 1 for

all n ∈ N1. Define νδ(s)
def
= νn if s ∈ Yn.

We will show that for each δ > 0 it is possible to construct a game Gδ such that
cin ∈ C(X) and zn(·, x) ∈ L1

ν while zn(s, ·) ∈ C(X) for all n ∈ N1, x ∈ X, and s ∈ S.
Because in our approximation we need to preserve (in some sense) condition C4,

we consider the following subset ∆ ⊂ L1
ν: φ ∈ ∆ if and only if φ is a density function

such that ∫
D

φ(s)ϕ(ds) ≥ λζ(D)(3.4)

for each D ∈ G such that D ⊂ C. Our assumption C4 implies that ∆ �= ∅. It is
obvious that ∆ is convex. Suppose that φn ∈ ∆ and φn → φ ∈ L1

ν . Since ν ≥ 1, then
φn → φ in L1. By Scheffe’s theorem, φ is a density function. Moreover, φ satisfies
(3.4). Thus, we have shown that ∆ is a closed and convex subset of L1

ν .
Let V be the space of all continuous mappings from X into ∆ with the metric ρ

defined by

ρ(φ1, φ2) = max
x∈X

∫
S

|φ1(x)(s)− φ2(x)(s)|ν(s)ϕ(ds).(3.5)

Since G is countably generated, L1 is separable. As in [47, Theorem I.5.1], we can
prove the following.
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Lemma 3.2. V is a complete separable metric space.

Note that the proof of Theorem I.5.1 in [47] makes use of the convexity of the
range space of the continuous mappings involved. In our case, the range space ∆ is
also convex.

For each s ∈ S, the transition probability density z of the original game induces
elements φ(s, ·) of V by

φ(s, x) = z(s, ·, x).

From the product measurability of z on S × S × X, it follows that s → φ(s, ·) is a
measurable mapping from S into V .

We introduce the following notation:

• {φk}—a countable dense subset of V (see Lemma 3.2),
• {ck}—a countable dense set in C(X),
• {rk}, rk ≥ 1, where {rk} is the set of all rational numbers satisfying rk ≥ 1.

Let 0 < δ < 1 be fixed. Define for any k, k1, . . . , km, l

B(k, k1, . . . , km, l) =

{
s ∈ S : ρ(φ(s, ·), φk) +

m∑
i=1

∣∣∣∣ci(s, ·)− cki
∣∣∣∣+|ν(s)− rl| < δ

}
.

Let τ be a (fixed) one-to-one correspondence between N and N×· · ·×N = N
m+2.

Define Tn
def
= B(τ(n)), n ∈ N. Next, set Ȳ1

def
= T1 and Ȳk

def
= Tk − ∪j<kȲj for k ≥ 2.

Let {Yn} be the enumeration of all nonempty sets Ȳk. Clearly, {Yn} is a measur-
able countable partition of the state space, and n belongs to some N1 ⊂ N.

If necessary, we can modify (trivially) this partition in such a way that Yn ⊂ C
or Yn ⊂ S \C for each n. Note that for each n ∈ N1 and each set Yn there correspond
some zn ∈ V and cin ∈ C(X), so that we obtain a game Gδ ∈ ΓA. Moreover, we have

ρ(φ(s, ·), zn) < δ

(φ(s, x) = z(s, ·, x), by definition) for each n ∈ N1 and s ∈ Yn. This implies that

||Q(u)−Qδ(u)||ν < δ(3.6)

for every u ∈ U . Next, we have

∣∣∣∣ci(s, ·)− cin
∣∣∣∣ < δ

for each n ∈ N1 and s ∈ Yn. If we set ciδ(s, x) = cin(x) for s ∈ Yn, x ∈ X, we obtain

sup
s∈S

sup
x∈X
|ci(s, x)− ciδ(s, x)| ≤ δ.(3.7)

We also have

|ν(s)− νδ(s)| < δ(3.8)

for every s ∈ S.
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3.3. Equivalence with a game with a countable state space. Next, we
shall show that the Gδ game has an equilibrium in the class of stationary multi-
policies. This will be done in the proof of the following lemma.

Lemma 3.3. Assume that the stochastic game satisfies C1–C4 and ξδ
def
= 3δ+ξ <

1. Then
(i) the game Gδ satisfies C3 with ξ and ν replaced by ξδ and νδ, respectively, and

it satisfies C4; moreover,
(ii) it has a Nash equilibrium in the class of stationary multipolicies.
Proof. (i) From (3.6), it follows that

Qδ(ν|s, x) ≤ Q(ν|s, x) + δν(s)

for every s ∈ S and x ∈ X. Since C3 holds for the original game, this implies that

Qδ(ν|s, x) ≤ (δ + ξ)ν(s) + η1C(s).(3.9)

From (3.8) and (3.9), we conclude that

Qδ(νδ|s, x) ≤ δ + (δ + ξ)δ + (δ + ξ)νδ(s) + η1C(s).

Hence

Qδ(νδ|s, x) ≤ ξδνδ(s) + η1C(s)(3.10)

for every s ∈ S and x ∈ X; i.e., a condition of the type C3 holds. Condition C4
follows from the construction of ∆ (above (3.4)).

(ii) Consider the approximating games under the further assumption that every
player i restricts to the class U i

0 of policies that are piecewise constant: ui belongs
to U i

0 if and only if s → ui(·|s) is constant on each set Yn of the partition {Yn}
of S. Denote by U0 the set of all stationary piecewise constant multipolicies. Every
game Gδ with the above restriction is equivalent to a stochastic game denoted by Ḡ
with the countable state space N1 (defined in our approximation procedure). Because
every stationary multipolicy in Ḡ corresponds to a multipolicy in U0, we will use U0

also to denote the set of all stationary multipolicies in Ḡ. The cost functions in Ḡ are
cin ∈ C(X), where n ∈ N1. The transition probabilities in Ḡ are given by

Pmn(u) = Qδ(Yn|s, u)

for all s ∈ Ym, u ∈ U0, and m,n ∈ N1. Let P (u) denote the transition probability
matrix corresponding to any u ∈ U0. Finally, the piecewise constant function νδ
induces a function µ : N1 → [1,∞) by µ(n) = νδ(s), s ∈ Yn, n ∈ N1. (Sometimes we
will identify µ with the column vector, and µ(n) with its nth coordinate.)

Fix δ such that ξδ < 1. Applying Lemma 3.1 to the game Gδ, we conclude that
it satisfies C5. By part (i) and Theorem 2.3 in [26], this game also satisfies C6 (with
possibly different constants θ1 and α1). A simple translation of C5 to the game Ḡ
with countably many states says that for any u ∈ U0 the Markov chain with the
transition probability matrix P (u) has a single ergodic class and is aperiodic. On
the other hand, a translation of C6 and the fact that ||Qδ(u)||νδ ≤ ξδ + η (which
follows from (3.10)) mean that the Markov chain is µ-uniform geometric ergodic; see
[9, 41]. By Key Theorem II and Lemma 5.3(ii) in [41], there exist a nonempty finite
set M ⊂ N1, a function µ̃ : N1 → [1,∞), and some b ∈ (0, 1) such that∑

n/∈M
Pkn(u)µ̃(n) ≤ bµ̃(k)(3.11)
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for every k ∈ N1 and u ∈ U0. This property is called the µ̃-uniform geometric
recurrence (see [8, 9, 41]) and is Assumption A2(1) in [4]. The function µ̃ is given by

µ̃(k) = µ(k) + sup
u∈U0

( ∞∑
n=1

MPn(u)µ

)
(k),

where k ∈ N1 (MP (u) is the matrix P (u) in which we replace the columns correspond-
ing to states m ∈ M by zeros); see [4, pp. 99–100]. Note that this new function µ̃
is µ-bounded (i.e., supn∈N1

µ̃(n)/µ(n) < ∞) and vice versa. Indeed, µ(k) ≤ µ̃(k) for
each k. On the other hand, by (3.11), we have (MP (u)µ̃)(k) ≤ bµ̃(k) for any k ∈ N1

and u ∈ U0. Hence

µ̃(k) = µ(k) + sup
u∈U0

( ∞∑
n=1

MPn(u)µ

)
(k) ≤ µ(k) + sup

u∈U0

(MP (u)µ̃)(k) ≤ µ(k) + bµ̃(k).

Thus, µ̃(k) ≤ µ(k)/(1 − b) for every k ∈ N1. Since µ̃ is µ-bounded and vice versa,
this implies the µ̃-continuity of the immediate costs (recall C1) and of the transition
probabilities (recall C2 and Remark 2.1). This is Assumption 1∗ in [4]. Since both
assumptions 1∗ as well as 2(1) in [4] hold, it follows that the game Ḡ has a stationary
Nash equilibrium u∗ ∈ U0, and consequently Gδ has a stationary equilibrium (also
denoted by u∗) in the class U0 of all stationary piecewise constant multipolicies. It
now follows from Lemma 5.1 in the appendix that u∗ is a Nash equilibrium for the
game Gδ in the class U of all stationary multipolicies.

3.4. Uniform convergence of the steady state probabilities and costs,
and proof of the main result. Let J iδ(u) be the expected average cost for player i
in the game Gδ when a stationary multipolicy u is used (see Remark 3.1 and Lemma
3.3(i)).

Let Qδ(u) and Πδ(u) denote the transition probability and the invariant probabil-
ity measure operators under any stationary multipolicy u ∈ U in the approximating
game.

Lemma 3.4. Under C1–C4,
(i)

lim
δ→0
||Πδ(u)−Π(u)||ν = 0

uniformly in u ∈ U .
(ii)

lim
δ→0

∣∣J iδ(u)− J i(u)
∣∣ = 0

uniformly in u ∈ U .
Proof. (i) If ξδ = 3δ + ξ < 1, then (by Lemma 3.3) the games Gδ satisfy C4 and

C3, with ξ replaced by ξδ. By (3.10), we have ||Qδ(u)||νδ ≤ ξδ + η for all u ∈ U . This
and Theorem 2.3 in [26] (applied to the games Gδ) imply that there exists a δ0 such
that

sup
δ≤δ0

sup
u∈U
||Πδ(u)||νδ <∞.

Hence

K0
def
= sup

δ≤δ0
sup
u∈U
||Πδ(u)||ν <∞.(3.12)
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The rest of the proof is an adaptation of the proof of Proposition 1 in [42]. By
Lemma 3.1 and Remark 3.1, there exist some θ > 0 and α ∈ (0, 1) such that

sup
u∈U
||Qn(u)−Π(u)||ν ≤ θαn

for every n. Hence, there exists an n0 such that

sup
n≥n0

sup
u∈U

∣∣∣∣∣
∣∣∣∣∣ 1n

n−1∑
i=0

Qi(u)− 1

n
(I −Q(u))−Π(u)

∣∣∣∣∣
∣∣∣∣∣
ν

< 1;

Q0 = I is the identity operator. Therefore for each n ≥ n0 there exists a ν-bounded
transition operator

Φn(u)
def
=

(
I + Π(u)− 1

n

n−1∑
i=0

Qi(u) +
1

n
(I −Q(u))

)−1

and

K1
def
= sup

n≥n0

sup
u∈U
||Φn(u)||ν <∞.(3.13)

Define

Zn(u)
def
= I +

1

n

n−1∑
i=1

i−1∑
j=1

(Qj(u)−Π(u)).

We have

K2
def
= sup

n≥n0

sup
u∈U
||Zn(u)||ν <∞.(3.14)

A direct calculation yields

(I −Q(u) + Π(u))Zn(u)Φn(u) = I.(3.15)

Clearly, (3.15) implies that

Πδ(u)(I −Q(u) + Π(u))Zn(u)Φn(u) = Πδ(u),

so that

Πδ(u)(I −Q(u))Zn(u)Φn(u) + Π(u)Zn(u)Φn(u) = Πδ(u).(3.16)

From (3.15), we infer that

Π(u)(I −Q(u) + Π(u))Zn(u)Φn(u) = Π(u).

Therefore

Π(u)Zn(u)Φn(u) = Π(u).

Substituting into (3.16), we obtain

Πδ(u)(I −Q(u))Zn(u)Φn(u) = Πδ(u)−Π(u),
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and consequently

||Πδ(u)−Π(u)||ν = ||Πδ(u)(Qδ(u)−Q(u))Zn(u)Φn(u)||ν .
Combining this with (3.6) and (3.12)–(3.14), we obtain

||Πδ(u)−Π(u)||ν ≤ ||Qδ(u)−Q(u)||ν K0K1K2 < δK0K1K2.

The proof of statement (i) is finished.
(ii) Using L defined in (2.1) and (3.7), we obtain

|J i(u)− J iδ(u)| = |Π(u)ci(·, u)−Πδ(u)ciδ(·, u)|
≤ |Π(u)ci(·, u)−Πδ(u)ci(·, u)|+ |Πδ(u)(ci(·, u)− ciδ(·, u))|
≤ Lν(s0) sup

|w|≤ν

|Π(u)w −Πδ(u)w|
ν(s0)

+ δ

≤ Lν(s0) sup
s∈S

sup
|w|≤ν

|Π(u)w −Πδ(u)w|
ν(s)

+ δ

= Lν(s0) ||Π(u)−Πδ(u)||ν + δ,

where s0 is an arbitrary state. Now (ii) follows from (i).
A version of Lemma 3.4 corresponding with a bounded function ν was established

by Stettner [42]. When ν is bounded, an elementary proof of Lemma 3.4 (stated as
an extension of Ueno’s lemma [46]) is possible [32].

Proof of Theorem 3.1. Choose some ε > 0. According to Lemma 3.4 there exists
some δ such that for all u ∈ U , ∣∣J i(u)− J iδ(u)

∣∣ ≤ ε.(3.17)

Let u∗ ∈ U be a Nash equilibrium for the game Gδ in the class U of multipolicies
(its existence follows from Lemma 3.3). It then follows from (3.17) that u∗ is an ε-
equilibrium (in the class U) for the original game. The fact that u∗ is an ε-equilibrium
in the class Γ of all multipolicies follows from Theorem 3 and Remark 1 in [34] (or
[18, 14] in the Borel state space framework).

4. The discounted stochastic game. In this section, we drop conditions C3
and C4. However, in the unbounded cost case, we make the following assumption.

C7: There exists α ∈ [β, 1) such that

βQ(ν|s, x) ≤ αν(s)

for each s ∈ S and x ∈ X.
Using C7, we can easily prove that, for any s ∈ S, any multipolicy γ ∈ Γ, and

any number of stages k, we have

|βk−1Eγ
s (ci(Sk, Xk))| ≤ βk−1Eγ

s (|ci(Sk, Xk)|) ≤ Lβk−1Eγ
s (ν(Sk)) ≤ Lαk−1ν(s),

where L is the constant defined in C1. This gives us the following lemma.
Lemma 4.1. Assume C1 and C7. Then for every player i the expected discounted

cost Di(s, γ) is well defined (absolutely convergent) for each s ∈ S and γ ∈ Γ.
We are ready to formulate our main result in this section.
Theorem 4.1. Any discounted stochastic game satisfying conditions C1, C2,

and C7 has a stationary ε-equilibrium for any ε > 0.
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Before we give the proof of this theorem, we state some auxiliary results. Let
∆1 be the set of all density functions in L1

ν . Clearly, Lemma 3.2 holds true if ∆ is
replaced by ∆1. Applying the approximation scheme from section 3 to the present
situation, we construct a game Gδ for any δ > 0 such that (3.7) holds and, moreover,
we have

sup
|f |≤ν

|Q(f |s, u)−Qδ(f |s, u)| ≤ δ(4.1)

for each s ∈ S and any stationary multipolicy u ∈ U.
Fix player i and set

Kn(s, u) = Eu
s (ci(Sn, Xn)) and Kn

δ (s, u) = Eu
s (ciδ(Sn, Xn)),

where s ∈ S and u ∈ U. Clearly, Kn(s, u) is the nth stage cost for player i under
stationary multipolicy u when the game starts at an initial state s ∈ S.

Lemma 4.2. Assume C1 and C7. Then, for each s ∈ S and u ∈ U, we have

|Kn(s, u)−Kn
δ (s, u)| ≤ δ(1 + (n− 1)L)

(
α

β

)n−1

.

Proof. The proof proceeds by induction. For n = 1 the inequality follows imme-
diately from (3.7). We now give the induction step. Note that

|Kn+1(s, u)−Kn+1
δ (s, u)| = |Q(Kn(·, u)|s, u)−Qδ(K

n
δ (·, u)|s, u)|

≤ |Q(Kn(·, u)|s, u)−Qδ(K
n(·, u)|s, u)|

+ |Qδ(K
n(·, u)|s, u)−Qδ(K

n
δ (·, u)|s, u)|.

Using (4.1), our induction hypothesis, and the obvious inequality

Kn(s, u) ≤ L

(
α

β

)n−1

ν(s),

which holds for every s ∈ S and u ∈ U , we obtain

|Kn+1(s, u)−Kn+1
δ (s, u)| ≤ δL

(
α

β

)n−1

+ δ(1 + (n− 1)L)

(
α

β

)n−1

= δ(1 + nL)

(
α

β

)n−1

≤ δ(1 + nL)

(
α

β

)n
,

which ends the proof.
From Lemmas 4.1 and 4.2, we infer the following result.
Lemma 4.3. Assume C1 and C7. If Di

δ(s, u) is the expected β-discounted cost
for player i in the game Gδ, then

|Di(s, u)−Di
δ(s, u)| ≤ δ(1 + α(L− 1))(1− α)−2

for each s ∈ S and u ∈ U .
The game Gδ is characterized by the cost functions ciδ, transition probability Qδ,

and the function νδ. Note that if δ is sufficiently small, then the game Gδ satisfies
condition C1 with L replaced by 2L. From our approximation scheme (the new
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definition of the space V) and Remark 2.1, it follows also that C2 is satisfied in our
game Gδ. Since |ν(s)− νδ(s)| < δ for all s ∈ S, we have (by (4.1))

β

∫
S

νδ(t)Qδ(dt|s, x) ≤ ανδ(s) + αδ + 2βδ < α0νδ(s),

where α0 = α + αδ + 2δ and s ∈ S, x ∈ X. Note that β < α0, and if δ is sufficiently
small, then α0 < 1, and thus Gδ satisfies condition C7 with α replaced by α0. Let δ0
be a positive number such that for every δ < δ0 the game Gδ satisfies conditions of
type C1, C2, and C7. In particular, we have β < α0 < 1.

Lemma 4.4. If δ < δ0, then the game Gδ has a Nash equilibrium in the class U
of all stationary multipolicies.

Proof. We use a transformation to bounded cost games similar to that of [43,

p. 101]. One may define the new discount factor β̃
def
= α0 and the functions

c̃i(s, x) =
cin(x)

νδ(s)
, z̃(s, t, x) =

βzn(t, x)νδ(t)

α0νδ(s)
,

where s ∈ Yn, t ∈ S, and x ∈ X. This transformation ensures that the new costs c̃i

are bounded and that

q(·|s, x)
def
=

∫
S

z̃(s, t, x)ϕ(dt)

is a transition subprobability such that q(Yn|s, x) is continuous in x for each n and
s ∈ S. Moreover, it implies that

D̃i(s, u) =
Di
δ(s, u)

νδ(s)
,(4.2)

where D̃i(s, u) is the expected discounted cost for player i under any u ∈ U in the
transformed (bounded) game. Similarly, as in section 3 we can recognize the game
Gδ as a game with countably many states. By [11], such a game has a stationary
Nash equilibrium. In other words, our bounded game has an equilibrium u� in the
class U0 of all piecewise constant multipolicies. It now follows from Lemma 5.2 in the
appendix that u� is an equilibrium for the bounded game in the class U . By (4.2),
we infer that u� is also an equilibrium (in the class U of all stationary multipolicies)
for the game Gδ.

Proof of Theorem 4.1. Fix ε > 0. By Lemma 4.3, there exists δ < δ0 such that

|Di(s, u)−Di
δ(s, u)| ≤ ε/2

for each s ∈ S and u ∈ U . It follows from Lemma 4.4 that the game Gδ has an
equilibrium u� in the class U. Clearly, u� is an ε-equilibrium in the class U for the
original game. The fact that u� is also an ε-equilibrium in Γ follows from Theorem 2
and Remark 1 in [34] (or [14] in the case of Borel state space games).

5. Appendix. In this section we restrict our attention to the approximating
games and state some auxiliary results on sufficiency of piecewise constant policies in
the sense that they can be used to dominate any other policy. Related statements
are proven in [1] for countable state space models. Their extension to the present
situation would require new notation and some additional measure theoretic work.
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Therefore, in this section we restrict ourselves to stationary policies, and in such a
case we can use different methods which are based on some standard arguments from
the dynamic programming literature [14].

Let Gδ be an approximating game corresponding to a partition of the state space.
Fix player i and a stationary piecewise constant multipolicy u−i for the other players.
For any s ∈ S and f ∈ U i set

c(s, f) = ciδ(s, (u
−i, f)) and q(·|s, f) = Qδ(·|s, (u−i, f)).

Recall that U i
0 denotes the set of all piecewise constant stationary policies for player

i.
Consider the Markov decision process (MDP) with the state space S, the action

space Xi, the cost function c, and the transition probability q.
The average cost case. We assume that δ is sufficiently small so that the MDP

satisfies conditions C1–C4 (restricted to the one-player case). Let Jn(s, f) (J(f))
denote the expected n-stage (expected average) cost (in the MDP) under stationary
policy f.

Lemma 5.1. Assume C1–C4, and consider the average cost MDP described
above. Then for each f ∈ U i there exists some f0 ∈ U i

0 such that

J(f0) ≤ J(f).

Proof. Let f ∈ U i and g = J(f). By Lemma 3.1, our MDP satisfies condition C6
with ν replaced by νδ and possibly different constants. It is well known that in such
a case the function

h(s)
def
= Ef

s

[ ∞∑
n=1

(c(Sn, X
i
n)− g)

]

is well defined and h ∈ L∞
νδ

. Moreover, we have

g + h(s) = c(s, f) + q(h|s, f) for each s ∈ S.

For the details, see [14] and [25]. Our approximating game (and thus the MDP)
satisfies continuity conditions C1–C2. Because the cost function c and the transition
probability correspond to a partition of the state space (and, in addition, the other
players use stationary piecewise constant multipolicy u−i), this implies that one can
find some f0 ∈ U i

0 such that

c(s, f0) + q(h|s, f0) ≤ c(s, f) + q(h|s, f) = g + h(s)

for all s ∈ S. Iterating this inequality, we obtain

Jn(s, f0) + qn(h|s, f0) ≤ ng + h(s)

for all s ∈ S. Hence

Jn(s, f0)

n
+

qn(h|s, f0)

n
≤ g +

h(s)

n

for each n, and consequently

J(f0) ≤ g = J(f).
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For a detailed discussion of the fact that C3 implies that qn(h|s, f0)/n→ 0 as n→∞,
consult [14] or [34].

The discounted cost case. We now assume that the stochastic game satisfies C1,
C2, and C7. If δ is sufficiently small, then both Gδ and the aforementioned MDP
satisfy C1, C2, and C7, but with different constants (see section 4). Let f ∈ U i. By
Dn(s, f) (D(s, f)) we denote the expected n-stage discounted (total discounted) cost
in the MDP under policy f .

Lemma 5.2. Assume C1, C2, and C7, and consider the discounted MDP de-
scribed above. Then for each f ∈ U i there exists some f0 ∈ U i

0 such that

D(s, f0) ≤ D(s, f) for every s ∈ S.

Proof. Set d(s) = D(s, f), s ∈ S. Under our assumptions, we have

d(s) = c(s, f) + βq(d|s, f)

for all s ∈ S (see Lemma 4.1). From our compactness and continuity conditions, C7,
and the construction of the approximating game, it follows that there exists some
f0 ∈ U i

0 such that

c(s, f0) + βq(d|s, f0) ≤ c(s, f) + βq(d|s, f) = d(s)

for each s ∈ S. Hence

Dn(s, f0) + βnqn(d|s, f0) ≤ d(s)

for each n and s ∈ S, and consequently

D(s, f0) ≤ D(s, f) for each s ∈ S.

The fact that βnqn(d|s, f0)→ 0 as n→∞ follows easily from C7.
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Abstract. We develop a variational theory for geodesics joining a point and a one dimensional
submanifold of a sub-Riemannian manifold. Given a Riemannian manifold (M, g), a smooth distri-
bution ∆ ⊂ TM of codimension one in M , a point p ∈ M , and a smooth immersion γ : R → M
with closed image in M and which is everywhere transversal to ∆, we look for curves in M that are
stationary with respect to the Riemannian energy functional among all of the absolutely continuous
curves horizontal with respect to ∆ and that join p and γ. If (M, g) is complete, such extremizers
exist, and they are curves of class C2 characterized as the solutions of an integro-differential equa-
tion or by a system of ordinary differential equations. We present some results concerning a sort of
exponential map relative to the integro-differential equation and some applications. In particular,
we obtain that if p and γ are sufficiently close in M , then there exists a unique length minimizer.
We obtain existence and multiplicity results by means of the Ljusternik–Schnirelman theory.

Key words. sub-Riemannian geodesics, Ljusternik–Schnirelman theory

AMS subject classifications. 53C17, 53C22, 58E05, 58E10, 58E25

PII. S0363012900367242

1. Introduction. The goal of this paper is to develop a variational theory for
sub-Riemannian geodesics in a general context and to obtain existence and multiplicity
results, in analogy with the corresponding theory for Riemannian geodesics.

The interest in the existence of (local) length minimizers in a sub-Riemannian
manifold comes essentially from control theory, where such minimizers represent op-
timal solutions of a system with linear constraints on the first derivatives of the
admissible paths.

A sub-Riemannian manifold consists of a triple (M,∆, g), where M is a smooth
manifold, ∆ ⊂ TM is a smooth distribution in M , and g is a positive definite metric
tensor on ∆. The kind of sub-Riemannian geodesics that we are interested in are
the so-called normal geodesics, which are curves obtained as solutions of the sub-
Riemannian Hamiltonian H = 1

2g
(
p|∆, p|∆

)
on TM∗. It is well known that normal

sub-Riemannian geodesics are horizontal with respect to ∆, i.e., ẋ ∈ ∆, and that they
locally minimize their length (see [7]); such curves will be studied in this paper as
solutions of a Lagrangian variational problem. There is a class of geodesic curves,
called abnormal, which satisfies Hamiltonian equations with abnormal Hamiltonians.
These equations are determined by the distribution ∆ and not by the metric g. The
first example of an abnormal sub-Riemannian length minimizer has been constructed
by Montgomery in [9]. Wide classes of abnormal minimizers for 2-distributions have
been described in [7]. Good references for the basics of sub-Riemannian geodesics are
[8, 10]. A wide study of abnormal geodesics can be found in [1].
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An approach to multiplicity results in optimal control theory by means of global
analysis techniques (Morse theory and Ljusternik–Schnirelman theory) has been de-
veloped in a different context by the Russian school (see Vakhrameev [13] and its
extensive bibliography). The main assumption of [13] is that the control system is
of constant rank, i.e., that the endpoint mapping defined on the space of horizon-
tal paths is of constant rank. This assumption is satisfied, for instance, when ∆ is
strongly bracket-generating (or when ∆ is integrable in the sense of Frobenius).

The main obstruction for developing a variational theory for sub-Riemannian
geodesics between two points is that, in general, the set of horizontal curves joining
two fixed points does not have a differentiable structure unless one poses strong non-
integrability conditions on the distribution ∆, or, for instance, when the system is of
constant rank in the sense of Vakhrameev [13]. In this paper, we do not make such
assumptions on ∆, but rather we allow that the final endpoint of a trial path for our
variational problem is free to move on a submanifold of M which is transversal to
∆. With such a choice we overcome the rigidity problem of the fixed endpoint case,
and we obtain a smooth manifold structure for the set of horizontal curves satisfying
suitable regularity conditions (see Proposition 2.1 and Remark 2.2).

As a first approach to this technique, we will initially consider the case of a dis-
tribution ∆ of codimension one in TM , and we will assume that ∆ is transversally
oriented in TM , i.e., that the quotient bundle TM/∆ is orientable. One can ex-
tend the sub-Riemannian metric defined on ∆ to a Riemannian metric in M ; such
an extension is of course noncanonical. By the transversal orientation, it is not re-
strictive to assume that ∆ is the orthogonal distribution to a unit vector field on M .
Moreover, if the original sub-Riemannian structure is complete, one can assume that
the Riemannian extension is also complete. We will therefore consider the following
geometric setup.

Let (M, g) be a complete Riemannian manifold, let Y be a never vanishing smooth
vector field on M , and let ∆ = Y ⊥ denote the orthogonal distribution to Y . For all
q ∈M , we set ∆q = ∆ ∩ TqM ; moreover, we will denote by

〈·, ·〉 the positive definite
inner product on each tangent space TqM given by g(q) and by | · | the corresponding
length. We will assume without loss of generality that Y is normalized on M :

〈
Y, Y

〉
= 1.(1)

Let γ : R → M be a smooth curve in M which is a closed immersion of R in M
(i.e., γ′(t) �= 0 for all t and γ has closed image Im(γ) in M) and which is everywhere
transversal to ∆, i.e., γ̇(t) �∈ ∆γ(t) for all t.

Let ∇ denote the covariant derivative relative to the Levi–Civita connection of g;
given a smooth function α on M , we denote by ∇α the gradient of α with respect to
the metric g.

Let p be a fixed point in M , set Im(γ) = γ(R), and let C1
p,γ denote the set of all

curves of class C1 in M parameterized on [0, 1] joining p and γ:

C1
p,γ = {z ∈ C1([0, 1],M) : z(0) = p, z(1) ∈ Im(γ)};

by C1
p,γ(∆) we will denote the subset of C1

p,γ consisting of horizontal curves:

C1
p,γ(∆) = {z ∈ C1

p,γ : ż(t) ∈ ∆z(t) for all t}.(2)
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The set C1
p,γ has a natural structure of an infinite dimensional Banach differentiable

manifold; the differentiable structure of (a suitable completion of) C1
p,γ(∆) will be

discussed in section 2. We denote by L and E, respectively, the Riemannian length
and energy functionals on C1

p,γ defined by

L(z) =

∫ 1

0

√〈
ż, ż
〉
dt, E(z) =

1

2

∫ 1

0

〈
ż, ż
〉
dt.(3)

In this paper, we will be interested in studying the curves in C1
p,γ(∆) that are local

length minimizers, i.e., in those horizontal curves z between p and γ such that, for
a, b ∈ [0, 1] sufficiently close, the restriction z|[a,b] is a horizontal curve of minimal
length between z(a) and z(b). Such curves will be called local sub-Riemannian length
minimizers between p and γ. More in particular, we will consider the stationary points
of the functional E in C1

p,γ(∆): they are geodesics in the sub-Riemannian manifold
(M,∆, g). Namely, the critical points of E in C1

p,γ(∆) are normal sub-Riemannian
geodesics, and therefore they locally minimize their length (see, for instance, [7, Ap-
pendix C]). Moreover, the minima in C1

p,γ(∆) of the functionals E and of L coincide
up to parameterization.

Proposition 1.1. A curve x ∈ C1
p,γ(∆) is a minimal point for E on C1

p,γ(∆)
if and only if it is a sub-Riemannian length minimizer between p and γ satisfying
|ẋ(t)| = const. on [0, 1].

We have a first existence result concerning the minima of the length functional.
Theorem 1.2. Let (M, g) be a complete Riemannian manifold, let Y be a never

vanishing smooth vector field on M , let ∆ = Y ⊥ be its orthogonal distribution, and
let γ : R →M be a closed immersion which is transversal to ∆. Then there exists at
least one minimizer x for L in C1

p,γ(∆), with |ẋ(t)| constant on [0, 1].
Some results concerning the characterization of the normal geodesics in a sub-

Riemannian manifold, connecting submanifolds P and Q of any codimension, as crit-
ical points of the action functional can be found, for instance, in [12]. Existence and
multiplicity results can be obtained if P and Q are closed submanifolds ofM and one
of them is compact. The proof is essentially the same as that of Theorem 1.8 (thanks
to the results proved in [12]).

As will be observed in section 2, for the proof of Theorem 1.2 it is not restrictive
to assume that γ is an integral line of the vector field Y . For the other results of the
paper, we will explicitly make such assumption.

Given a smooth vector field W on M , we denote by (∇W )∗ the transpose of the
covariant derivative of W , which is the (1, 1) tensor field onM whose value at a point
q ∈M is the linear map on TqM defined by〈

(∇W )∗[v1], v2

〉
=
〈∇v2W, v1

〉
for all v1, v2 ∈ TqM.(4)

For all x in C1
p,γ(∆), let λx : [0, 1]→ R be the map of class C2 given by

λx(t) = e

∫ t
0
〈ẋ,∇Y Y 〉 ds ·

[∫ 1

t

〈
ẋ,∇ẋY

〉
e
−
∫ s

0
〈ẋ,∇Y Y 〉 dr

ds

]
.(5)

Theorem 1.3. Suppose that γ is an integral line of Y . If x is a critical point of
E in C1

p,γ(∆) , then x is a curve of class C2, and it satisfies the equation

∇ẋẋ−∇ẋ (λx · Y ) + λx · (∇Y )∗[ẋ] = 0.(6)
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Remark 1.4. Observe that the integro-differential equation (5)–(6) is not local,
in the following sense. Given any subinterval [a, b] ⊆ [0, 1], one can consider an
alternative integro-differential problem given by (6) and λx given by

λx = e

∫ t
a
〈ẋ,∇Y Y 〉 ds ·

[∫ b

t

〈
ẋ,∇ẋY

〉
e
−
∫ s

0
〈ẋ,∇Y Y 〉 dr

ds

]
.(7)

Given a solution x of (5)–(6), the restriction of x to the interval [a, b] is not, in general,
a solution of (6)–(7). The interpretation of this fact is that, even though the critical
points of E in C1

p,γ(∆) locally minimize their length, in general they do not minimize
locally the distance between a point and an integral line of Y . The fact that sufficiently
small portions of solutions of (6)–(7) minimize their length can be deduced from the
fact that (6)–(7) are equivalent to the Hamilton equations satisfied by the normal
sub-Riemannian geodesics (see Appendix B); for normal sub-Riemannian geodesics
the local minimality is proven, for instance, in [7, Appendix C]. However, a direct
proof of the local minimality for solutions of (6)–(7) can also be given without the
use of Hamiltonian formalism.

Note that if the pair (x, λx) satisfies (6)–(7), clearly it satisfies the system of
ordinary differential equations{

∇ẋẋ−∇ẋ (λY ) + λ (∇Y )∗ [ẋ] = 0,
λ′ − λ

〈∇Y Y, ẋ〉+ 〈ẋ,∇ẋY 〉 = 0.(8)

At the end of section 2, we point out that, if (x(t), λx(t)) is a solution of the above
system, then

〈
ẋ(t), ẋ(t)

〉
and

〈
ẋ(t), Y (x(t))

〉
are constant. From this point of view (in

analogy with Riemannian geodesics), we could say that the sub-Riemannian geodesics
are the solution of (8) with the initial condition

〈
ẋ(0), Y (x(0))

〉
= 0. Observe also

that the pair (x, λ) plays the role of the Hamiltonian lift of the sub-Riemannian
geodesic x.

Remark 1.5. Suppose that Y is a conformal Killing vector field. Then, for all
v ∈ Y ⊥, it is

〈∇vY, v〉 = 0. Hence, for all x ∈ C1
p,γ(∆), it is

〈∇ẋY, ẋ〉 ≡ 0, and so
λx ≡ 0. From (6), this implies that if x is a critical point of E in C1

p,γ(∆), then it is
a Riemannian geodesic.

Remark 1.6. Changing the point of view, the stationary paths x for the functional
E in C1

p,γ(∆) can be thought of as constrained critical points of E in C1
p,γ subject to

the linear constraint on the first derivative ẋ ∈ ∆. From this viewpoint, given such
a constrained critical point x, the map λx of formula (5) can be interpreted as the
corresponding Lagrange multiplier (see Appendix A).

Remark 1.7. It is well known (see for instance, [7]) that, as a consequence of the
Pontryagin maximum principle, the sub-Riemannian extremals are either abnormal
or they satisfy the Hamilton equations corresponding to the Hamiltonian function
H : TM∗ → R given by

H(q, p) =
1

2
g−1

(
p|∆, p|∆

)
,

where g−1 : ∆∗×∆∗ → R is the inverse of the metric g|∆. We will prove in Appendix B
that (5) and (6) (or, equivalently, system (8)) are equivalent to the Hamilton equations
of H.

Let us recall the following definition: let X be a topological space, and let Y ⊂ X
be a subspace. The Ljusternik–Schnirelman category catX (Y) of Y in X is the possibly
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infinite minimal number of closed contractible subsets of X that form a covering of
Y. We set cat (X ) = catX (X ).

We have a multiplicity result for sub-Riemannian geodesics between p and γ given
in terms of the Ljusternik–Schnirelman category of the Hilbert manifold Ωp,γ(∆)
defined in (10) as follows.

Theorem 1.8. Under the assumptions of Theorem 1.2, if γ is an integral line
of Y , there are at least cat (Ωp,γ(∆)) normal geodesics between p and γ. Moreover,
if cat (Ωp,γ(∆)) is infinite, then there exists a sequence {xn}n∈N of normal geodesics
between p and γ such that

lim
n→∞E(xn) = +∞.

Under suitable assumptions on the flow of Y , one proves that the inclusion map
Ωp,γ(∆) into Ωp,γ (defined in (9)) is a homotopy equivalence; it follows, in particular,
that cat (Ωp,γ(∆)) is equal to cat (Ωp,γ) (see Proposition 3.3). IfM is not contractible,
by a well known result of Fadell and Husseini (see [3]), it is cat (Ωp,γ) = +∞, and
we have a class of examples where Theorem 1.8 gives the existence of infinite normal
geodesics between p and γ.

Let us now look abstractly at the integro-differential equation (6). Observe that it
makes perfect sense to consider solutions of (6) that are not horizontal curves. We will
prove in section 2 that a solution x of (6) is a horizontal curve if and only if ẋ(0) ∈ ∆
(Theorem 2.3). Moreover, we will see that a solution of (6) satisfying x(0) = v ∈ TpM
exists and is unique, provided that v is small enough (Proposition 4.1). This fact
allows us to introduce a sub-Riemannian point-to-line exponential map expp, defined
in a neighborhood of 0 ∈ TpM by expp(v) = xv(1), where xv is the unique solution of
(6) satisfying the initial condition ẋv(0) = v.

In perfect analogy with the well-known properties of the Riemannian exponential
map, the map expp is a diffeomorphism between a neighborhood of 0 ∈ TpM and a
neighborhood of p ∈ M . As a first important (and trivial) consequence of this fact,
we obtain the following local uniqueness result for sub-Riemannian length minimizers
between a point and an integral line of Y .

Theorem 1.9. Under the hypotheses of Theorem 1.2, if γ is sufficiently close to
p, then there is a unique minimizer x for L in C1

p,γ(∆) with |ẋ(t)| constant on [0, 1].
We conclude with a remark that sub-Riemannian geodesics of the kind considered

in this paper have appeared recently in a general relativistic context (see [4, 5]). Given
a stationary Lorentzian manifold, which represents the model for a relativistic space-
time with gravitational field stationary with respect to a distinguished observer field
Y , one has a natural sub-Riemannian metric defined on the orthogonal distribution
to Y by taking the restriction of the spacetime metric tensor. In this situation, the
sub-Riemannian geodesics (in a suitable conformal perturbation of the metric) joining
an event p of M and an integral line of Y represent the travel time brachistochrones
between a source and an observer in the spacetime.

We briefly outline the structure of the paper. In order to be able to apply tech-
niques from critical point theory and global analysis on manifolds, our variational
problem has to be cast in a Hilbert manifold setting. In section 2, we define the
variational framework by proving the existence of a Hilbert manifold structure on the
set Ωp,γ(∆) of horizontal curves from p to γ of Sobolev class H1; then we study the
first variation of the sub-Riemannian energy functional E defined on Ωp,γ(∆).

In section 3 we prove that E : Ωp,γ(∆) → R satisfies a certain compactness
property, called the Palais–Smale condition, which is the key property for all of the
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results of existence and multiplicity of critical points for functions on noncompact
manifolds. By standard arguments of critical point theory we will then obtain the
proof of Proposition 1.1, Theorem 1.2, Theorem 1.3, and Theorem 1.8.

In section 4 we look at the flow on M defined by the integro-differential equa-
tion (6), and we study the sub-Riemannian exponential map.

Finally, the paper has two short appendices. In Appendix A, we show that the
map λx of formula (5) and the integro-differential equation (6) appear naturally also
when one uses the method of Lagrange multipliers. In Appendix B we prove that the
integro-differential equation (5)–(6) is equivalent to the normal extremal equations
coming from the maximum principle of Pontryagin.

2. The variational framework. First variation and the critical points
of E. We assume hereafter that (M, g) is a complete Riemannian manifold and that
Y is a normalized smooth vector field on M ; we set ∆ = Y ⊥. For each q ∈M , we set
∆q = ∆ ∩ TqM .

Let I ⊂ R be any interval, and suppose that γ : I →M is a smooth curve having
values in a compact subset of M . Suppose that γ is everywhere transversal to ∆. By
the transversality of γ and a partition of unity argument, it is easy to prove that we
can find a complete Riemannian metric g̃ and a smooth vector field Ỹ onM such that

• the orthogonal distribution Ỹ ⊥ with respect to g̃ coincides with ∆;
• g and g̃ coincide on ∆;
• γ̇(t) = Ỹ (γ(t)) for all t ∈ I.

Now, since (M, g) is complete, all curves starting at the fixed point p whose length is
bounded above by a given constant remain inside a compact subset of M . Then, to
prove the results announced in the introduction, it suffices to treat the case that γ is
a maximal integral line of the vector field Y .

We will assume hereafter that γ : R →M is an integral curve of Y .
As is customary, if I ⊆ R is any interval, we will denote by H1(I,Rn) the Sobolev

space of absolutely continuous curves z : I �−→ R
n such that the integral

∫
I
|ż|2 dt is

finite, where | · | denotes the Euclidean norm in R
n.

Given any differentiable manifold N , the set H1([0, 1], N) is defined as the set
of all absolutely continuous curves z : [0, 1] �−→ N such that, for every local chart
(V, ϕ) on N , with ϕ : U �−→ R

n a diffeomorphism, and for every closed subinterval
I ⊆ [0, 1] such that z(I) ⊂ V , it is ϕ◦z ∈ H1(I,Rn). For all differentiable manifold N ,
with dim(N) = n, the set H1([0, 1], N) has the structure of an infinite dimensional
manifold, modeled on the Hilbert space H1([0, 1],Rn). We will denote by TN the
tangent bundle of N and by π : TN → N the canonical projection; for p ∈ N ,
TpN = π−1(p) denotes the tangent space of N at p. A vector field along a curve
z : [0, 1] → N is a map ζ : [0, 1] → TN with π(ζ(t)) = z(t) for all t. Given any
z ∈ H1([0, 1], N), the tangent space TzH

1([0, 1], N) is identified with the set

TzH
1([0, 1], N) = {ζ ∈ H1([0, 1], TN) : ζ vector field along z},

which is an infinite dimensional vector space with a topology that makes it into a
Hilbertable space.

We introduce the sets

Ωp,γ = {z ∈ H1([0, 1],M) : z(0) = p, z(1) ∈ Im(γ)},(9)

and

Ωp,γ(∆) = {z ∈ Ωp,γ :
〈
ż, Y

〉
= 0 a.e. in [0, 1]}.(10)
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It is well known that Ωp,γ is a smooth Hilbert submanifold of H
1([0, 1],M); for all

z ∈ Ωp,γ the tangent space TzΩp,γ is given by

TzΩp,γ = {V ∈ TzH
1([0, 1],M) : V (0) = 0, V (1) ‖ Y (z(1))}.

We endow TzΩp,γ with the Hilbert space structure induced by the inner product:

〈〈
V, V

〉〉
=

∫ 1

0

〈∇żV,∇żV 〉 dt;(11)

then Ωp,γ becomes an infinite dimensional Riemannian manifold with the metric de-
fined by (11).

The functionals E and L defined in formula (3) have a continuous extension to
the space H1([0, 1],M). The energy functional E is smooth, and so is its restriction
to Ωp,γ ; the length functional L is only Lipschitz continuous. For z ∈ H1([0, 1],M),
the Gateaux derivative dE(z) is given by the bounded linear map on TzH

1([0, 1],M):

dE(z)[V ] =

∫ 1

0

〈∇żV, ż〉 dt.(12)

Proposition 2.1. Ωp,γ(∆) is a smooth Hilbert submanifold of Ωp,γ . For all
z ∈ Ωp,γ(∆), the tangent space TzΩp,γ(∆) is given by the Hilbert subspace of TzΩp,γ :

TzΩp,γ(∆) = {V ∈ TzΩp,γ :
〈∇żV, Y 〉+ 〈ż,∇V Y 〉 = 0}.(13)

The restriction of E to Ωp,γ(∆) is smooth.
Proof. We consider the map F : Ωp,γ → L2([0, 1],R) defined by

F (z) =
〈
ż, Y

〉
.(14)

It is easy to see that F is smooth, that Ωp,γ(∆) = F−1(0), and that the Gateaux
derivative dF (z) of F at z is given by

dF (z)[V ] =
〈∇żV, Y 〉+ 〈ż,∇V Y 〉.(15)

By the implicit function theorem (see [6]), to prove the proposition we need to show
that, for all z ∈ Ωp,γ(∆), the differential dF (z) : TzΩp,γ → L2([0, 1],R) is surjective.
To this aim, let h ∈ L2([0, 1],M) be fixed; consider the vector field Vh = φh · Y along
z, where φh is the function

φh(t) = e
−
∫ t

0
〈∇Y Y,ż〉 ds ·

[∫ t

0

h(s) · e
∫ s

0
〈∇Y Y,ż〉 dr

ds

]
.(16)

It is easily checked that φh ∈ H1([0, 1],R) and φh(0) = 0, which implies that Vh ∈
TzΩp,γ . Moreover, dF (z)[Vh] = h, which proves that dF (z) is surjective. Finally, for
z ∈ Ωp,γ(∆), the tangent space TzΩp,γ(∆) is given by the kernel of dF (z), and (13)
is proven.

Remark 2.2. The regularity of the set of horizontal curves joining a fixed point p
and a curve γ can be studied alternatively considering the endpoint mapping Ωp(∆) �
z �→ z(1) ∈ M defined on the set of horizontal curves starting at p. It is well known
that Ωp(∆) has the structure of a smooth Hilbert manifold and that the image of
the differential of the endpoint map at the point z contains the distribution ∆z(1).
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By the inverse mapping theorem Ωp,γ(∆) is a smooth submanifold of Ωp(∆) provided
that γ is transversal to ∆. Using the same argument, one proves (see [12]) that for
distributions ∆ of arbitrary rank, the set ΩP1,P2(∆) of horizontal paths joining two
given submanifolds P1, P2 ⊂ M has the structure of an infinite dimensional Hilbert
manifold provided that either P1 or P2 is everywhere transversal to ∆.

Theorem 2.3. The critical points of E in Ωp,γ(∆) are curves of class C2.
They are characterized as the solutions on the interval [0, 1] of the following integro-
differential equation:

∇ẋẋ−∇ẋ (λx · Y ) + λx · (∇Y )∗[ẋ] = 0,(17)

where

λx(t) = e

∫ t
0
〈∇Y Y,ẋ〉 ds ·

[∫ 1

t

〈
ẋ,∇ẋY

〉
e
−
∫ s

0
〈∇Y Y,ẋ〉 dr

ds

]
,(18)

and ẋ(0) ∈ ∆p.
Proof. To determine the integro-differential equation (17)–(18), we argue as fol-

lows. Let x be any point in Ωp,γ(∆); for all W ∈ TxΩp,γ , we define a projection VW
of W onto TxΩp,γ(∆) by setting

VW =W − ψW · Y,(19)

where

ψW (t) = e
−
∫ t

0
〈∇Y Y,ẋ〉 ds ·

[∫ t

0

CW (s) · e
∫ s

0
〈∇Y Y,ẋ〉 dr

ds

]
,(20)

and

CW =
〈
ẋ,∇WY

〉
+
〈∇ẋW,Y

〉
=
〈
W, (∇Y )∗[ẋ]〉+ 〈∇ẋW,Y

〉
.(21)

Observe that, since
〈
Y, Y

〉
= 1, then

〈∇ẋY, Y 〉 = 0, and
CY =

〈
ẋ,∇Y Y

〉
.

Checking, with the above definitions, that VW is in TxΩp,γ(∆) is straightforward,
and the details are omitted.

Now, if x is a critical point of E in Ωp,γ(∆), it is dE(x)[VW ] = 0 for all W ∈
TxΩp,γ , and, since

〈
ẋ, Y

〉
= 0, (12) gives

(22) 0 = dE(x)[W − ψW · Y ] =
∫ 1

0

[〈∇ẋ (W − ψW · Y ) , ẋ〉] dt
=

∫ 1

0

[〈∇ẋW, ẋ〉 − ψ̇W · 〈Y, ẋ〉 − ψW · 〈∇ẋY, ẋ〉] dt

=

∫ 1

0

[〈∇ẋW, ẋ
〉− ψW · 〈∇ẋY, ẋ〉] dt.
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Now let λx be given by (18). Reversing the order of integration with Fubini’s theorem
and recalling (20) and (21), we get∫ 1

0

ψW · 〈∇ẋY, ẋ〉 dt
=

∫ 1

0

〈∇ẋY, ẋ〉e−∫ t0 〈∇Y Y,ẋ〉 dr ·
[∫ t

0

CW (s)e

∫ s
0
〈∇Y Y,ẋ〉 dr

ds

]
dt

=

∫ 1

0

CW (s)e

∫ s
0
〈∇Y Y,ẋ〉 dr ·

[∫ 1

s

〈∇ẋY, ẋ〉e−∫ t0 〈∇Y Y,ẋ〉 dr
dt

]
ds

=

∫ 1

0

CW (s) · λx(s) ds =
∫ 1

0

[〈
W, (∇Y )∗[ẋ]〉+ 〈∇ẋW,Y

〉] · λx(s) ds.

(23)

Then (22) becomes∫ 1

0

[〈∇ẋW, ẋ
〉− λx(s) ·

〈∇ẋW,Y
〉− λx(s) ·

〈
W, (∇Y )∗[ẋ]〉] ds = 0.(24)

Suppose that x is of class C2; integrating by parts the terms in (24) containing the
covariant derivative ∇ẋW , we obtain∫ 1

0

〈
W,∇ẋ(ẋ− λx · Y ) + λx · (∇Y )∗[ẋ]

〉
dt = 0(25)

for all W ∈ TxΩp,γ . Observe that there is no boundary term arising from the integra-
tion by parts because W (0) = 0, λx(1) = 0, and

〈
W (1), ẋ(1)

〉
= 0. This last equality

follows from the fact that W (1) is parallel to γ̇, hence to Y , and
〈
ẋ, Y

〉
= 0.

SinceW is arbitrary in (25), the fundamental lemma of calculus of variations tells
us that x satisfies (17), and we have proven that the critical points of E in Ωp,γ(∆)
satisfy the integro-differential problem (17)–(18).

The C2-regularity of the critical points of E is obtained by a bootstrap argument.
If x ∈ Ωp,γ(∆) is a critical point of E, then (24) holds for any C∞ vector field W
along x such that W (0) = W (1) = 0. If Z is a vector field of class L2, let us denote
by
∫ s
0
Z ds the vector field U solving{ ∇ẋU = Z,

U(0) = 0.
(26)

From now on, all the integrals of vector fields along curves will be understood in this
sense. Using a local coordinate system and Gronwall’s lemma, it is easily seen that
U ∈ H1 and, therefore, U ∈ C0.

Note that ẋ ∈ L2 and λx ∈ C0. Integrating by parts the last term inside the
integral in (24) (and recalling that W vanishes at both endpoints of x), we get

0 =

∫ 1

0

〈∇ẋW, ẋ− λx(s)Y
〉− 〈W,λx(s)(∇Y )∗[ẋ]

〉
ds

=

∫ 1

0

〈
∇ẋW, ẋ− λx(s)Y +

[∫ s

0

λx(t)(∇Y )∗[ẋ] dt
]〉

ds.

(27)

Set

χ(s) = ẋ(s)− λx(s)Y (x(s)) +

∫ s

0

λx(t)(∇Y )∗[ẋ(t)] dt.
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Using local coordinates and Christoffel symbols, we obtain by (27) χ ∈ H1 and,
in particular, χ ∈ C0. Since λx and Y are C0, we deduce ẋ ∈ C0. Then λx, Y ,∫ s
0
λx(t)(∇Y )∗[ẋ] dt are C1, while, by (27), χ ∈ C1. Hence ẋ is C1, obtaining the

desired regularity.
Conversely, if x is a solution of (17)–(18) such that ẋ(0) ∈ ∆, then x is a horizontal

curve. Namely, using (17), we compute

d

dt

〈
ẋ, Y

〉
=
〈∇ẋẋ, Y 〉+ 〈ẋ,∇ẋY 〉

= λ′
x − λx

〈∇Y Y, ẋ〉+ 〈ẋ,∇ẋY 〉 = 0,(28)

where the last equality is due to (18). Hence, if
〈
ẋ(0), Y

〉
= 0, then

〈
ẋ, Y

〉 ≡ 0.
Moreover, it is easy to see that all elements V ∈ TxΩp,γ(∆) are of the form VW given
in formula (19). Indeed, since CV = 0, we can choose W = V and ψW = 0. So every
solution x of (17)–(18) such that x(0) = p and ẋ(0) ∈ ∆p is a critical point of E in
Ωp,γ(∆). This concludes the proof.

Remark 2.4. Observe that, by (28), a solution (x(t), λx(t)) of the system (8)
satisfies the conservation law

〈
ẋ(t), Y (x(t)

〉
= 0.

We remark that the map λx in Theorem 2.3 can be interpreted as the Lagrangian
multiplier of the constrained critical point x in Ωp,γ(∆) (see Lemma A.1).

Corollary 2.5. If x is a critical point of E in Ωp,γ(∆), then it satisfies the
conservation law:

|ẋ| ≡ const.(29)

Proof. Taking the product of (17) by ẋ, we obtain

0 =
〈∇ẋẋ, ẋ〉− λ′

x ·
〈
Y, ẋ

〉− λx ·
〈∇ẋY, ẋ〉+ λx ·

〈∇ẋY, ẋ〉
=
〈∇ẋẋ, ẋ〉 = 1

2

d

dt

〈
ẋ, ẋ

〉
,

(30)

which proves the claim.

3. Minimal curves for L. In this section, we show the existence of a minimum
for the energy functional E in Ωp,γ(∆), whose regularity has already been proven
in Theorem 2.3. To this aim, we show that E satisfies a good enough compactness
property, namely the Palais–Smale condition. Proposition 1.1, which establishes the
relation between minimal points for E and sub-Riemannian length minimizers can be
obtained easily by standard arguments.

We recall, given a C1 functional f : X → R on a Hilbert manifold X, that f is said
to satisfy the Palais–Smale condition at level c ∈ R if every sequence {xn}n∈N ⊂ X
such that

lim
n→∞ f(xn) = c,

lim
n→∞ ‖df(xn)‖ = 0

(31)

(where ‖·‖ denotes the norm of bounded linear functionals on the Hilbert space TxnX)
has a subsequence converging in X. We will use throughout the paper some well-known
results concerning functionals satisfying the Palais–Smale condition (see, for instance,
the proofs of Corollary 3.2 and Theorem 1.8); for the reader’s convenience, we will
briefly give a formal statement of these properties when they are used.
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Proposition 3.1. The functional E satisfies the Palais–Smale condition at every
level c ∈ R.

Proof. Let {xn}n∈N be a sequence in Ωp,γ(∆) satisfying (31). SinceM is complete

and
∫ 1

0

〈
ẋn, ẋn

〉
dt ≤ const., up to subsequences we can assume that xn is convergent

to some curve x uniformly and ẋn is weakly convergent to ẋ in L2. Observe that
x ∈ Ωp,γ(∆); the fact that x(1) ∈ Im(γ) follows from our assumption that Im(γ) is
closed in M .

Then (31) yields ∫ 1

0

〈
ẋn,∇ẋnζ

〉
dt =

∫ 1

0

〈
an,∇ẋnζ

〉
dt(32)

for every admissible variation ζ and for some sequence an converging to 0 in L
2. Then,

with a similar argument as in Theorem 2.3, (32) gives the existence of a sequence bn
converging to 0 in L2 such that

ẋn − bn − ϕxnY (xn) +

∫ s

0

ϕxn · (∇Y )∗[ẋn] dt = zn,(33)

where

ϕxn(τ) =

∫ 1

τ

〈
ẋn,∇ẋnY (xn)

〉
e

∫ τ
σ
〈ẋn,∇Y (xn)Y (xn)〉 dρ

dσ,(34)

and zn is a sequence in L
2 such that ∇ẋnzn = 0. From (34), ϕxn is uniformly bounded

in L∞, and it has uniformly bounded derivative in L1. Moreover, the covariant integral
Vn,

Vn =

∫ s

0

An dt, An = ϕxn · (∇Y )∗[ẋn],(35)

solves the equation { ∇ẋnVn = An,
Vn(0) = 0;

(36)

since ẋn is uniformly bounded in L
2, using the coordinate expression of (36), we have

that Vn is uniformly bounded in L
∞, and V̇n is uniformly bounded in L2; then Vn is

uniformly bounded in H1.
The uniform boundedness of zn in L

2 implies the existence of a sequence sn ∈ [0, 1]
such that zn(sn) is bounded. Using again the coordinate expression for the equation{ ∇ẋnzn = 0,

zn(sn) = Bn,
(37)

with Bn bounded, we obtain that zn is uniformly bounded in H
1.

In conclusion, (33) yields the existence of a sequence cn which is uniformly
bounded in L∞ and has uniformly bounded derivative in L1 such that

ẋn − bn = cn.(38)

But cn has a converging subsequence in L
2 (see [2]), and bn converges to 0 in L

2; these
two facts imply that ẋn has a converging subsequence in L

2, and then E satisfies the
Palais–Smale condition at every level c ∈ R.
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We are now ready to prove the existence of a minimizer for E:
Corollary 3.2. The functional E attains its minimum in Ωp,γ(∆).
Proof. This is a classical argument of calculus of variations, repeated here for

the reader’s convenience. Suppose that we are given a (possibly infinite dimensional)
complete Hilbert manifold X and a smooth functional f : X → R satisfying the Palais–
Smale condition at every level c ∈ R. For c ∈ R, let fc =

{
x ∈ X : f(x) ≤ c

}
denote

the closed c-sublevel of f. If c0 ∈ R is not a critical value of f, then there exists η > 0
such that fc0−η is homeomorphic to fc0+η (see, e.g., [11]); such a homeomorphism can
be given explicitly using the flow of the gradient of f. It follows that f attains its
minimum if f is bounded from below; namely, if c0 = inf f were not a critical value,
then fc0−η = ∅ would be homeomorphic to fc0+η �= ∅.

In our situation, we have that the Hilbert manifold X = Ωp,γ(∆) is complete
because (M, g) is complete and because Im(γ) is closed in M ; the functional f = E
satisfies the Palais–Smale condition by Proposition 3.1, and it is clearly bounded from
below. The conclusion follows.

Proof of Proposition 1.1. It follows easily from the existence of a minimizer of E
and a reparameterization argument.

Also, the proof of Theorems 1.2 and 1.3 is a straightforward consequence of Propo-
sition 1.1, Theorem 2.3 and Corollary 2.5.

Proof of Theorem 1.8. It is a classical argument of the theory of Ljusternik and
Schnirelman (see [11] for details). We recall briefly the main ideas of the theory;
assume that X is a complete Hilbert manifold and that f : X → R is a smooth
functional satisfying the Palais–Smale condition at every level c ∈ R which is bounded
from below. Then one proves the following facts:

1. for every c ∈ R, the Ljusternik–Schnirelman category catX (f
c) of the sublevel

fc is finite;
2. if there exists c ∈ R such that sup{f(z) : f′(z) = 0} < c, then catX (f

c) =
cat (X);

3. if c ∈ R as in (2) does not exist, then there exists a sequence {xn} of critical
points such that f(xn)→ +∞ = sup f;

4. if, on the contrary, such a c exists, let Γk denote the collection of closed subsets
A of X whose Ljusternik–Schnirelman category catX (A) is greater than or
equal to k. Then there exists c ∈ R such that fc ∈ Γk for all k = 1, . . . , cat (X).
Since sup f > −∞, one can define the following (possibly finite) sequence of
real numbers:

ck = inf
A∈Γk

[
sup
x∈A

f(x)

]
, k = 1, 2, . . . , cat (X);(39)

5. each ck is a critical value of f; moreover, if for some k and r > 0 one has
ck = ck+1 = · · · = cr, then there are at least r + 1 critical points in f−1(ck).

By the facts above, one concludes easily that f has at least cat (X) critical points.
Now, the proof of Theorem 1.8 is an application of the above theory in the case

that X = Ωp,γ(∆) and f = E, keeping in mind the results of Theorem 2.3 and of
Proposition 3.1.

Finally, we conclude the section with a result that relates the topology of the
spaces Ωp,γ(∆) and Ωp,γ ; the latter space is in general an easier object to deal with.

Proposition 3.3. Assume that the vector field Y is complete on M , and denote
by ψ : M × R →M its flow, i.e., for all q ∈ M , t �→ ψ(q, t) is the maximal integral
line of Y passing through q at the instant t = 0; let dxψ(q, t) denote the differential
of the map m �→ ψ(m, t) at the point q.
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Assume that there exist continuous maps A,B :M → R
+ such that the following

estimate holds for the norm of dxψ:

‖dxψ(q, r)‖ ≤ A(q) · |r|+B(q) for all (q, r) ∈M × R.(40)

Then there exists a strong deformation retract1 from Ωp,γ to Ωp,γ(∆); in particular,
Ωp,γ and Ωp,γ(∆) have the same homotopy type and the same Ljusternik–Schnirelman
category.

Proof. Given an H1 map µ : [0, 1] → R with µ(0) = 0 and a curve z ∈ Ωp,γ ,
denote by c(z, µ) ∈ Ωp,γ the curve t �→ ψ

(
z(t), µ(t)

)
; clearly, if µ ≡ 0 on [0, 1], then

c(z, µ) = z.
For z ∈ Ωp,γ , denote by µz : [0, 1]→ R the solution of the initial value problem:

µ′
z(t) = −〈dxψ

(
z(t), µz(t)

)
[ż(t)], Y

(
ψ
(
z(t), µz(t)

))〉, µz(0) = 0.(41)

The existence of a global solution on the interval [0, 1] of (41) follows easily using the
estimate (40), observing that z and 〈Y, Y 〉 are bounded and ż ∈ L2.

By standard continuous dependence arguments for ordinary differential equations,
the map Ωp,γ � z �→ µz ∈ H1([0, 1],R) is continuous; therefore, we get a continuous
map Ωp,γ � z �→ c(z, µz) ∈ Ωp,γ .

Now, using (41), it is easily seen that c(z, µz) is almost everywhere orthogonal
to Y , and hence c(z, µz) ∈ Ωp,γ(∆) for all z ∈ Ωp,γ . A strong deformation retract
h : Ωp,γ × [0, 1]→ Ωp,γ from Ωp,γ to Ωp,γ(∆) is then obtained by setting

h(z, s) = c(z, s · µz).

For instance, the assumptions of Proposition 3.3 hold if Y is a complete Killing
vector field in (M, g), in which case dxψ is an isometry. More generally, if Y is

of the form Y = 〈W,W 〉− 1
2W for some conformal vector field, then the inequality

(40) is satisfied when 〈W,W 〉 is bounded on each integral line of W . Recall that a
smooth vector field W on M is conformal if its flow consists of conformal (i.e., angle
preserving) maps; equivalently, W is conformal if the Lie derivative LW (g) of the
metric g is conformally equivalent to g, i.e., of the form φ · g for some smooth map
φ :M → R

+.

4. Local theory: The exponential map. In this section, we study the flow on
M defined by the integro-differential equation (6), with the aim of proving the local
uniqueness of sub-Riemannian length minimizers between a point and an integral line
of y.

We start by proving an existence and uniqueness result for local solutions of (6).
Proposition 4.1. Let p ∈ M and v0 ∈ TpM ; suppose that |v0| is sufficiently

small. Then there exists a unique solution of the integro-differential equation (17)–
(18) satisfying the initial conditions x(0) = p and ẋ(0) = v0.

Proof. As we have observed in Corollary 2.5, the solutions of the integro-differ-
ential problem satisfy |ẋ| = const., and hence all the solutions of our initial value
problem remain inside a ball of radius b around the point p. Using local coordinates,
we may therefore assume that M = R

n, p = 0.

1Recall that, given a topological space X and a subspace Y ⊂ X , a strong deformation retract
from X to Y is a continuous map h : X × [0, 1] → X such that h(x, 0) = x for all x ∈ X , h(y, s) = y
for all (y, s) ∈ Y × [0, 1], and h(x, 1) ∈ Y for all x ∈ X .
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For all v1, v2, v3 ∈ R
n, we set

A(v1)[v2] = (∇v2Y )(v1)− (∇Y )∗[v2](v1) +
〈
v2,∇Y (v1)Y

〉
Y(42)

and

B(v1)[v2, v3] = −Γ(v1)[v2, v3]−
〈
v2,∇v3Y

〉
v1
,(43)

where Γ(q)[·, ·] : Rn×R
n → R

n is the bilinear map given by the Christoffel symbols at
the point q of the metric g in local coordinates. Observe that B(x)[z, z] is continuous
in x and bilinear in z, while A(x)[z] is continuous in x and linear in z. We now
consider the map

G : C0([0, 1],Rn)× C0([0, 1],Rn)× R
n → C0([0, 1],Rn)× C0([0, 1],Rn)(44)

given by G = (G1, G2), where

G1(z, x, v)(t) = z(t)− v −
∫ t

0

[B(x)[z, z] + Λ(z, x)A(x)[z]] dt,(45)

G2(z, x, v)(t) = x(t)−
∫ t

0

z ds,(46)

the maps A and B are defined in (42) and (43), and, finally,

Λ(z, x)(t) = e

∫ t
0
〈∇Y Y,z〉 ds ·

[∫ 1

t

〈
z,∇zY

〉
e
−
∫ s

0
〈∇Y Y,z〉 dr

ds

]
.(47)

Clearly, G is of class C1, and G(0, 0, 0) = 0.
An elementary calculation shows that (z, x, w0) ∈ G−1(0) if and only if x is of

class C2, z = ẋ, and x is a solution for the integro-differential problem (17)–(18)
satisfying x(0) = p and ẋ(0) = z(0) = w0. Once we prove that the Jacobian

∂G

∂(z, x)
(0, 0, 0) : C0([0, 1],R2n)→ C0([0, 1],R2n)(48)

is invertible, there exists, for v sufficiently small, a C1 map

v �→ (zv, xv)(49)

such that

G(zv, xv, v) = 0.(50)

To prove this, we differentiate formally the maps (45) and (46) at a generic point
(z, x, v) in the direction (ω, ξ), obtaining

∂G1

∂z
(z, x, v)[ω] +

∂G1

∂x
(z, x, v)[ξ]

= ω(t)−
∫ t

0

[
dB

dx
[ξ][z, z] +B(x)[ω, z] +B(x)[z, ω] +

∂Λ

∂z
[ω]A(x)[z]

]
ds

−
∫ t

0

[
∂Λ

∂x
[ξ]A(x)[z] + Λ(z, x)

dA

dx
[ξ][z] + Λ(z, x)A(x)[ω]

]
ds

(51)
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and

∂G2

∂z
(z, x, v)[ω] +

∂G2

∂x
(z, x, v)[ξ] = ξ(t)−

∫ t

0

ω ds.(52)

When we evaluate (51) and (52) at (z, x, v) = (0, 0, 0), considering the linearity of the
above functions in the variables between brackets and the fact that Λ(0, 0) = 0, we
obtain the following simple expression for the Jacobian (48):

∂G

∂(z, x)
(0, 0, 0)[ω, ξ] =

(
ω, ξ −

∫ t

0

ω ds

)
.(53)

Clearly, this is an invertible map, whose inverse is easily computed as(
∂G

∂(z, x)
(0, 0, 0)

)−1

[ω, ξ] =

(
ω, ξ +

∫ t

0

ω ds

)
.(54)

This proves that the pair (zv, xv) and, in particular, the curve xv depend regularly
on v for v small enough such that (49) is well defined.

By Proposition 4.1, for all p ∈ M there exists a neighborhood Up of 0 in TpM
such that for all v ∈ Up the integro-differential equation (17)–(18) admits a unique
solution xv satisfying xv(0) = p and ẋv(0) = v. We can therefore define the following
exponential map expp : Up →M by

expp(v) = xv(1).(55)

Proposition 4.2. For all p ∈M , expp is a local diffeomorphism between an open
neighborhood of 0 in TpM and an open neighborhood of p in M . In particular, expp
gives a local diffeomorphism between a neighborhood of 0 in ∆p and a hypersurface
Σp of M through p, with TpΣp = ∆p, which is transversal to Y .

Proof. From Proposition 4.1 we know that expp is a map of class C
1 around v = 0;

we now show that its differential dexpp(0) is the identity map on TpM .
From the implicit function theorem, the differential at v = 0 of the map v �→

(zv, xv) is given by

−
(

∂G

∂(z, x)
(0, 0, 0)

)−1

◦ ∂G
∂v
(0, 0, 0),

which is easily computed from (45), (46), and (54) as

−
(

∂G

∂(z, x)
(0, 0, 0)

)−1 [
∂G

∂v
(0, 0, 0)[w]

]
= (w,w · t) for all w ∈ R

n.(56)

The derivative of expp at v = 0 in the direction w is given by the evaluation at
t = 1 of the second component of (56). Hence dexpp(0)[w] = w and expp is a local
diffeomorphism in a neighborhood Up of 0 ∈ TpM , which proves the first part of the
statement.

Since ∆p is a vector subspace of codimension one in TpM , it follows that the image
Σp of ∆p ∩Up through expp is a codimension one submanifold of M . Since dexpp(0) is
the identity map, it follows that TpΣp = ∆p; moreover, since γ is transversal to ∆p,
by continuity every flow line of Y will be a transversal to Σp around the point p, and
this concludes the proof.
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Proof of Theorem 1.9. If γ is sufficiently close to p, then, by the transversality, γ
intercepts exactly once the hypersurface Σp of Proposition 4.2. The conclusion follows
immediately from Propositions 1.1 and 4.1.

Appendix A. The method of Lagrange multipliers. In this short appendix,
we use the method of Lagrange multipliers to study the solutions of our variational
problem, and we show that the map λx of formula equation (5) and the integro-
differential equation (6) appear naturally also in this context.

We recall that x ∈ Ωp,γ(∆) is a constrained critical point of E if and only if there
exists a function λx ∈ L2([0, 1],R) such that x is a free critical point in Ωp,γ for the
functional Eλx defined by

Eλx(z) = E(z)−
∫ 1

0

λx ·
〈
ż, Y

〉
dt.(57)

In this case, the function λx is necessarily unique, and it is called the Lagrange mul-
tiplier associated to x.

We have the following.
Lemma A.1. Let x ∈ Ωp,γ(∆) be a critical point for E. Then the corresponding

Lagrange multiplier λx is a C2-function given by

λx(t) = e

∫ t
0
〈ẋ,∇Y Y 〉 ds ·

[∫ 1

t

〈
ẋ,∇ẋY

〉
e
−
∫ s

0
〈ẋ,∇Y Y 〉 dr

ds

]
.(58)

Proof. The condition that x is a constrained critical point for E is that the
following equation is satisfied for all V ∈ TxΩp,γ :∫ 1

0

[〈
ẋ,∇ẋV

〉− λx
(〈∇ẋV, Y 〉+ 〈ẋ,∇V Y 〉)] dt = 0.(59)

Taking the covariant integral of λx(∇Y )∗[ẋ] vanishing at s = 1, we see that ẋ− λxY
is of class C0. Taking its scalar product with Y , we obtain that λx is of class C

0, and
therefore ẋ is C0. Repeating the above argument, we have also that ẋ is C1.

At this point, integration by parts in (59) of the terms containing the covariant
derivative ∇ẋV gives∫ 1

0

〈−∇ẋẋ+∇ẋ (λx · Y )− λx(∇Y )∗[ẋ], V
〉
dt− λx(1)

〈
V (1), Y (x(1))

〉
= 0.(60)

Since V (1) is arbitrary, it is easy to see that (60) is satisfied for all V ∈ TxΩp,γ if and
only if the following two equations are satisfied:

−∇ẋẋ+∇ẋ (λx · Y )− λx · (∇Y )∗[ẋ] = 0, λx(1) = 0.(61)

Taking the product of the differential equation in (61) by Y and considering that,
since

〈
ẋ, Y

〉 ≡ 0, it is
−〈∇ẋẋ, Y 〉 = 〈ẋ,∇ẋY 〉,

we obtain the following Cauchy problem for λx (recall that
〈
Y, Y

〉
= 1):{

λ′
x − λx ·

〈
ẋ,∇Y Y

〉
+
〈
ẋ,∇ẋY

〉
= 0,

λx(1) = 0.
(62)

The unique solution of (62) is (58), and this concludes the proof.
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Appendix B. The system (8) is equivalent to Hamilton’s equations of
normal geodesics. Using the Pontryagin maximum principle, one proves (see, for
instance, [7, Appendix B]) that a sub-Riemannian extremizer either is abnormal or
satisfies the Hamilton equations of the Hamiltonian H : TM∗ → R given by

H(q, p) =
1

2
g−1

(
p|∆, p|∆

)
,(63)

where g−1 : ∆∗ ×∆∗ → R is the metric induced by g|∆ on ∆∗. In this appendix, we
will show that (5) and (6) (or, equivalently, system (8)) are, in fact, equivalent to the
Hamilton equations of H.

A convenient setup for this calculation is obtained by identifying the tangent
bundle TM with the cotangent bundle TM∗ using the metric g and considering the
pull-back of the canonical symplectic form ω of TM∗. If π∆ : TM → ∆ denotes
the orthogonal projection, the sub-Riemannian Hamiltonian (63) is given as a map
H : TM → R by

H =
1

2
〈π∆(u), π∆(u)〉 , u ∈ TM ;

since ∆ = Y ⊥ and g(Y, Y ) = 1,

π∆(u) = u− 〈u, Y 〉Y
for all u ∈ TM .

Let us consider the horizontal subspace Thor

(
TM

)
of T (TM) determined by the

Levi–Civita connection of g, and let us write

T (TM) = Thor

(
TM

)⊕ Tver

(
TM

)
,

where Tver

(
TM

)
is the vertical subspace of T (TM), i.e., the subspace tangent to

the fibers of TM . For v1, v2 ∈ Thor

(
TM

)
and w1, w2 ∈ Tver

(
TM

)
, the canonical

symplectic form is given by

ω
(
(v1, w1), (v2, w2)

)
= 〈v1, w2〉 − 〈w1, v2〉.

Given a smooth curve (x, u) : [0, 1]→ TM , the Hamilton equations are then written
as 


ẋ = <Hhor,

∇ẋu = <Hver,

(64)

where <H is the Hamiltonian vector field defined by dH = ω
(
<H, ·) and <Hhor and <Hver

are, respectively, its horizontal and vertical components in T (TM). Moreover, a sub-
Riemannian minimizer between a point p ∈M and an integral curve of γ must satisfy
the boundary conditions

x(0) = p, u(1) ⊥ Y (x(1)).(65)

In order to obtain an explicit expression for the components of <H, we compute as
follows. For u ∈ TM , let t �→ z(t) be a parallel vector field along a curve in M with
velocity v at t = 0 and such that z(0) = u; then

dHu(v, 0) =
d

dt

[
1

2

〈
z − 〈z, Y 〉Y, z − 〈z, Y 〉Y 〉] = −〈u, Y 〉 〈u,∇vY 〉;
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moreover,

dH(0, w) = d
(
H|Tver(TM)

)
(w) =

〈
u− g(u, Y )Y,w

〉
.

Hence we get

<Hver = 〈u, Y 〉 (∇Y )∗[u], <Hhor = u− 〈u, Y 〉Y,
and (64) becomes 


ẋ = u− 〈u, Y 〉Y,

∇ẋu = 〈u, Y 〉 (∇Y )∗[u].
(66)

Setting λ = −〈u, Y 〉, we get from (66)

∇ẋẋ− λ′Y − λ∇ẋY = −λ((∇Y )∗[ẋ] + λ(∇Y )∗[Y ]).(67)

Now, since g(Y, Y ) ≡ 1, we have (∇Y )∗[Y ] = 0, and hence we get
∇ẋẋ− λ′Y − λ∇ẋY = −λ (∇Y )∗[ẋ].(68)

Multiplying (68) by Y and using the relation
〈∇ẋẋ, Y 〉 = −〈ẋ,∇ẋY 〉, we get

−〈ẋ,∇ẋY 〉− λ′ = −λ〈∇Y Y, ẋ〉.(69)

Moreover, the boundary condition 〈u(1), Y (x(1))〉 = 0 in (65) gives
λ(1) = 0;(70)

now (68), (69), and (70) are clearly the same as (5) and (6).

Acknowledgments. We wish to thank the referees for their very useful com-
ments and suggestions.
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Abstract. When considering optimal design problems involving diffraction gratings, it is useful
to have some a priori characterization of the range of possible reflectances one can achieve for given
material parameters. Here we consider the limiting case of a rapidly oscillating dielectric grating and
show that such gratings can have reflectance no greater than that of a flat interface, regardless of
the shape of the grating interface.

Key words. diffraction grating, optimal design, maximum reflectance
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1. Introduction. A diffraction grating is formed by a periodic interface sepa-
rating two homogeneous materials. In practical applications, one wishes to design the
shape of the interface so that time-harmonic waves incident on the interface have a
desired reflection and transmission pattern. Such design problems can be solved, for
example, by optimization techniques [7] and homogenization [2]. An important ques-
tion arising in this context is as follows: Given a particular class of admissible designs
(interface shapes), which reflection and transmission patterns are attainable? In this
paper we provide an answer in the case of blazed gratings (i.e., interfaces which can be
represented by the graph of a function), which are rapidly oscillating with respect to
the incident wavelength. The gratings are required to be dielectric. The basic result
is a constraint on the reflectance, which says that in the limit as the grating period
goes to zero the grating reflectance can be no greater than the reflectance obtained
for a flat interface. This constraint holds regardless of the depth of the grating and
the shape of the interface.

While rapidly oscillating gratings may seem to be of limited practical interest,
they are, in fact, widely used. Optical engineers have been aware of homogenization
effects in gratings for many years and often use high spatial frequency gratings to
approximate corresponding multilayered structures (and vice-versa) [12]. The pri-
mary practical advantage of this approach is that material “layers” with intermediate
refractive indices can be approximated by a grating composed of only two materi-
als. In this way, the use of expensive, unstable, or nonexistent materials can often

∗Received by the editors June 22, 2000; accepted for publication (in revised form) September 6,
2001; published electronically March 5, 2002. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Air
Force Office of Scientific Research or the U.S. Government.

http://www.siam.org/journals/sicon/40-6/37435.html
†Department of Mathematics, Michigan State University, East-Lansing, MI 48824 (bao@math.

msu.edu, ramdani@math.msu.edu). The research of the first author was partially supported by the
NSF Applied Mathematics Programs grant DMS 98-03604 (99-96416), the NSF University-Industry
Cooperative Research Programs grants DMS 98-03809 and DMS 99-72292, the NSF Western Europe
Programs grant INT 98-15798, and the Office of Naval Research (ONR) grant N000140010299.

‡Department of Mathematics, Texas A&M University, College Station, TX 77843-3368 (dobson@
math.tamu.edu). The research of this author was supported by the Air Force Office of Scientific
Research, Air Force Material Command, USAF, under grant F49620-98-1-0005. The research of this
author was also supported by NSF grant DMS 0072439 and an Alfred P. Sloan Research Fellowship.

1858



MAXIMUM REFLECTANCE OF GRATINGS 1859

be avoided. One of the primary uses for rapidly oscillating gratings is in so-called
moth-eye antireflective structures (see, e.g., [1, 8] and references therein), which are
widely used to reduce glare on display devices and are commercially available.

Any optical engineer engaged in designing or optimizing a rapidly oscillating
grating is faced with the question of whether or not a desired reflectance profile is
attainable with given materials. This paper is aimed exactly at that question, showing
that high reflectivity designs are generally not attainable with simple blazed high
spatial frequency gratings. We consider the approach taken here as a first step toward
solving the more difficult problem of characterizing attainable reflection/transmission
patterns in more general diffraction gratings.

The plan of the paper is as follows. In the next section, we begin by analyzing
the case of reflection from a “layered medium,” i.e., a medium which has spatial
dependence in only one direction. Under the condition that the refractive index of the
medium is monotone in that direction, we establish the desired reflectance constraint.
We conclude in section 3 by using homogenization theory to reduce the limiting case
of a rapidly oscillating grating to the monotone layered medium. We prove that in
the limit as the grating period goes to zero, the reflectance constraint is satisfied.

2. Layered medium case. We first consider a layered medium in R
2, charac-

terized by the real dielectric coefficient k(x2), where x = (x1, x2) ∈ R
2. It is assumed

that k(x2) ≡ ka for x2 ≥ 0 (i.e., in the “air”), and k(x2) ≡ ks for x2 ≤ −b, (i.e., in the
“substrate”), where 0 < b < ∞ is an arbitrary depth. Consider an incoming plane
wave ui = e

iαx1+iβax2 , where

α = ka sin θ, βa = ka cos θ,(1)

and |θ| < π/2 is the angle of incidence with respect to the x2-axis. We wish to find
solutions w satisfying the Helmholtz equation �w+ k2w = 0 in R

2, plus appropriate
outgoing wave conditions.

To make the problem independent of x1, one can consider the functions u =
we−iαx1 . Defining β(x2) =

√
k(x2)2 − α2 and setting βs = β(−b), we specify the

reflection and transmission conditions

u(x2) = e
iβax2 + re−iβax2 for x2 ≥ 0,

u(x2) = te
iβsx2 for x2 ≤ −b,(2)

where the coefficients r and t are to be determined. This leads to the following
boundary value problem in x2:

u′′ + β2u = 0 in (0,−b),(3)

u′(0) = −iβau(0) + 2iβa,(4)

u′(−b) = iβsu(−b).(5)

In weak form, we have∫ 0

−b
u′v′ −

∫ 0

−b
β2uv + iβau(0)v(0) + iβsu(−b)v(−b) = 2iβav(0).(6)

Lemma 2.1. Let β ∈ L∞(−b, 0) be real-valued. Then problem (3)–(5) admits a
unique weak solution u ∈ H1(−b, 0).

Proof. We seek u ∈ H1(−b, 0) such that (6) is satisfied for all v ∈ H1(−b, 0). It
is easy to rewrite this problem as a linear operator equation u − Au = f , where A
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is compact (see, e.g., [7]). Applying the Fredholm alternative, existence then follows
from uniqueness for the homogeneous problem w −Aw = 0.

Thus it suffices to prove uniqueness for the homogeneous problem

w′′ + β2w = 0 in (0,−b),(7)

w′(0) = −iβaw(0),(8)

w′(−b) = iβsw(−b),(9)

with associated weak form∫ 0

−b
w′v′ −

∫ 0

−b
β2wv + iβaw(0)v(0) + iβsw(−b)v(−b) = 0.(10)

Note that any solution w ∈ H1(−b, 0) of (10) is also in H2(−b, 0) since w′′ = −β2w
a.e., and the right-hand side is in L2. By Sobolev imbedding, w ∈ C1. Setting v = w
in (10) and taking the imaginary part, we find that w(−b) = w(0) = 0. From (8), (9)
we also have w′(−b) = w′(0) = 0. Uniqueness now follows by classical results for the
Cauchy problem (see Hörmander [9, section 8.9] or Nirenberg [10]).

We can now investigate the properties of the reflectance of a given structure
defined by β(x2). First, given the solution u to (3)–(5), we define the reflection
coefficient r = u(0)− 1, and the reflectance R = |r|2. The reflectance represents the
proportion of incident energy reflected from the structure. Similarly, we define the
transmission coefficient t = u(−b), and the transmittance T = (βs/βa)|t|2. Setting
v = u and taking the imaginary part of the resulting equality in (6) yield conservation
of energy:

R+ T = 1.(11)

Now taking v = u′ and applying the identities (3)–(5), one finds from (6) that

β2
s |u(−b)|2 − β2

a{|u(0)|2 − 4Re u(0)− 4} =
∫ 0

−b
β2(u′u+ uu′).(12)

Integrating the last term in (12) by parts, we have

∫ 0

−b
β2(u′u+ uu′) = −

∫ 0

−b
(β2)′|u|2 + β2

a|u(0)|2 − β2
s |u(−b)|2.

Then (12) becomes

2β2
s |u(−b)|2 − 2β2

a|u(0)− 1|2 − 2β2
a = −

∫
(β2)′|u|2.(13)

Applying conservation of energy (11), |t|2 = (βa/βs)(1− |r|2) so that (13) yields

R =
βs − βa
βs + βa

+
1

2βa(βa + βs)

∫ 0

−b
(β2)′|u|2.(14)

Since β2 is nonincreasing, we immediately obtain that

R ≤ βs − βa
βs + βa

.
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The term on the right is the square root of the reflectance in the case of a flat pro-
file (see, e.g., Born and Wolf [4] for a complete discussion of reflectance from flat
interfaces). To improve this estimate, we need a lower bound on |u|2.

Lemma 2.2. Suppose β(x2) is nonincreasing. Then the solution u of (3)–(5)
satisfies

|u|2 ≥ |t|2,

where t = u(−b) is the transmission coefficient.

Proof. First suppose that k(x2) is composed of a finite number of homogeneous
layers, with refractive indices ka ≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ ks, with depths h1, . . . , hn;
i.e., setting bj =

∑j
k=1 hk, we have k(x2) = kj for −bj ≤ x2 ≤ −bj−1. Set b = bn.

Letting u(−b) = t, the boundary condition (5) is u′(−b) = iβst. Solving for u in
the nth layer, −bn ≤ x ≤ −bn−1, one obtains

u(x) = t(cosβn(x+ bn) + i(βs/βn) sinβn(x+ bn))e
−iβsbn .

Note that since βs/βn ≥ 1, we have |u(x)|2 ≥ |t|2. Having obtained u in terms of t
the nth layer, one can now continue propagating the solution upward layer by layer,
each time obtaining a solution in the form

u(x) = t̃j(q1 cos θ + iq2(βj/βj−1) sin θ),

where t̃j is a complex constant with |t̃j |2 ≥ |t|2, and q1 and q2 are complex constants
in the form

q1 = cosφ+ i(βj+1/βj) sinφ,

q2 = i sinφ+ (βj+1/βj) cosφ.

The result follows from the fact that the complex number Z = q1 cos θ + iq2(βj/
βj−1) sin θ satisfies |Z| ≥ 1. Indeed, setting γj = βj/βj−1, we have

|Z|2 = (cos θ cosφ− γj sin θ sinφ)2 + γ2
j+1 (cos θ sinφ+ γj sin θ cosφ)

2

= cos2 θ (cos2 φ+ γ2
j+1 sin

2 φ) + γ2
j sin

2 θ (sin2 φ+ γ2
j+1 cos

2 φ)

+ 2γj(γ
2
j+1 − 1) cos θ cosφ sin θ sinφ

= cos2 θ (1 + (γ2
j+1 − 1) sin2 φ) + γ2

j sin
2 θ (1 + (γ2

j+1 − 1) cos2 φ)

+ 2γj(γ
2
j+1 − 1) cos θ cosφ sin θ sinφ.

Thus |Z|2 can be written as

|Z|2 = cos2 θ + γ2
j sin

2 θ + (γ2
j+1 − 1)(cos θ sinφ+ γj sin θ cosφ)

2.

Since β is a nonincreasing function, we have γj = βj/βj−1 ≥ 1, and thus |Z| ≥ 1.
Consequently, |u(x)| ≥ |t|2 in each layer.

In a manner exactly analogous to the procedure above, one can also obtain the
estimate

|u(x)|2 ≤ |u(0)|2 + |2− u(0)|2 for x ≤ 0.(15)
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Since |u(0)− 1|2 = R ≤ 1, it follows that
∫ 0

−b |u|2 ≤ C, where C is independent of the
piecewise constant function β, provided only that β is nonincreasing. Taking the real
part of the bilinear form (6) with v = u, we then find immediately that

‖u‖H1 ≤ C,(16)

where C now depends only on b, βa, βs.

The general case of nonincreasing β ∈ L∞ is now handled easily by approximation.
Specifically, let {βk} be a sequence of nondecreasing, piecewise constant functions
converging to a given β in the weak ∗ L∞ sense. Let uk be the corresponding sequence
of solutions to (3)–(5). By (16), ‖uk‖H1 ≤ C; hence there exists a subsequence (still
denoted uk) converging weakly in H1 and strongly in L2 to some ũ. It follows that,
for every fixed v ∈ H1,

2iβav(0) =

∫ 0

−b
u′kv

′ −
∫ 0

−b
(βk)2ukv + iβauk(0)v(0) + iβsuk(−b)v(−b)

→
∫ 0

−b
ũ′v′ −

∫ 0

−b
β2ũv + iβaũ(0)v(0) + iβsũ(−b)v(−b)

so that by Lemma 2.1, ũ = u, the unique solution to (3)–(5). Finally, since uk,
k = 1, 2, . . ., along with u are uniformly bounded in H2 and hence in C1, we see that
the convergence uk → u is actually pointwise. Since the estimate |uk(x)|2 ≥ |tk|2
holds for each k, it must also hold for u, t.

Lemma 2.3. Suppose β(x2) is nonincreasing. Then

R ≤
(
βs − βa
βs + βa

)2

.(17)

Proof. Using the previous lemma, we find that

∫ 0

−b
(β2)′|u|2 ≤ |t|2(β2

a − β2
s ).

Noting that |t|2 = (βa/βs)(1−R), the identity (14) then yields the desired estimate
with a simple manipulation.

The estimate in Lemma 2.3 is sharp. Equality is attained for a sharp interface
between two media with refractive indices ka and ks. Thus the reflectance produced
by any nonincreasing refractive index k(x2) with k(−b) = ks and k(0) = ka can be no
more than the reflectance produced by the piecewise constant kc(x2) with kc(x2) = ks
for x2 < a and kc(x2) = ka for x2 > a, a ∈ (−b, 0). Incidentally, it is well known in
engineering that for a fixed incidence angle one can create a layered structure with R
lying anywhere in the interval [0, Rmax], with Rmax = ((βs − βa)/(βs + βa))2. The
key point here is that R cannot exceed Rmax with nonincreasing β.

3. Rapidly oscillating case. We now consider the case of a rapidly oscillating
dielectric grating. Specifically, suppose that we are given a grating structure with
period L. By rescaling the problem, it suffices to consider the case L = 2π. Let
f ∈ L∞(R) be 2π-periodic; i.e., let

f(x1) = f(x1 + 2πn) a.e. in x1, for all integers n
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and satisfy

−b < inf f ≤ sup f < 0.(18)

The function f represents an interface between two homogeneous materials with re-
fractive indices ka and ks. Define a corresponding refractive index function on R

2:

ρf (x) =

{
k2
a if x2 > f(x1),
k2
s otherwise.

(19)

As in the previous section, given an incoming plane wave from above ui =
eiαx1+iβa(x2) (where α and βa are as defined in (1)), we seek solutions of the Helmholtz
equation �w + ρfw = 0, where w is a sum of the incoming and scattered fields and
satisfies appropriate outgoing wave conditions. The standard approach to solving
this problem is to search for “quasi-periodic” solutions, that is, solutions w such that
u = we−iαx1 is 2π-periodic in x1. A well-known procedure exists for formulating the
problem variationally. This is outlined, for example, in [2, 7]. The basic idea is to
expand the periodic functions u in a Fourier series in x1 and match the solutions
with the fundamental solution in the homogeneous regions x2 > 0 and x2 < −b.
This leads naturally to a Fourier series expansion for the Dirichlet-to-Neumann op-
erators on the boundaries {x2 = 0} and {x2 = −b}. Defining the cylindrical domain
Ω = (R × (−b, 0))/(2πZ × {0}) and the periodic boundaries Γa corresponding to
{x2 = 0} and Γs corresponding to {x2 = −b}, the problem can then be formulated as

�αu+ ρfu = 0 in Ω,

Tau− ∂u

∂x2
= 2iβa on Γa,

Tsu+
∂u

∂x2
= 0 on Γs,

where �α = �+ 2iα∂1 − α2. The Dirichlet-to-Neumann operators Tj are defined by

(Tjφ)(x1) =
∑
n∈Z

iβnj φne
inx1 , j = a, s,

where

βnj =



√
k2
j − (n+ α)2 if k2

j ≥ (n+ α)2,

i
√
k2
j − (n+ α)2 if k2

j < (n+ α)2,

and φn denote the Fourier coefficients of φ. To obtain the weak form, we define for
u, v ∈ H1(Ω)

Bρf (u, v) ≡
∫

Ω

(∇+ iα)u · (∇+ iα)v −
∫

Ω

ρf uv −
∫

Γa

(Tau)v +

∫
Γs

(Tsu)v,

where α = (α, 0) and

g(v) = −2iβa
∫

Γa

v.

We then wish to find u ∈ H1(Ω) such that

Bρf (u, v) = g(v) for all v ∈ H1(Ω).(20)
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It is well known that a unique solution u ∈ H1(Ω) of problem (20) exists for all but
possibly a discrete set of parameters ka, ks (see [3]). In addition, using a perturbation
argument, the following lemma is proved in [6].

Lemma 3.1. Provided that the incoming wave is sufficiently low-frequency (ka, ks
are sufficiently small), problem (20) admits a unique weak solution for all f satisfying
(18). Furthermore, the solutions u are bounded in H1(Ω) independently of f .

Remark. Under the conditions of Lemma 3.1, solutions are actually uniformly
bounded in H2, independent of f . This follows immediately from the equation

�u = −2iα∂1u+ (α2 − ρf )u.

The H1 bound on u and the L∞ bound on ρf guarantee that ‖�u‖L2 ≤ C, giving
the H2 estimate.

Once the solution to problem (20) has been determined, one can easily find the
scattered far-field. The Rayleigh expansion [11] dictates that the field above {x2 = 0}
must be in the form

u(x1, x2) =

∞∑
n=−∞

rne
i(nx1−βna x2),

where the rn are unknown scalars. Matching this expansion with the boundary con-
ditions for the variational solution, one finds that r0, which corresponds to the “zero
order” reflected mode, must be given by

r0 =
1

2π

∫ 2π

0

u(x1, 0) dx1 − 1.(21)

By rescaling the problem, one can see easily that for a sufficiently small grating period
L the coefficients βna are real only for n = 0. This means that only the zero order
mode propagates. Similarly, using the Rayleigh expansion in the region x2 < −b
and the fact that the grating period L is small, one finds the lone transmitted mode

t0 =
1
2π

∫ 2π

0
u(x1,−b) dx1.

As in the layered medium case, setting the reflectance R0 = |r0|2 and the trans-
mittance T0 = |t0|2, one can easily verify conservation of energy R0 + T0 = 1 [7]. We
would like to show that a reflectance bound similar to (17) holds in the grating case.

For n = 1, 2, . . . , define ρn(x1, x2) = ρf (nx1, x2). Thus ρn represents a 2π-
periodic grating oscillating more and more rapidly as n increases. It is easily verified
that ρn ⇀ ρ̃ in the weak ∗ L∞(Ω) sense, where

ρ̃(x1, x2) =
1

2π

∫ 2π

0

ρf (x1, x2) dx1.

Note that ρ̃ is independent of x1. Furthermore, due to the form of ρf (19) and the
fact that k2

a ≤ k2
s , it is easy to see that ρ̃ is nonincreasing in x2.

We can now state the main result of this paper.
Theorem 3.2. Assume the conditions of Lemma 3.1. Given an arbitrary grating

profile f and any ε > 0, there exists a grating period L such that when the profile f is
produced with period L or less, the reflectance R0 resulting from f satisfies

R0 ≤
(
β0
s − β0

a

β0
s + β

0
a

)2

+ ε.(22)



MAXIMUM REFLECTANCE OF GRATINGS 1865

Thus, analogous to the layered medium case, for rapidly oscillating gratings the
reflectance can be no more than the reflectance of a sharp interface between materials
ka and kb plus a small error, regardless of the grating shape.

Proof. Since the bound (17) holds for ρ̃, inequality (22) is simply a statement
of the continuity of R0(ρ) with respect to weak ∗ L∞ convergence ρn ⇀ ρ̃. This is
easy to prove. Let un denote the sequence of solutions to problem (20) corresponding
to the coefficients ρn. By Lemma 3.1, ‖un‖H1 is uniformly bounded; hence each
subsequence of {un} has a further subsequence {un′} which converges weakly in H1

to some u ∈ H1. We show that the weak limit u of each such subsequence is the same,
thus proving that the original sequence {un} converges weakly to u.

Holding v ∈ H1 fixed, observe that

Bρn′ (u, v)−Bρn′ (un′ , v) =

∫
Ω

(∇+ iα)(u− un′) · (∇+ iα)v

−
∫

Ω

ρn′(u− un′)v −
∫

Γa

(Ta(u− un′))v +

∫
Γs

(Ts(u− un′))v.

Since un′ ⇀ u in H1 and the operators Tj are bounded maps from H1/2(Γj) into
H−1/2(Γj), the first integral and the last two integrals vanish as n′ → ∞. Further,
the weak convergence of un′ in H1 implies strong convergence in L2 so that∣∣∣∣

∫
Ω

ρn′(u− un′)v

∣∣∣∣ ≤ ‖ρn′‖L∞‖u− un′‖L2‖v‖L2 → 0.

ThusBρn′ (u, v)→ Bρn′ (un′ , v) = g(v). The convergence ρn′
∗
⇀ ρ̃ impliesBρn′ (u, v)→

Bρ̃(u, v). Hence Bρ̃(u, v) = g(v) for all v; i.e., u solves (20) for ρ̃. Since the solution
u is unique by Lemma 3.1, we conclude that the original sequence un ⇀ u weakly in
H1.

Since the traces un|Γa ⇀ u|Γa weakly in H1/2, it follows by the definition
(21) that the corresponding reflection coefficients, and hence the reflectances,
converge.
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[9] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1969.
[10] L. Nirenberg, Uniqueness in Cauchy problems for differential operators with constant leading

coefficients, Comm. Pure Appl. Math., 10 (1957), pp. 89–105.
[11] R. Petit, ed., Electromagnetic Theory of Gratings, Topics in Current Physics 22, Springer-

Verlag, Berlin, New York, 1980.
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Abstract. The definition of the frequency response operator via the steady-state analysis in
finite-dimensional linear continuous-time periodic (FDLCP) systems is revisited. It is shown that
the frequency response operator is guaranteed to be well defined only densely on the linear space l2,
which is different from the usual understanding. Fortunately, however, it turns out that this frequency
response operator can have an extension onto l2 so that the equivalence between the time-domain
H2 norm (respectively, the L2-induced norm) and the frequency-domain H2 norm (respectively, the
H∞ norm of the frequency response operator) is recovered. Under some stronger assumptions, it is
also shown that the frequency response operator can be viewed as a bounded operator from l1 to l1,
which can also be established via the steady-state analysis.

Key words. continuous-time periodic system, frequency response operator, existence conditions,
H2 and H∞ norms

AMS subject classifications. 42A20, 47A05, 47B99, 47N70
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1. Introduction. In general there are two ways to establish the frequency re-
sponse relations in finite-dimensional linear continuous-time periodic (FDLCP) sys-
tems: the lifting technique [2] and the steady-state input-output analysis [26], [27].
The former technique [3], [30] has been widely used in the sampled-data systems anal-
ysis [5], [15], [28], while the latter is the standard technique of the frequency response
analysis in linear continuous-time systems, and there are also works in which the
latter is utilized in establishing the frequency response operator, or FR-operator, in
sampled-data systems [1], [8], [9], [11], [14], [16]. There are also some works [29], [32] in
which these two approaches are compared and/or combined.

In this paper, we reconsider the problem of establishing the frequency response
relation of FDLCP systems through the steady-state input-output analysis. The gen-
eral idea of such a treatment has been discussed in [27], but the rigorous existence
conditions of the frequency response operators are not given explicitly. To clarify these
conditions, we concentrate our attention on the validity of the Fourier series expan-
sions and the Toeplitz transformation employed in the arguments. Our study reveals
that the frequency response operator defined with the steady-state input-output anal-
ysis is guaranteed to be well defined only on the subset l1 of the linear space l2 rather
than on the whole l2 even though the latter is an implicit assumption in [26], [27]. This
subtle deviation of the domains of the frequency response operator leads us to put up
such a question: if it still makes sense to define the H2 and H∞ norms on such a “defi-
cient” frequency response operator for FDLCP systems. Fortunately, our study shows
that the domain of the frequency response operator can actually be extended to l2
apart from the steady-state analysis interpretation, and hence the existing definitions
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of these norms suffer no problems. In fact, the equivalence between the time-domain
and frequency-domain H2 norms and that between the L2-induced norm and the H∞
norm (i.e., the maximum of the l2-induced norm over a certain frequency interval) of
the frequency response operator are proved under some stronger assumptions on the
system matrices. Another important point of our study is to show that the frequency
response operator can also be regarded as a bounded mapping defined on the linear
space l1 (with its range also contained in l1) under some stronger assumptions.

The paper is organized as follows. Section 2 gives some mathematical preliminar-
ies about FDLCP systems, the Fourier series expansions, and the Toeplitz transfor-
mation of h-periodic time-varying matrix functions. The definition of the frequency
response operator of FDLCP systems is reconsidered in section 3. In section 4, we
prove that the frequency response operator via the steady-state analysis is also a
bounded mapping on l1 under some strengthened conditions. The equivalences of the
various norms are dealt with in section 5.

The notation of this paper is standard. The Euclidean norm of a vector and the
norm of a matrix induced by this vector norm are denoted by || · ||. l1 is the set of all
infinite-dimensional vectors x such that ||x||l1 :=

∑+∞
m=−∞ ||[x]m|| <∞, where [x]m is

the mth (block) entry of x. l2 is the set of all infinite-dimensional vectors x such that
||x||l2 := (x∗x)1/2 <∞, where ∗ denotes the complex conjugate transpose. L2[0, h] is
the linear space of all vector measurable functions x defined on the interval [0, h] such

that ||x(·)||L2[0,h] := [
∫ h
0
||x(t)||2dt]1/2 < ∞. L1 is the set of all vector measurable

functions x defined on [0,∞) such that ||x(·)||L1 :=
∫∞
0
||x(t)||dt <∞, while L2 is the

set of all such defined vector functions x satisfying ||x(·)||L2 := [
∫∞
0
||x(t)||2dt]1/2 <

∞. || · ||Y/X denotes the induced norm from X to Y . In particular, || · ||l2/l2 is the
l2-induced norm. With a little abuse of notation, we say F (t) ∈ L2[0, h] means that F
is a matrix function, each element of which is h-periodic and belongs to L2[0, h] when
its domain is restricted to the interval [0, h]. The same is true for other function sets
defined over [0, h]. Z is the set of all integers.

2. Preliminaries. Consider the FDLCP system

G :

{
ẋ = A(t)x+B(t)u,
y = C(t)x+D(t)u,

(1)

where A(t), B(t), C(t), and D(t) are h-periodic time-varying matrix functions belong-
ing to L2[0, h]. The transition matrix of the system (1) is denoted by Φ(t, t0) when
the initial time is t0. The system is said to be strictly proper if D(t) ≡ 0 for all
t ∈ [0, h].

Proposition 2.1 (Floquet theorem [10], [20], [22], [23]). Let A(t) be defined as
in the system (1). Then the transition matrix Φ(t, t0) is continuous with respect to
t and can be expressed as Φ(t, t0) = P (t, t0)eQ(t−t0), where P (t, t0) is a nonsingular
h-periodic matrix and Q is a constant matrix. Moreover, the system is asymptotically
stable if and only if the eigenvalues of the monodromy matrix, Φ(h+ t0, t0), are in the
open unit disk or, equivalently, the eigenvalues of Q lie in the open left-half plane.

Now expand A(t) to its Fourier series A(t) =
∑+∞
m=−∞Ame

jmωht with ωh = 2π
h ,

which is well defined in the sense that ||A(·)−∑+∞
m=−∞Ame

jmωh(·)||L2[0,h] = 0. The
Toeplitz transformation on A(t) [27], denoted by T {A(t)}, maps A(t) into a doubly
infinite-dimensional block Toeplitz operator [26] (or to be more precise, block Laurent
operator [13]) of the form
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T {A(t)} :=




. . .
...

...
... · · ·

· · · A0 A−1 A−2 · · ·
· · · A1 A0 A−1 · · ·
· · · A2 A1 A0 · · ·
· · ·

...
...

...
. . .




=: A.(2)

It is straightforward to show that T {X(t) + Y (t)} = T {X(t)}+ T {Y (t)} when
X(t) and Y (t) are h-periodic and belong to L2[0, h]. However, the situation is different
for the Toeplitz transformation of the product of two matrix functions. Now consider
the two conformable h-periodic matrix functions X(t) and Y (t) with the Fourier series
expansions X(t) =

∑+∞
m=−∞Xme

jmωht and Y (t) =
∑+∞
m=−∞ Yme

jmωht, respectively.
To facilitate our statements, we introduce the sets of h-periodic functions, each of
which is a subset of L2[0, h].

LPCD[0, h] :=

{
f(t) :

f(t) is piecewise continuous and
differentiable at a.e. t ∈ [0, h]

}
,

LPCC[0, h] :=

{
f(t) :

f(t) is piecewise continuous and the Fourier series
expansion of f(t) is convergent to f(t0) for a.e. t0 ∈ [0, h]

}
,

LCAC[0, h] :=

{
f(t) :

f(t) is continuous and the Fourier series
expansion of f(t) is absolutely convergent

}
⊂ LPCC[0, h],

LCPCD[0, h] :=

{
f(t) :

f(t) is continuous and the derivative of
f(t) is piecewise continuous in [0, h]

}
⊂ LPCD[0, h],

where PCD stands for piecewise continuous and differentiable and PCC is short for
piecewise continuous and convergent, while CAC and CPCD are abbreviated from
continuous and absolute convergent and continuous and piecewise continuously (first-
order) differentiable, respectively. By Theorem 10′ of [18, p. 173], LCPCD[0, h] ⊂
LPCD[0, h] ⊂ LPCC[0, h]. It is also clear that LCAC[0, h] ⊂ LPCC[0, h]. The following
results are helpful in our subsequent arguments. The proofs for these lemmas are
given in Appendix B.

Lemma 2.1. Suppose that the Fourier series expansion of X(t) converges to
X(t0) for almost every (a.e.) t0 ∈ [0, h]. Also suppose that Y (t) ∈ LCAC[0, h]. Then
T {X(t)Y (t)} = T {X(t)}T {Y (t)} and T {Y (t)X(t)} = T {Y (t)}T {X(t)}.

Remark 2.1. In [27, p. 36], the absolute convergence of the Fourier series ex-
pansions of both X(t) and Y (t) is required to ensure the validity of the relations of
Lemma 2.1. However, for some reasons unknown from this thesis [27], this constraint
was not taken into consideration when the frequency response relation is established
with the Toeplitz operator expressions. Hence, the frequency response operator has
been introduced to a larger class of FDLCP systems than a precise class for which
it can be introduced in a rigorous manner. Our study in the following will pay at-
tention to such a precise class while trying to make the class as large as possible,
which leads us to a little different but rigorous interpretation about the frequency
response operator of an FDLCP system. In the development of such an argument, it
is quite important to note that the conditions of Lemma 2.1 are much weaker than
the absolute convergence condition of both X(t) and Y (t).

Lemma 2.2. LCAC[0, h] is dense in L2[0, h].
Lemma 2.3. If X(t) ∈ LPCC[0, h], then ||X||l2/l2 = supt∈[0,h] ||X(t)|| and X is

bounded on l2.



1870 JUN ZHOU AND TOMOMICHI HAGIWARA

Now we are in a position to derive Propositions 2.2 and 2.3, which describe the
basic properties of the FDLCP system (1) in the Toeplitz operator sense and guarantee
the existence of the frequency response operator we will introduce.

Proposition 2.2. Assume that in the system (1) the state matrix A(t) is piece-
wise continuous in [0, h], and let T {P (t, 0)} =: P . Then the Fourier series expansions
of P (t, 0) and P−1(t, 0) are absolutely convergent, and T {P−1(t, 0)} = P−1.

Proof. By Theorem 6.3.2 of [20] and the Floquet theorem, it follows that

P (t, 0) = Φ(t, 0)e−Qt,

d

dt
P (t, 0) = [A(t)Φ(t, 0)− Φ(t, 0)Q]e−Qt (a.e.),

P−1(t, 0) = eQtΦ(0, t),
d

dt
P−1(t, 0) = eQt[QΦ(0, t)− Φ(0, t)A(t)] (a.e.),

(3)

which clearly says that P (t, 0) and P−1(t, 0) are continuous and their first-order
derivatives are piecewise continuous by the assumption on A(t). Hence, by Theorem 2
of [6, p. 104], the Fourier series expansions of P (t, 0) and P−1(t, 0) are absolutely con-
vergent. On the other hand,

P (t, 0)P−1(t, 0) = I ∀t ∈ [0, h].

Hence, from Lemma 2.1, applying the Toeplitz transformation on the above equation
gives

I = T {P (t, 0)P−1(t, 0)} = T {P (t, 0)}T {P−1(t, 0)}.

Similarly, I = T {P−1(t, 0)}T {P (t, 0)}. Hence we have T {P−1(t, 0)} = P−1 by the
uniqueness of the inverse operator [7].

Next let us define lE := {x ∈ l2 : E(j0)x ∈ l2} ⊂ l2 with

E(j0) = diag[. . . ,−j2ωhI,−jωhI, 0, jωhI, j2ωhI, . . .]

and establish the following results.
Proposition 2.3. Assume that in (1) A(t) ∈ LPCD[0, h] and B(t), C(t) ∈

LPCC[0, h]. Then lE is P -, P−1-, P ∗-, and P−∗-invariant, where P−∗ := [P−1]∗.
P is invertible on lE, and the unique inverse of P on lE is P−1 restricted to lE. It
holds on lE ⊂ l2 that

P (E(j0)−Q)P−1 = E(j0)−A,(4)

where Q = T {Q}. Moreover, let B̂ := T {P−1(t, 0)B(t)} and Ĉ := T {C(t)P (t, 0)}.
Then it holds on the whole l2 that B̂ = P−1B and Ĉ = C P .

Proof. By the Floquet theorem and Theorem 6.3.2 of [20], we obtain

P (t, 0)Q = A(t)P (t, 0)− Ṗ (t, 0) (a.e.).(5)

By Proposition 2.2, the Fourier series expansion of P (t, 0) is absolutely convergent.
Note also that by Theorem 10′ of [18, p. 173], the Fourier series expansion of A(t)
converges to A(t0) for a.e. t0 ∈ [0, h] from the assumption. Hence, by Lemma 2.1, we
have

T {A(t)P (t, 0)} = T {A(t)}T {P (t, 0)}.(6)
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Again by (3) and the assumption about A(t), the first-order derivative of P (t, 0) is
piecewise continuous, and its second-order derivative exists a.e. in [0, h]. Thus, by
Theorem 3 of [6, p. 106],

Ṗ (t, 0) =

+∞∑
m=−∞

jmωhPme
jmωht (a.e.)(7)

through the termwise differentiation, where {Pm}+∞
m=−∞ is the Fourier coefficients

sequence of P (t, 0). In other words, {jmωhPm}+∞
m=−∞ is the Fourier coefficients se-

quence of Ṗ (t, 0) so that by some trivial algebra [27] we are led to

T {Ṗ (t, 0)} = E(j0)P − P E(j0).(8)

Note that T {Ṗ (t, 0)} is bounded on l2 (which follows from Lemma 2.3 since Ṗ (t, 0) be-
longs to LPCC[0, h] by the assumption on A(t), again from Theorem 10′ of [18, p. 173])
but that the two operators on the right-hand side of the above equation are unbounded
since E(j0) is. This means that we are not allowed to use the operators E(j0)P and
P E(j0) separately if the underlying space is l2. To get around the problem, we have
to restrict the domain of these operators to lE ⊂ l2. Now take x ∈ lE ⊂ l2. Then
T {Ṗ (t, 0)}x ∈ l2. Also, P E(j0)x ∈ l2 since E(j0)x ∈ l2 and P is bounded on l2
(which follows again from Lemma 2.3 by the fact that the Fourier series expansion
of P (t, 0) is absolutely convergent). It follows that E(j0)P x ∈ l2, which clearly says
that lE is P -invariant.

Similarly, by repeating the arguments about Ṗ (t, 0) on Ṗ−1(t, 0), it readily follows
that lE is also P−1-invariant. Hence P and P−1 are mappings on lE . From this, it
can be asserted that P is invertible on lE , and the unique inverse of P on lE is nothing
but P−1 restricted to lE ⊂ l2.

On the other hand, (6) and (8) actually say that the Toeplitz transformation
applies to each term of (5) under the given assumptions so that we obtain

P Q = AP − E(j0)P + P E(j0).

Therefore, if we work on lE instead of l2, the operators involved are well defined from
lE to l2; i.e., the above equation can be rewritten as

P (E(j0)−Q) = (E(j0)−A)P ,(9)

which, together with the fact that P is invertible on lE , gives (4).
To see that lE is P ∗-invariant, we note that P ∗ = T {P ∗(t, 0)}. It is evident

from the assumption about A(t) that the first-order derivative of P ∗(t, 0) is piecewise
continuous in [0, h] and the second-order derivation of P ∗(t, 0) exists a.e. in [0, h].
Then from Theorem 3 of [6, p. 106], it is true that

T {Ṗ ∗(t, 0)} = E(j0)P ∗ − P ∗E(j0),

which gives the assertion immediately. Similarly, one can show that lE is P−∗-
invariant.

Recall that the Fourier series expansion of P−1(t, 0) is absolutely convergent.
This, by the assumption on B(t) and Lemma 2.1, implies that T {P−1(t, 0)B(t)}
= T {P−1(t, 0)}T {B(t)}. Combining this with Proposition 2.2, the last assertion
follows.
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Now we answer the question that asks under what conditions the operator E(j0)−
A is invertible. This is another problem remaining unsolved in the works of [26], [27].
It is evident that E(j0)− A is invertible if and only if E(j0)−Q is and that if such
an inverse exists, the inverse operator is a mapping from l2 to lE . The following
proposition gives the answer to this question.

Proposition 2.4. Assume that A(t) ∈ LPCD[0, h] and that the system (1) is
asymptotically stable in the Floquet theorem sense. Then E(jϕ)− A is invertible for
all ϕ ∈ [−ωh2 , ωh2 ) =: I0 and

(E(jϕ)−A)−1 = P (E(jϕ)−Q)−1P−1,(10)

where E(jϕ) = E(j0) + jϕI and

(E(jϕ)−Q)−1

= diag[. . . , (jϕ−1I −Q)−1, (jϕ0I −Q)−1, (jϕ1I −Q)−1, . . .](11)

with ϕm := ϕ + mωh,m ∈ Z. Moreover, (E(jϕ) − A)−1 is compact and uniformly
bounded on l2 over ϕ ∈ I0.

Proof. By the assumption on A(t), we have (4) so that for any ϕ ∈ I0
P (E(jϕ)−Q)P−1 = E(jϕ)−A.

Also, by the stability assumption, all of the eigenvalues of Q − jϕmI for all m ∈ Z
have negative real parts. Thus the operator on the right-hand side of (11), which is
denoted by D(Q,ϕ), is well defined and bounded on l2. To see this, we note that
there exists K > 0 such that

||(jϕmI −Q)−1|| ≤ Kf(m) (m ∈ Z),(12)

where f is defined in Appendix A. Noting that D(Q,ϕ) is block-diagonal, it follows
that

||D(Q,ϕ)||l2/l2 = sup
m∈Z

||(jϕmI −Q)−1|| ≤ K.(13)

Some simple computations show that D(Q,ϕ)(E(jϕ)−Q) = (E(jϕ)−Q)D(Q,ϕ) = I.

This, together with the fact that P and P−1 are invertible on l2 and lE , respectively,
establishes (10). Noting that (E(jϕ)−Q)−1 is uniformly bounded on l2 by (13) and

that P and P−1 are bound on l2, then the uniform boundedness of (E(jϕ)−A)−1 on
l2 over ϕ ∈ I0 follows from (10).

To see the compactness of (E(jϕ)−Q)−1, we define

[(E(jϕ)−Q)−1]N

= diag[. . . , 0, (jϕ−NI −Q)−1, . . . , (jϕ0I −Q)−1, . . . , (jϕNI −Q)−1, 0, . . .].

It is clear that for any fixed N , the operator [(E(jϕ) − Q)−1]N is bounded on l2 by
(12) and is a compact operator. Furthermore, it is easy to see from (12) that for any
ϕ ∈ I0, limN→∞[(E(jϕ) − Q)−1]N = (E(jϕ) − Q)−1 in the l2-induced norm sense,

which implies that (E(jϕ) − Q)−1 is a compact mapping on l2. Noting that P and

P−1 are bounded on l2, it follows by (10) that (E(jϕ)−A)−1 are also compact.
The following result describes basic properties of the set lE (see Appendix B for

the proof).
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Lemma 2.4. lE is dense in l2. Also, lE is a proper and dense subset of l1 in the
l2-norm sense.

Lemma 2.4 reveals that (4) can be seen as an operator-valued relation densely
defined on l2 (i.e., from the dense subset lE ⊂ l2 to l2).

Finally, for our later use, we denote the Fourier series expansion operator from
L2[0, h] to l2 by F . Then, it is easy to see that if F{x(·)} ∈ l1 for x(t) ∈ L2[0, h],
then the Fourier series expansion of x(t) is absolutely convergent.

3. Frequency response operators viewed on l2. In this section, we construct
the frequency response relation of the FDLCP system (1) by the steady-state input-
output analysis. This is first proposed in [26], [27]. The basic idea can be described
as follows. First, impose an l2-EMP signal u (where EMP stands for exponentially
modulated periodic) to the system of (1), that is,

u(t) =

+∞∑
m=−∞

ume
j(ϕ+mωh)t =

+∞∑
m=−∞

ume
jϕmt (t ≥ 0, ϕ ∈ I0),

where the infinite-dimensional vector u := [. . . , uT−1, u
T
0 , u

T
1 , . . .]

T belongs to l2. Sec-
ond, measure the steady-state output y of the system, which is (assumed to be) also an
l2-EMP signal under the asymptotic stability assumption of the system and represent
the signal y by the infinite-dimensional vector y := [. . . , yT−1, y

T
0 , y

T
1 , . . .]

T ∈ l2 accord-
ing to the definition of l2-EMP signals. Finally, the input-output response relation
observed in the above is expressed as a mapping G(jϕ) : u �→ y.

In the above arguments, the Fourier series expansions of A(t), B(t), C(t), and
D(t) as well as the Toeplitz operators expressions of these h-periodic matrix functions
are used repeatedly. It should be pointed out that the validity of such use has not
been verified rigorously in [26], [27]. In the following, we will reconsider the above-
mentioned arguments and concentrate our attention on the convergence problems
of the Fourier series expansions and the Toeplitz transformations involved. To this
purpose, we note from the Floquet theorem that

y(t) = C(t)P (t, 0)eQ(t−t0)P−1(t0, 0)x0

+ C(t)P (t, 0)

∫ t

t0

eQ(t−τ)P−1(τ, 0)B(τ)u(τ)dτ +D(t)u(t)

= Ĉ(t)

[
eQ(t−t0)q0 +

∫ t

t0

eQ(t−τ)B̂(τ)u(τ)dτ

]
+D(t)u(t)(14)

with B̂(t) := P−1(t, 0)B(t), Ĉ(t) := P (t, 0)C(t), and q0 := P−1(t0, 0)x0. The sec-
ond relation of (14) says that if we introduce the initial value transformation q0 =
P−1(t0, 0)x0, the system (1) can be represented equivalently in the input-output sense
by the system configuration shown in Figure 1.

Now we are in a position to establish the frequency response relation in the system
of Figure 1 by imposing an l2-EMP sinusoid input u to the system and measuring the
steady-state output y. From Figure 1, this can be completed by showing that under
certain assumptions given below, the steady-state responses at the points p, q, and
y are also l2-EMP signals so that the input-output response relation u �→ y can be
written as a mapping of u �→ y. We complete this in three steps.

Step 1. Take an h-periodic continuous signal û(t) ∈ L2[0, h] such that F{û(·)} =:
û ∈ l1 ⊂ l2. Then the Fourier series expansion of û(t) is absolutely convergent.
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Fig. 1. Equivalent system configuration.

Constructing the input l2-EMP signal as u(t) = û(t)ejϕt, ϕ ∈ I0 (where I0 is defined
in Proposition 2.4), it follows that the corresponding output of B̂(t) to this l2-EMP
signal is

p(t) = p̂(t)ejϕt (t ≥ 0, ϕ ∈ I0),

where p̂(t) = B̂(t)û(t) = P−1(t, 0)B(t)û(t).

Now assume that B(t) ∈ LPCC[0, h]. Then, from the choice of û and Lemma 2.1
(the assertion is expressed in terms of the operator F by taking the central column),
we obtain

F{B(·)û(·)} = B F{û(·)} = B û,

and the Fourier series expansion of B(t)û(t) is convergent to B(t0)û(t0) for a.e. t0 ∈
[0, h].

Furthermore, let us assume that A(t) ∈ LPCD[0, h]. Then, from Proposition 2.2,
P−1(t, 0) is continuous, and the Fourier series expansion of P−1(t, 0) is absolutely
convergent. Again by Lemma 2.1 and Proposition 2.2, we obtain

F{P−1(·, 0)B(·)û(·)} = T {P−1(·, 0)}F{B(·)û(·)} = P−1B û,

which can be interpreted as

F{p̂(·)} =: p̂ = P−1B û ∈ l2.(15)

The assertion that p̂ ∈ l2 follows from the facts that P−1 and B are bounded on
l2 under the given assumptions on A(t) and B(t). From the above arguments, it
follows that p̂(t)ejϕt = p(t) is also l2-EMP. In other words, one can conclude that
p(t) =

∑+∞
m=−∞ pme

j(ϕ+mωh)t with pm := [p̂]m.

Remark 3.1. The reason we constrain the domain of û is that if we work on a
general û(t) ∈ L2[0, h], we may not arrive at the above conclusions for some û ∈ l2
because of the convergence problems in the Fourier series expansions and the Toeplitz
transformations.

Step 2. Now impose the signal p to the linear time-invariant (LTI) subsystem
of Figure 1. We suppose that this subsystem is asymptotically stable (i.e., all the
eigenvalues of Q have negative real parts). Then, by the superposition principle of
linear systems [21, Theorem 5.6.2, p. 237], the output q of the LTI subsystem to p is
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q(t) = eQtq0 +

∫ t

0

eQ(t−τ)
+∞∑

m=−∞
pme

j(ϕ+mωh)τdτ

= eQt

(
q0 +

+∞∑
m=−∞

∫ t

0

e(jϕmI−Q)τdτpm

)

= eQt

(
q0 +

+∞∑
m=−∞

(Q− jϕmI)−1pm

)
+

+∞∑
m=−∞

(jϕmI −Q)−1pme
jϕmt.(16)

On the other hand, by the stability assumption of Q, (12) is true for all ϕ ∈ I0.
Therefore, we observe by the Cauchy–Schwarz inequality and Appendix A that

+∞∑
m=−∞

||(Q− jϕmI)−1pm|| ≤
+∞∑

m=−∞
||(Q− jϕmI)−1|| · ||pm||

≤
(

+∞∑
m=−∞

||(Q− jϕmI)−1||2
) 1

2
(

+∞∑
m=−∞

||pm||2
) 1

2

≤ K
(

+∞∑
m=−∞

f(m)2

) 1
2

||p||l2 ≤
√

5K ||p||l2 ,(17)

where p := [. . . , pT−1, p
T
0 , p

T
1 , . . .] = p̂ ∈ l2. The above inequality implies that the sum-

mation
∑+∞
m=−∞(Q−jϕmI)−1pm is absolutely convergent for any ϕ ∈ I0. Combining

this fact with (16), it follows that as t→∞, the steady-state response is(
+∞∑

m=−∞
(jϕmI −Q)−1pme

jmωht

)
ejϕt

since eQt → 0. This steady-state output q of the LTI subsystem can be expressed as

q(t) := q̂(t)ejϕt (t ≥ 0),

where q̂(t) =
∑+∞
m=−∞ q̂me

jmωht with q̂m := (jϕmI−Q)−1pm. The arguments in (17)
also indicate that F{q̂(·)} =: q̂ ∈ l1 ⊂ l2. More precisely, since (E(jϕ) − Q)−1 is a
mapping from l2 to lE ⊂ l1 by Proposition 2.4 and Lemma 2.4, it also follows that
q̂ ∈ lE ⊂ l1. Consequently, q̂(t) ∈ L2[0, h] and the Fourier series expansion of q̂(t) is
absolutely convergent. Obviously, q(t) is an l2-EMP signal.

Step 3. Since the Fourier series expansion of P (t, 0) is absolutely convergent,
the assertion in the last paragraph of Step 2 actually says that the Fourier series
expansion of P (t, 0)q̂(t) is also absolutely convergent by the fact [19] that the Fourier
series expansion of the product of two matrix functions is absolutely convergent if
the Fourier series expansions of these two matrix functions are absolutely convergent.
Now, repeating the arguments in Step 1 on the matrix function C(t)P (t, 0)q̂(t), the
relation

F{ŷ(·)} =: ŷ = C P q̂(18)

can be asserted if C(t) ∈ LPCC[0, h], where ŷ is the output of C(t)P (t, 0) to the
input q̂(t). It is clear that ŷ ∈ l2, and thus the output y of C(t)P (t, 0) to the input

q(t) = q̂(t)ejϕt is l2-EMP.
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Finally, from (15) and (18) and by Proposition 2.4, we obtain

ŷ = C P (E(jϕ)−Q)−1P−1B u = C(E(jϕ)−A)−1B u

by setting u := û. Summarizing the above discussions and taking D(t) into consid-
eration, we can state the following main result about the existence conditions of the
frequency response operator.

Theorem 3.1. Assume that in the system (1) A(t) belongs to LPCD[0, h], B(t),
C(t), and D(t) belong to LPCC[0, h], and that the system (1) is asymptotically stable
in the Floquet theorem sense. Then the steady-state response of the system (1) to
the l2-EMP input u(t) =

∑+∞
m=−∞ ume

jϕmt with u = [. . . , uT−1, u
T
0 , u

T
1 , . . .]

T ∈ l1 ⊂ l2
is also an l2-EMP signal y(t) =

∑+∞
m=−∞ yme

jϕmt with y = [. . . , yT−1, y
T
0 , y

T
1 , . . .]

T =
G(jϕ)u ∈ l2, where

G(jϕ) := C(E(jϕ)−A)−1B +D.(19)

Hence the frequency response operator G(jϕ) is a densely defined mapping on l2 for
each ϕ ∈ I0. Furthermore, it is uniformly bounded over ϕ ∈ I0 in the sense that
||G(jϕ)||l2/l1(l2) ≤ K <∞ for all ϕ ∈ I0 for some K > 0, where

||G(jϕ)||l2/l1(l2) := sup
0 
=x∈l1

{ ||G(jϕ)x||l2
||x||l2

}
.

Proof. The first assertion follows directly from the preceding arguments. It is
clear from the above arguments that G(jϕ) is a mapping from l1 into l2. However,
l1 is dense in l2 so that the frequency response operator established via the steady-
state input-output analysis is a densely defined operator on l2 [21, p. 486]. To see the
uniform boundedness of G(jϕ) over the interval I0, we note that B,C, and D are
bounded on l2 by the assumptions on B(t), C(t), and D(t) from Lemma 2.3. Then
the uniform boundedness assertion of G(jϕ) follows from Proposition 2.4.

Remark 3.2. Note that we have used the l2 norm on l1 in Theorem 3.1. Accord-
ingly, ||G(jϕ)||l2/l1(l2) is the l2-induced norm of G(jϕ) on the subset l1 of l2.

By the mathematical expression of the frequency response operator, this operator
can have two interpretations. The first one is to view it as a mapping from l1 into
l2, which has a clear steady-state analysis interpretation as we discussed above; the
second is to treat it as a mapping on l2. The second viewpoint makes sense because
it can be seen as a mapping with the extended domain l2 instead of the original
domain l1, and this mapping itself is bounded on l2 (since all the operators in G(jϕ)
are bounded on l2, and this fact is used in the uniform boundedness proof of G(jϕ)
in Theorem 3.1). Here, to distinguish these two operators, the frequency response
operator in the first interpretation is given a new notation G̃(jϕ), while the original
notation G(jϕ) is taken over by the second interpretation. Note that G̃(jϕ) and
G(jϕ) have the same mathematical expression but are defined on different domains.

Compared with G(jϕ), the frequency response operator G̃(jϕ) defined via the
steady-state analysis is “deficient” in the sense that the domain of G̃(jϕ) is a dense
subset of l2. However, it is straightforward to establish the following corollary, which
shows that the l2-induced norm of G̃(jϕ) from l1 to l2 coincides with the l2-induced
norm of G(jϕ) on l2. This validates the existing studies on the definition and com-
putation of the H∞ norm of the FDLCP system (1) based on the frequency response
operator G(jϕ).
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Corollary 3.1. Suppose that in the system (1) A(t) belongs to LPCD[0, h],
B(t), C(t), and D(t) belong to LPCC[0, h], and that the system (1) is asymptotically
stable. Then for all ϕ ∈ I0

||G̃(jϕ)||l2/l1(l2) = ||G(jϕ)||l2/l2 .
Hence G(jϕ) is bounded on l2 uniformly over ϕ ∈ I0.

As final words of this section, we make a few remarks about the H2 norm of
FDLCP systems. In [27], the H2 norm of FDLCP systems has been defined by

||G||2 :=

{
1

2π

∫ ωh
2

−ωh
2

trace(G(jϕ)∗G(jϕ))dϕ

} 1
2

.(20)

In (20), we have implicitly assumed that the system (1) is strictly proper. Thus G(jϕ)
is compact by Proposition 2.4 and the fact that B and C are bounded on l2. Even
though, rigorously speaking, the steady-state input-output analysis of [27] leads only
to G̃(jϕ) rather than G(jϕ) as mentioned above, it is indeed reasonable to adopt the
above definition in terms of G(jϕ) rather than G̃(jϕ). This is because, as is well
known (see, e.g., [12, p. 105], [21, p. 389], [31, p. 347]), trace is defined only for trace
class operators, which are a class of (compact) operators defined on Hilbert spaces.
Since the domain of G̃(jϕ) is only a subset of the Hilbert space l2, it is not adequate
to define trace on G̃(jϕ)∗G̃(jϕ). On the other hand, it is not hard to show that
G(jϕ)∗G(jϕ) is indeed a trace class operator on l2, which follows from (12). Some
further discussions are given in section 5.

4. Frequency response operators viewed on l1. In this section, we show
that under certain conditions, the frequency response operator can also be established
via the steady-state analysis of l1-EMP input signals as a bounded mapping on l1 (i.e.,
from l1 into l1). Now let us define the set le = {x ∈ l1 : E(j0)x ∈ l1} and state the
following lemma, which can be shown in a similar way to Lemma 2.4.

Lemma 4.1. le is a proper dense subset of l1 and le ⊂ lE.
Lemma 4.1 says that the role of the subset le of l1 is similar to that of the subset

lE of l2 so that the inverse of E(j0) − A can be derived as a mapping from l1 to le
from (9). For brevity, the details are omitted, but the assertions are stated in the
following proposition, which is helpful in establishing the frequency response relation
of the FDLCP system in terms of a mapping on l1.

Proposition 4.1. Suppose that in (1) A(t) ∈ LCPCD[0, h], B(t), C(t) ∈ LCAC[0, h].
Then P and P−1 are bounded on l1. In particular, le is P - and P

−1-invariant, and
hence P is invertible on le. The unique inverse of P on le is P

−1 restricted to le. It
is also true that on le ⊂ l1

P (E(j0)−Q)P−1 = E(j0)−A.(21)

Also, it holds on the whole l1 that B̂ = P−1B and Ĉ = C P . Furthermore, if the
system (1) is asymptotically stable in the Floquet theorem sense, then E(jϕ) − A is
invertible for all ϕ ∈ I0, and

P (E(jϕ)−Q)−1P−1 = (E(jϕ)−A)−1,(22)

which is a mapping from l1 to le. Also, (E(jϕ) − A)−1 is compact and uniformly
bounded on l1 over ϕ ∈ I0.
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Proof. The proof can be given by some similar steps to those in Propositions 2.3
and 2.4. Here it remains only to show that the operators T {Ṗ (t, 0)}, P , P−1, B, and
C are bounded on l1 and that (E(jϕ)−Q)−1 is uniformly bounded on l1 over ϕ ∈ I0.

By (3) and the assumption on A(t), Ṗ (t, 0) is continuous and the first-order derivative
of Ṗ (t, 0) is piecewise continuous in [0, h]. Hence, by Theorem 2 of [6, p. 104], the
Fourier series expansion of Ṗ (t, 0) is absolutely convergent. Now we denote the Fourier
coefficients sequence of Ṗ (t, 0) by {P̂m}+∞

m=−∞. Obviously, if x ∈ l1, then

||T {Ṗ (t, 0)}x||l1 =

+∞∑
m=−∞

∣∣∣∣∣
∣∣∣∣∣

+∞∑
k=−∞

P̂m−kxk

∣∣∣∣∣
∣∣∣∣∣

≤
+∞∑

m=−∞

+∞∑
k=−∞

||P̂m−k|| · ||xk|| =
(

+∞∑
m=−∞

||P̂m||
)
||x||l1 ,

where
∑+∞
m=−∞ ||P̂m|| <∞ by the absolute convergence mentioned above. From this,

it follows readily that the operator T {Ṗ (t, 0)} is bounded on l1. Similarly, since the
Fourier series expansions of P (t, 0) and P−1(t, 0) are absolutely convergent, P and
P−1 are bounded on l1. The boundedness of B and C on l1 follows directly from the
assumption that B(t) and C(t) belong to LCAC[0, h]. The last assertion follows from
the above discussions, (12), and (22).

By Proposition 4.1, one can establish the frequency response operator on l1 by
the steady-state analysis but with the l1-EMP signals. That is, the l1-EMP input is
u(t) =

∑+∞
m=−∞ ume

jϕmt, ϕ ∈ I0, with u := [. . . , uT−1, u
T
0 , u

T
1 , . . .]

T ∈ l1. The following
theorem summarizes such discussions.

Theorem 4.1. Assume that in the system (1) A(t) ∈ LCPCD[0, h], B(t), C(t),
and D(t) belong to LCAC[0, h], and that the system (1) is asymptotically stable. Then
the steady-state response of (1) to the l1-EMP input u(t) =

∑+∞
m=−∞ ume

jϕmt with

u = [. . . , uT−1, u
T
0 , u

T
1 , . . .]

T ∈ l1 is also an l1-EMP signal y(t) =
∑+∞
m=−∞ yme

jϕmt

with y = [. . . , yT−1, y
T
0 , y

T
1 , . . .]

T = G(jϕ)u ∈ l1, where G(jϕ) is given in (19). Hence
the frequency response operator G(jϕ) is well defined on l1 for each ϕ ∈ I0. Also, it
is uniformly bounded over ϕ ∈ I0 in the sense that ||G(jϕ)||l1/l1 ≤ K < ∞ for all
ϕ ∈ I0 for some K > 0.

Remark 4.1. We mention that Theorem 4.1 is not a special case of Theorem 3.1.
To see this, the following facts are mentioned. (i) In Theorem 3.1, the EMP signal
u(t) is viewed as an l2-EMP signal even though u(t) itself is l1-EMP; (ii) Theorems 3.1
and 4.1 are proved by using Propositions 2.4 and 4.1, respectively, which hold on dif-
ferent linear spaces; (iii) The uniform boundedness of the frequency response operator
G(jϕ) in Theorem 3.1 is stated in the l2-induced norm sense from l1 ⊂ l2 to l2, while
that of Theorem 4.1 is in the l1-induced norm sense.

5. Relations to the time-domain definitions of H2 and H∞ norms. In
this section, we show that the H2 and H∞ norms of FDLCP systems defined via the
frequency response operator are equal to the time-domain counterparts under some
conditions. To this end, let us first define the formal frequency response operator of
the system in Figure 1 by

Ĝ(jϕ) = Ĉ(E(jϕ)−Q)−1B̂ +D,

where B̂ = T {B̂(t)} and Ĉ = T {Ĉ(t)}. For Ĝ(jϕ) to make sense, we assume that
A(t) ∈ L2[0, h] and the system is asymptotically stable so that E(jϕ)−Q is invertible
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for all ϕ ∈ I0. We also assume that B̂, Ĉ, and D are bounded on l2. The purpose of
introducing this frequency response operator is that the time-domain H2 norm and
the L2-induced norm are more naturally connected with Ĝ(jϕ) rather than G(jϕ),
although, under stronger assumptions, the matrix representations of these two oper-
ators eventually coincide with each other. This coincidence will help to recover the
equivalences between these two norms and the counterparts in terms of the frequency
response operator.

First, we consider the H2 norm of FDLCP systems. In what follows, we assume
that the FDLCP system (1) is strictly proper when the H2 norm problem is consid-
ered. Denoting the impulse response of the system (1) by g(·, ·), the time-domain H2

norm [5], [27], [32] of the FDLCP system (1) is

||G||2 =

{
1

h

∫ h

0

∫ +∞

−∞
trace(g(t, τ)∗g(t, τ))dtdτ

} 1
2

.

Proposition 5.1. Suppose that in the system (1) A(t) ∈ L2[0, h], and the system
is asymptotically stable. Also assume that B̂(t) and Ĉ(t) belong to LCAC[0, h]. Then
it holds that

||G||2 =

{
1

2π

∫ ωh
2

−ωh
2

trace(Ĝ(jϕ)∗Ĝ(jϕ))dϕ

} 1
2

.

Proof. See Appendix B.
We are in a position to show the following result, which says that the time-

domain definition of the H2 norm is equivalent to the frequency-domain definition
given in [27]. Even though this fact seems to be regarded as well known, we stress
here that no direct and explicit proof via the frequency response operator is available
in the literature to the best of the knowledge of the authors.

Theorem 5.1. Suppose that in the system (1) A(t) belongs to LPCD[0, h], B(t)
and C(t) belong to LCAC[0, h], and that the system is asymptotically stable. Then

||G||2 =

{
1

2π

∫ ωh
2

−ωh
2

trace(G(jϕ)∗G(jϕ))dϕ

} 1
2

.

Proof. Under the given conditions, it is clear from Propositions 2.3 and 2.4 that
Ĝ(jϕ) = G(jϕ). Hence, by the result in Proposition 5.1, it remains to show that
the Fourier series expansions of B̂(t) = P−1(t, 0)B(t) and Ĉ(t) = C(t)P (t, 0) are
absolutely convergent. To see this, it is enough to note that the Fourier series expan-
sions of P−1(t, 0) and P (t, 0) are absolutely convergent from Proposition 2.2 by the
assumption on A(t).

Now we discuss the relation between the L2-induced norm and the H∞ norm of
FDLCP systems. The L2-induced norm of the FDLCP system (1) is

||G||L2/L2
= sup

0 
=u∈L2

||y(·)||L2

||u(·)||L2

.

To establish the relation between the L2-induced norm and the H∞ norm of
FDLCP systems, we first prove the following proposition. To this purpose, we in-
troduce the so-called SD-Fourier transform [1]. For a signal x ∈ L2, its SD-Fourier
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transform is defined as

XSD(jϕ) := [. . . , X(jϕ−1)T , X(jϕ0)T , X(jϕ1)T , . . .]T ,(23)

where X(jω) is the Fourier transform of x, and X(jϕn) = X(j(ϕ+nωh)), n ∈ Z, ϕ ∈
I0. It can also be said that XSD(jϕ) is the lifted version of X(jω) in the frequency
domain. This kind of frequency-domain lifting technique has been frequently used in
sampled-data system sensitivity analysis [4] and signal processing [24].

Proposition 5.2. Suppose that in the system (1) A(t) belongs to L2[0, h],
B̂(t), Ĉ(t), and D(t) belong to LCAC[0, h], and that the system is asymptotically stable
in the Floquet theorem sense. Then the system (1) is L2-stable and

(1) Y SD(jϕ) = Ĝ(jϕ)USD(jϕ) for all ϕ ∈ I0 for any u(t) ∈ C1
0 , where C

1
0 denotes

the space of continuously differentiable functions with compact support;

(2) ||y(·)||2L2
= 1

2π

∫
I0
U∗

SD(jϕ)Ĝ
∗
(jϕ)Ĝ(jϕ)USD(jϕ)dϕ for any u(t) ∈ C1

0 ;

where USD(jϕ) and Y SD(jϕ) are the SD-Fourier transforms of u(t) and y(t), respec-
tively.

Proof. See Appendix B.
Based on Proposition 5.2, we establish the equivalence between the L2-induced

norm of the system (1) and the maximum of the l2-induced norm of G(jϕ) over
ϕ ∈ I0, which is called the H∞ norm of the frequency response operator G(jϕ) of the
FDLCP system (1) [17], [27]. Again, no direct and explicit proof for this equivalence
is available in the literature.

Theorem 5.2. Suppose that in the system (1) A(t) belongs to LPCD[0, h], B(t),
C(t), and D(t) belong to LCAC[0, h], and that the system is asymptotically stable.
Then

||G||L2/L2
= max
ϕ∈I0

||G(jϕ)||l2/l2 .

Proof. By the assumptions on A(t), B(t), and C(t), together with Proposition 2.2,
it follows that the Fourier series expansions of B̂(t) and Ĉ(t) are also absolutely
convergent. This implies that Proposition 5.2 applies to the system of Figure 1. In
view of this, we show that

||G||L2/C1
0 (L2) := sup

u∈C1
0

||y(·)||L2

||u(·)||L2

= max
ϕ∈I0

||Ĝ(jϕ)||l2/l2 .(24)

This can be accomplished by some similar arguments to those in the proof of Theo-
rem 5 of [1]. On the other hand, since C1

0 is dense in L2, it follows that ||G||L2/C1
0 (L2) =

||G||L2/L2
. Furthermore, under the given assumptions, it is obvious that Ĝ(jϕ) =

G(jϕ) by Propositions 2.3 and 2.4. This, together with (24), completes the proof.

6. Conclusion. The frequency response relation of FDLCP systems via the
steady-state input-output analysis is reconsidered in this paper. We found that be-
cause of the various convergence problems related to the Fourier analysis and the
Toeplitz transformation, the frequency response operator defined in [27] via such an
analysis is actually guaranteed to be defined only densely on l2 but that the frequency
response operator can be extended to have the whole l2 as its domain so that we still
can define and compute the H2 and H∞ norms of FDLCP systems based on the
frequency response operator [33]. It is also proved that, under some strengthened
conditions, the time-domain H2 norm (respectively, the L2-induced norm) is equal to
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the frequency-domain H2 norm (respectively, the H∞ norm of the frequency response
operator). Thus the well-known equivalences about the H2 and H∞ norms in LTI
continuous-time systems are recovered in a class of FDLCP systems. As another con-
tribution of this study, it is verified that the frequency response operator defined by
the steady-state input-output analysis can also be established as a mapping on l1 un-
der some strengthened assumptions on the system matrices {A(t), B(t), C(t), D(t)}.
How to exploit this frequency response operator on l1 remains one of our future re-
search topics. The implication of this work is that the frequency response operator
defined via the steady-state input-output analysis is well defined in most practical
FDLCP systems, and the mathematical expression of these operators are similar to
the well-known results in LTI systems. In addition, it is worth mentioning that this
study reveals that the frequency response operators via the steady-state analysis may
contain much more system structural information of FDLCP systems than we have
understood in the usual ways before. For example, we believe that through the steady-
state input-output analysis to lp-EMP signals, 2 < p < ∞, the frequency response
operators of FDLCP systems can be introduced as a mapping (densely defined) on
lp under possibly weaker assumptions than those in the l2 case. This is left for our
further study.

Appendix A.
Lemma A.1 (see [1]). If the function f(n) of an integer n is defined by

f(n) =

{
1, n = 0,
|n|−1, n �= 0,

then we have
∑∞
n=N+1 f(n)2 < 1

N (N ≥ 1) and
∑∞
n=−∞ f(n)2 < 5.

Appendix B.
Proof of Lemma 2.1. Since Y (t) ∈ LCAC[0, h], it follows that its Fourier series

expansion is uniformly convergent with respect to t over [0, h]. Thus the Fourier series
expansion of Y (t) defines a continuous function over [0, h], which is nothing but Y (t)
by the continuity of Y (t). In other words, for every t0 ∈ [0, h], the Fourier series
expansion of Y (t) converges to Y (t0). Hence, for each t0 ∈ [0, h] at which the Fourier
series expansion of X(t) converges to X(t0), we have

X(t0)Y (t0) =

(
+∞∑

m=−∞
Xme

jmωht0

)(
+∞∑

m=−∞
Yme

jmωht0

)

=

+∞∑
m=−∞

(
+∞∑

k=−∞
Xm−kYk

)
ejmωht0 ,(25)

where we used the Mertens theorem to compute the product of two infinite sums,
which also ensures that the right-hand side of (25) is convergent at t0. Noting
that it is in the form of the Fourier series expansion, it immediately follows that
{∑+∞

k=−∞Xm−kYk}+∞
m=−∞ is indeed the Fourier coefficients sequence of X(t)Y (t) be-

cause we readily have∣∣∣∣∣
∣∣∣∣∣X(t)Y (t)−

+∞∑
m=−∞

(
+∞∑

k=−∞
Xm−kYk

)
ejmωht

∣∣∣∣∣
∣∣∣∣∣
L2[0,h]

= 0(26)

(since (25) holds for a.e. t0 ∈ [0, h] by the assumption), and the Fourier series expan-
sion is unique. This gives T {X(t)Y (t)} = T {X(t)}T {Y (t)}. The same is true for
T {Y (t)X(t)} = T {Y (t)}T {X(t)}.
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Proof of Lemma 2.2. Take an arbitrary f(t) ∈ L2[0, h], and expand it into the
Fourier series expansion f(t) =

∑+∞
n=−∞ fne

jnωht with f := [. . . , fT−1, f
T
0 , f

T
1 , . . .]

T ∈
l2. Note that, for any ε > 0, we can find d ∈ l1 such that ||f−d||l2 < ε since l1 is dense

in l2. Now construct d(t) :=
∑+∞
n=−∞ dne

jnωht. It is easy to see that d(t) ∈ LCAC[0, h]
and

||f(·)− d(·)||L2[0,h] =

∣∣∣∣∣
∣∣∣∣∣

+∞∑
n=−∞

(fn − dn)ejnωht

∣∣∣∣∣
∣∣∣∣∣
L2[0,h]

= ||f − d||l2 < ε

by the Parseval theorem. This completes the proof.
Proof of Lemma 2.3. Taking f(t) ∈ LCAC[0, h] and expanding it into the Fourier

series expansion f(t) =
∑+∞
n=−∞ fne

jnωht, it follows that f := [. . . , fT−1, f
T
0 , f

T
1 , . . .]

T ∈
l1. The converse is also true. On the other hand, by the assumption on X(t), it follows
from Lemma 2.1 that X f = y, where y is similarly defined to f but in terms of the
Fourier coefficients of X(t)f(t). Thus it follows that

||X||l2/l1(l2) := sup
f∈l1

{ ||X f ||l2
||f ||l2

}
= sup
f(t)∈LCAC[0,h]

{ ||X(·)f(·)||L2[0,h]

||f(·)||L2[0,h]

}
=: ||X(·)||∗.

Obviously, ||X||l2/l1(l2) = ||X||l2/l2 since l1 is dense in l2. Similarly, from Lemma 2.2,
||X(·)||∗ = ||X(·)||L2[0,h]/L2[0,h]. Hence we obtain ||X||l2/l2 = ||X(·)||L2[0,h]/L2[0,h] =
supt∈[0,h] ||X(t)||. Since X(t) ∈ LPCC[0, h] by the assumption, the boundedness as-
sertion follows.

Proof of Lemma 2.4. Let x ∈ l2. For any ε > 0, there exists x′ ∈ l2 with only
finite nonzero entries such that ||x−x′||l2 < ε. It is obvious that E(j0)x′ ∈ l2. Hence
x′ ∈ lE , which implies that lE is dense in l2.

Furthermore, it is clear that x ∈ lE if and only if
∑+∞

m=−∞
m�=0

m2ω2
h||[x]m||2 <∞. It

follows from the Cauchy–Schwarz inequality that if x ∈ lE , then

+∞∑
m=−∞
m�=0

||[x]m|| =
+∞∑

m=−∞
m�=0

m · 1

m
||[x]m|| ≤


 +∞∑

m=−∞
m�=0

m2||[x]m||2



1
2

 +∞∑

m=−∞
m�=0

1

m2




1
2

≤M <∞
for some M > 0. This implies that if x ∈ lE , then x ∈ l1. The fact that lE is dense
in l1 can be shown in exactly the same way as in the proof for the first assertion (i.e.,
via truncation). Now take

[x]m =

{
1

|m| 54
[1, 0, . . . , 0]T (m �= 0),

0 (m = 0).

Then it can be shown that x ∈ l1 but E(j0)x /∈ l2, which says that lE is a proper
subset of l1.

Proof of Proposition 5.1. A complete proof can be found in [34]. Here we give
only an outline of the proof. By the Floquet theorem, the transition matrix of (1)
can be written as Φ(t, 0) = P (t, 0)eQt when the initial time t0 = 0. Thus the impulse
response of the system to the input eiδ(t− τ) (δ(t− τ) is the delta function imposed
at t = τ ≥ 0, ei is the ith natural basis of Rm) is given by

(Geiδτ )(t) =

{
C(t)P (t, 0)eQ(t−τ)P−1(τ, 0)B(τ)ei (t ≥ τ),
0 (t < τ).

(27)
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Here we further define B̃T := [. . . , B̂T−1, B̂
T
0 , B̂

T
1 , . . .]

T , C̃ := [. . . , Ĉ1, Ĉ0, Ĉ−1, . . .], and

Λ(t) := [. . . , ejωhtI, I, e−jωhtI, . . .]T with {B̂}+∞
m=−∞ and {Ĉ}+∞

m=−∞ being the Fourier

coefficients sequence of B̂(t) and Ĉ(t), respectively. Then, by the assumptions on
B̂(t) and Ĉ(t), B̂(t) = Λ(τ)∗B̃ and Ĉ(t) = C̃Λ(t) hold. Therefore, taking the Fourier
transformation on (27) about t, we obtain

F [(Geiδτ )(t)](jω) = C̃

∫ +∞

τ

Λ(t)eQ(t−τ)e−jωtdtΛ(τ)∗B̃ei

= C̃(E(jω)−Q)−1Λ(τ)Λ(τ)∗B̃eie−jωτ .(28)

In (28), the order of the integral and the infinite summation caused by Ĉ(t)Λ(t) is
interchanged. This is validated by the stability assumption, Ĉ(t) ∈ LCAC [0, h], and
by the Levi theorem [21, p. 577].

Hence, by the time-domain definition of the H2 norm, we have

||G||22 =
1

h

∫ h

0

m∑
i=1

trace

(∫ +∞

0

(Geiδτ )(t)(Geiδτ )∗(t)dt

)
dτ

=
1

2πh

∫ h

0

m∑
i=1

trace

(∫ +∞

−∞
C̃(E(jω)−Q)−1Λ(τ)Λ(τ)∗B̃ei

·e∗i B̃∗Λ(τ)Λ(τ)∗(E(jω)−Q)−∗C̃∗dω
)
dτ

=
1

2πh

∫ h

0

trace

(∫ +∞

−∞
C̃(E(jω)−Q)−1Λ(τ)Λ(τ)∗B̃

·B̃∗Λ(τ)Λ(τ)∗(E(jω)−Q)−∗C̃∗dω
)
dτ

=
1

2πh

∫ +∞

−∞
trace

(
C̃(E(jω)−Q)−1

·
[∫ h

0

Λ(τ)Λ(τ)∗B̃B̃∗Λ(τ)Λ(τ)∗dτ

]
(E(jω)−Q)−∗C̃∗

)
dω(29)

by the Parseval theorem and (28). In (29), the orders of the integrals and the infinite
summations are interchanged repeatedly. These can be validated by the Fubini the-
orem [21, p. 598] and the Levi theorem. Noting also that the trace computations are
done on finite-dimensional matrices, the trace computations here are actually only
finite summations.

Furthermore, it is easy to see that

Λ(τ)Λ(τ)∗B̃ B̃∗Λ(τ)Λ(τ)∗ = R(τ)Λ(τ)Λ(τ)∗R(τ)∗,(30)

where R(τ) := diag[. . . , B̂(τ), B̂(τ), B̂(τ), . . .]. By the assumption, B̂(τ) has the abso-
lutely convergent Fourier series expansion B̂(τ) =

∑+∞
q=−∞ B̂qe

jqωhτ . Hence, it follows

from Cauchy’s rule that B̂(τ)B̂(τ)∗ =
∑+∞
m=−∞(

∑+∞
n=−∞ B̂m−nB̂∗

n)ejmωhτ , which im-
plies that

1

h

∫ h

0

R(τ)Λ(τ)Λ(τ)∗R(τ)∗dτ = B̂ B̂
∗

(31)
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with B̂ similarly defined to A but in terms of {B̂q}+∞
q=−∞. Finally, using (31) in (29)

yields

||G||22 =
1

2π

∫ +∞

−∞
trace(C̃(E(jω)−Q)−1B̂ B̂

∗
(E(jω)−Q)−∗C̃∗)dω

=
1

2π

+∞∑
m=−∞

∫ ωh
2

−ωh
2

trace(C̃(E(jϕm)−Q)−1B̂ B̂
∗
(E(jϕm)−Q)−∗C̃∗)dϕ

=
1

2π

∫ ωh
2

−ωh
2

+∞∑
m=−∞

trace(C̃(E(jϕm)−Q)−1B̂ B̂
∗
(E(jϕm)−Q)−∗C̃∗)dϕ

=
1

2π

∫ ωh
2

−ωh
2

trace(Ĉ(E(jϕ)−Q)−1B̂ B̂
∗
(E(jϕ)−Q)−∗Ĉ

∗
)dϕ

as claimed. In the above, we have interchanged the order of the integral and the
summation. To validate this, it suffices to show that the convergence of∑

|m|≤M
trace(C̃(E(jϕm)−Q)−1B̂ B̂

∗
(E(jϕm)−Q)−∗C̃∗)→ trace(Ĝ(jϕ)∗Ĝ(jϕ))

is uniform over ϕ ∈ I0 as M →∞. This can be completed by using the trace formula
on an orthonormal basis of l2 [21]. A full explanation is given in [34].

Proof of Proposition 5.2. By the Floquet theorem, the L2-stability is obvious.
Then, for any u(t) ∈ L2, the output y(t) belongs to L2. Also, C1

0 is a dense subset
of L2 [21, Exercise D.13.3, p. 593]. Therefore, it makes sense to define the Fourier
transforms U(jω) and Y (jω) for the input u(t) ∈ C1

0 and the output y(t). We compute
Y (jω) in four steps.

Step 1. The Fourier transform of the signal p (see Figure 1) is given by

P (jω) =

∫ +∞

−∞

(
+∞∑

m=−∞
B̂me

jmωht

)
u(t)e−jωtd t =

+∞∑
m=−∞

B̂mU(j(ω −mωh)),(32)

which is well defined since B̂(t) is L2-stable (by the boundedness of B̂(t) on [0, h]).
Here, the order of infinite integral and infinite summation is interchanged. This is
valid by the absolute convergence of the Fourier series expansion of B̂(t) and the fact
that u(t) has compact support.

Step 2. Imposing the signal p to the LTI subsystem of Figure 1, the Fourier
transform of q is

Q(jω) = (jωI −Q)−1
+∞∑

m=−∞
B̂mU(j(ω −mωh)).(33)

Since u(t) ∈ C1
0 , it is clear that B̂(t)u(t) ∈ L1. Also, by the stability assumption, the

LTI subsystem of Figure 1 is L1-stable [25]. Hence q(t) ∈ L1. Now truncate q(t) as
follows. Obviously, q

T
(t) ∈ L1.

q
T

(t) =

{
q(t) (0 ≤ t ≤ T ),
0 (t > T ).

Based on the facts that q(t) and q
T

(t) belong to L1 for all T > 0, we have

lim
T→∞

QT (jω) = Q(jω)(34)
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uniformly over ω ∈ (−∞,+∞), where QT (jω) is the Fourier transform of the signal
q
T

(t) since

||QT (jω)−Q(jω)|| =
∣∣∣∣
∣∣∣∣
∫ ∞

0

(q
T

(t)− q(t))e−jωtdt
∣∣∣∣
∣∣∣∣

≤
∫ ∞

0

||q
T

(t)− q(t)||dt→ 0 (T →∞).

Step 3. Let ŷ(t) be the output of Ĉ(t) to the input q(t), and let ŷ
T

(t) be that
corresponding to the truncated signal q

T
(t), which has compact support. Then we

clearly have ŷ
T

(t) = Ĉ(t)q
T

(t) so that by repeating the arguments about (32) on Ĉ(t),
the Fourier transform of y

T
(t) is given by

ŶT (jω) =

+∞∑
n=−∞

ĈnQT (j(ω − nωh)).(35)

It is obvious that ŷ(t) and ŷ
T

(t) belong to L1 since Ĉ(t) is bounded on t ≥ 0. Based
on this fact, repeating the arguments about q(t) and q

T
(t) on y(t) and y

T
(t), it follows

that limT→∞ YT (jω) = Y (jω) uniformly over ω ∈ (−∞,+∞). This further gives the
relation

Ŷ (jω) =

+∞∑
n=−∞

ĈnQ(j(ω − nωh))(36)

since it is evident that∣∣∣∣∣
∣∣∣∣∣

+∞∑
n=−∞

ĈnQT (j(ω − nωh))−
+∞∑

n=−∞
ĈnQ(j(ω − nωh))

∣∣∣∣∣
∣∣∣∣∣

≤
+∞∑

n=−∞
||Ĉn|| · ||QT (j(ω − nωh))−Q(j(ω − nωh))|| → 0 (T →∞)

uniformly over ω ∈ (−∞,+∞) by (34) and
∑+∞
n=−∞ ||Ĉn|| < ∞, which follows from

the absolute convergence of the Fourier series expansion of Ĉ(t).
Step 4. Taking the feedforward term D(t) into consideration and lifting the

Fourier transform Y (jω) of the whole output to its SD-Fourier transform Y SD(jϕ)
leads to the assertion (1).

To show the assertion (2), by the well-known Parseval theorem, we note that

||y(·)||2L2
=

1

2π

∫ +∞

−∞
Y (jω)∗Y (jω)dω =

1

2π

+∞∑
m=−∞

∫
I0

Y (jϕm)∗Y (jϕm)dϕ

=
1

2π

∫
I0

Y SD(jϕ)∗Y SD(jϕ)dϕ =
1

2π

∫
I0

USD(jϕ)∗Ĝ(jϕ)∗Ĝ(jϕ)USD(jϕ)dϕ.

To complete the proof, it remains to show that the interchange of the integral and
summation is valid. To this end, it is enough to show that the convergence of∑M
m=−M Y (jϕm)∗Y (jϕm) → Y SD(jϕ)∗Y SD(jϕ) as M → ∞ is uniform over ϕ ∈ I0.

A complete proof can be found in [34].
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Abstract. We analyze nonlinear cascades in which the driven subsystem is integral input-to-
state stable (ISS), and we characterize the admissible integral ISS gains for stability. This character-
ization makes use of the convergence speed of the driving subsystem and allows a larger class of gain
functions when the convergence is faster. We show that our integral ISS gain characterization unifies
different approaches in the literature which restrict the nonlinear growth of the driven subsystem and
the convergence speed of the driving subsystem. The result is used to develop a new observer-based
backstepping design in which the growth of the nonlinear damping terms is reduced.
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1. Introduction. Studies on the stabilization of cascade systems have paved
the road to major advances in nonlinear control theory. Among these advances are
several constructive design methods such as backstepping and forwarding, which are
based on recursive applications of cascade designs (see, e.g., Sepulchre, Janković, and
Kokotović [17]), and the discovery of structural obstacles to stabilization such as the
peaking phenomenon (see Sussmann and Kokotović [23]).

One of the main motivations for the stabilization of cascades came from the
linear-nonlinear cascade

ẋ = f(x, z),(1)

ż = Az +Bu(2)

resulting from input-output linearization. Because global asymptotic stability (GAS)
of the x-subsystem ẋ = f(x, 0) is not sufficient to achieve GAS of the whole cascade
with z-feedback u = Kz, alternative designs which employ x-feedback were developed,
such as the feedback passivation design of Kokotović and Sussmann [8]. To achieve
GAS by z-feedback, Sontag [18], Seibert and Suarez [16], Mazenc and Praly [11],
Janković, Sepulchre, and Kokotović [6], and Panteley and Loŕıa [12, 13] studied general
cascades in the which the z-subsystem is nonlinear and derived conditions for the
x- and z-subsystems that ensure stability of the cascade. Among these results, a
particularly useful one is the input-to-state stability (ISS) condition in [19], which
states that if the x-subsystem is ISS with input z and the z-subsystem is GAS, then
the cascade is GAS. This result has been widely used for nonlinear designs based on
the normal form (1)–(2), in which the zero dynamics (1) is ISS. Other results, such
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as [11] and [6], make less restrictive assumptions than ISS for the x-subsystem but
restrict the z-subsystem to be locally exponentially stable (LES).

The integral version of ISS (iISS), recently introduced in [20], requires that an
energy norm of the input be bounded to ensure boundedness of the states. As shown
in [20], iISS is less restrictive than ISS because, in an iISS system, a bounded input
may lead to unbounded solutions if its energy norm is infinite.

In this paper, we analyze the stability of nonlinear cascades in which the x-
subsystem is iISS and the z-subsystem is GAS. The admissible iISS gains for stability
are characterized from the speed of convergence of the z-subsystem. When the con-
vergence is fast, the iISS gain function of the x-subsystem is allowed to be “steep”
at zero. We show that this trade-off between slower convergence and steeper iISS
gain encompasses and unifies several results in the literature. In particular, if the
x-subsystem is ISS, then the slope of its iISS gain function is very gentle at zero
and tolerates every GAS z-subsystem no matter how slow its convergence is. On
the other hand, if the convergence is exponential, that is, if the z-subsystem is LES,
then the cascade is stable for a large class of iISS gains. This class includes all iISS
x-subsystems that are affine in the input z. Thus, for systems like (1)–(2), where a
control law can be designed to render the z-subsystem GAS and LES, the iISS of the
x-subsystem ensures GAS of the cascade.

In section 2, we define the new concepts used in the paper and present lemmas
which are preliminary to our main results. In section 3, we present our main result,
Theorem 1, which characterizes the admissible iISS gains from the speed of conver-
gence of the z-subsystem. We show that several results in the literature are special
cases of Theorem 1, including those that restrict the x-subsystem to be ISS (Corollary
1) and those that restrict the z-subsystem to be LES (Corollary 2). In section 4, we
show that Corollary 2 restricts the nonlinear growth of the interconnection term and
illustrate with an example that violating this growth condition leads to instability of
the cascade.

The second main contribution of the paper is an output-feedback application of
our cascade result. Due to the absence of a separation principle, it is necessary to
design control laws that guarantee robustness against the observer error. We present
a design which renders the system iISS with respect to the observer error and hence
ensures robustness when the error is exponentially decaying. The advantage of our
design over the observer-based backstepping scheme of Kanellakopoulos, Kokotović,
and Morse [7] is that we employ “weak” nonlinear damping terms which grow slower
than those in [7] and result in a “softer” control law. The main features of the design
are discussed and illustrated in an example in section 5. The general design procedure
and its stability proof are given in section 6.

2. Definitions and preliminary lemmas. In this section, we give definitions
and present lemmas that will be used in the rest of the paper. The proofs are given
in section 7.

We first recall standard definitions: K is the class of functions R≥0 → R≥0 which
are zero at zero, strictly increasing, and continuous. K∞ is the subset of class-K
functions that are unbounded. L is the set of functions R≥0 → R≥0 which are
continuous, decreasing, and converging to zero as their argument tends to +∞. KL
is the class of functions R≥0 × R≥0 → R≥0 which are class-K in the first argument
and class-L in the second argument.
Definition 1. We say that the function µ(·) : R≥0 → R≥0 is class-Ko if it is

class-K and O(s) near s = 0; that is, for all s ∈ [0, 1], µ(s) ≤ ks for some k > 0.
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Definition 2 (see [20]). The system

ẋ = f(x, z)(3)

is said to be iISS with input z if there exist a class-K∞ function ω(·), a class-KL
function β(·, ·), and a class-K iISS gain µ(·) such that, for all t ≥ 0,

ω(|x(t)|) ≤ β(|x(0)|, t) +
∫ t

0

µ(|z(τ)|)dτ.(4)

Lemma 1 computes an iISS gain µ(·) from the derivative of an iISS Lyapunov
function.
Lemma 1.
(i) If there exists a C1, positive definite, radially unbounded function V (x) satis-

fying

∂V

∂x
f(x, z) ≤ −ρ(|x|) + µ(|z|)(5)

for some positive definite function ρ(·), then the system (3) with input z is iISS with
gain µ(·).

(ii) If there exists a C1, positive definite, radially unbounded function V (x) satis-
fying

∂V

∂x
f(x, z) ≤ σ(|z|)(6)

for some class-K function σ(·), and if the system (3) is GAS when z ≡ 0, then there
exists a class-Ko function θo(·) such that (3) is iISS with gain µ(·) = σ(·) + θo(·).

The following lemma proves that if (3) is affine in the input z, then σ(·) in (6) is
class-Ko, which means that the iISS gain µ(·) = σ(·) + θo(·) is also class-Ko.
Lemma 2. If the input-affine system

ẋ = f(x) + g(x)z(7)

is iISS, then it is also iISS with a class-Ko gain µ(·).
It is known [20] that ISS implies iISS. We further show that ISS allows us to select

the iISS gain µ(·) in (4) to match any desired class-K function µ̃(·) locally.
Lemma 3. Suppose the system (3) is ISS. Then, for any class-K function µ̃(·),

it is iISS with a gain µ(·) satisfying µ(s) = µ̃(s) for all s ∈ [0, 1].
It is proved in [20, Proposition 7] that, for a GAS system ż = q(z), the solutions

z(t) satisfy

|z(t)| ≤ α(e−ktγ(|z(0)|))(8)

for some constant k > 0 and class-K∞ functions α(·) and γ(·). The following definition
classifies GAS systems using the function α(·) as an index of their speed of convergence
to zero.
Definition 3. Given a class-K∞ function α(·), we say that the system ż = q(z)

is GAS(α) if there exist a class-K∞ function γ(·) and a positive constant k > 0 such
that (8) holds for all z(0).

Thus, for the identity function α(·) = I(·), GAS(I) consists of systems in which
the convergence is exponential. We next show that α(·) is determined by the local
speed of convergence.



INTEGRAL ISS FRAMEWORK FOR NONLINEAR CASCADES 1891

Lemma 4. If the equilibrium z = 0 of ż = q(z) is GAS and if there exist a
constant ε > 0 and a K∞ function γ̃(·) such that

|z(0)| ≤ ε ⇒ |z(t)| ≤ α(e−ktγ̃(|z(0)|)) ,(9)

then there exists a class-K∞ function γ(s) = O(γ̃(s)) near s = 0 such that (8) holds
for all z(0); that is, ż = q(z) is GAS(α).

The following definition will be used in our cascade result to characterize the
admissible iISS gains from the speed of convergence α(·) of the GAS(α) driving sub-
system.
Definition 4. Given a class-K α(·), we say that the function µ(·) is class-Hα if

it is class-K and satisfies ∫ 1

0

(µ ◦ α)(s)
s

ds <∞.(10)

In particular, for the identity function α(·) = I(·), class-HI is defined by∫ 1

0

µ(s)

s
ds <∞.(11)

Thus µ(s) is class-HI if it is class-Ko or if µ(s) ≤ sp for some p > 0, such as µ(s) =
√
s.

3. Main results. We consider the cascade

ẋ = f(x, z),(12)

ż = q(z),(13)

where x ∈ R
nx , z ∈ R

nz , and f(·, ·) and q(·) are locally Lipschitz and satisfy f(0, 0) =
0, q(0) = 0. The stability properties to be analyzed are with respect to the origin
(x, z) = (0, 0), which is an equilibrium for (12)–(13).

Our main stability result characterizes the admissible iISS gains for the x-subsystem
from the speed of convergence of the z-subsystem.
Theorem 1. If the z-subsystem (13) is GAS(α) as in (8) and the x-subsystem

with input z is iISS with a class-Hα iISS gain µ(·) as in (10), then the cascade (12)–
(13) is GAS.

Proof. We note from (8) that

∫ ∞

0

µ(|z(τ)|)dτ ≤
∫ ∞

0

(µ ◦ α)(γ(|z(0)|)e−kτ )dτ = 1

k

∫ γ(|z(0)|)

0

(µ ◦ α)(s)
s

ds ,(14)

where s := γ(|z(0)|)e−kτ . From (10),

λ(s′) :=
1

k

∫ s′

0

(µ ◦ α)(s)
s

ds(15)

exists for all s′ ≥ 0, and it is class-K because λ(0) = 0 and (µ◦α)(s)
s > 0 for all s > 0.

Thus, from (4),

ω(|x(t)|) ≤ β(|x(0)|, 0) + λ(γ(|z(0)|)),(16)

which proves stability of the cascade (12)–(13). Because
∫∞
0
µ(|z(τ)|)dτ is bounded,

(4) implies that x(t)→ 0 as t→∞, as proved in [20, Proposition 6].
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If the x-subsystem with input z is ISS as in [19], then, from Lemma 3, it is also
iISS with a class-Hα gain. This means that no matter what the speed of convergence
α(·) is for the z-subsystem, the ISS x-subsystem satisfies the corresponding Hα iISS
gain condition of Theorem 1. Thus Theorem 1 encompasses the following well-known
result.
Corollary 1. If the z-subsystem (13) is GAS and the x-subsystem is ISS, then

the cascade (12)–(13) is GAS.
Another particular case of interest is when the z-subsystem is LES, that is, when

(9) holds with α(·) = I(·) and γ̃(s) = cs for some c ≥ 1. From Lemma 4, there exist
a class-Ko function γ(·) and a constant k > 0 such that, for all z(0),

|z(t)| ≤ e−ktγ(|z(0)|) .(17)

This means that the z-subsystem is GAS(I), and hence Theorem 1 requires that the
iISS gain be class-HI .
Corollary 2. If the z-subsystem (13) is GAS and LES and the x-subsystem is

iISS with a class-HI gain µ(·) as in (11), then the cascade (12)–(13) is GAS.
We note from Lemma 2 that the class-HI restriction of Corollary 2 is satisfied

when the iISS x-subsystem is affine in z.
Corollary 3. If the z-subsystem (13) is GAS and LES and the x-subsystem is

iISS and affine in z, then the cascade (12)–(13) is GAS.
Examples 1 and 2 illustrate that the LES and the class-HI gain restrictions cannot

be removed from Corollary 2.
Example 1. For the cascade system

ẋ = −sat(x) + xz,(18)

ż = −z3 ,(19)

where sat(x) := sgn(x)min{1, |x|}, the x-subsystem with input z is iISS with a class-
Ko (hence class-HI) gain, as verified from V (x) = 1

2 ln(1+x
2), which satisfies V̇ ≤ |z|

as in Lemma 1. However, the cascade (18)–(19) has unbounded solutions because the
z-subsystem is not LES. To prove this, we let z(0) = 1 so that z(t) = 1√

1+2t
, and we

let x(0) > 1 so that, as long as x(t) ≥ 1,

ẋ =
1√
1 + 2t

x− 1 ⇒ x(t) = e(
√

1+2t−1)

[
x(0)−

∫ t

0

e(1−
√

1+2τ)dτ

]
.(20)

Using the change of variables s = −1 +√1 + 2τ , we obtain
∫ t

0

e(1−
√

1+2τ)dτ ≤
∫ ∞

0

e(1−
√

1+2τ)dτ =

∫ ∞

0

e−s(s+ 1) ds = 2;(21)

thus, if x(0) ≥ 3, then (20) implies x(t) ≥ e(
√

1+2t−1). This means that x(t) ≥ 1 for
all t ≥ 0 and x(t)→∞ as t→∞.

Example 2. In this example, we show that the class-HI gain restriction cannot
be removed from Corollary 2. Consider the locally Lipschitz system

ẋ = −m(x) + g−1

(
g

(
ee

x−1
b −az2

)
sat(z2)/2

)
,(22)

ż = −z/2,(23)
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where g : [0,+∞) → [0, 1] is defined as g(x) := e−
1
x for x > 0 and g(0) = 0, m(x) is

a locally Lipschitz function satisfying m(x)x > 0 for all x �= 0,

m(x) =
1

2e
|x|−1
b

∀x ≥ 1 + b ln(a) ,(24)

and a, b > 0 are constants to be specified. Using V (x) = ln(1 + x2) and |g(r)| ≤ 1 for
all r ∈ R≥0, we obtain

V̇ = −2m(x)x
1 + x2

+
2x

1 + x2
g−1

(
g

(
ee

x−1
b −az2

)
sat(z2)/2

)

≤ −2m(x)x
1 + x2

+ g−1(sat(z2)/2) ,(25)

which, from Lemma 1, proves that the x-subsystem is iISS with input z. Moreover,
the z-subsystem is exponentially stable as in Corollary 2. However, because the iISS
gain is not class-HI , the cascade (22)–(23) admits the unbounded solution

x(t) = 1 + b ln(a+ t)(26)

when z(0) ∈ (0, 1), a = ln(2/z2(0)g(z2(0))), and b = 1/2. To see that (26) satisfies
(22), note that the time derivative of x(t) is ẋ(t) = b/(t+a) and that the substitution
in (22) of

m(x(t)) =
1

2(a+ t)
=

b

a+ t
,(27)

g−1

(
g

(
ee

x(t)−1
b −az2(t)

)
sat(z2(t))/2

)
= g−1(g(etz2(0)e−t)z2(0)e−t/2)(28)

= g−1(g(z2(0))z2(0)e−t/2) =
1

t+ ln(2/z2(0)g(z2(0)))
=

2b

a+ t

indeed yields ẋ(t) = b/(t+ a).
Theorem 1 characterized the class of admissible iISS gains from the speed of

convergence of the z-subsystem. It may appear that this class can be enlarged by a
change of coordinates in which the z-subsystem converges faster as in Grüne, Sontag,
and Wirth [5]. The following example illustrates that such an attempt fails because
in the new coordinates the iISS gain of the x-subsystem becomes steeper.

Example 3. For the system (18)–(19), the change of coordinates

z̃ = Φ(z) := ze−
1

2z2(29)

ensures exponential convergence for the z̃-subsystem:

ẋ = −sat(x) + xΦ−1(z̃),(30)

˙̃z = −(1 + [Φ−1(z)]2)z̃ .(31)

Using V (x) = 1
2 ln(1 + x

2), we obtain

V̇ ≤ −xsat(x)
1 + x2

+Φ−1(|z̃|) ,

which, from Lemma 1, implies that the x-subsystem with input z̃ is iISS with gain
Φ−1(·). The cascade (30)–(31) has unbounded solutions as proved in Example 1
because all derivatives of Φ(z) vanish at z = 0, and hence the inverse function Φ−1(·)
is too steep at zero to satisfy the class-HI condition of Corollary 2.
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4. Growth restrictions on the interconnection term. It is well known that
the nonlinear growth of the interconnection term h(x, z) := f(x, z)− f(x, 0) plays an
important role for the stability of the cascade (12)–(13), rewritten here as

ẋ = f(x, 0) + h(x, z),(32)

ż = q(z) .(33)

In this section, we show that the class-HI gain condition of Corollary 2 imposes a
restriction on the nonlinear growth of h(x, z) in x. To this end, we consider the
cascade (32)–(33) with x ∈ R and with h(x, z) bounded by

|h(x, z)| ≤ γ1(|z|) + γ2(|z|)ϕ(|x|).(34)

We characterize the class-K functions ϕ(·) for which the x-subsystem satisfies the
class-HI gain condition of Corollary 2.
Proposition 1. Consider the cascade (32)–(33), where x ∈ R. If ẋ = f(x, 0) is

GAS, ż = q(z) is GAS and LES, and h(x, z) satisfies (34) for some class-HI functions
γ1(·), γ2(·), and a class-K function ϕ(·) satisfying∫ ∞

1

1

ϕ(s)
ds =∞ ,(35)

then the origin is GAS.
Proof. To prove that the x-subsystem is iISS with a class-HI gain, we let V (x)

be a smooth, positive definite function such that V (x) = V (−x), and

x ≥ 1 ⇒ V (x) = V (1) +

∫ x

1

1

ϕ(s)
ds .(36)

Because of (35), V (x) is radially unbounded and satisfies

|x| ≥ 1 ⇒
∣∣∣∣∂V∂x

∣∣∣∣ = 1

ϕ(|x|) .(37)

Thus, if |x| ≥ 1, (34) and (37) yield
∂V

∂x
[f(x, 0) + h(x, z)] ≤ 1

ϕ(1)
γ1(|z|) + γ2(|z|) =: γ5(|z|) .(38)

If |x| ≤ 1, then ∣∣∂V∂x ∣∣ ≤ b for some positive constant b, and
∂V

∂x
[f(x, 0) + h(x, z)] ≤ bγ1(|z|) + bγ2(|z|)ϕ(1) := γ6(|z|) .(39)

Because V̇ ≤ max{γ5(|z|), γ6(|z|)}, the x-subsystem is iISS with a class-HI gain as in
Corollary 2, and hence the cascade (32)–(33) is GAS.

It is important to note that the growth condition (35) encompasses functions that
grow faster than linear, such as ϕ(|x|) = |x| ln(|x|). On the other hand, (35) disallows
ϕ(|x|) = |x|2, ϕ(|x|) = |x|3, etc. Growth conditions similar to (35) have been derived
by Mazenc and Praly [11] and, more recently, by Panteley and Loŕıa [13]. Proposition
1 gives a simple iISS interpretation of their more involved Lyapunov arguments. We
finally show that (35) is tight and cannot be relaxed.
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Example 4. The cascade

ẋ = −sat(x) + ϕ(x)z,(40)

ż = −z(41)

exhibits finite escape time when the class-K function ϕ(x) fails to satisfy (35), that
is, ∫ ∞

1

1

ϕ(s)
ds <∞ .(42)

To prove this, we let V (x) be as in (36) and note from (42) that there exists a constant
V∞ > 0 such that V (x) < V∞ for all x ∈ R, and V (x) → V∞ as x → ∞. Moreover,
from (36),

x(t) ≥ 1 ⇒ V̇ = − 1

ϕ(x(t))
+ z(t) ≥ − 1

ϕ(1)
+ z(0)e−t .(43)

If z(0) > 1/ϕ(1), then we can find T > 0 such that

φ(t) :=

∫ t

0

(
− 1

ϕ(1)
+ z(0)e−t

)
dt = − t

ϕ(1)
+ z(0)(1− e−t)(44)

satisfies φ(t) > 0 for all t ∈ (0, T ]. Thus, if x(0) is such that x(0) ≥ 1 and V∞−φ(T ) ≤
V (x(0)) < V∞, then it follows from (43) that

V (x(T )) ≥ V (x(0)) + φ(T ) ≥ V∞ ,
which proves that x(T ) is not defined.

5. Application to output-feedback design. One of the major difficulties in
nonlinear output-feedback design is the absence of a separation principle. Even when
a nonlinear observer is available, it may be necessary to redesign the control law to
make it robust against the observer error. One such design is the observer-based
backstepping scheme of Kanellakopoulos, Kokotović, and Morse [7], further extended
by Praly and Jiang [14], which makes use of nonlinear damping terms to render
the system ISS with respect to the observer error. A shortcoming of this design,
pointed out by several authors, is the rapid growth of the nonlinearities in the control
law due to nonlinear damping terms. Such nonlinearities in the control law make
the implementation difficult and are harmful in the presence of unmodeled actuator
dynamics, saturation, etc. Efforts to reduce the growth of nonlinear damping terms
are restricted to a result for Euler–Lagrange systems, Aamo et al. [1], and an adaptive
backstepping design in Krstić, Kanellakopoulos, and Kokotović [10, section 5.8], where
stability is achieved with the help of a strengthened parameter identifier.

We now give a systematic procedure to reduce the growth of nonlinear damping
terms. Our main idea is to render the system iISS against the observer error. Because
iISS is less restrictive than ISS, it is achieved with a “weak” form of nonlinear damp-
ing. Closed-loop stability is then established using Corollary 2 because the observer
error is exponentially decaying. This exponential decay condition is satisfied by most
observers used in backstepping, including Krener and Isidori [9], Arcak and Kokotović
[4, 3], and Praly and Kanellakopoulos [15]. We wish to emphasize that our iISS design
is not of “certainty-equivalence” type because, as in the ISS design of [7], the design
of the controller makes use of the observer equations.
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To make the main features of our design more apparent, we first illustrate it in an
example. The general design procedure and its stability proof are given in the next
section.

Example 5. For the system

ẋ1 = x2 + x
3
1,

ẋ2 = u+ x2 − x3
2,(45)

y = x1,

the problem is to stabilize the origin x = 0 by output-feedback. The following ob-
server, designed as in [3], ensures exponential convergence of the estimates x̂1 and x̂2

to the true states:

˙̂x1 = x̂2 +G1(y, x̂1) := x̂2 + y
3 − 2(x̂1 − y),

˙̂x2 = u+G2(y, x̂1, x̂2) := u+ x̂2 − (x̂2 − 1.5(x̂1 − y))3 − 3(x̂1 − y).(46)

To incorporate this observer in feedback control we employ the observer-based back-
stepping procedure of Kanellakopoulos, Kokotović, and Morse [7]. Defining the ob-
server error z2 := x2 − x̂2 and letting χ1 := x1, we rewrite the first equation of (45)
as

χ̇1 = x̂2 + χ
3
1 + z2 .(47)

For x̂2 we design the virtual control law

α1(χ1) = −c1χ1 − χ3
1 , c1 > 0,(48)

which results in

χ̇1 = −c1χ1 + χ2 + z2 ,(49)

where χ2 = x̂2 − α1(χ1). Differentiating χ2 with respect to time, we obtain

χ̇2 = u+G2(y, x̂1, x̂2)− ∂α1

∂χ1
(χ3

1 + x̂2)− ∂α1

∂χ1
z2(50)

and note that the control law

u = −(c2 + δ(χ1))χ2 − χ1 −G2(y, x̂1, x̂2) +
∂α1

∂χ1
(χ3

1 + x̂2)(51)

yields

χ̇2 = −(c2 + δ(χ1))χ2 − χ1 − ∂α1

∂χ1
z2 .(52)

In the ISS design of Kanellakopoulos, Kokotović, and Morse [7], the nonlinear damping
term is

δ(χ1) = δISS(χ1) =

(
∂α1

∂χ1

)2

= (c1 + 3χ
2
1)

2,(53)

whose growth in χ1 is quartic.



INTEGRAL ISS FRAMEWORK FOR NONLINEAR CASCADES 1897

To design a “softer” δ(χ1), let us pursue an iISS design with the help of the
Lyapunov function U(χ1, χ2) =

1
2χ

2
1 +

1
2χ

2
2. From (47) and (50),

U̇ = −c1χ2
1 + χ1z2 − c2χ2

2 − δ(χ1)χ
2
2 + χ2(c1 + 3χ

2
1)z2,(54)

and hence, using the inequalities

3χ2χ
2
1z2 ≤ χ2

2χ
2
1 +

9

4
χ2

1z
2
2 , χ1z2 ≤ c1

2
χ2

1 +
1

2c1
z22 , c1χ2z2 ≤ c2

2
χ2

2 +
c21
2c2
z22 ,(55)

we can find positive constants k1, k2, k3 such that

U̇ ≤ −k1U − δ(χ1)χ
2
2 + χ

2
1χ

2
2 + k2Uz

2
2 + k3z

2
2 .(56)

Unlike the iISS Lyapunov function (5) in Lemma 1, the inequality (56) contains the
product of U and the disturbance z22 , which means that U(χ) cannot be an iISS
Lyapunov function. However, the new C1 function V (χ) := ln(1 + U(χ)) results in

V̇ =
U̇

1 + U
,(57)

which means that the product k2Uz
2
2 in (56) is now

k2
U

1 + U
z22 ≤ k2z22 ,(58)

and hence

V̇ ≤ −k1 U

1 + U
+ (k2 + k3)z

2
2 + (χ

2
1 − δ(χ1))

χ2
2

1 + U
.(59)

Because the first two terms on the right-hand side are as in the iISS Lyapunov function
(5), the choice

δ(χ1) = δ iISS(χ1) = χ
2
1(60)

eliminates the third term and ensures iISS as in Lemma 1. It follows from Corollary
3 that our iISS design ensures GAS of the closed-loop system (45)–(46) because the
observer error z is exponentially decaying and the χ-subsystem is affine in z2.

Unlike the quartic δISS(χ1), the “weak” nonlinear damping term δ iISS(χ1) is only
quadratic. This reduction in the nonlinear growth is more pronounced for higher
relative degree systems studied in the next section, which require several steps of
observer-based backstepping.

6. Observer-based backstepping with weak nonlinear damping. We now
generalize the above design to the system

y = x1,

ẋ1 = x2 + g1(x1),

ẋ2 = x3 + g2(x1, x2),

· · ·(61)

ẋr = p(ξ, u) + gr(x),

ξ̇ = q(ξ, x, u) ,
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where x := (x1, . . . , xr)
T and the functions g1, . . . , gr, p and q are smooth and vanish

when their arguments are zero; that is, the origin (x, ξ) = (0, 0) is an equilibrium
when u = 0.

We assume the availability of a global observer of the form

˙̂x1 = x̂2 +G1(y, x̂1),
˙̂x2 = x̂3 +G2(y, x̂1, x̂2),

· · ·(62)

˙̂xr = p(ξ̂, u) +Gr(y, x̂),

˙̂
ξ = Q(ξ̂, x̂, u, y) .

Assumption 1. The observer (62) guarantees exponential convergence of the
state estimates to the true states; that is, there exist a constant k > 0 and a class-K
function γ(·) such that, for every input u and for every initial condition x(0), ξ(0),

x̂(0), ξ̂(0), the observer error z = (xT , ξT )T − (x̂T , ξ̂T )T satisfies

|z(t)| ≤ e−ktγ(|z(0)|)(63)

for all t in the maximal interval of existence [0, tf ) of (61)–(62).
Observer designs satisfying Assumption 1 are being reported at an increasing rate

[15, 4, 3]. Our next assumption is that the function p(ξ, u) is invertible in u.
Assumption 2. There exists a function π(·, ·) satisfying

v = p(ξ, u) ⇔ u = π(ξ, v).(64)

Finally, the zero dynamics of the system (61),

ξ̇ = q(ξ, 0, π(ξ, 0)),(65)

satisfy the following robust stability assumption.
Assumption 3. The zero dynamics (65), perturbed by v0, v1, and v2,

ξ̇ = q(ξ, v0, π(ξ − v1, v2)),(66)

are ISS with input (v0, v1, v2).
The class of systems defined by (61) and Assumptions 1–3 encompasses the one

studied in [7] and [10] for observer-based backstepping. We now present our new
design, which renders the system (61) iISS with respect to the observer error z.

Step 1. Defining

χ1 := y(67)

and using x2 = x̂2 + z2, we rewrite the first equation of (61) as

χ̇1 = x̂2 + g1(χ1) + z2 .(68)

For x̂2, we design the virtual control law

α1(χ1) = −c1χ1 − g1(χ1), c1 > 0 ,(69)
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and obtain

χ̇1 = −c1χ1 + χ2 + z2,(70)

where

χ2 := x̂2 − α1(χ1) .(71)

Step 2. From (62) and (68), χ2 is governed by

χ̇2 = x̂3 +G2(χ1, x̂1, x̂2)− φ1(χ1)(x̂2 + g1(χ1))− φ1(χ1)z2 ,(72)

where

φ1(χ1) :=
∂α1

∂χ1
.(73)

Because φ1(χ1) is a smooth function, we can rewrite it as

φ1(χ1) = φ10 + χ1Φ1(χ1),(74)

where

φ10 = φ1(0) , Φ1(χ1) =

∫ 1

0

∂φ1(X1)

∂X1

∣∣∣∣
X1=sχ1

ds .(75)

For x̂3, we design the virtual control law

α2(χ1, x̂1, x̂2) = −[c2+d2Φ2
1(χ1)]χ2−χ1−G2(χ1, x̂1, x̂2)+φ1(χ1)(x̂2+g1(χ1)),(76)

which results in

χ̇2 = −χ1 − [c2 + d2Φ2
1(χ1)]χ2 + χ3 − [φ10 + χ1Φ1(χ1)]z2 ,(77)

where

χ3 := x̂3 − α2(χ1, x̂1, x̂2) .(78)

Step i (3 ≤ i ≤ r). For
χi := x̂i − αi−1(χ1, x̂1, . . . , x̂i−1) ,(79)

we obtain

χ̇i = x̂i+1 +Gi(χ1, x̂1, . . . , x̂i)− φi−1(χ1, x̂1, . . . , x̂i−1)[x̂2 + g1(χ1) + z2](80)

−∂αi−1

∂x̂1
(x̂2 +G1(y, x̂1))− · · · − ∂αi−1

∂x̂i−1
(x̂i +Gi−1(y, . . . , x̂i−1)),

where x̂r+1 := p(ξ̂, u) and

φi−1(χ1, x̂1, . . . , x̂i−1) :=
∂αi−1

∂χ1
.(81)

To factor φi−1 as in (74) in Step 2, we first rewrite it as a function of (χ1, . . . , χi−1, z1),
where z1 = x1 − x̂1:

φi−1(χ1, x̂1, . . . , x̂i−1) = φ̃i−1(χ1, . . . , χi−1, z1) .(82)
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Next, defining φi−1, 0(z1) = φ̃i−1(0, . . . , 0, z1) and

Φi−1(χ1, . . . , χi−1, z1) =

∫ 1

0

(
∂φ̃i−1(X1, . . . , Xi−1, z1)

∂(X1, . . . , Xi−1)

)T ∣∣∣∣∣∣
(X1,...,Xi−1)=s(χ1,...,χi−1)

ds ,

(83)
we get

φi−1(χ1, x̂1, . . . , x̂i−1) = φi−1, 0(z1) + [χ1 . . . χi−1] Φi−1(χ1, . . . , χi−1, z1) .(84)

The virtual control law for x̂i+1 is

αi(χ1, x̂1, . . . , x̂i) = −χi−1 − [ci + diΦTi−1Φi−1]χi −Gi(χ1, x̂1, . . . , x̂i)

+
∂αi−1

∂x̂1
(x̂2 +G1(y, x̂1)) + · · ·+ ∂αi−1

∂x̂i−1
(x̂i +Gi−1(y, . . . , x̂i−1))

+φi−1(χ1, x̂1, . . . , x̂i−1)[x̂2 + g1(χ1)] .(85)

If i < r, we define

χi+1 = x̂i+1 − αi(χ1, x̂1, . . . , x̂i)(86)

and proceed with step i+ 1. The control law obtained by r steps of backstepping is

u = π(ξ̂, αr(χ1, x̂1, . . . , x̂r)) ,(87)

where the function π(·, ·) is as in (64).
The resulting closed-loop system consists of the exponentially converging observer

error z driving the (χ, ξ)-subsystem

ξ̇ = q(ξ, v0(χ, z), π(ξ − v1(z), v2(χ, z))),(88)

χ̇1 = −c1χ1 + χ2 + z2,

· · ·
χ̇i = −χi−1 − [ci + diΦTi−1Φi−1]χi + χi+1 − (φi−1,0(z1) + [χ1 · · ·χi−1]Φi−1)z2,(89)

· · ·
χ̇r = −χr−1 − [cr + drΦTr−1Φr−1]χr − (φr−1,0(z1) + [χ1 · · ·χr−1]Φr−1)z2 ,

where the functions v0(χ, z) = x, v2(χ, z) = αr(χ1, x̂1, . . . , x̂r), and v1(z) = ξ − ξ̂
vanish at (χ, z) = (0, 0).
Theorem 2. If Assumptions 1–3 hold, then the control law (87) guarantees GAS

of the closed-loop system (61)–(62).
Proof. We first prove that the χ-subsystem (89) is iISS with input z. To this end,

we note that the function U = 1
2

∑r
i=1 χ

2
i satisfies

U̇ =

(
r∑
i=1

−ciχ2
i − χiφi−1,0(z1)z2

)
+

(
r∑
i=2

−diΦTi−1Φi−1χ
2
i − z2[χ1 · · ·χi−1]Φi−1χi

)
,

(90)
where φ00(z1) = −1 and φ10(z1) = φ10 as in (74). Using the inequalities

−χiφi−1,0(z1)z2 ≤ ci
2
χ2
i +

1

2ci
φ2
i−1,0(z1)z

2
2 ,(91)

−z2[χ1 · · ·χi−1]Φi−1χi ≤ diΦTi−1Φi−1χ
2
i +

1

4di
[χ1 · · ·χi−1] [χ1 · · ·χi−1]

T z22 ,(92)
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we obtain

U̇ ≤ −
r∑
i=1

ci
2
χ2
i +

r∑
i=1

1

2ci
φ2
i−1,0(z1)z

2
2 +

r∑
i=2

1

4di
(χ2

1 + · · ·+ χ2
i−1)z

2
2(93)

≤ −cU + 1

2c

(
r∑
i=1

φ2
i−1,0(z1)

)
z22 +

r

2d
Uz22 ,(94)

where c := min1≤i≤r ci, d := min2≤i≤r di. Thus

V (χ) := ln(1 + U(χ))(95)

satisfies

V̇ ≤ −c U

1 + U
+

(
r

2d
+
1

2c

r∑
i=1

φ2
i−1,0(z1)

)
z22 ,(96)

which, from Lemma 1, proves that the χ-subsystem (89) with input z is iISS with a
class-Ko gain. Moreover, the observer error z satisfies the exponential decay condition
(63) for all t ∈ [0, tf ). Thus, letting T < tf , we can show from Corollary 2 that there
exists a class-KL function β1(·, ·) such that, for all t ∈ [0, T ],

|(χ(t), z(t))| ≤ β2(|(χ(0), z(0))|, t) .(97)

Next, we note from Assumption 3 that the ξ-subsystem (88) is ISS with input (χ, z).
In view of Corollary 1, this means that a class-KL function β3(·, ·) exists such that,
for all t ∈ [0, T ],

|(ξ(t), χ(t), z(t))| ≤ β3(|(ξ(0), χ(0), z(0))|, t) .(98)

Finally, we note that |(ξ(T ), χ(T ), z(T ))| is bounded by β3(|(ξ(0), χ(0), z(0))|, 0), which
is independent of T . This means that tf = ∞, and hence (98) holds for all t ≥ 0,
which proves GAS of the closed-loop system (61)–(62).

7. Proofs of lemmas.

Proof of Lemma 1. Part (i) is proved in [2]. To prove part (ii), we modify [2,
Proposition II.5], which is proved for a class-K function θ(·), and show that it actually
holds with a class-Ko function θo(·).
Lemma 5. The system ẋ = f(x, 0) is GAS iff there exist a smooth semiproper1

function W (x), a class-Ko function θo(·), and a continuous positive definite function
ρ : R≥0 → R≥0 such that

∂W

∂x
f(x, z) ≤ −ρ(|x|) + θo(|z|).(99)

The proof is given at the end of this section. In passing we emphasize that, in
general, Lemma 5 does not hold with a proper (radially unbounded) W (x).

To complete the proof of Lemma 1, we define V1(x) = V (x) +W (x), where V (x)
and W (x) are as in (6) and (99), respectively, and obtain

V̇1 ≤ −ρ(|x|) + σ(|z|) + θo(|z|) ,(100)

which is (5) with µ(|z|) := σ(|z|) + θo(|z|).
1A positive definite function W (x) is called semiproper if there exist a class-K function π(·) and

a radially unbounded positive definite function W0(x) such that W (x) = π(W0(x)). Thus W (x) may
not be radially unbounded.
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Proof of Lemma 2. Because (7) is iISS with input z, it follows from [2] that
there exists an iISS Lyapunov function V (x) satisfying

LfV (x) + LgV (x)z :=
∂V

∂x
f(x) +

∂V

∂x
g(x)z ≤ −ρ(|x|) + σ̃(|z|)(101)

for some positive definite function ρ(·) and some class-K function σ̃(·). To prove that
µ(·) in (4) is class-Ko, we first show that

LfV (x) + |LgV (x)| ≤ σ̃(1) .(102)

If LgV (x) �= 0, then (102) follows by evaluating (101) at z = 1
|LgV (x)|LgV (x)

T . If

LgV (x) = 0, then (102) holds because LfV (x) ≤ −ρ(|x|) from (101). Next, we note
that LfV (x) ≤ LfV (x)|z| when |z| ≤ 1 and obtain
|z| ≤ 1 ⇒ LfV (x)+LgV (x)z ≤ LfV (x)|z|+|LgV | |z| = (LfV+|LgV |)|z| ≤ σ̃(1)|z| .
(103)
Inequalities (101) and (103) imply

LfV (x) + LgV (x)z ≤ σ(|z|),(104)

where

σ(|z|) :=
{
σ̃(1)|z| if |z| ≤ 1,
σ̃(|z|) if |z| > 1 .(105)

Because σ(·) is class-Ko, it follows from Lemma 1 that the system (7) is iISS with a
class-Ko gain µ(·).

Proof of Lemma 3. Because of ISS, it follows from [22] that there exists an ISS
Lyapunov function V (x) satisfying

V̇ ≤ −ρ(|x|) + σ(|z|)(106)

for some class-K∞ functions ρ(·) and σ(·). Letting µ(·) be a class-K function such
that µ(s) = µ̃(s) when s ∈ [0, 1] and µ(s) = σ(s) when s ≥ 2 and applying the
changing supply functions lemma [21], we can find another ISS Lyapunov function
Ṽ (x) satisfying

˙̃V ≤ −ρ̃(|x|) + µ(|z|)(107)

for some class-K function ρ̃(·). From Lemma 1, this implies iISS with gain µ(·).
Proof of Lemma 4. Because of GAS, there exists a T ∗ > 0 such that |z(T ∗)| ≤ ε,

and hence, for all t ≥ T ∗,

|z(t)| ≤ α
(
e−k(t−T

∗)γ̃(ε)
)
= α

(
ekT

∗
e−ktγ̃(ε)

)
.(108)

Again, from GAS, there exists a class-KL function β(·, ·) such that
|z(t)| ≤ α(β(|z(0)|, t));(109)

thus, for all t ∈ [0, T ∗],

|z(t)| ≤ α ((β(|z(0)|, t)ekt)e−kt) ≤ α((β(|z(0)|, 0)ekT∗
)e−kt) .(110)
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Choosing T ∗ = T (|z(0)|) such that T (|z(0)|) = 0 for |z(0)| ∈ [0, ε] and T (|z(0)|) is
a continuous, strictly increasing function for |z(0)| ≥ ε, we conclude from (9), (108),
and (110) that (8) holds with

γ(s) =

{
max

{
1, β(ε,0)

γ̃(ε)

}
γ̃(s) if s ≤ ε,

max{γ̃(ε), β(s, 0)}ekT (s) if s > ε .
(111)

Proof of Lemma 5. The result follows by using Lemma 6 instead of [2, Corollary
IV.5] and modifying the proof of [2, Proposition II.5] accordingly. For Lemma 6, we
define a function σ− : R≥0 → R≥0 to be class-K− if it is continuous and strictly
increasing but, unlike a class-K function, not necessarily zero at zero.
Lemma 6. If γ : R

2
≥0 → R is such that γ(·, s) is class-K for each s ∈ R≥0 and

γ(r, ·) is class-Ko for each r ∈ R≥0, then there exist a class-K− function σ−(·) and a
class-Ko function σo(·), such that

γ(r, s) ≤ σ−(r)σo(s) .(112)

Proof. Because both γ(·, s) and γ(r, ·) are class-K, it follows from [2, Corollary
IV.5] that there exists a class-K function σ1(·) such that

γ(r, s) ≤ σ1(r)σ1(s) .(113)

Because γ(r, s) = O(s) for all r ≥ 0, we can find a class-K− function σ2(·) such that,
for all s ≤ 1,

γ(r, s) ≤ σ2(r)s .(114)

The inequalities (113) and (114) imply γ(r, s) ≤ σ−(r)σ̃o(s), where σ−(r) :=
max{σ1(r), σ2(r)} and

σ̃o(s) :=

{
s, s ≤ 1,
σ1(s), s > 1 .

(115)

Thus (112) follows by finding a continuous upper-bound σo(·) on σ̃o(·).
8. Conclusion. We have studied the stability of nonlinear cascades and showed

that a trade-off exists between slower convergence for the driving subsystem and
steeper iISS gain for the driven subsystem. This approach unifies several results in the
literature, obtained by restricting the speed of convergence of the driving subsystem
and the nonlinear growth of the driven subsystem. We have studied the connection
between these growth conditions and the iISS gain and have proved that our iISS
gain restriction leads to a less restrictive condition than the linear growth assumption
common in the literature. The cascade result has been used to develop a new observer-
based backstepping design which reduces the growth of nonlinear damping terms. It
would be of interest to extend our cascade result to feedback interconnections, where
small-gain formulations of iISS can be pursued.
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Abstract. This paper studies the basis property and the stability of a distributed system
described by a nonuniform Euler–Bernoulli beam equation under linear boundary feedback control.
It is shown that there is a sequence of generalized eigenfunctions of the system, which forms a
Riesz basis for the state Hilbert space. The asymptotic distribution of eigenvalues, the spectrum-
determined growth condition, and the exponential stability are concluded. The results are applied
to a nonuniform beam equation with viscous damping of variable coefficient as a generalization of
existing results for the uniform beam.

Key words. beam equation, variable coefficients, asymptotic analysis, Riesz basis, stability
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1. Introduction. The Riesz basis property, meaning that the generalized eigen-
vectors of the system form an unconditional basis for the state Hilbert space, is one
of the fundamental properties of a linear vibrating system. The establishment of
the basis property will naturally lead to solutions to such problems as the spectrum-
determined growth condition and the exponential stability for infinite dimensional
systems. Unfortunately, verification of the Riesz basis generation is challenging even
for extensively studied systems such as Euler–Bernoulli beam equations. Recently, a
new approach has been suggested [1] to obtain a complete solution to the basis prop-
erty of the following uniform Euler–Bernoulli beam equation under linear boundary
feedback control:


ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = 0,
yxx(1, t) = −k1yxt(1, t), k1 ≥ 0,
yxxx(1, t) = k2yt(1, t), k2 ≥ 0.

(1)

In this paper, we shall develop parallel results for the same system with variable
coefficients. What makes it unique compared to the case of constant coefficients
is that with variable coefficients both the characteristic equation and the analytic
expression of the eigenfunctions have no explicit formulae. The asymptotic technique
appears to be essential for the study.

There are two steps usually found in the study of linear systems with variable
coefficients. The first is to transform the “dominant term” of the system under study
into a uniform “dominant equation” by space scaling and state transformation where
no variable coefficient is involved any longer, while the second is to approximate the
eigenfunctions of the system by those of the uniform “dominant equation.” This
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fundamental idea comes essentially from Birkhoff’s works on asymptotic estimation
of the eigenpairs of the linear differential operators with generalized homogeneous
boundary conditions done in the beginning of the last century [5]. A comprehensive
review can be found in [4]. This approach has been used in dealing with the beam
equations with low order perturbation of variable coefficients (see [6], [7], and [8]). A
similar adoption can also be found in the study of the string equations with variable
coefficients, for which we refer to [9], [10], and [11] as well as the references therein.

By considering a sequence of eigenfunctions rather than whole sequences in the
state Hilbert space, the author recently presented a corollary of Bari’s theorem on the
Riesz basis property [1]. The result greatly simplifies the procedure in establishing
the Riesz basis property for systems described by discrete operators in a Hilbert space
since the result eliminates the requirement of estimation of low eigenfunctions, which
is rather difficult by other methods found in all previous papers [10], [11], [12].

Following the approach used in [1], together with the asymptotic analysis, this
paper presents the Riesz basis property for the Euler–Bernoulli beam equation with
variable coefficients. Other major contributions include the exponential stability and
asymptotic behavior of the systems under boundary feedback control.

In the next section, we shall present the main results of the paper. The proof of
the results and some remarks are given in section 3.

2. Main results. Consider the following nonuniform Euler–Bernoulli beam equa-
tion with linear boundary feedback control:


ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
(EI(x)yxx)x(1, t) = kyt(1, t),

(2)

where x stands for the position and t the time. EI(x) is the flexural rigidity of the
beam, and ρ(x) is the mass density at x. k ≥ 0 is a constant feedback gain. Unlike
system (1), here we impose only one end feedback control for simplicity of computation
because, from Theorem 2.5 below, it is sufficient for the exponential stabilization of the
system. Moreover, it does not make much difference from the methodology point of
view. Actually, the analysis in this paper can be used to similarly treat the boundary
conditions of (1) along the same lines as the analysis in [1].

The total energy of system (2) is

E(t) =
1

2

∫ 1

0

[ρ(x)y2
t (x, t) + EI(x)y2

xx(x, t)]dx.

Formally,

dE(t)

dt
= −ky2

t (x, t) ≤ 0.

That is, system (2) is dissipative. Throughout this paper, we always assume that

ρ(x), EI(x) ∈ C4[0, 1], EI, ρ > 0.(3)

System (2) will be considered in the energy Hilbert space H = H2
E(0, 1) × L2(0, 1),

H2
E(0, 1) = {f ∈ H2(0, 1)|f(0) = f ′(0) = 0}, in which the inner product induced

norm is defined by

‖(f, g)‖2H =

∫ 1

0

[ρ(x)|g(x)|2 + EI(x)|f ′′(x)|2]dx ∀(f, g) ∈ H.(4)
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Define operator A : D(A)(⊂ H)→ H as{ A(f, g) = (g,− 1
ρ(x) (EI(x)f

′′(x))′′),
D(A) = {(f, g) ∈ (H2

E ∩H4)×H2
E |f ′′(1) = 0, (EIf ′′)′(1) = kg(1)}.(5)

With the operator A at hand, we can write (2) into an evolutionary equation in H:

d

dt
Y (t) = AY (t), Y (t) = (y(·, t), yt(·, t)).(6)

When we talk about system (2) later, we mean its abstract formulation (6). We
are concerned with the Riesz basis property of (6) in H; that is, we want to know
whether the generalized eigenfunctions of A form an unconditional basis for H. To
do this, we need the following spectral property of A.

Lemma 2.1. Let A be defined by (5). Then A−1 exists and is compact on H.
Hence σ(A), the spectrum of A, consists only of isolated eigenvalues, which distribute
in conjugate pairs on the complex plane. Moreover, the eigenfunction corresponding
to λ ∈ σ(A) is of the form (λ−1φ, φ), where φ �= 0 satisfies


λ2ρ(x)φ(x) + (EI(x)φ′′(x))′′ = 0, 0 < x < 1,
φ(0) = φ′(0) = φ′′(1) = 0,
(EI(x)φ′′)′(1) = λkφ(1).

(7)

To verify the basis property, we need the asymptotic properties of both eigenvalues
and eigenfunctions, which are stated as the following propositions.

Proposition 2.2. Let A be defined by (5). Then the eigenvalues {λn, λn} of A
have the following asymptotic property:

λn =
ρ2
n

h2
, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ, ρn =
1√
2

(
n+

1

2

)
π(1+ i)+O(n−1) as n→∞,

(8)
where n is a large positive integer and λn denotes the complex conjugate of λn. More-
over, λn is geometrically simple when n is large enough.

Proposition 2.3. Let λn be defined as in Proposition 2.2. Then there is a
solution φn to (7) corresponding to λn having the following asymptotic expansion:

−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

φn(x) = sin(n+ π/2)z − cos(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z) +O(n−1),
(9)

−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

λ−1
n φ′′

n(x) = i

(
ρ(x)

EI(x)

)1/2

[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] +O(n−1),

(10)
where z = z(x) and a(z) are defined by


z = z(x) =

1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ,

a(z) =
3h

2

(
ρ(x)

EI(x)

)−5/4
d

dx

(
ρ(x)

EI(x)

)
+ h

2EI ′(x)
EI(x)

(
ρ(x)

EI(x)

)−1/4

.

(11)
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The main result is the following basis property for system (2).
Theorem 2.4. Let A be defined by (5). Then the following hold.
(i) There is a sequence of generalized eigenfunctions of A which forms a Riesz

basis for the state space H.
(ii) The eigenvalues {λn, λn} of A have the asymptotic expansion (8).
(iii) All λ ∈ σ(A) with sufficiently large modulus are algebraically simple.
Therefore, A generates a C0-group, and, for the semigroup eAt generated by

A, the spectrum-determined growth condition holds: ω(A) = S(A), where ω(A) =
limt→∞ 1

t ‖eAt‖ is the growth order of eAt and S(A) = sup{Reλ|λ ∈ σ(A)} is the
spectral bound of A.

Remark 1. From Theorem 2.4 (iii), (9) and (10) are asymptotic expansions for
all generalized eigenfunctions of A.

Theorem 2.4 is the fundamental property of system (2). Many other important
properties of system (2) can be concluded from Theorem 2.4. The exponential stability
stated below is one such important property that has been studied extensively in the
past two decades.

Theorem 2.5. System (2) is exponentially stable for any k > 0. That is, there
are constants M,ω > 0 such that the energy E(t) of system (2) satisfies

E(t) =
1

2

∫ 1

0

[ρ(x)y2
t (x, t) + EI(x)y2

xx(x, t)]dx ≤Me−ωtE(0) ∀t ≥ 0,

for any initial condition (y(x, 0), yt(x, 0)) ∈ H.
Theorem 2.4 will also be applied to the following beam equation with variable

viscous damping:


ρ(x)ytt(x, t) + b(x)yt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0,
(EI(x)yxx)x(1, t) = kyt(1, t).

(12)

The uniform case of EI = ρ = const, b ∈ C[0, 1], k = 0 was discussed in [8]. System
(12) can be written as

d

dt
Y (t) = (A+ B)Y (t), Y (t) = (y(·, t), yt(·, t)),(13)

where A is defined by (5) and B is a linear bounded operator on H:

B(f, g) = (0,−b · g).(14)

Equation (13) can be put into the generic framework of discrete-type operators per-
turbed by the linear bounded operator in the Hilbert spaces. First, we introduce the
following definition.

Definition 2.6. A linear operator A in a Hilbert space H is called discrete-type,
or [D]-class for short, if there are Riesz basis {φn}∞1 of H, complex series {λn}∞1 ,
and an integer N > 0 such that

(i) limn→∞ |λn| =∞, λn �= λm as n,m > N ;
(ii) Aφn = λnφn, n > N ;
(iii) A[φ1, φ2, . . . , φN ] ⊂ [φ1, φ2, . . . , φN ], and A has spectrum {λi}N1 in [φ1, φ2, . . . , φN ],

where [φ1, φ2, . . . , φN ] is the linear subspace spanned by {φi}N1 .
Remark 2. Theorem 2.4 shows that A is of [D]-class.
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It is known that any [D]-class operator A must be a discrete operator [14], and
for the C0-semigroup e

At generated by A, the spectrum-determined growth condition
holds. The following basic result can be concluded from the proof of a more general
result in [14] (see also [15], [16, section V.4]). A short proof will be given in the next
section.

Theorem 2.7. Suppose that A is of [D]-class satisfying conditions of Defini-
tion 2.6 in a Hilbert space H. Let dn = minn �=m |λn − λm|. If

∞∑
n>N

d−2
n <∞,(15)

then, for any linear bounded operator B on H, there are constants C,L > 0, an integer
M > 0, and eigenpairs {µn, ψn}∞M of A+B such that

(i) |µn − λn| ≤ C for all n ≥M .
(ii) ‖ψn − φn‖ ≤ Ld−1

n , n ≥M . Hence
∑∞
n=M ‖ψn − φn‖2 <∞.

We can now consider (12). By Remark 1, A is of [D]-class. And the spectral
separation of A satisfies d−1

n = O(n−1). In Remark 4 of the next section, we shall
show that dn is never vanishing. Hence Theorem 2.7 can be applied to (A,B) = (A,B)
to get the following parallel result of Theorem 2.4 for system (12).

Theorem 2.8. Suppose EI, ρ ∈ C4[0, 1], EI, ρ > 0, b ∈ C[0, 1]. Then the follow-
ing hold.

(i) A+ B is of [D]-class.
(ii) The eigenvalues {µn, µn} of A+ B have the asymptotic expansion

µn = λn +O(1) as n→∞,(16)

where λn is defined by (8).
(iii) The corresponding eigenfunctions {(µ−1

n ψn, ψn)}∪{ their conjugates } of A+
B have the asymptotic expansion

(µ−1
n ψn, ψn) = (λ−1

n φn, φn) + εn as n→∞,(17)

where φn is defined by (9) and

‖εn‖H = O(n−1).(18)

The following result can be viewed as a consequence of Theorem 2.8.
Corollary 2.9. Let {µn} be the eigenvalues of A+B determined in Theorem 2.8.

Then

lim
n→∞Reµn = −1

2

∫ 1

0
b(x)e

− 1
2

∫ z
0
a(τ)dτ

dx+ 4ke
− 1

2

∫ 1

0
a(τ)dτ

∫ 1

0
ρ(x)e

− 1
2

∫ z
0
a(τ)dτ

dx
,(19)

where z = z(x), a(z) are defined in (11).
Corollary 2.9 concludes some existing results for system (12). We give several

examples below.
Example 1. Suppose that ρ = 1, k = 0, and EI is a constant. Then a = 0.

Equation (19) becomes

lim
n→∞Reµn = −1

2

∫ 1

0

b(x)dx,(20)



1910 BAO-ZHU GUO

which is a strengthened conjecture

lim
n→∞

∑
j≤nReµj
n

= −1
2

∫ 1

0

b(x)dx(21)

made in [13] for the same system with hinged boundary conditions and resolved later
in [6] under the assumption that b(x) ≥ 0. However, we do not impose any assumption
on the symbol of b.

Example 2. Suppose that ρ = EI = 1, k = 0. Then (12) becomes{
ytt(x, t) + b(x)yt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = yxxx(1, t) = 0,

(22)

which is just the system studied in [8]. Equation (20) holds for this system. However,

our result shows that the main hypothesis (1.3) of [8] is nothing but
∫ 1

0
b(x)dx > 0.

Moreover, from our discussion, Theorem 2.8 is sufficient to derive (20). This is because
spectral analysis for system (22) with b = 0 is quite simple and does not necessarily
need to rely on Theorem 2.4 [1].

Example 3. Suppose that b(x) ≥ 0 for x ∈ [0, 1], and b(x) > b0 > 0 for all x in
some subset (a, b) ⊂ [0, 1] in (22). The system is then exponentially stable. When
k = 0, b(x) ≥ 0 for x ∈ [0, 1] and b(x) > b0 > 0 for all x in some subset (a, b) ⊂ [0, 1],
system (12) is also exponentially stable. However, the method used in [18] appears
to be unavailable for this case. We will give a short interpretation for Example 3 in
section 3.

Finally, we present a high order approximation of the eigenvalues of system (12).
Proposition 2.10. Suppose (3) and

b(x) ∈ C1[0, 1],

∫ 1

0

b(x)e
− 1

2

∫ z
0
a(τ)dτ

dx+ 4ke
− 1

2

∫ 1

0
a(τ)dτ

> 0.(23)

Then the eigenvalues {µn, µn} of A+ B have the asymptotic expansion

µn = −2k̃
h2

+ i
[
(n+ 1/2)

π

h

]2
− i

2h2

∫ 1

0

a1(τ)dτ − 1

2h2

∫ 1

0

b̃(τ)dτ +O(n−1),(24)

where b̃(z), a1(z), and k̃ are given by

k̃ =
kh

EI(1)

(
ρ(1)

EI(1)

)−3/4

,(25)

b̃(z) =
b(x)

ρ(x)
, z =

1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ,(26)

a1(z) = −3
2
a′(z)− 9

16
a2(z)− 1

4
a(z).(27)

3. Proof of main results.
Proof of Lemma 2.1. A direct calculation shows that

A−1(f, g) = (φ, ψ) for any (f, g) ∈ H,



RIESZ BASIS OF VARIABLE COEFFICIENT BEAM EQUATION 1911

where


ψ = f,

φ(x) = kf(1)

∫ x

0

(x− τ) τ − 1
EI(τ)

dτ +

∫ x

0

ρ(τ)g(τ)dτ

∫ x

τ

dϑ

∫ ϑ

τ

s− τ
EI(s)

ds.

The compactness follows from the Sobolev embedding theorem. Other conclusions
are obvious, and the details are omitted.

In order to study the asymptotic behavior of the solution of (7), we rewrite (7) in
a standard form of the eigenproblem of a linear differential operator with generalized
homogeneous boundary conditions:


φ(4)(x) +

2EI ′(x)
EI(x)

φ′′′(x) +
EI ′′(x)
EI(x)

φ′′(x) + λ2 ρ(x)

EI(x)
φ(x) = 0,

φ(0) = φ′(0) = φ′′(1) = 0,

φ′′′(1) = λ
k

EI(1)
φ(1).

(28)

Two basic transformations are essential. First, the “dominant term,” φ(4)(x) +
λ2ρ(x)/EI(x)φ(x) of (28), is transformed to become a uniform form by space scaling.
In fact, set

φ(x) = f(z), z = z(x) =
1

h

∫ x

0

(
ρ(τ)

EI(τ)

)1/4

dτ, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ.(29)

Then f satisfies


f (4)(z) + a(z)f ′′′(z) + bf (z)f
′′(z) + c(z)f ′(z) + λ2h4f(z) = 0,

f(0) = f ′(0) = 0,
f ′′(1) + a0f

′(1) = 0,

f ′′′(1) = b0f
′(1) + λ

kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

f(1),

(30)

where a0 and b0 are constants depending on h, ρ
(i)(1), EI(i)(1), i = 0, 1, 2, bf (z) and

c(z) are the smooth functions of h, ρ(i)(x), EI(i)(x), i = 0, 1, 2, 3 through z = z(x)
defined by (11), and a(z) is the function given by (11).

Second, in order to cancel the term a(z)f ′′′ in (30) as was done in [4], we make
the invertible state transformation

f(z) = e
− 1

4

∫ z
0
a(τ)dτ

g(z).(31)

Then g satisfies


g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λ2h4g(z) = 0,
g(0) = g′(0) = 0,
g′′(1) = a11g

′(1) + a12g(1),

g′′′(1) = a21g
′(1) +

[
λ
kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

+ a22

]
g(1),

(32)

where aij , i, j = 1, 2 are some real constants depending on h, ρ(i)(1), EI(i)(1), i =
0, 1, 2, a2(z) and a3(z) are the smooth functions of h, ρ

(i)(x), EI(i)(x), i = 0, 1, 2, 3
through z = z(x) defined by (29), and a1(z) is given by (27).
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It can be seen that (7) and (32) are equivalent. Our next task is to use the eigen-
pairs of the uniform “dominant term,” g(4)(z)+λ2h4g(z) = 0 of (32), to approximate
those of the whole system. Note that when k = 0, (32) is in the standard form of a
linear differential operator with generalized homogeneous boundary conditions, which
was studied in [4] in greater detail.

Now we proceed as in section 4, Chapter 2 of [4] to estimate asymptotically the
solutions to (32). Since system (2) is dissipative, all eigenvalues are located on the
left half complex plane. Due to the conjugate property of the eigenvalues, we may
consider only those λ with π/2 ≤ arg λ ≤ π.

Let λ = ρ2/h2. Then, as π/2 ≤ arg λ ≤ π,

π/4 ≤ arg ρ ≤ π/2.(33)

Now set {
ω1 = e3/4πi, ω2 = eπ/4i, ω3 = −ω2, ω4 = −ω1,

S =
{
ρ|π
4
≤ arg ρ ≤ π

2

}
.

(34)

In what follows, ρ is always assumed to be in S. Note that

Re(ρω1) ≤ Re(ρω2) ≤ Re(ρω3) ≤ Re(ρω4) ∀ρ ∈ S.(35)

The following important facts are used frequently in what follows.{
Re(ρω1) = −|ρ| sin(arg ρ+ π

4 ) ≤ −
√
2/2|ρ| < 0,

Re(ρω2) = |ρ| cos(arg ρ+ π
4 ) ≤ 0.

(36)

Lemma 3.1 comes from Theorem 2.4 in section 4, Chapter 2 of [4].
Lemma 3.1. For |ρ| large enough, ρ ∈ S, there are four linearly independent

solutions gk(z), k = 1, 2, 3, 4 to

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + ρ4g(z) = 0,

such that 


gk(z) = eρωkz[1 +O( 1
ρ )],

g′k(z) = ρωke
ρωkz[1 +O( 1

ρ )],

g′′k (z) = (ρωk)
2eρωkz[1 +O( 1

ρ )],

g′′′k (z) = (ρωk)
3eρωkz[1 +O( 1

ρ )].

(37)

With these preparations, we come to the proof of Proposition 2.2.
Proof of Proposition 2.2. Let g(z) be a solution of (32). There are constants

ci, i = 1, 2, 3, 4, such that

g(z) = c1g1(z) + c2g2(z) + c3g3(z) + c4g4(z),(38)

where gk(z), k = 1, 2, 3, 4 are defined by (37). By boundary conditions, ci, i = 1, 2, 3, 4
are solutions to the following system of linear algebraic equations:


c1g1(0) + c2g2(0) + c3g3(0) + c4g4(0) = 0,
c1g′1(0) + c2g′2(0) + c3g′3(0) + c4g′4(0) = 0,[
g′′1 (1) − a11g′1(1) − a12g1(1)]c1 + [g′′2 (1) − a11g′2(1) − a12g2(1)

]
c2

+[g′′3 (1) − a11g′3(1) − a12g3(1)]c3 + [g′′4 (1) − a11g′4(1) − a12g4(1)]c4 = 0,[
g′′′1 (1) − a21g′1(1) − a22g1(1) − k̃ρ2g1(1)

]
c1 + [g′′′2 (1) − a21g′2(1) − a22g2(1) − k̃ρ2g2(1)]c2

+[g′′′3 (1) − a21g′3(1) − a22g3(1) − k̃ρ2g3(1)]c3 + [g′′′4 (1) − a21g′4(1) − a22g4(1) − k̃ρ2g4(1)]c4 = 0,

(39)
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where k̃ is defined by (25).
From (36) and (37), for any k, 1 ≤ k ≤ 4,


gk(0) = 1 +O( 1

ρ ), g
′
k(0) = ρωk[1 +O( 1

ρ )],

[g′′k (1)− a11g
′
k(1)− a12gk(1)] = (ρωk)

2eρωk [1 +O( 1
ρ )],

g′′′k (1)− a21g
′
k(1)− a22gk(1)− k̃ρ2gk(1)

= (ρωk)
3eρωk [1 +O( 1

ρ )]− k̃ρ2eρωk [1 +O( 1
ρ )],

(40)

and

|eρω2 | ≤ 1, |eρω1 | = O(e−c|ρ|) as |ρ| → ∞,(41)

for some constant c > 0. Then we know that g(z) is nonzero if and only if ρ satisfies
the characteristic equation

det




[1] [1] [1] [1]
ρω1[1] ρω2[1] ρω3[1] ρω4[1]

(ρω1)
2eρω1 [1] (ρω2)

2eρω2 [1] (ρω3)
2eρω3 [1] (ρω4)

2eρω4 [1]
(ρω1)

3eρω1 [1] (ρω2)
3eρω2 [1] (ρω3)

3eρω3 [1] (ρω4)
3eρω4 [1]


 = 0,

where [1] = 1+O( 1
ρ ). Since ω4 = −ω1, ω3 = −ω2, the above equation is equivalent to

det




[1] [1] eρω2 [1] eρω1 [1]
ω1[1] ω2[1] −ω2e

ρω2 [1] −ω1e
ρω1 [1]

ω2
1e
ρω1 [1] ω2

2e
ρω2 [1] ω2

2 [1] ω2
1 [1]

ω3
1e
ρω1 [1] ω3

2e
ρω2 [1] −ω3

2 [1] −ω3
1 [1]


 = 0.(42)

Noting that each element of the matrix in (42) is bounded, we may rewrite (42) as

det



1 1 eρω2 0
ω1 ω2 −ω2e

ρω2 0
0 ω2

2e
ρω2 ω2

2 ω2
1

0 ω3
2e
ρω2 −ω3

2 −ω3
1


+O

(
1

ρ

)
= 0,(43)

which results in

e2ρω2 =

(
ω2 − ω1

ω2 + ω1

)2

+O
(
1

ρ

)
= −1 +O

(
1

ρ

)
.(44)

By solving (44), we obtain (8) by the same arguments as those of section 4, Chapter
2 of [4]. Since the matrix in (43) has rank 3 for each sufficiently large ρn, there is only
one linearly independent solution g to (32) for ρ = ρn. Hence each λn is geometrically
simple for n sufficiently large.

In Remark 4, we will indicate that each eigenvalue of A must be geometrically
simple. Noting (37), (38), and (42), we can write g, g′′ as

g(z) = det




[1] [1] eρω2 [1] eρω1 [1]
eρω1z[1] eρω2z[1] eρω2(1−z)[1] eρω1(1−z)[1]
ω2

1e
ρω1 [1] ω2

2e
ρω2 [1] ω2

2 [1] ω2
1 [1]

ω3
1e
ρω1 [1] ω3

2e
ρω2 [1] −ω3

2 [1] −ω3
1 [1]


 ,(45)

g′′(z) = ρ2 det




[1] [1] eρω2 [1] eρω1 [1]
ω2

1e
ρω1z[1] ω2

2e
ρω2z[1] ω2

2e
ρω2(1−z)[1] ω2

1e
ρω1(1−z)[1]

ω2
1e
ρω1 [1] ω2

2e
ρω2 [1] ω2

2 [1] ω2
1 [1]

ω3
1e
ρω1 [1] ω3

2e
ρω2 [1]] −ω3

2 [1] −ω3
1 [1]


 .(46)
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Lemma 3.2. Let λn, ρn be defined as in Proposition 2.2. Then the unique (up to
a scalar) associated solution gn to (32) has the following asymptotic expansion:

−
√
2

4
(1 + i)gn(z) = sin(n+ π/2)z − cos(n+ π/2)z + e−(n+1/2)πz

+(−1)ne−(n+1/2)π(1−z) +O(n−1),
(47)

−
√
2

4
(1 + i)ρ−2

n g′′n(z) = i[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] +O(n−1).
(48)

Moreover, it follows directly from (37) and (45) that

ρ−2
n g′n(z) = O(n−1).(49)

Proof. It follows from (45) that

gn(z) = det




1 1 eρnω2 0
eρnω1z eρnω2z eρnω2(1−z) eρnω1(1−z)

0 ω2
2e
ρnω2 ω2

2 ω2
1

0 ω3
2e
ρnω2 −ω3

2 −ω3
1


+O

(
1

ρn

)
.

After a simple calculation, we find that

gn(z) = ω2
1ω

2
2 [2ω1e

ρnω1z + 2ω2e
ρnω2eρnω1(1−z)

+(ω2 + ω1)e
ρnω2eρnω2(1−z) + (ω2 − ω1)e

ρnω2z] +O( 1
ρn
)

=
√
2(i− 1)[sin(n+ π/2)z − cos(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] +O( 1
n ).

This is (47). Equation (48) can be proved similarly.
Note that the asymptotic expansions (47) and (48) are exactly the same as those

obtained in [1] for the eigenfunctions of system (2) with constant coefficients; i.e.,
EI = ρ = const. However, it should be pointed out that the estimates in [1] and [2]
rely on the analytic expression of the eigenfunctions.

Proof of Proposition 2.3. The result follows directly from the following facts that
are deduced from transformations (29), (31), and (49):



−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

fn(z) = −
√
2

4
(1 + i)gn(z),

−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

ρ−2
n f ′′

n (z) = −
√
2

4
(1 + i)ρ−2

n g′′n(z) +O
(
1

n

)
,

φn(x) = fn(z), ρ
−2
n φ′′

n(x) =
1

h2

(
ρ(x)

EI(x)

)1/2

ρ−2
n f ′′

n (z) +O
(
1

n

)
.

(50)

Before proving Theorem 2.4, let us recall that for a closed linear operator A
in a Hilbert space H, a nonzero x ∈ H is called a generalized eigenvector of A,
corresponding to an eigenvalue λ of A which has finite algebraic multiplicity, if there
is a positive integer n such that (λ − A)nx = 0. A sequence {xn}∞1 in H is called a
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Riesz basis for H if there is an orthonormal basis {en}∞1 in H and a linear bounded
invertible operator T such that

Ten = xn, n = 1, 2, . . . .

It is seen that each Riesz basis sequence must be approximately normalized:

C1 ≤ ‖xn‖ ≤ C2, C1, C2 > 0, n = 1, 2, . . . .

Suppose that {λn}∞1 ⊂ σ(A) and lie in some left half complex plane. If each λn
has finite algebraic multiplicity mn and mn = 1 as n > N for some integer N > 1,
then there is a sequence of linearly independent generalized eigenvectors {xni}mni=1

corresponding to λn. If {{xni}mni=1}∞n=1 forms a Riesz basis for H, then A generates a
C0-semigroup e

At which can be represented as

eAtx =

∞∑
n=1

eλnt
mn∑
i=1

ani

mn∑
j=1

fnj(t)xnj for any x =

∞∑
n=1

mn∑
i=1

anixni ∈ H,

where fnj(t) is a polynomial of t with order less thanmn. In particular, if a < Reλ < b
for some real numbers a and b, then A generates a C0-group on H. Moreover, the
spectrum-determined growth condition holds for eAt.

In order to remove the requirement of the estimation of the low eigenpairs of the
system, a corollary of Bari’s theorem is recently reported in [1] (a simplified proof
can be found in [2]), which provides a much less demanding approach in generating
a Riesz basis for general discrete operators in the Hilbert spaces. The result is cited
here.

Theorem 3.3. Let A be a densely defined discrete operator (that is, (λ−A)−1 is
compact for some λ) in a Hilbert space H. Let {zn}∞1 be a Riesz basis for H. If there
are an N ≥ 0 and a sequence of generalized eigenvectors {xn}∞N+1 of A such that

∞∑
N+1

‖xn − zn‖2 <∞,

then

(i) There are an M > N and generalized eigenvectors {xn0}M1 of A such that
{xn0}M1 ∪ {xn}∞M+1 forms a Riesz basis for H.

(ii) Consequently, let {xn0}M1 ∪ {xn}∞M+1 correspond to eigenvalues {σn}∞1 of A.
Then σ(A) = {σn}∞1 , where σn is counted according to its algebraic multiplicity.

(iii) If there is an M0 > 0 such that σn �= σm for all m,n > M0, then there is an
N0 > M0 such that all σn, n > N0 are algebraically simple.

Remark 3. It follows from Theorem 3.3 that when A and B satisfy the conditions
(i) and (ii) of Theorem 2.7, A+B is of [D]-class.

In order to apply Theorem 3.3 to the operator A when we consider {xn} in
Theorem 3.3 as the eigenfunctions of A, we need a referring Riesz basis {zn}∞1 as well.
For the system (2), this is accomplished by collecting (approximately) normalized
eigenfunctions of the following free conservative system:{

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = (EIyxx)x(1, t) = 0.

(51)
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The system operator A0 : D(A0)(⊂ H) → H associated with (51) is nothing but the
operator A with k = 0:{ A0(f, g) = (g,− 1

ρ(x) (EI(x)f
′′(x))′′),

D(A0) = {(f, g) ∈ (H2
E ∩H4)×H2

E |f ′′(0) = f ′′′(1) = 0}.(52)

A0 is skew-adjoint with compact resolvent in H. Since Propositions 2.2 and 2.3 still
keep valid when k = 0, we have the following counterpart for the operator A0.

Lemma 3.4. Each µ ∈ σ(A0), with sufficiently large modulus, is geometrically
simple and hence algebraically simple. The eigenvalues {λn0, λn0} and the corre-
sponding eigenfunctions {(λ−1

n0 φn0, φn0)}∪{their conjugates} of A0 have the following
asymptotic expressions:

λn0 =
ρ2
n

h2
, h =

∫ 1

0

(
ρ(τ)

EI(τ)

)1/4

dτ, ρn =
1√
2

(
n+

1

2

)
π(1 + i) +O(n−1) as n→∞,

(53)

where n is a large positive integer, and


−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

φn0(x) = sin(n+ π/2)z − cos(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z) +O(n−1),

−
√
2

4
(1 + i)e

1
4

∫ z
0
a(τ)dτ

λ−1
n0 φ

′′
n0(x) = i

(
ρ(x)

EI(x)

)1/2

[cos(n+ π/2)z − sin(n+ π/2)z

+e−(n+1/2)πz + (−1)ne−(n+1/2)π(1−z)] +O(n−1).

(54)
Proof of Theorem 2.4. Since A0 is a skew-adjoint discrete operator in H, from a

well-known result in functional analysis, the set of all ω-linearly independent
eigenfunctions of A0 forms an orthogonal basis for H. Since (φn0, λn0φn0) defined
by (54) are approximately normalized, {(φn0, λn0φn0)} ∪ {their conjugates} form a
(orthogonal) Riesz basis for H. Combining (9), (10), (53), and (54), we see that there
is an N > 0 such that

∞∑
n>N

‖(λ−1
n φn, φn)− (λ−1

n0 φn0, φn0)‖2H =
∞∑
n>N

O(n−2) <∞.(55)

The same is true for their conjugates. Hence the conditions of Theorem 2.5 are
satisfied with correspondence A = A, xn = (λ−1

n φn, φn), zn = (λ−1
n0 φn0, φn0). The

proof is complete.
Now we are in a position to show the exponential stability confirmed by Theo-

rem 2.7. Since the spectrum-determined growth condition holds, which is claimed by
Theorem 2.4, system (2) is exponentially stable if and only if there is an ω > 0 such
that

Reλ < −ω ∀ λ ∈ σ(A).
Lemma 3.5. Let λn be defined by (8). Then there is an ω0 > 0 such that

lim
n→∞Reλn = −ω0 < 0.(56)
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Proof. Let (λ, φ) = (λn, φn) in (7), where φn is defined by (9). Multiplying φn on
both sides of the first equation in (7) and integrating from 0 to 1 with respect to x,
we obtain

λ2
n

∫ 1

0

ρ(x)|φn(x)|2dx+
∫ 1

0

EI(x)|φ′′
n(x)|2dx+ kλn|φn(1)|2 = 0.

Since Imλn �= 0 for sufficiently large n, we have, from the above equation, that

2Reλn

∫ 1

0

ρ(x)|φn(x)|2dx = −k|φn(1)|2 as n→∞.

Then by (9) and the Riemann–Lebesgue lemma, we have

lim
n→∞ |φn(1)|

2 = 16e
− 1

2

∫ 1

0
a(τ)dτ

, lim
n→∞

∫ 1

0

ρ(x)|φn(x)|2dx = 4

∫ 1

0

ρ(x)e
− 1

2

∫ z
0
a(τ)dτ

dx,

where z = z(x) is specified by (29). Hence

lim
n→∞Reλn = −2k e

− 1
2

∫ 1

0
a(τ)dτ

∫ 1

0
ρ(x)e

− 1
2

∫ z
0
a(τ)dτ

dx
< 0.

The result follows.
Proof of Theorem 2.5. By Lemma 3.5 and the spectrum-determined growth con-

dition, we need only show that

Reλ < 0 for any λ ∈ σ(A).(57)

Since the system is dissipative, Reλ ≤ 0 for any λ ∈ σ(A). Suppose that Reλ = 0.
Then from Re〈AY, Y 〉 = −k|φ(1)|2 for each Y = (φ, λφ), we have φ(1) = 0. In this
case, (7) becomes{

λ2ρ(x)φ(x) + (EI(x)φ′′(x))′′ = 0, 0 < x < 1,
φ(0) = φ′(0) = φ′′(1) = φ′′′(1) = φ(1) = 0.

(58)

The proof is complete if we can show that there is only zero solution to (58). To this
end, we follow the idea used in [17].

First, we claim that there is at least one zero of φ in (0,1). In fact, by φ(0) =
φ(1) = 0, it follows from Rolle’s theorem that there is a ξ1 ∈ (0, 1) such that φ′(ξ1) = 0,
which, together with φ′(0) = 0, claims that (EIφ′′)(ξ2) = 0 for some ξ2 ∈ (0, ξ1), and
so (EIφ′′)′(ξ3) = 0 for some ξ3 ∈ (ξ2, 1) by the condition (EIφ′′)(1) = 0. Hence there
is a ξ4 ∈ (ξ3, 1) such that (EIφ′′)′′(ξ4) = 0 by the condition (EIφ′′)′(1) = 0. However,
(EIφ′′)′′(ξ4) = −λ2ρ(ξ)φ(ξ4); we conclude that φ(ξ4) = 0.

Next, we show that if there are n different zeros of φ in (0,1), then there are at
least n+ 1 number of different zeros of φ in (0,1).

Indeed, suppose that

0 < ξ1 < ξ2 < · · · < ξn < 1, φ(ξi) = 0, i = 1, 2, . . . , n.

Since φ(0) = φ(1) = 0, it follows from Rolle’s theorem that there are ηi, i = 1, 2, . . . , n+
1,

0 < η1 < ξ1 < η2 < ξ2 < · · · < ξn < ηn+1 < 1



1918 BAO-ZHU GUO

such that φ′(ηi) = 0. Noting that φ′(0) = 0, there are αi, i = 1, 2, . . . , n+ 1,

0 < α1 < η1 < α2 < η2 < · · · < αn+1 < ηn+1 < 1

such that (EIφ′′)(αi) = 0. Since (EIφ′′)(1) = 0, using Rolle’s theorem again, we have
βi, i = 1, 2, . . . , n+ 1,

0 < α1 < β1 < α2 < · · · < αn+1 < βn+1 < 1

such that (EIφ′′)′(βi) = 0. Finally, by the condition (EIφ′′)′(1) = 0, we have ϑi, i =
1, 2, . . . , n+ 1,

0 < β1 < ϑ1 < β2 < · · · < βn+1 < ϑn+1 < 1

such that (EIφ′′)′′(ϑi) = 0. Therefore,

φ(ϑi) = 0, i = 1, 2, . . . , n+ 1.

Third, by mathematical induction, there is an infinite number of different zeros {xi}∞1
of φ in (0,1). Let x0 ∈ [0, 1] be an accumulation point of {xi}∞1 . It is obvious that

φ(i)(x0) = 0, i = 0, 1, 2, 3.

Note that φ satisfies the linear differential equation (EI(x)φ′′(x))′′ + λ2ρ(x)φ(x) =
0. Therefore, φ ≡ 0 by the uniqueness of the solution of linear ordinary different
equations.

Remark 4. The proof of Theorem 2.5 shows that each eigenvalue of A must be
geometrically simple. In fact, suppose that (φ1, λφ1), (φ2, λφ2) are any two eigenfunc-
tions of A corresponding to λ. Then one can choose constants c1, c2 not identical to
zero simultaneously such that φ = c1φ1+c2φ2 satisfies φ(1) = 0. Now φ satisfies (58),
and so φ ≡ 0. Hence φ1 and φ2 are linearly independent.

From previous discussions, we see that our method can be easily used to get
the Riesz basis property for the following beam equation under boundary moment
feedback control:


ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxxx(1, t) = 0,
yxx(1, t) = −kyxt(1, t), k > 0.

(59)

It should be noted that the referring Riesz basis applied with Theorem 3.3 is accom-
plished by collecting all eigenfunctions of the following conservative free system:{

ρ(x)ytt(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxxx(1, t) = yxt(1, t) = 0.

(60)

This is the same as that of the uniform case [1]. Moreover, the analysis in this paper
shows that the low order perturbations do not affect the basis property. For example,
if we assume b(x) ∈ C3[0, 1], then Theorem 2.7 is still valid for the following system:{

ρ(x)ytt(x, t) + b(x)yxxx(x, t) + (EI(x)yxx(x, t))xx = 0, 0 < x < 1, t > 0,
y(0, t) = yx(0, t) = yxx(1, t) = 0, (EI(x)yxx)x(1, t) = kyt(1, t).

(61)
Let us turn to system (12). First, we give a short proof of Theorem 2.7 by virtue

of Theorem 3.3.
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Proof of Theorem 2.7. Obviously, A + B is a discrete operator in H. Write
A+B = As+T , where Asφn = λnφn for all n ≥ 1 and T is a linear bounded operator
on H. We may assume without loss of generality that ‖φn‖ = 1 for all n ≥ 1. Since
{φn}∞1 is a Riesz basis, there is a K > 0 such that for any φ =

∑∞
n=1 anφn and any

complex series {βn}, |βn| ≤ 1, ∥∥∥∥∥
∞∑
n=1

βnanφn

∥∥∥∥∥ ≤ K‖φ‖.(62)

By (15), we have dn → ∞ as n → ∞. Hence for any C > K‖T‖, there is an integer
M > N such that 2‖T‖K/dn < 1 for all n ≥M and

|λ− λm| ≥ C for any λ satisfying |λ− λn| = C, n ≥M.

First, for any φ =
∑∞
n=1 anφn and λ satisfying |λ− λn| = C, n ≥M ,

‖CR(λ,As)φ‖ =
∥∥∥∥∥

∞∑
n=1

C

λ− λn anφn
∥∥∥∥∥ ≤ K‖φ‖,

and so ‖R(λ,As)‖ ≤ K/C. Hence ‖R(λ,As)T‖ ≤ K‖T‖/C < 1. This shows that
{λ||λ − λn| = C, n ≥ M} ⊂ ρ(As + T ) since λ ∈ σ(As + T ) if and only if 1 ∈
ρ(R(λ,As)T ). Let Γn = {λ||λ− λn| = C}, n ≥M. Consider eigenprojectors

Qn − Pn = 1

2πi

∫
Γn

R(λ,As + T )dλ− 1

2πi

∫
Γn

R(λ,As)dλ

=
1

2πi

∞∑
m=1

∫
Γn

[R(λ,As)T ]
mR(λ,As)dλ.

One can choose C > 0 large enough such that

‖Qn − Pn‖ ≤ C

∞∑
m=1

(K‖T‖/C)mK/C = K
K‖T‖/C

1−K‖T‖/C < 1.(63)

Therefore, dim(Qn) = dim(Pn). Hence there exists a unique µn, |µn − λn| < C such
that µn ∈ σ(As + T ) = σ(A + B). This is (i). Moreover, since ‖Pnφn‖ = ‖φn‖ = 1,
we see that Qnφn �= 0 and

Qnφn = φn +
1

2πi

∞∑
m=1

∫
Γn

[R(λ,As)T ]
mR(λ,As)dλdλφn.(64)

Next, take Λn = {λ||λ − λn| = dn/2}, n ≥ M . Then for any φ =
∑∞
n=1 anφn and

λ ∈ Λn, ‖dn/2R(λ,As)φ‖ = ‖
∑∞
m=1

dn
2

1
λ−λm amφm‖ ≤ K‖φ‖, and thus ‖R(λ,As)‖ ≤

2
dn
K. Since ‖R(λ,As)T‖ ≤ 2

dn
‖T‖K < 1, we see that {Λn, n ≥ M} ⊂ ρ(As + T ) =

ρ(A+B). Now consider

Q̃n − Pn = 1

2πi

∫
Λn

R(λ,As + T )dλ− 1

2πi

∫
Λn

R(λ,As)dλ

=
1

2πi

∞∑
m=1

∫
Λn

[R(λ,As)T ]
mR(λ,As)dλ.
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We have

‖Q̃n − Pn‖ ≤
2
dn
‖T‖K

1− 2
dn
‖T‖K ‖T‖K ≤

L

dn
, n ≥M,

for some constant L > 0. We may consider

‖Q̃n − Pn‖ ≤ L

dn
< 1, n ≥M.(65)

Hence dim(Q̃n) = dim(Pn) = 1, and Qn = Q̃n as n ≥ M . Therefore, ψn = Qnφn
satisfies

‖ψn − φn‖2 ≤ L2d−2
n as n ≥M,(66)

proving the theorem.
Note that the eigenproblem of (12) is to find the nonzero solution ψ such that


µ2ρ(x)ψ(x) + µb(x)ψ(x) + (EI(x)ψ′′(x))′′ = 0, 0 < x < 1,
ψ(0) = ψ′(0) = ψ′′(1) = 0,
(EI(x)ψ′′)′(1) = µkψ(1),

(67)

and the eigenfunction of A+ B is of the form (ψ, µψ).
Proof of Corollary 2.9. Let (µ, ψ) = (µn, ψn) in (67), where ψn is determined by

(17). Multiplying ψn on both sides of the first equation in (67) and integrating from
0 to 1 with respect to x, we obtain

µ2
n

∫ 1

0

ρ(x)|ψn(x)|2dx+µn
∫ 1

0

b(x)|ψn(x)|2dx+
∫ 1

0

EI(x)|ψ′′
n(x)|2dx+kλn|ψn(1)|2 = 0.

Since Im µn �= 0 for sufficiently large n, we have, from the above equation, the
following:

Reµn = −1
2

∫ 1

0
b(x)|ψn(x)|2dx+ k|ψn(1)|2∫ 1

0
ρ(x)|ψn(x)|2dx

as n→∞.(68)

It follows from (17) and (18) that ‖ψn − φn‖L2(0,1) → 0, ‖ψ′
n − φ′

n‖L2(0,1) → 0 as
n→∞. By the trace theorem |ψn(1)− φn(1)| → 0. Therefore,

Reµn → −1
2

∫ 1

0
b(x)|φn(x)|2dx+ k|φn(1)|2∫ 1

0
ρ(x)|φn(x)|2dx

as n→∞.(69)

Similar to the proof of Lemma 3.5, we obtain (19).
Proof of Example 3. It follows from the proof of Corollary 2.9 that for any

eigenfunction (ψ, µψ) of A+ B

µ2

∫ 1

0

|ψ(x)|2dx+ µ

∫ 1

0

b(x)|ψ(x)|2dx+
∫ 1

0

|ψ′′(x)|2dx = 0.

If Im µ = 0, then from the above equation

(Reµ)2
∫ 1

0

|ψ(x)|2dx+Reµ
∫ 1

0

b(x)|ψ(x)|2dx+
∫ 1

0

|ψ′′(x)|2dx = 0.
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Hence Reµ < 0. If Im µ �= 0,

Reµ = −1
2

∫ 1

0
b(x)|ψ(x)|2dx∫ 1

0
|ψ(x)|2dx

≤ −1
2

b0
∫ b
a
|ψ(x)|2dx∫ 1

0
|ψ(x)|2dx

< 0.

Therefore, for any µ ∈ σ(A + B), Reµ < 0. This, together with (20), gives the
exponential stability of system (22), which is indicated in [18]. By similar reasoning,
when k = 0, b(x) ≥ 0 for x ∈ [0, 1] and b(x) > b0 > 0 for all x in some subset
(a, b) ⊂ [0, 1], system (12) is also exponential stable.

Finally, we give the proof of Proposition 2.10. The validity of Proposition 2.10
deduces Lemma 3.5 automatically.

Proof of Proposition 2.10. Like the transformation from (7) to (32), (67) can be
transformed into



g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λh4b̃(z)g(z) + λ2h4g(z) = 0,
g(0) = g′(0) = 0,
g′′(1) = a11g

′(1) + a12g(1),

g′′′(1) = a21g
′(1) +

[
λ
kh3

EI(1)

(
ρ(1)

EI(1)

)−3/4

+ a22

]
g(1),

(70)
where the functions are the same as those in (32). By Theorem 2.8 and Corollary 2.9,
all eigenvalues of A + B with sufficiently large modulus must be located on the left
complex plane under the assumption (23). Following [4], by noticing the smooth
assumption (3) and (23), we know that for λ = ρ2/h2, |ρ| sufficiently large,

g(4)(z) + a1(z)g
′′(z) + a2(z)g

′(z) + a3(z)g(z) + λh4b̃(z) + λ2h4g(z) = 0

admits four linearly independent solutions gk, k = 1, 2, 3, 4 for any ρ ∈ S, which satisfy


gk(z) = eρωkz[1 + Lk(z)
ρ +O( 1

ρ2 )],

g′k(z) = ρωke
ρωkz[1 + Lk(z)

ρ +O( 1
ρ2 )],

g′′k (z) = (ρωk)
2eρωkz[1 + Lk(z)

ρ +O( 1
ρ2 )],

g′′′k (z) = (ρωk)
3eρωkz[1 + Lk(z)

ρ +O( 1
ρ2 )], k = 1, 2, 3, 4,

(71)

where

Lk(z) = − 1

4ωk

∫ z

0

a1(τ)dτ +
h2

4
ωk

∫ z

0

b̃(τ)dτ.(72)

Similar to (37)–(40), by noting (71), we can write the characteristic equation (42)
as

det




1 1 eρω2 0
ω1 ω2 −ω2e

ρω2 0

0 ω2
2e

ρω2

[
1 +

�2
ρ

]
ω2
2

[
1 +

�3
ρ

]
ω2
1

[
1 +

�4
ρ

]

0 ω3
2e

ρω2

[
1 +

�2
ρ

]
− k̃

ρ
eρω2 −ω3

2

[
1 +

�3
ρ

]
− k̃

ρ
−ω3

1

[
1 +

�4
ρ

]
− k̃

ρ


 = O

(
1

ρ2

)
,

(73)
where 8k = Lk(1). A direct computation yields

e2ρω2 = −1 + 2 k̃
ρ
ω2 +

282
ρ
+O

(
1

ρ2

)
.(74)
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Substituting ρ = −(n+ 1/2)πω2 +O(n−1) into (74), the term O(n−1) satisfies

−2ω2O(n−1) =
2k̃

(n+ 1/2)π
− 282
(n+ 1/2)πω2

+O(n−2);

hence

O(n−1) =
k̃

(n+ 1/2)πω2
− 282
(n+ 1/2)πω2

1

2ω2
+O(n−2).

Therefore,

ρ = −(n+ 1/2)πω2 +
2k̃

2(n+ 1/2)πω2
+

282
(n+ 1/2)πω2

1

2ω2
+O(n−2),

which produces

λh2 = ρ2 = −2k̃ + i[(n+ 1/2)π]2 − 282
ω2

+O(n−1).

The required result then follows.
It is seen that Proposition 2.10 coincides with the estimates in [1] for the uniform

system (1) with k1 = 0, b = 0.
Thus, from (24), condition (23) can be replaced by

∫ 1

0

b̃(z)dz =
1

h

∫ 1

0

b(x)

ρ(x)

(
ρ(x)

EI(x)

)1/4

dx > 0.(75)

For the case of EI = ρ = 1, the result can be found in [6].
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Abstract. In this paper, the geometric property and structure of the Hamilton–Jacobi equation
arising from nonlinear control theory are investigated using symplectic geometry. The generating
function of symplectic transforms plays an important role in revealing the structure of the Hamilton–
Jacobi equation. It is seen that many fundamental properties of the Riccati equation can be gener-
alized in the Hamilton–Jacobi equation, and, therefore, the theory of the Hamilton–Jacobi equation
naturally contains that of the Riccati equation.
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1. Introduction. The Hamilton–Jacobi equation plays a fundamental role in
nonlinear control theory. The solvability of many important problems, such as op-
timal regulation [15], the H∞ control problem [3, 11, 12, 21, 22], dissipative system
theory [10, 26], and factorization theory [4] is represented by that of the Hamilton–
Jacobi equation, and feedback functions depend on the solution of the Hamilton–
Jacobi equation. When the system under consideration is linear and time-invariant,
the Hamilton–Jacobi equation reduces to the Riccati equation. The most successful
theory in linear control theory is H∞ robust control. It naturally extends to nonlinear
control systems. However, there are very few applications of nonlinear H∞ control
that have been reported, while linear H∞ theory is now commonly used by industrial
engineers. One of the biggest reasons for this is that little is known about the solution
method, structure, and property of the Hamilton–Jacobi equation.

Only a few research papers have reported on the study of exact solutions of
the Hamilton–Jacobi equation. In [21, 22], it is proved that if the Riccati equation
constructed from the linear approximation of the Hamilton–Jacobi equation can be
solved, then there exists, locally, a solution of the Hamilton–Jacobi equation, and
nonlinear L2 gain is also discussed by the linearization argument. After [21, 22],
attention in nonlinear H∞ theory has been paid not to the Hamilton–Jacobi equation
itself, which represents the essential difficulty of nonlinearity, but to the derivation of
the Hamilton–Jacobi equation, which is rather similar to that of the Riccati equation
in linear H∞ theory. For approximation methods of the solution of the Hamilton–
Jacobi equation, we refer to [15] for the method by Taylor series expansion, [6, 7] for
the Galerkin approximation, and [18] for the method by the state-dependent Riccati
equation. One may also find extensive surveys on the research of the approximation of
the Hamilton–Jacobi equation in [6, 7]. For the use of the theory of viscosity solutions
in nonlinear H∞ control when the system is not necessarily in the control-affine form,
we refer to [5, 24, 25].

In this paper, we investigate the geometric property and structure of the Hamilton–
Jacobi equation by using symplectic geometry. Symplectic geometry also plays a cen-

∗Received by the editors October 12, 1999; accepted for publication (in revised form) November
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tral role in [21, 22], but the linearization argument is not employed in the present
paper. Without linear approximation, it will be shown that major properties of
the Riccati equation can be generalized and similar structures can be found in the
Hamilton–Jacobi equation. In other words, the theory of the Riccati equation can be
naturally embedded in that of the Hamilton–Jacobi equation. There exists a precise
geometric theory in the Riccati equation developed in the course of the research from
linear quadratic regulator theory to modern H∞ robust control theory. Symplectic
geometry provides a geometric framework in which we can investigate the Hamilton–
Jacobi equation almost as well as we can for the Riccati equation.

The organization of the paper is as follows. In section 2, the theory of par-
tial differential equations of the first order [8, 19] is outlined in the context of the
Hamilton–Jacobi equation. According to the theory, to solve the Hamilton–Jacobi
equation, all one has to do is solve a system of ordinary differential equations and/or
integrate a completely integrable Pfaffian system. In section 3, attention is paid to
a special kind of solution, a stabilizing solution, which plays an important role in
control theory. The well-known theory [2, 20] by Arimoto and Potter, that is, a nec-
essary and sufficient condition of the existence of a stabilizing solution, is reviewed
as a part of the theory of the Hamilton–Jacobi equation. In control theory, we are
interested in obtaining as many solutions as possible. To do this, more information on
the structure of the Hamilton–Jacobi equation will be necessary, which is indicated
by Example 1 of section 4. In section 4.1, the theory of the generating function for
symplectic transforms is introduced; this will play a central role in a later subsection.
Given a solution to the Hamilton–Jacobi equation, an auxiliary equation is derived
that determines the other solutions using the generating function of symplectic trans-
forms. It will also be seen that the auxiliary equation even characterizes the whole
structure of the Hamilton–Jacobi equation. The linear control theoretic explanation
of this structure will also be provided.

2. Overview of the theory of partial differential equations of the first
order. In this section, we outline, by using a symplectic geometry machinery, the
essential parts of the theory of partial differential equations of the first order that will
be necessary for the analysis of the Hamilton–Jacobi equation.

Let us consider a partial differential equation of the form

(PD) F (x1, . . . , xn, p1, . . . , pn) = 0,

where F is a C∞ function of 2n variables, x1, . . . , xn are independent variables, z
is an unknown function, and p1 = ∂z/∂x1, . . . , pn = ∂z/∂xn. Let M be an n di-
mensional space for (x1, . . . , xn). We regard the 2n dimensional space for (x, p) =
(x1, . . . , xn, p1, . . . , pn) as the cotangent bundle T ∗M of M . T ∗M is a symplectic
manifold with θ =

∑n
i=1 dxi ∧ dpi.

Let π : T ∗M → M be a natural projection, and let V ⊂ T ∗M be a hypersurface
defined by F = 0. Define a submanifold

ΛZ = {(x, p) ∈ T ∗M | pi = ∂z/∂xi(x), i = 1, . . . , n}
for a smooth function z(x). Then, z(x) is a solution of (PD) if and only if ΛZ ⊂
V . Furthermore, π|ΛZ : ΛZ → M is a diffeomorphism, and ΛZ is a Lagrangian
submanifold because dim ΛZ = n and

θ|ΛZ =
∑

1�i<j�n

(
∂2z

∂xj∂xi
− ∂2z

∂xi∂xj

)
dxi ∧ dxj = 0.
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Conversely, it is well known (see, e.g., [1, 19]) that for a Lagrangian submanifold Λ
passing through q ∈ T ∗M on which π|Λ : Λ→ M is a diffeomorphism, there exists a
neighborhood U of q and a function z(x) defined on π(U) such that

Λ ∩ U = {(x, p) ∈ U | pi = ∂z/∂xi(x), i = 1, . . . , n}.

Therefore, finding a solution of (PD) is equivalent to finding a Lagrangian submanifold
Λ ⊂ V on which π|Λ : Λ→M is a diffeomorphism.

Let f1 = F . To construct such a Langrangian submanifold passing through
q ∈ T ∗M , and hence to obtain a solution defined on a neighborhood of π(q), it
suffices to find functions f2, . . . , fn ∈ F (T ∗M) with df1(q)∧· · ·∧dfn(q) �= 0 such that
{fi, fj} = 0 (i, j = 1, . . . , n), where {·, ·} is the Poisson bracket, and

∣∣∣∣∂(f1, · · · , fn)

∂(p1, · · · , pn)

∣∣∣∣ (q) �= 0.(2.1)

For if functions ϕ,ψ ∈ F (T ∗M) satisfy ϕ|Λ = ψ|Λ = 0 for Λ = {f1 = · · · = fn = 0},
then there exist functions ai, bj ∈ F (T ∗M) (i, j = 1, . . . , n) such that ϕ =

∑n
i=1 aifi

and ψ =
∑n
j=1 bjfj , and, therefore, we have {ϕ,ψ}|Λ = 0 from

{ϕ,ψ} =

n∑
i,j=1

aifj{fi, bj}+ bjfi{ai, fj}+ fifj{ai, bj},

where we used the fact that an n dimensional submanifold Λ is Lagrangian if and
only if {f, g}|Λ = 0 for all f , g ∈ F (T ∗M) satisfying f |Λ = g|Λ = 0. Note that the
condition (2.1) implies, by the implicit function theorem, that π|Λ is a diffeomorphism
of some neighborhood of q.

Since {F, ·} is the Hamiltonian vector field XF with Hamiltonian F , the functions
f2, . . . , fn above are integrals of XF . The ordinary differential equation that gives the
integral curve of XF is




dxi
dt

=
∂F

∂pi
,

dpi
dt

= − ∂F
∂xi

(i = 1, . . . , n).(2.2)

An integral of XF is a function that is constant along solutions of (2.2), and, therefore,
we seek integrals of the following Pfaffian equations together with the condition (2.1):

dp1

−∂F/∂x1
= · · · = dpn

−∂F/∂xn =
dx1

∂F/∂p1
= · · · = dxn

∂F/∂pn
,

which is called the Lagrange–Charpit system.

The theory for general partial differential equations is developed as contact geom-
etry, and the complete treatment of them, that is, how the solvability of them can be
reduced to the existence theory of solutions for ordinary differential equations, can be
found in [19]. [14] also contains the geometric theory of first order partial differential
equations.
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3. Stabilizing solutions of the Hamilton–Jacobi equation. In what fol-
lows, we consider the Hamilton–Jacobi equation in nonlinear control theory

(HJ) H(x, p) = pT f(x)− 1

2
pTR(x)p + q(x) = 0,

where f : M → R
n, R : M → R

n×n, q : M → R are all C∞ and R(x) are symmetric
for all x ∈M . We also assume that f and q satisfy f(0) = 0, q(0) = 0, and ∂q

∂x (0) = 0.
A stabilizing solution of (HJ) is defined as follows.
Definition 3.1. A solution z(x) of (HJ) is said to be a stabilizing solution if

p(0) = 0, and 0 is an asymptotically stable equilibrium of the vector field f(x) −
R(x)p(x), where p(x) = (∂z/∂x)T (x). A solution z(x) is called an antistabilizing
solution if p(0) = 0 and −f(x) +R(x)p(x) has an asymptotically stable equilibrium at
0.

For example, let us consider a classical nonlinear optimal regulator problem (see,
e.g., [15]),

ẋ = f(x) + g(x)u, x(0) = x0,

J(x0) =

∫ ∞

0

q(x(t)) + u(t)Tu(t) dt,

where f(0) = 0 and q(x) is positive definite. The optimal feedback is

u = −1

2
g(x)T

(
∂V

∂x

)T
(x),

where V (x) is a stabilizing solution of the following Hamilton–Jacobi equation:

∂V

∂x
f(x)− 1

4

∂V

∂x
g(x)g(x)T

(
∂V

∂x

)T
+ q(x) = 0, V (0) = 0.

When the system is linear, the above equation reduces to a Riccati equation, which
will be discussed in the next subsection. See also [4, 11, 12, 21, 22, 23] for details of
the role of the stabilizing solution in nonlinear control theory.

Let V be the hypersurface in T ∗M defined by (HJ). According to the theory of
partial differential equations of the first order described in the previous section, a
solution of (HJ) can be considered as a Lagrangian submanifold contained in V such
that π|Λ is a diffeomorphism. However, (HJ) reduces to the Riccati equation when
systems are linear time-invariant, and a precise theory is established for the Riccati
equation. So the natural question would be how the theory of partial differential
equations for (HJ) reduces to the theory of the Riccati equation. We clarify the
relation between them in sections 3.1 and 3.2.

3.1. The Riccati equation. The algebraic Riccati equation

(RIC) PA + ATP − PRP + Q = 0

plays a fundamental role in linear control theory such as linear quadratic regulator,
H∞ control, factorization theory, etc. In (RIC), A is a real square matrix of dimension
n and R and Q are symmetric matrices of dimension n. A symmetric matrix P is said
to be a stabilizing solution of (RIC) if it is a solution of (RIC) and A−RP is stable.
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The 2n× 2n matrix

Ham =

(
A −R
−Q −AT

)

is called the Hamiltonian matrix of (RIC). A necessary and sufficient condition for
the existence of a stabilizing solution [2, 20, 9, 13] is that (i) Ham has no eigenvalues
on the imaginary axis, and (ii) the generalized eigenspace E− for n stable eigenvalues
satisfies the following complementary condition:

E− ⊕ Im

(
0
I

)
= R

2n.

The Hamilton–Jacobi equation corresponding to (RIC) is

(HJ)′ H ′(x, p) = pTAx− 1

2
pTRp +

1

2
xTQx = 0.

Let V ′ := {(x, p) ∈ T ∗M |H ′(x, p) = 0}. In this case, we look for a Lagrangian
subspace, regarding T ∗M as a linear space of 2n dimension, with the properties in
section 2. A Lagrangian subspace is an n dimensional subspace of T ∗M on which
θ vanishes. Note that V ′ is a quadric surface in T ∗M such as an ellipsoid or a
hyperboloid.

By using the properties of Ham, if Ham has no eigenvalues on the imaginary axis,
it is shown that there exist an n × n stable matrix E1, an unstable matrix E2, and
n× n matrices T1, T2, T3, and T4 satisfying

Ham

(
T1 T3

T2 T4

)
=

(
T1 T3

T2 T4

)(
E1 0
0 E2

)
,(3.1)

TTJT = J,(3.2)

where J =
(

0 I
−I 0

)
. Thus it is seen that V ′ contains Lagrangian subspaces. If, in ad-

dition, E− satisfies the complementary condition, there exists a Lagrangian subspace
Λ ⊂ V ′ such that π|Λ is an isomorphism. See [16, 23] for details.

3.2. Lagrangian submanifold for stabilizing solutions. The observation
on Lagrangian subspace for (RIC) is naturally generalized for (HJ) using symplectic
geometry (see also [12, 23]).

Equation (3.1) takes the form

XH ◦ g = Dg ·XA(3.3)

with an immersion g from a neighborhood of 0 in R
n into T ∗M with g(0) = (0, 0) and

a vector field XA on R
n. Write g(u) = (g1(u), g2(u)) = (g11(u), . . . , g1n(u), g21(u), . . . ,

g2n(u)). If g1 : R
n → M is a local diffeomorphism and XA has an asymptotically

stable equilibrium at the origin, the Lagrange submanifold described by g as its image
yields a stabilizing solution.

Indeed, from (3.3), we have

Ft ◦ g = g ◦ F̃t, t � 0,(3.4)

in a neighborhood of 0 ∈ R
n, where Ft(x, p) and F̃t(u) are integral curves of XH

and XA, respectively. Taking the derivative of (3.4) and using the fact that Ft is a
symplectic transform yield

Dg(u)TJ Dg(u) = DF̃t(u)TDg(F̃t(u))TJ Dg(F̃t(u))DF̃t(u).
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Thus, for a neighborhood U ′ of 0 ∈ R
n, it follows that

Dg(u)TJ Dg(u) = Dg1(u)TDg2(u)−Dg2(u)TDg1(u) = 0, u ∈ U ′,(3.5)

since XA is asymptotically stable. Equation (3.5) corresponds to (3.2). Taking the
derivative of (3.4) with respect to t and setting t = 0 and x = g1(u) give

XH(x, g2 ◦ g−1
1 (x)) =

(
I

Dg2(u)Dg−1
1 (x)

)
·Dg1(u)XA(u).(3.6)

Define p(x) = g2 ◦ g−1
1 (x) for x ∈ U = g1(U ′) ⊂ M . Then, premultiplying (3.6) by

[Dp(x) − I], we have

Dp(x)f(x)−Dp(x)R(x)p(x) +

(
∂f

∂x

)T
(x)p(x)

− 1

2

(
∂R(x)p

∂x

)T
(x)p(x) +

(
∂q

∂x

)T
(x)

=
∂T

∂x

{
p(x)T f(x)− 1

2
p(x)TR(x)p(x) + q(x)

}
= 0,(3.7)

where ∂R(x)p
∂x denotes the Jacobian matrix of R(x)p(x) for fixed p(x). Therefore, we

obtain (HJ) from f(0) = 0, q(0) = 0, p(0) = g2 ◦ g−1
1 (0) = g2(0) = 0. The solution is

obtained from

dz = g21 ◦ g−1
1 (x)dx1 + · · ·+ g2n ◦ g−1

1 (x)dxn,

the integrability of which follows from Dp(x)T = Dp(x). The solution is a stabilizing
one since f(x)−R(x)p(x) = ((g1)∗XA)(x), the push-forward (see, e.g., [1]) of XA.

Comparing this to [9], one can see a parallel structure to the Riccati equation.

4. The structure of the Hamilton–Jacobi equation. Let us begin this sec-
tion with the following example.

Example 1. Consider the equation

H ′ = −p1x1 + p2(x1 + x2)− 1

2
p2
2 +

1

2
x2

1 = 0.(4.1)

This can be seen as a Riccati equation for

A =

(−1 0
1 1

)
, R =

(
0 0
0 1

)
, Q =

(
1 0
0 0

)
.

The corresponding Hamiltonian vector field is XH′ = (−x1, x1 + x2, p1 − p2 −
x1,−p2), and the Lagrange–Charpit system is

dx1

−x1
=

dx2

x1 + x2 − p2
=

dp1

p1 − p2 − x1
=

dp2

−p2
.

The integrals H ′ and p2/x1 are readily obtained. The integral p2/x1 satisfies (2.1),
and with a nonzero constant c we get a solution

P =

(
1/2 + c− c2/2 c

c 0

)
.
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However, this solution is not a stabilizing one because A−RP is not stable. To find a
stabilizing solution, we need to find another integral. It is a simple task to state but
not an easy one to handle to find out that (−2x1 +2p1−p2)dx1 +2x1dp1−x1dp2 = 0,
(−2x1 + 2p1 − p2)dx1 + 2x1dp1 − x1dp2 = d(2x1p1 − x2

1 − x1p2), and, therefore,
2x1p1 − x2

1 − x1p2 is an integral of the Lagrange–Charpit system. From this integral
(with zero constant) and (4.1), we get

P =

(
1 1
1 2

)
,

(
1/2 0
0 0

)
.

The former is a stabilizing solution.
This example illustrates the difficulty of finding all solutions even for the Riccati

equation by means of the method in section 2. Some solutions are obtained rather
easily, and some are not. It would be, then, a natural desire to want to find another
solution by using information from the solution on hand. We try that by using the
generating function of symplectic transforms.

4.1. The generating function of symplectic transforms. In this subsection,
we give a brief introduction to the theory of the generating function of symplectic
transforms.

Let x′1(x, p), . . . , x′n(x, p) be n independent functions defined on a neighborhood
of (0, 0) ∈ T ∗M satisfying {x′k, x′k′} = 0 for 1 � k, k′ � n and∣∣∣∣ ∂(x′1, . . . , x

′
n)

∂(xj1 , . . . , xjn−l , pi1 , . . . , pil)

∣∣∣∣ (0, 0) �= 0(4.2)

for subsets I = {i1, . . . , il} and J = {j1, . . . , jn−l} of {1, . . . , n} with I ∩ J = φ. By
the implicit function theorem,{

pi = hi(x
′, xI , pJ) (i ∈ I),

xj = hj(x
′, xI , pJ) (j ∈ J)

where xI = (xi1 , . . . , xil) and pJ = (pj1 , . . . , pjn−l). Since Λ = {(x, p) |x′1 = · · · =
x′n = 0} is a Lagrangian submanifold, it follows that

0 =

n∑
k=1

dxk ∧ dpk
∣∣∣∣∣
Λ

=


∑
i∈I

dxi ∧ dhi +
∑
j∈J

dhj ∧ dpj


∣∣∣∣∣∣
Λ

,

which implies

∂hi
∂xµ

=
∂hµ
∂xi

,
∂hi
∂pj

= −∂hj
∂xi

,
∂hj
∂pν

=
∂hν
∂pj

(i, µ ∈ I; j, ν ∈ J).(4.3)

These guarantee the existence of a function Φ(x′, xI , pJ) that satisfies


∂Φ

∂xi
= hi (i ∈ I),

∂Φ

∂pj
= −hj (j ∈ J)

(see [19] for a proof).
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Now define a function

Ω(x′, xI , pJ) = Φ(x′, xI , pJ) + ψ(x′) +
∑
j∈J

xjpj ,

with an arbitrary function ψ(x′). Then

n∑
k=1

pkdxk − dΩ =

n∑
k=1

pkdxk −
∑
i∈I

hidxi +
∑
j∈J

hjdpj

−
n∑
k=1

∂(Φ + ψ)

∂x′k
dx′k − d


∑
j∈J

xjpj




=−
n∑
k=1

∂(Φ + ψ)

∂x′k
dx′k

shows that the transformation defined by

x′k = x′k(x, p),

p′k = −∂(Φ + ψ)

∂x′k
(x′(x, p))

(1 � k � n)

is a symplectic transform because
∑n
k=1 dpk ∧ dxk =

∑n
k=1 p

′
k ∧ dx′k.

Conversely, if a transformation x′ = x′(x, p), p′ = p′(x, p) is symplectic, then
{x′k, x′k′} = 0 for 1 � k, k′ � n. Also, it can be shown that there exist subsets
I = {i1, . . . , il} and J = {j1, . . . , jn−l} with I∩J = φ such that (4.2) holds. Therefore,
there exists a function Φ(x′, xI , pJ) such that

∣∣∣∣ ∂2Φ

∂(xI , pJ)∂x′

∣∣∣∣ �= 0,



pi =

∂Φ

∂xi
, xj = − ∂Φ

∂pj
(i ∈ I; j ∈ J),

p′k = − ∂Φ

∂x′k
(k = 1, . . . , n).

See [17, 19] for details of the generating function of symplectic transforms.

4.2. Realization of the entire structure of (HJ) using the generating
function of symplectic transforms. Motivated by Example 1, we propose the
method of obtaining other solutions from one solution. This is done by clarifying
the whole structure of the Hamilton–Jacobi equation that determines the rest of the
solutions. The role of the generating function of symplectic transforms is significant.
Theorem 4.1. Let z(x) be a solution of (HJ) defined on a neighborhood of 0 ∈M

and x′k = pk − pk(x) for 1 � k � n. Suppose there exists a solution z′′(x′) around
x′ = 0 to the auxiliary equation

x′T f∗(p′′)− 1

2
x′TR(p′′)x′ = 0,(4.4)

where p′′k = ∂z′′/∂x′k (1 � k � n) and f∗(x) = f(x)−R(x)p(x). Then, together with
x′k(x, p) (1 � k � n), the functions p′1(x, p), . . . , p′n(x, p) defined by

p′k(x, p) = −xk + p′′k(x′(x, p)) = −xk +
∂z′′

∂x′k
(x′(x, p)), 1 � k � n,
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form a symplectic transform

α :



x′k = pk − pk(x),

p′k = −xk +
∂z′′

∂x′k
(x′(x, p))

(1 � k � n),(4.5)

and the Hamiltonian vector field XH leaves the submanifold Λ+ = {(x, p) | p′1 = · · · =
p′n = 0} invariant.

Proof. We note that (4.2) holds for I = {1, . . . , n}. Define a function Φ(x′, x) =∑n
k=1 x

′
kxk + z(x). Then it satisfies

∂Φ

∂xk
= x′k + pk(x), 1 � k � n.

Therefore, from the theory of the generating function of symplectic transforms, (4.5)
is a symplectic transform for an arbitrary function z′′(x′). Next we determine z′′ so
that Λ+ is invariant for XH ; in other words, XH ·p′k|p′1=···=p′n=0 = 0 for 1 � k � n.

This is equivalent to

{H, p′k}|p′1=···=p′n=0 = 0 (1 � k � n).

Rewrite H(x, p) in (x′, p′) coordinates as

H(x, p) = (x′ + p(x))T f(x)− 1

2
(x′ + p(x))TR(x)(x′ + p(x)) + q(x)

= p(x)T f(x)− 1

2
p(x)TR(x)p(x)p(x) + q(x)

+ x′T f(x)− x′TR(x)p(x)− 1

2
x′TR(x)x′

= x′T f∗(−p′ + p′′(x′))− 1

2
x′TR(−p′ + p′′(x′))x′,

where we used the relation (HJ). Denote { , }′ the Poisson bracket with respect to
(x′, p′) coordinates. Then {·, ·} = {·, ·}′ because α : (x, p) �→ (x′, p′) is a symplectic
transform. Therefore,

{H, p′k}|p′1=···=p′n=0 = 0 (1 � k � n)

⇔ {H, p′k}′|p′1=···=p′n=0 = 0 (1 � k � n)

⇔ ∂H

∂x′k

∣∣∣∣
p′1=···=p′n=0

= 0 (1 � k � n)

⇔ ∂

∂x′

{
x′T f∗(p′′(x′))− 1

2
x′TR(p′′(x′))x′

}
= 0

⇔ x′T f∗(p′′(x′))− 1

2
x′TR(p′′(x′))x′ = const .

Substituting x′ = 0 into the last equation yields (4.4).
Remark. Let us interpret Theorem 4.1 in the linear case. Let P be a symmetric

solution of (RIC). Then

Ham

(
I
P

)
=

(
I
P

)
E1
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for E1 = A−RP . It can be verified that(
x′

p′

)
=

(
p− Px
−x + Sx′

)
=

(
p− Px

Sp− (SP + I)x

)

is a symplectic transform for any symmetric S. Also, a direct computation shows that
T =

(
I S
P PS+I

)
satisfies TTJT = J . (That is, T is symplectic.) If S is a solution of

the Lyapunov equation

E1S + SET1 = R,(4.6)

which corresponds to (4.4), then it follows that

Ham

(
S

PS + I

)
= −

(
S

PS + I

)
(A−RP )T

from (RIC) and (4.6). This means that (3.1) holds for

T =

(
I S
P PS + I

)
, E1 = A−RP, E2 = −(A−RP )T = −ET1 .

What we did here was to obtain T3 and T4 (that is, to establish the second half of
(3.1)) from a solution (the first half of (3.1)) by means of solving (4.6).

Example 1 (continued). The stabilizing solution of (4.1) can be obtained more

easily by following the method in Theorem 4.1. The solution P = ( 1/2+c−c2/2 c
c 0

)

was not a stabilizing solution. Let c = 1 for the sake of simplicity. Then f∗(x) =
(−x1, x2), x′1 = p1 − x1 − x2, and x′2 = p2 − x1. The auxiliary equation (4.4) is

−x′1p′′1 + x′2p
′′
2 −

1

2
x′2

2
= 0,

and the Lagrange–Charpit system is

dx′1
−x′1

=
dx′2
x′2

=
dp′′1
p′′1

=
dp′′2

x′2 − p′′2
.

From the equation for the first and third parts, the integral x′1p
′′
1 is found, and we

have p′′1 = 0 and p′′2 = 1
2x

′
2. Thus, from (4.5),

p′1 = −x1 + 0 = −x1,

p′2 = −x2 +
1

2
x′2 =

1

2
p2 − 1

2
x1 − x2.

Note that

dx′1 ∧ dp′1 + dx′2 ∧ dp′2
= (dp1 − dx1 − dx2) ∧ (−dx1) + (dp2 − dx1) ∧

(
1

2
dp2 − 1

2
dx1 − dx2

)
= dx1 ∧ dp1 + dx2 ∧ dp2,

and the submanifolds {x′1 = 0}, {x′2 = 0}, {p′1 = 0}, and {p′2 = 0} are invariant for
XH′ . The stabilizing solution is obtained from {x′1 = p′2 = 0}.
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Equation (3.1) suggests that Ham can be decomposed into two parts E1 and
E2 by a similarity transformation. Also, in the remark after Theorem 4.1, if P is
a stabilizing solution, then E1 is a stable matrix, and, therefore, so is −E2. This
is a consequence from the well-known property of Ham that if λ is an eigenvalue
of Ham, then so is −λ, which can be verified from HamJ + JHam = 0. Are these
properties of the Riccati equation carried over to the Hamilton–Jacobi equation? More
specifically, is it possible to find a coordinate system in which XH is decomposed into
two noninteracting subsystems? And if z(x) is a stabilizing solution and the conditions
in Theorem 4.1 are fulfilled, is one of the subsystems of XH in the new coordinates
asymptotically stable and the other asymptotically unstable? The following example
says that the first property may be partially true, but the second is not.

Example 2. The equation

−2p1x
3
1 + 2p2x2 − p2

2 + x4
1 = 0

is of Hamilton–Jacobi type with a nonhyperbolic equilibrium. One still can obtain
a stabilizing solution z(x) = 1

4x
2
1 + x2

2 using the method in section 2. The auxiliary
equation (4.4) associated with this solution is

x′1p
′′
1
3

+ x′2p
′′
2 +

1

2
x′2

2
= 0.

The Lagrange–Charpit system is

dx′1
3x′1p

′′
1
2 =

dx′2
x′2

=
dp′′1
−p′′13 =

dp′′2
−p′′2 − x′2

;

hence p′′1 = 0 and p′′2 = − 1
2x

′
2 are readily obtained from the equation for the second

and fourth parts. The symplectic transform (4.5) is

α :




x′1 = p1 − 1

2
x1,

x′2 = p2 − 2x2,
p′1 = −x1,

p′2 = −1

2
p2.

The push-forward α∗XH of XH by α is

(α∗XH)(x′, p′) = Dα(α−1(x′, p′))XH(α−1(x′, p′)) =




3x′1p
′
2
2

x′2
−p′13

−p′2


 .

It can be seen that (α∗XH)(0, p′) = (0, 0, −x3
1, −x2), so the second half is an asymp-

totically stable vector field. However, the first half of −(α∗XH)(x′, 0) = (0, −x′2, 0, 0)
is not asymptotically stable.
Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied and

p′′(0) = 0. Then the following hold.

(i) (α∗XH)(0, p′) = ( 0
−f∗(−p′) ), which equals ( 0

f∗(x) ) in x coordinates.

(ii) (α∗XH)(x′, 0) = ( f
∗∗(x′)

0
), where

f∗∗(x′) = −
(
∂f∗

∂x

)T
(p′′(x′))x′ +

1

2

(
∂R(x)x′

∂x

)T
(p′′(x′))x′.
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Proof. We first claim that the inverse transformation α−1 of

α :

{
x′ = p− p(x),
p′ = −x + p′′(x′(x, p)) = −x + p′′(p− p(x))

is given by

α−1 :

{
x = p′′(x′)− p′,
p = p(p′′(x′)− p′) + x′.

To see this, one can check that α ◦ α−1 = id(x′, p′) and α−1 ◦ α = id(x, p) by direct
computations. The derivative of α is

Dα(x, p) =


 −∂p

∂x
(x) I

−I − ∂p′′

∂x′
(p− p(x))

∂p

∂x
(x)

∂p′′

∂x′
(p− p(x))


 .

Since z(x) is a solution of (HJ),

∂p

∂x
(x)f(x)− ∂p

∂x
(x)R(x)p(x) +

(
∂f

∂x

)T
(x)p(x)

− 1

2

(
∂R(x)p

∂x

)T
(x)p(x) +

(
∂q

∂x

)T
(x) = 0(4.7)

for all x in a neighborhood of 0 ∈ R
n. Premultiplying

XH(α−1(0, p′)) =


 f(−p′)−R(−p′)p(−p′)
−
(
∂f

∂x

)T
(−p′)p +

1

2

(
∂R(x)p

∂x

)T
(−p′)p(−p′)−

(
∂q

∂x

)T
(−p′)




by Dα(α−1(0, p′)) and using (4.7), the first part of the theorem follows.
The second part of the theorem is proved by premultiplying

XH(α−1(x′, 0))

= XH(p′′(x′), p(p′′(x′)) + x′)

=




f(p′′(x′))−R(p′′(x′))p(p′′(x′))−R(p′′(x′))x′

−
(
∂f

∂x

)T
(p′′(x′))·(p(p′′(x′)) + x′)

+
1

2

(
∂R(x)·(p(p′′(x′)) + x′)

∂x

)T
(p′′(x′))·(p(p′′(x′)) + x′)−

(
∂q

∂x

)T
(p′′(x′))


 ,

by

Dα(α−1(x′, 0)) =


 −∂p

∂x
(p′′(x′)) I

−I − ∂p′′

∂x′
(x′)

∂p

∂x
(p′′(x′))

∂p′′

∂x′
(x′)


 ,

where we use(
∂R(x)p(p′′(x′))

∂x

)T
(p′′(x′))x′ =

(
∂R(x)x′

∂x

)T
(p′′(x′))p(p′′(x′))
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and

f∗(p′(x′))−R(p′′(x′))x′

+
∂p′′

∂x′

{(
∂f∗

∂x

)T
(p′′(x′))x′ − 1

2

(
∂R(x)x′

∂x

)T
(p′′(x′))x′

}
= 0,

which is derived by taking the derivative of (4.4) with respect to x′.
Corollary 4.3. Under the assumptions in Theorem 4.2,

Df∗∗(0) = −Df∗(0)T .

Proof. This follows immediately from Theorem 4.2.
Remark. Theorem 4.2 generalizes the eigenequation (3.1) and the result E2 =

−ET1 in the theory of the Riccati equation (see the remark after Theorem 4.1). It
should also be noted that one can answer the question raised before Example 2 by
the expression of f∗∗ in Theorem 4.2.

5. Concluding remarks. In this paper, the geometric property and structure
of the Hamilton–Jacobi equation have been investigated using symplectic geome-
try. Many fundamental properties of the Riccati equation can be generalized in the
Hamilton–Jacobi equation, and, therefore, the theory of the Hamilton–Jacobi equa-
tion naturally contains that of the Riccati equation.

It should be noted that before the modern linear robust control such as H∞ theory
became a key technology in industry, there was a tremendous amount of research
undertaken on the Riccati equation from an analytical viewpoint as well as a numerical
viewpoint. The lack of applicability of nonlinear control theory up to this time, such
as nonlinear H∞ theory, is mainly due to the lack of understanding of the Hamilton–
Jacobi equation. More research of the Hamilton–Jacobi equation needs to be done for
the development of applicable nonlinear control theory.
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Abstract. We deal with nonlinear dynamical systems, consisting of a linear nominal part plus
model uncertainties, nonlinearities, and both additive and multiplicative random noise, modeled as a
Wiener process. In particular, we study the problem of finding suitable measurement feedback control
laws such that the resulting closed-loop system is stable in some probabilistic sense and a given cost
functional is minimized. We give a Lyapunov-based separation result which splits the control design
into a state feedback problem and a filtering problem. Finally, we point out constructive algorithms
for solving the state feedback and filtering problems with arbitrarily large region of attraction for a
wide class of nonlinear systems, which at least include feedback linearizable systems.

Key words. stochastic nonlinear systems, optimal control, robust stabilization, filtering
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PII. S0363012901375026

1. Introduction. In modeling dynamical systems, the stochastic framework is
suitable for taking into account either randomly varying system parameters or stochas-
tic exogenous inputs. It is important in many practical situations to require, besides
stability in some sense, some optimal and robustness performances, which can be usu-
ally described through a suitable cost functional. These performances may include
tracking errors and physical constraints, due, for example, to control actuators or
sensors with limited range.

According to the existing literature (see [20], [21], [16], [17], [18]; see also the
textbooks [13] and [19]), by stability it is usually meant that

• the probability that the trajectory, stemming from x0, leaves an ε-ball around
the origin goes to zero as x0 tends to the origin;

• the trajectory, stemming from x0, goes asymptotically to zero almost surely.
This stability, known as stability in probability , is either local or global according to
whether x0 is in some (small) neighborhood of the origin or, respectively, it is any
point of the state space. In [13] Lyapunov-based conditions are given for guaranteeing
stability in probability, and they require the solution of partial differential inequalities
(PDIs). In [15] and [17] it has been proved that a step-by-step algorithm (backstep-
ping) can be successfully implemented for globally solving these PDIs whenever the
state is available for feedback and the uncertainties have an upper triangular structure;
by using the same backstepping design, in [16] the problem of global output feedback
stabilization in probability is solved for the following class of nonlinear systems with
triangular structure:

dxi(t) = xi+1(t)dt+ ϕTi (y(t))dw(t), i = 1, . . . , n− 1,

dxn(t) = u(t)dt+ ϕTn (y(t))dw(t),

y(t) = x1(t),(1)
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where w(t) is a Wiener process. Even in a deterministic framework, as shown through
some counterexamples in [11], the class of systems for which global stabilization can
be achieved using output feedback can be only slightly enlarged with respect to (1).
Indeed, as shown in [11], the system

ẋ1(t) = x2(t),

ẋ2(t) = xj2(t) + u(t), j ≥ 3,

y(t) = x1(t)(2)

cannot be globally stabilized by any C0 finite-dimensional output feedback dynamic
controller. On the other hand, the earlier works of Esfandiari and Khalil [8], [9]
have shown that feedback linearizable systems, such as, for example, (2), are instead
semiglobally stabilizable via output feedback. Semiglobal stabilization was introduced
in [4] and requires a local asymptotic stability of the closed-loop system plus a region
of attraction containing any a priori given compact set of the state space. The basic
ingredients for achieving semiglobal stability via output feedback are control satura-
tions and high-gain observers [8], [9], [12]: large values of the observer gain guarantee
that the error between the state and its estimate, generated by the observer itself,
goes to zero “sufficiently fast,” while input saturations rule out destabilizing effects
such as peaking [6], which is a phenomenon occurring when one is trying to force some
state variables to zero as fast as possible, causing an impulsive-like behavior of some
others.

A first objective of our paper is to extend the notion of semiglobal stabilization
to the following class of nonlinear stochastic systems:

dx(t) = (Ax(t) +B2u(t) +B1Φ(t, u(t), x(t)))dt+H(t, x(t))dw(t),

dy(t) = (C2x(t) + C1Φ(t, u(t), x(t)))dt+K(t, x(t))dw(t),(3)

where w(t) ∈ R
s is a Wiener process, u(t) ∈ R

m is the control, x(t) ∈ R
n is the state,

y(t) ∈ R
p are the measurements, and Φ(t, u(t), x(t)) ∈ R

r are model uncertainties and
nonlinearities. The system

ẋ(t) = Ax(t) +B2u(t),

y(t) = C2x(t)(4)

can be understood as a nominal system, i.e., a system under nominal conditions, and
Φ, Kdw, and Hdw are model nonlinearities and parameter uncertainties. We will
not assume any global growth condition on Φ, H, and K as in [1]. Moreover, we will
consider families of admissible controllers

u(t) = η(F (k)σ(t)),

dσ(t) = (L(k)σ(t) +B2u(t))dt+G(k)dy(t), σ ∈ R
n,(5)

for k ∈ R
+ and for some matrices F (k), L(k), andG(k) and C0 function η : R

m → R
m,

linear near the origin. This is a reasonable structure for the controller since near the
origin (3) behaves as its own linearization.

Given numbers α, β ∈ [0, 1) and a pair of compact sets Be ⊂ Ωe containing the
origin, we use the same notion of stabilization in probability ((Ωe,Be, α, β)-SP given in
[3]. This notion requires that for sufficiently large k the trajectories of the closed-loop
system, resulting from (3), with initial condition in Ωe, remain inside some compact
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set Ωe(k) ⊇ Ωe of the state space, eventually enter any given neighborhood of the
target set Be in finite time, and remain therein with probability at least (1−α)(1−β).
The numbers α and β are given risk margins: the first one quantifies the risk of leaving
Ωe(k) with initial condition in Ωe rather than getting close to the target, while the
second one gives a risk margin for remaining close to the target. If Be = {0} and Ωe

can be taken to be any a priori given compact set of the state space and α and β any
numbers in [0, 1), our definition extends to a stochastic setting the notion of semiglobal
stabilization as introduced in [4], and in what follows we will refer to this property as
semiglobal stabilization in probability . If Ωe = R

2n and Be can be taken any a priori
given compact subset of Ωe and α and β any a priori given numbers in [0, 1), our
definition gives a stochastic analogue of the concept of practical stabilization, which
will be referred to as practical stabilization in probability .

As a second step, we define our optimality and robustness criteria. First, we give
a set of admissibility constraints which impose precise characteristics to Φ, H, K, and
η, generally satisfied under mild assumptions. As will be clear, these constraints lead
to an optimal controller (5) in which

u(t) = F (k)σ(t),

dσ(t) = (L(k)σ(k) +B2u(t))dt+G(k)dy(t), σ ∈ R
n,(6)

is a worst-case linear controller for the nominal system with disturbance Φ.
The optimality criteria are formulated in terms of achieving either a guaranteed

value or the minimum value of some cost functionals, according to whether multiplica-
tive or additive noise is taken into account. These functionals penalize the “distance”
from a reference situation for which the worst-case linear controller (6) is designed,
and in the linear case they reduce to a standard quadratic cost (see [18] and [19]
for comparisons with other inverse optimal schemes for deterministic and stochastic
nonlinear systems).

We show that the problem of finding a stabilizing optimal controller can be split
into two lower dimensional problems: one is related to the case in which the state x
is available for feedback and the other to the possibility of constructing an observer
for estimating the state x. Furthermore, we show that the conditions of our theorems
can be actually met with an arbitrarily large region of attraction for a wide class of
nonlinear stochastic systems with noiseless outputs, which include at least feedback
linearizable systems, and we show that control saturations and high gain observers are
instrumental in accomplishing this task exactly as in the case of deterministic systems.
We do this into two steps. First, we give a semiglobal in probability backstepping
design procedure for solving the state feedback problem, which stands as a practical
semiglobal version of the corresponding global result proved in [15] and [17]. On the
other hand, our step-by-step procedure is computationally simpler for the choice at
each step of both the Lyapunov functions and the change of coordinates. Finally, we
give some constructive tools for the observer design.

2. Notation and basic notions. First, we give some notation extensively used
throughout the paper.

• If ‖v‖ denotes the 2-norm of any given vector v, by ‖A‖ we denote the induced
2-norm of any given matrix A; by ‖v‖A we denote the A-norm of v, i.e.,

‖v‖A =
√
vTAv; let col (v1, . . . , vn) be the column vector with the ith entry

equal to vi.
• By SPn (resp., SNn) we denote the set of n × n positive (resp., negative)

definite symmetric matrices; by SSPn we denote the set of n × n positive
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semidefinite symmetric matrices; R
+ denotes the set of positive real numbers

and R
≥ the set of nonnegative real numbers.

• For any vector-valued function η : R
s → R

r, we denote by ηi (or [η]i) its ith
component.

• For any given set S, we denote by S its closure and by ∂S its boundary;
moreover, given δ > 0 and a set S, by δ-neighborhood of S we denote the set
Sδ = {z : infy∈S ‖z − y‖ < δ}.

• For any sequence of sets {Sk}, lim infk→∞ Sk = ∪∞
k=1∩i≥kSi and lim supk→∞ Sk

= ∩∞
k=1 ∪i≥k Si. It is easy to see that if lim infk→∞ Sk ⊃ V, then there exists

k◦ such that Sk ⊇ V for all k ≥ k◦. Similarly, if lim supk→∞ Sk ⊂ V, then
there exists k◦ such that Sk ⊆ V for all k ≥ k◦.

In the remaining part of this section, we briefly recall some notions of stochastic
processes, referring the reader to standard textbooks for the basic concepts [23], [24].
We assume that the reader is familiar with the basic notions of probability theory and
stochastic processes {x(t), t ∈ R} on a given probability space (Ω,F ,P). (We assume
that the probability space and all the σ-algebras we consider are completed with all
the subsets of sets having null measure.) We denote by E{·} the expectation and by
P{·|·} (E{·|·}) the conditional probability (expectation).

An important definition regards the notion of Markov time. Let {Ft, t ∈ R} be
an increasing family of right continuous σ-algebras contained in F (filtration).

Definition 2.1. A nonnegative random variable τ , τ ≤ +∞, is called an Ft

Markov time if for all t ≥ 0 {ω : τ(ω) ≤ t} ∈ Ft (i.e., it is Ft adapted). If P{τ <
∞} = 1, then τ is called a stopping time.

A stochastic process {x(t), t ∈ R} is a Wiener process (with respect to {Ft, t ∈ R})
if E{x(t)|Fs} = x(s) and E{(x(t)− x(s))2|Fs} = t− s for t ≥ s. A stochastic process
{x(t), t ∈ R} is a Markov process if for any collections t1 < · · · < tN and r1, . . . , rN ,

P{xtN < rN |xt1 = r1, . . . , xtN−1
= rN−1} = P{xtN < rN |xtN−1

= rN−1}.(7)

For the corresponding definitions in the multidimensional case, we refer to [25].
By a stochastic differential equation, we mean the following equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dw(t)(8)

with initial condition x(t0) = x, where {w(t), t ∈ R} is a Wiener process (with respect
to {Ft, t ∈ R}). The solution x(t, t0, x) of (8), whenever it exists, is a Markov process
satisfying

x(t, t0, x) = x+

∫ t

t0

f(x(s, t0, x), s)ds+

∫ t

t0

g(x(s, t0, x), s)dw(s)(9)

almost surely (a.s.). The last integral is called the Itô integral. It is well known [13]
that if

‖f(t, x1) − f(x2, t)‖ + ‖g(t, x1) − g(t, x2)‖ ≤ K‖x1 − x2‖,
‖f(t, x)‖ + ‖g(t, x)‖ ≤ H(1 + ‖x‖)(10)

for all (x1, t), (x2, t), and (x, t) in Z× [t0, T ], with Z a compact set containing x, then
there exists an a.s. unique stochastic process x(t), sample continuous and satisfying
(9) on [t0, τZ,T (t)], where τZ,T (t) = min(t, τZ , T ) and τZ is the Markov time (relative
to the σ-algebra generated by {x(s), s ≤ t}) defined as the first time at which x(t)
reaches the boundary of Z [13].
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An important property of solutions of stochastic differential equations is regu-
larity. Consider a sequence of increasing bounded domains {Z(n)}, containing the
origin, such that the distance of the boundary from the origin goes to infinity as
n tends to infinity, and let {τZ(n)} be the corresponding sequence of Markov times.
Since {τZ(n)} is nondecreasing, its limit exists. We will say that the solution is regular
if limn→∞ τZ(n) = ∞ a.s. Any regular solution can be uniquely (a.s.) extended for all
t ≥ t0.

Any solution x(t) of (8) satisfies the following strong Markov property [24]:

P{x(t+ τ, t0, x) ∈ A}
=

∫
P{τ ∈ ds; x(τ, t0, x) ∈ dz}P{x(t+ τ, s, z) ∈ A},(11)

where τ is any given Markov time (relative to the σ-algebra generated by {x(s), s ≤
t}). In (11) we can substitute P{·} with its conditioned version P{·|·} as long as
P{·|·} is regular, i.e., it is a function p(ω,A), measurable for each fixed A and a
probability for each fixed ω [24].

From now on, we will denote x(t, t0, x), if not otherwise stated, simply by x(t).
Given a C2 (measurable) function V : R

n → R, define

LV (x) =
∂V

∂x
(x)f(x, t) +

1

2
Tr

{
gT (x, t)

∂2V

∂x2
(x)g(x, t)

}
.(12)

Proposition 2.1 (Dynkin’s formula). Let x ∈ Z a.s. The solution x(t) of (8)
satisfies on [t0, τZ,T (t)] the following equation:

E{V (x(τZ,T (t)))} − V (x) = E

{∫ τB,T (t)

t0

LV (x(s))ds

}
.(13)

The integral appearing in the right-hand side of (13) is meant in the sense that

∫ τZ,T (t)

t0

LV (x(s))ds =

∫ t

t0

ξτZ,T>tLV (x(s))ds,

where ξτZ,T>t is the indicator function corresponding to the event {τZ,T > t}.

Also, we will use extensively the following (generalized) C̆ebys̆ev inequality :

P{η /∈ S} ≤ E{V (η)}
infs∈Rn\S{V (s)} ,(14)

where S ⊂ R
n, V (·) is real nonnegative, and η is a given random variable such that

E{V (η)} exists. Finally, we recall the following fundamental formula of the differential
calculus.

Proposition 2.2 (Itô’s rule). Given a C2 function ϕ : R
n → R and if x(t) is a

solution of (8), then

dϕ(x(t)) =
∂ϕ

∂x
(x(t))dx(t) +

1

2
Tr

{
gT (x(t), t)

∂2ϕ

∂x2
(x(t))g(x(t), t)

}
dt.(15)
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3. Main motivations. To understand some key points of the forthcoming re-
sults, we illustrate some known facts under the assumptions that Φ, H, and K are
bounded by a linear function. In particular, we consider the problem of stabilizing
(3) under the assumption that H =

∑s
j=1Hjx and

‖Φ(t, u, x)‖2 ≤ ‖x‖2
E + ‖u‖2

R1

γ2
(16)

for all x, u, and t and for some E ∈ SSPn, R1 ∈ SPm, and γ > 0.
First, assume that the state vector x is available for feedback. Assume also the

existence of PSF , QSF ∈ SPn such that

ATPSF +PSFA+PSF

(
1

γ2
B1B

T
1 −B2R

−1
1 BT

2

)
PSF +E+

s∑
j=1

HT
j PSFHj = −QSF .

(17)
Let VSF (x) = ‖x‖2

PSF
and F = −R−1BT

2 PSF . Let us pretend that Φ is an “external”

disturbance such that
∫∞
0

E{‖Φ‖2}dt <∞. Along the trajectories of the system

dx = (Ax+B2u+B1Φ)dt+Hdw(18)

by (17)

LVSF + ‖x‖2
E + ‖u‖2

R1
− γ2‖Φ‖2

= ‖u− Fx‖2
R1

− γ2‖Φ − Φ∗‖2 − ‖x‖2
QSF ,(19)

where Φ∗ = 1
γ2B

T
1 PSFx is the worst-case disturbance [14], since it maximizes the

left-hand part of (19).
By taking the expectations in (19) and integrating between [0,∞), it follows that

the L2 gain of the closed-loop system (18), with u = Fx, from any Φ to

z =
√
‖x‖2

E + ‖u‖2
R1
,(20)

is less than or equal to γ [14] or, in other words, the admissible controller u = Fx
attains for (18) a guaranteed level of attenuation γ (in terms of the expectation of
energy) of the effect of Φ over the “cost” z. On the other hand, since ‖x‖2

E + ‖u‖2
R1

≥
γ2‖Φ(t, u, x)‖2 for all t, u, x by (16), it follows from (19) that the trajectories of (3),
with u = Fx, tend to zero as t → ∞ in the quadratic mean and, therefore, in
probability.

When the state vector x is not available for feedback, we should replace x by some
estimate. To this aim, assume B1C

T
1 = 0, K =

∑s
j=1Kjx the existence of R2 ∈ SPp,

with R2 ≥ C1C
T
1 , and Pm, Qm ∈ SPn such that

(
A+

1

γ2
B1B

T
1 PSF

)T
Pm + Pm

(
A+

1

γ2
B1B

T
1 PSF

)
+

1

γ2
PmB1B

T
1 Pm

+ FTR1F − γ2CT
2 R

−1
2 C2 = −Qm(21)

and

QSF −
s∑

j=1

(Hj −GKj)
TPm(Hj −GKj) > 0,(22)
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where G = γ2P−1
m CT

2 R
−1
2 .

Along the trajectories of

dx = (Ax+B2u+B1Φ)dt+Hdw,

dσ =

((
A+

1

γ2
B1B

T
1 PSF −GC2

)
σ +B2u

)
dt+Gdy,

dy = (C2x+ C1Φ)dt+Kdw,(23)

with G = γ2P−1
m CT

2 R
−1
2 and e = x− σ, we obtain

LVm + ‖Fe‖2
R1

− γ2‖Φ − Φ∗‖2 = −‖e‖2
Qm +

s∑
j=1

xT (Hj −GKj)
TPm(Hj −GKj)x

− γ2‖Φ − Φe
∗‖2,(24)

where Φe
∗ = 1

γ2 (B1 −GC1)TPme+ 1
γ2B

T
1 PSFx. Summing up (19) and (24),

LVSF + LVm + ‖x‖2
E + ‖u‖2

R1
− γ2‖Φ‖2

= ‖u− Fx‖2
R1

− ‖Fe‖2
R1

− ‖x‖2
QSF−

∑s

j=1
(Hj−GKj)TPm(Hj−GKj) − ‖e‖2

Qm

− γ2‖Φ − Φe
∗‖2.(25)

Note that Φe
∗ is the worst-case disturbance for (23) since it maximizes the left-hand

part of (25).
By taking the expectations in (25) and integrating between [0,∞), it follows that

the L2 gain of (23), with u = Fσ, from any Φ such that
∫∞
0

E{‖Φ‖2}dt <∞ to (20)
is less than or equal to γ [14]. Since ‖x‖2

E + ‖u‖2
R1

≥ γ2‖Φ(t, u, x)‖2 for all t, u, x
by (16), it follows from (25) that the trajectories of (3) together with the admissible
controller

u = Fσ,

dσ =

((
A+

1

γ2
B1B

T
1 PSF −GC2

)
σ +B2u

)
dt+Gdy(26)

tend to zero as t→∞ in the quadratic mean and, therefore, in probability [1], [14].
Besides asymptotic stability in the quadratic mean, it is possible to require some

optimal performances. In particular, assume that K = 0 and that CT
1 C1 is nonsingu-

lar, and define the following cost functional:

J = lim
T→∞

∫ T

t0

2∑
j=1

E{Wj(t, u(t), x(t), e(t))}dt,(27)

where

W1(t, u, x, e) = W̃1(t, u, x, e) + γ2‖Φ(t, u, x) − Φe
∗‖2,

W̃1(t, u, x, e) = −γ2‖Φ(t, u, x)‖2 + ‖x‖2
E + ‖u‖2

R1
,

W2(t, u, x, e) = ‖e‖2
Qm(k) + ‖x‖2

QSF−
∑s

j=1
(Hj−GKj)TPm(Hj−GKj).(28)

Note that the term W1(t, x, e) penalizes the distance of Φ from a worst-case situation,
with respect to which the H∞ controller is designed, and the term W2(t, x, e) repre-
sents a parametric quadratic cost. By using standard arguments, it is possible to prove
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that F = −R−1
1 BT

2 PSF and G = γ2P−1
m CT

2 R
−1
2 characterize the optimal controller

within the class (26). Indeed, from (25) and with V e = VSF + Vm and xe = (x, σ)

LV e(xe) +

2∑
j=1

Wj(t, u, x, e) = 0.(29)

From Dynkin’s formula and (29)

E{V e(xe(t))} − V e(xe0) = −
∫ t

t0

E




2∑
j=1

Wj(t, u(t), x(t), e(t))


 ds.(30)

Differentiating both sides of (30), since V e is a quadratic function of x and e and by

(22) and (28)
∑2

j=1 Wj(t, u, x, e) is lower bounded by a quadratic function of x and

e, we obtain for some λ̃, ν̃ > 0

E{V e(xe(t))} ≤ λ̃V e(xe0)e−ν̃(t−t0).(31)

We conclude that E{V e(xe(t))} → 0 as t → ∞ and from (30), with t → ∞, J =
V e(x0).

Since

LV e +

2∑
j=1

E{Wj(t, u, x, e)} ≥ 0(32)

for any other F andG, we conclude that J achieves its minimum with F = −R−1
1 BT

2 PSF
and G = γ2P−1

m CT
2 R

−1
2 [1], [14].

In the case that Φ, H, and K contain some nonlinear term as, for example, in

dx1(t) = x2(t)dt,

dx2(t) = (x3
2(t) + u(t))dt+ x2

1(t)dw,

y(t) = x1(t),(33)

(16) cannot be satisfied for all t, u, and x by some constant E, and known results
in the literature do not apply. However, (16) can be still satisfied on some compact
set of the state space for some E, provided the trajectories are ensured to stay in
this compact set (and eventually approach a given target set) at least with some
guaranteed probability. These requirements are well represented by the notion of
semiglobal stability in probability, introduced in [3]. Moreover, since in (33) both
additive and multiplicative noise affects the system, the cost functional J is no longer
suitable, and a time average version of that functional should be considered (for the
state feedback case, see the work of [15]). All of these facts will be discussed in detail
in the next section.

4. Problem formulation. Let us consider nonlinear stochastic systems Σ of
the form (3), where x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p, w(t) is an s-dimensional Wiener
process, and Φ(t, u(t), x(t)) ∈ R

r represents model uncertainties and nonlinearities.
The discussion in section 3 suggests considering as the class of candidate controllers
{C(k)}

u = η(F (k)σ),

dσ = (L(k)σ +B2u)dt+G(k)dy, σ ∈ R
n,(34)



1946 S. BATTILOTTI AND A. DE SANTIS

with

L(k) = A+
1

γ2(k)
B1B

T
1 PSF (k) −G(k)C2(35)

for some sequence of real positive extended numbers {∆(k)}, k ∈ R
+, matrices {F (k)}

and {G(k)}, positive numbers {γ(k)}, and symmetric positive definite matrices{PSF (k)}
and η : R

m → R
m any C0 function such that

‖η(s)‖ ≤ ∆(k) ∀s,(36)

η(s) = s, ‖s‖ ≤ s0,(37)

for some s0 > 0. In other words, any candidate controller is the composition of a
linear controller with a static nonlinearity η, which is bounded by ∆(k) (unbounded if
∆(k) = ∞) and it is the identity function near the origin. While η(s) is designed in
such a way to counteract the destabilizing effects due to large values of G(k) (peaking),
∆(k) accounts for possible limitations on the control u (as an example, saturations of
the control actuators).

For the stability analysis of the closed-loop system (3)–(34), we also define a class
of candidate Lyapunov functions {V e

k }
V e
k (x, σ) = ‖x‖2

PSF (k) + ϕ(‖x− σ‖2
Pm(k)),(38)

where {Pm(k)} is a sequence in SPn and ϕ : R
≥ → R is any (at least) C2, positive

definite and proper function such that

∂2ϕ

∂s2
(s) ≤ 0 <

∂ϕ

∂s
(s) ≤ 1(39)

for all s ≥ 0. Conditions (39) imply that over any compact set containing the origin
any candidate Lyapunov function is bounded from below and above by a quadratic
function, and, as will be clear in the next sections, the function ϕ is instrumental in
enlarging the region of attraction of the closed-loop system.

Next we define some admissibility constraints for the noise coefficients H and K
and for the uncertainty term Φ. To this aim, define the following compact sets:

Ω(k) = {x ∈ R
n : ‖x‖2

PSF (k) ≤ k},
U∆(k) = {u ∈ R

m : ‖u‖ ≤ ∆(k)}.(40)

Let {E(k)}, {R1(k)}, and {c1(k)} be sequences in SSPn, SPm, and R
≥, respec-

tively. Define

Φe
∗ =

1

γ2(k)

[
BT

1 PSF (k)x+
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm(k)

(B1 −G(k)C1)TPm(k)e)

]
,

P̃1(t, u, x, e, k) = −γ2(k)‖Φ(t, u, x)‖2 + ‖x‖2
E(k) + ‖u‖2

R1(k)
+ c1(k),

P1(t, u, x, e, k) = P̃1(t, u, x, e, k) + γ2‖Φ(t, u, x) − Φe
∗‖2,(41)

and let F(k) be the class of C0 functions Φ : R × R
m × R

n → R
r such that

P̃1(t, u, x, e, k) ≥ 0 for all t, u ∈ U∆(k), x ∈ Ω(k), and e ∈ R
n. Note that Φe

∗ is
the uncertainty Φ which maximizes LV e

k − γ2‖Φ‖2 along the trajectories of

dx = (Ax+B2η(F (k)σ) +B1Φ)dt+Hdw,

dσ = (L(k)σ(k) +B2η(F (k)σ))dt+G(k)dy,(42)
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or, in other words, it is the worst-case uncertainty for the closed-loop system (see
section 3). Note also that P1 penalizes the distance of Φ from being the worst-
case uncertainty Φe

∗ and, at the same time, from being a linear (parametrized by
k) function of x and u over the sets Ω(k) and U∆(k), which represent a worst-case
situation with respect to which the matrices F (k) and G(k) are designed according
to an H∞ strategy.

Let {Ĥj(k)}, j = 1, . . . , s, be a sequence in R
n×n, and let {c2(k)} be a sequence

in R
≥. Define

P2(t, u, x, e, k) = −Tr{HT (t, x)PSF (k)H(t, x))}

+

s∑
j=1

xT ĤT
j (k)PSF (k)Ĥj(k)x+ c2(k).(43)

Let H(k) be the class of C0 functionsH : R×R
n → R

n×s such that P2(t, u, x, e, k)
≥ 0 for all t ≥ 0, u ∈ U∆(k), x ∈ Ω(k), and e ∈ R

n. Note that P2 penalizes the distance
of Tr{HT (t, x)PSF (k)H(t, x))} from a sum of quadratic functions over the sets Ω(k)
and U∆(k). Since Ω(k) and U∆(k) are compact sets, the admissibility constraints on

P̃1 and P2 can be always met whenever Φ and H are locally Lipschitz, uniformly with
respect to t (compare with [1]).

Let {Qm(k)} and {c3(k)} be sequences in SPn and R
≥, respectively, and let

M(t, x, k) = H(t, x) −G(k)K(t, x).(44)

Define K(k) and D(k) as the class of C0 functions K : R × R
n → R

p×s and, respec-
tively, the class of pairs of C0 functions η : R

m → R
m and ϕ : R

≥ → R satisfying
(36), (37), and (39) and such that

P3(t, u, x, e, k) = −‖η(F (k)(x− e)) − F (k)x‖2
R1(k)

+ ‖x‖2
QSF (k) + c3(k)

+
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm(k)

[‖F (k)e‖2
R1(k)

+ ‖e‖2
Qm(k)

−Tr{MT (t, x, k)Pm(k)M(t, x, k))}] > 0(45)

for all (x, e) ∈ (Ω(k)×R
n)\(0, 0). Note that c1(k), c2(k), and c3(k) take into account

additive noise and nonzero equilibrium points.
Finally, let

P4(t, u, x, e, k)

=
1

γ2(k)

∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm(k)

[(
1 − ∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm(k)

)

× eTPm(k)(B1 −G(k)C1)(B1 −G(k)C1)TPm(k)e

+ eTPm(k)G(k)(R2(k) − C1C
T
1 )GT (k)Pm(k)e

]

− ∂2ϕ

∂s2

∣∣∣
s=‖e‖2

Pm(k)

eTPm(k)M(t, x, k)MT (t, x, k)Pm(k)e(46)

for some sequence {R2(k)} in SPp such that R2(k) ≥ C1C
T
1 . Note that, by (39), (46)

is nonnegative for all e ∈ R
n, and if C1C

T
1 is nonsingular, then we can take directly
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R2(k) = C1C
T
1 . Note also that P4 penalizes the distance from the situation for which

ϕ is linear (i.e., quadratic Lyapunov functions) and R2(k) = C1C
T
1 .

In what follows, we will refer to Φ ∈ F(k), H ∈ H(k), K ∈ K(k), and (η, ϕ) ∈
D(k) as admissible functions. Moreover, any choice of {PSF (k)}, {Pm(k)}, {QSF (k)},

{Qm(k)}, {R1(k)}, {R2(k)}, {γ(k)}, {∆(k)}, {E(k)}, {cj(k)}, j = 1, 2, 3, {Ĥj(k)},
j = 1, . . . , s, for which Φ ∈ F(k), H ∈ H(k), and K ∈ K(k) will be referred to as
admissible parametrization.

Denote by xek(t, t0, x
e
0) = col(xk(t, t0, x

e
0), σk(t, t0, x

e
0)) the trajectory of the closed-

loop system Σ◦C(k) at time t ≥ t0 stemming from xe0 = col(x0, σ0). With some abuse
of notation, wherever there is no ambiguity, we will use xek(t) instead of xek(t, t0, x

e
0).

Moreover, let ek(t) = xk(t) − σk(t).
Our goal is to find an admissible parametrization which minimizes the expecta-

tion of the sum of the Pj ’s: this corresponds to achieving semiglobal inverse optimality
with respect to a “reference” system for which a worst-case linear controller can be
designed. At the same time, local optimality is guaranteed since the closed-loop sys-
tem behaves locally as its reference system. To this aim, we introduce two sequences
of cost functionals {Jh(k)}, h = 1, 2, defined as follows:

J1(k) = lim
T→∞

1

T − t0

∫ T

t0

E




4∑
j=1

Pj(t, u(t), xk(t), ek(t), k)


 dt(47)

and

J2(k) = lim
T→∞

∫ T

t0

E




4∑
j=1

Pj(t, u(t), xk(t), ek(t), k)


 dt.(48)

Note that Jh(k) ≥ 0, h = 1, 2, for any Φ ∈ F(k), H ∈ H(k), K ∈ K(k),
and (η, ϕ) ∈ D(k). While J1(k) is more suitable in the case of both additive and
multiplicative noise, J2(k) is not suitable for the case of additive noise, since the
constant cj(k) &= 0 for at least one j would cause J2(k) to diverge.

The aim of this paper is to study under which conditions it is possible to modify
the behavior of (3) in such a way that J1(k) achieves a guaranteed value (resp., J2(k)
achieves its minimum) and to obtain stability in some “stochastic” sense. To make
the last point precise, let us give the following definition.

Definition 4.1. Let α, β ∈ [0, 1) and Ωe,Be ⊂ R
2n be compact sets. The system

(3) is said to be (Ωe,Be, α, β)-stabilizable in probability (or (Ωe,Be, α, β)-SP) if there
exist a sequence of admissible control laws {C(k)}, a sequence of compact sets {Ωe(k)},
and open sets {Be(k)} of R

2n such that
(i) lim infk→∞ Ωe(k) ⊃ Ωe ⊃ Be ⊇ lim supk→∞ Be(k);
(ii) for each δ > 0 and Φ ∈ F(k),

lim inf
k→∞

inf
xe0∈Be(k)

P{xek(t) ∈ Beδ ∀t ≥ t0} ≥ 1 − β;(49)

(iii) for each δ > 0 and Φ ∈ F(k),

lim inf
k→∞

inf
xe0∈Ωe\Be(k)

P{xek(t) ∈ Ωe(k) ∀t ≥ t0
and xek(t+ τR2n\Be(k)) ∈ Beδ ∀t ≥ 0

and τR2n\Be(k) <∞} ≥ (1 − α)(1 − β).(50)
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Note that the events in (49) and (50) are measurable by separability and measur-
ability (on the product σ-algebra F × I, where I is the Borel σ-algebra on the line)
of the process xek(t) and by being {τR2n\Be(k) ≤ t} adapted to the σ-algebra generated
by {xek(s), s ≤ t}.

The set Ωe gives the guaranteed region of attraction of the closed-loop system
Σ ◦ C(k), while Be represents the target set. From (i) it follows that there exists k◦

such that Ωe(k) ⊃ Ωe ⊃ Be ⊃ Be(k) ⊂ Beδ for all k ≥ k◦. Property (ii) is a local
property with respect to Be: for each δ-neighborhood of Be, there exists sufficiently
large k◦ for which the probability that the trajectories xek(t) of the closed-loop system

Σ◦C(k), starting from Be(k), stay forever in Beδ is at least 1−β for all k ≥ k◦. Property
(iii) is a property in the large with respect to Ωe: there exists sufficiently large k◦ for
which the trajectories of Σ ◦ C(k) starting inside Ωe remain inside Ωe(k), eventually
enter any given δ-neighborhood of the target set Be in finite time, and remain therein
with probability at least (1−α)(1−β) for all k ≥ k◦. The numbers α and β are given
risk margins: the first one quantifies the risk of leaving the compact set Ωe(k) with
initial condition in Ωe rather than getting close to the target, while the second one
gives a risk margin for remaining close to the target. Note also that (iii) requires that
τR2n\Be(k) <∞. As will be clear in the next section, under the standard assumptions
of local existence and uniqueness a.s. of trajectories, each Markov time τR2n\Be(k),
conditioned to xk(t) ∈ Ωe(k) for all t ≥ t0, is always finite and τR2n\Be(k) → ∞
as k → ∞ as long as lim supk→∞ Be(k) = {0}. In particular, this implies that, if
Be = {0}, the trajectory approaches the origin as t→∞.

The roles of the risk margins, region of attraction, and target set are peculiar of
our setup and become unessential in the classical definitions given in [13]. If Be = {0},
α = β = 0, and {C(k)} = C for all k, Definition 4.1 recovers the classical definition of
asymptotic stability in probability [13]. If in addition Ωe = R

2n, Definition 4.1 gives
the notion of asymptotic stability in probability in the large [13]. On the other hand,
if Be = {0} and Ωe can be taken to be any a priori given compact set of R

2n and α
and β any a priori given numbers in [0, 1), our definition gives a stochastic analogue
of the concept of semiglobal stabilization, as introduced in [4]. If Ωe = R

2n and Be
can be taken to be any a priori given compact set of R

2n and α and β any a priori
given number in [0, 1), Definition 4.1 extends to a stochastic setting the concept of
practical stabilization.

All of the above remarks can be straightforwardly extended to the definition of
stability in the quadratic mean.

We are ready to formulate our problems.

Problem I: Nonlinear stabilization in probability with guaranteed cost.
Let Φ ∈ F(k), H ∈ H(k), K ∈ K(k), Be ⊂ Ωe be compact sets of R

2n, α, β ∈ [0, 1),
xe0 ∈ Ωe and {ω(k)} a given sequence in R

≥. Find an admissible parametrization and
(η, ϕ) ∈ D(k) such that

• (guaranteed cost) along the trajectories of the closed-loop systems Σ ◦ C(k),

lim inf
k→∞

Pr{J1(k) ≤ ω(k)} ≥ (1 − α);(51)

• (stability) Σ ◦ C(k) is (Ωe,Be, α, β)-stable in probability.

Problem II: Nonlinear stabilization in quadratic mean with optimality.
Let Φ ∈ F(k), H ∈ H(k), K ∈ K(k), Be ⊂ Ωe be compact sets of R

2n, α, β ∈ [0, 1),
xe0 ∈ Ωe. Find an admissible parametrization and (η, ϕ) ∈ D(k) such that
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• (optimality) along the trajectories of the closed-loop systems Σ ◦ C(k),

lim inf
k→∞

Pr{J2(k) ≤ J̃2(k)} ≥ (1 − α),(52)

where J̃2(k) is the value of J2(k) corresponding to any other admissible
parametrization;

• (stability) Σ ◦ C(k) is (Ω, {0}, α, 0)-stable in the quadratic mean.

5. Main results. Let

H(t, x) = (H1(t, x) · · ·Hs(t, x) ) ,

K(t, x) = (K1(t, x) · · ·Ks(t, x) ) ,(53)

and, without loss of generality, assume that B1C
T
1 = 0 and H(t, x)KT (t, x) = 0 for

all x and t.
Theorem 5.1. Assume that there exist an admissible parametrization and (η, ϕ) ∈

D(k) such that
• (state feedback (SF))

ATPSF (k) + PSF (k)A+
1

γ2(k)
PSF (k)B1B

T
1 PSF (k) + E(k)

− FT (k)R1(k)F (k)

+

s∑
j=1

ĤT
j (k)PSF (k)Ĥj(k) = −QSF (k),(54)

where

F (k) = −R−1
1 (k)BT

2 PSF (k);(55)

• (output injection (OI))

Pm(k)

(
A+

1

γ2(k)
B1B

T
1 PSF (k)

)

+

(
A+

1

γ2(k)
B1B

T
1 PSF (k)

)T
Pm(k) + FT (k)R1F (k)

+
1

γ2(k)
Pm(k)B1B

T
1 Pm(k) − γ2(k)CT

2 R
−1
2 (k)C2 = −Qm(k);(56)

• (risk margins (RM)) if

Ωe(k) = {(x, σ) ∈ R
n × R

n : V e
k (x, σ) ≤ k}(57)

and {Be(k)}, a sequence of open sets of R
2n, are such that

lim sup
k→∞

Be(k) ⊆ Be ⊂ Ωe ⊂ lim inf
k→∞

Ωe(k),(58)

then for each δ > 0,

lim sup
k→∞

sup
(x,σ)∈Ωe\Be(k)

V e
k (x, σ)

k
≤ α,(59)

lim sup
k→∞

sup
(x,σ)∈∂Be(k)

V e
k (x, σ)

inf(s1,s2)∈R2n\Beδ V
e
k (s1, s2)

≤ β,(60)
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and

4∑
j=1

Pj(t, η(F (k)σ), x, x− σ, k) −
3∑

j=1

cj(k) ≥ Qe
k(x, σ)(61)

for all t and (x, σ) ∈ Ωe(k) and for some sequence of quadratic C0 positive
definite functions {Qe

k}.
Under the above assumptions, the controller (34) with F (k) as in (55) and

G(k) = γ2(k)P−1
m (k)CT

2 R
−1
2 (k)(62)

solves problem I with ω(k) =
∑3

j=1 cj(k). If, in addition, cj(k) = 0 for all j =
1, 2, 3, and K(t, x) = 0 for all t, x, and j = 1, . . . , r, the same controller (34) solves
problem II.

Proof. Throughout the proof, unless otherwise stated, we will omit k and the
arguments of Φ, K, and H. Moreover, we can assume k ≥ k∗, where k∗ is such that
Ωe(k) ⊇ Ωe ⊃ Be(k) for all k ≥ k∗. (This is always possible by (58).)

Let VSF (x) = ‖x‖2
PSF

and V e
k ,M and e as in section 4. The closed-loop system is

dx =

((
A+

1

γ2
B1B

T
1 PSF

)
x+B2u+B1Φ̃

)
dt+Hdw,

de = (Le+ (B1 −GC1)Φ̃)dt+Mdw,(63)

where Φ̃ = Φ − 1
γ2B

T
1 PSFx and u = η(Fσ).

By (12)

Lϕ =
∂ϕ

∂e

[
Le+ (B1 −GC1)Φ̃

]
+

1

2
Tr

{
MT ∂

2ϕ

∂e2
M

}
,

LVSF = 2xTPSF

[(
A+

1

γ2
B1B

T
1 PSF

)
x+B2u+B1Φ̃

]
+ Tr{HTPSFH}.(64)

Moreover,

∂2ϕ

∂e2
= 2

∂2ϕ

∂s2

∣∣∣
s=‖e‖2

Pm

Pmee
TPm + 2

∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

Pm.(65)

Since HKT = 0 and Tr(AB) = Tr(BA), by (65) one has

1

2
Tr

{
MT ∂

2ϕ

∂e2
M

}
(66)

=
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

Tr{MTPmM} +
∂2ϕ

∂s2

∣∣∣
s=‖e‖2

Pm

eTPmMM
TPme.

Since B1C
T
1 = 0 and HKT = 0, using (56) and (66), we have
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Lϕ+
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

‖Fe‖2
R1

− γ2‖Φ̃‖2

=
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

[2eTPm(Le+ (B1 −GC1)Φ̃) + ‖Fe‖2
R1

] − γ2‖Φ̃‖2

+
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

Tr{MTPmM} +
∂2ϕ

∂s2

∣∣∣
s=‖e‖2

Pm

eTPmMM
TPme

=
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

eT [PmL+ LTPm + FTR1F ]e− γ2‖Φ − Φe
∗‖2

+
1

γ2
eTPm

(
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

)2

(B1B
T
1 +GC1C

T
1 G

T )Pme

+
∂2ϕ

∂s2

∣∣∣
s=‖e‖2

Pm

eTPmMM
TPme+

∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

Tr{MTPmM}

=
∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

[
eT
(
PmL+ LTPm + FTR1F +

1

γ2
Pm(B1B

T
1 +GR2G

T )Pm

)
e

+ Tr{MTPmM}
]
− γ2‖Φ − Φe

∗‖2 − P4

= −‖u− Fx‖2
R1

+ ‖x‖2
PSF +

∂ϕ

∂s

∣∣∣
s=‖e‖2

Pm

‖Fe‖2
R1

− P1 + P̃1 − P3 − P4 + c3.(67)

Moreover, for all u, by completing the square and using (54)

LVSF = ‖u− Fx‖2
R1

− γ2‖Φ̃‖2 − ‖x‖2
QSF − P̃1 − P2 + c1 + c2.(68)

Summing up together (67) and (68), we conclude that

LV e
k +

4∑
j=1

Pj = ω =

3∑
j=1

cj .(69)

To prove our theorem, we are left with proving the following facts:
• J1(k) ≤ ω(k) (resp., J2(k) achieves its minimum), conditionally to the event
{xek(t) ∈ Ωe(k), t ≥ t0};

• lim infk→∞Pr{(xek(t) ∈ Ωe(k), t ≥ t0} ≥ 1 − α, i.e., the event {xek(t) ∈
Ωe(k), t ≥ t0} has a guaranteed probability 1 − α for sufficiently large k;

• Σ◦C(k) is (Ωe,Be, α, β)-stable in probability (Σ◦C(k) is (Ωe, {0}, α, 0)-stable
in quadratic mean, respectively).

First, we prove that J1(k) = ω(k) (resp., J2(k) achieves its minimum), condition-
ally to the event {xek(t) ∈ Ωe(k), t ≥ t0}. By (69) and Dynkin’s formula, for each
T > t0

1

T − t0

∫ T

t0

E




4∑
j=1

Pj(s, u, xek(s), k)


 ds

=
1

T − t0 (V e
k (xe0) −E{V e

k (xek(T )}) + ω(k)(70)

for all xe0 ∈ Ωe(k). From (70), letting T →∞ and since
∑4

j=1 Pj ≥ 0 by admissibility
and V e

k ≥ 0, we obtain 0 ≤ J1(k) = ω(k). If, in addition, cj(k) = 0 for all j = 1, 2, 3
and K(t, x) = 0 for all t, x, it is easy to see that (70) holds with ω(k) = 0.
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As a consequence of the above facts, xek(t) being defined for all t ≥ t0 a.s., by
Dynkin’s formula

E{V e
k (xek(t))} − V e

k (xe0) =

∫ t

t0

E{LV e
k (xek(s))}ds.(71)

Differentiating both sides of (71), taking into account that V e
k is lower bounded by

a quadratic function of x and e, from (61) and (69) we obtain for some sequences

{λ̃(k)}, {ν̃(k)} of positive numbers

E{V e
k (xek(t))} ≤ λ̃(k)V e

k (xe0)e−ν̃(k)(t−t0)(72)

conditionally to the event {xek(t) ∈ Ωe(k), t ≥ t0}. We conclude that E{V e
k (xek(t))} →

0 as t→∞ and J2(k) = V e
k (x0).

Since

LV e
k +

4∑
j=1

Pj ≥ 0(73)

for any other F (k) and G(k), we conclude that J2(k) achieves its minimum with F (k)
and G(k) as in (55) and (62), respectively.

Using (69) and (RM), the (Ωe,Be, α, β) stability of Σ ◦ C(k) is a consequence of
the following lemma, which is proved in the appendix. If, in addition, cj = 0 for all j
and K(t, x) = 0 for all t and x, from (72) we conclude also the (Ωe, {0}, α, 0) stability
in quadratic mean of Σ ◦ C(k). From (124) (see the appendix), we also infer that
lim infk→∞Pr{xek(t) ∈ Ωe(k), t ≥ t0} ≥ 1 − α.

Lemma 5.1. The system (3) is (Ωe,Be, α, β)-SP if there exist a sequence of
admissible control laws {C(k)}, a sequence of (at least) C2, positive definite and proper
functions {V e

k (xe)}, a sequence of C0, positive definite functions {Qe
k(xe)}, and open

sets {Be(k)}, Be(k) ⊂ R
2n, containing the origin, such that

(iv) lim infk→∞ Ωe(k) ⊃ Ωe ⊃ Be ⊇ lim supk→∞ Be(k) and Ωe(k) ⊃ Be(k) for all
k, where

Ωe(k) = {z ∈ R
2n : V e

k (z) ≤ k};

(v) LV e
k (xe) ≤ −Qe

k(xe) for all k, t, Φ ∈ F(k), and xe ∈ Ωe(k)\Be(k);

(vi) lim supk→∞ supxe∈Ωe\Be(k)
V ek (xe)

k ≤ α and

lim sup
k→∞

sup
xe∈∂Be(k)

V e
k (xe)

infz∈R2n\Beδ V
e
k (z)

≤ β

for each δ > 0.
Remark 5.1. We note that, as a consequence of (59), if

lim sup
k→∞

V e
k (xe)

k
= 0(74)

for each xe, then the risk margin α can be taken to be any number in [0, 1) and any
a priori given compact set can be included in Ωe. Thus, condition (74), together with
(iv)–(vi) of Lemma 5.1, guarantee semiglobal stabilization in probability.
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On the other hand, if lim supk→∞ Be(k) = {0}, then for each δ > 0

lim sup
k→∞

sup
xe∈∂Be(k)

V e
k (xe)

infz∈R2n\Beδ V
e
k (z)

= 0(75)

and the risk margin β can be taken to be any number in [0, 1). Moreover, any a
priori given compact set can be chosen as target set, and condition (75) together with
(iv)–(vi) of Lemma 5.1 guarantee practical stabilization in probability .

Remark 5.2. The proof of Lemma 5.1 is based on a probabilistic invariance prop-
erty which extends to a stochastic setup the following well-known property: if there
exists a C1 proper and positive definite function V e

k : R
2n → R such that, along the

trajectories xek(t, t0, x
e
0) of Σ ◦ C(k), V̇ e

k is definite negative on Ωe(k)\Be(k) and (iv)
and (vi) hold, then any trajectory xek(t, t0, x

e
0) starting from Ωe ⊆ Ωe(k) stays forever

in Ωe(k), eventually enters any given δ-neighborhood of Be in finite time, and remains
therein. In our setting, this invariance property corresponds to an event which occurs
with probability at least (1−α)(1−β). For the above reasons, α and β can be thought
of as risk margins. In the deterministic case, (vi) corresponds to a precise geometric
property of the level sets of V e

k for sufficiently large k: one is that Ωe is contained in

Ωe(k), and the other is that Be(k) is contained in some level set of V e
k which is, in

turn, contained in Beδ.
Remark 5.3. On the other hand, conditions of Theorem 5.1 ensure that stability in

probability in the sense of Definition 4.1 is achieved together with robust performances
with respect to parameter variations and model uncertainties. Moreover, it is easily
seen from the proof that the conditions of Theorem 5.1 guarantee properties (ii) and
(iii) of Definition 4.1 to hold uniformly with respect to Φ ∈ F(k).

Remark 5.4 (linear case). Consider the class of systems (3) with Hj(t, x) = Hjx
and Kj(t, x) = Kjx for all j = 1, . . . , s, x, and t and, in addition, with Φ(t, u, x) satis-

fying P̃1 ≥ 0 for all x, u, and t. Pick admissible η(s) = s (i.e., linear controllers) and
ϕ(s) = s (i.e., quadratic Lyapunov functions). With our positions the admissibility
constraint P3 > 0 boils down to the following matrix inequality :

QSF (k) >

s∑
j=1

(Hj −GKj)
TPm(k)(Hj −GKj)(76)

(see (22)). This recovers the stabilization results with the optimality of [14] and [1].
Moreover, if Hj = 0 and Kj = 0 for all j (i.e., deterministic case), then the constraint
on P3 is trivially satisfied (see [2]).

6. Stochastic stabilization with guaranteed cost for feedback lineariz-
able systems. The conditions of Theorem 5.1 do not provide any constructive pro-
cedure to find an admissible parametrization with the functions η and ϕ. In the
next two sections, we want to outline algorithms for accomplishing this task for the
following class of nonlinear stochastic systems:

dx = (Ax+B(u+ Φ(t, u, x)))dt+Bh(t, x)dw,

y = Cx(77)

with (A,B,C) invertible with no invariant zeros and Φ(t, u, x) and h(t, x) norm-
bounded from above by a locally Lipschitz function of x and u, uniformly with respect
to t. Moreover, we will assume that Φ(t, 0, 0) = 0 and h(t, 0) = 0 for all t. (The cases
Φ(t, 0, 0) &= 0 or h(t, 0) &= 0 can be treated in a similar way with heavier calculations.)
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First, we give a semiglobal in probability backstepping design procedure for solving
the state feedback problem (SF); then we give a recursive procedure to satisfy (OI)
and (RM). We remark that Theorem 5.1 still holds if one replaces (54) with

LVSF = ‖u− F (k)x‖2
R1(k)

− γ2(k)‖Φ̃‖2 − ‖x‖2
QSF (k)

− P̃1(t, u, x, e, k) − P2(t, u, x, e, k) + c1(k) + c2(k)(78)

and

P̃1(t, u, x, e, k) = −γ2(k)‖Φ(t, u, x)‖2 + ‖x‖2
E(k) + ‖u− Γ (k)x‖2

R1(k)
+ c1(k)(79)

for some sequence of matrices Γ (k) and with F (k) = −R−1
1 (k)BT

2 PSF (k) + Γ (k).
In order to keep the backstepping algorithm as simple as possible, it is convenient
to satisfy (78) rather than (54). Moreover, the choice of Γ (k) gives an additional
flexibility in the optimal control design.

Preliminarly, by [10] there exists a change of coordinates z = Zx such that (77)
reads out in the new coordinates

dz = [Âz + B̂(u+ Φ(t, u, Z−1z))]dt+Bh(t, Z−1z)dw,

y = Ĉz,(80)

where

Â =




a11 1 0 · · · 0 0
a12 0 1 · · · 0 0
...

...
... · · · ...

...
an−1,1 0 0 · · · 0 1
an1 an2 an3 · · · an,n−1 ann


 ,

B̂ =




0
0
0
...
0
1



,

Ĉ = ( 1 0 0 · · · 0 0 ).

To simplify notation, we will omit the hats and denote z by x.

6.1. Backstepping design. The main result of the section is the following.
Theorem 6.1. The system (80) is semiglobally stabilizable in quadratic mean

with optimality through a linear state feedback controller.
As a first step toward the proof of Theorem 6.1, rewrite (80) as

dπ0 = (A0π0 +B0xn)dt,(81)

dxn = (f̃n(t, u, x) + u)dt+ h̃n(t, x)dw(82)

with π0 = col(x1, . . . , xn−1). We will prove (78) directly on (81)–(82), and this
amounts to introducing the following definition.

Definition 6.1. We will say that

dπ = (A(k)π +B1(k)Φ(t, u, π) +B2(k)u)dt+H(t, π)dw(83)
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satisfies the property DI if there exist C0 functions PSF , QSF : R
+ → SPn, R1, γ :

R
+ → R

+, E : R
+ → SSPn, and Γ : R

m × R
n such that Φ ∈ F(k), H ∈ H(k), and

for all π ∈ Ω(k) = {π ∈ R
n : VSF (π) ≤ k}, u, and t one has

‖Φ(t, u, π)‖2 ≤
‖π‖2

E(k) + ‖u− Γ (k)π‖2
R1(k)

γ2(k)
(84)

and

LVSF + ‖π‖2
E(k) + ‖u− Γ (k)π‖2

R1(k)
− γ2(k)‖Φ(t, u, π)‖2

−Tr{HT (t, π)PSFH(t, π)} +

r∑
j=1

πT Ĥj(k)PSF Ĥj(k)π(85)

= −‖π‖2
QSF (k) + ‖u− F (k)π‖2

R1(k)
− γ2(k)‖Φ(t, u, π) − 1

γ2(k)
BT

1 (k)PSF (k)π‖2,

where

VSF (π) = ‖π‖2
PSF (k),(86)

F (k) = −R−1
1 (k)BT

2 (k)PSF (k) + Γ (k).(87)

We have the following result, which roughly states that (81)–(82) satisfies the DI
property in some new coordinates π.

Lemma 6.1. There exists a C0 function λ : R
+ → (0, 1) and a change of coordi-

nates

π =

(
π0

ζ

)
,

ζ = λ(k)(xn − F0π0),(88)

such that (81)–(82) reads out as

dπ = (A(k)π +B1(k)Φ(t, u, π) +B2(k)u)dt+H(t, π)dw(89)

and satisfies DI, with

π =

(
π0

ζ

)
,

ζ = λ(k)(xn − F0π0),

F0 = −R−1
0 BT

0 P0,

A(k) =

(
A0 +B0F0

B0

λ(k)
−λ(k)F0(A0 +B0F0) −F0B0

)
,

B1(k) =

(
0 0
0 1

)
,

B2(k) = λ(k)

(
0
1

)
,

H(t, π) = λ(k)

(
0

h̃n(t, ζ
λ(k) + F0π0)

)
,

Φ(t, u, π) = λ(k)

(
0

f̃n(t, u, ζ
λ(k) + F0π0)

)
(90)
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and R0 > 0 and P0 ∈ SPn−1 such that

A0P0 + P0A
T
0 − P0B0R

−1
0 BT

0 P0 + I = 0.(91)

Proof. For simplicity, throughout the proof and whenever there is no ambiguity,
we omit the arguments of the functions involved.

Pick a C0 function P̃ : R
+ → (0, 1) such that limk→∞ P̃ (k) = 0, and define

Ω(k) = {(v1, v2) ∈ R
n−1 × R : ‖v1‖2

P0
+ P̃ (k)v22 ≤ k}.(92)

We have by our assumptions on h̃n

‖h̃n‖2 ≤ 2

[
‖h̃n − h̃n

∣∣∣
ζ=0

‖2 + ‖h̃n
∣∣∣
ζ=0

‖2

]
≤ ‖π0‖2

M̃(k)
+ Ñ(k)ζ2(93)

for all t, π, and u such that π ∈ Ω(k), where h̃n|ζ=0 denotes h̃n evaluated for ζ = 0

and for some C0 functions M̃ : R
+ → SSPn−1 and Ñ : R

+ → R
≥. We remark that

M̃ can be chosen as function of P0 only. Pick λ : R
+ → (0, 1) such that

λ2(k)M̃(k) <
I

2
.(94)

By the Îto rule

dζ = (λ(k)(f̃n + u− Γ (k)π)dt+ h̃dw̃),(95)

where

Γ (k) = F0

(
A0 +B0F0

B0

λ(k)

)
.

Find C0 functions Q̃ : R
+ → R

+, γ : R
+ → R

+, R̃ : R
+ → R

+, Ẽ1 : R
+ → R

≥,
and Ẽ2 : R

+ → SSPn−1 such that
• for all t, π, u such that π ∈ Ω(k), one has

λ2(k)f̃2
n ≤

ζ2Ẽ1(k) + ‖π0‖2

Ẽ2(k)
+ |u− Γ (k)π|2R̃(k)

γ2(k)
(96)

and

Ẽ2(k) <
I

2
;(97)

• the following equality holds:

P̃ 2(k)

γ2(k)
− λ2(k)P̃ 2(k)

R̃(k)
+ Ẽ1(k) + λ2(k)P̃ (k)Ñ(k) = −Q̃(k)(98)

with

Q̃(k) >
R0

λ2(k)
.(99)
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Let Ṽk(ζ) = P̃ (k)ζ2, F̃ (k) = −λ(k)R̃−1(k)P̃ (k). From (98)

LṼk + ‖π0‖2

Ẽ2(k)
+ ζ2Ẽ1(k) + |u− Γ (k)π|2R̃(k) − γ2(k)λ2(k)f̃2

n

+ λ2P̃

(
−‖h̃n

∣∣∣
xn= ζ

λ(k)
+F0(k)π0

‖2 + ‖π0‖2

M̃(k)
+ ζ2Ñ(k)

)

= −ζ2Q̃(k) + ‖π0‖2

Ẽ2(k)+λ2(k)P̃ (k)M̃(k)
+ |u− F̃ (k)ζ − Γ (k)π|2

R̃(k)

− γ2(k)

∣∣∣∣λ(k)f̃n − 1

γ2(k)
P̃ (k)ζ

∣∣∣∣
2

.(100)

Define

PSF (k) =

(
P0 0
0 P̃ (k)

)
.(101)

With our definitions

Tr{HTPSF (k)H} = λ2(k)P̃ (k)‖h̃n
∣∣∣
xn= ζ

λ(k)
+F0(k)π0

‖2.(102)

From (91), (94), (97), (99), (100), and (102), with V0(π0) = ‖π0‖2
P0

and VSF (π) =

V0(π0) + P̃ (k)ζ2, it follows that

LV0 + x2
nR0 + LṼk + ‖π0‖2

Ẽ2(k)
+ ζ2Ẽ1(k) + |u− Γ (k)π|2R̃(k) − λ2(k)γ2(k)f̃2

n

+ λ2P̃ (−‖h̃n|xn= ζ
λ(k)

+F0(k)π0
‖2 + ‖π0‖2

M̃(k)
+ ζ2Ñ(k))

= LVSF + ‖π‖2
E(k) + |u− Γ (k)π|2R1(k) − γ2(k)‖Φ‖2

−Tr{HT (t, π)PSFH(t, π)} +

s∑
j=1

πT Ĥj(k)PSF Ĥj(k)π

= −‖π‖2
QSF (k) + |u− F (k)π|2R1(k) − γ2(k)‖Φ − 1

γ2(k)
BT

1 (k)PSF (k)π‖2(103)

for a suitably defined E(k), with R1(k) = R̃(k) and

Ĥj(k) = λ(k)


P− 1

2
0

√
M̃(k)P̃ (k) 0

0

√
Ñ(k)


 ,

QSF (k) =


 I − Ẽ2(k) − λ2(k)M̃(k)P̃ (k) 0

0 Q̃(k) − R0

λ2(k)


 .(104)

This proves (85).

Finally, from (93), (96), and (102) it follows that P̃1 ≥ 0 and P2 ≥ 0 for all
π ∈ Ω(k). This proves the admissibility of Φ and H.

We are ready to obtain Theorem 6.1. Note that each P̃ (k) can be chosen in such
a way that

lim
k→∞

P̃ (k)

k
= 0,(105)
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which implies

lim
k→∞

VSF (π)

k
= 0(106)

for each π ∈ R
n. From (103), (106), and Theorem 5.1, with (54) replaced by (78),

since cj(k) = 0 for all j so that the sequence {Be(k)} can be chosen arbitrarily, we
conclude that (89) is semiglobally stabilizable in quadratic mean with u = F (k)π.
Moreover, by the same arguments used in the proof of Theorem 5.1, it is easy to see
that J2(k), with u = F (k)π, achieves its minimum (i.e., J2(k) = 0).

Since F0 is independent of k, (105) is sufficient to conclude also that the original
system (80) is semiglobally stabilizable in quadratic mean with optimality, which proves
Theorem 6.1.

If either Φ(t, 0, 0) &= 0 or h(t, 0) &= 0, we have the following result, which can be
proved as Theorem 6.1.

Theorem 6.2. The system (80) is semiglobally practically stabilizable in quadratic
mean with optimality through a linear state feedback controller.

6.2. Filter design. In this section, we want to show that, for some admissible
parametrization and (η, ϕ) ∈ D(k), (OI) and (RM) can also be met for (89), i.e.,
(81)–(82) in the new coordinates π. First, let us prove (OI).

Define

Qm(k) = 2ε2(k)Pm(k),

Pm(k) = P̃m(ε(k))

= diag{ε2(n−1)(k), ε2(n−2)(k), . . . , 1}P1(ε(k))diag{ε2(n−1)(k), ε2(n−2)(k), . . . , 1},
(107)

where ε : R
+ → R

+ is a C0 function (to be specified later) such that limk→∞ ε(k) = ∞.

In what follows, for the sake of simplicity we will omit the argument k when there
is no ambiguity. We claim that there exists a C0 function ε∗1 : R

+ → R
+ such that Qm

and Pm, defined in (107), solve (OI) with R2 = γ2

ε2(2n−1) for all C0 functions ε ≥ ε∗1. In-

deed, substituting in (OI), left- and right-multiplying by diag{ε−2(n−1), ε−2(n−2), . . . , 1}
and dividing both members by ε2, we find out that solving (OI) amounts to satisfying

P1(ε)(J + I + S1(ε)) + (J + I + S1(ε))TP1(ε)

− CTC +
1

γ2ε2
P1(ε)BBTP1(ε) + S2(ε) = 0,(108)

where S1, S2 : R
+ → R

n×n are C0 functions such that limε→∞ Sj(ε) = 0, j = 1, 2,
S2(ε) is symmetric and positive semidefinite, and

J =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · 0
1

λ
0 0 0 · · · 0 0


 .

It can be shown that there exists ε∗1 : R
+ → R

+ such that (108) (and thus (OI))
holds for each ε ≥ ε∗1 and for some P1(ε) ∈ SPn. Indeed, since by continuity and for
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sufficiently large ε (J+I+S1(ε), B) is controllable and (C, J+I+S1(ε)) is observable,
for each sufficiently large ε and for some P 0

1 (ε) ∈ SPn

P 0
1 (ε)(J+I+S1(ε))+(J+I+S1(ε))TP 0

1 (ε)−CTC+
1

γ2ε2
P 0

1 (ε)BBTP 0
1 (ε) = 0.

(109)
Moreover, if ε → ∞, then P 0

1 (ε) → P 0
1 (∞). Finally, by standard arguments, for

ε large enough the existence of some P1(ε) ∈ SPn satisfying (108) and such that
P1(ε) > P 0

1 (ε) and P1(ε) → P 0
1 (∞) as ε→∞ can be shown. This proves (OI).

Next we define an admissible pair (ϕ, η). Choose ϕ(s) = 1
ε ln(1 + s) if s ≥ 0,

η(s) =

{
s if |s| ≤M,
s

|s|M otherwise,(110)

where M = maxπ∈Ω |Fπ|, and F and Ω are as in (87) and (92). Note that ∂2ϕ
∂s2 ≤ 0 <

∂ϕ
∂s ≤ 1 for all s ≥ 0 and the function η is a bounded function, linear near the origin.
Moreover, the pair (ϕ, η) is admissible if there exists a C0 function ε∗2 : R

+ → R
+

such that

P3 =
2ε2‖e‖2

P̃m(ε)
+ ‖Fe‖2

R1
− ‖h̃n‖2Pnn

ε(1 + ‖e‖2

P̃m(ε)
)

−‖η(F (π−e))+Fπ‖2
R1

+‖π‖2
QSF > 0(111)

for all C0 functions ε ≥ ε∗2 and (π, e) ∈ (Ω × R
n)\(0, 0), with Pnn being the (n, n)

entry (independent of k) of Pm.
In order to prove (111), find a covering ∪3

j=1Mj of {(π, e) ∈ Ω × R
n}, with

M1 =

{
(π, e) ∈ Ω × R

n : ‖π − e‖ ≤ ϑ1; ‖e‖ ≤ ϑ1

2

}
, ϑ1 > 0,

M2 = {(π, e) ∈ Ω × R
n : ‖π − e‖ ≥ ϑ1; ‖e‖ ≤ ϑ2}, ϑ2 ≤ ϑ1

2
,

M3 = {(π, e) ∈ Ω × R
n : ‖e‖ ≥ ϑ2},(112)

Pick ϑ1 > 0 such that η(F (π − e)) = F (π − e) for all ‖π − e‖ ≤ ϑ1.

Note that, since P1(ε) → P 0
1 (∞) as ε → ∞, the term − ‖̃hn‖2Pnn

ε(1+‖e‖2

P̃m(ε)

)
+ ‖π‖2

QSF

can be rendered positive over the set Ω by choosing ε large enough.
First, it is easy to see that there exists a C0 function ε∗3 : R

+ → R
+ such that

(111) holds for all C0 functions ε ≥ ε∗3 and (π, e) ∈M1.
Moreover, (111) holds for all (π, e) ∈ M2 for some ϑ2 ≤ ϑ1

2 and for all k > 0.
Indeed, (0, e) /∈ M2 since ϑ1 > ϑ2. Thus we have ‖π‖2

QSF
> 0 on M2. It follows

that for any such π by continuity there exists eπ > 0 such that (111) holds for all
‖e‖ ≤ eπ and for all C0 functions ε ≥ ε∗3. Since O = {π ∈ Ω : ‖π‖ ≥ ϑ1

2 } is compact

and ϑ1 > 0, one can take ϑ2 = min{ϑ1

2 ,minπ∈O eπ}.
We are left with proving that there exists ε∗4 : R

+ → R
+ such that (111) holds

for all (π, e) ∈ M3 and for all C0 functions ε ≥ ε∗4. On the other hand, this readily
follows by the boundedness of η and since

lim
ε→∞

inf
‖e‖≥ϑ2

ε‖e‖2

P̃m(ε)

1 + ‖e‖2

P̃m(ε)

= ∞.(113)
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Pick ε∗2 ≥ max{ε∗3, ε∗4}.
By similar arguments (111) can be satisfied in such a way that its left-hand part

of (111) is lower bounded by a quadratic function of π and e.
Finally, we will show how to satisfy (RM). Since

lim
s→0

s ln s−r = 0 ∀r ≥ 0

by (106) and the definition of Pm(k), there exists a C0 function ε∗5 : R
+ → R

+ such
that for all C0 functions ε ≥ ε∗5

lim
k→∞

‖π‖2
PSF (k) +

1

ε(k)
ln(1 + ‖e‖2

P̃m(ε(k))
)

k
= 0(114)

for each (π, e) ∈ R
2n, which proves (59). On the other hand, by properly choosing

the sequence {Be(k)}, we can also satisfy (60). Moreover, since P3 is lower bounded
by a quadratic function of π and e, (61) also holds true.

We conclude that (OI)–(RM) hold as long as ε : R
+ → R

+ is any C0 function
such that ε ≥ max{ε∗1, ε∗2, ε∗5}. By using Theorem 6.1, with (54) replaced by (78), and
the above results and since (77) can be put in the form of (80) after a linear change
of coordinates, we obtain the following theorem.

Theorem 6.3. Any system (77) is semiglobally stabilizable in quadratic mean
with optimality.

If either Φ(t, 0, 0) &= 0 or h(t, 0) &= 0, we have the following result, which can be
proved as Theorem 6.3.

Theorem 6.4. Any system (77) is semiglobally practically stabilizable in quadratic
mean with optimality.

To conclude we will perform the main calculations for obtaining a stabilizing

controller for the system (33). Pick 0 < P0, P̃ (k) < 1, limk→∞
P̃ (k)
k = 0, and R0 = P 2

0 ,

and define Ω(k) = {(x1, ζ2) : P0x
2
1 + P̃ (k)ζ22 ≤ k}. Let Ñ(k) = 0, M̃(k) = k2

P 2
0

, and

choose λ(k) such that λ2(k)k2

P 2
0

< 1
2 . Define Γ (k) = − P0

R0
(− P0

R0

1
λ(k) ). Moreover, let

Ẽ1(k) = 8γ2(k)k2

(
1

λ2(k)P̃ (k)
+
P0

R2
0

)2

,

Ẽ2(k) =
8γ2(k)k2P 2

0 λ
2(k)

R2
0

(
1

λ2(k)P̃ (k)
+
P0

R2
0

)2

,(115)

and γ(k) > 0 be such that Ẽ2(k) < 1
2 . Also, let Q̃(k), R̃(k) > 0 such that

P̃ 2

γ2(k)
− λ2(k)P̃ 2(k)

R̃(k)
+ Ẽ1(k) = −Q̃(k),

Q̃(k) >
R0

λ2(k)
.(116)

Moreover, both P0 and P̃ can be chosen in such a way that Ω(k) (and the region of
attraction of the system in the original coordinates) contains an a priori given compact
set. This concludes the backstepping design. As to the filter design, let ε(k) > 0 be
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such that (J+S1(ε(k))+I, ( 0
1 ) is controllable, (( 1 0 ) , J+S1(ε(k))+I) is observable,

−( 1
0

0
1 ) + S2(ε(k)) < 0, and, correspondingly, find P1 ∈ SP2 such that

P1(J + S1(ε(k)) + I) + (J + S1(ε(k)) + I)TP1

−
(

1 0
0 1

)
+

1

γ2(k)ε2(k)
P1

(
0 0
0 1

)
P1 + S2(ε(k)) = 0,(117)

where

S1(ε(k)) =
1

ε2(k)




 F 2(k) 0

−λ(k)F 2(k)

ε2(k)
− F (k)

λ2(k)


+

1

γ2(k)

(
0 0
0 P̃ (k)

) ,

S2(ε(k)) =
1

ε2(k)

( 1

ε2(k)
0

0 1

)
FT (k)R̃(k)F (k)

( 1

ε2(k)
0

0 1

)
,(118)

and F (k) = − P0

R0
+ Γ (k). Finally, ε(k) can be chosen at the same time in such a way

to satisfy (111), as pointed out above.

Appendix.
Proof of Lemma 5.1. Throughout the proof, τS(t) = min{t, τS}, where τS is the

Markov time (relative to the σ-algebra generated by {xek(s), s ≤ t}) defined as the
first time at which the trajectory of (3) reaches the boundary of S. By (iv) we can
assume k ≥ k∗, with k∗ such that Ωe(k) ⊇ Ωe for all k ≥ k∗, and we fix any Φ ∈ DΞ.

We have to show only (ii) and (iii) of Definition 4.1. As a consequence of Dynkin’s
formula (with Z = Ωe(k)\Be(k) and T = ∞), since LV e

k is negative definite on
Ωe(k)\Be(k),

E{V e
k (xek(τΩe(k)\Be(k)(t), t0, xe0))} ≤ V e

k (xe0)(119)

for all xe0 ∈ ∂Be(k). By (iv) for each δ > 0 there exists k◦ such that Beδ ⊃ Be(k). By

the C̆ebys̆ev inequality (with S = Beδ, η = xek(τΩe(k)\Be(k)(r), t0, xe0), r ≥ t0 ranging
over the rationals, and V = V e

k ), (119), and (v) we have

P{xek(r, t0, x
e
0) /∈ Beδ for some rational r ≥ t0} ≤ V e

k (xe0)

infz∈R2n\Beδ V
e
k (z)

(120)

for all k ≥ k◦ and xe0 ∈ ∂Be(k). Since, by Be(k) ⊂ Beδ for all k ≥ k◦,

P{xek(r, t0, x
e
0) /∈ Beδ for some rational r ∈ [t0, τBe(k))} = 0

for all k ≥ k◦ and xe0 ∈ Be(k), by (vi) and the continuity of xek(t, ·, ·), we conclude (ii)
of Definition 4.1.

To prove (iii) we implicitly assume that xe0 ∈ Ωe\Be(k). First, we prove

P{τΩe(k)\Be(k) <∞} = 1(121)

in the case that xek(t, t0, x
e
0) is regular since otherwise it is trivially true. Since Qe

k(xe)
is continuous on its domain, we have LV e

k ≤ −ν(k) < 0 for all xe ∈ Ωe(k)\Be(k)
and for some ν(k) > 0. Directly from Dynkin’s formula (with Z = Ωe(k)\Be(k) and
T = ∞) we obtain

ν(k)E{τΩe(k)\Be(k)(t) − t0} ≤ V e
k (xe0).(122)
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Thus, by the C̆ebys̆ev inequality (with S = R
2n\(Ωe(k)\Be(k)), η = xek(τΩe(k)\Be(k)(r),

t0, x
e
0), with r ≥ t0 ranging over the rationals, and V (η) = τΩe(k)\Be(k) − t0),

P{τΩe(k)\Be(k) ≥ r} ≤ V e
k (xe0)

ν(k)(r − t0)
.(123)

Since
V ek (xe0)

ν(k)(r−t0) → 0 as r → ∞, from (123) and the (sequential) continuity of Pr{·},

we obtain (121).
Next we show that

lim inf
k→∞

inf
xe0∈Ωe\Be(k)

P{τR2n\Be(k) < τΩe(k)} ≥ 1 − α.(124)

From Dynkin’s formula (with Z and T as above) and since LV e
k is negative definite

on Ωe(k)\Be(k), it follows that

E{V e
k (xek(τΩe(k)\Be(k)(t), t0, xe0))} ≤ V e

k (xe0).(125)

By (121)

τΩe(k)\Be(k)(t) = τΩe(k)\Be(k) a.s.(126)

From (14) and (125)

P{τR2n\Be(k) > τΩe(k)} ≤ P

{
V e
k (xek(τΩe(k)\Be(k), t0, xe0))

k
≥ 1

}
≤ V e

k (xe0)

k
.(127)

By (127) and since lim supk→∞ supxe0∈Ωe\Be(k)
V ek (xe0)

k ≤ α by (vi), we get

lim sup
k→∞

sup
xe0∈Ωe\Be(k)

P{τR2n\Be(k) > τΩe(k)} ≤ α.(128)

By the continuity of xek(t, ·, ·) and since Be(k) ⊂ Ωe(k), P{τR2n\Be(k) = τΩe(k)} = 0,
which along with (128) implies (124).

By (120) and (vi) and using the continuity of xek(t, ·, ·), for each ε, δ > 0 there
exists k◦ such that Beδ ⊃ Be(k) and

P{xek(t, s, z) /∈ Beδ for some t ≥ s} < β + ε(129)

for all k ≥ k◦ and z ∈ ∂Be(k).
Finally, let F(Ωe(k),Be(k)) denote the σ-algebra generated by the events {xek(r, t0,

xe0) ∈ Ωe(k), r ≤ τR2n\Be(k)}. Since F(Ωe(k),Be(k)) is a sub-σ-algebra of the one gen-
erated by {xek(r, t0, x

e
0), r ≤ τR2n\Be(k)} and by the strong Markov property, for each

ε, δ > 0 and for all k ≥ k◦

P{xek(t+ τR2n\Be(k), t0, xe0) /∈ Beδ for some t ≥ 0|F(Ωe(k),Be(k))}

=

∫ ∞

t0

∫
z∈∂Be(k)

(P{τR2n\Be(k) ∈ ds; xek(τR2n\Be(k), t0, xe0) ∈ dz|F(Ωe(k),Be(k))}

·P{xek(t, s, z) /∈ Beδ for some t ∈ [s,∞)|F(Ωe(k),Be(k))}) < β + ε,(130)

which implies for each δ > 0

lim inf
k→∞

inf
xe0∈Ωe\Be(k)

P{xek(t+τR2n\Be(k), t0, xe0) ∈ Beδ ∀t ≥ 0|F(Ωe(k),Be(k))} ≥ 1−β.
(131)

Property (iii) of Definition 4.1 follows directly from (121), (131), (124), and the
Bayes formula.
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LINEAR PROGRAMMING FORMULATION FOR OPTIMAL
STOPPING PROBLEMS∗
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Abstract. Optimal stopping problems for continuous time Markov processes are shown to be
equivalent to infinite-dimensional linear programs over a space of pairs of measures under very general
conditions. The measures involved represent the joint distribution of the stopping time and stopping
location and the occupation measure of the process until it is stopped. These measures satisfy
an identity for each function in the domain of the generator which is sufficient to characterize the
stochastic process. Finite-dimensional linear programs obtained using Markov chain approximations
are solved in two examples to illustrate the numerical accuracy of the linear programming formulation.

Key words. linear programming, optimal stopping, occupation measures

AMS subject classifications. 60G40, 93E20
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1. Introduction. This paper establishes an infinite-dimensional linear program-
ming formulation for problems in optimal stopping. In general terms, a decision maker
observes a process X and decides the time τ at which to stop it. The person receives a
reward R(x) when the process is stopped in state x, i.e., when X(τ) = x. The goal of
the decision maker is to select a stopping rule which maximizes the expected reward
E[R(X(τ))].

American options provide one set of examples of optimal stopping problems. For
an American option, the person has the right to exercise the option at any time during
the contract period, that is, up until its time of expiration. Thus the owner of the
option must decide when to exercise his or her option.

Another example of optimal stopping in the area of finance is the decision about
when to sell stock. Suppose a person must liquidate his or her holdings by a certain
date. This person must then choose the time to sell. Of course, the goal in this setting
is to try to choose the time when the stock is at its highest level for the entire period.
A formulation of this problem has been studied by Shiryaev [13].

Optimal stopping has been well studied, and the value function has been char-
acterized in terms of the minimal excessive function lying above the reward function
(see, e.g., the text by Shiryaev [12]). This paper adopts a linear programming formu-
lation for optimal stopping problems. This approach has the benefit that numerical
solution is often easy to obtain since there are excellent linear programming software
packages available.

The main contribution is that the paper establishes an equivalence between the
stochastic process formulation and the linear programming formulation. It also in-
dicates an equivalence between optimal stopping and control problems. In addition,
this paper presents two examples to illustrate the effectiveness of linear program-
ming as a numerical solution technique. The optimal stopping linear programs are
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infinite-dimensional. It is thus necessary to approximate these by finite-dimensional
linear programs. In this paper, we adopt a discretization approach to the general
state space processes and approximate the continuous time stochastic processes by
continuous time Markov chains (see Kushner and Dupuis [9]).

This work extends to optimal stopping problems similar types of infinite-dimen-
sional linear programming formulations for stochastic control and Markov decision
problems (see, e.g., Bhatt and Borkar [1], Hernández-Lerma and Lasserre [6], Helmes
and Stockbridge [4], Helmes, Röhl, and Stockbridge [5], Kurtz and Stockbridge [8], and
Mendiondo and Stockbridge [11]). In particular, the papers [4, 5, 11] demonstrate the
accuracy of the linear programming approach for the numerical analysis of controlled
and uncontrolled processes.

The paper is organized as follows. We give the stochastic process formulation
in section 2 and identify the linear programming form of the problem in section 2.1.
Section 3 proves equivalence between these forms, section 4 discusses convergence
of finite-dimensional approximation schemes, and the linear programming method is
illustrated in examples in section 5.

2. Formulation. We formulate the optimal stopping problem in a very general
setting by assuming the state space E is a complete, separable metric space. We
will augment the state space with extra components for time and control processes.
Note that the augmented spaces will still be complete, separable metric spaces. We
therefore define the notation used in this paper for a complete, separable metric space
S. LetM(S) denote the space of Borel measurable functions on S, let C(S) denote the
space of continuous functions on S, let C(S) denote the space of bounded, continuous
functions on S, let M(S) denote the space of finite Borel measures on S, and let
P(S) ⊂ M(S) denote the collection of probability measures on S. For a Borel set
Γ ⊂ S, we define IΓ ∈M(S) to be the indicator function of the set Γ, and, for a point
s ∈ S, we define δ{s}(·) ∈ M(S) to be the Borel measure which places a unit point
mass at {s}.

The processes under consideration are characterized as solutions to a martingale
problem for their generator; that is, suppose A is the generator for a Markov process
X with state space E, where X is related to A by the requirement that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds(1)

be a martingale for each f ∈ D, the domain of A. This characterization was developed
by Stroock and Varadhan [14, 15, 16] for multidimensional diffusion processes and has
been studied by many authors. Ethier and Kurtz [3] provide an excellent reference
for general Markov processes.

We assume that the generator A has the following properties.

Condition 1.

(i) A : D ⊂ C(E)→ C(E), 1 ∈ D, and A1 = 0.
(ii) D is closed under multiplication and separates points.
(iii) The graph of A is separable in the sense that there exists a countable collection

{gk} ⊂ D such that {(f,Af) : f ∈ D} is contained in the bounded, pointwise
closure of the linear span of {(gk, Agk) : k ≥ 1}.

Let ν0 ∈ P(E) denote the initial distribution of the desired processes. We say a
process X = {X(t) : t ≥ 0} is a solution of the martingale problem for (A, ν0) if there
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exists a filtration {Ft} such that X(0) has distribution ν0, X is {Ft}-progressively
measurable, and (1) is an {Ft}-martingale for every f ∈ D.

The reward obtained when the process stops is given by the function R : E → R.
We assume that R is upper-semicontinuous and bounded above. The objective of the
decision maker is to maximize

E[R(X(τ))](2)

over all {Ft}-stopping times τ . We require

E[τ ] <∞,(3)

which implies τ <∞ a.s.

2.1. Linear programming formulation. Let X be a solution of the martin-
gale problem for (A, ν0). It then follows that, for each γ ∈ Ĉ1(R+), Ĉ1(R+) being
the space of continuously differentiable functions which vanish at ∞, and each test
function f ∈ D,

γ(t)f(X(t))−
∫ t

0

[γ(s)Af(X(s)) + γ′(s)f(X(s))]ds(4)

is an {Ft}-martingale (see [3, Theorem 4.7.1]). To simplify notation, define

Â(γf)(t, x) = γ(t)Af(x) + γ′(t)f(x),

and let D̂ = {γf : γ ∈ Ĉ1(R+), f ∈ D}.
Now let τ be any stopping time satisfying (3). Since (4) is an {Ft}-martingale,

the optional sampling theorem (see [3]) implies that

E

[
γ(τ)f(X(τ))−

∫ τ

0

Â(γf)(s,X(s))ds

∣∣∣∣F0

]
= γ(0)f(X(0)),(5)

and hence

E

[
γ(τ)f(X(τ))−

∫ τ

0

Â(γf)(s,X(s))ds

]
= γ(0)E[f(X(0))](6)

for each γf ∈ D̂.
Now let the measure µτ ∈ P(R+ × E) be the joint distribution of (τ,X(τ)), and

define the occupation measure µ0 ∈M(R+ × E) by

µ0(Γ) = E

[∫ τ

0

IΓ(s,X(s))ds

]
∀ Γ ∈ B(R+ × E).(7)

Note that µ0(R
+ × E) = E[τ ] <∞. Then (6) can be rewritten, for each γf ∈ D̂, as∫

γ(t)f(x)µτ (dt× dx)−
∫
Â(γf)(t, x)µ0(dt× dx) = γ(0)

∫
f(x)ν0(dx).(8)

Thus for each X and τ there are measures µτ and µ0 satisfying (8) for all γf ∈ D̂.
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We will show that for each pair of measures (µτ , µ0) satisfying the conditions (8)
there are a corresponding process X and a stopping time τ for which X is a solution
of the martingale problem for (A, ν0) up to time τ , and µτ and µ0 are the joint
distribution and occupation measures, respectively. The optimal stopping problem
can thus be reformulated as the following infinite-dimensional linear programming
problem over the space of pairs of measures:

Max

∫
R(x)µτ (dt× dx)

(9)

S.t.

∫
γfdµτ −

∫
Â(γf)dµ0 = γ(0)

∫
fdν0 ∀ γf ∈ D̂,

µτ ∈ P(R+ × E), µ0 ∈M(R+ × E).

3. Existence result. Section 2.1 showed that to each solution X of the martin-
gale problem for (A, ν0) and stopping time τ satisfying (3) there corresponds a pair
of measures (µτ , µ0) satisfying (8). We now establish the reverse correspondence.

The approach taken to establish this existence result is to define a new generator
A for a controlled process having two time components, one spatial component, and
one control component (u). The generator A involves the choice between the spatial
dynamics specified by A and a process in which the spatial component is fixed until
a random time at which the process is “restarted.” One time component tracks the
time in which the process having generator A runs, and the other measures the time
in which the process is fixed until it restarts. We then define a stationary measure
for the generator A and use an existence result of Bhatt and Borkar [1] to obtain a
stationary (three-dimensional) process having generator A. A new process is defined
by (pathwise) starting the stationary process at a time that the process restarts (thus
losing stationarity). The stopping time τ is then the time at which the control switches
away from the generatorA, and a change of measure ensures that the process restricted
to one “cycle” has the desired dynamics.

For completeness, we state the existence result of Bhatt and Borkar using our
notation (see [1, Theorem 2.1 and Corollary 2.1]). We refer the reader to the ref-
erence for the necessary modification of Condition 1 to incorporate controls in the
formulation. We also restate a technical lemma of Kurtz and Stockbridge (see [8,
Lemma 4.4]) which is used to establish the behavior of the stationary process.

Theorem 3.1. Let S be a complete, separable metric space, and let U be a
compact metric space. Suppose the generator A : D(A) ⊂ C(S)→ C(S×U). Suppose
µ ∈ P(S × U) is such that

∫
S×U

Af(y, u)µ(dy × du) = 0 ∀f ∈ D(A).

Let η be the regular conditional distribution of u given y under µ, so η satisfies µ(dy×
du) = η(y, du)µ(dy × U). Then there exists a stationary process Y such that

f(Y (t))−
∫ t

0

∫
U

Af(Y (s), u)η(Y (s), du)ds
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is an {FYt }-martingale for each f ∈ D(A), and

E

[∫
U

IΓ(Y (s), u)η(Y (s), du)

]
= µ(Γ) ∀ Γ ∈ B(E × U).

Lemma 3.2. Let Q be a nonnegative, {Ft}-adapted cadlag process, let V1 and V2

be bounded, nonnegative, measurable, {Ft}-adapted processes, and suppose that

g(Q(t))−
∫ t

0

(V1(s)g
′(Q(s)) + V2(s)(g(0)− g(Q(s)))) ds

is an {Ft}-martingale for every C1 function g with g and g′ bounded. Let τ be a
stopping time, and define στ0 = inf{t > τ : Q(t) > 0} and στ1 =

∫ {t > στ0 : Q(t) = 0}.
Then, for τ ≤ t < στ1 , Q(t)−Q(τ) =

∫ t
τ
V1(s) ds, and if σ

τ
1 <∞ a.s.,

P

{∫ στ1

στ0

V2(s) ds > x|Fστ0
}

= e−x, x ≥ 0.

The main result is given in the next theorem. The proof of this result follows the
proof of a similar result in Kurtz and Stockbridge (see [8, Theorem 4.5]).

Theorem 3.3. Suppose µτ ∈ P(R+ × E) and µ0 ∈ M(R+ × E) satisfy (8).
Then there exist a filtration {Ft}, a process X, and an {Ft}-stopping time τ such
that X is a solution of the martingale problem for (A, ν0) up to time τ , (τ,X(τ)) has
distribution µτ , and the occupation measure of X up to time τ , defined in (7), is µ0.

Proof. Augment the state space with an extra time dimension and the space
U = {0, 1}, which we refer to as the (“bang-bang”) control space. Define a new
generator A by

(10)

A(βγf)(r, s, x, u) = uβ(r)Â(γf)(s, x)

+(1− u)
[
β(0)γ(0)

∫
fdν0 − β(r)γ(s)f(x) + β′(r)γ(s)f(x)

]

for each β, γ ∈ Ĉ1(R+) and f ∈ D.
Define the measure µ ∈ P(R+ × R

+ × E × {0, 1}), which satisfies

(11)∫
h(r, s, x, u)µ(dr × ds× dx× du) = K−1

(∫
R+×E

h(0, s, x, 1)µ0(ds× dx)

+

∫
R+×E

∫ ∞

0

e−rh(r, s, x, 0)drµτ (ds× dx)
)

for each bounded, continuous h, where K = µ0(R
+×E)+1. Note that the conditional

distribution of u given (r, s, x) under µ is

η(r, s, x, du) = δ{1}(du)I{0}(r)
dµ0

dµ
(s, x) + δ{0}(du)e−rI(0,∞)(r)

dµτ
dµ

(s, x).(12)
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The following computation shows that
∫
A(βγf)dµ = 0 for all β, γ ∈ Ĉ1(R+),

and f ∈ D.∫
A(βγf)(r, s, x, u)µ(dr × ds× dx× du)

= K−1

(∫
1 · β(0)Â(γf)(s, x)µ0(ds× dx)

+

∫
R+×E

∫ ∞

0

e−r(−β(r) + β′(r))γ(s)f(x) drµτ (ds× dx)

+ β(0)γ(0)

∫
fdν0

)

= K−1

(∫
β(0)Â(γf)(s, x)µ0(ds× dx)

+

∫
R+×E

∫ ∞

0

d

dr

(
e−rβ(r)

)
drγ(s)f(x)µτ (ds× dx) + β(0)γ(0)

∫
fdν0

)

= K−1β(0)

(∫
Â(γf)(s, x)µ0(ds× dx)

−
∫

R+×E
γ(s)f(x)µτ (ds× dx) + γ(0)

∫
fdν0

)
= 0.

The conditions of Theorem 3.1 on the state and control spaces and the generator
are also satisfied, which therefore implies the existence of a stationary R

+ ×R
+ ×E-

valued process (R,S, Y ) (which we may assume is defined for all t ∈ R) such that

β(R(t))γ(S(t))f(Y (t))−
∫ t

0

∫
U

A(βγf)(R(s), S(s), Y (s), u) η(R(s), S(s), Y (s), du) ds

(13)

is an {FR,S,Yt }-martingale for all β, γ ∈ Ĉ1(R+), and f ∈ D, where η is given by (12).
For each t ≥ 0, define the following random variables: σt−1 = sup{r < t : S(r) =

0, R(r) = 0}, σt1 = inf{r ≥ t : S(r) = 0, R(r) = 0}, τ t1 = inf{r > σt1 : R(r) > 0},
and σt2 = inf{r > τ t1 : R(r) = 0}. For s ∈ [σt1, τ

t
1), by definition R(s) = 0 and

by Lemma 3.2 S(s) =
∫ s
σt1
I{0}(R(r))dr = (s − σt1). For s ∈ [τ t1, σ

t
2), by Lemma 3.2

R(s) =
∫ s
τt1
I(0,∞)(R(r))dr = s−τ t1 a.s. and conditional on Fτt1 , σt2−τ t1 is exponentially

distributed with mean 1, and again by Lemma 3.2 S(s) = S(τ t1) +
∫ s
τt1
I{0}(R(r))dr =

S(τ t1) = τ t1 − σt1. Starting with g(r + s) = e−α(r+s) and approximating more general
g by linear combinations of these exponentials, we see that

g(S(t) +R(t))−
∫ t

0

(g′(S(r) +R(r)) + (1− u(R(r), S(r), Y (r)))(g(0)

− g(S(r) +R(r))))dr

is a martingale for C1 functions with g and g′ bounded, where

u(R(r), S(r), Y (r)) =

∫
uη(R(r), S(r), Y (r), du).
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Letting σ̃t2 = inf{r > τ t1 : S(r) +R(r) = 0}, Lemma 3.2 implies

P

{∫ σt2

τt1

(1− u(R(r), S(r), Y (r)))dr > x
∣∣FR,S,Y
τt1

}

= e−x = P

{∫ σ̃t2

τt1

(1− u(R(r), S(r), Y (r)))dr > x
∣∣FR,S,Y
τt1

}
,

and since σt2 ≤ σ̃t2, we must have σt2 = σ̃t2 a.s. In particular, S(σt2) = 0 a.s. Finally,
defining Z(r) = (R(τ t1 + r), S(τ t1 + r), Y (τ t1 + r)) for r ≤ σt2 − τ t1, we can extend Z to
be a solution of the martingale problem for the generator C defined by

Cg(r, s, x) =

∫
g(0, 0, y)ν0(dy)− g(r, s, x) + ∂

∂r
g(r, s, x).

Since any solution of this martingale problem has the property that the final compo-
nent is constant except for jumps that occur when the first two components jump to
zero, it follows that Y (r) = Y (τ t1) for τ t1 ≤ r < σt2.

Let h be a fixed, bounded, continuous function and, for ε > 0, define

Hε(r) =

∫
U

e−ε(R(r)+S(r))h(R(r), S(r), Y (r), u) η(R(r), S(r), Y (r), du).

Then, as a process in t,

(σt1 − σt−1)
−1

∫ σt2

σt1

Hε(r) dr(14)

is stationary, and for each t and s ∈ [σt−1, σ
t
1)

(σs1 − σs−1)
−1

∫ σs2

σs1

Hε(r) dr = (σt1 − σt−1)
−1

∫ σt2

σt1

Hε(r) dr.

These expressions are set equal to 0 whenever σt−1 = −∞ or σt1 = +∞.

Using stationarity,

E

[
(σt1 − σt−1)

−1

∫ σt2

σt1

Hε(r) dr

]
= T−1

∫ T

0

E

[
(σt1 − σt−1)

−1

∫ σt2

σt1

Hε(r)dr

]
dt,(15)

in which both sides may be infinite due to the (σt1 − σt−1)
−1 term. The following

argument, in fact, shows that both terms are finite and identifies their common value.

Let N(T ) denote the number of jumps of the process (R,S, Y ) in the interval
[0, T ], let {σk : k = 1, . . . , N(T )} denote these jump times, and let σN(T )+1 and σ−1

(= σ0 in the summation) denote the first jump time after time T and the last jump
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time before time 0, respectively. Then the right-hand side of (15) equals

T−1E


N(T )+1∑

k=1

T ∧ σk − σk−1 ∨ 0

σk − σk−1

∫ σk+2

σk+1

Hε(r) dr




= T−1E

[∫ T

0

Hε(r) dr

]

−T−1E

[∫ σ1∧T

0

(
1− T ∧ σ1

σ1 − σ−1

)
Hε(r) dr

]

+T−1E

[
I{N(T )=1}

σ1

σ1 − σ−1

∫ σ2

T

Hε(r) dr

]

+T−1E

[
I{N(T )>1}

∫ σN(T )+1

T

Hε(r) dr

]

+T−1E

[
I{N(T )>0}

T − σN(T )

σN(T )+1 − σN(T )

∫ σN(T )+2

σN(T )+1

Hε(r) dr

]
.

Observe that the first term is∫
e−ε(r+s)h(r, s, x, u)µ(dr × ds× dx× du)(16)

and that the last four terms are bounded above by 4||h||/(εT ). Thus all terms are
finite, implying the terms in (15) are finite, and, moreover, as T →∞, these converge
to (16).

Letting ε→ 0 gives, for each bounded, continuous h (and hence for each bounded,
measurable h),

E

[
(σt1 − σt−1)

−1

∫ σt2

σt1

∫
U

h(R(r), S(r), Y (r), u) η(R(r), S(r), Y (r), du)dr

]

=

∫
h(r, s, x, u)µ(dr × ds× dx× du).(17)

Then considering h(r, s, x, u) = I{0}(u) in (17) yields

K−1 = E[(σt1 − σt−1)
−1(σt2 − τ t1)]

= E[(σt1 − σt−1)
−1],

in which the last equality follows from the fact that, conditional on FR,S,Y
τt1

, σt2 − τ t1
is exponentially distributed with mean 1.

Now specify σt−1 and σt1 when t = 0. Define the process X̃ by X̃(r) = Y (σ0
1 + r),

R̃(r) = R(σ0
1 + r), S̃(r) = S(σ0

1 + r), and the filtration {Fr} = {FR,S,Y
σ0
1+r
}. Let

τ̃ = inf{r ≥ 0 : R̃(r) > 0} and σ̃ = inf{r > τ̃ : R̃(r) = 0}, and note that X̃(r) = X̃(τ̃)
for τ̃ ≤ r < σ̃. Observe that both σ0

1 and σ0
−1 are F0-measurable. Define a new
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probability measure P̂ to have Radon–Nikodym derivative K(σ0
1 − σ0

−1)
−1. It then

follows from (17) that for each bounded, measurable h

EP̂

[∫ σ̃

0

∫
U

h(R̃(r), S̃(r), X̃(r), u) η(R̃(r), S̃(r), X̃(r), du)dr

]

=

∫
h(r, s, x, u)µ(dr × ds× dx× du)/E[(σ0

1 − σ0
−1)

−1](18)

=

∫
h(0, s, x, 1)µ0(ds× dx)

+

∫ ∞

0

∫
e−rh(r, s, x, 0) µτ (ds× dx)dr.

Taking h(r, s, x, u) = I{0}(r)I{0}(u) in (18) shows that η(R̃(r), S̃(r), X̃(r), ·) places
unit mass at {1} a.s. for 0 ≤ r ≤ τ̃ , and, similarly, h(r, s, x, u) = I(0,∞)(r)I{1}(u)
establishes that η(R̃(r), S̃(r), X̃(r), ·) places unit mass at {0} a.s. for τ̃ ≤ r ≤ σ̃. Fur-
thermore, for Γ ∈ B(R+ × E) and h(r, s, x, u) = I(0,∞)×Γ×{0}(r, s, x, u), (18) implies

µτ (Γ) = E

[∫ σ̃

τ̃

IΓ(S̃(r), X̃(r)) dr

]

= E[IΓ(τ̃ , X̃(τ̃))(σ̃ − τ̃)]
= E[IΓ(τ̃ , X̃(τ̃))],

where the last equality follows from the fact that σ̃ − τ̃ is a mean 1 exponential time
conditional on Fτ̃ . Similarly, for Γ ∈ B(R+×E) and h(r, s, x, u) = I{0}×Γ×{1}(r, s, x, u),
(18) implies

E

[∫ τ̃

0

IΓ(r, X̃(r)) dr

]
= µ0(Γ).

Finally, by compactifying the time components to [0,∞], extending the generator
A to allow β, γ ∈ C[0,∞] (see [3, Theorem 4.5.4]), taking β ≡ 1 and γ ≡ 1 in (13),

and recalling that η(R̃(r), ˜S(r), X̃(r), ·) = δ{0}(·) for r ∈ (0, τ̃), the optional sampling

theorem implies that under P̂

f(X̃(t ∧ τ̃))−
∫ t∧τ̃

0

Af(X̃(s)) ds

is a martingale with respect to the filtration {Ft}.
4. Finite-dimensional approximation. The linear program (9) is typically

infinite-dimensional since the variables are measures on R
+×E. To obtain numerical

results, it is therefore necessary to reduce the linear program to a finite-dimensional
linear program. In this section, we give conditions under which the solutions to
a sequence of approximating linear programs converge to the solution of (9). We
provide two approaches toward this result.

4.1. Convergence of approximating linear programs. The equivalence of
optimal stopping problems with the linear program (9) has been established in sec-
tions 2 and 3 under very general conditions. The convergence results, however, are
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shown under more restricted conditions and are based on the results of Mendiondo
and Stockbridge [10]. An alternate approach to the approximation of the infinite-
dimensional linear program is possible using the numerical scheme of Hernández-
Lerma and Lasserre [7]. It should be noted that the issue of obtaining approxmiate
control policies that converge to the optimal control policy for the original problem
remains an open problem.

We assume that E is a compact, metric space and that the reward function R is
continuous. We also compactify R

+ with the point at ∞ and extend the generator Â
to functions γf with γ ∈ C(R+) and f ∈ D as in [3, Theorem 4.5.4]. The extension

of the generator and domain are still denoted Â and D̂, respectively.

The approximating linear programming problems. In our application of
the convergence results, the approximations will be obtained by discretizing the space.
The convergence results apply to other approximation schemes as well, so we establish
the results in the more general setting.

For n ≥ 0, let En be a metric space, and denote the distance between points in
En by | · − · |. We assume for each n there exist measurable functions ψn : En → E
and φn : E → En such that

(C1) |x− ψn(φn(x))| → 0 as n→∞ for all x ∈ E.

Note that, in our application, En will be a discretization of E, ψn will be the nat-
ural imbedding of En in E, and φn will map rectangles to the (single) point in the
discretization contained in the rectangles.

For each n, we transfer the reward function R to En by defining Rn = R ◦ ψn.
Let An : Dn ⊂ C(En) → C(En) be such that, for each f ∈ D, there exists

fn ∈ D(An) satisfying the following:

(C2) supy∈En |fn(y)− f(ψn(y))| → 0 as n→∞;
(C3) supy∈En |Anfn(y)−Af(ψn(y))| → 0 as n→∞.

Note that conditions (C2) and (C3) are satisfied by Â. We denote the approximations

of Â by Ân and the approximations of the initial distribution ν0 by νn0 .

The approximating linear programs are

Max

∫
Rn(y)µ

n
τ (dt× dy)

(19)

S.t.

∫
γnfndµ

n
τ −

∫
Ân(γnfn)dµ

n
0 = γn(0)

∫
fndν

n
0 ∀γnfn ∈ D̂(An),

µnτ ∈ P(R+
n × En), µn0 ∈M(R+

n × En).

To apply the results in [10], the constraints of (9) and (19) will be rephrased to
fit the formulation of that paper. Let U = {u1, u2} be a control space consisting of

two distinct points. Define a new generator Ã : D̂ → C(R+ × E × U) by

Ã(γf)(t, x, u) =

{
Â(γf)(t, x) if u = u1,

γ(0)
∫
fdν0 − γ(t)f(x) if u = u2,

and note that conditions (C2)–(C3) apply to Ã. We denote the approximations of Ã
by Ãn.
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We further assume the following.
(C4) For each n, for each conditional distribution η̂n on {u1, u2} given En, there

exist measures µnτ ∈ M(R+
n × En) and µn0 ∈ P(R+

n × En) such that for each

γnfn ∈ D̂(An)∫
γnfn(t, y)µ

n
τ (dt× dy)−

∫ ∫
Ân(γnfn)(t, y, u)η̂

n(y, du)µn0 (dt× dy)

= γn(0)

∫
fndν

n
0 .

Condition (C4) essentially assumes the existence of a stationary distribution for the
approximating process.

Define the measure µ̃ ∈ P(R+ × E × U) by

µ̃(· × {u1}) = K−1µ0(·), µ̃(· × {u2}) = K−1µτ (·),
where K = µ0(R+ × E) + 1. Then the constraints of (9) become∫

R+×E×U
Ã(γf)dµ̃ = 0 ∀ γf ∈ D̂,

µ ∈ P(R+ × E × U).

A similar reformulation of the constraints of (19) gives the form which is analyzed in
[10], and thus the optimal values of (19) converge to that of (9) (see Theorem 4 of
[10]).

4.2. Markov chain approximations. The second approach to the issue of
finite-dimensional approximations and convergence of the optimal values is to employ
Kushner’s Markov chain approximation scheme. To apply the convergence results in
Kushner and Dupuis [9], we establish the equivalence between the optimal stopping
problem and an associated absolutely continuous stochastic control problem. This
control problem is then approximated by the corresponding problem of controlling
a continuous time Markov chain which approximates the original Markov process.
Convergence of the value function then follows.

Let U = {0, 1}, and this time define the controlled generator Ã : D → C(E × U)
by

Ãf(x, u) = uAf(x).(20)

A paired process (X̃, u) is a solution of the controlled martingale problem for
(Ã, ν0) if X̃(0) has distribution ν0, and there is a filtration {Ft} such that (X̃, u) is
{Ft}-progressively measurable and

f(X̃(t))−
∫ t

0

Ãf(X̃(s), u(s))ds

is an {Ft}-martingale. For the optimal stopping problem, we further require

lim
t→∞ X̃(t) =: X̃(∞) exists a.s.(21)

The first theorem shows that to each pair (X, τ), in which X is a solution of the
martingale problem for (A, ν0) and τ is a stopping time, there exists a pair (X̃, u),
which is a solution of the controlled martingale problem for (Ã, ν0) satisfying (21).
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Theorem 4.1. Let X be a solution of the martingale problem for (A, ν0), and
let τ be a stopping time having finite expectation. Let µτ denote the distribution
of X(τ), and let µ0 be defined by (7). Then there exists a solution (X̃, u) of the
controlled martingale problem for (Ã, ν0) such that limt→∞ X̃(t) exists a.s., X̃(∞)
has distribution µτ , and

E

[∫ ∞

0

u(s)IΓ(X̃(s))ds

]
= µ0(Γ)

for every Γ ∈ B(E).

Proof. Define X̃(t) = X(t ∧ τ) and u(t) = I[0,τ)(t). The conclusion now follows.

The next theorem shows the reverse correspondence.

Theorem 4.2. Let (X̃, u) be a solution of the controlled martingale problem for
(Ã, ν0) with

E

[∫ ∞

0

u(s)ds

]
<∞

and such that limt→∞ X̃(t) exists a.s. Then there exist a process X and a stopping
time τ , with E[τ ] <∞, such that X is a solution of the martingale problem for (A, ν0)
up to time τ .

Proof. We sketch the proof. Define τ =
∫∞
0
u(s) ds, and note that τ < ∞ a.s.

Now we restrict our attention to the times that u = 1 by defining, for r ∈ R
+,

σ(r) = inf

{
t :

∫ t

0

u(s) ds = r

}
,

where σ(r) =∞ for r ≥ τ . It then follows that

f(X̃(σ(r)))−
∫ σ(r)

0

u(s)Af(X̃(s)) ds(22)

is an {Fσ(r)}-martingale. Define X(r) = X̃(σ(r)) and Gr = Fσ(r) for r ∈ R
+, and

observe that (22) is

f(X(r ∧ τ))−
∫ r∧τ

0

Af(X(s)) ds.

Theorems 4.1 and 4.2 establish the equivalence of stopped solutions (X, τ) of
the martingale problem for (A, ν0) with controlled solutions (X̃, u) of the martingale
problem for (Ã, ν0). The formulation of the objective (2) of the stopping problem in
terms of the controlled process is

E[R(X̃(∞))],(23)

and the control problem is to maximize (23) over all solutions of the controlled mar-
tingale problem for (Ã, ν0) satisfying (21).

Kushner’s numerical method approximates the process (X̃, u) by a continuous
time controlled Markov chain (X̃(n), u(n)), which satisfies local consistency conditions
and then optimizes the corresponding objective involving X̃(n).
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5. Numerical examples. We illustrate the accuracy of the linear programming
formulation for optimal stopping problems in this section.

Example 5.1. Let X be a one-dimensional Brownian motion with X(0) = x0,
where 0 < x0 < 1, so the generator of the Brownian motion process is

Af(x) =
1

2
f ′′(x), 0 < x < 1.

The process stops automatically when it reaches 0 or 1. Note that this implies that
if the decision maker allows the process to run without intervention, it will still stop
at some random time τ having finite expectation. The reward obtained when the
process stops is given by the function

R(x) = 1− 9x+ 59x2 − 100x3 + 50x4.

Since the reward function is not time-dependent, we can simplify the problem by
taking γ ≡ 1 in (9) and letting µτ and µ0 be the marginal measures on [0, 1] defined by
µτ (R

+×·) and µ0(R
+×·), respectively. The linear program for the optimal stopping

problem becomes

Max

∫
[1− 9x+ 59x2 − 100x3 + 50x4]µτ (dx)

(24)

S.t.

∫
f(x)µτ (dx)−

∫
1

2
f ′′(x)µ0(dx) = f(x0),

µτ ∈ P([0, 1]), µ0 ∈M([0, 1]).

This optimal solution for this example can be readily computed using the methods
of [12]. The continuation region for this problem consists of (0, 0.440589)∪(0.55941, 1)
with the stopping region being its complement. The value function is the smallest
concave function lying above R and is displayed on the graph of the numerical results
in Figure 1.

To approximate this infinite-dimensional linear program, discretize [0, 1] by set-
ting

En =

{
k

n
: k = 1, . . . , n− 1

}

and En = En ∪ {0} ∪ {1} and using the central finite difference approximation

f ′′(yk) ≈ n2[f(yk + 1/n) + f(yk − 1/n)− 2f(yk)]

for yk ∈ En. The linear program which results is

Max
∑

[1− 9yk + 59y2k − 100y3k + 50y4k]µ
(n)
τ (yk)

(25)

S.t.
∑

f(yk)µ
(n)
τ (yk)−

∑
Anf(yk)µ

(n)
0 (yk) = f(x0),

µ(n)
τ ∈ P(En), µ(n)

0 ∈M(En).

Notice that it is only necessary to use a finite number of functions f since there are
only a finite number of states in the discretization.
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Fig. 1. The value function.

This numerical scheme approximates the Brownian motion process by a contin-
uous time Markov chain (a simple random walk with absorption at {0, 1}) having
generator

Anf(yk) =
n2

2
[f(yk + 1/n) + f(yk − 1/n)− 2f(yk)]

for yk ∈ En. When the process jumps, it moves to the right or left one point in the
discretization with equal probability. It is necessary to approximate f ′′ by the central
difference approximation in order to satisfy condition (C4). Note that the stationarity
condition in the constraints of (24) translates into the stationarity condition in the
constraints of (25). Thus the stationary distributions of the Brownian motion are
approximated by the stationary distributions of the random walk.

We illustrate the results of (25) by setting n = 50. The value function is approxi-
mated by solving the linear program (25) with each discretized state as the initial state
of the process (thus solving 51 linear program problems) and recording the optimal
values. We used AMPL as a user interface with the linear program solver CPLEX.
The optimal values are plotted along with the value function V in Figure 1. Observe
that the linear program gives excellent results.

To better illustrate the results of solving the linear program, we plot the two

measures µ
(n)
τ and µ

(n)
0 for the case x0 = 0.7 in Figures 2 and 3, respectively. Note that

the occupation measure puts its mass entirely on {0.58, . . . , 0.98}, and the distribution
at τ consists of two masses at 0.56 and 1, respectively.

The masses of µ
(n)
τ give the probability that when the process stops, it does so

at each of these locations. Thus the optimal stopping rule is to decide to stop the
process when it first hits 0.56 or 1.

The masses of µ
(n)
0 give the expected length of time the Markov chain occupies

each state in the continuation region. Note that only the right half of the continuation
region is obtained from this solution of the linear program. This is due to the fact
that the initial position of X is x0 = 0.7, so the process, when optimally stopped,
will reach only points in {0.56, . . . .1}. Solving the linear program with x0 = 0.2 will
identify the lower continuation region and stopping region.

An additional comment is needed due to the numerical results of µ
(n)
0 . It can

be shown that the optimal µ0 has a piecewise linear density g consisting of two seg-
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τ : The probability of stopping in each state.
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Fig. 3. µ
(n)
0 : The expected length of time in each state.

ments where the density is positive. The density g is 0 at the stopping locations.
It is also continuous with its maximum at the initial state. Figure 3 displays these
characteristics.

We also ran the linear program at various discretization levels with x0 = 0.7 and

recorded the lower stopping location from µ
(n)
τ . These values are listed in Table 1.

In each case, the stopping rule chooses the point in the discretization closest to
the stopping location for the Brownian motion process.

The previous example involving one-dimensional Brownian motion was simple
enough to solve analytically and thereby allowed for comparison of the numerical
solution using linear programming with the analytical solution. We now present a
two-dimensional example involving Brownian motion in the unit square which is an
extension of the one-dimensional example with quartic reward.

Example 5.2. Let (X,Y ) be a two-dimensional Brownian motion process with
X(0) = X0 and Y (0) = Y0, where 0 < X0, Y0 < 1, so the generator of the two-
dimensional process is

Af(x, y) =
1

2

∂2f

∂x2
(x, y) +

1

2

∂2f

∂y2
(x, y).
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Table 1

Discretization Stopping Exact
size h location value
0.1 0.6 0.55941
0.05 0.55 0.55941
0.02 0.56 0.55941
0.01 0.56 0.55941
0.001 0.559 0.55941
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Fig. 4. The reward function.

The process automatically stops when it hits the boundary of the unit square. A
reward of

R(x, y) = (1− 9x+ 59x2 − 100x3 + 50x4)(1− 9y + 59y2 − 100y3 + 50y4)

is earned when the process stops in location (x, y). Thus the decision maker’s goal is
to maximize

E[R(X(τ), Y (τ))]

over all stopping times τ . Note every stopping rule satisfies (3) (see Figure 4).
The linear program for this optimal stopping problem is

Max

∫
R(x, y)µτ (dx× dy)

(26)

S.t.

∫
f(x)µτ (dx× dy)−

∫ [
1

2

∂2f

∂x2
(x, y) +

1

2

∂2f

∂y2
(x, y)

]
µ0(dx× dy) = f(X0, Y0)

∀f ∈ C2([0, 1]× [0, 1]),

µτ ∈ P([0, 1]× [0, 1]),

µ0 ∈M([0, 1]× [0, 1]).

As in the one-dimensional case, we discretize the unit interval and approximate
the Brownian motion process by a random walk. For example, we approximate

∂2f

∂x2
(xk, yk) ≈ f(xk+1, yk) + f(xk−1, yk)− 2f(xk, yk)

h2
,
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Fig. 5. The stopping locations.
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Fig. 6. The value function.

where h denotes the mesh size. This linear program was run using AMPL as an
interface for the linear program solver CPLEX with initial state (X0, Y0) = (0.2, 0.6)

and taking h = 0.01. Figure 5 shows the locations where the measure µ
(n)
τ puts

positive mass. Recall that the measure µ
(n)
τ identifies the boundary of the stopping

region as those states which have positive mass and hence a positive probability of
the process being in those states when the decision is made to stop the process. The
stopping locations in the center of the square are clearly identified. There are a

few states on the boundary, however, which are assigned no µ
(n)
τ mass by the linear

program. The reason appears to be that since the initial state of the process is at
(0.2, 0.6), the probability of the process stopping in those states is small enough to be
numerically equal to zero.

The value function is approximated by solving the approximating linear program
with each point in the discretization as the initial value and recording the optimal
values. This approximation of V using the points in the interior of the unit square is
given in Figure 6 when h = 0.02.
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